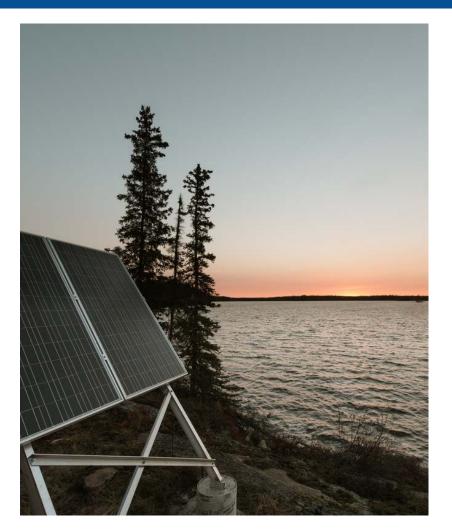


Public Hearing



Presentation Content

- Project Animation
- Water Quality
- Barging
- Air Quality
- Traditional Knowledge
- Wildlife
- Uranium & Thorium
- Closure

AVALON

Socio-Economics

NECHALACHO PROJECT Project Animation

WATER QUALITY

Water Nechalacho Mine Site

Design

- Tailings Management Facility (TMF) provides permanent, secure, and total confinement of all tailings solids within an engineered facility
- TMF located in a natural topographic feature containing non-fish-bearing ponds
- looped system allows for recycle monitoring and response.
- Water treatment systems developed that are protective of environment.

AVALON

Water Nechalacho Mine Site

Avalon commits to

- Water quality and biological (EEM) monitoring
- Meet CCME guidelines for water quality as reflected in proposed SSWQO's

SSWQO – Metals Concentrations Nechalacho Mine Site

Parameter	Untreated Tailing Water (μg/L)	Treated Effluent and Mine Water (μg/L)	Drizzle Lake	Thor Lake	Proposed SSWQO [For Drizzle Lake] (μg/L)	CCME Guideline (µg/L)
			Background Mean (µg/L)	Background Mean (µg/L)		
Aluminum (Al)	1000	120	8.30	3.3	100	100
Arsenic (As)	<2	0.9	0.92	0.77	5	5.0
Cadmium (Cd)	0.04	0.003	0.01	0.02	Background	0.052
Chromium (Cr)	<5	<0.5	<0.5	<0.5	8.9	8.9
Copper (Cu)	<5	1.9	0.25	0.36	3	2-4
Iron (Fe)	2080	44	1091	69.5	Background (seasonal)	300
Lead (Pb)	1.3	0.92	0.028	0.05	4	1-7
Mercury (Hg)	<0.1	<0.1	<0.01	<0.01	0.026	0.026
Molybdenum (Mo)	13	6.2	1.27	2.1	73	73
Nickel (Ni)	5	2	<0.5	<0.5	110	25-150
Selenium (Se)	10	<1	<1.0	<0.1	1	1
Silver (Ag)	>0.1	<0.01	<0.01	<0.01	0.1	0.1
Thallium (TI)	<2	0.017	<0.1	<0.1	0.8	0.8
Uranium (U)	2.8	0.01	0.08	0.36	15	15
Vanadium (V)	0.4	0.19	<1.0	<1.0	6	6
Zinc (Zn)	8	28	0.90	1.43	Background	30

AVALON

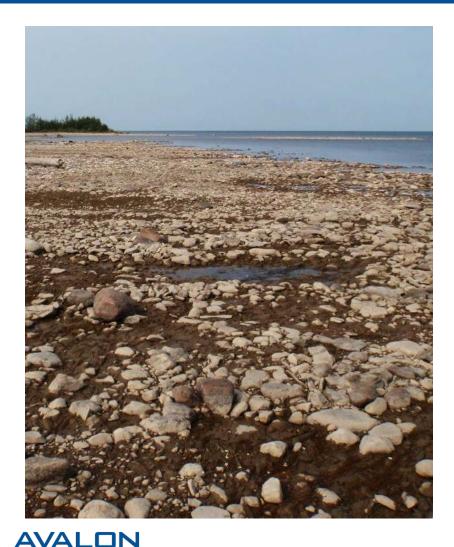
SSWQO – REE Concentrations Nechalacho Mine Site

