APPENDIX A

FISH HABITAT PHOTOGRAPHS

Photo 1 Round Lake - Edge of tailings can be seen in left side of photo.

Photo 2 Round Lake - Sedge stand located at edge of tailings.

Photo 3 Round Lake - Spruce forest community surrounding lake.

Photo 4 Round Lake - Ephemeral tributary and inlet to lake.

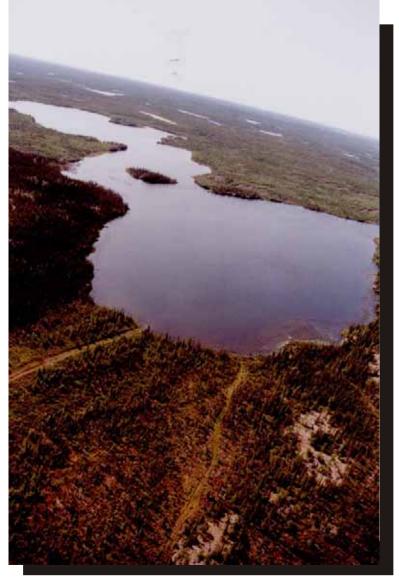


Photo 5 Winter Lake - View looking south. Winter roads are evident.

Photo 6 Winter Lake - View of sedge habitat along west side of lake in south basin.

Photo 7 Winter Lake - Stand of hardstem bulrush located on the east side of lake.

Photo 8 Winter Lake - Wetland located in southeast section of lake.

Photo 9 Winter Lake - Narrow secondary outlet channel in willow/birch forest.

Photo 10 Winter Lake - Wetland and lake outlet located at west end of lake. Osprey nest is visible near shore of Narrow lake.

Photo 11 Eclipse Lake - View of west basin.

Photo 12 Eclipse Lake - View looking west from end of east basin.

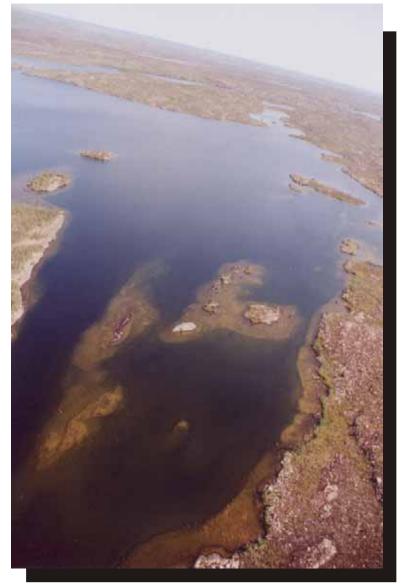


Photo 13 Eclipse Lake - View of rocky islands and submerged reefs within the west basin.

Photo 14 Eclipse Lake - View of steep shoreline, rocky islands, and submerged reefs in east basin.

Photo 15 Eclipse Lake - Entrance to east basin.

Photo 16 Eclipse Lake - View from west basin looking northeast along rocky shoreline.

Photo 17 Eclipse Lake - Shoreline in west basin wetland dominated by water sedge.

Photo 18 Eclipse Lake - Submerged boulders and emergent vegetation in east basin.

Photo 19 Eclipse Lake - View of shallow backwater behind small rock island in east basin.

Photo 20 Eclipse Lake - Steep shoreline and rock cliff at west end of east basin.

Photo 21 Eclipse Lake - Sparse forest vegetation.

Photo 22 Eclipse Lake - Outlet from Eclipse Lake in west basin.

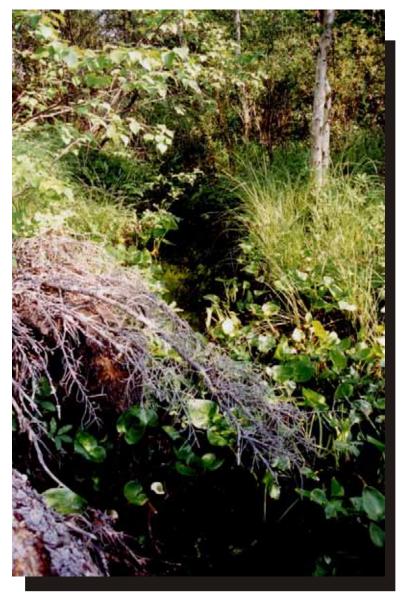


Photo 23 Eclipse Lake - Eclipse Lake inlet in east basin.

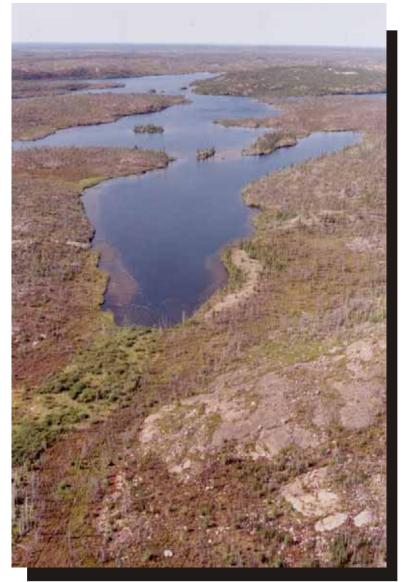


Photo 24 Nicholas Lake - View looking south from north end of lake.

Photo 25 Nicholas Lake - View looking northeast from south end of lake.

Photo 26 Nicholas Lake - View looking east from west side of lake.

Photo 27 Nicholas Lake - Rocky shoal at north end of lake.

Photo 28 Nicholas Lake - Nicholas Lake Mining Camp.

Photo 29 Nicholas Lake - West of camp.

Photo 30 Nicholas Lake - Erratics along the steep hillside of lake.

Photo 31 Nicholas Lake - Rocky islands and emergent vegetation.

Photo 32 Nicholas Lake - View of small bog wetland and ephemeral tributary inlet to Nicholas Lake.

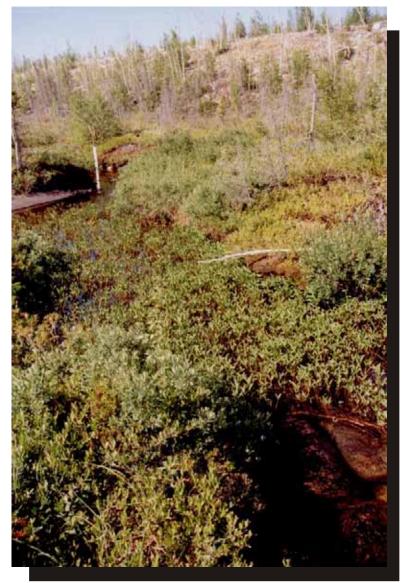


Photo 33 Nicholas Lake - Vegetated section of main outlet from lake.

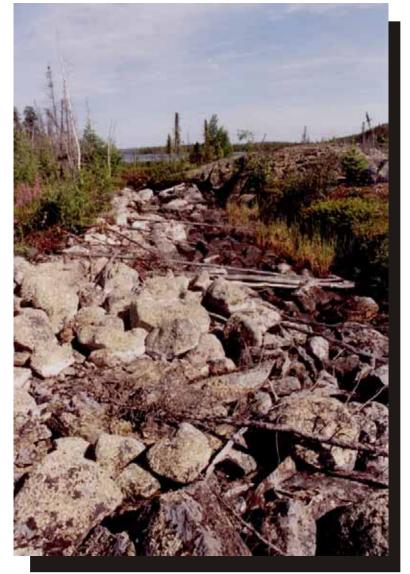


Photo 34 Nicholas Lake - Dry channel section of main outlet from lake.

Photo 35 Brien Lake - View looking south from north end of lake.

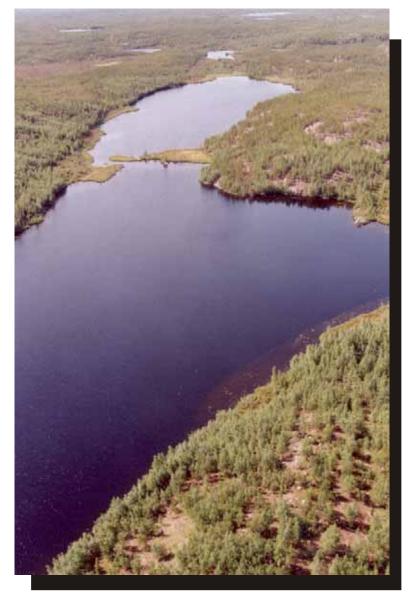


Photo 36 Brien Lake - View of south end of lake.

Photo 37 Brien Lake - View of steep cliffs along east side of lake.

Photo 38 Brien Lake - View of emergent vegetation and sedges located at south end of lake.



Photo 39 Brien Lake - Extensive wetland habitat at south end of lake.

Photo 40 Brien Lake - Southwest end of lake outlet meanders through a sedge wetland.

Photo 41 Brien Lake - Lake inlet located within an open sedge wetland.

Photo 42 Narrow Lake - View looking south from north end of lake.

Photo 43 Narrow Lake - Wetland at south end of lake.

Photo 44 Narrow Lake - View of north end of lake. Note Osprey nest on pole.

Photo 45 Narrow Lake - View of sedge dominated shoreline at south end of lake.

Photo 46 Narrow Lake - Beaver lodge and wetland located in northwest section of lake.

Photo 47 Narrow Lake - Wetland dominated by water sedge and water plantain.

APPENDIX B

IDENTIFICATION OF PLANTS

Appendix B. Identification of Plants

Common Name	Scientific/ Latin Name
Submerged and Floating	
Hard-Stem Bulrush	Scirpus validus
Burreed	Sparganium sp.
Yellow Water Lily	Nuphar sp.
Flatstem Pondweed	Potamogeton zosteriformis
Slender Leaved Pondweed	Potamogeton pusillus
Large-leafed Pondweed	Potamogeton sp.
Richardson's Pondweed	Potamogeton richardsonii
Water Plantain	Alisma plantago-aquatica
Water milfoil	Myriophyllum sp.
Bladderwort	Utricularia sp.
Water Crowfoot (water buttercup)	Ranunculus aquatilis
Water Smartweed	Polygonum amphibium
Northern Arrowhead (floating)	Sagiataria cuneata
Muskgrass	Chara sp.
Cattail	Typha latifolia
Beaked Sedge	Carex utriculata
Water Sedge	Carex aquatalis
Water Arum	Calla palustis
Shoreline Species	
Scouring Rush	Equisetum hyemale
Sphagnum moss	Sphagnum sp.
Fireweed	Epilobium augustifolium
Bog Laurel	Kalmia polifolia
Bog blueberry	Vaccinium uligonosum
Labrador tea	Ledum groenlandicum
Buckbean	Menyanthes trifoliata
Sweetgale	Myrica gale
Marestail	Hippuris vulgaria
Bog rosemary	Andromeda polifolia
Marsh cinquefoil	Potentillia palustris
Cotton grass	Eriophorum viridi carinatum
Trees	
Black Spruce	Picea mariana
Black Sprace	:
Fir	Abies sp.
1	Abies sp. Betula papyrifera
Fir	
Fir Paper Birch	Betula papyrifera Betula sp.
Fir Paper Birch Dwarf Birch	Betula papyrifera

APPENDIX C-1

MERISTICS FOR FISH COLLECTED BY GILLNET

Appendix C-1. Meristics for Fish Collected by Gillnet: Eclipse Lake

Net Out	Gillnet	Fish	Species	Fork Length	Weight	Sex	Maturity	Age Structure	Age	Tissue	Comments
DD/MM/YY		Number		(cm)	(g)			Sample	(years)	Sample	
7/25/2004	Floating	1	Lake Trout	54.8	1800		М				
7/25/2004	Floating	2	Lake Trout	56.6	1950		М				
7/25/2004	Floating	3	Northern Pike	67.2	2150	F	М	Х	6	X	Cleithra
7/25/2004	Floating	4	Lake Trout	55.3	1550	F	М				Ripe with roe
7/25/2004	Floating	5	Northern Pike	74.5	2660	F	М	Х	7	X	Cleithra
7/25/2004	Floating	6	Lake Trout	55.6	1770	F	М	Х	16	X	Pectoral Fin
7/25/2004	Floating	7	Lake Trout	49.8	1050	М	М				
7/25/2004	Floating	8	Northern Pike	52.7	980	F	М	Х	4	X	Cleithra
7/25/2004	Floating	9	Whitefish	41.6	850	М	М	Х	7	X	Pectoral Fin
7/25/2004	Floating	10	Whitefish	36.8	600	F		Х	6	X	Pectoral Fin
7/25/2004	Floating	11	Whitefish	40.4	825	F	М	Х	7	X	Pectoral Fin; ripe with roe
7/25/2004	Floating	12	Whitefish	36.5	540	М	М	Х	5	X	Pectoral Fin
7/25/2004	Floating	13	Whitefish	34.6	465	М	М	Х	6	Х	Pectoral Fin
7/25/2004	Sinking	1	Lake Trout	75.5	6803	F	М	Х	34	Х	Pectoral Fin; ripe with roe
7/25/2004	Sinking	2	Lake Trout	54.4	1425	М	М	Х	14	X	Pectoral Fin
7/25/2004	Sinking	3	Lake Trout	54.5	1650	F	М	Х	12	X	Pectoral Fin
7/25/2004	Sinking	4	Lake Trout	48.8	1225	F	М	Х	10	X	Pectoral Fin
7/25/2004	Sinking	5	Lake Trout	44.7	920	F	М	Х	9	X	Pectoral Fin
7/25/2004	Sinking	6	Lake Trout	29.5	250	М	IM	Х	7		Pectoral Fin
7/25/2004	Sinking	7	Burbot	41.4							3/4 digested
7/25/2004	Sinking	8	Lake cisco	12.8	19						Voucher specimen
7/25/2004	Sinking	9	Lake cisco	12.6	18						Voucher specimen
7/25/2004	Sinking	10	Lake cisco	12.6	18						Voucher specimen

Appendix C-1. Meristics for Fish Collected by Gillnet: Nicholas Lake

Net Out	Gillnet	Fish	Species	Fork Length	Weight	Sex	Maturity	Age Structure	Age	Tissue	Comments
DD/MM/YY		Number		(cm)	(g)			Sample		Sample	
7/28/2004	Floating	1	Burbot	63.4	1790		М				
7/28/2004	Floating	2	Northern Pike	55.5	920	F	М	Х	4	Х	Cleithra
7/28/2004	Floating	3	Northern Pike	53.8	1020	M	М	Х	4	Х	Cleithra
7/28/2004	Floating	4	Northern Pike	52.0	930	М	М	Х	4	Х	Cleithra
7/28/2004	Floating	5	Northern Pike	58.2	1320	M	М	Х	4	Х	Cleithra
7/28/2004	Floating	6	Northern Pike	50.2	840	М	М	Х	5	Х	Cleithra
7/28/2004	Floating	7	Northern Pike	59.2	1280	M	М				
7/28/2004	Floating	8	Lake Trout	50.8	1220	F	М				Ripe with roe
7/28/2004	Floating	9	Lake Trout	50.0	1400	F	М				Ripe with roe
7/28/2004	Floating	10	Lake Trout	56.4	1790	F	М				Ripe with roe
7/28/2004	Floating	11	Lake Trout	51.3	1560	M	М				
7/28/2004	Sinking	1	Lake Trout	52.8	1820	M	М	Х	20	Х	Pectoral Fin
7/28/2004	Sinking	2	Lake Trout	49.8	1260	М	М	Х	16	Х	Pectoral Fin
7/28/2004	Sinking	3	Lake Trout	50.5	1425	М	М	Х	13	Х	Pectoral Fin
7/28/2004	Sinking	4	Lake Trout	51.0	1530	F	М	Х	24	Х	Pectoral Fin
7/28/2004	Sinking	5	Lake Trout	19.1	60	М	IM		3		Whole fish taken
7/28/2004	Sinking	6	Lake Trout	58.4	1125	F	М				

Appendix C-1. Meristics for Fish Collected by Gillnet: Brien Lake

Net Out	Gillnet	Fish	Species	Fork Length	Weight	Sex	Maturity	Age Structure	Age	Tissue	Comments
DD/MM/YY		Number		(cm)	(g)			Sample		Sample	
7/30/2004	Floating	1	Northern Pike	46.9	725	F		Х	3	Х	Cleithra
7/30/2004	Floating	2	Northern Pike	49.1	710		IM	Х	4	Х	Cleithra
7/30/2004	Floating	3	Northern Pike	29.4	170		IM	Х	2	Х	Cleithra
7/30/2004	Floating	4	Northern Pike	29.0	155		IM	Х	2	Х	Cleithra
7/30/2004	Floating	5	Northern Pike	29.1	160		IM	Х	2	Х	Cleithra
7/30/2004	Floating	6	Northern Pike	16.5	40		IM				

Note: No fish collected in sinking gillnet

Appendix C-1. Meristics for Fish Collected by Gillnet: Narrow Lake

BDAMMYimage <t< th=""><th>Net Out</th><th>Gillnet</th><th>Fish</th><th>Species</th><th>Fork Length</th><th>Weight</th><th>Sex</th><th>Maturity</th><th>Age Structure</th><th>Age</th><th>Tissue</th><th>Comments</th></t<>	Net Out	Gillnet	Fish	Species	Fork Length	Weight	Sex	Maturity	Age Structure	Age	Tissue	Comments
B22004 Floating 2 Norker Nike 95 2440 M<		Gimet		operes		0	Dea	maturity		nge		Comments
Bez2004 Floating 4 Northern Pice 95 2400 M <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td></td><td></td><td></td><td></td><td></td></th<>							F					
B2204 Floring 4 Norker Nike S2 1300 M <td></td> <td>U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>X</td> <td>2</td> <td>Х</td> <td>Cleithra</td>		U							X	2	Х	Cleithra
Base of the sector of		U										
B22041 Financy Finance Mathefin S22 S20 Finance Mathefin S22 S20 Finance Mathefin S22 S22 S20 Finance Mathefin S22 S22 S20 Finance Mathefin S22 S2												
97.2004 Figuring 9 Whitefish 55.2 540 M M M M 82.2004 Floating 10 Whitefish 28.6 300 M M M M 82.2004 Floating 11 Whitefish 28.4 300 40 M M 92.2004 Floating 13 Whitefish 28.4 300 40 N M M 92.2004 Floating 15 Whitefish 21.3 130 F M												
9 Whiefsh 28.2 200 F M M M 822044 Floring 11 Whiefsh 300 F M M M 822044 Floring 12 Whiefsh 504 20 F M M M 822044 Floring 13 Whiefsh 514 300 M							F	М				
S22040 Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating Floating S22041 Floating Floating Floating Floating Floating Floating Floating Floating Floating S22041 Floating Floating Floating Floating Floating Floating S22041 Floating Floating Floating Floating Floating S22041 Floating Floating Floating Floating S22041 Floating Floating Floating Floating S22041 Floating Floating Floating Floating S22041 Floating Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating S22041 Floating Floating Floating Floating S22041 Floating Floa		U										
B22004 Floating F								М				
Bits Instruction Instruction Source Instruction Instruction 822004 Floating 14 Whitefah 22.6 14.6 M M M 822004 Floating 15 Whitefah 22.6 14.5 M M M 822004 Floating 16 Whitefah 22.0 14.0 MA M M 822004 Floating 19 Whitefah 22.0 13.0 M								м				
B2204 Floating 13 Whitefink 21.4 380 M M M S22040 Floating 15 Whitefink 22.6 14.5 M M M S22040 Floating 15 Whitefink 21.3 180 M M M S22041 Floating 17 Whitefink 21.3 180 F M M M S22041 Floating 17 Whitefink 22.0 12.0 M		<u> </u>										
B22004 Floating Floating 15 Whitefab 246 150 F M M S22040 Floating 17 Whitefab 21.3 130 F M M S22040 Floating 18 Whitefab 22.0 M M M M S22041 Floating 19 Whitefab 22.1 130 M M M S22041 Floating 22 Whitefab 22.6 100 M M M S22041 Floating 22 Whitefab 22.6 100 M <td></td>												
B22004 Floating Floating 16 Whitefab 24.6 19.5 F M M S22004 Floating 18 Whitefab 22.0 12.0 M M M S22004 Floating 18 Whitefab 22.1 13.0 M M M S22004 Floating 20 Whitefab 22.5 12.0 M M M S22004 Floating 21 Whitefab 23.2 13.0 M M M M M S22004 Floating 23 Whitefab 23.0 12.0 P M X S X Cleitha S22004 Sinking 1 Northern Pake 92.0 14.00 F M X 4 X Cleitha S22004 Sinking 3 Northern Pake 92.6 140 M X 5 X Cleitha S22004 Sinking 5 Whit		Floating		Whitefish	22.6							
8/2.2004 Floating 17 Whitefish 21.0 M M 8/2.2004 Floating 19 Whitefish 21.0 10 M M 8/2.2004 Floating 19 Whitefish 22.1 130 M M 8/2.2004 Floating 21 Whitefish 22.5 200 M M 8/2.2004 Floating 21 Whitefish 22.1 150 8/2.2004 Floating 23 Whitefish 22.1 150 8/2.2004 Floating 1 Sorten Thice 22.0 125 Karkuskeethovee hows beer how		<u> </u>										
B22004 Floating 18 Whitefish 22.0 12.0 M M S22004 Floating 20 Whitefish 25.5 200 M M S22004 Floating 20 Whitefish 25.2 150 S22004 Floating 22 Whitefish 23.6 500 S22004 Floating 23 Whitefish 23.6 500 S22004 Floating 24 Whitefish 23.0 150 S22004 Sinking 1 Northen Pike 59.2 1140 F M X 5 X Cleintra S22004 Sinking 2 Northen Pike 59.2 1140 F M X 5 X Cleintra S22004 Sinking 1 Northen Pike 59.2 100 M N N N Poteoral Pin 59.2 <		5										
B22004 Floating 19 Whitefish 21.5 200 M M M S22004 Floating 21 Whitefish 23.6 500 N N S22004 Floating 23 Whitefish 23.6 500 N N S22004 Floating 23 Whitefish 23.0 150 N N S22004 Floating 23 Whitefish 23.0 150 N N S22004 Floating 23 Whitefish 23.0 150 N N N S22004 Sinking 1 Northern Pike 58.6 12.00 F M X 4 X Cleithra S22004 Sinking 3 Northern Pike 58.6 12.00 F M X 4 X Cleithra S22004 Sinking 5 Northern Pike 58.2 100 M X 11 X Pectoral Pin <td></td>												
B2/2004 Floating 20 Whitefish 2.5.2 200 M M S2/2004 Floating 22 Whitefish 2.5.2 50 Image: Construct of the second												
82/2004 Floating 22 Whitefish 23.6 500												
82/2004 Floating 23 Whitefish 23.6 17.0 Image: Control of the state of the		Floating		Whitefish	23.2	150						
8/22004 Floating 24 Whitefish 22.00 150 Note: Stake whitefish were thrown back from froating gillnet 22.004 Sinking 1 Northern Pike 58.6 1200 F M X 5 X Cleithra 8/22004 Sinking 2 Northern Pike 58.6 1200 F M X 4 X Cleithra 8/22004 Sinking 2 Northern Pike 58.6 1200 F M X 4 X Cleithra 8/22004 Sinking 4 Whitefish 25.6 180 M M X 8 X Pectoral Fin 8/22004 Sinking 6 Whitefish 25.5 100 M M X 11 X Pectoral Fin 8/22004 Sinking 10 Whitefish 25.0 100 M X 3 X Pectoral Fin 8/2/2/////////////////////////////////												
Note: 5 like whitefish were three whole. Section												
82/2004 Sinking 1 Northem Pike \$92 1140 F M X 5 X Cleithra 82/2004 Sinking 3 Northem Pike \$62.6 1810 M M X 5 X Cleithra 82/2004 Sinking 4 Whitefish 454 1240 M M X 5 X Cleithra 82/2004 Sinking 5 Whitefish 255.6 250 M M X 5 X Pectoral Fin 82/2004 Sinking 6 Whitefish 25.6 250 IM X 5 X Pectoral Fin 82/2004 Sinking 8 Whitefish 22.5 150 M M X 3 X Pectoral Fin 82/2004 Sinking 10 Whitefish 23.0 200 M M X 3 X Pectoral Fin 82/2004 Sinking 10						123	I	I	1	l		1
			1			1140	F	М	Х	5	Х	Cleithra
B2/2004 Sinking 4 Whitefish 454 1240 M M X 17 X Pectoral Fin B2/2004 Sinking 6 Whitefish 255 520 M M X 8 X Pectoral Fin B2/2004 Sinking 6 Whitefish 256 250 M M X 11 X Pectoral Fin B2/2004 Sinking 8 Whitefish 225 150 M M X 3 X Pectoral Fin B2/2004 Sinking 10 Whitefish 29.0 290 M M X 3 X Pectoral Fin B2/2004 Sinking 11 Whitefish 39.0 760 M M Sinking 16 Sinking 16 Sinking 16 Whitefish 31.0 370 F M S/top Sinking 16 Sinking 16 Sinking 16	8/2/2004								Х			
		Sinking										
82/2004 Sinking 6 Whitefish 35.5 520 M M X 11 X Pectoral Fin 82/2004 Sinking 8 Whitefish 39.2 700 M M X 11 X Pectoral Fin 82/2004 Sinking 10 Whitefish 22.5 150 M M X 3 X Pectoral Fin 82/2004 Sinking 11 Whitefish 29.9 300 M M X 3 X Pectoral Fin 82/2004 Sinking 11 Whitefish 29.9 200 M M												
822004 Sinking 7 Whitefish 25.6 250 IM X 5 X Pectoral Fin 82/2004 Sinking 9 Whitefish 22.2 700 M M X 11 X Pectoral Fin 82/2004 Sinking 10 Whitefish 22.9 150 M M X 3 X Pectoral Fin 82/2004 Sinking 11 Whitefish 29.0 200 M M 82/2004 Sinking 11 Whitefish 34.0 760 M M 82/2004 Sinking 16 Whitefish 31.0 370 F M X 2004 Sinking 10 Whitefish 35.6 620 F M X 2004 Sinking <td< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		-										
82/2004 Sinking 8 Whitefish 39.2 700 M M X 11 X Pectoral Fin 82/2004 Sinking 10 Whitefish 22.5 150 M M X 3 X Pectoral Fin 82/2004 Sinking 11 Whitefish 29.9 300 IM M X 3 X Pectoral Fin 82/2004 Sinking 11 Whitefish 34.9 540 M M X X Pectoral Fin 82/2004 Sinking 13 Whitefish 34.6 600 M M X Z X X Z X X Y X Y X X Y X X Y X X Y X X Y X X Y X X Y X Y X Y X Y X Y X X Y <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>M</td> <td></td> <td></td> <td></td> <td></td> <td></td>							M					
synchronic 9 Whitefish 22.5 150 M M X 3 X Pectoral Fin 82/2004 Sinking 10 Whitefish 29.0 200 M M 82/2004 Sinking 11 Whitefish 29.0 200 M M 82/2004 Sinking 12 Whitefish 34.0 600 M M 82/2004 Sinking 14 Whitefish 30.0 760 M M M M M M M <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>м</td><td></td><td></td><td></td><td></td><td></td></t<>							м					
synchronic 10 Whitefish 29.9 300 IM IM 82/2004 Sinking 11 Whitefish 29.0 29.0 M M 82/2004 Sinking 13 Whitefish 34.9 54.0 M M 82/2004 Sinking 13 Whitefish 34.6 600 M M 82/2004 Sinking 15 Whitefish 30.1 330 F M 82/2004 Sinking 16 Whitefish 31.0 370 F M 82/2004 Sinking 19 Whitefish 33.1 450 M M 82/2004 Sinking 19 Whitefish 35.6 620 F M M 82/2004 Sinking 21 Whitefish 36.6 380 M M M 82/2004 Sinking 23 Whitefish 30.6 330 F M M 82/2004		-										
syz2004 Sinking 12 Whitefish 34.9 540 M M 8/22004 Sinking 13 Whitefish 39.0 760 M M 8/22004 Sinking 14 Whitefish 30.1 330 F M 8/22004 Sinking 15 Whitefish 30.1 330 F M 8/22004 Sinking 16 Whitefish 31.0 370 F M 8/22004 Sinking 17 Whitefish 33.0 450 M M 8/22004 Sinking 10 Whitefish 35.6 620 F M M 8/22004 Sinking 20 Whitefish 36.6 20.0 F M M 8/22004 Sinking 23 Whitefish 30.6 330 F M M 8/22004 Sinking 25 Whitefish 36.1 540 F M M <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>										-		
8/22004 Sinking 13 Whitefish 39.0 760 M M 8/22004 Sinking 14 Whitefish 34.6 600 M M 8/22004 Sinking 15 Whitefish 30.1 330 F M 8/22004 Sinking 16 Whitefish 37.0 F M 8/22004 Sinking 18 Whitefish 37.0 F M 8/22004 Sinking 18 Whitefish 33.3 450 M M 8/22004 Sinking 20 Whitefish 33.6 620 F M M 8/22004 Sinking 21 Whitefish 30.6 30.0 F M M 8/22004 Sinking 23 Whitefish 30.6 33.0 F M M 8/22004 Sinking 24 Whitefish 31.0 F M M M 8/22004		Sinking		Whitefish			М	М				
82/2004 Sinking 14 Whitefish 34.6 600 M M 82/2004 Sinking 15 Whitefish 30.1 330 F M 82/2004 Sinking 16 Whitefish 37.0 F M 82/2004 Sinking 17 Whitefish 37.0 685 F M 82/2004 Sinking 18 Whitefish 39.7 740 F M 82/2004 Sinking 20 Whitefish 35.6 620 F M 82/2004 Sinking 21 Whitefish 36.6 380 M M 82/2004 Sinking 22 Whitefish 30.6 380 M M 82/2004 Sinking 24 Whitefish 26.5 320 M M 82/2004 Sinking 25 Whitefish 36.1 540 F M 82/2004 Sinking 28 Whitefish 27.9 285 F M 82/2004 Sinking <												
8222004 Sinking 15 Whitefish 30.1 330 F M 82/2004 Sinking 16 Whitefish 31.0 370 F M 82/2004 Sinking 17 Whitefish 33.3 450 M M 82/2004 Sinking 18 Whitefish 33.3 450 M M 82/2004 Sinking 20 Whitefish 35.6 620 F M 82/2004 Sinking 21 Whitefish 28.6 270 F M 82/2004 Sinking 22 Whitefish 26.6 270 F M 82/2004 Sinking 23 Whitefish 26.5 320 M M 82/2004 Sinking 26 Whitefish 27.9 285 F M 82/2004 Sinking 28 Whitefish 31.9 380 F M 82/2004S												
8/22004 Sinking 16 Whitefish 31.0 370 F M 8/22004 Sinking 17 Whitefish 37.0 685 F M 8/22004 Sinking 18 Whitefish 33.3 450 M M 8/22004 Sinking 19 Whitefish 39.7 740 F M 8/22004 Sinking 20 Whitefish 35.6 62.0 F M 8/22004 Sinking 21 Whitefish 26.6 270 F M 8/22004 Sinking 23 Whitefish 26.5 320 M M 8/22004 Sinking 24 Whitefish 27.9 285 F M 8/22004 Sinking 26 Whitefish 36.1 540 F M 8/22004 Sinking 28 Whitefish 28.5 270 M M 8/22004 Sinking 30												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
8/22004 Sinking 19 Whitefish 39.7 740 F M 8/22004 Sinking 20 Whitefish 35.6 620 F M 8/22004 Sinking 21 Whitefish 28.6 270 F M 8/22004 Sinking 22 Whitefish 26.5 320 M M 8/22004 Sinking 24 Whitefish 28.5 320 M M 8/22004 Sinking 26 Whitefish 28.5 220 M M 8/22004 Sinking 26 Whitefish 28.5 220 M M 8/22004 Sinking 27 Whitefish 31.9 380 F M M 8/22004 Sinking 30 Whitefish 28.5 270 F M M 8/22004 Sinking 31 Whitefish 29.5 270 M M M		~										
8/22004 Sinking 20 Whitefish 35.6 620 F M 8/22004 Sinking 21 Whitefish 28.6 270 F M 8/22004 Sinking 21 Whitefish 30.6 380 M M 8/22004 Sinking 23 Whitefish 26.5 320 M M 8/22004 Sinking 24 Whitefish 26.5 320 M M 8/22004 Sinking 26 Whitefish 27.9 285 F M 8/22004 Sinking 26 Whitefish 36.1 540 F M 8/22004 Sinking 28 Whitefish 31.9 380 F M 8/22004 Sinking 30 Whitefish 28.5 270 F M 8/22004 Sinking 31 Whitefish 29.5 270 M M 8/22004 Sinking 33<		Sinking		Whitefish	33.3	450		М				
8/2/2004 Sinking 21 Whitefish 28.6 270 F M $8/2/2004$ Sinking 22 Whitefish 30.6 380 M M $8/2/2004$ Sinking 23 Whitefish 26.5 320 M M $8/2/2004$ Sinking 24 Whitefish 28.5 S M M $8/2/2004$ Sinking 25 Whitefish 27.9 285 F M M $8/2/2004$ Sinking 26 Whitefish 36.1 540 F M M $8/2/2004$ Sinking 28 Whitefish 31.9 380 F M M $8/2/2004$ Sinking 30 Whitefish 28.5 270 F M M M $8/2/2004$ Sinking 31 Whitefish 29.5 270 M M M M $8/2/2004$ Sinking 33 Whitefish 29.7 195 F M M M M <td></td>												
8/2/2004 Sinking 22 Whitefish 30.6 380 M M 8/2/2004 Sinking 23 Whitefish 30.6 330 F M 8/2/2004 Sinking 24 Whitefish 30.6 330 F M 8/2/2004 Sinking 25 Whitefish 28.5 220 M M 8/2/2004 Sinking 26 Whitefish 27.9 285 F M 8/2/2004 Sinking 26 Whitefish 36.1 540 F M 8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 30 Whitefish 28.5 270 F M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking												
8/2/2004 Sinking 23 Whitefish 26.5 320 M M 8/2/2004 Sinking 24 Whitefish 30.6 330 F M 8/2/2004 Sinking 25 Whitefish 28.5 22.0 M M 8/2/2004 Sinking 26 Whitefish 27.9 285 F M 8/2/2004 Sinking 27 Whitefish 36.1 540 F M 8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 30 Whitefish 28.5 270 F M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 29.7 340 M M 8/2/2004 Sinking												
8/2/2004 Sinking 24 Whitefish 30.6 330 F M 8/2/2004 Sinking 25 Whitefish 28.5 220 M M 8/2/2004 Sinking 26 Whitefish 27.9 285 F M 8/2/2004 Sinking 27 Whitefish 36.1 540 F M 8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 29 Whitefish 28.5 270 F M 8/2/2004 Sinking 30 Whitefish 28.5 270 M M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 25.7 195 F M 8/2/2004 Sinking 33 Whitefish 29.0 280 M M 8/2/2004 Sinking												
8/2/2004 Sinking 25 Whitefish 28.5 220 M M 8/2/2004 Sinking 26 Whitefish 27.9 285 F M 8/2/2004 Sinking 27 Whitefish 36.1 540 F M 8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 29 Whitefish 28.3 265 M M 8/2/2004 Sinking 30 Whitefish 28.3 265 M M 8/2/2004 Sinking 31 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 27.1 230 M M 8/2/2004 Sinking 34 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 28.5 275 F M M 8/2/2004 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
8/2/2004 Sinking 27 Whitefish 36.1 540 F M 8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 29 Whitefish 28.5 270 F M 8/2/2004 Sinking 30 Whitefish 28.3 265 M M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking 34 Whitefish 29.0 280 M M 8/2/2004 Sinking 35 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 26.5 205 F M	8/2/2004											
8/2/2004 Sinking 28 Whitefish 31.9 380 F M 8/2/2004 Sinking 29 Whitefish 28.5 270 F M		Sinking	26	Whitefish	27.9	285	F	М				
8/2/2004 Sinking 29 Whitefish 28.5 270 F M 8/2/2004 Sinking 30 Whitefish 28.3 265 M M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.0 280 M M 8/2/2004 Sinking 36 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 28.5 275 F M 8/2/2004 Sinking 38 Whitefish 28.5 205 M M												
8/2/2004 Sinking 30 Whitefish 28.3 265 M M 8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking 34 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.0 280 M M 8/2/2004 Sinking 36 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 28.5 205 M M 8/2/2004 Sinking 40 Whitefish 24.5 175 M M											-	
8/2/2004 Sinking 31 Whitefish 29.5 270 M M 8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking 34 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.7 340 M M 8/2/2004 Sinking 36 Whitefish 29.0 280 M M 8/2/2004 Sinking 37 Whitefish 25.1 180 M M 8/2/2004 Sinking 39 Whitefish 26.5 205 M M 8/2/2004 Sinking 40 Whitefish 22.9 150												
8/2/2004 Sinking 32 Whitefish 27.1 230 M M 8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking 34 Whitefish 25.7 195 F M 8/2/2004 Sinking 35 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.0 280 M M												
8/2/2004 Sinking 33 Whitefish 25.7 195 F M 8/2/2004 Sinking 34 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.7 340 M M 8/2/2004 Sinking 35 Whitefish 29.0 280 M M 8/2/2004 Sinking 36 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 28.5 275 F M 8/2/2004 Sinking 38 Whitefish 28.9 265 F M 8/2/2004 Sinking 40 Whitefish 24.5 175 M M 8/2/2004 Sinking 41 Whitefish 23.7 160 M M 8/2/2004 Sinking 43 Whitefish 23.7												
8/2/2004 Sinking 35 Whitefish 29.0 280 M M 8/2/2004 Sinking 36 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 25.1 180 M M 8/2/2004 Sinking 38 Whitefish 25.1 180 M M 8/2/2004 Sinking 38 Whitefish 26.5 205 F M			33									
8/2/2004 Sinking 36 Whitefish 28.5 275 F M 8/2/2004 Sinking 37 Whitefish 25.1 180 M M M 8/2/2004 Sinking 38 Whitefish 25.1 180 M M M 8/2/2004 Sinking 39 Whitefish 26.5 205 M M M 8/2/2004 Sinking 40 Whitefish 24.5 175 M												
8/2/2004 Sinking 37 Whitefish 25.1 180 M M 8/2/2004 Sinking 38 Whitefish 28.9 265 F M												
8/2/2004 Sinking 38 Whitefish 28.9 265 F M Image: Marcol and											+	
8/2/2004 Sinking 39 Whitefish 26.5 205 M M 8/2/2004 Sinking 40 Whitefish 24.5 175 M M 8/2/2004 Sinking 41 Whitefish 24.5 175 M M 8/2/2004 Sinking 41 Whitefish 22.9 150 M M 8/2/2004 Sinking 42 Whitefish 23.7 160 M M 8/2/2004 Sinking 43 Whitefish 26.1 200 M M 8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 22.6 130												
8/2/2004 Sinking 40 Whitefish 24.5 175 M M 8/2/2004 Sinking 41 Whitefish 22.9 150 M M 8/2/2004 Sinking 42 Whitefish 22.9 150 M M 8/2/2004 Sinking 42 Whitefish 23.7 160 M M 8/2/2004 Sinking 43 Whitefish 26.1 200 M M 8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.6 100 8/2/2004 Sinking 48 Whitefish 22.6 130												
8/2/2004 Sinking 42 Whitefish 23.7 160 M M 8/2/2004 Sinking 43 Whitefish 26.1 200 M M 8/2/2004 Sinking 43 Whitefish 19.7 100 F M 8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130	8/2/2004	Sinking	40	Whitefish	24.5	175	М	М				
8/2/2004 Sinking 43 Whitefish 26.1 200 M M 8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130		<u> </u>										
8/2/2004 Sinking 44 Whitefish 19.7 100 F M 8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130												
8/2/2004 Sinking 45 Whitefish 22.8 140 8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130												
8/2/2004 Sinking 46 Whitefish 20.6 120 8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130							r	IVI			+	
8/2/2004 Sinking 47 Whitefish 20.5 100 8/2/2004 Sinking 48 Whitefish 22.6 130 100										<u> </u>		
8/2/2004 Sinking 48 Whitefish 22.6 130												
	8/2/2004	Sinking	49	Whitefish	21.9	120						
8/2/2004 Sinking 50 Whitefish 14.4 40 Image: Constraint of the second sec												

