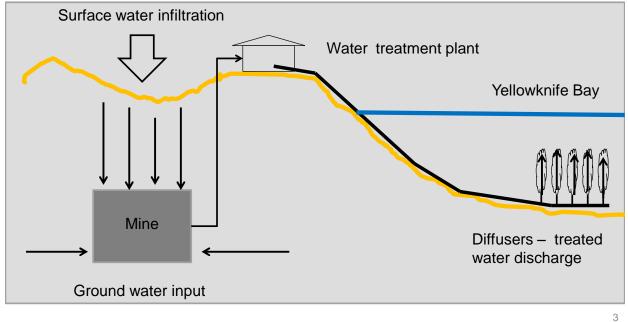


Water Treatment



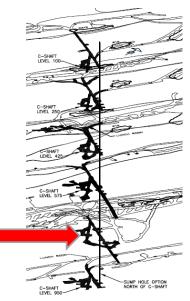
Outline

- Underground Water
- □ Water Treatment Plant (WTP)
- Work activities
- Process & Layout
- Bench scale tests
- Sludge Characterization

Overview Mine Water – Collection – Treatment – Discharge

,

12/07/2012


Yearly Volumes To Be processed (m3)

	Average Year	Wet Year	
Pre-Freezing	630,000	822,200	
DAR	540,000		
Post Freezing	404,300	517,500	
DAR	345,000		

Initial Raw Water Pump Placement

- 25 m below 750 level near C Shaft
 - Current water level 10 m below 750 at C Shaft

Canada

Giant Mine Remediation Project

Design Criteria

Flows & Storage

Short-Term					
	Average Treatment Flow Rate	26.0	L/s		
	Peak Wet Year Flow Rate	33.9	L/s		
	Maximum Equalization Storage Volume Required	177,00 0	m ³		
Long-Term					
	Average Treatment Flow Rate	16.7	L/s		
	Peak Wet Year Flow Rate	21.3	L/s		
	Maximum Equalization Storage Volume Required	0	m ³		

Minewater Quality

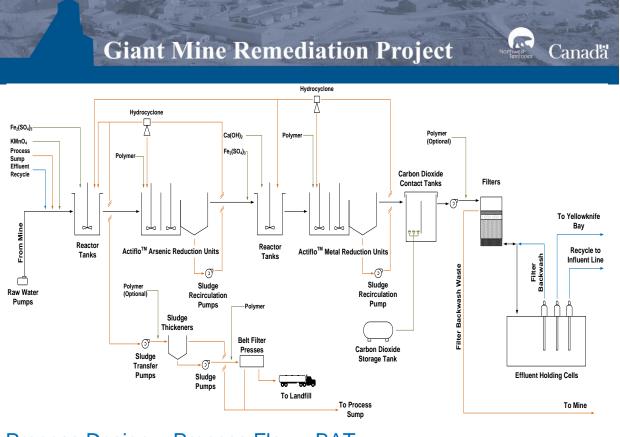
- Parameters of Concern
 - Arsenic
 - Suspended Solids
 - pH
 - Zinc
- Sampling & Monitoring Program
 - High test (up to 7300 mg As/L)
 - Blended water to surface (est. up to 280 mg As/L)