		Treated	Drizzle Lake	Thor Lake	Proposed			
Parameter	Untreated Tailing Water (μg/L)	Effluent and Mine Water (µg/L)	Background Mean (μg/L)	Background Mean (μg/L)	SSWQO [For Drizzle Lake] (µg/L)			
Cerium (Ce)	221	0.92	<0.05	<0.05	3.2			
Dysprosium (Dy)	16.2	0.63	<0.05	<0.05	16.2			
Erbium (Er)	6.8	0.022	<0.05	<0.05	19.1			
Europium (Eu)	3.2	0.014	<0.05	<0.05	11.2			
Gadolinium (Gd)	26.5	0.11	<0.05	<0.05	15			
Hafnium (Hf)	0.8	0.005	<0.1	<0.1	4.4			
Holmium (Ho)	2.9	0.010	<0.05	<0.05	0.7			
Lanthanum (La)	94.2	0.41	<0.05	<0.05	1.8			
Lutetium (Lu)	0.5	0.002	<0.05	<0.05	2.9			
Niobium (Nb)	2.2	0.045	<0.1	<0.1	2.6			
Neodymium (Nd)	114	0.49	<0.05	<0.05	14.3			
Praseodymium (Pr)	29.7	0.11	<0.05	<0.05	3.5			
Samarium (Sm)	26.1	0.11	<0.05	<0.05	7.4			
Scandium (Sc)	1.2	0.82	0.9	0.5	2.9			
Tantalum (Ta)	0.6	0.009	<0.1	<0.1	0.2			
Terbium (Tb)	3.5	0.014	<0.05	<0.05	8.4			
Thulium (Tm)	0.73	0.003	<0.05	<0.05	6.9			
Ytterbium (Yb)	4.2	0.012	<0.05	<0.05	6.9			
Zirconium (Zr)	9.7	0.07	<0.1	<0.1	11.2			
MATERIALS FOR CLEAN								

AVALD Reased on 10% of 7-day (Chronic) Testing of H. Azteca (Borgmann et al 2005)

Water Hydrometallurgical Site

Design


AVALON

- Tailings waste product is inert gypsum
- Groundwater aquifer is extremely slow moving
- Groundwater modeling identifies water infiltrated in N-42 open pit will conservatively take over 40 years before reaching GSL
- Modeling shows that the most elevated parameters in the effluent (sulphate and magnesium) reporting to Great Slave Lake are within the natural variation levels

Water Hydrometallurgical Site

Avalon commits to

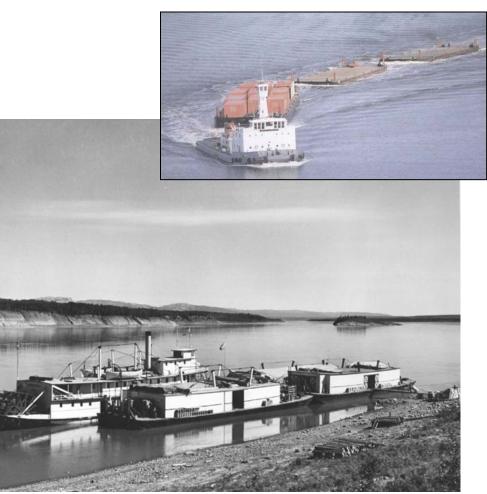
- Groundwater quality monitoring
- Installation of monitoring wells along the projected migration path prior to the commencement of operations.
- Comparison of measured groundwater quality with modeling predictions.
- Reassessment of model predictions based on observed groundwater quality. Application of adaptive management measures if required.

