Appendices

Appendix A: Drill Core Analysis Report

Appendix B: Underground Photographs

Appendix C: Additional Memorandum

Appendix A: Drill Core Analysis Report

Giant Mine Freeze Optimization Study – Drill Core Analysis Report

Report Prepared for

Public Works and Government Services Canada

Report Prepared by

SRK Consulting (Canada) Inc. 1CS019.018 November 2011

Giant Mine Freeze Optimization Study – Drill Core Analysis Report

Public Works and Government Services Canada

5101 - 50th Avenue, P.O. Box 518, Greenstone Building Yellowknife, NT X1A 2N4

SRK Consulting (Canada) Inc.

Suite 2200 – 1066 West Hastings Street Vancouver, BC V6E 3X2

e-mail: vancouver@srk.com website: www.srk.com

Tel: +1.604.681.4196 Fax: +1.604.687.5532

SRK Project Number 1CS019.018 November 2011

Authors:

Arlene Laudrum, P.Geol. Senior Consultant

Peter Mikes, P.Eng. Senior Consultant

Kirsty Ketchum, P.Geol. Consultant

Peer Reviewed by:

Dan Hewitt Principal Consultant

Table of Contents

5	References1	11
	4.2 Heat Capacity	7
	4.1 Thermal Conductivity	6
4	Estimates of Thermal Properties	6
3	Mineralogical Analysis	3
2	Drill Core Inspection	1
1	Introduction	1

List of Tables

Table 3.1	Mineralogy Composition of Samples	.3
Table 3.2	Mineralogy Composition of Samples	.5
Table 4.1	Mineral Thermal Conductivities	6
Table 4.2	Estimated Bedrock Thermal Conductivity	7
Table 4.3	Mineral Heat Capacities at 20°C	8
Table 4.4	Estimated Bedrock Heat Capacities at 20°C	8

List of Figures

Figure 1 Bedrock Lithologies and Thermal Conductivities	.2
Figure 2 Normalized Heat Capacity Vs. Temperature	.9

Appendices

Appendix A: Borehole Logs

- Appendix B: Drill Core Photographs
- Appendix C: Thin Section Photographs

1 Introduction

The Freeze Optimization Study (FOS) is being carried out to determine the optimal freeze method for the full freeze program and its design parameters. The FOS is being conducted at Chamber 10, one of the arsenic dust containing chambers near C-Shaft. The FOS monitors several combinations of active freezing, passive freezing and hybrid freezing systems.

Rock compositions and mineralogy distribution are important factors that are considered in the thermal modeling used for assessing performance. Differences in the mineralogy of the rock around Chamber 10 can lead to significant differences in thermal properties. In order to avoid those differences confounding the interpretation of the FOS data, a mineralogical analysis of the core was completed.

Drill core was retrieved from eleven boreholes around Chamber 10 for the dual purposes of geotechnical assessment and determining thermal properties of the rock. The geotechnical report was submitted with the FOS interim as-built report (SRK 2009). This report analyzes the mineralogy of core samples collected from around Chamber 10 and determines a representative range of thermal bedrock properties for thermal modeling and evaluation of the FOS.

2 Drill Core Inspection

Seven boreholes were logged for geological properties between February and April 2011 by Arlene Laudrum at the Giant Mine site. The holes were selected for logging based on their relation to Chamber 10 and the regional trend of the rocks. Figure 1 provides the location of the logged boreholes as well as a summary of the lithological units encountered in each hole. Boreholes P01, P41, and S04 east of the chamber are located on a hanging wall. Boreholes P17, P21 and S13 located west of the chamber are located in the footwall. Borehole P13 is located along the strike of the chamber.

The lithology, structure, alteration and mineralization were logged for the entire length core. At 1.5 m intervals, the intensity of chlorite, silica, carbonate alteration, epitdote/quartz/carbonate veining and flooding, as well as the percentage of veining and mineralization were logged.

Samples were selected for mineralogical analyses that were representative of the predominant lithologies observed and their common forms of alteration. A comparison to previous samples collected was made as the core logging progressed. Results of the geological logging are presented in Appendix A.