APPENDIX C-2

MERISTICS FOR FISH COLLECTED BY MINNOW TRAP

Location	Fish	Date	Trap	Sample No	Species	Length	Weight	Age
	Collected	DD/MM/YY	Number			(cm)	(g)	
Round Lake	No							
Winter Lake	No							
Eclipse Lake	No							
Nicholas Lake	No							
Brien Lake	No							
Narrow Lake	Yes	8-Feb-04	7	1	Northern Pike	6.2	2	0+
		8-Feb-04	10	2	Northern Pike	7	2	0+

Note: 10 minnow traps deployed along shoreline per lake

APPENDIX D-1

GILLNET CATCH AND CATCH-PER-UNIT-EFFORT

Lake	Gillnet	Date In	Time In	Date Out	Time Out	Total Set		Gillnet Catch and	Catch-Per-Unit-Ef	fort (CPUE)		Total Net
	type					Time	Northern	Lake	Lake	Lake	Burbot	Catch
						(hours)	Pike	Trout	Whitefish	Cisco		
Round	Floating	18-Jul-04	17:45	19-Jul-04	10:57	17.2	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
	Sinking	18-Jul-04	17:20	19-Jul-04	10:45	17.42	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Winter	Floating	20-Jul-04	16:00	21-Jul-04	8:04	16.06	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
	Sinking	20-Jul-04	16:30	21-Jul-04	7:52	15.36	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Eclipse	Floating	24-Jul-04	18:30	25-Jul-04	9:36	15.1	3	5	5	0	0	13
							1.09	1.82	1.82	0.00	0.00	4.72
	Sinking	24-Jul-04	18:48	25-Jul-04	8:12	14.4	0	6	0	3	1	10
							0.00	2.28	0.00	1.14	0.38	3.81
Nicholas	Floating	27-Jul-04	19:14	28-Aug-04	9:10	13.93	6	4	0	0	1	11
							2.36	1.57	0.00	0.00	0.39	4.33
	Sinking	27-Jul-04	19:30	28-Aug-04	8:05	12.58	1	5	0	0	0	6
							0.44	2.18	0.00	0.00	0.00	2.61
Brien	Floating	29-Jul-04	17:23	30-Jul-04	8:14	14.85	6	0	0	0	0	6
							2.22	0.00	0.00	0.00	0.00	2.22
	Sinking	29-Jul-04	17:34	30-Jul-04	8:30	14.93	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Narrow	Floating	1-Aug-04	15:30	2-Aug-04	10:45	19.25	6	0	24	0	0	30
							1.71	0.00	6.84	0.00	0.00	8.54
	Sinking	1-Aug-04	15:45	2-Aug-04	8:40	16.91	3	0	50	0	0	53
							0.97	0.00	16.21	0.00	0.00	17.18
						Fish Totals:	25	20	79	3	2	129

Appendix D-1. Gillnet Catch and Catch-per-Unit-Effort

Note:

Gillnet CPUE values (bolded) represent the number of fish captured per gillnetting unit (number of fish/100m² per 12 hr period).

APPENDIX D-2

MINNOW TRAP CATCH AND CATCH-PER-UNIT-EFFORT

Lake	Number	Date In	Time In	Date Out	Time Out	Total Set	Minno	w Traps and	Catch-Per-U	nit-Effort (CPUE)	Total
	of Traps					Time	Northern	Lake	Lake	Lake	Burbot	Catch
						(hours)	Pike	Trout	Whitefish	Cisco		
Round	10	18-Jul-04	17:53	19-Jul-04	8:40	14.78	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Winter	10	20-Jul-04	14:59	21-Jul-04	8:18	17.32	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Eclipse	10	24-Jul-04	17:30	25-Jul-04	11:10	17.70	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Nicholas	10	27-Jul-04	17:48	28-Jul-04	11:00	17.20	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Brien	10	29-Jul-04	16:47	30-Jul-04	9:30	16.71	0	0	0	0	0	0
							0.00	0.00	0.00	0.00	0.00	0.00
Narrow	10	1-Aug-04	14:47	2-Aug-04	11:00	21.22	2	0	0	0	0	2
							0.52	0.00	0.00	0.00	0.00	0.52
-						Fish Totals:	2	0	0	0	0	2

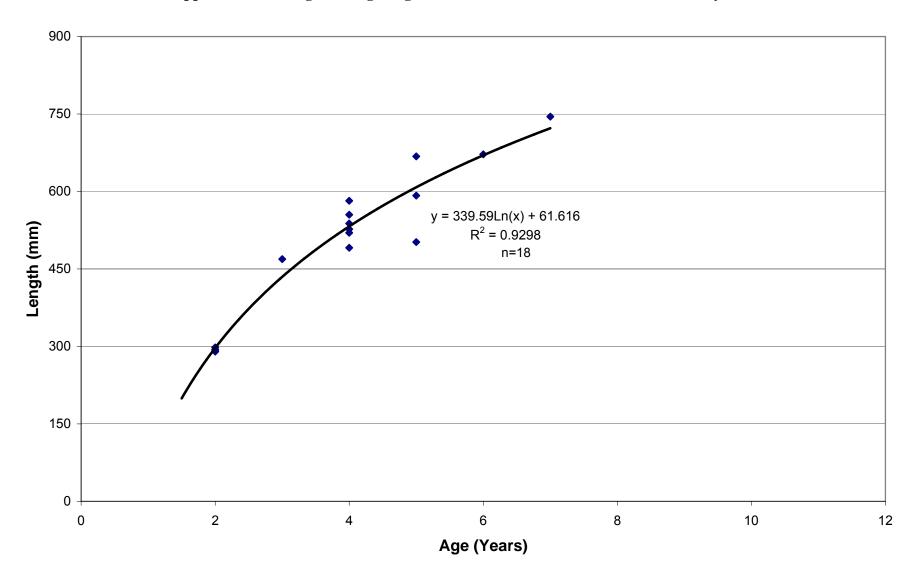
Appendix D-2. Minnow Trap Catch and Catch-per-Unit-Effort

Note:

Minnow Trap CPUE values (bolded) represent the number of fish captured per number of minnow trap units (number of fish/number of traps).

APPENDIX E

FISH AGING RESULTS

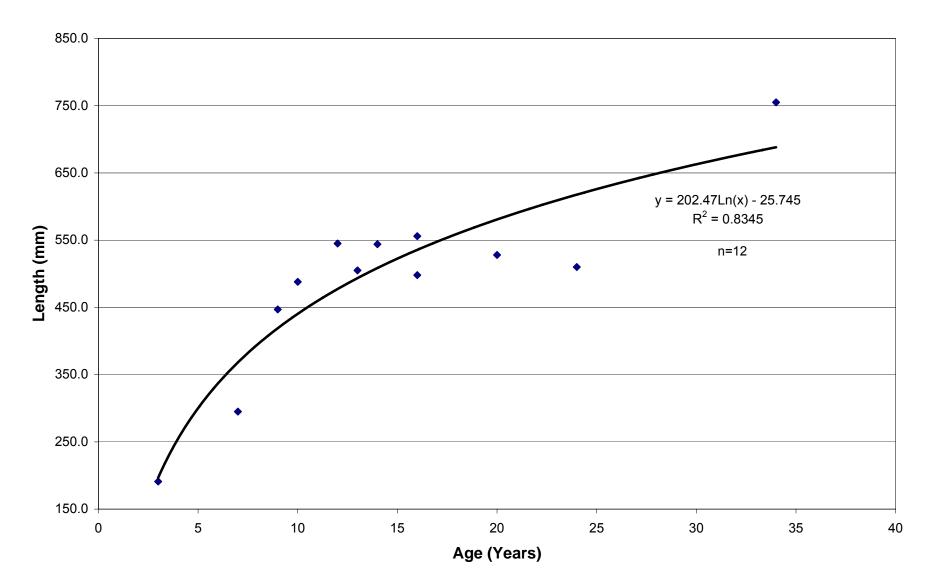

Appendix E: Fish Aging Results

Location	Sample Method	Species	Fish Sample #	Structure	Age
Eclipse Lake	Sinking gillnet	LT	1	Pectoral fin	34
Eclipse Lake	Sinking gillnet	LT	2	Pectoral fin	14
Eclipse Lake	Sinking gillnet	LT	3	Pectoral fin	12
Eclipse Lake	Sinking gillnet	LT	4	Pectoral fin	10
Eclipse Lake	Sinking gillnet	LT	5	Pectoral fin	9
Eclipse Lake	Sinking gillnet	LT	6	Pectoral fin	7
F~~···	000				-
Eclipse Lake	Floating gillnet	WF	9	Pectoral fin	7
Eclipse Lake	Floating gillnet	WF	10	Pectoral fin	6
Eclipse Lake	Floating gillnet	WF	11	Pectoral fin	7
Eclipse Lake	Floating gillnet	WF	12	Pectoral fin	5
Eclipse Lake	Floating gillnet	WF	13	Pectoral fin	6
Eclipse Lake	Floating gillnet	LT	6	Pectoral fin	16
Eclipse Lake	Floating gillnet	NP	3	Cleithra	6
Eclipse Lake	Floating gillnet	NP	5	Cleithra	7
Eclipse Lake	Floating gillnet	NP	8	Cleithra	4
<u>Delipse Eure</u>		111	0	Cielunu	•
Nicholas Lake	Sinking gillnet	LT	1	Pectoral fin	20
Nicholas Lake	Sinking gillnet	LT	2	Pectoral fin	16
Nicholas Lake	Sinking gillnet	LT	3	Pectoral fin	13
Nicholas Lake	Sinking gillnet	LT	4	Pectoral fin	24
Nicholas Lake	Sinking gillnet	LT	5	Pectoral fin	3
	~				
Nicholas Lake	Floating gillnet	NP	2	Cleithra	4
Nicholas Lake	Floating gillnet	NP	3	Cleithra	4
Nicholas Lake	Floating gillnet	NP	4	Cleithra	4
Nicholas Lake	Floating gillnet	NP	5	Cleithra	4
Nicholas Lake	Floating gillnet	NP	6	Cleithra	5
Brien Lake	Floating gillnet	NP	1	Cleithra	3
Brien Lake	Floating gillnet	NP	2	Cleithra	4
Brien Lake	Floating gillnet	NP	3	Cleithra	2
Brien Lake	Floating gillnet	NP	4	Cleithra	2
Brien Lake	Floating gillnet	NP	5	Cleithra	2
Narrow Lake	Sinking gillnet	NP	1	Cleithra	5
Narrow Lake	Sinking gillnet	NP	2	Cleithra	4
Narrow Lake	Sinking gillnet	NP	3	Cleithra	5
Narrow Lake	Sinking gillnet	WF	4	Pectoral fin	17
Narrow Lake	Sinking gillnet	WF	5	Pectoral fin	8
Narrow Lake	Sinking gillnet	WF	6	Pectoral fin	11
Narrow Lake	Sinking gillnet	WF	7	Pectoral fin	5
Narrow Lake	Sinking gillnet	WF	8	Pectoral fin	11
Narrow Lake	Sinking gillnet	WF	9	Pectoral fin	3
Narrow Lake	Floating gillnet	NP	1	Cleithra	5
Narrow Lake	Floating gillnet	NP	2	Cleithra	2

APPENDIX F-1

LENGTH-AT-AGE REGRESSION FOR NORTHERN PIKE IN ALL LAKES SURVEYED

Appendix F-1. Length-At-Age Regression for Northern Pike in all Lakes Surveyed

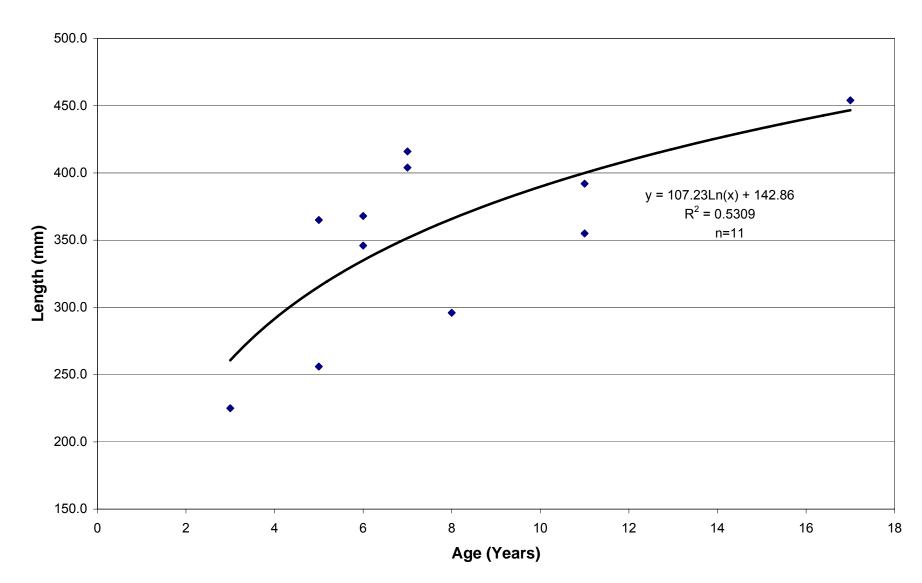

Length, Weight, Age S	Summary of Norther	n Pike for all Lakes
-----------------------	--------------------	----------------------

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Eclipse	Northern Pike	672	2150	6	F	М	Shallow
	Northern Pike	745	2660	7	F	Μ	Shallow
	Northern Pike	527	980	4	F	Μ	Shallow
Nicholas	Northern Pike	555.0	920	4	Μ	Μ	Shallow
	Northern Pike	538.0	1020	4	Μ	Μ	Shallow
	Northern Pike	520.0	930	4	Μ	Μ	Shallow
	Northern Pike	582.0	1320	4	Μ	Μ	Shallow
	Northern Pike	502.0	840	5	Μ	Μ	Shallow
	Northern Pike	592.0	1280		Μ	Μ	Shallow
Brien	Northern Pike	469.0	725	3	F	Μ	Shallow
	Northern Pike	491.0	710	4			Shallow
	Northern Pike	294.0	170	2			Shallow
	Northern Pike	290.0	155	2			Shallow
	Northern Pike	291.0	160	2			Shallow
	Northern Pike	165.0	40				Shallow
Narrow	Northern Pike	668.0	2440	5	F	Μ	Shallow
	Northern Pike	298.0	175	2		IM	Shallow
	Northern Pike	695.0	2440		Μ	Μ	Shallow
	Northern Pike	594.0	1110		Μ	Μ	Shallow
	Northern Pike	582.0	1360		Μ	Μ	Shallow
	Northern Pike	442.0	520		F	Μ	Shallow
	Northern Pike	592.0	1140	5	F	Μ	Sinking
	Northern Pike	586.0	1200	4	F	Μ	Sinking
	Northern Pike	626.0	1810	5	Μ	М	Sinking

APPENDIX F-2

LENGTH-AT-AGE REGRESSION FOR LAKE TROUT IN ALL LAKES SURVEYED

Appendix F-2. Length-At-Age Regression for Lake Trout in all Lakes Surveyed

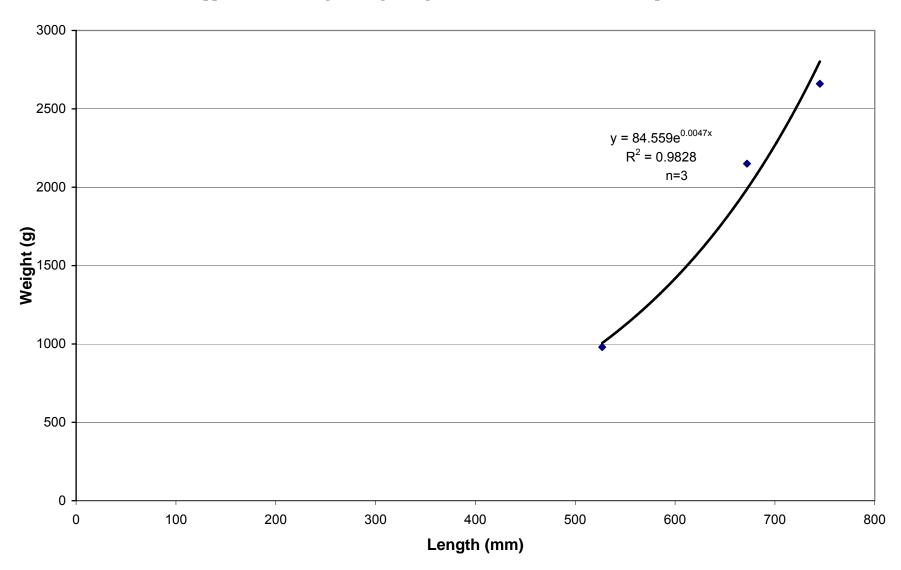

Length, Weight, Age Summary of Lake Trout in all Lakes

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Eclipse	Lake Trout	548.0	1800	-	М	М	Floating
	Lake Trout	566.0	1950		Μ	М	Floating
	Lake Trout	553.0	1550		Μ	М	Floating
	Lake Trout	556.0	1770	16	М	М	Floating
	Lake Trout	498.0	1050		М	М	Floating
	Lake Trout	755.0	6803	34	F	Μ	Deep
	Lake Trout	544.0	1425	14	М	М	Deep
	Lake Trout	545.0	1650	12	F	М	Deep
	Lake Trout	488.0	1225	10	F	Μ	Deep
	Lake Trout	447.0	920	9	F	М	Deep
	Lake Trout	295.0	250	7	М	IM	Deep
Nicholas	Lake Trout	508.0	1220		F	Μ	Floating
	Lake Trout	500.0	1400		F	М	Floating
	Lake Trout	564.0	1790		F	Μ	Floating
	Lake Trout	513.0	1560		М	Μ	Floating
	Lake Trout	528.0	1820	20	М	М	Deep
	Lake Trout	498.0	1260	16	М	М	Deep
	Lake Trout	505.0	1425	13	М	Μ	Deep
	Lake Trout	510.0	1530	24	F	М	Deep
	Lake Trout	191.0	60	3	М	IM	Deep
	Lake Trout	584.0	1125		F	М	Deep

APPENDIX F-3

LENGTH-AT-AGE REGRESSION FOR LAKE WHITEFISH IN ALL LAKES SURVEYED

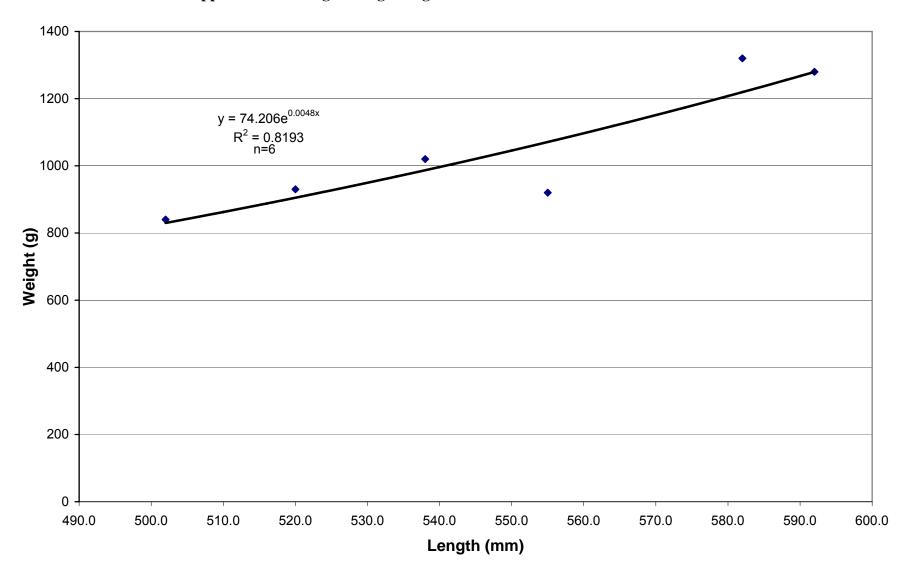
Appendix F-3. Length-At-Age Regression for Whitefish in all Lakes Surveyed