Canadä

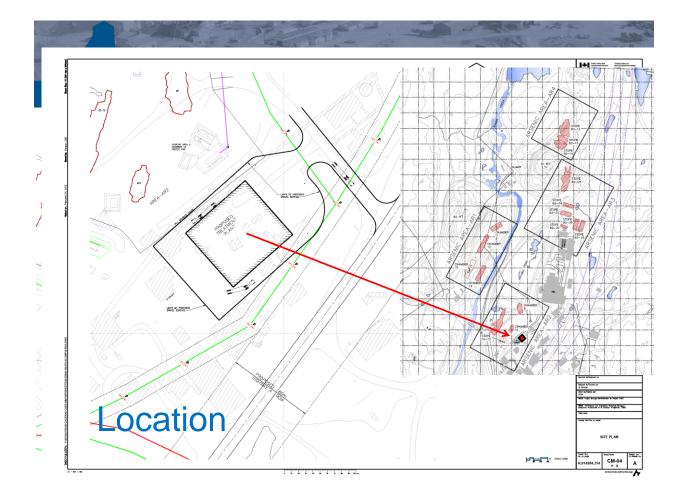
Performance Criteria

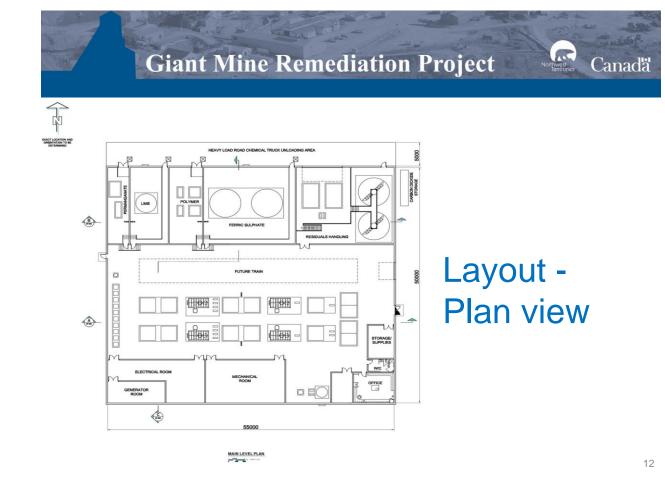
Parameter				Unit
Ammonia	0.005 - 0.067	No change	12	mg/L
Arsenic (total)	0.205 - 0.418	0.20 target	0.50	mg/L
Total Suspended Solids	<1.0 - 14	<5 (target)	15	mg/L
Nickel	0.0234 - 0.0687	No change	0.50	mg/L
Cyanide	< 0.002 - 0.0145	No change	0.80	mg/L
Copper	0.0054 - 0.0162	No change	0.30	mg/L
Lead	<0.0001 - <0.00025	No change	0.20	mg/L
рН	6.24 - 8.96	7.5 – 8.0 (target)	6.5-9.5	units
Radium 226	<0.005 - <1.0	No change	0.37	Bq/L
Zinc	0.0028 - 0.0713	No change	0.20	mg/L
Oil & Grease	0.005 - <2.0	No change	5	mg/L

(a) Based on the former water licence (N1L2-0043) for the existing treatment plant (b) Maximum rolling average of four consecutive results

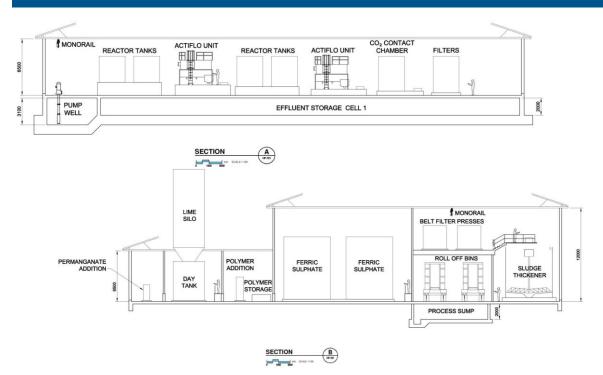


- Three main steps in arsenic removal
 - Oxidation of arsenite to arsenate
 - $3H_3AsO_3 + 2MnO_4^- \rightarrow$ $3H_2AsO_4^- + 2MnO_2 + H_2O + H^+$
 - Precipitation of arsenate

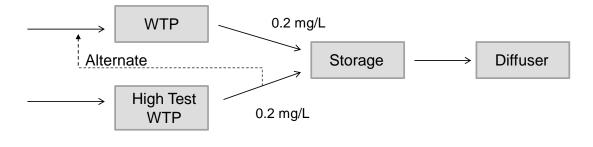

•
$$Fe^{3+} + AsO_4^{3-} \rightarrow FeAsO_4$$


- Removal of precipitate
 - Clarification and filtration

Process Design



Process Design – Process Flow - BAT

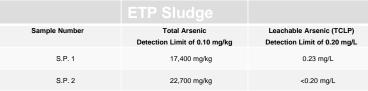


Potential High Test WTP Component

- Continued review of a potential separate treatment segment specifically designed to treat high test water.
- Detail design of WTP is to consider the benefits of:
 - Retaining the high test piping system & possibly expanding it
 - A separate treatment segment specifically designed to treat high test water until freeze is completed

Bench Scale Tests

- □ Jar tests are extension of preliminary design activity
- Jar tests were carried out in Edmonton March 19 to 23, 2012
- Objectives
 - Process Verification
 - Refine recommended treatment system
 - Precursor to pilot trials
 - Confirm chemical choice/process settings
 - Achieve total Arsenic < 0.1 mg/l</p>
 - Residuals sampling
 - Parallel bench scale tests at manufacturers site (April 10 to 24, 2012)


Main Results

- Two step process required (i.e. oxidation/coagulation and lime precipitation
- Pilot trials identified process achieves total As concentration below 0.2 mg/l
- Confirmed proposed treatment chemicals
- Achieved optimized chemical dose rates
- Lowest chemical dose rates obtained with process alternative (i.e. lime precipitation followed by oxidation/coagulation)
- Confirmed treatment process for next level of design

Sludge Characterization

- samples of the sludge generated from the ETP and deposited in the settling pond were sampled on March 12, 2012
- Composite sample collected using a backhoe reaching into the sediments at the base of the settling pond
- Leachable arsenic analysis performed

Sludge not classified as a hazardous waste

12/07/2012