Chamber 10 is located within north trending altered metavolcanic rocks. The rocks dip steeply towards the east. The rock surrounding the chamber consists of a succession of massive and pillowed basaltic flows that are intercalated with coarse grained gabbro dykes. The basalt grades from fine grained to medium grained. The rock exhibits variably foliated alteration zones. Epidote and chlorite alteration was observed to be stronger in the hanging wall rock on the west side of the chamber.

Drillh Depth (m)	Lithology Sampling No. & Locations	(kJ day ⁻¹ m ⁻¹ °C ⁻¹ c 8 8 8 8 8 8
2		1
4	(Plicev Gasari)	
- 10	e	
12	Gabbro	_
16		
- 18		
- 20		
- 24		
- 26	one and the second	
28		
- 32		
- 34		
- 36		

 $\checkmark \qquad \text{Other core recovery holes}$

thern	Affaires Indiennes et du Nord Canada	FOS Drill Core Analysis				
nd Government la	Travaux publics et services gouvernementaux Canada	Bedrock Lithology and Thermal Conductivities				
Giant Mine		Date: Aug. 8, 2011	Approved: PHM	Figure: 1		

3 Mineralogical Analysis

Eleven 5 cm x 5 cm thin sections were prepared by Vancouver Petrographics, from samples of drill core selected by Arlene Laudrum. Thin sections were analysed May 30^{th} to June 2^{nd} by Kirsty Ketchum, at the NT Geoscience Office, using their transmitted light microscope with x2, x10, x20 and x50 magnification and both plane polarized light (PPL) and crossed polarized light (XPL). Photographs were taken of the thin sections (photomicrographs) using the digital camera attached to the microscope. The field of view for the photomicrographs at each magnification photographed is as follows: X2 = 4.5 mm, x10 = 1.1 mm, x20 = 0.75 mm. Table 3.1 summarizes the notes and observations of samples with references to the photomicrographs that are included in Appendix C. Table 3.2 summarizes the mineralogy composition of the samples.

Sample Observations and Photomicrograph References						
11001	Basalt					
P17 59.3-59.4m	 Fine grained groundmass of: actinolite 40%, chlorite 10%, epidote 10%, 7.5% quartz, 2.5% albite, 30% micro-crystalline alteration product – probably serecite. Photomicrographs Appendix C-1 Figures 1 to 7. 					
	 Cut by veins of: epidote with chlorite (major - probably in selvedge; Figure 8), actinolite (major - probably in selvedge; Figure 9), calcite with chlorite (minor; Figure 10), quartz with actinolite (minor; Figure 11). 					
11002	Gabbro					
P17 76.5-76.7m	 Coarse grained groundmass of: albite 50%, actinolite 48% and probably titanite 2% (CaTiSiO5). Refer to photomicrographs Appendix C-2 Figures 12 to 14, Figures 16 and 17. 					
	 Cut by significant calcite and epidote veining (Appendix C Figures 15 and 18), calcite and minor quartz veining (Figure 18) and chlorite and epidote veining (Figure 19). 					
11003	Basalt					
P21	• Strongly veined and segregated sample. Unveined regions: chlorite 40%, epidote 35%,					
38.3-38.4m	quartz 15%, micro-crystalline serecite 10% (Appendix C-3 Figures 21 to 26).					
	 Strongly veined region: calcite 50%, quartz 30%, chlorite 10%, epidote 10% (Figures 27 28) 					
	• Other veins: chlorite (Figure 29), quartz with minor calcite (Figure 30).					
11004	Foliated Basalt					
P21	 Segregated rock (Appendix C-4 Figures 31 and 32) dominated by: 					
61.2-61.3m	 Foliated chlorite rich bands with calcite and quartz (Figures 33 and 34) 					
	 Foliated calcite rich bands with more blocky albite, quartz and lesser chlorite (Figures 35 and 36) 					
	• Total mineralogy: chlorite 40%, calcite 20%, albite 15%, quartz 15% and titanite (8%; Figure 37) associated with opaques (2%)					
11005	Basalt					
P21 80.6-80.7m	 Medium grained basalt with actinolite 30%, chlorite 30%, quartz 10%, titanite 10%, albite 5% mostly altered to micro-crystalline serecite 15% (Appendix C-5 Figures 38 to 43). 					
	• Cut by epidote veins (Figures 44 to 46) and minor epidote with quartz veining (Figure 47)					
11006	Rhyolite					
S13 29.2-29.4m	• Fine grained rhyolite with on average: quartz 75%, actinolite 10%, boitite 10%, opaques 5% (Appendix C-6 Figures 48 and 49).					
	Cut by actinolite veins (visible in Figure 51).					
	Adjacent to actinolite veins rock is richer in actinolite and opaques with lesser quartz and					