Length, Weight, Age Summary of Whitefish in all Lakes

Lakes	Species	Fork Length	Weight	Age	Sex	Maturity	Location
		(mm)	(g)	Sample			
Eclipse	Whitefish	416.0	850	7	М	М	Floating
	Whitefish	368.0	600	6	F		Floating
	Whitefish	404.0	825	7	F	М	Floating
	Whitefish	365.0	540	5	М	М	Floating
	Whitefish	346.0	465	6	М	М	Floating
Narrow	Whitefish	422.0	980		F	М	Floating
	Whitefish	352.0	540		М	М	Floating
	Whitefish	282.0	280		F	М	Floating
	Whitefish	286.0	300		М		Floating
	Whitefish	300.0	300		F	М	Floating
	Whitefish	264.0	230		F	M	Floating
	Whitefish	314.0	380		М	M	Floating
	Whitefish	226.0	145		М	М	Floating
	Whitefish	249.0	180		М	М	Floating
	Whitefish	246.0	195		F	M	Floating
	Whitefish	213.0	130		F	M	Floating
	Whitefish	220.0	120		М	M	Floating
	Whitefish	221.0	130		М	М	Floating
	Whitefish	255.0	200		М	М	Floating
	Whitefish	232.0	150				Floating
	Whitefish	236.0	500				Floating
	Whitefish	236.0	170				Floating
	Whitefish	230.0	150				Floating
	Whitefish	220.0	125				Floating
	Whitefish	454.0	1240	17	М	М	Sinking
	Whitefish	296.0	360	8	F	М	Sinking
	Whitefish	355.0	520	11	М	М	Sinking
	Whitefish	256.0	250	5		IM	Sinking
	Whitefish	392.0	700	11	М	М	Sinking
	Whitefish	225.0	150	3	М	М	Sinking
	Whitefish	299.0	300			IM	Sinking
	Whitefish	290.0	290		М	М	Sinking
	Whitefish	349.0	540		М	М	Sinking
	Whitefish	390.0	760		М	М	Sinking
	Whitefish	346.0	600		М	М	Sinking
	Whitefish	301.0	330		F	М	Sinking
	Whitefish	310.0	370		F	М	Sinking
	Whitefish	370.0	685		F	М	Sinking
	Whitefish	333.0	450		М	М	Sinking
	Whitefish	397.0	740		F	М	Sinking
	Whitefish	356.0	620		F	М	Sinking
	Whitefish	286.0	270		F	М	Sinking
	Whitefish	306.0	380		М	М	Sinking
	Whitefish	265.0	320		М	М	Sinking
	Whitefish	306.0	330		F	М	Sinking
	Whitefish	285.0	220		М	М	Sinking
	Whitefish	279.0	285		F	М	Sinking

Whitefish	361.0	540	F	М	Sinking
Whitefish	319.0	380	F	М	Sinking
Whitefish	285.0	270	F	М	Sinking
Whitefish	283.0	265	Μ	М	Sinking
Whitefish	295.0	270	Μ	М	Sinking
Whitefish	271.0	230	Μ	М	Sinking
Whitefish	257.0	195	F	М	Sinking
Whitefish	297.0	340	Μ	М	Sinking
Whitefish	290.0	280	Μ	М	Sinking
Whitefish	285.0	275	F	М	Sinking
Whitefish	251.0	180	М	М	Sinking
Whitefish	289.0	265	F	М	Sinking
Whitefish	265.0	205	М	М	Sinking
Whitefish	245.0	175	Μ	Μ	Sinking
Whitefish	229.0	150	Μ	Μ	Sinking
Whitefish	237.0	160	Μ	М	Sinking
Whitefish	261.0	200	М	М	Sinking
Whitefish	197.0	100	F	Μ	Sinking
Whitefish	228.0	140			Sinking
Whitefish	206.0	120			Sinking
Whitefish	205.0	100			Sinking
Whitefish	226.0	130			Sinking
Whitefish	219.0	120			Sinking
Whitefish	144.0	40			Sinking

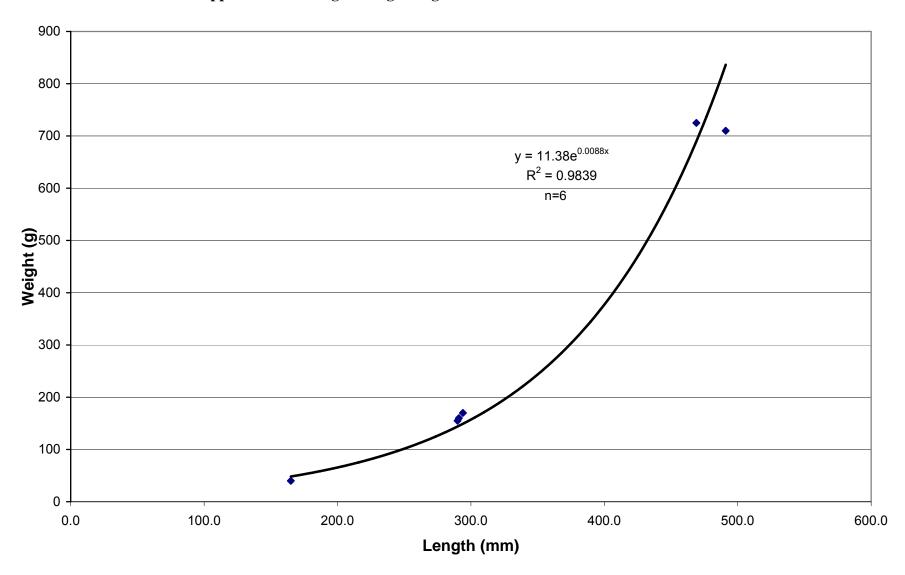
LENGTH-WEIGHT REGRESSION FOR NORTHERN PIKE IN ECLIPSE LAKE


Appendix F-4. Length-Weight Regression for Northern Pike in Eclipse Lake

Length, Weight, Age Summary of Northern Pike in Eclipse Lake

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Eclipse	Northern Pike	672	2150	6	F	М	Shallow
	Northern Pike	745	2660	7	F	М	Shallow
	Northern Pike	527	980	4	F	М	Shallow

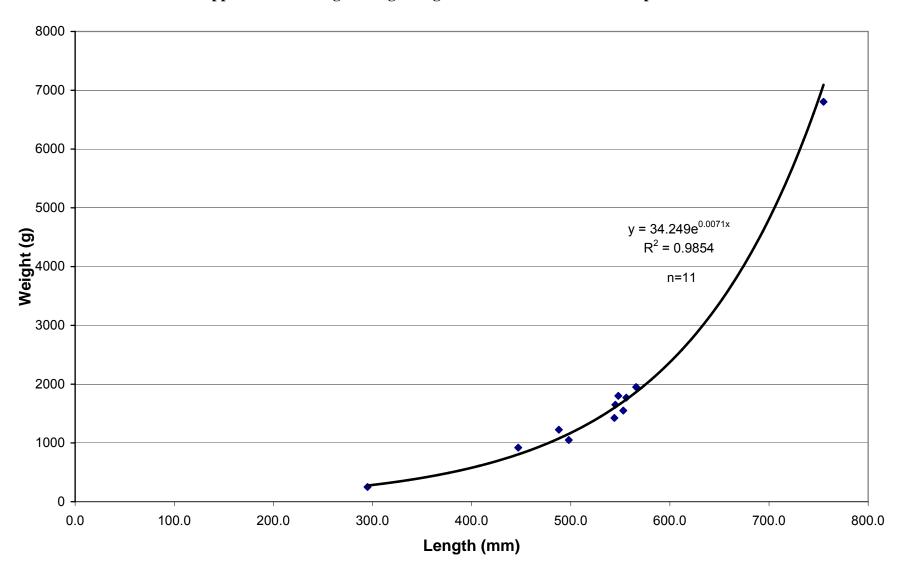
LENGTH-WEIGHT REGRESSION FOR NORTHERN PIKE IN NICHOLAS LAKE


Appendix F-5. Length-Weight Regression for Northern Pike in Nicholas Lake

Length, Weight, Age Summary of Northern Pike in Nicholas Lake

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Nicholas	Northern Pike	555.0	920	4	М	М	Shallow
	Northern Pike	538.0	1020	4	М	М	Shallow
	Northern Pike	520.0	930	4	Μ	М	Shallow
	Northern Pike	582.0	1320	4	М	М	Shallow
	Northern Pike	502.0	840	5	Μ	М	Shallow
	Northern Pike	592.0	1280		Μ	М	Shallow

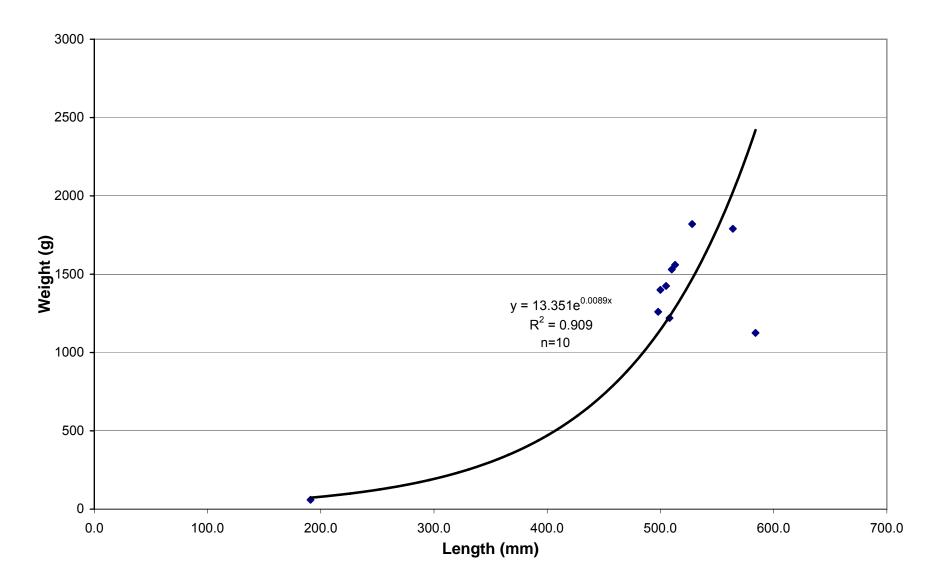
LENGTH-WEIGHT REGRESSION FOR NORTHERN PIKE IN BRIEN LAKE


Appendix F-6. Length-Weight Regression for Northern Pike in Brien Lake

Length, Weight, Age Summary of Northern Pike in Brien Lake

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Brien	Northern Pike	469.0	725	3	F	М	Shallow
	Northern Pike	491.0	710	4			Shallow
	Northern Pike	294.0	170	2			Shallow
	Northern Pike	290.0	155	2			Shallow
	Northern Pike	291.0	160	2			Shallow
	Northern Pike	165.0	40				Shallow

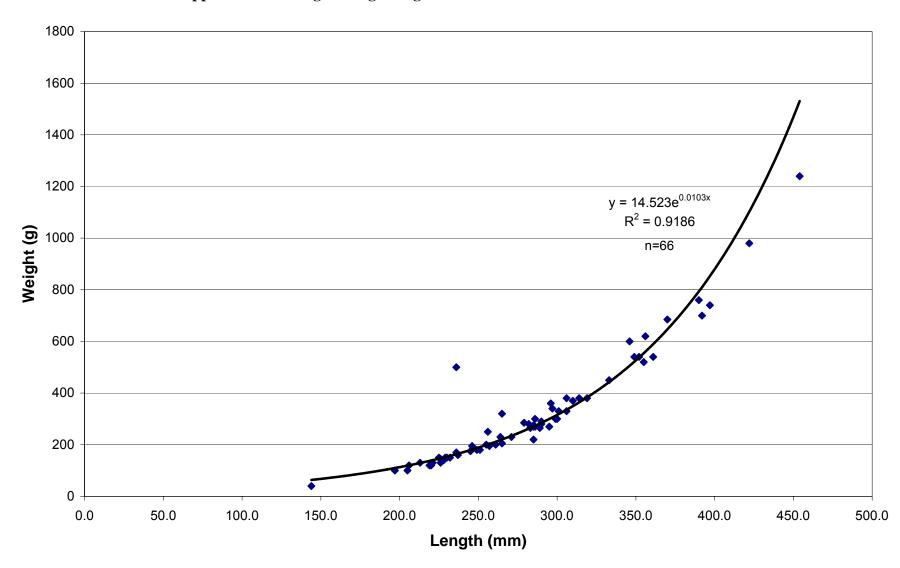
LENGTH-WEIGHT REGRESSION FOR LAKE TROUT IN ECLIPSE LAKE


Appendix F-7. Length-Weight Regression for Lake Trout in Eclipse Lake

Length, Weight, Age Summary of Lake Trout in Eclipse Lake

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Eclipse	Lake Trout	548.0	1800		М	М	Floating
	Lake Trout	566.0	1950		М	М	Floating
	Lake Trout	553.0	1550		М	М	Floating
	Lake Trout	556.0	1770	16	М	М	Floating
	Lake Trout	498.0	1050		М	М	Floating
	Lake Trout	755.0	6803	34	F	М	Deep
	Lake Trout	544.0	1425	14	М	М	Deep
	Lake Trout	545.0	1650	12	F	М	Deep
	Lake Trout	488.0	1225	10	F	М	Deep
	Lake Trout	447.0	920	9	F	М	Deep
	Lake Trout	295.0	250	7	М	IM	Deep

LENGTH-WEIGHT REGRESSION FOR LAKE TROUT IN NICHOLAS LAKE



Appendix F-8. Length-Weight Regression for Lake Trout in Nicholas Lake

Lakes	Species	Fork Length (mm)	Weight (g)	Age Sample	Sex	Maturity	Location
Nicholas	Lake Trout	508.0	1220		F	М	Floating
	Lake Trout	500.0	1400		F	М	Floating
	Lake Trout	564.0	1790		F	М	Floating
	Lake Trout	513.0	1560		М	М	Floating
	Lake Trout	528.0	1820	20	М	М	Deep
	Lake Trout	498.0	1260	16	Μ	М	Deep
	Lake Trout	505.0	1425	13	М	М	Deep
	Lake Trout	510.0	1530	24	F	М	Deep
	Lake Trout	191.0	60	3	Μ	IM	Deep
	Lake Trout	584.0	1125		F	М	Deep

LENGTH-WEIGHT REGRESSION FOR LAKE WHITEFISH IN NARROW LAKE

Appendix F-9. Length-Weight Regression for Lake Whitefish in Narrow Lake

Length, Weight, Age Summary of Lake Whitefish in Narrow Lake

Lakes	Species	Fork Length	Weight	Age	Sex	Maturity	Location
		(mm)	(g)	Sample			
Narrow	Whitefish	422.0	980		F	М	Floating
	Whitefish	352.0	540		М	М	Floating
	Whitefish	282.0	280		F	М	Floating
	Whitefish	286.0	300		Μ		Floating
	Whitefish	300.0	300		F	М	Floating
	Whitefish	264.0	230		F	М	Floating
	Whitefish	314.0	380		Μ	М	Floating
	Whitefish	226.0	145		Μ	М	Floating
	Whitefish	249.0	180		Μ	М	Floating
	Whitefish	246.0	195		F	М	Floating
	Whitefish	213.0	130		F	М	Floating
	Whitefish	220.0	120		Μ	M	Floating
	Whitefish	221.0	130		Μ	M	Floating
	Whitefish	255.0	200		Μ	М	Floating
	Whitefish	232.0	150				Floating
	Whitefish	236.0	500				Floating
	Whitefish	236.0	170				Floating
	Whitefish	230.0	150				Floating
	Whitefish	220.0	125				Floating
	Whitefish	454.0	1240	17	М	М	Sinking
	Whitefish	296.0	360	8	F	Μ	Sinking
	Whitefish	355.0	520	11	Μ	Μ	Sinking
	Whitefish	256.0	250	5		IM	Sinking
	Whitefish	392.0	700	11	Μ	М	Sinking
	Whitefish	225.0	150	3	Μ	Μ	Sinking
	Whitefish	299.0	300			IM	Sinking
	Whitefish	290.0	290		М	М	Sinking
	Whitefish	349.0	540		Μ	М	Sinking
	Whitefish	390.0	760		М	М	Sinking
	Whitefish	346.0	600		М	М	Sinking
	Whitefish	301.0	330		F	M	Sinking
	Whitefish	310.0	370		F	М	Sinking
	Whitefish	370.0	685		F	М	Sinking
	Whitefish	333.0	450		Μ	М	Sinking
	Whitefish	397.0	740		F	M	Sinking
	Whitefish	356.0	620		F	М	Sinking
	Whitefish	286.0	270		F	М	Sinking
	Whitefish	306.0	380		М	М	Sinking
	Whitefish	265.0	320		Μ	М	Sinking
	Whitefish	306.0	330		F	М	Sinking
	Whitefish	285.0	220		Μ	М	Sinking
	Whitefish	279.0	285		F	М	Sinking
	Whitefish	361.0	540		F	М	Sinking
	Whitefish	319.0	380		F	М	Sinking
	Whitefish	285.0	270		F	М	Sinking
	Whitefish	283.0	265		Μ	М	Sinking
	Whitefish	295.0	270		М	М	Sinking

Whitefish 271.0 Whitefish 257.0 Whitefish 297.0 Whitefish 290.0 Whitefish 290.0 Whitefish 285.0 Whitefish 285.0 Whitefish 265.0 Whitefish 265.0 Whitefish 245.0 Whitefish 237.0 Whitefish 261.0 Whitefish 261.0 Whitefish 205.0 Whitefish 205.0 Whitefish 205.0 Whitefish 205.0 Whitefish 219.0 Whitefish 219.0	230 195 340 280 275 180 265 205 175 150 160 200 100 140 120 100 130 120 40	M F M F M M M F	M M M M M M M M	Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking Sinking
---	--	--------------------------------------	--------------------------------------	--

APPENDIX G

ZOOPLANKTON LAB ANALYSIS AND SPECIES IDENTIFICATION DATA

Appendix G. Zooplankton Species List

Species/Group	Stage*	Comments
COELENTERATA		
Hydra		not counted-benthos
ROTIFERA		
Kellicottia longispina		
Keratella cochlearis		
Keratella quadrata		
Conochilus (colony)		
Asplanchna		
OLIGOCHAETA		
Enchytraeidae		not counted-benthos
Naïs		not counted-benthos
HIRUDINEA		not counted-benthos
EUBRANCHIOPODA		
Conchostraca		
Lyncaeus brachyurus		epibenthos-counted
CLADOCERA		
Daphnidae		
Ceriodaphnia dubia		
Daphnia longiremis	F	
Daphnia middendorffiana	F	
Daphnia rosea	М	
Daphnia rosea	F	
Bosminidae		
Bosmina longirostris	F	
Chydoridae		
Chydorus sphaericus	F	
Sididae		
Sida crystallina	F	
COPEPODA		
Calanoida	naup	
Diaptomidae		
Leptodiaptomus ashlandi	М	
Leptodiaptomus ashlandi	F	
Leptodiaptomus pribilofensis	М	
Leptodiaptomus pribilofensis	F	
Leptodiaptomus sicilis	М	
Leptodiaptomus sicilis	F	
Leptodiaptomus sp.	cop V	

Appendix G. Zooplankton Species List

Species/Group	Stage*	Comments
Leptodiaptomus sp.	cop I	
Heterocope septentrionalis	M	
Heterocope septentrionalis	F	
Heterocope septentrionalis	cop V	
Heterocope septentrionalis	cop IV	
Heterocope septentrionalis	cop III	
Heterocope septentrionalis	cop II	
Limnocalanus macrurus	М	
Limnocalanus macrurus	F	
Limnocalanus macrurus	cop V	
Limnocalanus macrurus	cop IV	
Limnocalanus macrurus	cop III	
Epischura nevadensis	М	
Epischura nevadensis	F	
<u>Cyclopoida</u>		
Cyclops bicuspidatus thomasi	М	
Cyclops bicuspidatus thomasi	F	
Cyclops scutifer	М	
Cyclops scutifer	F	
OSTRACODA		not counted-benthos
AMPHIPODA		
Hyalella azteca	А	epibenthos-counted
Anisogammarus sp.	А	epibenthos-counted
INSECTA		
Corixidae	N	epibenthos-counted
Gyrinus spp.	L	epibenthos-counted
Chaoborus spp.	L	epibenthos-counted
Chaoborus spp.	Р	epibenthos-counted
<u>* Abbreviations</u>		
A = adult		
cop = copepodite (juvenile cop	pepod)	
M = male		
F = female		
naup. = nauplius (larval copep	od)	
N = nymph		
L = larva		
P = pupa		

Location			Narro	ow Lak	æ			Bı	rien Lake]	Round Lake				Vinter Lak	xe			Ec	lipse Lak	e		Nic	cholas La	ake	
Replicate		1	2	3			1	2	3			1 2	5		1					1	2	3		1	2	3		
Sample Number		041207 04	1208 04	41209	Mean	%	041210	041211	041212 M	fean %	041	041214	041215 M	lean	% 041216	041217	041218	Mean	%	041219	041220	041221	Mean %	041222 04	41223	041224	Mean	%
Depth		1	1					10				1.5				6					23			1	9.67			
Volume		0	.8					0.73				0.11				0.44					1.68			1	1.44			
Comments											Hit bot	om Hit bottom	Hit bottom		Hit bottom	benthos	benthos											
Species/group	Stage																											
ROTIFERA																												
Kellicottia longispina		1850	1200	850	1300.00	10.13	1780	2360	2880 23	340.00 46.	65			0.00	0.00 300	1000	1670	990.00	28.33	3100	3900	3550	3516.67 61.19	150	380	560	363.33	19.16
Keratella cochlearis					0.00	0.00	10			3.33 0.	07	5	1	2.00	0.27	10	10	6.67	0.19				0.00 0.00				0.00	0.00
Keratella quadrata					0.00	0.00				0.00 0.	00	2	1	1.00	0.14			0.00	0.00				0.00 0.00				0.00	0.00
Conochilus sp.	colony	20	15	15	16.67	0.13					00	510 50		234.00	31.75	7	20	9.00	0.26	90	140	55					0.00	0.00
Asplanchna sp.					0.00	0.00				0.00 0.	00	25 33	64	40.67	5.52			0.00	0.00	30	40	40	36.67 0.64				0.00	0.00
EUBRANCHIOPODA														0.00				4.68										
Lyncaeus brachyurus	A				0.00	0.00				0.00 0.	00			0.00	0.00 2	2	1	1.67	0.05				0.00 0.00				0.00	0.00
CLADOCERA	F				0.00	0.00				0.00 0.	00			0.00	0.00			0.00	0.00	112	170	125	120.00 2.42				0.00	0.00
Holopedium gibberum Sida crystallina	F	40	60	40	0.00 46.67	0.00					00			0.00	0.00			0.00	0.00	112	170	135	139.00 2.42 0.00 0.00				0.00	0.00
Ceriodaphnia dubia	F	1	15	40	7.00	0.36					00		<u> </u>	0.00	0.00			0.00	0.00				0.00 0.00				0.00	0.00
Daphnia longiremis	F	1	1.5		0.00	0.00					00			0.00	0.00			0.00	0.00	12	5	7	8.00 0.14				0.00	0.00
Daphnia middendorffiana	F	2	5		2.33	0.02	250	200	150 2		99	95 110	58	87.67	11.90 2760	680	1240	1560.00	44.64			,	0.00 0.00	4	5	4	4.33	0.23
Daphnia rosea	M	300	1300	600	733.33	5.72				0.00 0.				0.00	0.00			0.00	0.00				0.00 0.00				0.00	0.00
Daphnia rosea	F	800	2050	1650	1500.00	11.69				0.00 0.	00			0.00	0.00			0.00	0.00				0.00 0.00				0.00	0.00
Bosmina longirostris	F	1400	3200	2150	2250.00	17.54				0.00 0.	00			0.00	0.00			0.00	0.00	31	160	230	140.33 2.44				0.00	0.00
Chydorus sphaericus	F		10	5	5.00	0.04					00			0.00	0.00			0.00	0.00				0.00 0.00				0.00	0.00
Polyphemus pediculus	F				0.00	0.00				0.00 0.	00	2		0.67	0.09			0.00	0.00				0.00 0.00				0.00	0.00
COPEPODA											_																	(
Calanoida					0.00	0.00	220	0.0	220 2	10.00	10	10 24		00.00	12.42 220		0.0	114 (7	2.20				0.00				0.00	0.00
Leptodiaptomus pribilofensis Leptodiaptomus pribilofensis	M				0.00	0.00	320	80			_	210 34 55 44		99.00 93.67	13.43 230 12.71 300			114.67 140.33	3.28				0.00 0.00				0.00	0.00
Leptodiaptomus pribilojensis	г М				0.00	0.00	300	170	210 2		92 00	33 44	62	0.00	0.00	41	80	0.00	0.00	1	5	7	4.33 0.08				0.00	0.00
Leptodiaptomus ashlandi	F				0.00	0.00					00			0.00	0.00			0.00	0.00	2	7	4	4.33 0.08				0.00	0.00
Leptodiaptomus sicilis	M				0.00	0.00					00			0.00	0.00			0.00	0.00	12	8	9	9.67 0.17				0.00	0.00
Leptodiaptomus sicilis	F				0.00	0.00					00			0.00	0.00			0.00	0.00	7	15	7	9.67 0.17				0.00	0.00
Leptodiaptomus sp.	V	450	950	700	700.00	5.46	660	560	610 6	510.00 12.		95 29	45	56.33	7.64 330	42	80	150.67	4.31	6	11	25					0.00	0.00
Leptodiaptomus sp.	IV	3200	6300 :	5150	4883.33	38.07	700	380	570 5	550.00 10.	97	25 14	22	20.33	2.76 300	38	160	166.00	4.75	300	880	720	633.33 11.02				0.00	0.00
Leptodiaptomus sp.	III		5		1.67	0.01	170	80			39	5 2	7	4.67	0.63 50	3	40	31.00	0.89	11	90	45	48.67 0.85				0.00	0.00
Leptodiaptomus sp.	II				0.00	0.00	340	160			45	30 12		18.00	2.44	1		0.33	0.01	10	50	25					0.00	0.00
Leptodiaptomus sp.	I				0.00	0.00	290	130			05	20 12	18	16.67	2.26 10		10	6.67	0.19	40	90	45	58.33 1.01				0.00	0.00
Heterocope septentrionalis	M				0.00	0.00	16	18			35			0.00	0.00 25		12	14.00	0.40				0.00 0.00	160	190	180	176.67	9.32
Heterocope septentrionalis	F				0.00	0.00	19	21	35		50		1	0.33	0.05 32	6	22	20.00	0.57				0.00 0.00	170	130	270	190.00	10.02
Heterocope septentrionalis Heterocope septentrionalis	V IV				0.00	0.00					00			0.00	0.00			0.00	0.00	1	2	2	0.00 0.00 2.00 0.03	1	50	130	60.33 0.00	3.18
Heterocope septentrionalis Heterocope septentrionalis	III				0.00	0.00					00			0.00	0.00			0.00	0.00	1	4	2	2.00 0.03				0.00	0.00
Heterocope septentrionalis	II				0.00	0.00					00			0.00	0.00			0.00	0.00	1		1	0.67 0.01				0.00	0.00
Limnocalanus macrurus	M				0.00	0.00	1			0.33 0.				0.00	0.00			0.00	0.00	42	70	40	50.67 0.88	350	390	710		25.49
Limnocalanus macrurus	F				0.00	0.00	1			0.33 0.				0.00	0.00			0.00	0.00	47	60	50	52.33 0.91	500	490	770		30.94
Limnocalanus macrurus	V				0.00	0.00				0.00 0.	00			0.00	0.00			0.00	0.00	44	49	55	49.33 0.86		2		1.00	
Limnocalanus macrurus	IV				0.00	0.00				0.00 0.	00			0.00	0.00			0.00	0.00	14	7	35					0.00	
Limnocalanus macrurus	III				0.00	0.00				0.00 0.				0.00	0.00			0.00	0.00	2	2	5	3.00 0.05				0.00	0.00
Epischura nevadensis	М			1	0.33	0.00				0.00 0.	_			0.00	0.00			0.00	0.00				0.00 0.00	1			0.33	
Epischura nevadensis	F	1	1	1	1.00	0.01					00	10		0.00	0.00		└───┤	0.00	0.00	1			0.33 0.01			2	0.67	0.04
Unidentified Calanoida	nauplius				0.00	0.00	250	20	120 1	30.00 2.	59	10 11	31	17.33	2.35 20	1	20	13.67	0.39	1	10	15	8.67 0.15				0.00	0.00
Cyclopoida Cyclopa historia datus thomasi	м				0.00	0.00				0.00	00			0.00	0.00			0.00	0.00		70	70	40.00 0.05					0.00
Cyclops bicuspidatus thomasi Cyclops bicuspidatus thomasi	M F				0.00	0.00				0.00 0. 0.00 0.	00		<u> </u>	0.00	0.00			0.00	0.00	7 62	70 100	70 100					0.00	0.00
Cyclops bicuspidatus thomasi Cyclops scutifer	F M		5		1.67	0.00				0.00 0.				0.00	0.00		+ +	0.00	0.00	62	4						0.00	
Cyclops scutifer Cyclops scutifer	F	7	20	7	11.33	0.01	41	49	68		00	1		0.00	0.00			0.00	0.00	4	4	35			3	6	4.67	
Cyclops sp.	copepodite			1650	1366.67	10.65	70			53.33 1.		20 8	4	10.67	1.45 70	14	80	54.67	1.56	460	900	595			2	70		
AMPHIPODA						- 5.00	, 5								///			2			200	0,0						1.50
Hyalella azteca	A				0.00	0.00				0.00 0.	00	1		0.33	0.05			0.00	0.00				0.00 0.00				0.00	0.00
Anisogammarus sp.	Α				0.00	0.00				0.00 0.		1		0.33	0.05		1	0.33	0.01				0.00 0.00				0.00	
INSECTA					0.00	0.00				0.00 0.	00			0.00	0.00 2	1		1.00	0.03				0.00 0.00				0.00	
INSECTA Corixidae	N																										·	
Corixidae <i>Gyrinus</i> spp.	N L				0.00	0.00					00			0.00	0.00 2			1.00	0.03				0.00 0.00				0.00	0.00
Corixidae Gyrinus spp. Chaoborus spp.	L L				0.00 0.00	0.00	38	19	32	29.67 0.	59	40 20	39	33.00	4.48 530	39	68	212.33	6.08				0.00 0.00				0.00	0.00
Corixidae <i>Gyrinus</i> spp.	L				0.00		38	19 1	32		59	40 20	39			39	68											0.00
Corixidae Gyrinus spp. Chaoborus spp.	L L	8971 1	6686 12		0.00 0.00	0.00	38	19 1 4248	32 5483 50	29.67 0. 0.33 0.	59 01	40 20		33.00	4.48 530	39		212.33 0.67	6.08	4455	6859		0.00 0.00		1/12		0.00	0.00

