

то:	David Harpley, CZN	Date:	July 7, 2011
C.C.:	Alan Taylor		
FROM:	Byard MacLean		
Subject:	EA0809-002 Undertaking No. 1 - Response t	o John Bro	odie's Review

Introduction

I refer to John Brodie's comments contained on pages 323 to 329 of the June 23/24 Public Hearing transcripts. Mr. Brodie makes unsubstantiated assumptions that are incorrect when compared to actual testing data that was created as part of the paste backfill design criteria. The result is that Mr. Brodie incorrectly concludes that there is insufficient void space underground to store the flotation tailings.

Specific Comments

Mr Brodie's estimate of 11% of the mined ore reporting to the final sphalerite (ZnS) and galena (PbS) concentrates is incorrect. Tonnage of concentrate is calculated by multiplying the tonnes processed by the mill feed grade by the metal recovery, and dividing by the metal concentrate grade. CZN has completed five separate metallurgical testing campaigns at SGS Lakefield, one of the premier testing laboratories in Canada. These testing campaigns provided the metal recovery and concentrate grade values used in the previously described calculation. This test data consistently indicates that the life of mine concentrate proportion represents 26% of the mined ore. Mr. Brodie has not provided a reliable basis for his 11% assumption.

Mr Brodie's estimate of 17% of the mined ore reporting to the DMS reject fraction is incorrect. The SGS Lakefield metallurgical testing also measured the percent of DMS rock rejected. The average value projected over the life of the mine is 24% of the mined ore. Again, Mr. Brodie has not provided a reliable basis for his 17% estimate.

Using the correct values of % concentrate and % DMS rock which were developed from actual testing, a value of 50% results for the amount of mined ore reporting as flotation tailings.

Backfill Sequencing and Storage Capacity

The table attached is a summary of the backfill sequencing model which is an integral part of the mine plan. It was prepared by the backfill design engineer (Frank Palkovits) in conjunction with the mine engineer responsible for the overall mine plan (Barrie Hancock). The sections of the model that are of potential interest to the Review Board have been highlighted in yellow and are described as follows, starting at the top of the page:

- The top highlighted area shows the tonnes of the final sphalerite (ZnS) and galena (PbS) concentrates produced each year and the associated percentage of mined ore (26% vs. Mr. Brodie's 11%)
- 2. The second highlighted area shows the tonnes of DMS rock produced each year and the associated percentage of mined ore (24% vs. Mr. Brodie's 17%)
- 3. The third highlighted area shows the tonnes of flotation tailings produced each year and the associated percentage of mined ore (50% vs. Mr. Brodie's 72%)
- 4. The bottom highlighted area shows the Void Balance, which is the available space underground at any point in time to accept backfill from the plant. The most important line in the Void Balance is the "Closing voids balance" which indicates that, at any point

in time, there are sufficient voids to store all of the following years' backfill capacity. To demonstrate the safety factor in the table, at the end of operating year 3 (highlighted in purple) there are 160,417 cubic metres available for paste backfill, yet only 130,600 cubic metres are required.

Additional tailings storage capacity is anticipated from two other sources:

- 1. Approximately 20% (roughly 1 million tones) of the total 5 million tonnes of ore in the mine plan is from mineralization termed 'stratabound'. The stratabound mineralization is flat-lying, and is wider in lateral extent but of a much lower height compared to the veintype mineralization from which the rest of the ore is derived. While the specific mining method for the stratabound resource has not yet been finalized, the greater width of the mineralization enables methods other than cut and fill to be considered. A possible mining method is commonly known as sub-level stoping. In sub-level stoping, only a small part of the backfill used requires strength, allowing for deposition of paste with much less DMS rock as compared to the cut and fill operation used in mining the vein. The dry density of tailings-only paste is about 70% higher than the cap paste containing DMS rock (that will be used in cut and fill). The sub-level stoping method backfill schedule can be modified in numerous ways to keep tailings placement constant and with low cement requirements. As a conservative measure, the current plan assumes paste cap requirements during mining of the stratabound to be equal to requirements when mining the vein, when in practice, cap requirements will be significantly lower when mining the stratabound.
- 2. At cessation of mining of the lower levels, the main access ramp will be available for filling. The void space available will be approximately 32,000 m³. There will be an additional space (void) of approximately 53,000 m³ available by filling access drifts, ventilation raises and ore passes.