Water

Significance

- Water quality in Thor Lake and further downstream is not anticipated to be adversely affected by mining activities
- At the Hydrometallurgical Facility, projected concentrations of all parameters of potential concern will be lower than or within the range of existing conditions in Great Slave Lake.

BARGING



Barging

Design

- Barging has a reliable history
- Fuel barges
 - Isolated compartments,
 - Not loaded to full capacity
 - Annual barge inspections and certifications
- Barging schedule allows contingency days for bad weather
- Avalon commits to
- Follow Transport Canada and marine guidelines
- Adequate spill response

PWNHC N-1979-012-0005

MATERIALS FOR CLEAN TECHNOLOGY

AVALON

Barging

Photo courtesy of CanDive

- In the unlikely event of an accident, Avalon would require the barge company to recover barges, containers, or concentrate
- Test work has identified the concentrate to be inert, non-reactive and thus insoluble

AVALON

Barging

Significance

- Rare earth metal concentrates are essentially inert and non-reactive.
- Barge traffic creates a small wake with no effects to fish and waterfowl
- Barge landings improve safety for recreational and traditional users

AVALON

AIR QUALITY

Air Quality Nechalacho Mine Site

Sources of Contaminants

- Ventilation raises
- Mine air heater
- Diesel generators
- Transfer and handling
- Vehicle emissions and road dust

Mitigations

- Use of low NOx and SOx diesel power generators
- Underground crushing at Nechalacho eliminates dust
- Dust control using water during summer months
- All infrastructure located indoors

AVALON

Air Quality Nechalacho Mine Site

Avalon commits to

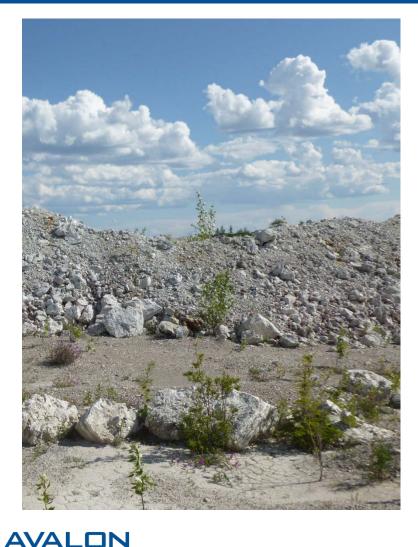
- Air quality monitoring and management plan
- Stack testing upon commissioning of the diesel generators
- Incineration management plan
- Conformance with GNWT and WSCC standards for mine and process plant air quality.
- Use of low sulphur diesel fuel and regular equipment and engine maintenance.

Air Quality Hydrometallurgical Facility

Sources of Contaminants:

- Hydrometallurgical Plant
- Vehicle Emissions & Road dust

Mitigations


AVALON

- The Hydromet plant will be equipped with a scrubber to reduce emissions released to the ambient air.
- The Hydromet plant will be powered by hydro-electricity rather than coal or diesel.
- The concentrate will be shipped in closed containers thereby minimizing fugitive dust emissions.
- Project access roads will be watered to control dust during summer months

Air Quality Hydrometallurgical Facility

Avalon commits to

- Air quality monitoring and management plan
- Stack testing upon commissioning of the Hydromet plant
- Dust Suppression
- Use of existing highways for all Hydrometallurgical Plant-related vehicle traffic.
- Secure containment of concentrate product during transportation
- Use of low sulphur diesel fuel and regular equipment and engine maintenance.