APPENDIX H

BENTHIC INVERTEBRATE LAB ANALYSIS AND SPECIES IDENTIFICATION DATA

Appendix H. Benthic Invertebrates Taxanomic Analysis

Lake	Brien Lake	Deep Brier	Lake S	hallow Narro	w Lake Deep Narro	w Lake S	Shallow V	Vinter Lake	Deep V	Vinter Lak	e Shallow	Round I	ake Deep	Round Lake	Shallow	Eclipse La	ake Outlet	Eclipse Lake	Inlet Wint	er Lake Out	let Winte	r Lake In	let Eclips	e Lake Shallo	w Eclips	se Lake Deep	Nichola	s Lake Deep Nicho	las Lake Shallow
Sample Number	1/3 2/3	3/3 1/3	2/3	3/3 1/3	2/3 3/3 1/3	2/3 3		/3 2/3		/3 2/3	3/3	1/3 2	/3 3/3	1/3 2/3	3/3	1/3 2/3	3/3	1/3 2/3	3/3 1/3	2/3 3/3	3 1/3	2/3 3	/3 1/3	2/3 3/3	1/3	2/3 3/3	1/3 2	2/3 3/3 1/3	2/3 3/3
Sample Depth	9 9							6 6		1		1.3		1 1									1			0 10 10			1
Ephemeroptera																													
Ameletus sp										1			1 1																
Baetis sp				1									1				1		1	1	1						3	1 1	
Caenis sp							1					6	4 6	1 2	1														
Tricorythodes sp				1																									1
Plecoptera																													
Capnia sp								1																					
Podmosta																					1	4							
Odonata																													
Aeshna multicolor												2	1																
Cordulia sp																												1	
Enallagma boreale																					1								
Trichoptera P																												1	
Clostoeca sp																1	1 1				1								
Molanna sp															1														
Mystacides sp														1			2	1	1										1
Coleoptera																													
Gyrinus sp L								1													1								
Hydaticus sp L				1																	1								
Diptera Unid L																					1	1							
Ceratopogonidae			1						1 1												1								
Bezzia sp					1 1	1		1		3	1 1							1	2	1	2		1		3			2	4
Mallochohelia sp			1	2																	1		4					2	
Chaoborinae																													
Chaoborus sp	1																												
Chironomidae																													
Chironomidae Pupae				1						1	2 3	5	3 5		1		1				1 1		1	2		1		1	3
Chironomidae Unid Larvae J/D			2 1		1				1	4	2 4	7	4 23	6 4		15	5 6	1	1	1 2	2 2	2	1	3	1	1 2	2	2 1	14 1
Cardiocladius sp																											2	1 1	1
Chironomus sp	7	8 5		1 1	1			24 12	2 2	13	7 5	8	1 5	5 5	4														
Corynoneura sp																					1 4	4							
Cricotopus sp		1																2	1	1	3		3		2	3	2	3 1	4
Cryptochironomus sp			1									2																	
Dicrotendipes sp												5	3 7	3 4	1			1	1	4 3	4 2	2	1						
Euryhapsis sp												-																2	
Glyptotendipes sp																					1								
Heterotrissocladius sp																44	38 65												
Micropsectra sp					1		1									382 3			1	1 13	21		2	2	2	1	1	3	3
Microtendipes sp																	1				9								
Monodiamesa sp																											1		
Pagastiella sp				2																					1			1	
Paracladius sp																										1			
Phaenopsectra sp																14	15 21			4 2	4					1		4	
Polypedilum (Pentapedilum) sp	1	1 1					1													1									
Polypedilum (Polypedilum) sp		3 3	2 2		2	2	3										1												
Procladius sp	1	4	1 2	4		1					2	4	9 1	2 8	9	8				2	1	1		2	1	2	1	2 3	2
Psectrocladius sp					1															3	2								
Rheotanytarsus sp																		1		3	2		1	1			1		
Stempelinella sp											1 1						1 5			1	1								
Tanytarsus sp			3 2	9		2	1	11 6	3 4	13 1	12 18	28	10 45	7 5	3						4	7							
Thienemanniella sp			1 -			<u> </u> -		`	1 1													<u> </u>			1				
Thienemannimyia sp						1	1	1		1	1 1	4	3 4			15	9 25	2 1	1	3	2	1	2						2
Culicidae A						1 1			1 1		1 1					1					1								
Simulidae			1			1 1			1 1												1								
Simulium sp																	2		1	1	2	1							
· · · · · · · · · · · · · · · · · · ·																					1								
Hemiptera																					1								
Corixidae Unid J												1	1								1								
																			l i		1								
Homoptera Unid (terr)																													
Aphididae																					1				1	1			
			1	1																									
Arachnida			-											1 1					1 1	1 1									
Arachnida Aranaea					1													2											
					1							_	1					2							1				
Aranaea Hydracarina Unid J/D													1					2		1					1				
Aranaea Hydracarina Unid J/D Arrenurus sp													1				1	2		1					1				
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp													1				1	2		1					1				
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp													1				1	2		1					1				
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr)													1				1	2		1					1				
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda													1				1	2		1	1				1				
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris			1 7			22	26			2	6 5	8	16 6	16 29	17	7	4 2	2		1 3 7 8	1 1		26	15	23 73	3 61 26	77	77 33 9	17 1
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris			1 7			22	26			2	6 5	8	16 6	16 29	17	7	4 2	2		1 3 7 8	9		26	15	23 73	3 61 26	77	77 33 9	17 1
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris			1 7			22	26			2	6 5	8	16 6	16 29	17	7	4 2	2		1 3 7 8	9		26	15	23 73	3 61 20	77	77 33 9	17 1
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca			1 7			22	26	3		2	6 5	8	16 6	16 29	17	7	4 2	2		7 8	1 9		26	15	23 73	3 61 20	77	77 33 9	17 1
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca			1 7			22	26	3 2		2	6 5	8	16 6	16 29	17	7	4 2	2		7 8	9		26	15	23 73	3 61 20	77	77 33 9	
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca Lynceus brachyurus						22	26	3 2		2	6 5	8	16 6	16 29	17	7	4 2	2		7 8	9		26	15	23 73	3 61 26	77	77 33 9	
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatei (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca Lynceus brachyurus Copepoda	5					22	26	3 2		2	6 5	8	16 6	16 29	17	7	4 2	2		1 3 7 8	9		26	15	23 73			77 33 9	
Aranaea Hydracarina Unid J/D Arrenurus sp Oribatei (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca Lynceus brachyurus Copepoda Calanoida	5		1 7				26	3 2		2	6 5	8	16 6		17	7	4 2	2		7 8	9		26	15	23 73	3 61 20			
Aranaea Hydracarina Unid J/D Arrenurus sp Sperchon sp Oribatel (terr) Amphipoda Gammarus lacustris Hyalella azteca Conchostraca Lynceus brachyurus	5	1 3					26	3 2		2	6 5	8	16 6		17	7	4 2	2		7 8	9 1		26	15	23 73				1

ake	Brien	Lake De	ep Brier	n Lake Shallo	w Nari	row Lake De	eep Nar	row Lake Sh	allow Wint	er Lake Deep	Winter Lak	e Shallow	Round Lake	Deep Rour	d Lake Shallow	Eclipse Lake	e Outlet Ecli	pse Lake Inlet	Winter Lake	e Outlet	Winter Lake	Inlet E	clipse Lake	Shallow	Eclipse La	ake Deep	Nichola	is Lake Deep	Nicholas	s Lake Shall
ample Number	1/3	2/3	3/3 1/3	2/3 3/3	1/3	2/3 3/	3 1/3	2/3 3/3	3 1/3	2/3 3/3	1/3 2/3	3/3	1/3 2/3	3/3 1/3	2/3 3/3	1/3 2/3	3/3 1/3	2/3 3/3	1/3 2/3	3/3	1/3 2/3	3/3 1/	/3 2/3	3/3 1	/3 2/3	3/3	1/3	2/3 3/3	1/3 2/3	3 3/3
																													+	
Cladocera																													+	
ona sp				+ +				1				_					2												+ +	
riodaphnia sp								2	1						1					-			3						+	1
phnia sp	1	1	3				1	6	2	1		-	1							-									+	-
rycercus (Bullatifrons) sp		- 1		+ +		+ +				+ '						+ +	2			_	+ +								++-	
												-													2		2			
opedium gibberum												_								_					2		3		+	
cryptus sordidus									0		1	-								_							_		+	
la crystalina				+ +				1	2		1	_			1				_	_							_		+	
																											_			
sopoda						_														_										
rcellio sp (terr)																_				_	1									
	_											_																		
Mysidaceae, dam												_													1	2		1		
Ostracoda																														
ndona sp										3				1		10 7	7 15	1 1	4		7 9	9								1
oria sp																4	2		1		1 2	2								
irudinea Unid J																				1										
obdella stagnalis								1			2						1		2 2	8	9									
siphonia complanata																														
Dligochaeta																														
chytraeidae									2		5	2	2															1	+ +	
Imbriculidae											-	-																	+	
nbriculus variegatus				2				1 1	1		2				1	1			1		1 5		1 1	1			2		+	
aididae				-				· ·				_				<u> </u>				_			·						+	
aetogaster sp									1			_					1			_								1	+	
is sp				+ +	1			1 1	2		1	_	1				·			-									+	
istina forelli				+ +		+ +		1 1					<u>' </u>			+ +	+ + +			_	2								++-	
vinia appendiculata								4	2			-									2						_			
								4	2			_								4			4				_		+	
cinais uncinata	-			+ +				_ <u> </u>		+ +	+ $+$		+		+ +	4 2				1	+ +	+							\rightarrow	
jdovskeyella comata		\vdash		+ +		+ +		<u> </u>		+ +	+ +		+ +			4	+ +	+ +			+ +	+ $+$				4			+	
ıbificidae Unid j	_	$ \rightarrow $		+ +		_ _				+			+ +		<u>↓ </u>		├ ──			_	+ +	+		├	-1	1		2	_ _	
N	_	$ \rightarrow $		+ +						+	+ +		+ +		↓ ↓ ↓		↓												_ _	
Bivalvia	_											-								_		+								
dium sp	5	15	13	2	3	1 11	18	6 8	6		2	3	3 6 27		4	4 5 8	3 28	11 3	5 9 1	/ 4	8	+	2 2		26	27	8 38	43 1	12 2	4
haerium sp	_			2							4	2	5 2 30	26	2 3	2 4	4 6	1	1	2	3							1		
	_											_																		
Bastropoda																														
niger crista																					2									
osoma trivolvis													1						2	3	6									
nnaea stagnalis																1														
/sella gyrina																		1												
vata sincera				1	1			4 1	1		1	1	1	1		1	1	2 3	1 6	5 2	1		3	1					2	1
																							-							
lematoda				1				1		1	3	1	3			1	1 1	1 2		2	1				3		4		3	1
				<u>- 1</u>								-11	- 1	<u> </u>	<u> </u>		1 11	-1 -1		=	<u>- 1</u>	1			~					

All inlet, outlets and inshore samples taken with Ekman sampler; approximate a All offshore samples taken with Ponar sampler; approximate area of 0.023 m².

APPENDIX I

METALS IN FISH TISSUES LAB ANALYSIS DATA

CHEMICAL ANALYSIS REPORT

Date: September 28, 2004

ALS File No. U7721

ALS Environmental

Report On: 1740082.005 Tissue Analysis

- Report To: EBA Engineering Consultants Ltd. Fifth Floor, Suite 500 1100 Melville Street Vancouver, BC V6E 4A6
- Attention: Mr. Richard Couture

Received: September 3, 2004

ALS ENVIRONMENTAL per:

latarafladure fl.

Natasha Markovic-Mirovic, B.Sc. - Project Chemist Scott P. Hoekstra, B.Sc. - Project Chemist

Sample ID Sample Date		Eclipse LT1 Mus/Liv 04-07-25	Eclipse LT2 Mus/Liv 04-07-25	Eclipse LT3 Mus/Liv 04-07-25	Eclipse LT4 Mus/Liv 04-07-25	Eclipse LT5 Mus/Liv 04-07-25
ALS ID		1	2	3	4	5
Physical Test Moisture	<u>s</u> %	76.3	80.5	79.6	79.4	79.4
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	2.02 0.0169 <0.10 0.876 0.118	0.406 0.0312 <0.10 6.30 <0.020	0.279 0.0217 <0.10 9.26 <0.020	0.390 0.0077 <0.10 1.71 <0.020	0.436 0.0124 <0.10 3.24 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	4.09 0.085 1.20 <0.0060 12.0	0.375 0.119 0.67 0.0312 18.7	0.250 0.116 0.44 0.0565 12.5	0.292 0.065 0.40 0.0130 9.90	0.186 0.063 0.52 0.0161 11.6

Sample ID Sample Date <i>ALS ID</i>		Eclipse WF9 Mus/Liv 04-07-25 <i>6</i>	Eclipse WF10 Mus/Liv 04-07-25 7	Eclipse WF11 Mus/Liv 04-07-25 <i>8</i>	Eclipse WF12 Mus/Liv 04-07-25 <i>9</i>	Eclipse WF13 Mus/Liv 04-07-25 <i>10</i>
Physical Test Moisture	<u>s</u> %	78.8	80.1	76.7	79.0	78.6
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.427 0.0099 <0.10 3.14 <0.020	0.827 0.0085 <0.10 1.05 <0.020	0.731 0.0113 <0.10 3.32 <0.020	0.811 0.0085 <0.10 2.29 <0.020	1.16 <0.0060 <0.10 1.59 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.134 0.121 0.69 0.0194 14.6	0.0810 0.086 0.54 <0.0060 10.9	0.103 0.061 0.67 0.0125 18.8	0.0889 0.065 0.56 <0.0060 13.9	0.0949 0.116 0.47 0.0063 10.4

Sample ID		Eclipse NP3	Eclipse NP5	Eclipse NP8	Eclipse C5 Whole	Nicholas LT1
Sample Date ALS ID		Mus/Liv 04-07-25 <i>11</i>	Mus/Liv 04-07-25 <i>12</i>	Mus/Liv 04-07-25 <i>13</i>	Fish 04-07-25 <i>14</i>	Mus/Liv 04-07-29 <i>15</i>
Physical Test	S		· · · • • · ·			······
Moisture	%	78.0	80.1	79.1	81.3	77.9
Total Metals						
Arsenic	T-As	0.673	1.24	0.337	0.218	0.449
Cadmium	T-Cd T-Cr	0.0130	0.0324	0.0102	0.0071	0.0398
Chromium Copper	T-Cu	<0.10 8.75	<0.10 7.95	<0.10 5.11	<0.10 0.631	<0.10 6,57
Lead	T-Pb	<0.020	<0.020	<0.020	0.026	<0.020
Mercury	T-Hg	0.568	0.747	0.216	0.0630	0.352
Nickel	T-Ni	0.069	0.125	0.096	0.030	0.287
Selenium Silver	T-Se T-Aq	0.67 0.0840	0.45 0.109	0.64 0.0398	0.29 <0.0060	0.82 0.0506
Zinc	T-Zn	20.1	15.4	21.7	<0.0000 50.2	16.5
					0012	10.0

Sample ID Sample Date <i>ALS ID</i>		Nicholas LT2 Mus/Liv 04-07-29 <i>16</i>	Nicholas LT3 Mus/Liv 04-07-29 <i>17</i>	Nicholas LT4 Mus/Liv 04-07-29 18	Nicholas LT5 Mus/Liv 04-07-29 <i>19</i>	Nicholas NP2 Mus/Liv 04-07-29 <i>20</i>
Physical Test Moisture	<u>s</u> %	77.6	78.1	76.5	80.9	79.6
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.271 0.165 <0.10 12.1 <0.020	0.465 0.0364 <0.10 5.73 <0.020	0.440 0.0262 <0.10 4.97 <0.020	0.473 0.0074 <0.10 1.36 <0.020	0.354 0.0297 <0.10 33.5 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.255 0.117 1.16 0.0834 18.0	0.344 0.118 1.40 0.0407 18.7	0.262 0.276 0.53 0.0620 14.5	0.138 0.107 0.27 0.0118 9.81	0.445 0.084 0.84 0.319 25.7

Sample ID Sample Date <i>ALS ID</i>		Nicholas NP3 Mus/Liv 04-07-29 <i>21</i>	Nicholas NP4 Mus/Llv 04-07-29 <i>22</i>	Nicholas NP5 Mus/Liv 04-07-29 <i>23</i>	Nicholas NP6 Mus/Liv 04-07-29 <i>24</i>	Brien NP1 Mus/Liv 04-07-30 <i>25</i>
Physical Test Moisture	<u>s</u> %	78.6	79.2	78.4	79.2	79.5
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.217 0.0192 <0.10 10.5 <0.020	0.308 0.0180 <0.10 9.54 <0.020	0.365 0.0082 <0.10 21.6 <0.020	0.350 0.0280 <0.10 14.1 <0.020	0.115 0.0132 <0.10 54.3 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.248 0.126 0.64 0.113 26.1	0.305 0.300 0.60 0.101 20.5	0.308 0.271 0.78 0.239 23.2	0.354 0.824 0.60 0.198 21.7	0.272 0.139 0.57 0.214 38.8

Sample ID		Brien NP2 Mus/Liv	Brien NP3 Mus/Liv	Brien NP4 Mus/Liv	Brien NP5 Mus/Liv	Narrow WF-4 Mus/Liv
Sample Date ALS ID		04-07-30 <i>26</i>	04-07-30 <i>27</i>	04-07-30 28	04-07-30 <i>29</i>	04-08-01 <i>30</i>
Physical Test	S					· · · · · · · · · · · · · · · · · · ·
Moisture	~ %	81.3	75.6	80.5	80.3	78.7
Total Metals						
Arsenic	T-As	0.162	0.152	0.213	0.161	0.265
Cadmium Chromium	T-Cd T-Cr	0.0085 <0.10	0.0078 <0.10	<0.0060 <0.10	0.0064 <0.10	<0.0060 <0.10
Copper	T-Cu	13.4	15.7	3.29	15.0	1.69
Lead	T-Pb	<0.020	<0.020	<0.020	<0.020	<0.020
Mercury	T-Hg	0.367	0.166	0.201	0.160	0.300
Nickel	T-NI	0.137	0.176	0.098	0.151	0.141
Selenium Silver	T-Se T-Ag	0.35 0.128	0.29 0.103	<0.20 0.0288	0.29 0.107	0.47 0.0060
Zinc	T-Zn	29.9	11.9	8.94	16.0	10.7

Sample ID Sample Date <i>ALS ID</i>		Narrow WF-5 Mus/Liv 04-08-01 <i>31</i>	Narrow WF-6 Mus/Liv 04-08-01 <i>32</i>	Narrow WF-7 Mus/Liv 04-08-01 <i>33</i>	Narrow WF-8 Mus/Liv 04-08-01 <i>34</i>	Narrow NP1 - SH Mus/Liv 04-08-01 <i>35</i>
Physical Test Moisture	<u>s</u> %	78.9	81.1	80.8	80.5	75.8
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.164 <0.0060 <0.10 1.17 <0.020	0.226 <0.0060 <0.10 0.959 <0.020	0.193 <0.0060 <0.10 0.688 <0.020	0.215 <0.0060 <0.10 2.26 <0.020	0.230 <0.0060 <0.10 3.04 <0.020
Mercury Nickel Seleníum Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.197 0.131 0.26 <0.0060 10.0	0.234 0.265 <0.20 0.0066 8.92	0.253 0.304 <0.20 <0.0060 9.56	0.439 0.229 0.38 0.0098 10.3	0.804 0.041 0.50 0.0161 19.4

Sample ID Sample Date ALS ID		Narrow NP2 - DP Mus/Liv 04-08-01 <i>36</i>	Narrow NP2 - SH Mus/Liv 04-08-01 <i>37</i>	Narrow NP3 - DP Mus/Liv 04-08-01 <i>38</i>	Narrow NP1 - DP Mus/Liv 04-08-01 <i>39</i>
Physical Test Moisture	<u>s</u> %	79.0	78.8	75.2	81.1
Total Metals Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.152 <0.0060 <0.10 5.13 <0.020	0.089 <0.0060 <0.10 4.82 <0.020	0.172 0.0152 <0.10 6.33 <0.020	0.178 0.0376 <0.10 4.47 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.965 0.067 0.48 0.0271 23.8	0.290 0.088 0.27 0.0141 13.1	0.967 0.114 0.86 0.0261 46.8	1.32 0.253 0.63 0.0357 47.4

File No. U7721 Appendix 1 - QUALITY CONTROL - Replicates

Tissue		Eclipse LT1 Mus/Liv 04-07-25	Eclipse LT1 Mus/Liv QC # 404454	Eclipse C5 Whole Fish 04-07-25	Eclipse C5 Whole Fish QC # 404455
<u>Total Metals</u> Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	2.02 0.0169 <0.10 0.876 0.118	1.85 0.0224 <0.10 0.951 <0.020	0.218 0.0071 <0.10 0.631 0.026	0.212 0.0081 <0.10 0.635 0.026
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	4.09 0.085 1.20 <0.0060 12.0	3.98 0.085 1.42 <0.0060 14.6	0.0630 0.030 0.29 <0.0060 50.2	0.0643 0.038 0.29 <0.0060 48.9

File No. U7721 Appendix 1 - QUALITY CONTROL - Replicates

Tissue		Brien NP3 Mus/Liv 04-07-30	Brien NP3 Mus/Liv QC # 404456	Narrow NP1 - SH Mus/Liv 04-08-01	Narrow NP1 - SH Mus/Liv QC # 404457
Total Metals Arsenic Cadmium Chromium Copper Lead	T-As T-Cd T-Cr T-Cu T-Pb	0.152 0.0078 <0.10 15.7 <0.020	0.149 0.0064 <0.10 13.5 <0.020	0.230 <0.0060 <0.10 3.04 <0.020	0.237 <0.0060 <0.10 3.21 <0.020
Mercury Nickel Selenium Silver Zinc	T-Hg T-Ni T-Se T-Ag T-Zn	0.166 0.176 0.29 0.103 11.9	0.187 0.176 0.26 0.0796 11.8	0.804 0.041 0.50 0.0161 19.4	0.754 0.045 0.55 0.0158 20.6

File No. U7721 Appendix 2 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows

Moisture in Tissue

This analysis is carried out gravimetrically by drying the sample at 103 C for a minimum of six hours.

Recommended Holding Time: Sample: 14 days Reference: Puget For more detail see ALS Environmental "Collection & Sampling Guide"

Metals in Vegetation and Animal Tissue

This analysis is carried out using procedures adapted from "Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment, and Tissue Samples" prepared for the United States Environmental Protection Agency and the Puget Sound Water Quality Authority, 1995. Tissue samples are homogenized either mechanically or manually prior to digestion. The hotplate digestion involves the use of nitric acid followed by repeated additions of hydrogen peroxide. Instrumental analysis is by atomic absorption spectrophotometry (EPA Method 7000 series), inductively coupled plasma - mass spectrometry (EPA Method 6020), and/or inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

Recommended Holding Time: Sample/Extract: 2 years (Mercury = 28 days) Reference: Puget For more detail see ALS Environmental "Collection & Sampling Guide"

Results contained within this report relate only to the samples as submitted.

This Chemical Analysis Report shall only be reproduced in full, except with the written approval of ALS Environmental.

End of Report

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM	ANALYSIS REQUESTED	PAGE OF
CLIENT F.BA Engineering Consultants Lto		
DOCTAL .	LS ironmental in a state	
CONTACT (LAVIS Zamana, SAMPLER: Chris Zamara 1988 Triu		
Vancouver, BC (Canada V5L 1K5 88, 1-800-665-0243	
PROJECT NAME/NO .: Tyhee Gold 1740082.005 FAX: 604	4-253-6700	
#2-21 High	nfield Circle SE S A A A A A A A A A A A A A A A A A	·
DATE A TEL: 403-214-543	31 1-866-722-6231	
	3-214-5430	
		NOTES
SAWPLE IDENTIFICATION Y M D		NUIES
- Eclipse LTI muscle / Liver tissue 0407 25 _:_		
Eclipse LTZ musch/Live trians " " _:_	PM	
Relipse LT3 muscl / Liver tisse " :-	AM AM	
Eclipse LTM nuesce/Liver tissue / / / _:_	PM	
Eclipse LTS musch/Liver tissue / _:_ - Eclipse WE9 musch/Liver tissue / _:_ Eclipse WE10 musch/Liver tissue / _:_	AM	
- Eclips WE9 nusch / Liver has as [] :_	AM	
Eclipse NF.10 muscl/Live his u	AM PM	
	AM PM	
Eclips WF12 musch/Liver Rison _:_	AM PM	
BY Eclips WF12 musch/Live has Eclips WF12 musch/Live has	AM	
-Kelipse NP3 model/Live Lisse 111 :	AM	
Eclipso NPS muscl / Live tissu	AM	
Ellisse NPP musch / Live Jusice / _:_	AM V V V V	
Erlips CS whole fish train 4 4 2 .:	AM 2	
	AM PM	
	RELINQUISHED BY: DATE RECEIVED BY:	
□ ROUTINE (7 - 10 WORKING DAYS)		TIME
RUSH (SPECIFY DATE): (SURCHARGES MAY APPLY)	RELINQUISHED BY: DATE RECEIVED BY:	DATE
SPECIAL INSTRUCTIONS (BILLING DETAILS, QC REPORTING, ETC.):	TIME	TIME
	FOR LAB USE ONLY	
	COOLER SEAL INTACT SAMPLE TEMPERATURE	REPORT COPY
	UPON RECEIPT? UPON RECEIPT: 5_°C	SEE WHITE PAPER CO, FOF SOURCE VERSION OF
		NO SOURCE VERSION 06 GLF TSSP02.04.03

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM	PAGE OF
CLIENT: <u>ETEA Engineering Consultants htd.</u> ADDRESS: <u>4376 Baban Driv</u>	
ADDRESS: <u>A 5 T6 Baban Drum</u> CITY: <u>Nanamis</u> <u>PROV: BC</u> <u>POSTAL VAT 6A7</u> CONTACT: <u>Chrix Famura</u> <u>SAMPLER: Chris Famura</u> TELEPHONE: <u>(250) 756-2256</u> <u>FAX: (250) 756-2656</u> PROJECT NAME/NO: <u>Tyher</u> <u>Gold</u> 174(0082.005) (ALS) ALS Environmental 1988 Triumph Street Vancouver, BC Canada V5L 1K5 TEL: 604-253-4188, 1-800-665-0243 FAX: 604-253-6700	
TELEPHONE: (250) 756-2256 FAX: (250) 756-2666 TEL: 604-253-4188, 1-800-665-0243	
CONTACT: Other Contact: SAMPLER: Other's Contact 1900 Indition Street TELEPHONE: (250) 756-2256 FAX: (250) 756-2666 Vancouver, BC Canada V51 1K5 TELEPHONE: (250) 756-2666 T56-2666 Vancouver, BC Canada V51 1K5 PROJECT NAME/NO.: Type: (310) 1740082.005 FAX: 604-253-6700	
P.O. NO.: COUTE NO.: _ALSCROPT_OF CALGARY, AB Canada T2G 5N6 DATE ALS ALS TEL: 403-214-5431, 1-866-722-6231 FAX: 403-214-5430 FAX: 403-214-540 FAX: 400-214-540 FAX: 400-21	
SAMPLE IDENTIFICATION DATE / TIME COLLECTED MATRIX	NOTES
Nicholas ITI nussels/Liver 04 0729 AM	
Nicholas LTZ nursele/Liver 111 _:MM 1111	
Nicholas L+3 nusch / Liver PM	
Nicholas LT4 muscle/Liver _:AM	
Nicholas LTS whole fishPM Nicholas NPZ nusce / LiveAM Nicholas NP3 misce / LiveAM Nicholas NP3 misce / LiveAM Nicholas NP3 musce / LiveAM Nicholas NP5 musce / LiveAM Nicholas NP5 musce / LiveAM Nicholas NP5 musce / LiveAM	
2 Nicholas NP3 misch/inver _:M	
Nicholan NP4 muscle / Line AM	
Nicholas NP5 musch/Liver PM	
B Nichola NP6 musce/ Live VVV _:_ AM	
Brew NIS Muscle Java PM	DATE
TURN AROUND REQUIRED: DATE RECEIVED BY: DATE TIME	TIME
	i DATE
Image: Rush (specify date):	TIME
FOR LAB USE ONLY	REPORT COPY
	NO SEE WHITE PAPER CO. FOR SOURCE VERSION OG GLP TSSP02.04.03

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM	Λ			AN	ALY	SIS	REC	UESTE	D			PAGE	OF
CLIENT: EBA Engineering Consultants Ltd ADDRESS: 4376 Buhan Drive CITY: Nanamo PROV. BL POSTAL V9T 6A7			ental	the co									a ²
CONTACT: (<u>Kris Zametre</u> SAMPLER: <u>Chris Zametre</u> TELEPHONE: (250) 756-2256 FAX: (250) 756-2656 PROJECT NAME/NO.: <u>Tyhee</u> Gold 1740092.005 P.O. NO.: <u>QUOTE NO.: ALSE YQO4-156</u>	TE	1988 Triumph Stree Vancouver, BC Canada V EL: 604-253-4188, 1-800- FAX: 604-253-6700 . #2 - 21 Highfield Circle Calgary, AB Canada T2 EL: 403-214-5431, 1-866-	/5L 1K5 665-0243 / SE G 5N6	Total Maple analysis	se Oriveding	~~	- N -						
DATE SUBMITTED: August 24/2004 ALS CONTACT: Natasha M.		FAX: 403-214-5430		0 ke	Sample	2ad	U.S.						
	DATE / T	www.alsenviro.con	MATRIX	1									NOTES
	MD												NOTES
	580	AM .			-								
Narme WF-5 Musil mly Narme WF-6 musil only		PM AM			-		•#					н. Э.Т	
Narrow NF-6 muscle only Narrow NF-7 muscle only		PM AM			~	میں	-						
Narrow WF-2 Muscle / Liver		PM				p.4							
		AM				~	-						
Narray NAI muscl/Liver SH		AM		-									
B Narme NPZ nusce/Line DA		AM		-		~	~						
A Narme NP2 Muscelliner Still		AM		-			~						
6 Narrow NP 3 musch/Liver DP	11	AM			r	۰- ۱	-1						
Narmi NP / nusce/Liver DP 1	1 1	AM		-	~	, vere							
		AM PM											
		AM							1				
		AM											
		AM PM											
		AM PM											
TURN AROUND REQUIRED:			RELINQU	ISHED	BY:		DATE		REC	EIVED BY:	<u>~</u>	DATE	<u>) (</u> ; ; ;
ROUTINE (7 - 10 WORKING DAYS)						F	TIME				- M	TIME	
RUSH (SPECIFY DATE): (SURCHARGES MAY APPL	.Y)	· · · ·	RELINQU	ISHED	BY:		DATE		REC	EIVED BY:		DATE	
SPECIAL INSTRUCTIONS (BILLING DETAILS, QC REPORTING, ETC.):							TIME						
			COOLE					SAMPLE		RATURE	-	REP	ORT COPY
				RECE	IPT?		·	UPON F	ECEIPT:	°C	5	SEE	E WHITE PAPER CO. FOR SOURCE VERSION 08 GLP TSSP02.04.03

 \mathbf{N}_{i}

APPENDIX J

LAKE SEDIMENT LAB ANALYSIS DATA

ALS Environmental

CHEMICAL ANALYSIS REPORT

- Date: September 28, 2004
- ALS File No. U7776
- Report On: 1740082.005 Soil Analysis
- Report To: EBA Engineering Consultants Ltd. Fifth Floor, Suite 500 1100 Melville Street Vancouver, BC V6E 4A6
- Attention: Mr. Richard Couture
- Received: September 3, 2004

ALS ENVIRONMENTAL per:

atamplestarce fr.