 Table 3.1 Mineralogy Composition of Samples

Sample	Observations and Photomicrograph References								
	biotite (Figures 50 and 51). Furthest away from actinolite veins rock is richer in quartz with no actinolite (Figure 52).								
11007	Veined/brecciated basalt								
S13 45-45.1m	• Mafic material between veins comprises 60% of thin section and is very heterogeneous. Average composition is: micro-crystalline serecite 40%, chlorite 30%, actinolite 10%, epidote 5%, quartz 5% and albite 10%. Examples are included in Appendix C-7 Figures 54 and 55.								
	 Veining comprises 40% of thin section. Veins are predominantly quartz (70% of veins; Figure 53) with some narrower ones being calcite (25%) and epidote (5%) together. Photomicrographs Figures 56 to 58 show both types of veins. 								
11008	Basalt								
P41 5.9-6m	• Fine grained basalt comprising calcite 35%, chlorite 35%, micro-crystalline serecite 25% and quartz 5% (Appendix C-8 Figures 61 to 63).								
	• Cut by calcite veins (Figures 59 to 61).								
11009	Foliated Basalt								
P41 93.7-93.8m	• Fine grained, foliated basalt with chlorite 50%, quartz 20%, calcite 20% and titanite 10% (Appendix C-9 Figures 67 and 68)								
	Calcite veins cut the foliation (Figures 64 to 66).								
11010	Variolitic Basalt								
P13	Two parts to slide								
17.4-17.5m	 Light green in hand sample: 								
	 Very fine grained dark rock with lighter coarse grained "blobs" (Appendix C-10 Figures 69 and 70). Very fine grained mass comprises microcrystalline serecite 60% with chlorite 20% and epidote 20% (Figure 71). 								
	 Blobs comprise albite 20%, quartz 25%, chlorite 30%, microcrystalline serecite with epidote 25% with trace opaques (Figures 72 and 73). 								
	 Grey in hand sample: 								
	 Fine grained basalt with circular blobs approx 1mm across (Figures 74 to 77) that probably represent varioles (not vesicles). Between the varioles mineralogy is: albite 30%, actinolite 40%, microcrystalline serecite-epidote patches 20%, quartz 5%, titanite 3%, easily identifiable epidote 2%, trace opaques and trace rutile. 								
	 Varioles (Figures 78 and 79) are richer in mafic minerals: chlorite 40%, actinolite 30%, titanite 5% (Figure 82 small ones in centre), epidote- serecite patches 20% (Figure 80 and 81), albite 5%, and trace quartz. 								
	 Cut by predominantly calcite veining (>99% of vein material) with lesser calcite veins combined with quartz/trace opaques/trace rutile. Photomicrographs Figures 83 and 84. 								
11011	Basalt with Quartz								
P13 85.3-85.4m	• Medium grained basalt with significant quartz veining. Groundmass is actinolite 55%, microcrystalline serecite 40%, titanite 2%, epidote 2%, quartz 1%, trace opaques (Appendix C-11 Figures 89 to 94).								
	• Veining is predominantly quartz (Figure 85) with minor calcite veins cutting quartz veining. Calcite vein is rimmed by opaques and rutile (red in hand sample) as in Figures 86 to 88).								