Mr. Brodie's claim that 225,000 m³ of tailings will need to be stored in the WSP is incorrect. Mr. Brodie does not appear to have properly accounted for the design concept for mine start up. Up to 50,000 tonnes wil initially be sent to the WSP to allow for sufficient void space to accumulate underground prior to backfilling. The 50,000 tonnes of tailings represents the maximum amount of tailings generated prior to the initiation of backfilling operations. On-going optimization of the mine plan will potentially reduce this somewhat. Because these tailings will not be used as backfill feed until the mine ceases operations, the optimal place to store these tailings is under water (sub-aqueous) in the WSP.

The Paste plant has been designed so that thickened and filtered flotation tailings can be directed to the paste mixing section or stored temporarily if the paste plant is down or a mined void is not available for paste. Stored tailings would be reclaimed back to the tailings thickener when operations resume. If there is an issue that would require the storage of additional filtered tailings, this could be done just north of the paste plant on a suitably lined pad draining into crushing building sumps. Temporary tailings storage using this approach is preferred to pumping to the pond and later reclaim with a dredge. Reclaiming tailings from the pond will require a reduction in WSP pond level, which might only occur after mill shutdown on mine closure. Therefore, in conclusion, no more than 50,000 tonnes of tailings will need to be stored in the WSP because of temporary storage availability near the Mill and the availability of voids underground (see table)..

Mr. Brodie has assumed, again without any substantive evidence, that CZN will compromise its ability to store 100% of the flotation tailings underground by employing the following operating strategies:

- 1. Cost saving measures may lead to increased use of DMS material in paste to reduce cement requirements over the life of the mine
- 2. Cost saving measures may lead to placement of development waste in stopes (as backfill in lieu of much more paste backfill).

The bulk fill paste is expected to have a low cement content of only 1-2%. A reduction in cement content of this mix would not be practical. The cap layer paste is expected to have 3-4% cement content and a float tails to DMS rock ratio of 1:1. Testing indicates that, to maintain trafficability, the proposed proportions of both cement and DMS rock will be necessary. Given this, and an understanding that void space needs to be reserved for float tails, we do not expect use of DMS rock in the paste greater than planned, unless this is required as the mine moves to closure to fill all voids. Similarly, the mine plan will insist on bringing all development waste to surface to provide maximum void for float tails, although this may be relaxed as the mine moves to closure when excess void is likely to be identified.

In conclusion, we have confirmed that sufficient void will exist for all float tails to be placed underground at mine closure, and with a contingency void remaining. Further, operational changes could be made to create more void space should this be required, although we do not expect this to be the case. Operating policies will ensure the maximum void is made available for paste (keeping DMS rock use to a minimum and removing all development rock). We have also confirmed that no more than 50,000 tonnes of float tails will need to be temporarily stored in the WSP. Additional short-term float tails storage may be required during normal operations, but this will be provided either in or immediately adjacent to the Mill. We can only assume that Mr. Brodie's assumptions are based on either experience or speculation. As noted above, the backfill design and mine plan were developed by specialist engineers, each with in excess of 30 years of experience. They used real and reliable data, and standard industry methods in their work. We see no reasons to dispute their professional opinions.