Natasha Markovic-Mirovic, B.Sc. - Project Chemist Scott P. Hoekstra, B.Sc. - Project Chemist

File No. U7776 **REMARKS**

Please note that Nutrients and Particle Size analyses have been sub-contracted to Pacific Soil Analytical in Richmond. Pacific Soil Analysis report is attached at the back of this report.

Sample ID			Round Lake	Winter Lake	Eclipse Lake	Nicholas Lake	Brien Lake
ALS ID			1	2	3	4	5
Physical Test Moisture pH	<u>s</u> %		93.4 8.04	93.0 7.51	68.7 7.02	91.7 6.60	92.9 6.51
<u>Nutrients</u> Available Pho Total Nitrogen		P N	6.8 1.42	7.6 1.42	82.0 0.180	53.0 2.09	111 1.35
<u>Total Metals</u> Antimony Arsenic Barium Beryllium Cadmium	T-Sb T-As T-Ba T-Be T-Cd		<10 33.8 81.7 0.60 0.52	<10 9.2 126 0.57 <0.50	<10 14.9 120 0.87 <0.50	<10 8.8 78.8 0.72 <0.50	<10 28.5 160 1.10 0.55
Chromium Cobalt Copper Lead Mercury	T-Cr T-Co T-Cu T-Pb T-Hg		38.6 40.3 184 37 0.844	38.9 19.8 54.3 <30 0.0659	54.8 23.9 47.9 <30 0.0154	41.3 5.6 53.9 <30 0.0810	51.8 45.6 84.6 <30 0.133
Molybdenum Nickel Phosphorus Selenium Silver	T-Mo T-Ni T-P T-Se T-Ag		<4.0 210 563 <2.0 <2.0	<4.0 89.2 437 <2.0 <2.0	<4.0 73.7 1370 <2.0 <2.0	<4.0 35.2 1270 <2.0 <2.0	<4.0 81.5 3580 <2.0 <2.0
Thallium Tin Vanadium Zinc	T-TI T-Sn T-V T-Zn		<1.0 <5.0 32.1 251	<1.0 <5.0 33.4 97.4	<1.0 <5.0 49.1 122	<1.0 <5.0 25.9 86.0	<1.0 <5.0 53.9 157
<u>Organic Parar</u> Total Organic	<u>neters</u> Carbon	с	21.9	19.4	2.74	13.4	19.4
Sand (2.00	2.00mm) mm - 0.063mm) 3mm - 4um) n)	(%) (%) (%) (%)	N/A N/A N/A N/A	N/A N/A N/A N/A	<0.10 2.30 47.8 49.9	N/A N/A N/A N/A	N/A N/A N/A N/A

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. N/A = Data was not available due to the high organic content of the sample.

Sample ID		Narrow Lake	
ALS ID		6	
<mark>Physical Tests</mark> Moisture % pH		89.4 7.34	
<u>Nutrients</u> Available Phospho Total Nitrogen	orus P N	50.0 1.26	
Total Metals Antimony T Arsenic T Barium T- Beryllium T- Cadmium T-	Ba Be	<10 18.0 224 1.03 <0.50	
Chromium T Cobalt T Copper T Lead T Mercury T	Co Cu Pb	58.5 34.2 63.4 <30 0.102	
Molybdenum T- Nickel T- Phosphorus T- Selenium T- Silver T-	Ni P Se	<4.0 116 1380 <2.0 <2.0	
Thallium T- Tin T- Vanadium T- Zinc T-2	Sn V	<1.0 <5.0 58.3 174	
<u>Organic Paramete</u> Total Organic Carl	ers bon C	9.36	
Particle Size Gravel (>2.00 Sand (2.00mm Silt (0.063mn Clay (<4um)	- 0.063mm) (%)	<0.10 6.40 30.5 63.1	

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. N/A = Data was not available due to the high organic content of the sample.

File No. U7776 Appendix 1 - QUALITY CONTROL - Replicates

Sediment/Soil	Eclipse Lake	Eclipse Lake
		QC # 404754
<u>Physical Tests</u> Moisture %	68.7	67.5
Organic Parameters Total Organic Carbon C	2.74	2.46

Remarks regarding the analyses appear at the beginning of this report. Results are expressed as milligrams per litre except where noted. < = Less than the detection limit indicated. N/A = Data was not available due to the high organic content of the sample.

File No. U7776 Appendix 2 - METHODOLOGY

Outlines of the methodologies utilized for the analysis of the samples submitted are as follows

Moisture in Sediment/Soil

This analysis is carried out gravimetrically by drying the sample at 103 C for a minimum of six hours.

Recommended Holding Time: Sample: 14 days Reference: Puget For more detail see ALS Environmental "Collection & Sampling Guide"

pH in Soil

This analysis is carried out in accordance with procedures described in "Soil Sampling and Methods of Analysis" (CSSS). The procedure involves mixing the air-dried sample with deionized/distilled water. The pH of the solution is then measured using a standard pH probe. A one to two ratio of sediment to water is used for mineral soils and a one to ten ratio is used for highly organic soils.

Total Nitrogen in Sediment/Soil

This analysis is carried out in accordance with methods described in Methods of Soil Analysis Part 2, Soil Science Society of America (1982). Total Nitrogen is determined colourimetrically on a semi-micro Kjeldahl digest.

Note: Total Nitrogen analysis is subcontracted.

Metals in Sediment/Soil

This analysis is carried out using procedures from CSR Analytical Method 8 "Strong Acid Leachable Metals (SALM) in Soil", BC Ministry of Environment, Lands and Parks, 26 June 2001, and procedures adapted from "Test Methods for Evaluating Solid Waste", SW-846 Method 3050B or Method 3051, United States Environmental Protection Agency (EPA). The sample is manually homogenized, dried at 60 degrees Celsius, sieved through a 2 mm (10 mesh) sieve, and a representative subsample of the dry material is weighed. The sample is then digested at 90 degrees Celsius for 2 hours by either hotplate or block digester using a 1:1 ratio of concentrated nitric and hydrochloric acids. Instrumental analysis is by atomic absorption/fluorescence spectrophotometry (EPA Method 7000 series), inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B), and/or inductively coupled plasma - mass spectrometry (EPA Method 6020).

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment.

Recommended Holding Time:

Sample:6 months (Hg = 28 days)Extract:6 months (Hg = 28 days, Sb & Sn = 7 days)Reference:BCMELPFor more detail see ALS Environmental "Collection & Sampling Guide"

Total Carbon, Total Organic Carbon and Inorganic Carbon in

Sediment/Soil

This analysis is carried out in accordance with U.S. EPA Method 9060A (Publ. # SW-846 3rd ed., Washington, DC 20460). Total Carbon is determined by high temperature oxidation of carbon to carbon dioxide which is then measured by means of a nondispersive infrared analyzer. Inorganic Carbon is determined by reaction with phosphoric acid to convert all carbonates to carbon dioxide which is also measured by means of a nondispersive infrared analyzer. Total Organic Carbon is determined as the difference between Total and Inorganic Carbons.

Recommended Holding Time: Sample: 14 days Reference: Puget For more detail see ASL "Collection & Sampling Guide"

Particle Size Distribution in Sediment/Soil

This analysis is carried out using a method adapted for Fisheries and Environment Canada, Ottawa, described in Walton, 1978. The procedure involves oven-drying and sample pretreatment to remove organics, prior to using standard sieves for the sand and silt fractions and the pipette method for the clay fraction.

Note: Particle Size analysis is subcontracted.

Results contained within this report relate only to the samples as submitted.

This Chemical Analysis Report shall only be reproduced in full, except with the written approval of ALS Environmental.

End of Report

Attention	N. Markovic	Mirovic	Date	Sept 25, 2004	· · · ·	
	GRAVEL	SAND	SILT	CLAY	Total	Available
Sample	>2mm %	<2mm %	<63microns %	<4microns %	Nitrogen %	P ppm
U 7776 - 1 2 3 4 5 6		Too Organic Too Organic 2.3 Too Organic Too Organic 6.4	47,8 30.5	49.9 63.1	1.42 1.42 0.18 2.09 1.35 1.26	6.8 7.6 82.0 53.0 111.0 50.0

___PACIFIC SOIL ANALYSIS

Results are reported as % on a weight basis. Particle size is determined by the pipette method. Sedimentation times are determined by using the Tanner and Jackson Nomograph I. Sand content is determined by wet sieving. Manual of Soil Sampling and Methods of Analysis, 1978, J.A. McKeague, Canadian Society of Soil Science.

HAIN OF CUSTODY / ANALYTICAL REQUEST F	ORM A		ANALYS	SIS REC	UESTED	·····	····· .	PAGE _	OF
CLIENT: <u>EBA Engineering Nania</u> ADDRESS: <u>1-4376 Boban Dr J</u> CITY: <u>Nanawno</u> PROV.: <u>BC</u> <u>CODE: V976</u> CONTACT: <u>Chris 2annura</u> SAMPLER: <u>Chris 2ann</u> TELEPHONE: <u>1-250-756-21</u> PROJECT NAME/NO.: <u>1740082</u> . <u>005</u> P.O. NO.: <u>QUOTE NO.:</u> DATE SUBMITTED: <u>220900</u> ALS CONTACT: <u>Watasha</u>	ALS CALS ALS Enuironn Mora 1988 Mora 1988 Yacouver, BC Canada TEL: 604-253-4188, 1-80 FAX: 604-253-67 #2 - 21 Highfield Circ Caigary, AB Canada TEL: 403-214-5431, 1-86 FAX: 403-214-544	et V5L 1K5 I-665-0243 I0 le SE 2G 5N6 I-722-6231 I0	Sediment analysis				٠. مۇر		
LAB USE ONLY SAMPLE IDENTIFICATION	www.alsenviro.c	MATRIX							NOTES
Warrow later 10+3	Y M D AM								
Warray Lake 2d-3	AA								
Warrow Lalle 2013 Narrow Lalle 3013	AN								
	AA PA								
	AM	1							
	AN								
	AA PA								
	AA PA								
	AN AN								
	AN							_	
		1							<u> </u>
		I							
	Pi								
URN AROUND REQUIRED:		RELINQU	JISHED BY:		20205	RECEIVED	BY: Net f		
		BELINOL	JISHED BY:	DATE	:30pm	ر RECEIVED	4	DATE	0150
☐ RUSH (SPECIFY DATE): (SURCHARGES MA` SPECIAL INSTRUCTIONS (BILLING DETAILS, QC REPORTING, ETC.):	Y APPLY)			TIME				TIME	
» Dehone Chriszamora +			ta nj	<u>A</u>	3 USE ON				
adjunct a all air	· · · · · · · · · · · · · · · · · · ·	C001	ER SEAL INT		SAMPLE TE	EMPERAŢU		REPO	ORT COPY
Scanner argysis	, ž	UPON	RECEIPT?		UPON REC	EIPT: <u>\4</u> _	°C	SEE	WHITE PAPER CO. I SOURCE VERSIOI
•	2		S 🗌 NO	∭∑ N/A	·	🗆 YES 🔍		1	

CHAIN OF CUSTODY / ANALYTICAL REQUEST FORM		4	ANALYS	SIS REQ	UESTED)	PAGE	E OF
CLIENT: EBA Engineering Naniamo ADDRESS: 1-4376 Baban DF	ALS		anit			ć.		
CITY: Nanainy PROV: BC POSTAL V976A7	ALS Environme	5	Samplu	20 fr				
CONTACT: ChrisZammora SAMPLER: ChrisZammora	1988 Triumph Street Vancouver, BC Canada V5		orthe		- 4			
TELEPHONE: 1-250-756-2256 FAX: 1-250-756-2286	TEL: 604-253-4188, 1-800-6 FAX: 604-253-6700	65-0243	sh :		2			
PROJECT NAME/NO.: 1740082.005	#2 - 21 Highfield Circle	°E	4		ςυ I			
P.O. NO.: QUOTE NO.:	Calgary, AB Canada T2G	G 5N6	M					
SUBMITTED: 02/09/04 ALS CONTACT: Natasha M	TEL: 403-214-5431, 1-866-7 FAX: 403-214-5430	22-6231	Sediment					
LAB USE ONLY	www.alsenviro.com		\sim					
	ATE / TIME COLLECTED	MATRIX						NOTES
Round Lake 1 of 3		idinent						1
Roundlake 2 of 3	AM							
Round Lalus d 3	AM							
Winter Lake 1 23	AM							
	AM							à.
Winter Lalle 3 of 3	AM PM							
Winter Lalle 2 of 3 Winter Lalle 3 of 3 Eclipse Lake 1 of 3	AM							
	AM				١			
Echipse Lalle 30-3	AM							
8 Wicholas Lake 1 ch 3	AM PM					1		
Wicholas Lale 243	AM							
Wich Haple 40 313	AM • PM							
Brien Lake 1073	AM					and the second s		
Brien Lake 223	AM							
Brein Lake 3ct-3	AM							
United Land Set S	AM • PM							
	······································	RELINQUIS			2/09/09	RECEIVED BY:	DATE	19/03/24
		F.Co	:			4 7 202		<u>(8:30</u>
ROUTINE (7 - 10 WORKING DAYS) RUSH (SPECIFY DATE): (SURCHARGES MAY APPL)	n	RELINQUIS		DATE	Struct	RECEIVED BY:	DATE	<u> </u>
· · · · · · · · · · · · · · · · · · ·				TIME			TIME	
In among Chris Zamora +	0]		FOR LA	3 USE ON	ILY		
SPECIAL INSTRUCTIONS (BILLING DETAILS, QC REPORTING, ETC.): Appnone Chris Zamora + Confirm Sediment anal)	15'S		R SEAL INT ECEIPT?		SAMPLE			PORT COPY
CUNCTIN	(T YES		XÍ N/A	FROZEN?		SE	EE WHITE PAPER CO. FOI SOURCE VERSION 0 GU TSSP02.04.0

APPENDIX K

LAKE WATER QUALITY DATA

Appendix K. Lake Water Quality Data

Lake Name:	Round Lake	Surface Area (ha ²):	11	
Sample Date:	18/07/2004	Sample Depth:	1.5 m (bottom)	
Sample Date.	10/07/2004	Seechi Depth:	1.5 m (bottom)	
Sample Depths	Water Temperatures	Dissolved Oxygen	Specific Conductivity	pН
(m)	(degrees C)	(mg/L)	(μs/cm)	рп
surface	17.4	7.52	55.2	7.43
1	17.4	1.52	55.2	7.43
1.5 m (bottom)				
1.5 III (00110111)				
Inlet	n/a	n/a	n/a	n/a
Outlet	n/a n/a	n/a	n/a n/a	n/a
Outlet	11/ 4	11/ d		II/ a
Lake Name:	Winter Lake	Surface Area (ha ²):	69.2	
Sample Date:	19/07/2004	Sample Depth:	5.9 m	
Sample Date:	19/07/2004	Sample Depth: Secchi Depth:	3.0 m	
Consult: Douths	Weter Terrent and			
Sample Depths	Water Temperatures	Dissolved Oxygen	Specific Conductivity	pH
(m)	(degrees C)	(mg/L)	(µs/cm)	7.02
surface	19.6	7.15	206.9	7.03
	19.6	7.37	206.8	
2	19.2	7.34	205.1	
3	18.9	7.27	203.5	
4	18.6	6.35	203.1	
**5	14.6	5.2	187	
Lalat Character	16.4	2.52	217.2	(71
Inlet Stream	16.4	3.52		6.71
Outlet Stream	16	n/a	n/a	n/a
Lake Name:	Eclipse Lake	Surface Area (ha ²):	258	
Sample Date:	24/07/2004	Recorded Depth:	28 m	
		Secchi Depth:	7.07 m	
Sample Depths	Water Temperatures	Dissolved Oxygen	Specific Conductivity	pH
(m) Main Lake Body	(degrees C)	(mg/L)	(µs/cm)	
	20.1	8.52	51.1	7.03
surface	20.1	8.52	49.4	7.03
2	19.7	8.00	49.4	
		9.27		
3	18.6		48.1	
4	18.1	9.58	47.4	
5 ** 6	17.4	9.84	46.3	
7	9.9	12.62	39.7	
	9.9	11.98	37.4	
8	7.6		36.5	
10	6.9	10.19	35.5	
10	0.9	10.10	35.1	
11	6.3	9.66	34.7	
12	6	9.66	34.5	
13	5.8	9.6	34.4	
<u> </u>	5.7	9.57	34.3	
16				
17	5.5	9.54	34.1	
18	5.3	9.32		
	5.2	9.46	33.8	
20	4.8	9.41	33.9	
21	4.8	9.25	33.9	

22	11	4 7	11	0.01	<u> </u>	22.0		
22		4.7		9.01		33.9	_	
23		4.6		9.03		33.9	_	
24		4.6		9.15	++	33.8		
25		4.5		9	++	33.8		
26		4.5		9.1	++	33.9		
27		4.4		9.04	++	33.9		
28		4.4		9.22		33.9		
East Channel								
surface		19.1		8.33		52.7		6.91
1		18.7		8.59		51		
2		18.5		8.21		50.8		
3		18.3		8.54		50.3		
4		17.8		7.71		49.6		
**5		14.5		9.04		45		
6		10.6		10.12		40.9		
7		8.7		9.54		38.8		
8		7.6		8.54		37.8		
9		6.7		8.87		37.1		
10		6.1		7.71		36.4		
11		5.7		8.97		36.2		
12		5.4		9.13		35.9		
13		5.2		9.03		37.3		
14		5.1		8.72	\top	38.8		
15		5		8.58		39.7		
16		5	11	0.73		46.1		
17		5	11	0.56		47.2		
18		5		0.4		46.9		
19								
17		5		0.34		43.8		
20		5		0.34 0.31	++	43.8 43.8		
				0.34		43.8 43.8		
20		5		0.31		43.8		6.58
20 Inlet Stream		5 18.6		0.31 5.74		43.8		6.58 6.82
20		5		0.31		43.8		6.58 6.82
20 Inlet Stream Outlet Stream	Nich	5 18.6 22	Surface	0.31 5.74 8.03		43.8 51.5 52		
20 Inlet Stream Outlet Stream Lake Name:		5 18.6 22 olas Lake		0.31 5.74 8.03 Area (ha ²):		43.8 51.5 52 06.3		
20 Inlet Stream Outlet Stream Lake Name:		5 18.6 22	Sample	0.31 5.74 8.03 Area (ha ²): Depth:	2	43.8 51.5 52 96.3 29 m		
20 Inlet Stream Outlet Stream Cake Name: Sample Date:	27/07	5 18.6 22 olas Lake 7/2004	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth:	25	43.8 51.5 52 06.3 29 m 5.94 m		6.82
20 Inlet Stream Outlet Stream 	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen	25	43.8 51.5 52 06.3 29 m 5.94 m Specific Conductivity		
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m)	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C)	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L)	25	43.8 51.5 52 06.3 29 m 5.94 m Specific Conductivity (μs/cm)		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46	25	43.8 51.5 52 06.3 29 m 5.94 m Specific Conductivity (µs/cm) 61.9		6.82
20 Inlet Stream Outlet Stream Cake Name: Cample Date: Sample Depths (m) surface 1	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: 0xygen (mg/L) 8.46 8.89	25	43.8 51.5 52 06.3 29 m 5.94 m Specific Conductivity (μs/cm) 61.9 61.8		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cake Name: Cample Date: Sample Depths (m) Surface 1 2	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: 0xygen (mg/L) 8.46 8.89 8.73	25	43.8 51.5 52 6.3 99 m 5.94 m Specific Conductivity (µs/cm) 61.9 61.8 61.4		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ \hline 6.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity \\ (\mu s/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.4 \\ \end{array} $		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: 0.31 0.3	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ \hline 6.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity \\ (\mu s/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\ \hline 61.5 \\ 61.5 \\ \hline 61.5 \\ 61.5$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.83 8.84 8.93	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ 26.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity (µs/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5 6	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.83 8.84 8.93 9.38	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ 26.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity (µs/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\ 61.5 \\ 60.9 \\ \end{array} $		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cake Name: Cak	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.83 8.84 8.93 9.38 10.4	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ \hline 6.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity \\ (\mu s/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\ 61.5 \\ 60.9 \\ 60.2 \\ \end{array} $		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.84 8.93 9.38 10.4 11.54	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ 96.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity (µs/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\ 60.9 \\ 60.2 \\ 60.2 \\ 60.2 \\ \end{array} $		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cake Name	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: 0.31 0.41 1.54 100	25	$ \begin{array}{r} 43.8 \\ 51.5 \\ 52 \\ \hline 66.3 \\ 29 m \\ 5.94 m \\ Specific Conductivity \\ (\mu s/cm) \\ 61.9 \\ 61.8 \\ 61.4 \\ 61.4 \\ 61.5 \\ 60.9 \\ 60.2 \\ 60.2 \\ 60.1 \\ \end{array} $		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cake Name	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: 0.31 0.31 0.4 0.31 0.4 0.31 0.4 0.31 0.53 0.31	25	$\begin{array}{r} 43.8\\ \\ 51.5\\ 52\\ \hline \\ 66.3\\ \hline \\ 69 \text{ m}\\ \\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.9\\ \hline \\ 60.2\\ \hline \\ 60.2\\ \hline \\ 60.1\\ \hline \\ 60.3\\ \end{array}$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cake Name	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: Depth: 0.31 0.31 0.31 0.32 0.32 0.32 0.38 10.4 11.54 10 9.53 9.28	25	$\begin{array}{r} 43.8\\ \\ 51.5\\ 52\\ \hline \\ 6.3\\ \hline \\ 9 \text{ m}\\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 6.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ 60.2\\ \hline \\ 60.2\\ \hline \\ 60.2\\ \hline \\ 60.3\\ \hline \\ 60.2\\ \hline \\ \\ \\ 60.2\\ \hline \\ \\ \\ \\ 60.2\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		6.82 pH
20 Inlet Stream Outlet Stream ample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: Depth: 0.31 0.4 10.4 11.54 10 9.53 9.28 8.83 8.83 9.28 8.83	25	$\begin{array}{r} 43.8\\ \\ 51.5\\ 52\\ \hline \\ 66.3\\ \hline \\ 29 \text{ m}\\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 5.94 \text{ m}\\ \\ \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ \\ 60.2\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.8	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 06.3\\ \hline \\ 29 \text{ m}\\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ \\ 60.2\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Cample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13 14	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.8 5.8 5.4	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13 8.57	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 66.3\\ \hline \\ 29 \text{ m}\\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ 60.2\\ \hline \\ \\ \\ \\ 60.2\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13 14 15	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.8 5.8 5.4 4.9	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13 8.57 8.47	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 52\\ \hline \\ 6.3\\ \hline \\ 29 \text{ m}\\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \end{array}$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13 14 15 16	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.8 5.8 5.4 4.9 4.8	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13 8.57 8.47 8.35	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 52\\ \hline \\ 6.3\\ \hline \\ 29 \text{ m}\\ \hline \\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \end{array}$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13 14 15 16 17	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.4 4.9 4.8 5.5	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13 8.57 8.47 8.35 8.88	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 52\\ \hline \\ 6.3\\ \hline \\ 29 \text{ m}\\ \hline \\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \\ 60.6\\ \hline \end{array}$		6.82 pH
20 Inlet Stream Outlet Stream Cake Name: Sample Date: Sample Depths (m) surface 1 2 3 4 5 6 **7 8 9 10 11 12 13 14 15 16	27/07	5 18.6 22 olas Lake 7/2004 Water Temperatures (degrees C) 19.5 18.2 17.6 17.3 17.2 17 16.2 9.6 9.9 7 6.6 6.2 5.8 5.8 5.8 5.4 4.9 4.8	Sample Secchi I	0.31 5.74 8.03 Area (ha ²): Depth: Depth: issolved Oxygen (mg/L) 8.46 8.89 8.73 8.83 8.84 8.93 9.38 10.4 11.54 10 9.53 9.28 8.83 9.13 8.57 8.47 8.35	25	$\begin{array}{r} 43.8\\ & 51.5\\ 52\\ \hline \\ 52\\ \hline \\ 6.3\\ \hline \\ 29 \text{ m}\\ \hline \\ 5.94 \text{ m}\\ \hline \\ \text{Specific Conductivity}\\ (\mu \text{s/cm})\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.9\\ \hline \\ 61.8\\ \hline \\ 61.4\\ \hline \\ 61.4\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 61.5\\ \hline \\ 60.2\\ \hline \\ 60.3\\ \hline \\ 60.3\\ \hline \end{array}$		6.82 pH

20	1 1 4 7	7.42		
20	4.7	7.43	60.5	
21	4.5	7.31	60.6	
22	4.5	7.08	60.6	
23	4.5	6.93	60.6	
24	4.5	6.89	60.7	
25	4.4	4.92	60.7	
26	4.4	4.88	60.7	
27	4.4	5.04	60.7	
28	4.4	5.46	60.7	
Inlet Stream	23	n/a	n/a	n/a
Outlet Stream	20	n/a	n/a	n/a
Lake Name:	Brien Lake	Surface Area (ha ²):	24.2	
Sample Date:	29/07/2004	Sample Depth	9 m	
Sample Date.	2)/0//2004	Secchi Depth:	3.67 m	
Sample Dontha	Water Temperatures	-		nII
Sample Depths	Water Temperatures	Dissolved Oxygen	Specific Conductivity	pН
(m)	(degrees C) 18.6	(mg/L) 8.12	(µs/cm)	7.03
surface			75.4	1.03
1	18.6	8.1	75.3	
2	18.6	8.05	75.2	
3	18.5	8.03	75.1	
4	18.5	8.13	70.6	
**5	10.1	6.03	59.1	
6	7.2	2.75	55.9	
7	6.9	0.55	61.2	
8	6.7	0.1	68.1	
9	6.8	0.02	0	
Inlet Stream	n/a	n/a	n/a	n/a
Outlet Stream	n/a	n/a	n/a	n/a
Lake Name:	Narrow Lake	Surface Area (ha ²):	24.9	
Sample Date:	31/07/2004	Sample Depth	12.0 m	
Sample Date.	31/07/2004	Secchi Depth:	3.10 m	
Coursel Dough				
Sample Depths	Water Temperatures	Dissolved Oxygen	Specific Conductivity	pН
(m)	(degrees C)	(mg/L)	(µs/cm)	7.02
surface	16.2	8.54	133.3	7.03
1	16.2	8.52	133.5	
2	16.2	8.14	133.3	
3	16.2	8.52	133.4	
4	16	8.42	133.3	
5	15.9	8.35	133.1	
6	15.8	5.24	131.7	
**7	8.5	6.99	105.6	
8	7.4	5.7	101.5	
9	6.2	5.12	100.2	
10	6.1	3.37	99.8	
11	5.8	0.14	101	
		0.07	107.2	
12	5.8	0.07	107.2	
12	5.8	0.07	107.2	
12 Inlet Stream	5.8 	n/a	n/a	n/a

Note:

** Depth indicates thermocline Specific conductivity is reported as conductivity at 25 degrees Celsius (25 C).

YELLOWKNIFE GOLD PROJECT

2005 FISHERIES AND AQUATIC RESOURCES REPORT

May 2006

CREATING AND DELIVERING BETTER SOLUTIONS

Tyhee NWT Corp

2005 FISHERIES AND AQUATIC RESOURCES REPORT YELLOWKNIFE GOLD PROJECT

1740180.004

May 2006

EXECUTIVE SUMMARY

Introduction and Background

The Yellowknife Gold Project, operated by Tyhee NWT Corp, is an advanced gold exploration project located approximately 85 km north of Yellowknife, NT. Baseline aquatic and fisheries studies began in 2004 and continued in 2005 to support future regulatory applications and to address the interests of the Department of Fisheries and Oceans (DFO).

In the summer of 2004, EBA Engineering Consultants Ltd (EBA) completed a comprehensive baseline investigation of six lakes in the Project area. Lakes that were investigated included: Round Lake, Winter Lake, Narrow Lake, Brien Lake, Eclipse Lake and Nicholas Lake to document existing fisheries and aquatic resource parameters. In the spring and summer of 2005, EBA completed a more focussed study of fish presence, fish habitat and bathymetry of Winter Lake and Narrow Lake specifically, as well as fish presence and fish habitat at four locations along a proposed access road between Nicholas Lake portal and the YGP.