Sample	Sample Rock Type Mineralogy Composition, % by volume										
#	коск туре	Actinolite	Chlorite	Epidote	Quartz	Albite	Sericite	Titanite	Calcite	Opaques	Biotite
11001	Basalt	40%	10%	10%	7.50%	2.50%	30%				
11002	Gabbro	48%				50%		2%			
11003	Pillow Basalt		40%	35%	15%		10%				
11004	Foliated Basalt		40%		15%	15%		8%	20%	2%	
11005	Basalt	30%	30%		10%	5%	15%	10%			
11006	Rhyolite	10%			75%					5%	10%
11007	Brecciated Basalt	6%	18%	4%	39%	6%	24%		3%		
11008	Pillow Basalt		35%		5%		25%		35%		
11009	Basalt		50%		20%			10%	20%		
11010	Pillow Basalt	40%		2%	5%	30%	20%	3%			
11011	Basalt	55%		2%	1%		40%	2%		trace	

Table 3.2 Mineralogy Composition of Samples

Source File: BedrockThermalConductivity.1CS019.018.rev01.KYK_ksk.xlsx

4 Estimates of Thermal Properties

4.1 Thermal Conductivity

Thermal conductivities for each mineral were obtained from Clauser and Huenges (1995) and are listed in Table 4.1 as the "best estimate". For some minerals, a range of conductivities was reported depending on the method and orientation of the testing with respect to the mineral's structural axis. The conductivity ranges are noted in the table as the minimum and maximum thermal conductivity values.

Mineral	Best Estimate (kJ m-1 day-1 ⁰C- 1)	Minimum (kJ m-1 day-1 ⁰C- 1)	Maximum (kJ m-1 day-1 ⁰C-1)
Actinolite	301		
Albite (plag)	185	173	202
Biotite	175	45	271
Calcite	310	178	432
Chlorite	445	264	454
Epidote	245	216	268
Opaques	-	-	-
Quartz	664	570	1123
Sericite	445		
Titanite	202		

 Table 4.1 Mineral Thermal Conductivities

 $Source\ File:\ BedrockThermalConductivity.1CS019.018.rev01.KYK_ksk.xlsx$

The thermal conductivity of each sample was estimated as the weighted geometric mean of the mineral thermal conductivities and is calculated as:

$$\bar{x} = \exp\left(\frac{\sum_{i=1}^{n} w_i \ln x_i}{\sum_{i=1}^{n} w_i}\right)$$

where x_i is the thermal conductivity of mineral i obtained from Table 4.1, and w_i is the percent weight of the mineral i in the sample obtained from Table 3.1. Table 4.2 presents the estimated thermal conductivities of the samples. In the low and high range estimates, for minerals with no range of values reported in Table 4.1, the best estimate value was used.

#	Drillhole	Depth Interval (m)		Description	stimate rmal ıctivity _{lay⁻¹ °C⁻¹)}	Range rmal tivity (kJ y¹°C¹)	Range rmal tivity (kJ v¹°c¹)
		From	То	p	Best E The Condu (kJ m ⁻¹ o	Low I The Conduc ^{m⁻¹ da}	High I Thei Conduc ^{m⁻¹ day}
11001	P17	59.3	59.4	Basalt	361	317	377
11002	P17	76.5	76.7	Gabbro	234	226	245
11003	P21	38.3	38.4	Pillow Basalt	383	263	422
11004	P21	61.2	31.3	Foliated Basalt/Gabbro	350	222	405
11005	P21	80.6	80.7	Basalt	364	285	382
11006	S13	29.2	29.4	Rhyolite	485	225	676
11007	S13	45	45.1	Brecciated Basalt	466	297	553
11008	P41	5.9	6	Pillow Basalt	400	263	461
11009	P41	93.7	93.85	Basalt	415	242	483
11010	P13	17.4	17.5	Pillow Basalt	289	270	303
11011	P13	85.3	85.4	Basalt/Gabbro	350	346	352

Table 4.2 Estimated Bedrock Thermal Conductivity

 $Source\ File:\ BedrockThermalConductivity.1CS019.018.rev01.KYK_ksk.xlsx$

The gabbro generally has a lower thermal conductivity compared to the basalt samples. The rhylotite has a higher thermal conductivity than the massive and pillowed basaltic flows. The brecciated basalt also has a higher thermal conductivity compared to the basalt samples.

The thermal conductivity of the rocks in the hanging wall on the west side of the Chamber is higher than in the foot wall east of the Chamber. The stronger epidote and chlorite alteration of the hanging wall that can be seen in the graphs provided in the borehole logs of Appendix A is a possible influence.