Air Quality

Significance

- Air emissions will be localized, short-term, periodic, of low magnitude, and rapidly reversible
- Maximum emission concentrations are predicted to be lower than the NWT Air Quality Standards for all contaminants

AVALON

TRADITIONAL KNOWLEDGE

AVALON

Traditional Knowledge Studies

Traditional Studies with DKFN, FRMC, LKDFN, and YKDFN

- Began by notifying elected leadership
- Obtained legal permission to conduct surveys and use for EA process

Aboriginal governments / organizations:

- Reviewed and approved the study proposal
- Organized and assisted with all interviews
- Identified a community representative
- All reports and support information were delivered to Aboriginal organization

Community representatives

- Directed the format
- Conducted interviews with Elders and land users
- Reviewed content for accuracy and finalization of the report

MATERIALS FOR CLEAN TECHNOLOGY

Traditional Knowledge Study

The studies focused on:

- Terrain
- Climate
- Vegetation
- Wildlife

- **Significant Sites**
- Traditional Use

Water

- Culturally significant sites were • identified in the general areas near the project sites, but not within the proposed development sites.
- Knowledge from the study was incorporated into the DAR
- NSMA completed their study in 2013

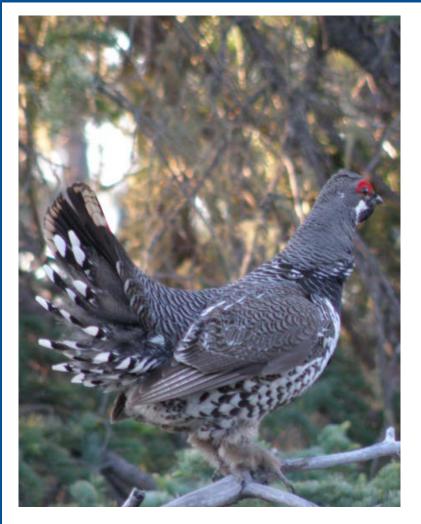
MATERIALS FOR CLEAN TECHNOLOGY

Traditional Knowledge

TK studies are only the first step.

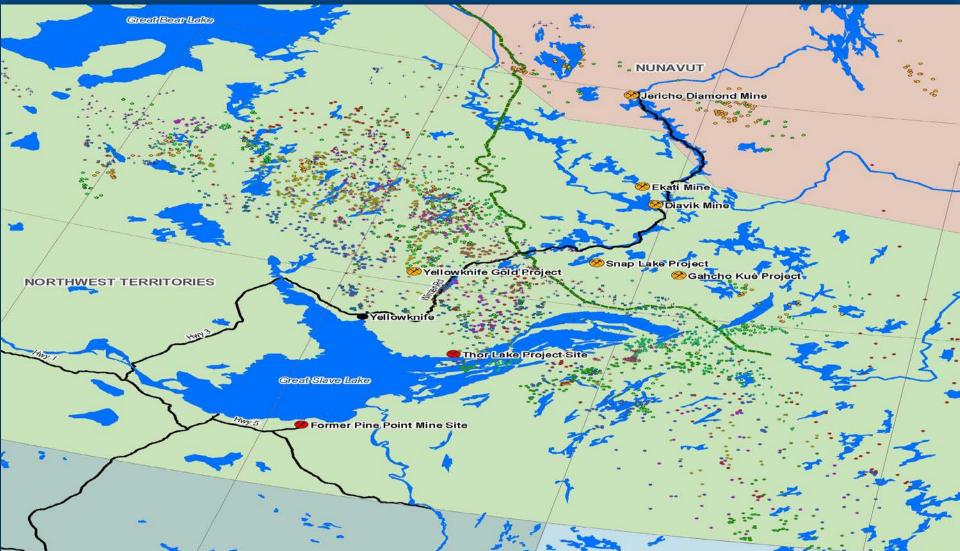
- Traditional knowledge is an important part of the design and update of management plans (Closure, Aquatic Effects, Archeological Sites Protection, Wildlife)
- Aboriginal workers use their knowledge at site and participate in monitoring
- Negotiated Agreements enhance traditional knowledge use

AVALON



WILDLIFE

Valued Species


Valued Species

- Moose
- Caribou Barren-ground & Woodland
- Black Bear
- Fur-bearers
- Breeding birds
- Raptors
- SARA listed Species

AVALON

Barren-Ground Caribou – Winter Range

AVALON

Wildlife Monitoring

Wildlife and Wildlife Habitat Protection Plan

- Has been submitted at a conceptual level.
- Includes species-specific mitigations and procedures
- Requires Input from the parties prior to construction