The objectives of the 2005 fisheries and aquatic resources study were:

- To address specific questions raised by DFO personnel during the scoping sessions.
- To further document existing fish and fish habitat conditions in Winter and Narrow lakes.
- Conduct fish presence/absence and habitat surveys at four stream crossing locations along the proposed route of an access road between the Nicholas Lake and the YGP.
- Provide information for evaluating and mitigating potential mine related impacts due to the proposed YGP.
- Provide a sound basis for developing and implementing future environmental management strategies and for future aquatic effects monitoring during mine construction, operations and site decommissioning phases of the Project.

In response to DFO's review of the Project Description Report (PDR) submission, the 2005 field program was modified to address specific issues raised. Fisheries and aquatic resources investigations undertaken during the spring portion of the 2005 field study focused on potential fish migration between Winter and Narrow lakes. Fish species presence, relative abundance, distribution and species composition (inlet and outlet trapping); fish biological characteristics (length, weight, age); fish habitat characterization in the stream connecting the lakes; and, fish tissue metals analyses were also conducted. In addition, a habitat survey and electro-fishing for fish presence was conducted at four stream crossing locations along the proposed route of the access road.

Investigations undertaken during the summer of the 2005 field study focused on fish species presence, habitat characterization and utilization of Winter and Narrow lakes. Fish species relative abundance, distribution and species composition (gillnetting and minnow trapping); fish biological characteristics (length, weight, age); fish habitat (characterization of habitat attributes); fish tissue metals analysis; lake bathymetry; water quality analyses and an underwater survey (snorkel and video) in Winter Lake were conducted.

Fish Species Composition, Relative Abundance, Distribution and Age

During the spring 2005 fish migration survey, fish traps were installed in the Winter Lake outlet / Narrow Lake inlet stream, resulting in the collection of four juvenile Northern Pike and five Slimy Sculpin in the Narrow Lake inlet trap (fish migrating upstream from Narrow Lake) over seven days of fishing effort. No fish were caught in the Winter Lake outlet trap, however an incidental observation of an adult (~40 cm long) Northern Pike was made upstream near the entrance to the Winter Lake outlet trap.

During the summer 2005 lake survey, gillnet sets were successful in the collection of fish from both Winter and Narrow lakes. However, it should be noted that although the fishing effort undertaken in Winter Lake was more intensive (than in Narrow Lake) Northern Pike was the only species collected in Winter Lake, with a total of 10 juvenile pike being captured. All of the pike from Winter Lake were determined to be less than three years of age. No fish were captured in the Winter Lake minnow traps.

Lake Whitefish was the most abundant species present in Narrow Lake with a total of 96 whitefish being captured. . A sub sample of the whitefish collected from Narrow Lake ranged in age from four to nineteen years. Ten Northern Pike were also captured and ranged in age from under four to twelve years. No fish were captured in the Narrow Lake minnow traps.

Lake Habitat

The bathymetric survey of Winter Lake determined that the majority of this lake is shallower than 2 m and the maximum depth of 6 m occurs in a limited area of the northern basin. Winter Lake fish habitat is limited largely due to its shallow morphology. Limited fish presence (Northern Pike only) and habitat utilization in Winter Lake was confirmed through an extensive fishing effort. An underwater survey (snorkel/video) was also completed in Winter Lake. Results of this survey confirmed that bottom substrates in the lake are dominated by organics and silt, with cobbles and boulders at sporadic locations along the shoreline. Emergent and submergent vegetation occur in localized near-shore locations. Significantly, no fish or clams or any signs of these biota were observed on any of the twelve underwater transects surveyed in Winter Lake. Overall, the 2005 investigations have confirmed that Winter Lake provides poor habitat conditions for aquatic life.

The bathymetric survey of Narrow Lake indicated a maximum depth of 13 m located in a deep hole in the southwest basin of the lake. Another deep hole of 10 m was located in the northeast basin. Narrow Lake is characterized by an elongated shape, with two deeper basins and extensive wetland vegetation at the primary inlet and outlets located at the extreme ends of the lake basins. Rocky bottom substrates were identified within the southern portion of the lake, and the bottom substrate in most of Narrow Lake consists of fine organic material and silt. Narrow Lake was confirmed to support a considerable population of Lake Whitefish and a small population of Northern Pike.

Fish Tissue Metals

During the summer survey, samples of liver and muscle tissue were collected from fish in Narrow and Winter lakes. Mercury levels recorded in Narrow Lake fish were higher than those found in Winter Lake fish, this was due to the greater size and age of the fish present in Narrow Lake. In

ii

both liver and muscle tissue from Northern Pike and Lake Whitefish collected from Narrow Lake, mercury levels above the Health and Welfare Canada restrictive consumption level of 0.5 ppm were detected. Zinc was commonly present in muscle and liver tissue of fish tested from both lakes. No other metal of concern was present in any of the muscle samples.

In liver samples, copper, selenium and silver were commonly present in most samples. Arsenic, cadmium, chromium, lead, and nickel levels in fish livers from both lakes were generally found to be at values below detection limits. For whole fish samples taken from the Narrow Lake outlet stream during the spring survey, metals analysis indicates detectable levels of zinc, mercury and copper.

All metal concentrations for fish liver and muscle tissue were below US Environmental Protection Agency (US EPA 2006) metal concentrations in fish tissue for human health risk (0.02 ppm of arsenic, 1.4 ppm of cadmium, 4.1 ppm of chromium, 5.4 ppm of copper, 410 ppm of iron, 6.8 ppm of selenium, 6.8 ppm of silver, and 410 ppm of zinc).

Water Quality

High summer water temperatures throughout the water column in Winter Lake result in reduced rearing conditions for cool water fish. This lake is too shallow to allow full summer temperature stratification and the development of a thermocline, below which cooler water typically exists. The generally shallow morphology of Winter Lake results in annual freezing of the entire depth of the southern basin and other shallow areas during the winter and winterkill (through oxygen depletion) of aquatic life present in this lake.

Narrow Lake has an elongated shape with two deeper basins. The morphology of the lake results in summer and winter stratification of water temperatures. Narrow Lake developed a thermocline from 6 to 8 m, below which water temperatures dropped to a low of 4.7°C. The morphology of Narrow Lake also provides suitable rearing and over wintering conditions for fish.

DO concentrations during the summer test period (August) ranged from 8-9 mg/L in the surface layer of both lakes but dropped at the thermocline to a low of 0.02 mg/L at 11 m depth in Narrow Lake.

Proposed Access Road – Nicholas Lake to Ormsby

No fish were captured or observed at the stream crossings along the proposed access road during two fishing efforts (June 3rd and August 10th, 2005). It was concluded that these small streams are not likely to be fish-bearing.

Potential fish habitat was variable at the four crossing locations. Sites 1 and 2 consist of defined, slow-flowing channels (with the exception of where the existing winter road has resulted in a segment of diffuse unconfined flow at Site 1). The stream at Site 3 drains a small lake and had minimal, unconfined flow at the time of the survey. The stream at Site 4 consists of a wide, braided channel near its confluence with Giauque Lake. Overland flow within the riparian zone was observed during the spring survey. This flow had resulted from ice build- up within the channel in the lower portion of the stream.

Water temperatures were measured at each of the stream crossings during spring fieldwork between May 29 and June 3, 2005. Consistent with previous sampling completed at the Winter Lake outlet stream and the Narrow Lake inlet stream, water temperatures increased rapidly at Sites 1 and 2 but only marginally at Sites 3 and 4 during the short sampling period.

TABLE OF CONTENTS

۷

1740180.004

EXEC	UTIVE	E SUMM	ARY		I
1.0	INTR	ODUCTI	ON		I
2.0	BACI	KGROUI	ND		1
3.0	INVE	STIGAT	ION SCOF	PE AND OBJECTIVES 1	1
4.0	SAM	PLING N	IETHODO	LOGY	2
	4.1	Fish Po	pulations		2
		4.1.1	Lakes		3
			4.1.1.1	Gillnetting	3
			4.1.1.2	Minnow Traps	3
			4.1.1.3	Electrofishing in Shoreline Habitats	3
		4.1.2	Streams		3
			4.1.2.1	Outlet and Inlet Traps – Winter Lake Outlet /Narrow Lake Inlet	
			4.1.2.2	Electrofishing - Proposed Access Road (Nicholas Lake to Ormsby) Stream Crossing Sites	
		4.1.3	Biologica	I Characteristics	5
		4.1.4	Metals in	Liver and Muscle Tissue	5
	4.2	Fish Ha	abitat	Ε	5
		4.2.1	Lakes	Ε	5
			4.2.1.1	Lake Bathymetry	5
			4.2.1.2	Shoreline Habitat Survey	ć
			4.2.1.3	Underwater Survey-Winter Lake	
			4.2.1.4	Lake Water Quality	
		4.2.2			
			4.2.2.1	Stream Habitat Survey	
			4.2.2.2	Stream Water Quality	
	4.3			e and Quality Control (QA/QC)	
		4.3.1		cedures	
	4.4	Ũ	5 1	onse 8	
5.0	RESL			ε	
	5.1		•	ξ	
		5.1.1	Fish Hab	itat Requirements	3

May 2006 TYHEE NWT CORP - YELLOWKNIFE GOLD PROJECT - 2005 FISHERIES AND AQUATIC RESOURCES REPORT

TABLE OF CONTENTS

vi

1740180.004

		5.1.1.1	Northern Pike	8
		5.1.1.2	Lake Whitefish	9
		5.1.1.3	Slimy Sculpin	9
	5.1.2	Relative	Abundance, Distribution and Species Composition	9
		5.1.2.1	Winter Lake Outlet - Narrow Lake Inlet Stream	10
		5.1.2.2	Winter Lake	10
		5.1.2.3	Narrow Lake	10
		5.1.2.4	Proposed Access Road (Nicholas Lake to Ormsby) Stream Crossing S	Sites10
	5.1.3	Biologica	al Characteristics	10
		5.1.3.1	Winter Lake Outlet Stream	11
		5.1.3.2	Winter Lake	11
		5.1.3.3	Narrow Lake	11
	5.1.4	Metals in	n Liver and Muscle Tissue	11
		5.1.4.1	Winter Lake Outlet Stream	12
		5.1.4.2	Winter Lake	12
		5.1.4.3	Narrow Lake	12
5.2	Fish H	abitat		13
	5.2.1	Winter L	ake Outlet Stream	13
	5.2.2	Winter L	ake	13
		5.2.2.1	Shoreline Habitat	14
		5.2.2.2	Bathymetry	14
		5.2.2.3	Underwater Survey - Winter Lake	14
	5.2.3	Narrow	Lake	15
		5.2.3.1	Shoreline Habitat	15
		5.2.3.2	Bathymetry	15
	5.2.4	Propose	d Access Road Stream Crossing Sites	15
		5.2.4.1	Stream Site 1	16
		5.2.4.2	Stream Site 2	16
		5.2.4.3	Stream Site 3	16
		5.2.4.4	Stream Site 4	17
5.3	Water	Quality		17
	5.3.1	Winter L	ake Outlet – Narrow Lake Inlet Stream	17
	5.3.2	Winter L	ake	17

TABLE OF CONTENTS

PAGE

vii

1740180.004

		5.3.3	Narrow Lake	
		5.3.4	Proposed Access Road Stream Crossing Sites	
6.0	DISC	USSION	I AND CONCLUSIONS	
	6.1	Fish Pr	esence and Migration	
	6.2	Winter	Lake	
	6.3	Narrow	/ Lake	
	6.4	Stream	Crossings Along Proposed Access Road	
7.0	CLOS	SURE		
REFE	RENC	ES		

TABLES

- Table 1 Fish Species Composition and Biological Data
- Table 2 Gillnet Catch per Unit Effort
- Table 3 Metals in Fish Tissues

FIGURES

- Figure 1 Study Area and Site Location
- Figure 2 Proposed Access Road Stream Crossing Locations
- Figure 3 Winter Lake Habitat Features
- Figure 4 Narrow Lake Habitat Features
- Figure 5 Winter Lake Bathymetry
- Figure 6 Narrow Lake Bathymetry
- Figure 7 Winter Lake Sampling Locations
- Figure 8 Narrow Lake Sampling Locations

APPENDICES

- Appendix A Photographs
- Appendix B Meristics for Fish Collected by Gillnet And Stream Traps
- Appendix C Minnow Trap Data
- Appendix D Inlet/Outlet Traps Raw Data
- Appendix E Fish Age Data
- Appendix F Metals in Fish Tissues Lab Analysis Data
- Appendix G Stream Habitat Assessment Data
- Appendix H Winter lake Snorkel Survey Data
- Appendix I Field Water Quality Data and Depth Profiles

1740180.004

viii

1.0 INTRODUCTION

In 2005, Tyhee NWT Corp. (Tyhee) retained EBA Engineering Consultants Ltd. (EBA) to continue investigations of the aquatic and fisheries resources within the Yellowknife Gold Project (Project) area, Northwest Territories (NWT).

The main objectives of the 2005 fisheries and aquatic resources studies were to:

- To address specific questions raised by DFO personnel during the scoping sessions.
- To further document existing fish and fish habitat conditions in Winter and Narrow lakes.
- Conduct fish presence/absence and habitat surveys at four stream crossing locations along the proposed route of an access road between the Nicholas Lake and the YGP.
- Provide information for evaluating and mitigating potential mine related impacts due to the proposed YGP.
- Provide a sound basis for developing and implementing future environmental management strategies and for future aquatic effects monitoring during mine construction, operations and site decommissioning phases of the Project.

The general study area for the 2005 field program is shown in Figure 1. The study area included Narrow and Winter lakes and the proposed road corridor between the Nicholas Lake Portal and Ormsby Portal (Figure 2).

2.0 BACKGROUND

Tyhee owns two, advanced exploration projects located in the Canadian Shield approximately 85 km north of Yellowknife, Northwest Territories. The Ormsby Deposit lies approximately 2 kms south of the historic Discovery Mine and 11 kms south of Nicholas Lake. The exploration and development of these mineral properties requires the completion of a baseline assessment of environmental resources of the area in order to support future regulatory applications.

3.0 INVESTIGATION SCOPE AND OBJECTIVES

The general purpose of the 2005 fisheries and aquatic resources investigations were to enhance baseline information collected during the summer of 2004 regarding the existing fish and fish habitat conditions within the Project study area and to address the interests of the Department of Fisheries and Oceans (DFO).

The scope of work for the 2005 Fisheries Program comprised the following elements:

An Evaluation of Fish Populations - Lakes and Streams

- Fish Populations and/or Relative Abundance, Distribution and Species Composition
- Fish Biological Characteristics
- Fish Liver and Muscle Tissue Metals

An Evaluation of Fish Habitat - Lakes and Streams

- Fish Habitat Characteristics and Values (spawning, rearing, foraging, over-wintering)
- Bathymetry (Lakes only)
- Underwater Survey of Winter Lake (Snorkel and Video)
- Water Quality Lakes and Streams (Temperature, Dissolved Oxygen, Specific Conductance, pH)

An Evaluation of Water Quality - Lakes and Streams

- Temperature
- Dissolved Oxygen
- Specific Conductivity
- pH
- Turbidity

4.0 SAMPLING METHODOLOGY

The Spring and Summer 2005 fisheries program components were conducted from May 24th to June 3rd, and August 4th to 13th, respectively. Mr. Richard Couture (R.P.Bio.), of EBA developed the respective work plans and provided supervision. The field crew was comprised of Nigel Cavanagh (R.P.Bio.), and Tim Abercrombie (M.Sc.) of EBA. Ricky Drygeese of the Yellowknives Dene First Nation provided field assistance during the Spring session and Noel Doctor of the Yellowknives Déné First Nation provided field assistance during the Summer session.

The following sections discuss the methodologies employed for the assessment of fisheries and aquatic resources, during the 2005 fisheries program.

4.1 FISH POPULATIONS

Several fish capture techniques were employed to determine fish population characteristics within lakes and streams. The techniques employed in the lakes are presented in Section 4.1.1 while those employed in the streams are presented in Section 4.1.2.

1740180.004 May 2006 PRT 3

4.1.1 Lakes

4.1.1.1 Gillnetting

Methods to collect large size-classes of fish from Winter and Narrow lakes used two types of experimental monofilament gillnet gangs (floating and sinking). Gillnets were positioned near-shore, perpendicular to the shoreline at the surface (floating) or on the bottom (sinking). Four nets (two sinking and two floating) were deployed in Winter Lake on August 5th and relocated for a second fishing effort on August 6th. Two nets (one sinking and one floating) were deployed in Narrow Lake on August 7th only. Gillnet deployment locations within each lake are shown in Figures 3 and 4. A single experimental net comprised six sequential panels, each 25 m in length and each consisting of a different mesh size (25 mm, 76 mm, 51 mm, 89 mm, 38 mm and 64 mm). Gillnets were deployed using a 4.2 m (14') aluminium boat powered by a 9.5 hp outboard engine. Nets were strategically placed on each lake by considering the lakes morphology and shoreline habitat characteristics. Once deployed in late afternoon, gillnets were left to fish overnight.

Catch rates were summarized using a fishing effort of 12 hrs/net/unit catch area of 100 m^2 (i.e. 12 x 100 m² = Catch per Unit Effort or CPUE). Additional data recorded at each net site included the set and pull date and time, orientation, water depth, weather and GPS location using a Trimble Pathfinder Pro XRS TS-C1 data logger and Pro XRS receiver.

4.1.1.2 Minnow Traps

Standard Gee-type minnow traps (accepted by DFO) were used to collect smaller-class fish within littoral areas and small shallow embayment. Twelve minnow traps baited with sardines were set to fish overnight in each lake. The traps were set in Winter Lake on August 5th and reset for a second fishing effort on August 6th. The traps were set in Narrow Lake on August 8th only. Traps were placed in dense emergent reed beds, undercut shorelines and adjacent to fallen trees, and left over night to fish. Dimensions of the Geetraps used were 0.4 m length x 0.2 m diameter with an aperture of 0.02 m. Data recorded included date, set/haul times, location and contents. Figures 7 and 8 identify trap locations.

4.1.1.3 Electrofishing in Shoreline Habitats

Shoreline electrofishing in Winter Lake was conducted on August 10th. Electrofishing was conducted using a battery-powered Smith-Root POW-15B backpack unit in select boulder fields and sedge patches (Photograph 1 – Appendix A) along the shoreline of Winter Lake. This method was used to assess species distribution at all sample sites. After electrofishing, the unit was turned off, and the electrofisher settings and effort (in seconds) was recorded

4.1.2 Streams

4.1.2.1 Outlet and Inlet Traps – Winter Lake Outlet /Narrow Lake Inlet

During the Spring survey, fish traps were installed at the outlet of Winter Lake and the inlet of Narrow Lake to determine movements (both upstream and downstream) of fish species during the ice break-up / freshet period. Northern Pike (*Esox lucius*), Slimy Sculpin (*Cottus cognatus*) and Arctic Grayling (*Thymallus arcticus*) were the targeted species in the stream sampling program.

Prior to trap deployment, a reconnaissance of the Winter Lake outlet / Narrow Lake inlet stream was conducted on May 24th to assess the most suitable location to install each trap and to evaluate site-specific conditions to custom build the traps. Sites located approximately 25 m and 50 m, downstream of the lake outlet were selected for the Winter Lake outlet trap (Photograph 2 – Appendix A) and the Narrow Lake inlet trap (Photograph 3 – Appendix A), respectively. The outlet trap location was selected due to ideal channel characteristics comprising a fast flowing riffle of a relatively consistent depth and width. The Narrow Lake inlet trap was selected due to ideal channel characteristics, whereby the braided flow pattern downstream of the trap had constricted to a single channel at this location, thereby forcing fish swimming upstream to arrive at the entrance to the trap.

The Winter Lake outlet trap consisted of a plywood box measuring $0.9 \text{ m} \times 0.6 \text{ m} \times 0.6 \text{ m}$. A flume measuring 1.7 m long by 0.3 m wide forced flow into the upstream side of the box. Water entering the box exited the box via mesh-covered windows located in the rear compartment of the box. A plywood baffle with a small fish opening separated the forward 1/3 of the trap from the rear 2/3 (Photograph 2 – Appendix A). The principle of the trap was that water hits the upper portion of the baffle, then flows underneath the baffle to the calmer rear compartment. Once fish enter the trap, they follow the water flow through the fish-opening in the baffle and remain in the calmer and darker rear compartment. The mesh-openings in the rear compartment ensure adequate oxygen supply.

The Narrow Lake inlet trap consisted of a mesh-covered, wood-framed box measuring $1.0 \text{ m} \times 0.6 \times 0.6 \text{ m}$. A circular opening measuring 0.3 m in diameter was located on the downstream side of the trap. An open-ended mesh cone measuring 0.5 m long extended up-flow from the opening into the center of the trap (Photograph 3 – Appendix A). The principle of the trap was that fish swimming up-stream enter through the mesh cone and into the trap. Once inside the trap, the homogeneous characteristics of the trap camouflage the suspended position of the end of the mesh cone, thereby disguising the escape route.

Both traps were constructed on May 25th, installed on May 26th, and removed on June 3rd. The timing of the trap installation was critical to coincide with ice break-up on Winter and Narrow lakes. It is during this period when fish migration is most likely. The traps were monitored twice daily to check for fish captures.

4.1.2.2 Electrofishing - Proposed Access Road (Nicholas Lake to Ormsby) Stream Crossing Sites

The electrofishing of the proposed access road stream crossing locations was conducted on two occasions (June 3rd and August 10th). Electrofishing was conducted using a battery-powered Smith-Root POW-15B backpack unit along a 60 m section of stream, starting 30 m downstream of the projected road crossing point. This method was used to assess species distribution and population size at sample sites. After electrofishing, the unit was

turned off and electrofisher settings and effort (in seconds) were recorded. The electrofishing areas are shown on Figure 2.

4.1.3 Biological Characteristics

All fish species collected were counted and identified to species using Scott and Crossman (1973). Biological data collection included total length, fork length (measured between the tip of the head to the fork of the tail fin) (mm), weight (g), sex, maturity, visible parasites and lesions. A sub-sample, representing existing fish population age classes from each sample location, was determined by submitting pectoral fin clips from Lake Whitefish and cleithra (jaw bone) from Northern Pike, all of which were preserved by drying. Aging structures were submitted to North South Consultants Inc. in Winnipeg, Manitoba, for age analysis.

4.1.4 Metals in Liver and Muscle Tissue

Selected fish specimens from sample sites were retained for the determination of metals content in dorsal muscle and liver tissues. Dorsal muscle tissue and liver tissue were removed and subsequently preserved by freezing in individually labelled sample containers. Occasionally a whole fish was submitted for analysis, due either to the small size of fish specimens or the lack of sufficient tissue mass for individual tissue analysis. Tissue samples were kept frozen from the time of collection, until the time of submission for analysis.

Maxxam Analytics of Burnaby, British Columbia analyzed liver and muscle tissue samples, using procedures consistent with the requirements of the appropriate regulatory agencies (i.e. CAEAL certified). A brief outline of the method follows:

The analysis of moisture in tissue was carried out gravimetrically, by drying the sample at 103 °C for a minimum of six hours. For tissue metals analysis, samples were homogenized either mechanically or manually prior to digestion. The hotplate digestion involves the use of nitric acid followed by repeated additions of hydrogen peroxide. Instrumental analysis was by atomic absorption spectrophotometry (EPA Method 7000 series), inductively coupled plasma – mass spectrometry (EPA Method 6020), and /or inductively coupled plasma – optical emission spectrophotometry (EPA Method 6010B). The digested portion was analyzed by atomic emission mass spectrophotometry (ICPMS), to achieve the required detection limit for each element (arsenic, cadmium, copper, lead, zinc, silver, tellurium and mercury).

4.2 FISH HABITAT

4.2.1 Lakes

4.2.1.1 Lake Bathymetry

Bathymetric mapping of Winter Lake was completed on August 7th and on Narrow Lake on August 8th using a Trimble Pathfinder Pro XRS TS-C1 Global Positional System (GPS) data logger and Trimble Pro XRS receiver. Lake depths were recorded using a MarineTek

1740180.004 May 2006 RT 6

SEAMAX depth sounder in combination with the Trimble data logger. An aluminium boat was used to traverse transects across and around the lake where GPS and corresponding depth data were collected. The data were then formatted using ARC/INFO to produce hard copies of lake bathymetric maps as shown in Figures 5 and 6.

4.2.1.2 Shoreline Habitat Survey

Littoral zone fish habitat surveys were conducted at Winter and Narrow lakes in accordance with the Reconnaissance (1:20,000) Fish and Fish Habitat Inventory Standards and Procedures (Lake Surveys) (RIC, 1998). Fish habitat characteristics, as well as survey sampling points were recorded directly onto field maps. GPS locations were recorded to assist with the delineation of habitat features. Field data were formatted using ARC/INFO to produce habitat feature maps as shown in Figures 3 and 4. The size of the polygons (m²) depicted on the maps is inferred rather than actual and is based on information collected in the field. Photographs included on the figures and compiled in Appendix A (Photographs 4-11) document shoreline attributes, aquatic vegetation types, and wildlife features.

4.2.1.3 Underwater Survey-Winter Lake

During 2005, to address the Department of Fisheries and Oceans (DFO) interests in the fish habitat values of Winter Lake, an underwater survey was conducted. The Winter Lake snorkel survey consisted of 12-50 m long transects, positioned at various locations around the lake, as shown in Figure 7. Transects were traversed by swimming from offshore and working towards the shore. Observations were recorded on waterproof paper and an underwater video camera was used to document the substrates, flora and any fauna present.

4.2.1.4 Lake Water Quality

Physical water quality parameters in Winter and Narrow lakes were assessed by measuring water temperature, dissolved oxygen, specific conductivity, and pH using a YSI Multi-Function Meter. Water quality profiles were taken at deep points within each lake, beginning at the surface and descending at 1.0 m depth intervals. The locations of water quality sample sites within each lake are indicated in Figures 7 and 8. Water transparency was measured to the nearest 0.1 m using a 20 cm diameter Secchi disk.

4.2.2 Streams

4.2.2.1 Stream Habitat Survey

Fish habitat characterization for four small streams crossing the proposed access road was carried out as per the *Reconnaissance (1:20,000) Fish and Fish Habitat Inventory Standards and Procedures (Stream Surveys)* (RIC, 1998). Basic habitat unit types such as pool, riffle, run, cascade, etc., were identified and noted within each stream study location. Stream channel morphology was defined using percent habitat within each sampling site (referred to as a Station); measurements or estimates of wetted width, depth, slope and substrate

composition were assessed. In addition, the composition of cover provided by overstream vegetation (OSV), undercut banks (UCB), instream large woody debris (LWD), pools and boulders were visually estimated. Riparian vegetation community structure was noted as part of the field assessment.

Each of the four stream crossing sites was assessed using a subset of stations. This involved sub-sampling the stream at 10 m intervals along a 60 m segment of each stream in the vicinity of the proposed access road stream crossing locations. The segment comprised 30 m upstream and 30 m downstream of the projected road crossing point. The furthest downstream stations were designated Station 1 with Station 7 as the most upstream stations. Each Stations 4 was presumed to be the location at which the road crossings would likely occur. Proposed access road stream crossings were accessed by helicopter. In the case of the Winter Lake outlet stream, sub-sampling was undertaken at variable interval lengths (dependent on changes in stream morphology) along the entire length of the stream (165 m).

4.2.2.2 Stream Water Quality

The physical properties of the water measured in the streams included water temperature, dissolved oxygen, specific conductance, and pH. These properties were measured at each sample station using a calibrated YSI Multi-Function Meter.

4.3 QUALITY ASSURANCE AND QUALITY CONTROL (QA/QC)

Strict quality assurance/quality control procedures were adhered to during field sampling. All sampling methodologies followed accepted professional standards and practices.

4.3.1 Field Procedures

QA/QC procedures for the Fisheries Program were employed to maintain a high degree of data quality. The following is a list of the main procedures adapted from Environment Canada (1993).

- All personnel involved in field procedures were qualified for the tasks and work undertaken, and were supervised by a qualified Professional Biologist (R.P. Bio.);
- All sampling was consistent throughout the program;
- All samples were collected following the most appropriate method and sample quality was maintained to the highest standard;
- Sampling equipment was the most appropriate for the particular habitat, and was in good working order;
- All samples were labelled appropriately with the site reference, date collected, and sample type;
- All samples were appropriately preserved where necessary;

- Field personnel maintained detailed field notes for future reference; and
- Field personnel followed appropriate safety guidelines for conducting fieldwork and ensured all samples were shipped in the appropriate containers following the appropriate shipping guideline.

4.4 EMERGENCY RESPONSE

All personnel operating equipment such as boats, electrofishers, deploying nets, fish dissection, etc., have appropriate academic and professional experience with the use of such equipment. Mr. Cavanagh and Mr. Abercrombie hold valid Level 1 Emergency First Aid tickets. All crew members kept bear spray in their possession while in the field away from camp and were familiar with local natural hazards in the project area.

5.0 RESULTS

5.1 FISH POPULATIONS

Fish population parameters evaluated within lakes sampled during the 2005 summer survey included fish species composition, abundance, and distribution. Fish species composition data and biological information are summarized in Table 1. Meristics for fish collected by gillnet in Winter and Narrow lakes are included in Appendix B. No fish were collected in the minnow traps in either lake. The trap set times are shown in Appendix C. Fish catch-per-unit-effort (CPUE) data are quantified and presented in Table 2. Fish collected by gillnet were limited to a small number of juvenile Northern Pike (*Esox lucius*) in Winter Lake. In Narrow Lake, Lake Whitefish (*Coregonus clupeaformis*) and Northern Pike were captured, while juvenile Northern Pike and Slimy Sculpin (*Cottus cognatus*) were captured in the inlet and outlet traps.

5.1.1 Fish Habitat Requirements

The following section summarizes the habitat requirements for the three principle fish species captured in the 2005 field program. The information presented is referenced from Scott and Crossman (1973) and the review of habitat stability reports produced by the U.S. Department of the Interior, fish and Wildlife Service for Northern Pike (1982).