4.2 Heat Capacity

Heat capacities for each mineral at 20°C were obtained from Waples and Waples (2004) and are listed in Table 4.3. Heat capacity is a function of temperature and generally increases with higher temperatures. A great majority of the available heat capacity data is measured at 20°C and as a result all values and calculations were completed at this temperature.

Mineral	Density (g/cm³)	Gravimetric Heat Capacity at 20°C (kJ kg ^{⁻1} °C ^{−1})	Volumetric Heat Capacity at 20°C (kJ kg ⁻¹ °C ⁻¹)
Actinolite	3.2	0.71	2300
Albite (plag)	2.6	0.73	1900
Biotite	3.0	0.77	2300
Calcite	2.7	0.82	2200
Chlorite	2.8	0.66	1800
Epidote	3.4	0.78	2700
Opaques	-	-	-
Quartz	2.6	0.74	2000
Sericite	2.9	0.76	2200
Titanite	3.5	0.81	2800

Table 4.3 Mineral Heat Capacities at 20°C

Source File: BedrockThermalConductivity.1CS019.018.rev01.KYK_ksk.xlsx

The heat capacity of each sample was estimated as the weighted arithmetic mean of the mineral heat capacity and is calculated as:

$$\overline{y} = \frac{\sum_{i=1}^{n} w_i \times y_i}{\sum_{i=1}^{n} w_i}$$

where y_i is the heat capacity of mineral i obtained from Table 4.3, and w_i is the percent weight of the mineral i in the sample obtained from Table 3.1. Table 4.4 presents the estimated heat capacities of the samples. The average heat capacity of the samples is 2100 kJ m⁻³ °C⁻¹ with a range of +/- 10%.

Sample #	Drillhole	Description	Gravimetric Heat Capacity at 20°C (kJ kg ⁻¹ °C ⁻¹)	Volumetric Heat Capacity at 20°C (kJ m ⁻³ °C ⁻¹)					
11001	P17	Basalt	0.73	2200					
11002	P17	Gabbro	0.72	2100					
11003	P21	Pillow Basalt	0.72	2200					
11004	P21	Foliated Basalt/Gabbro	0.71	2000					
11005	P21	Basalt	0.72	2100					
11006	S13	Rhyolite	0.70	1900					
11007	S13	Brecciated Basalt	0.73	2000					
11008	P41	Pillow Basalt	0.74	2100					
11009	P41	Basalt	0.72	2000					
11010	P13	Pillow Basalt	0.72	2100					
11011	P13	Basalt/Gabbro	0.73	2300					
Source File: Be	Source File: BedrockThermalConductivity.1CS019.018.rev01.KYK ksk.xlsx								

Table 4.4 Estimated Bedrock Heat Capacities at 20°C

The calculated heat capacities provided in Table 4.4 are likely higher than actual around the FOS due to differences in the bedrock temperature. The bedrock temperatures will range from approximately 1°C to 4°C at the start of the study to a low of -35°C in the frozen areas near the freeze pipes. As these temperatures are lower than the 20°C temperature used in Table 4.4 and heat capacity changes with temperature, the heat capacities require to be adjusted lower.

Figure 2 shows a plot from Waples and Waples (2004) with a best fit curve of normalized heat capacities versus temperatures used in their study. The normalization was completed by dividing the minerals" heat capacity over a range of temperatures by their heat capacity at 200°K. The graph shows that for temperatures between +20°C and -35°C the most probable reduction in the heat capacity is approximately 3.5%.

Source File: Figures.CoreReport.1CS019.018.pptx

Figure 2 Normalized Heat Capacity Vs. Temperature

Page 10

Prepared by

Arlene Laudrum, P.Geol.

Peter Mikes, P. Eng.

K.Y. Ketchun

Kirsty Ketchum, P.Geol.

Reviewed by

and Hearth

Dan Hewitt, P.Eng.

All data used as source material plus the text, tables, figures, and attachments of this document have been reviewed and prepared in accordance with generally accepted professional engineering and environmental practices.

5 References

SRK (2010). Giant Mine Freeze Optimization Study Interim As-built Report

Clauser, C. and Huenges, E. (1995). Thermal Conductivity of Rocks and Minerals. In Rock Physics and Phase Relations: a Handbook of Physical Constants, Vol. 3 pp. 105-126.