WEMP and Cumulative Effects

 Currently engaging with the GNWT to define expectations for these programs

Wildlife Monitoring

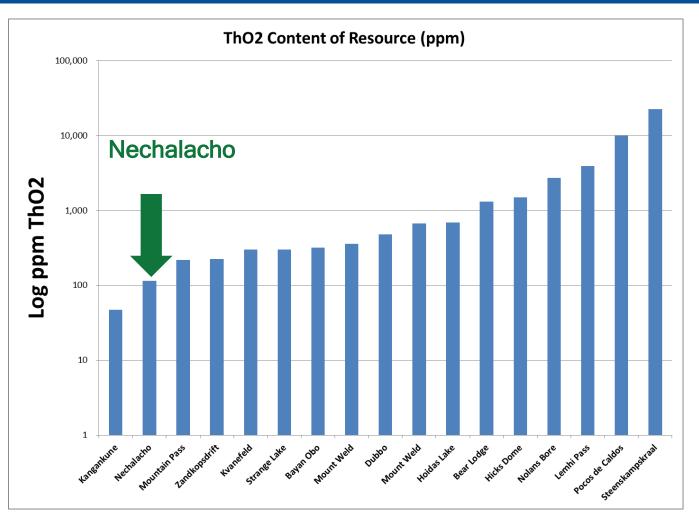
WEMP and Cumulative Effects

- The project does not have significant impacts
- Currently engaging with the GNWT to define expectations for these programs
- Will continue to engage with Aboriginal parties to discuss their expectations for wildlife monitoring

AVALON

URANIUM & THORIUM

AVALON


Uranium and Thorium

- Thorium, uranium and radiation are words that prompt strong emotion.
- We are all exposed to radiation in many forms and levels.
- All rare earth deposits contain Uranium (U) and Thorium (Th)
- Almost all U and Th are concentrated with the rare earths and does not go to mine tailings
- Avalon's rare earth ore body has one of the lowest average concentrations of U and Th amongst existing known rare earth deposits.

ThO2 Content Comparison in Various REE Deposits

AVALON

AVALON

Independent Radiological Reports

SENES Consultants Limited (SENES) was retained to identify potential radiological issues. They are experts in radiation and exposures to the environment and people.

- Potential worker exposures were estimated including assumptions of direct exposures, and those associated with inhalation and ingestion of ore dust.
- The calculated dose was estimated at 1.4 mSv/year from all these sources.
- To put this in perspective
 - The average Canadian receives
 1.8 mSv/year from natural background radiation.
 - The average person in Yellowknife receives 3.1 mSv/year from natural background radiation.

 The Health Canada dose limit is 20 mSv/year for workers who work in areas with NORM. The estimated dose is well below the limit

Independent Radiological Reports

SENES evaluated that

- As the estimated exposure is above the 1 mSv/year incidentally exposed classification, it is good practice to implement a radiation protection program for workers.
- This is not required until doses exceed 5 mSv/year)
- Concentrations of uranium and thorium are sufficiently low as to not be regulated under the Canadian Nuclear Safety Commission or the Canadian or US transportation regulations

MATERIALS FOR CLEAN TECHNOLOGY

Uranium and Thorium

- Independent study reports that these low concentration levels are below thresholds of concern in products and wastes (tailings).
- Levels do not invoke additional permitting requirements from Canadian Nuclear Safety Commission or special transport regulations.
- A radiation protection program will provide comfort and certainty
- No adverse impacts to water, air, wildlife, or people

CLOSURE

AVALON

Design for Closure

- Minimize the operating footprint
- Walk-away closure design (no perpetual treatment or maintenance will be required)
- No landfills on site.
- Progressive reclamation (during operations) will be completed where practical
- Maximize placement of tailings underground as pastefill at Nechalacho
- Salvage of soils during construction for use during closure at Nechalacho
- Docks are seasonal and will be removed when no longer required

AVALON

Reclamation Nechalacho Mine Site

- Exposed tailings will be capped and re-vegetated.
- Facility downstream embankments will be progressively reclaimed during operations
- Surface runoff control channels and permanent spillways will be constructed
- Infrastructure not required will be removed for re-use, salvaged and inert materials will potentially be disposed of underground or removed from site.