5.1.1.1 Northern Pike

In northern lakes, Northern Pike spawn shortly after ice-out in May and June (EBA 2001). Preferred water temperatures during spawning range from 4.4 °C to 11.1 °C with eggs hatching 12 to 14 days after fertilization. Mature pike migrate into tributaries or flooded marshes and wetlands or along sedge dominated shorelines in water depths less than 0.2 m. The eggs are highly adhesive and are laid within stands of sedges and between hummocks of vegetation (Scott and Crossman 1973).

Northern Pike are opportunistic carnivores, primarily preying upon other fish, however, they are also known to feed on amphibians, aquatic birds, muskrats and mice. Pike prefer

clear, warm, slow, meandering rivers or quiet lakes with dense vegetation cover. Favorable foraging and rearing habitat of young pike are areas dominated by submergent and emergent plants with 40% to 90 % cover (Casselman and Lewis 1996).

5.1.1.2 Lake Whitefish

Lake Whitefish are bottom feeders, preying largely on mayfly larvae, chironomids, mollusks, small fish, and the eggs of other fish such as lake trout. Foraging activity is typically concentrated along rocky substrates at the base of prominent drop-offs. Predators of Lake Whitefish include lake trout and Northern Pike, while the eggs are commonly foraged upon by burbot and sculpins (Scott and Crossman 1973).

Lake Whitefish typically spawn in the fall between late September and October. During spawning, eggs are distributed over small cobble/gravel lake shoals or at river mouths. Preferred shoals have depth ranges from 3.5 m to 10 m, and are located in areas exposed to good water circulation. Ideal spawning locations are not influenced by lake water level fluctuations in which eggs may become exposed to the air or freeze over winter. Optimal shoal gradients required for the cleaning of substrate and aeration of eggs is approximately 10-25° (EBA 2001; Golder 1997). Spawning is carried out when water temperatures reach 4.5°C (40°F). The dispersal of eggs varies in number from 2,400 to 10,000 and is dependent on the size of the fish. The development of the embryos occurs over a period of 140 days.

5.1.1.3 Slimy Sculpin

Slimy Sculpin are spring spawners. They prefer angular gravel, cobble, boulders and/or submergent tree roots to attach egg mass. Sculpins prefer moderate to swift water flows over riffles, clear water and stable banks with minimal erosion. Slimy Sculpin rear and overwinter in deep pools with gravel and/or cobble for refuge. Slimy Sculpin favour undercut banks, clear water and stable banks with minimal erosion. Suitable dissolved oxygen levels are important for overwinter survival (Scott and Crossman 1973).

Slimy Sculpin typically do not exhibit significant seasonal migrations. All life stages are generally present in a stream. The presence of large numbers of sculpin of all age-classes in a stream is considered strong evidence of winter flows of consistently sufficient water quality and quantity to support fish.

5.1.2 Relative Abundance, Distribution and Species Composition

This section discusses fish species composition, abundance, and distribution within the Winter Lake outlet - Narrow Lake inlet stream and Winter and Narrow lakes sampled during the 2005 spring and summer surveys. Fish species composition data and biological information are summarized in Table 1. Meristics for fish collected by gillnet in Winter Lake and Narrow Lake are included in Appendix B. Fish catch-per-unit-effort (CPUE) is quantified in Table 2. Fish species collected by gillnet were limited to Northern Pike, and Lake Whitefish. Fish species collected by stream traps include Slimy Sculpin and juvenile Northern Pike.

5.1.2.1 Winter Lake Outlet - Narrow Lake Inlet Stream

The Winter Lake outlet trap captured no fish during the spring sampling period (Appendix D). However, on May 29^{th} , an adult Northern Pike (~ 40 cm long) was observed swimming into the inlet flume of the trap and then exiting immediately. Efforts to capture this fish in the stream channel were unsuccessful.

The Narrow Lake inlet trap yielded nine (9) fish in total. Four (4) immature Northern Pike and five Slimy Sculpin (see Table 1 for details). Photograph 12 shows two juvenile Northern Pike and one Slimy Sculpin. All fish were caught between May 30th and June 3rd, 2005.

5.1.2.2 Winter Lake

In Winter Lake, Northern Pike (juveniles) was the only fish species captured, representing 100% (10 individuals). Fishing effort on Winter Lake involved the deployment of two floating and two sinking gillnets over two days (August 6 and 7). The floating gillnet sets captured two of the juvenile pike, while the sinking gillnets captured the other eight pike. Baited minnow traps set in Winter Lake did not result in the capture of any fish.

5.1.2.3 Narrow Lake

In Narrow Lake, Lake Whitefish were the most common fish species captured by gillnet representing 90.5% (96 individuals) of all fish collected. The floating gillnet set captured 32 Lake Whitefish, while the sinking gillnet set captured 64 lake whitefish. The remaining 10.8% of fish collected (10 individuals) in Narrow Lake consisted of Northern Pike, one captured by floating gillnet and nine by sinking gillnet. Baited minnow traps set in Narrow Lake did not result in the capture of any fish. minnow traps did not capture any fish.

5.1.2.4 Proposed Access Road (Nicholas Lake to Ormsby) Stream Crossing Sites

Figure 2, shows the stream crossing locations along the proposed Nicholas Lake to Ormsby access road. At Site 1, no fish were observed and no fish were captured after an electrofishing effort of 217 seconds. At Site 2 during a fishing effort of 202 seconds, no fish were caught or observed. At Site 3 during a fishing effort of 125 seconds, no fish were caught or observed. At Site 4 during fishing effort of 198 seconds, no fish were caught or observed. At Site 4 during fishing effort of 198 seconds, no fish were caught or observed. At Site 4 during fishing effort of 198 seconds, no fish were caught or observed. Photographs 13-16 depict the conditions at each of the sites.

5.1.3 Biological Characteristics

This section discusses the biological characteristics of fish collected in Winter and Narrow lakes in the summer of 2005 (Table 1). Meristics for fish collected by gillnet in Winter and Narrow lakes are included in Appendix B. The following section discusses the biological characteristics of the fish collected from each water body. Appendix E presents the fish age data

5.1.3.1 Winter Lake Outlet Stream

In the Winter Lake outlet stream, all fish captured were migrating upstream from Narrow Lake (Narrow Lake inlet trap). The 4 Northern Pike captured ranged in size from 10.6 to 13.6 cm (total length) and weighed 5.0 to 12.0 grams. The 9 Slimy Sculpins captured ranged in size from 6.0 to 7.6 cm and weighed 2.0 to 4.0 grams.

5.1.3.2 Winter Lake

Length measurements for the 10 juvenile Northern Pike captured in Winter Lake ranged from 15.5 cm to 55.4 cm. Weights ranged between 22 g to 1,293 g, and ages ranged from age-1+ year class to age 3+ year class. Eight of the juvenile pike collected in Winter Lake were captured in the sinking gillnets positioned in the deeper areas of the lake in the northern basin, while 2 were captured in the floating gillnets. Stomach contents of two Northern Pike dissected from the Winter Lake catch consisted solely of invertebrates (aquatic insects). No evidence of fish consumption was found in the stomach contents of the dissected pike.

5.1.3.3 Narrow Lake

Length measurements obtained for the 96 Lake Whitefish captured in Narrow Lake ranged from 16.0 cm to 50.0 cm. Weights ranged between 16 g and 1,350 g and ages ranged from age-4+ year class to age 19+ year class of age. Of the 96 Lake Whitefish collected in Narrow Lake, 64 were captured by the sinking gillnets positioned in the deeper area of the lake (water depth of ~ 12 m).

Length measurements obtained for the 10 Northern Pike captured in Narrow Lake ranged from 20.9 cm to 76.0 cm. Weights ranged between 47 g and 3,000 g, and ages ranged from age-4+ year class to age 12+ year class. Of the 10 Northern Pike collected in Narrow Lake, nine were captured by the sinking gillnets positioned in the deeper areas of the lake. The stomach contents of a single Northern Pike that was dissected from the Narrow Lake (NP3) catch consisted of a 30.5 cm long whitefish.

5.1.4 Metals in Liver and Muscle Tissue

This section presents the results of analysis for tissue samples obtained from fish collected during the 2005 spring and summer surveys. Tissue metal levels for fish species sampled from Narrow and Winter lakes, and the Winter Lake outlet stream, are presented in Tables 3a-c. Appendix F presents the lab analysis data for metals in fish tissues.

As would be anticipated, older fish were observed to contain higher levels of metals than younger specimens. In both lakes sampled, levels for most metals including cadmium, chromium, lead, nickel, silver or zinc were low, and in many cases, were below detection limits.

All metal concentrations for fish liver and muscle tissue were below US Environmental Protection Agency (US EPA 2006) metal concentrations in fish tissue for human health risk

1740180.004

11

(0.02 ppm of arsenic, 1.4 ppm of cadmium, 4.1 ppm of chromium, 5.4 ppm of copper, 410 ppm of iron, 6.8 ppm of selenium, 6.8 ppm of silver, and 410 ppm of zinc).

5.1.4.1 Winter Lake Outlet Stream

In the Winter Lake Outlet Stream all fish captured leaving Narrow Lake (Narrow Lake inlet trap) were submitted whole (due to their small size) to Maxxam Analytics for metals analysis. All fish contained mercury levels well below the Health and Welfare Canada restrictive consumption level of 0.5 ppm. The mean mercury level for Slimy Sculpin was 0.132 ppm, while the level in juvenile Northern Pike was 0.115 ppm. The mean zinc level for Slimy Sculpin was 25.2 ppm while for Northern Pike it was 41.4 ppm. The mean copper level for Slimy Sculpin was 1.820 ppm while for Northern Pike it was 1.825 ppm. Cadmium and lead were detected marginally above the analytical detection limit in two Slimy Sculpin; otherwise these metals were below the detection limit in all other fish.

5.1.4.2 Winter Lake

Muscle tissue from the juvenile Northern Pike captured in Winter Lake only recorded detectable levels of zinc, chromium and mercury. Mean zinc levels were 10.8 ppm, while mean mercury levels were 0.34 ppm and mean chromium was 1.0 ppm. Most of these fish were aged at 3+ years.

Liver tissue from the juvenile Northern Pike in Winter Lake recorded detectable levels of zinc, copper, mercury, silver, selenium and chromium. Mean zinc levels were 37.56 ppm, mean mercury levels were 0.14 ppm and mean copper was 23.56 ppm. Mean levels of chromium, selenium and silver were 1.0 ppm, 1.03 ppm, and 0.7 ppm, respectively.

5.1.4.3 Narrow Lake

Muscle tissue from Northern Pike in Narrow Lake recorded detectable levels of zinc and mercury. Trace levels of lead, copper and arsenic were also detected. Mean zinc levels were 9.14 ppm, while mean mercury levels were 0.98 ppm. Tissues from three out of four Northern Pike analyzed from Narrow Lake exceeded the restrictive consumption level 0.5 ppm for mercury. Both lead and arsenic were detected in only two of the large fish sampled (specimens - NP1 and NP5). Copper was detected in one fish (NP1). These fish were aged between 4+ and 12+ years.

Liver tissue from Northern Pike in Narrow Lake recorded detectable levels of zinc, silver, selenium, copper and mercury in all fish sampled. Mean zinc levels were 81.50 ppm, mean silver levels were 0.10 ppm, mean selenium was 1.18 ppm, mean mercury was 0.92 ppm, and mean copper was 9.2 ppm.

Muscle tissue from Lake Whitefish in Narrow Lake recorded detectable levels of zinc and mercury in all fish, while chromium was detected in 5 of the 9 fish sampled. Copper and selenium were both only detected in one (1) fish (specimen - WF51). Mean zinc levels were 15.16 ppm, while mean mercury levels were 0.59 ppm, exceeding the restrictive consumption level for mercury of 0.5 ppm. Mean chromium was 1.0 ppm. Copper and

selenium levels in specimen - WF51 were relatively high at 8.5 ppm and 3.1 ppm respectively. These fish were aged between 4+ and 19+ years.

Liver tissue from Lake Whitefish in Narrow Lake recorded detectable levels of zinc, selenium, mercury and copper in most fish sampled, while silver, chromium, cadmium and arsenic were detected in fewer fish. Mean zinc levels were 25.38 ppm, mean selenium levels were 1.56 ppm, mean mercury levels were 0.82 ppm and mean copper was 7.20 ppm. Mean levels of silver, chromium, cadmium and arsenic were 0.11 ppm, 1.00 ppm, and 0.08 ppm, and 0.35 ppm, respectively.

5.2 FISH HABITAT

This section presents the results of fish habitat surveys conducted during field studies undertaken on Winter and Narrow lakes in the spring and summer of 2005 at Winter and Narrow lakes. (Appendices G and H). A summary of lake biophysical features including morphology, shoreline characteristics, fish habitat, vegetation, bathymetry and substrate follows and are presented in Figures 3 and 4. Lake bathymetry maps for Winter and Narrow lakes are presented in Figures 5 and 6.

5.2.1 Winter Lake Outlet Stream

The habitat assessment of Winter Lake outlet stream was conducted on May 29th (Appendix G). The south flowing watercourse measures 165 m in length. The elevation at the outlet is approximately 279 m, while the elevation at the inlet to Narrow Lake is approximately 277 m.

Moving downstream, the first 50 m of the stream had a well-defined channel consisting of glides, riffles and small pools. The substrate consisted of gravel and organic sediments with the occasional boulder. The average wetted width of this reach was 3.0 m with an average depth of 35 cm. The minimal vegetation cover along the stream consisted predominantly of overhanging root wads. The minor instream vegetation in this reach consists of sedges and grass. Riparian vegetation of birch, (*Betula* sp.) willow (*Salix* sp.) and Labrador tea (*Ledum groenlandicum*) provide moderate canopy for leaf and insect drop.

From 50 m downstream of the outlet to the inlet of Narrow Lake, the stream becomes braided with no defined channel. Much of the flow path at the time of the assessment was among the riparian vegetation and over the winter road access. The riparian vegetation from 50 to 100 m downstream of the outlet primarily consists of Birch and Willow. The riparian vegetation near Narrow Lake is predominantly Willow. As the stream approaches Narrow Lake, the floodplain (total wetted width) widens to 10 m to 25 m. The stream bottom substrate consisted predominantly of organic fines.

5.2.2 Winter Lake

An assessment of shoreline habitat features for Winter Lake was completed during the summer sampling survey. Winter Lake habitat features are presented in Figure 3 and illustrated in Photos 4-8.

Winter Lake is located approximately 0.8 km southwest of the YGP Camp (Figure 1). Winter Lake is approximately 1.74 km in length and 620 m in width and is characterized by two shallow basins. The lake has a total surface area of 69.2 ha. The inlet to Winter Lake drains from Round Lake, while the outlet from the lake drains to the west into Narrow Lake.

5.2.2.1 Shoreline Habitat

The vegetation cover surrounding Winter Lake consists of black spruce (*Picea mariana*), dwarf birch (*Betula* sp.) and willow. Shoreline vegetation consists of buckbean, (*Menyanthes trifoliata*), sweetgale (*Myrica gale*), scouring rush (*Equisetum hyemale*) and floating mats of water sedge (*Carex aquatalis*) and beaked sedge (*Carex utriculata*). Winter Lake was observed to have a diverse community of aquatic macrophytes. The shallow littoral zone of the lake includes yellow water lily (*Nuphar lutea*), large-leaved pondweed (*Potamogeton epihydrus*), water smartweed (*Polygonum amphibium*) and hard-stem bulrush (*Scirpus validus*). The deeper littoral zone (>1.0 m) supports submergent stands of water milfoil (*Myriophyllum* spp.), Richardson's pondweed (*Potamogeton richardsonii*), and muskgrass (*Chara* spp.). Several small shrub wetlands connect to the shoreline along the south basin.

5.2.2.2 Bathymetry

The bathymetric survey of Winter Lake indicated a maximum lake depth of 6.0 m located in the north basin. Bathymetric data confirmed that the south basin is very shallow and does not exceed 2.0 m in depth (Figure 5). Bottom substrates in the north basin consisted of bedrock and coarse material along the shoreline, and fine organic sediments in the offshore areas of the lake. The substrate in the shallow southern basin consisted predominantly of fine organic material and silt.

5.2.2.3 Underwater Survey - Winter Lake

Twelve snorkel transects, approximately fifty metres in length were surveyed and in most cases were perpendicular to the shoreline (Figure 7, Appendix H). While effort was made to select transects with varying habitat types, most transects had similar habitats. Generally, from 50 m from shore to 10-15 m from shore, the substrate consisted of 100% soft organic silt. From 10-15 m to shore, substrates generally consisted of either gravels, cobble or boulders and various submergent and emergent vegetation were present close to shorelines.

The soft organic material on the lake bottom often emitted gas bubbles having a strong odour of ammonia and hydrogen sulphide when disturbed. The levels of ammonia were being caused by ammonification of large quantities of coproprel or "loon ooze" at or near the bottom of the lake. In some places the loon ooze is up to two metres deep and is a common feature in lakes in the region. Ammonification is the production of ammonia from organic nitrogenous compounds through decomposition of dead material and the metabolism in living organisms (Cole 1983). Coproprel is a term used to describe a mixture of humus material, fine plant fragments, algae remains, grains of quartz and mica, diatom frustules, exoskeleton fragments from aquatic arthropods, and spore and pollen relics (Cole

1983). The free hydrogen sulphide was being liberated by the anoxic organic sediments characteristic of the area.

A video record of the snorkel survey was taken and is included with this report as a DVD. However, unfortunately the video provides limited visual information due to the shallow turbid water and the presence of fine organic substrates that were easily suspended.

Significantly, no fish or clams or any signs of these biota were observed on any of the twelve underwater transects surveyed in Winter Lake.

5.2.3 Narrow Lake

An assessment of shoreline habitat features for Narrow Lake was completed during the summer sampling survey. Narrow Lake habitat features are presented in Figure 4 and illustrated in Photos 9-11.

Narrow Lake is located approximately 2.2 km southwest of the YGP Camp (Figure 1). The lake, consisting of two basins, is approximately 1.4 km in length and 200 m in width. Narrow Lake has a surface area of 24.9 ha. The inlet to Narrow Lake is connected to Winter Lake. The principal outlet from Narrow Lake is located at the southeast end of the lake and drains south into a small un-named lake approximately 100 m to the southwest.

5.2.3.1 Shoreline Habitat

The vegetation cover surrounding Narrow Lake consists of black spruce, paper birch (*Betula papyrifera*), jack pine (*Pinus banksiana*), and willow. Shoreline vegetation includes dwarf birch, sweetgale, and willow. Several wetlands exist along the edge of Narrow Lake. The complexity of wetlands observed along the margins of the lake includes open fens dominated by water sedge; fen/swamps dominated by dead spruce and birch and water plantain (*Alisma plantago-aquatica*); and fen/bogs dominated by dwarf birch, sphagnum moss and Labrador tea. Shallow littoral plants include yellow water lily, scouring rush, and burreed (*Sparganium* sp.), while deeper littoral plants include water smartweed and water milfoil.

5.2.3.2 Bathymetry

The bathymetric survey of Narrow Lake indicated a maximum depth of 13 m located in the southwest basin of the lake (Figure 6). This depth was recorded in a deep hole with a relatively steep gradient. Another deep hole of 10 m was identified in the northeast basin. While rocky bottom substrates were identified within the southern portion of the lake, the bottom substrate within the majority of Narrow Lake consists of fine organic material and silt.

5.2.4 Proposed Access Road Stream Crossing Sites

The habitat assessments of the streams along the proposed access route were conducted on May 27th, 2005. The assessment sites were designated as stream Sites 1 through 4 and are

depicted in Figure 2. Stream sites 1 and 2 were located on inlet streams to Eclipse Lake. The existing winter road crosses these streams at the most likely location of the proposed access road. Stream Site 3 was located on an inlet stream to an un-named lake, while stream Site 4 was located on an inlet stream to Giauque Lake (see Photos 13-16).

5.2.4.1 Stream Site 1

This north-flowing watercourse is the outlet of a small, un-named lake. The upstream stations were within a well-defined channel consisting of riffles and small pools. The substrate consisted of organics with some silt. The average wetted width of this reach was 7.0 m with an average depth of 42 cm. Cover amounted to approximately 50%, which consisted of instream vegetation such as sedge grass (*Carex* sp.), and willow (*Salix* sp.). Riparian vegetation was predominantly willow (*Salix* sp.), tamarack (*Larix laricina*) and spruce (*Picea mariana*) and provided moderate canopy for leaf and insect drop.

Downstream of this reach, the channel turned westward along the alignment of the proposed access route for approximately 30 m, where it then turned north and flowed toward Eclipse Lake (Photograph 13). The linear reach along the proposed access route had a wetted width of 5 m and a depth of 25-30 cm. There was substantially reduced cover within this reach that is provided entirely by instream vegetation consisting of sedge and willow. The reach downstream of the winter road consisted of braided channels with a wetted width of 12 m. Instream vegetation consisted of sedge and willow and provides approximately 75% cover.

5.2.4.2 Stream Site 2

This north-flowing watercourse is the outlet of a small, un-named lake. All stations were located within a well-defined channel consisting of riffles, glides and pools. The substrate consisted of organics with some silt. The wetted width ranged from 2.4 m within the riffle sections to as much as 10.5 m at the largest pool. The depth ranged from 17 cm in riffle areas to 45 cm in one of the pools. Cover varied from as little as 20% to as much as 70% and consisted of instream vegetation and some woody debris. Riparian vegetation consisted predominantly of willow, tamarack and spruce and provided moderate canopy for leaf and insect drop. Photograph 14 depicts stream Site 2 at the crossing point of the existing winter road.

5.2.4.3 Stream Site 3

This southeast-flowing watercourse is the outlet of a small, un-named lake. All stations were located within a poorly defined channel. The upstream stations were located on a flat plateau, while the downstream stations were located on a significant slope (8 degrees). The upstream stations consisted of braided channels and pools with organic substrate. The wetted width ranged from 4.3 to 13.8 m and the depth ranged from 10 to 30 cm. The cover ranged from 60 to 90 % and was provided by instream vegetation comprising sedge and willow. The sparse riparian vegetation consisted of spruce and Labrador tea. The downstream stations consisted of braided, shallow riffles. The wetted width ranged from

3.9 to 6.9 m and the depth ranged from 9 to 12 cm. The cover ranged from 60 to 90% and was provided by instream vegetation comprising sedge and willow. The sparse riparian vegetation consisted primarily of birch. The substrate consisted of organics. Cover varied from 50% to 60% and consisted of instream sedge (Photograph 15).

5.2.4.4 Stream Site 4

This east-flowing watercourse is the outlet of a small, un-named lake. All stations were located within an undefined, highly braided channel near the inlet to Giauque Lake. A significant amount of ice and snow remained at this location at the time of the survey, thereby making it difficult to determine the true channel. Much of the flow within the assessed section of the stream was above the stream bank and among the riparian vegetation. The wetted width ranged from 13.1 to 40 m and the depth ranged from 15 to 26 cm. The cover ranged from 40 to 90% and was provided by cobble and instream vegetation comprising willow. The riparian vegetation consisted of spruce, willow, birch and Labrador tea and provided good canopy for leaf and insect drop (Photograph 16).

5.3 WATER QUALITY

Physical water quality parameters measured during the spring and summer 2005 field studies for Winter and Narrow lakes, the Winter Lake outlet – Narrow Lake inlet stream and the four stream crossing sites along the proposed access road, are summarized in the following section. Water quality parameters recored include water temperature, dissolved oxygen, specific conductivity, and pH. The sample locations are shown in Figures 7 and 8. The physical water quality data collected for Winter and Narrow lakes and dissolved oxygen and temperature profiles for Narrow Lake and Winter Lake are presented in Appendix I.

5.3.1 Winter Lake Outlet – Narrow Lake Inlet Stream

Physical water quality parameters were recorded during the spring sampling period in the Winter Lake outlet - Narrow Lake inlet stream. Measurements were taken daily between May 28 and June 3, 2006, while the fish traps were in place. Stream water temperatures ranged from 6.3 °C on May 28 to 10.4 °C on June 3. Specific conductivity and pH were constant at around 200 μ S/cm and pH=7.0, respectively.

5.3.2 Winter Lake

During the summer sampling session, physical water quality parameters were measured at two locations in Winter Lake, one location in the deep area near the north end of the lake and one location in the more shallow southern area of the lake (See Figure 7 for sampling locations).

At the north end of Winter Lake, water temperatures ranged from 15.8°C at 1 m to 15.2°C at a depth of 6 m. Dissolved oxygen (DO) ranged from a high of 8.98 mg/L at a depth of 1 m to 7.94 mg/L at a depth of 6 m. Water column temperature and DO profiles for Winter Lake are provided in Appendix I. Specific conductivity was recorded at

196.0 μ S/cm at 1 m and 194.5 μ S/cm at 6 m. Secchi depth was recorded at 2.0 m. Due to the generally shallow nature of Winter Lake, no thermocline was observed in the water column of this lake.

5.3.3 Narrow Lake

Physical water quality parameters were measured in two locations in Narrow Lake, one location in the deep portion in the northeast portion of the lake and one location in the deep portion at the southwest end of the lake (See Figure 8 for sampling locations).

At the northeast sampling location on the lake (Station 1) water temperature ranged from 15.8°C at 1 m to 4.7°C at a depth of 11 m. DO ranged from 8.78 mg/L at 1 m to 0.02 mg/L at 11 m depth. Water column temperature and DO profiles for Narrow Lake are provided in Appendix I. Specific conductivity was recorded at 134.0 μ S/cm at 1 m and 95.5 μ S/cm at 11 m depth. Secchi depth was recorded at 3.66 m. At the time of the study, the thermocline in this basin of Narrow Lake was located at a depth of 6 m (Appendix I).

At the southwest sampling location on the lake (Station 2) water temperature ranged from 15.7 °C at 1 m depth to 9.5 °C at a depth of 9 m. DO ranged from 8.67 mg/L at 1 m to 1.1 mg/L at a depth of 9 m. Specific conductivity was recorded at 133.8 μ S/cm at 1 m and 132.4 μ S/cm at 9 m depth. Secchi depth was recorded at 3.47 m. The thermocline depth in this basin of Narrow Lake was located at a depth of 7 m (Appendix I).

5.3.4 Proposed Access Road Stream Crossing Sites

Physical water quality parameters were measured at all four locations along the proposed access road on May 27 and June 3, 2006 (Appendix I).

At Site 1, water temperatures ranged between 3.1 °C and 4.9 °C on May 27, while on June 3 at the same location temperatures ranged between 7.25 °C and 7.35 °C. Dissolved oxygen values on May 27 ranged from 8.38 mg/L to 9.7 mg/L, while conductivity ranged from 0.01 μ S/cm and 0.04 μ S/cm.

At Site 2, water temperatures ranged between 6.7 °C and 7.1 °C on May 27, while on June 3 at the same location temperatures ranged between 12.4 °C and 12.5 °C. Dissolved oxygen values on June 3 ranged from 6.55 mg/L to 6.77 mg/L, while conductivity ranged from 0.04 μ S/cm for all stations on May 27.

At Site 3, water temperatures were between 4.3 °C and 6.4 °C on May 27, while on June 3 at the same location temperatures were between 5.0 °C and 6.9 °C. Dissolved oxygen values on June 3 ranged from 5.53 mg/L to 10.04 mg/L, for all stations on May 27. pH was also recorded at Site 3 and ranged from 5.54 to 5.97.

At Site 4, temperatures were between 0.5 °C and 1.0 °C on May 27, while on June 3 at the same location temperatures were between 1.8 °C and 2.4 °C. Dissolved oxygen values on June 3 ranged from 12.9 mg/L to 13.1 mg/L, while conductivity ranged from 0.00 μ S/cm and 0.02 μ S/cm on May 27.

6.0 **DISCUSSION AND CONCLUSIONS**

6.1 FISH PRESENCE AND MIGRATION

Limited fish presence was confirmed in Winter Lake during the 2005 field survey. There exist a number of limiting factors in terms of the capacity of Winter lake to sustain fish populations. This is evidenced by the difference in the age and size demographics between Winter Lake and Narrow Lake Northern Pike populations. In Winter Lake, all fish caught were less than age 3+ years, however compared to the pike from Narrow Lake, Winter Lake pike were very large for their age. Narrow Lake sustains a population of Northern Pike that exhibits varying age classes (one age 12+ fish was caught).

The only potential path of fish migration into Winter Lake is from Narrow Lake via the Winter Lake outlet stream. During spring freshet, this stream is highly braided, shallow and generally ice-covered toward its confluence with Narrow Lake. These factors likely act as barriers to migration for larger size classes of fish. However juvenile Northern Pike are small enough to navigate the small braided and diffuse channels.

The Narrow Lake inlet trap installed in the spring confirmed that juvenile Northern Pike are able to migrate from Narrow Lake to Winter Lake at that time. Once the young pike access Winter Lake, the warm water and invertebrate food sources in this lake during summer appear to enable the young fish to grow rapidly. However, once the pike reach a certain size, they require larger prey items such as forage fish to sustain growth and they must either migrate back to Narrow Lake, if possible (i.e., during freshest when there is sufficient water) or perhaps perish as "Winterkill" due to the low dissolved oxygen concentrations present throughout the winter period.

6.2 WINTER LAKE

Due to the naturally shallow nature of most of Winter Lake and particularly the southern basin, most of the lake is expected to freeze to or near the lake bottom during most winters. In shallow lakes DO levels are typically lower, and DO levels in the water column reduce as winter progresses often resulting in low DO levels lethal to most fish species. Lakes shallower than approximately 4 metres depth, typically consume water column DO before spring and hence what is known as "Winterkill" occurs (Welch 2000).

While Winter Lake does provide shallow vegetated bays that may be suitable for the seasonal spawning and rearing of Northern Pike, the lake lacks the course substrates and deep-water habitat complexity preferred by other species of fish occurring in the YGP study area.

The assessment of the seasonal fish population in Winter Lake resulted in the capture of only a limited number (10) of juvenile Northern Pike. Stomach contents of two of the juvenile pike dissected from the Winter Lake catch consisted solely of invertebrates (aquatic insects). No evidence of fish consumption was found in the stomach contents of the

1740180.004

19

dissected pike, providing further confirmation of the limited seasonal utilization by fish of the aquatic habitat present in Winter Lake.