Waples and Waples. 2004. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks

Appendices

Appendix A: Borehole Logs

PROJECT: G CLIENT: P	Public Works and Government Services Canada	HOLE ID: P0 LOCATION: Yell PROJECT NO: 1CS	1 owknife, NWT 5019.018.0001	COORDINA DAT GROUND ELEV AZIMI EOH TOTAL DEPTH	Page: res: E635916.52 N rum: NAD 83 UTM Z r(m): 166.24 JTH: 0 DIP: 90 deg r(m): 71.94 (m): 94.3	1 of 1 16932607.61 Zone 11
Depth (m)	Lithology Sampling No. & Locations Gabbro Basalt Pillow Basalt Rhyolite Overburden	Thermal Conductivity (kJ day ⁻¹ m ⁻¹ oC ⁻¹) $\circ \overset{\otimes}{\leftarrow} \overset{\otimes}{\otimes} \overset{\otimes}{\otimes} \overset{\otimes}{\leftrightarrow} \overset{\otimes}{\otimes}$	Overall Alteration weak strong 0 5 10 15 20	1: Weak 2: W 4: Moderate/Strong 5: Str CL EP/QZ/(1 2 3 4 5 1 2 3 4	eak/Moderate ; ^{rong} C Carbonatior 5 1 2 3 4 5 1 1 1 1 1	3: Moderate
0 5 10 15 20 25 30 30 40 45 50 55 60 60 65 60 65 70 70 75 80 85 80 85 90	Gabbro					

PROJECT: G CLIENT: P	Public Works and Government Services Canada iant ublic Works and Government	HOLE ID: S04 LOCATION: Yello PROJECT NO: 1CS0 Services Canada	wknife, NWT 019.018.0001	COORDINATES: DATUM: GROUND ELEV (m): AZIMUTH: DIP: EOH (m): TOTAL DEPTH (m):	Page: 1 of 1 E635905.1 N 6932601.9 NAD 83 UTM Zone 11 166.3 0 90 deg 129.3 37
Depth (m)	Lithology Sampling No. & Locations Gabbro Basalt Pillow Basalt Basalt Overburden	Thermal Conductivity (kJ day ⁻¹ m ⁻¹ oC-1) 승은 응용 응용 양	Overall Alteration weak strong 0 5 10 15 20	1: Weak 2: Weak 4: Moderate/Strong 5: Strong CL EP/QZ/C C 1 2 3 4 5 1 2 3 4 5	Moderate 3: Moderate Carbonation SI 1 2 3 4 5 1 2 3 4 5
2 4 6 8 10	Overburden Pillow Basalt				
12 	Gabbro				
16 18 20 23					
22 24 26 28 30 32 34	Pillow Basalt				
- 36 - 38					

Appendix B: Drill Core Photographs

Sample: 11001

 \\VAN-SVR0\Projects\01_SITES\Giant\1CS019.018_FOS_350047 SRK Consulting

 008Amend3\Task_2_2a_CoreAnalysis\Report\5_Appendices\WordDoc\AppendixB_DrillCorePhotos_20111027.d
 November 2011

Sample: 11004

 \\VAN-SVR0\Projects\01_SITES\Giant\1CS019.018_FOS_350047 SRK Consulting

 008Amend3\Task_2_2a_CoreAnalysis\Report\5_Appendices\WordDoc\AppendixB_DrillCorePhotos_20111027.d
 November 2011

Sample: 11006

\\VAN-SVR0\Projects\01_SITES\Giant\1CS019.018_FOS_350047-008Amend3\Task_2_2a_CoreAnalysis\Report\5_Appendices\WordDoc\AppendixB_DrillCorePhotos_20111027.d ocx

Sample: 11008

 \\VAN-SVR0\Projects\01_SITES\Giant\1CS019.018_FOS_350047 SRK Consulting

 008Amend3\Task_2_2a_CoreAnalysis\Report\5_Appendices\WordDoc\AppendixB_DrillCorePhotos_20111027.d
 November 2011

Sample: 11010

 \\VAN-SVR0\Projects\01_SITES\Giant\1CS019.018_FOS_350047 SRK Consulting

 008Amend3\Task_2_2a_CoreAnalysis\Report\5_Appendices\WordDoc\AppendixB_DrillCorePhotos_20111027.d
 November 2011

Appendix C: Thin Section Photographs
Appendix C-1: Sample 11001

Figure 1: Sample 11001 under Cross Polarized Light. 0.75mm.