AVALON

Reclamation Hydrometallurgical Facility

- Process tailings will be placed in an abandoned open pit for progressive reclamation
- On closure, the tailings will be covered with overburden
- The plant site and tailings will be revegetated, rehabilitating a previously damaged site
- Re-vegetation trials will be conducted during operations
- Infrastructure not required will be removed for re-use

Closure

Closure planning

- Conceptual Closure Plan has been submitted
- Avalon will work with parties to refine the closure plan throughout the project life

Avalon will monitor the sites until

- Water quality meets pre-development baseline conditions
- Ensure physical stability
- Revegetation is successful
- Currently anticipated to occur over a period of three to five years.

SOCIO-ECONOMICS

Neighbours

Noise

- Varies with wind, and temperature
- Low noise because the mining activities will be underground and the process plant, camp and power generation plant will be enclosed inside solid, insulated structures.

Light

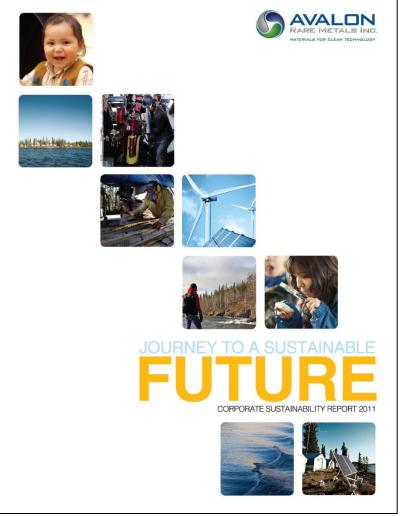
AVALON

- Low light because all mining activities will be underground and the process plant and camp will be enclosed inside structures.
- Outdoor lighting will be kept to a minimum.
 Focused and localized outdoor lights will be used when required for safe work.

Avalon continues to work with Blachford Lake Lodge towards "win-win" solutions

Canada & NWT Benefits

	NWT	Canada
Wages and Benefits	\$380 million	\$770 million
Goods and Services	\$1.2 billion	\$3.4 billion
Government Revenues	\$774 million	\$1.5 billion
Direct Employment	3,590	7,000
	person years	person years



MATERIALS FOR CLEAN TECHNOLOGY

Socio-Economic Reporting

- Committed to a Socio-Economic Agreement with the GNWT. Negotiations have started.
- Annual Sustainability report includes Global Reporting Initiative and Mining Association of Canada Towards Sustainable Mining and other socioeconomic indicators

AVALON

MATERIALS FOR CLEAN TECHNOLOGY

ABORIGINAL ENGAGEMENT

Aboriginal Engagement

- Engagement about the exploration program since the acquisition of the property in 2005
- Regular engagement with elected leaders as the project evolved
- Ongoing engagement with business arms about upcoming opportunities in exploration and the proposed construction and operations

AVALON

Negotiated Agreements

- Currently negotiating agreements with
 - Yellowknives Dene First Nation
 - Northwest Territory Métis Nation
 - North Slave Métis Alliance
- Lutsel K'e Dene First Nation agreement is in the ratification process.
- Completed Accommodation Agreement with Deninu K'ue First Nation.

AVALON

AVALON RARE METALS INC. www.avalonraremetals.com

Tel: (416) 364-4938 • Fax: (416) 364-5162

130 Adelaide St. W., Suite 1901 Toronto, ON Canada M5H 3P5

www.raremetalblog.com

Investor Relations: ir@avalonraremetals.com

TSX & NYSE AMEX: AVL