Winter Lake also continues to be impacted by runoff from Round Lake that has been previously impacted by historic tailings deposits from the former Discovery Mine and discharges from the INAC clay pit treatment system.

Overall, the 2005 investigations have confirmed that Winter Lake provides poor habitat conditions for aquatic life.

6.3 NARROW LAKE

The assessment of the Narrow Lake fish population resulted in the capture of a large number of Lake Whitefish and several Northern Pike. The margins of Narrow Lake provide adequate emergent and submergent vegetation suitable for Northern Pike. Based on the considerable number of Lake Whitefish captured in Narrow Lake and their excellent condition, whitefish are thriving and the lake provides suitable habitat for the rearing, spawning, and overwintering of this species.

However the lake appears to lack rocky shoals and submerged reefs that provide necessary spawning and rearing habitat for lake trout, cisco and arctic grayling.

6.4 STREAM CROSSINGS ALONG PROPOSED ACCESS ROAD

No fish were captured or observed at the stream crossings along the proposed access road during two electrofishing campaigns conducted on June 3rd and August 10th, 2005. On this basis, it is likely that these streams are not fish-bearing.

Potential fish habitat conditions varied at the four proposed access road stream crossing locations. Sites 1 and 2 consist of defined, slow flowing channels (with the exception of where the existing winter road alignment has resulted in a segment of a diffuse unconfined flow at Site 1). The stream at Site 3 drains a small lake and had minimal, unconfined flow at the time of the survey. The upper portion of the stream was located on a plateau while the lower portion drops at a relatively steep gradient to its confluence with an un-named lake. The stream at Site 4 consists of a wide, braided channel near its confluence with Giauque Lake. Overland flow within the riparian zone was observed during the spring survey. This flow had resulted from ice build-up within the channel in the lower portion of the stream.

7.0 CLOSURE

EBA is pleased to present Tyhee NWT Corp. with this 2005 Fisheries and Aquatic Resources report for the Yellowknife Gold Project. We hope everything is found to be satisfactory. If there are questions or if EBA can be of further assistance, please do not hesitate to contact us.

Respectfully submitted, EBA Engineering Consultants Ltd.

Prepared by:

Myllowmaph

Nigel Cavanagh, M.Sc., R.P.Bio. Environmental Consultant

1740180.004

Tim Abercrombie, M.Sc. Environmental Scientist

Reviewed by:

Richard Couture, R.P.Bio. Senior Environmental Scientist

illtop P

Richard Hoos, M.Sc., R.P. Bio. Principal Consultant

REFERENCES

- Casselman, J.M. and Lewis, C.A. 1996. Habitat Requirements of Northern Pike (ESOX lucius). Canadian Journal of Aquatic Sciences, 53: pp161-174.
- Cole, G.A. 1983. Textbook of Limnology. Third Edition. The C.V. Mosby Company. Toronto, Ontario.
- Department of Fisheries and Oceans (DFO) and B.C. Ministry of Environment (MOE), 1989. Fish Habitat Inventory and Information Program - Stream Survey Field Guide. Vancouver, British Columbia, p.33.
- EBA Engineering Consultants Ltd., 2002. Fisheries Studies (2001), DeBeers Canada Exploration -Gahcho Kue. FINAL REPORT. July 2002.
- EBA Engineering Consultants Ltd. 2005. Yellowknife Gold Project, Project Description Report. Prepared by EBA Engineering Consultants Ltd. for Tyhee NWT Corp., Yellowknife, NWT. March 2005.
- Environment Canada, 2002. Canadian Environmental Quality Guidelines. Summary Table. December 2003. 12 pp.
- Environment Canada, 1993. Guidelines for Monitoring Benthos in Freshwater Environments. Consultant report prepared for Environment Canada, North Vancouver, B.C. 81 pp.
- Environment Canada, 1998. Pulp and Paper EEM Technical Guidance Document. Ottawa. pp. 649 - 666.
- Golder, 1997. Bathymetric Maps of the North and South Basin of Gahcho Kue (Kennedy Lake).
- Hale, Starling and Jasper, 1979. Investigation of Mercury Contamination in Giauque Lake, NWT. DIAND Unpublished Report. Yellowknife, NWT.
- Health and Welfare Canada, 2002. Canadian Food Inspection Agency, Food Safety Facts on Mercury and Fish Consumption. May 2002.
- Inskip, P.D. 1982. Habitat Suitability Index Models: Northern Pike. Fish and Wildlife Services, US Department of the Interior. FWS/OBS-82/10.17. pp.29.
- Marshall, T.R. 1996. A Hierarchical Approach to Assessing Habitat Suitability and Yield Potential of Lake Trout. Canadian Journal of Aquatic Science Vol. 53: pp 332-341.
- Merritt, R.W. and Cummins. 1989. An Introduction to the Aquatic Insects. 2nd ed. Kendall/Hunt Publishing Company, Iowa, p. 722.
- Moore, J.W., Sutherland, D.J. Wheeler, S.J. and Beaubien, V.A. 1978. The Effects of Abandoned Metal Mines on Aquatic Ecosystems in the Northwest Territories I. Discovery Mine. Northwest Region, Environmental Protection Service, Fisheries and Environment Canada. Report EPS 5-NW-78-7. June 1978.

1740180.004

22

- Norecol Environmental Consulting Ltd., 1990. Environmental Update Report for the Nicholas Lake Project, Northwest Territories. Prepared for Athabaska Gold Resources Ltd.
- North Slave Métis Alliance. 1998. Discovery Mine Tailings Remediation. Initial Reconnaissance Survey. April 1998.
- North Slave Métis Holdings Ltd. and Gartner Lee Limited. 2002. Discovery Mine, Northwest Territories, 2001 Environmental Monitoring Program. Prepared for Public Works and Government Services Canada
- Pennak, R.W. 1978. Freshwater Invertebrates of the United States. 2nd ed. J. Wiley and Sons, N.Y., p. 803.
- Platts, W.S., Megahan, W.F. and Wayne, G. 1983. Method for Evaluation Stream, Riparian, and Biotic Conditions. Gen. Tech. Rep. INT-138. Ogden, U T: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 70 p.
- Resource Inventory Committee (RIC), 1998. Reconnaissance (1:20,000) Fish and Fish Habitat Inventory: Standards and Procedures. RIC, BC ministry of Environment, Lands and Parks, April 1998.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater Fishes of Canada. Fisheries

Research Board of Canada Bulletin 184, Ottawa.

- U.S. Department of the Interior, Fish and Wildlife Services, 1982. Habitat Suitability Index Models: Northern Pike. Biological Services Program and Division of Ecological Services. FWS/OBS-82/10.17. 40 pp.
- U.S. Department of the Interior, Fish and Wildlife Services, 1984. Habitat Suitability Index Models: Lake Trout (Exclusive of the Great Lakes). Biological Services Program and Division of Ecological Services. FWS/OBS-82/10.82. 12 pp.
- U.S. Department of the Interior, Fish and Wildlife Services, 1985. Habitat Suitability Index Models and Instream Flow Suitability Curves: Arctic Grayling Riverine Populations. Biological Services Program and Division of Ecological Services. Biological Report 82 (10.110). 34 pp.
- US Environmental Protection Agency (EPA) Region III Risk Based Concentrations for Human Health Risk, updated 4/7/2006 (http://www.epa.gov/).
- Welch, H. E. 2000. Oxygen in Lakes North of the Treeline: A Review. Northwater Consultants. Winnipeg, Manitoba.
- Wetzel, R.G. 2001. Limnology; Lake and River Ecosystems 3rd ed. Academic Press, New York. pp.1006

TABLES

TABLE 1 - FISH SPECIES COMPOSITION AND BIOLOGICAL DATA

pecies		Data	Stream between Winter and Narrow Lakes - Winter Lake Outlet Trap (Spring 2005)*	Stream between Winter and Narrow Lakes - Narrow Lake Inlet Trap (Spring 2005)	Winter Lake Gill Nets (Summer 2005)	Narrow Lake Gill Nets (Summer 2005)
		Number of fish sampled	-	4	10	10
		Mean Total Length (cm)	-	11.80	36.79	50.72
	Length Data	Mean Fork Length (cm)	-	11.70	35.42	48.24
	Longin Dulu	Maximum Fork Length (cm)	-	13.60	54	72.20
		Minimum Fork Length (cm)	-	9.80	14.6	19.70
a l		Standard Deviation fork	-	1.77	15.90	19.04
Northern Pike		Number of fish sampled	-	4	10	10
E		Mean Weight (g)	-	7.80	620.9	1186.70
Ĕ	Weight Data	Maximum Weight (g)	-	12.00	1293	3000.00
Noi		Minimum Weight (g)	-	5.00	22	47.00
ļ		Standard Deviation	-	3.10	588.49	1014.18
		Number of fish sampled	-	-	5	5
		Mean Age	-	-	2.6	7.8
	Age Data	Maximum Age	-	-	3	12
		Minimum Age	-	-	1	4
		Standard Deviation	-	-	0.89	2.95
		Number of fish sampled	-	-	-	96
		Mean Total Length (cm)	-	-	-	28.06
-	Length Data	Mean Fork Length (cm)				24.87
	Lengin Data	Maximum Fork Length (cm)	-	-	-	45.20
		Minimum Fork Length (cm)	-	-	-	14.40
		Standard Deviation fork	-	-	-	6.74
sits		Number of fish sampled	-	-	-	96
l lit		Mean Weight (g)	-	-	-	232.07
N	Weight Data	Maximum Weight (g)	-	-	-	1350.00
Lake Whitefish		Minimum Weight (g)	-	-	-	36.00
- [Standard Deviation	-	-	-	220.18
ſ		Number of fish sampled	-	-	-	9
		Mean Age	-	-	-	9.55
	Age Data	Maximum Age	-	-	-	19
		Minimum Age	-	-	-	4
		Standard Deviation	-	-	-	5.22
		Number of fish sampled	-	5	-	-
		Mean Total Length (cm)	-	6.80	-	-
	Length Data	Maximum Length (cm)	-	7.60	-	-
		Minimum Length (cm)	-	6.00	-	-
		Standard Deviation	-	0.73	-	-
. <u> </u>		Number of fish sampled	-	5	-	-
<u></u>		Mean Weight (g)	-	2.80	-	-
Slimy Sculpin	Weight Data	Maximum Weight (g)	-	4.00	-	-
<u>j</u>		Minimum Weight (g)	-	2.00	-	-
S		Standard Deviation	-	0.84	-	-
ľ		Number of fish sampled	-	-	-	-
		Mean Age	-	-	-	-
	Age Data	Maximum Age	-	-	-	-
	-	Minimum Age				

Note:

The Winter Lake outlet trap was designed to capture fish migrating downflow from Winter Lake toward Narrow Lake

The Narrow Lake inlet trap was designed to capture fish migrating upflow from Narrow Lake toward Winter Lake

*No fish were captured in the Winter Lake outlet trap however a mature Northern Pike was observed at the entrance to the trap

TABLE 2 - GILLNET CATCH-PER-UNIT-EFFORT

Lake	Gillnet	Date In	Time In	Date Out	Time Out	Total Set	Gillnet Catch and Catcl	n-Per-Unit-Effort (CPUE)	Total N
	type					Time	Northern	Lake	Catch
						(hours)	Pike	Whitefish	
Winter	Sinking 1	5-Aug-05	14:30	6-Aug-04	9:14	18.75	0	0	0
	_	_		_			0.00	0.00	0.00
	Floating 1	5-Aug-05	15:36	6-Aug-04	10:00	18.40	0	0	0
	_	_		_			0.00	0.00	0.00
	Sinking 2	5-Aug-05	16:00	6-Aug-04	10:54	18.90	2	0	2
	_	_		_			0.58	0.00	0.58
	Floating 2	5-Aug-05	16:45	6-Aug-04	11:35	18.83	1	0	1
							0.29	0.00	0.29
	Sinking 1	6-Aug-05	9:36	7-Aug-05	9:00	11.40	3	0	3
							1.44	0.00	1.44
	Floating 1	6-Aug-05	10:24	7-Aug-05	9:30	11.10	1	0	1
							0.49	0.00	0.49
	Sinking 2	6-Aug-05	11:12	7-Aug-05	9:40	10.46	3	0	3
							1.57	0.00	1.57
	Floating 2	6-Aug-05	11:46	7-Aug-05	9:55	10.15	0	0	0
							0.00	0.00	0.00
Narrow	Sinking	7-Aug-05	16:00	8-Aug-05	10:45	18.75	9	51	60
							2.63	14.91	17.5
	Floating	7-Aug-05	15:45	8-Aug-05	9:45	18.00	1	45	46
							0.30	13.71	14.0
						Fish Totals:	20	96	116

Note:

Gillnet CPUE values (bolded) represent the number of fish captured per gillnetting unit (number of fish/100m² per 12 hr period).

							Metal Par	ameter				
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
	Detection Limit (DL)		0.20	0.05	1.00	0.50	0.10	0.05	0.80	0.50	0.05	1.00
Winter Lake	Code											
Northern Pike	Winter Lake - NP1		<	<	1.00	<	<	0.38	<	<	<	11.70
n=5	Winter Lake - NP2		<	<	1.00	<	<	0.39	<	<	<	10.60
	Winter Lake - NP3		<	<	<	<	<	0.14	<	<	<	10.40
	Winter Lake - NP6		<	<	1.00	<	<	0.39	<	<	<	9.00
	Winter Lake - NP9		<	<	1.00	<	<	0.42	<	<	<	12.30
		Mean	n/a	n/a	1.00	n/a	n/a	0.34	n/a	n/a	n/a	10.80
Narrow Lake	Code											
Northern Pike	N.L - NP1		0.20	<	<	1.10	0.20	1.28	<	<	<	7.00
n=5	N.L - NP3		<	<	<	<	<	0.82	<	<	<	10.50
	N.L - NP4		<	<	<	<	<	0.92	<	<	<	9.00
	N.L - NP5		0.30	<	<	<	0.10	1.51	<	<	<	11.20
	N.L - NP6		<	<	<	<	<	0.38	<	<	<	8.00
		Mean	0.25	n/a	n/a	1.10	0.15	0.98	n/a	n/a	n/a	9.14
Lake Whitefish	N.L - WF8		<	<	<	<	<	0.23	<	<	<	10.60
n=9	N.L - WF9		<	<	1.00	<	<	0.24	<	<	<	12.90
	N.L - WF46		<	<	1.00	<	<	1.18	<	<	<	7.00
	N.L - WF47		<	<	1.00	<	<	0.20	<	<	<	33.00
	N.L - WF48		<	<	<	<	<	0.37	<	<	<	15.60
	N.L - WF49		<	<	1.00	<	<	0.18	<	<	<	13.00
	N.L - WF50		<	<	<	<	<	0.22	<	<	<	10.70
	N.L - WF51		<	<	<	8.50	<	2.34	<	3.10	<	25.60
	N.L - WF52		<	<	1.00	<	<	0.36	<	<	<	8.00
		Mean	n/a	n/a	1.00	8.50	n/a	0.59	n/a	3.10	n/a	15.16

Note:

All concentrations in mg/kg (wet)

<= Less than the dectection limit indicated

Indicates individuals that exceed Health and Welfare Canada restrictive consumption levles for mercury (0.5 ppm or mg/kg)

							Metal Pa	rameter				
			Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
	Detection Limit (DL)		0.20	0.05	1.00	0.50	0.10	0.05	0.80	0.50	0.05	1.00
Winter Lake	Code											
Northern Pike	Winter Lake - NP1		<	<	<	37.40	<	0.13	<	1.10	0.09	39.20
n=5	Winter Lake - NP2		<	<	<	21.40	<	0.13	<	1.00	0.05	31.90
	Winter Lake - NP3		<	<	1.00	5.30	<	0.15	<	<	<	41.40
	Winter Lake - NP6		<	<	<	23.20	<	0.15	<	1.00	<	36.20
	Winter Lake - NP9		<	<	<	30.50	<	0.14	<	1.00	<	39.10
		Mean	n/a	n/a	1.00	23.56	n/a	0.14	n/a	1.03	0.07	37.56
Narrow Lake	Code											
Northern Pike	N.L - NP1		<	<	<	6.50	<	1.19	<	1.50	0.05	72.40
n=5	N.L - NP3		<	<	<	7.20	<	0.58	<	1.00	0.11	45.70
	N.L - NP4		<	<	<	8.70	<	0.62	<	1.10	0.05	66.70
	N.L - NP5		<	<	<	13.40	<	1.89	<	1.40	0.10	152.00
	N.L - NP6		<	<	<	10.20	<	0.30	<	0.90	0.18	70.70
		Mean	n/a	n/a	n/a	9.20	n/a	0.92	n/a	1.18	0.10	81.50
Lake Whitefish	N.L - WF8		<	<	1.00	4.50	<	0.50	<	1.50	<	31.00
n=9	N.L - WF9		<	<	1.00	7.40	<	0.50	<	1.70	0.08	29.20
	N.L - WF46		<	<	<	4.10	<	2.60	<	1.40	<	23.30
	N.L - WF47		<	<	<	6.20	<	0.78	<	1.70	0.06	22.30
	N.L - WF48		0.40	<	<	14.80	<	0.76	<	1.20	0.18	28.90
	N.L - WF49		<	0.05	<	8.80	<	0.57	<	1.90	<	27.40
	N.L - WF50		<	<	1.00	4.50	<	0.58	<	1.90	<	27.60
	N.L - WF51		0.30	<	<	<	<	0.39	<	<	<	7.00
	N.L - WF52		<	0.10	<	7.30	<	0.67	<	1.20	<	31.70
		Mean	0.35	0.08	1.00	7.20	n/a	0.82	n/a	1.56	0.11	25.38

Note:

All concentrations in mg/kg (wet)

<= Less than the dectection limit indicated

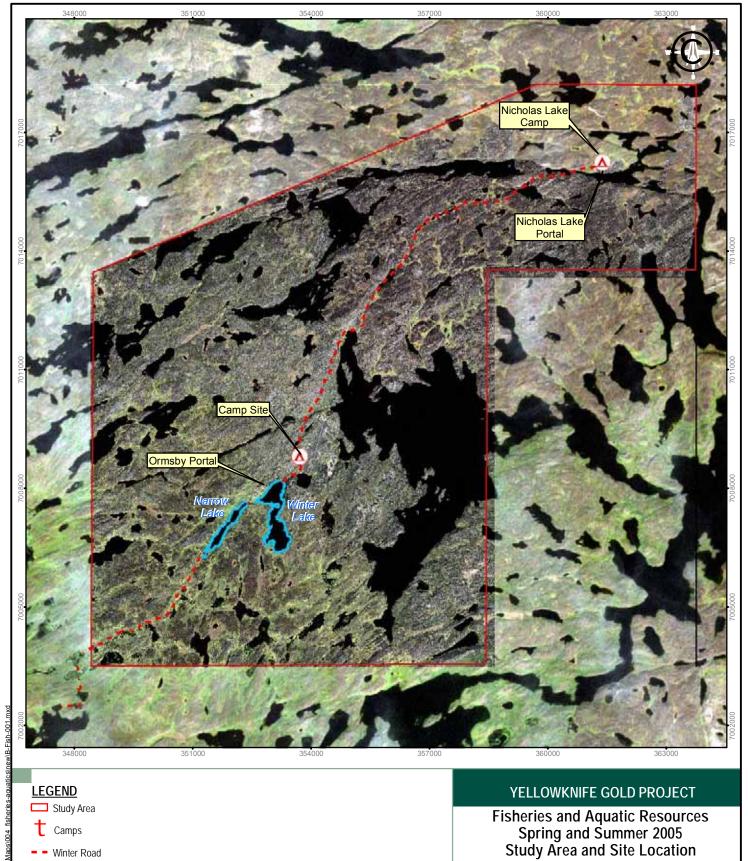
Indicates individuals that exceed Health and Welfare Canada restrictive consumption levles for mercury (0.5 ppm or mg/kg)

						Metal Pa	rameter				
		Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc
	Detection Limit	0.20	0.05	1.00	0.50	0.10	0.05	0.80	0.50	0.05	1.00
Narrow Lake Outlet	Code										
Slimy Sculpin	SS1	<	<	<	2.2	<	0.14	<	<	<	23.8
n=5	SS2	<	<	<	1	<	0.19	<	<	<	28.9
	SS3	<	0.07	<	2	<	0.09	<	<	<	20.2
	SS4	<	<	<	1.6	0.10	0.13	<	<	<	22.2
	SS5	<	<	<	2.3	<	0.11	<	<	<	30.7
	Mean	n/a	n/a	n/a	1.820	n/a	0.132	n/a	n/a	n/a	25.2
Northern Pike	NP1	<	<	<	0.7	<	0.08	<	<	<	36.6
η=4	NP2	<	<	<	2.4	<	0.15	<	<	<	50.3
	NP3	<	<	<	2.8	<	0.14	<	<	<	42.3
	NP4	<	<	<	1.4	<	0.09	<	<	<	36.4
	Mean	<	n/a	n/a	1.825	n/a	0.115	n/a	n/a	n/a	41.4

Note:

All concentrations in mg/kg (wet)

<= Less than the dectection limit


All samples are whole fish

Indicates individuals that exceed Health and Welfare Canada restrictive consumption levles for mercury (0.5 ppm or mg/kg)

FIGURES

Lakes Sampled (2005)

Base data sources:

YE1\17401

IS/0701

Imagery Source: IKONOS (July 27th and August 2nd 2004. Landsat TM (August 11th 2001) Water Features: Extracted from IKONOS imagery

Figure 1

yhee Development Corp

EBA Engineering Consultants Ltd.

DATUM:

NAD83

2

CHECK:

TA

DATE:

April, 2006

PROJECTION:

FILE No:

JOB NO:

OFFICE:

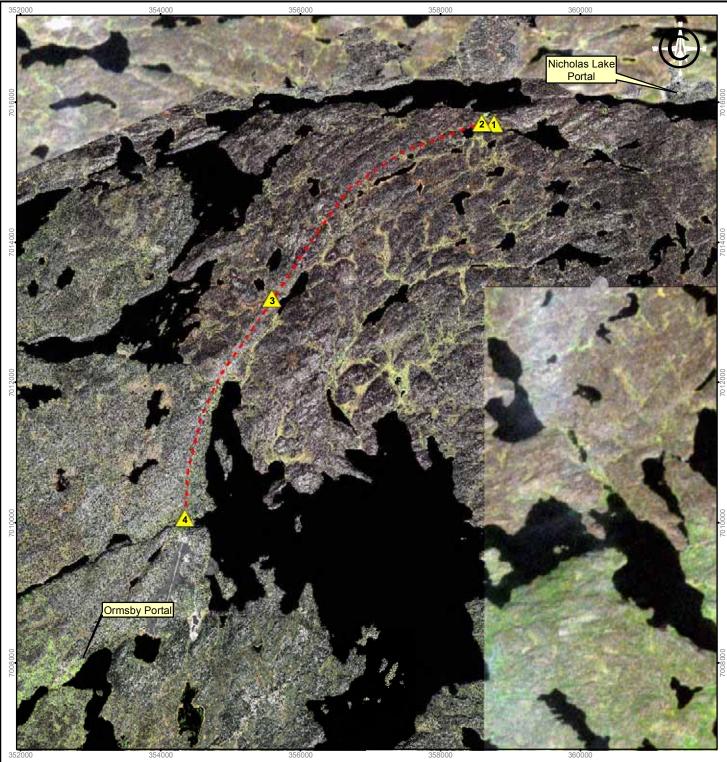
1740180

EBA-VANC

B-Fish-001

UTM Zone 12

Scale: 1:96,007


0

Kilometres

REVISION NO:

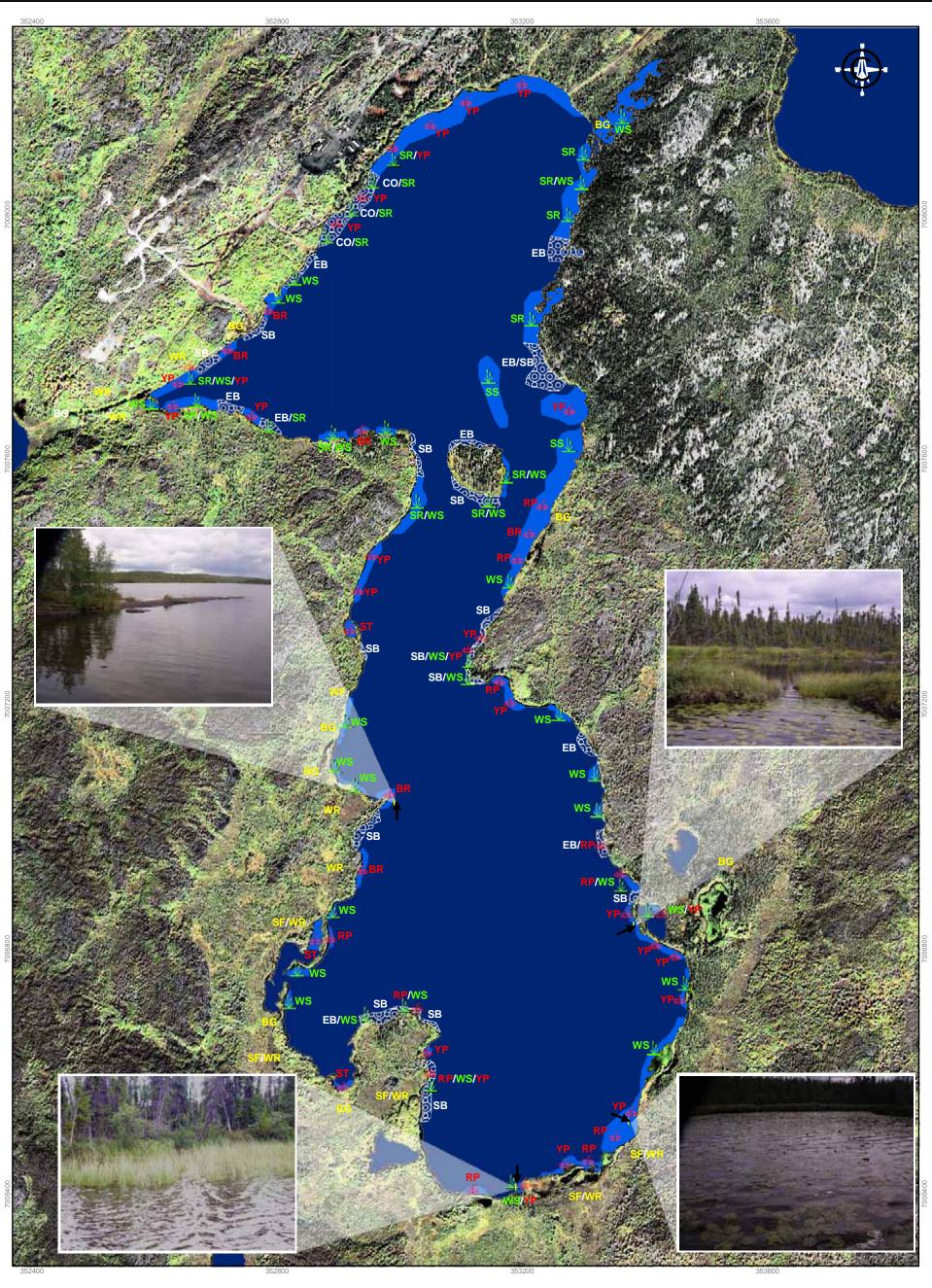
DRAWN:

TJS

Stream Crossing

Note: Route selection was based upon very preliminary reconnaissance by EBA and through consultation with Tyhee staff

Base data sources:


LEGEND Strea

Access Road

Imagery Source: IKONOS (July 27th and August 2nd 2004. Landsat TM (August 11th 2001) Water Features: Extracted from IKONOS imagery

YELLOWKNIFE GOLD PROJECT

Fisheries and Aquatic Resources Spring and Summer 2005 Proposed Access Road Stream Crossings Locations									
PROJECTION:		DATUM:							
UTM Zone 12		NAD83	$\mathbf{\lambda}$						
Scale: 1:54 0.5 0.25 0 0.			BBA Engineering Consultants Ltd.						
FILE No:			DATE:						
B-Fish-002			April 19, 2006						
JOB NO:	REVISION NO):							
1740180		4	Eiguro 2						
OFFICE:	DRAWN:	CHECK:	Figure 2						
EBA-VANC	TJS	TA							

<u>LEGEND</u>

. Photo Rock Feature ۲,

Emergent Vegetation

B Submergent Vegetation

DISCLAIMER The information included on this map has been compiled by EBA from a variety of sources and is subject to change without notice. EBA makes no representations or warranties, expressed or implied, as to accuracy, completeness, timeliness, or rights to the use of such information. EBA shall not be liable for any general, special, indirect, incidental, or consequential damages including, but not limited to, lost revenues or lost profits resulting from the use or misuse of the information contained on this map. Any sale of this map or information on this map is prohibited except by written permission of EBA.

E BG SF SR SS WS	mergent Vegetation Bog Wetland Sedge Fen Scouring Rush Soft Stemmed Water Sedge	BG SF WR	Habitat Type Bog Wetland Sedge Fen Willow (Salix) Riparian
Su BR RP ST YP	bmergent Vegetation Burreed Richardson's Pondweed Submerged Trees Yellow Water Lily	CO EB SB	Feature Cobbles Emergent Boulders Shallow Boulders

Base data sources:

Imagery Source: IKONOS (July 27th and August 2nd 2004. Landsat TM (August 11th 2001) Water Features: Extracted from IKONOS imagery

YELLOWKNIFE GOLD PROJECT

Fisheries and Aquatic Resources Spring and Summer 2005 Winter Lake Habitat Features

PROJECTION: UTM Zone 12		DATUM: NAD83	Tyhee Development Corp
Scale: 1:6,00 50 25 0 50	EBA Engineering		
Metres			Consultants Ltd. 600
FILE No:			DATE:
B-Fish-003			April, 2006
JOB NO:	REVISION NO	t:	
1740180		4	_
OFFICE:	DRAWN:	CHECK:	Figure 3
EBA-VANCOUVER	TJS	TA	5

ew\B-Fish-003 _YEL\1740180