Figure 2: Sample 11001 under Plane Polarized Light. 0.75mm

Figure 3: Sample 11001 under Plane Polarized Light. 1.1mm

Figure 5: Sample 11001 under Plane Polarized Light. 1.1mm

Figure 4: Sample 11001 under Cross Polarized Light. 1.1mm

Figure 6: Sample 11001 under Cross Polarized Light. 0.75mm

Figure 7: Sample 11001 under Cross Polarized Light. 0.75mm

Figure 9: Sample 11001 under Cross Polarized Light. 1.1mm

Figure 8: Sample 11001 under Cross Polarized Light. 1.1mm

Figure 10: Sample 11001 under Cross Polarized Light. 1.1mm

Figure 11: Sample 11001 under Cross Polarized Light. 1.1mm

Appendix C-2: Sample 11002

Figure 12: Sample 11002 under Plane Polarized Light. 4.5mm

Figure 13: Sample 11002 under Cross Polarized Light. 4.5mm

Figure 14: Sample 11002 under Cross Polarized Light. 1.1mm

Figure 15: Sample 11002 under Cross Polarized Light. 1.1mm

Figure 16: Sample 11002 under Cross Polarized Light. 1.1mm

Figure 17: Sample 11002 under Cross Polarized Light. 4.5mm

Figure 18: Sample 11002 under Cross Polarized Light. 4.5mm

Figure 19: Sample 11002 under Cross Polarized Light. 4.5mm

Figure 20: Sample 11002 under Cross Polarized Light. 4.5mm

SRK Consulting November 2011

Appendix C-3: Sample 11003

Figure 21: Sample 11003 under Plane Polarized Light. 1.1mm

Figure 23: Sample 11003 under Plane Polarized Light. 1.1mm

Figure 22: Sample 11003 under Cross Polarized Light. 1.1mm

Figure 24: : Sample 11003 under Cross Polarized Light. 1.1mm

Figure 25 : Sample 11003 under Plane Polarized Light. 1.1mm

Figure 26: Sample 11003 under Cross Polarized Light. 1.1mm

Figure 27: Sample 11003 under Plane Polarized Light. 4.5mm

Figure 28: Sample 11003 under Cross Polarized Light. 4.5mm

Figure 29: Sample 11003 under Plane Polarized Light. 4.5mm

Figure 30: Sample 11003 under Cross Polarized Light. 4.5mm

Appendix C-4: Sample 11004

Figure 31: Sample 11004 under Plane Polarized Light. 4.5mm

Figure 33: Sample 11004 under Cross Polarized Light. 1.1mm

Figure 35: Sample 11004 under Cross Polarized Light. 1.1mm

Figure 32: Sample 11004 under Cross Polarized Light. 4.5mm

Figure 34: Sample 11004 under Plane Polarized Light. 1.1mm

Figure 36: Sample 11004 under Plane Polarized Light. 1.1mm

Figure 37: Sample 11004 under Plane Polarized Light. 1.1mm

Appendix C-5: Sample 11005

Figure 38: Sample 11005 under Plane Polarized Light. 4.5mm

Figure 40: Sample 11005 under Cross Polarized Light. 1.1mm

Figure 39: Sample 11005 under Cross Polarized Light. 4.5mm

Figure 41: Sample 11005 under Plane Polarized Light. 1.1mm

Figure 42: Sample 11005 under Plane Polarized Light. 1.1mm

Figure 43: Sample 11005 under Plane Polarized Light. 0.75mm

Figure 44: Sample 11005 under Plane Polarized Light. 4.5mm

Figure 45: Sample 11005 under Plane Polarized Light. 1.1mm

Figure 46: Sample 11005 under Cross Polarized Light. 1.1mm

Figure 47: Sample 11005 under Cross Polarized Light. 4.5mm

Appendix C-6: Sample 11006

Figure 48: Sample 11006 under Plane Polarized Light. 4.5mm

Figure 49: Sample 11006 under Cross Polarized Light. 4.5mm

Figure 50: Sample 11006 under Plane Polarized Light. 1.1mm