oject No. 01-2011-01 PRELIMINARY ORE PRODUCTION AND BACKFILL MATERIALS BALANCE ate: 06/06/2011 SNC LAVALIN INC - CANADIAN ZINC CORP- PRAIRIE CREEK MINE ev. No: 0 FEASIBILITY STUDY FOR UNDERGROUND PASTE BACKFILL														MINE PASTE MPE ENGINEERING LTD				
Veir	n SG = <u>3.19</u>							6-in	7-in	9-in	10-in			6-in	7-in	9-in	10-in	
Stratabound	d SG = <u>3.38</u>	Dev Rock SG =		2.80	(80:20) Pu	lp Density =	83.4%	83.0%	82.0%	81.7%	100% Tail	ings Paste =	81.3%	80.5%	80.0%	79.6%	SNC	
Tailings	s SG = 2.85	Placed W/R R.D. (uncompacted) =		1.92	:	80:20 R.D=	2.18	2.16	2.13	2.12		R.D. =	2.12	2.09	2.08	2.07	MPE	
Zn Flotation Reject	(DMS) 2.80	50:50 Blend Ir		nsitu B/F =	2.24													CZN
Avg SG MDMS + Tailings ((80:20) 2.84			CHF=		(60:40) Pu	lp Density =				-	Tailings and D	MS (50:50) =	88.0%	87.0%	86.2%	85.5%	
Avg SG MDMS + Tailings ((50:50) 2.83						60:40 R.D=						50:50 R.D =	2.32	2.28	2.26	2.23	
	units	factor	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	Total
PRODUCTION																		
Vein U/G Production	tonnes		-	240,000	345,000	350,000	390,000	370,000	360,000	355,000	350,000	330,000	280,000	190,000	175,000	155,000	70,000	3,960,000
Stratabound Production	tonnes		0	0	0	0	20,000	60,000	60,000	60,000	60,000	100,000	120,000	135,000	140,000	140,000	140,000	1,035,000
ROM Diluted Total	tonnes		0	240,000	345,000	350,000	410,000	430,000	420,000	415,000	410,000	430,000	400,000	325,000	315,000	295,000	210,000	4,995,000
ROM Concentrate	tonnes	25.7%	0	62,784	91,423	92,779	108,199	110,731	108,019	109,407	107,639	112,535	102,908	82,901	78,733	71,117	45,853	1,285,028
				26%	26%	27%	26%	26%	26%	26%	26%	26%	26%	26%	25%	24%	22%	26%
Mill Tailings and DMS																		
Total Flotation Tails and DMS	tonnes		-	177,216	253,577	257,221	301,801	319,269	311,981	305,593	302,361	317,465	297,092	242,099	236,267	223,883	164,147	3,709,972
DMS Rock	tonnes			64,800	93,150	94,500	107,900	107,700	105,000	103,650	102,300	102,100	91,200	68,850	65,450	60,050	37,100	1,203,750
				27%	27%	27%	26%	25%	25%	25%	25%	24%	23%	21%	21%	20%	18%	24%
Flotation Tailings	tonnes	67.6%		112 /16	160 427	162 721	103 001	211 560	206 981	201 0/13	200.061	215 365	205 802	173 2/10	170 817	163 833	127.047	2 506 222
Flotation Tailings / BOM Total	%		0%	47%	47%	46%	47%	49%	49%	49%	49%	50%	51%	53%	54%	56%	60%	2,000,222
	70		070	4770	4770	+0 /0	4770	+0 /0			+370	0070	0170	0070	0470	0070	0070	
VOIDS FROM NEW MINING																		
LI/G Stope Voids Created Annually	m ³		_	75 235	108 150	109 718	128 174	133 739	130 604	129 037	127 469	133 034	123 277	99 502	96 279	90,009	63 364	1 547 592
U/G Dev Voids Created Annually	m ³		_	7 525	10 118	10 295	13 715	13 005	12 650	12 650	10 295	9 230	7 455	5 148	4 083	3 373	355	119 895
Total NEW LI/G Voids	m ³		_	82 760	118 268	120 013	141 889	146 744	143 254	141 687	137 764	142 264	130 732	104 649	100 362	93 382	63 719	1 667 487
Cumulative NEW U/G Voids			-	82,760	201,028	321,041	462,930	609,674	752,928	894,615	1,032,379	1,174,643	1,305,376	1,410,025	1,510,387	1,603,769	1,667,487	1,007,407
SUMMARY																		
Total Cement	tonnes		-	2,573	4,275	4,335	5,067	5,344	5,146	5,146	5,027	5,265	4,869	3,958	3,800	3,681	2,652	61,139
Voids Balance																		
Opening voids balance	m ³		132,233	132,233	140,203	150,211	160,417	171,706	176,400	180,914	186,901	190,425	188,549	181,907	171,306	158,298	142,830	142,830
New voids from mining	m ³		-	82,760	118,268	120,013	141,889	146,744	143,254	141,687	137,764	142,264	130,732	104,649	100,362	93,382	63,719	1,667,487
Old voids Disposal	m ³		-	9,790	260	307	2,600	4,550	8,740	5,700	2,240	-	-	5,250	7,370	9,350	5,300	61,457
New voids Backfilled	m ³		-	65,000	108,000	109,500	128,000	137,500	130,000	130,000	132,000	144,140	137,375	110,000	106,000	99,500	77,000	1,614,015
Closing voids balance	m ³		132,233	140,203	150,211	160,417	171,706	176,400	180,914	186,901	190,425	188,549	181,907	171,306	158,298	142,830	124,248	124,248