Figure 51: Sample 11006 under Plane Polarized Light. 1.1mm

Figure 52: Sample 11006 under Plane Polarized Light. 1.1mm

Appendix C-7: Sample 11007

Figure 53: Sample 11007 under Cross Polarized Light. 4.5mm

Figure 54: Sample 11007 under Plane Polarized Light. 4.5mm

Figure 55: Sample 11007 under Plane Polarized Light. 4.5mm

Figure 56: Sample 11007 under Cross Polarized Light. 4.5mm

Figure 57: Sample 11007 under Plane Polarized Light. 4.5mm

Figure 58: Sample 11007 under Cross Polarized Light. 4.5mm

Appendix C-8: Sample 11008

Figure 59: Sample 11008 under Cross Polarized Light. 4.5mm

Figure 60: Sample 11008 under Cross Polarized Light. 0.75mm

Figure 61: Sample 11008 under Plane Polarized Light. 0.75mm

Figure 62: Sample 11008 under Cross Polarized Light. 1.1mm

Figure 63: Sample 11008 under Plane Polarized Light. 1.1mm

Appendix C-9: Sample 11009

Figure 64: Sample 11009 under Cross Polarized Light. 4.5mm

Figure 65: Sample 11009 under Cross Polarized Light. 1.1mm

Figure 66: Sample 11009 under Cross Polarized Light. 4.5mm

Figure 67: Sample 11009 under Plane Polarized Light. 1.1mm

Figure 68: Sample 11009 under Cross Polarized Light. 1.1mm

Appendix C-10: Sample 11010

Figure 69: Sample 11010 under Plane Polarized Light. 4.5mm

Figure 70: Sample 11010 under Plane Polarized Light. 4.5mm

Figure 71: Sample 11010 under Cross Polarized Light. 1.1mm

Figure 72: Sample 11010 under Cross Polarized Light. 1.1mm

Figure 73: Sample 11010 under Plane Polarized Light. 1.1mm

Figure 74: Sample 11010 under Plane Polarized Light. 4.5mm

Figure 75: Sample 11010 under Cross Polarized Light. 4.5mm

Figure 77: Sample 11010 under Plane Polarized Light. 1.1mm

Figure 76: Sample 11010 under Cross Polarized Light. 1.1mm

Figure 78: Sample 11010 under Plane Polarized Light. 1.1mm

Figure 79: Sample 11010 under Cross Polarized Light. 1.1mm

Figure 80: Sample 11010 under Cross Polarized Light. 0.75mm

Figure 81: Sample 11010 under Plane Polarized Light. 0.75mm

Figure 82: Sample 11010 under Plane Polarized Light. 0.75mm

Figure 83: Sample 11010 under Cross Polarized Light. 4.5mm

Figure 84: Sample 11010 under Cross Polarized Light. 1.1mm

Appendix C-11: Sample 11011

Figure 85: Sample 11011 under Cross Polarized Light. 4.5mm

Figure 86: Sample 11011 under Plane Polarized Light. 1.1mm

Figure 87: Sample 11011 under Plane Polarized Light. 1.1mm

Figure 88: Sample 11011 under Plane Polarized Light. 1.1mm

Figure 89: Sample 11011 under Plane Polarized Light. 4.5mm

Figure 90: Sample 11011 under Cross Polarized Light. 4.5mm

Figure 91: Sample 11011 under Cross Polarized Light. 1.1mm

Figure 93: Sample 11011 under Plane Polarized Light. 1.1mm

Figure 92: Sample 11011 under Plane Polarized Light. 1.1mm

Figure 94: Sample 11011 under Cross Polarized Light. 1.1mm

Appendix B: Underground Photographs

Photo 2: March 10 2011; View of frost on the drift wall on the 2nd Level near BH58 looking toward P10 prior to its exposure. The exposed pipe on the left is S08.

Photo 6: Mar 23, 2011; Typical frost build-up on underground freeze pipe heads.

