

DATE May 23, 2012

PROJECT No. 11-1365-0012/DCN-076

- **TO** Veronica Chisholm De Beers Canada Inc.
- CC Stephen Lines, De Beers Canada Inc.; John Faithful, Golder Associates Ltd.

FROM Ekram Azim, Bart Blais, Golder Associates Ltd.

GROUNDWATER CHEMISTRY DATA BOX AND WHISKER PLOTS AND PIPER PLOTS IN RESPONSE TO JOINT INFORMATION REQUEST FROM FISHERIES AND OCEANS CANADA AND ENVIRONMENT CANADA (DFO&EC_6) AND YELLOWKNIVES DENE FIRST NATION (YKDFN_2.24)

1.0 INTRODUCTION

This technical memorandum has been developed in response to joint information request from Fisheries and Oceans Canada and Environment Canada, DFO&EC_6 and Yellowknives Dene First Nation YKDFN_2.24 (De Beers 2012a,b).

Groundwater chemistry data for Kennady Lake are presented in Annex G and briefly discussed in Section 11.6 of the 2010 EIS (De Beers 2010) and Section 8.3.4.3 of the 2011 EIS Update (De Beers 2011). As requested, available groundwater data from Annex G have been compiled and summarized. The data used in the summary table and figures presented below represent 48 samples collected in 2004, 2005 and 2011 from eight different wells located within the Kennady Lake watershed. Summary details of the monitoring wells are provided in Appendix A, Table A-1 (see Figure G3.1-1 of Annex G for the locations of these bores).

The groundwater summary data presented herein characterize the deep groundwater system (i.e., below the permafrost and within through-taliks) according to two depth zones: Depth 1 = <200 metres (m), and Depth 2 = >200 m. These depth zones were selected based on higher average permeability values identified for the depth zone to 200 m, which was calculated from permeability testing of the hydrostratigraphic units below ground level. The deep groundwater system above 200 m therefore has greater potential to be influenced by meteoric water (De Beers 2010, Section 11.6.2.2.3, Table 11.6-2).

Groundwater chemistry constituents were grouped into four categories: conventional parameters, major ions, nutrients and trace metals. They are summarized for each depth zone (Appendix A, Table A-2 and Appendix B, Figures B-1 to B-54). The distribution of major ions is also presented in Piper plots for each groundwater depth zone (Appendix B, Figure B-55). A brief description of the deep groundwater chemistry is provided below.

On-going monitoring of groundwater bores will supplement this dataset.

1.1 Data Management

Tabulated groundwater chemistry data include reference to values measured below the method detection limits (MDLs); there are instances where MDLs varied over the monitoring period. As a result MDLs may be represented as minimum and maximum values. Median values for any given constituent were calculated depending on the proportion of samples measured below the MDL for that constituent. For example:

- if 33 percent of the measured data for a constituent were less than MDL, the results below MDL were halved for the calculation of the median;
- if 33 to 66 percent of the measured data for a constituent were below MDL, only the results above MDL were used to calculate the median; and
- if greater than 66 percent of the measured data for a constituent were less than MDL, the median was not calculated.

1.2 Conventional Parameters

The summary of conventional groundwater chemistry is presented in Appendix A, Table A-2 and trends between the two groundwater depth zones in Appendix B, Figures B-1 to B-10. Specific conductivity, total hardness, and total dissolved solid (TDS) concentrations were higher in the deeper groundwater depth zone (Appendix A, Table A-2 and Appendix B, Figure B-2 for specific conductivity, Figure B-3 for total hardness, and Figures B-6 to B-8 for TDS). This trend is generally consistent with that observed in groundwater at other sites in the Canadian Shield (Kuchling et al. 2000; Fritz and Frape 1987). Total alkalinity values were lower in the deeper zone (Appendix A, Table A-2 and Appendix B, Figure B-7). No trends were apparent for pH and TSS.

1.3 Major lons

The summary of major ions data is presented in Appendix A, Table A-2 and depth-specific trends in Appendix B, Figures B-11 to B-18. Of the 11 major ions measured, higher median concentrations of calcium, chloride, magnesium, sodium and sulphate were measured at the deeper groundwater zone. The similar trend to TDS reflected the substantial contribution of these ions to TDS. Median concentrations of bicarbonate and potassium were lower in the deeper groundwater zone. Insufficient data were available for bromide, carbonate and hydroxide to identify any trends.

A piper plot presenting the major anions and cations is shown in Appendix B, Figure B-55. The dominant major ions were calcium, sodium, and chloride, under buffered alkaline conditions.

1.4 Nutrients

The summary of nutrients data is presented in Appendix A, Table A-2 and depth-specific trends in Appendix B, Figures B-19 to B-25. Boxplots of nutrient data were limited to ammonia, total phosphorus and orthophosphate, and inorganic and organic carbon as measured data for other nutrients were typically below MDL values (Appendix A, Table A-2). Median concentrations of total ammonia (Appendix B, Figure B-19), and total and dissolved inorganic carbon concentrations, were lower in the deeper groundwater zone (Appendix B, Figure B-22 to B-23). The range of total phosphorus was similar in both groundwater zones, with a range of total and dissolved organic carbon, measured in the deeper groundwater zone.

1.5 Trace Metals

The total and dissolved metals suite included 23 constituents (Appendix A, Table A-2). Boxplots for metals that had results greater than 50% above the MDL have been presented (Appendix B, Figures B-26 to B-54); plots for dissolved chromium, cobalt, lead, selenium and vanadium were not presented because of the high percentage of results below MDLs. A higher proportion of the metals data comprise dissolved metals concentrations because the 2011 sampling program was limited to dissolved metals; samples for metals analyses in the 2004 and 2005 programs included both total and dissolved metals.

For most of the total metals, the range and median concentrations were similar between the two groundwater depth zones. Total barium, silicon and uranium had lower concentrations in the deeper zone, and total boron and nickel concentrations were higher in the deeper zone. The dissolved metals showed similar trends to their respective total metals between the two depth zones.

2.0 CLOSURE

We trust the above meets your present requirements. If you have any questions or require additional details, please contact the undersigned.

GOLDER ASSOCIATES LTD.

Ekram Azim, Ph.D., E.P. Aquatic Scientist

BarBluin

Bart Blais, B.Sc. Water Quality Specialist

John Faithful, B.Sc. (Hons) Associate, Senior Water Quality Specialist

3.0 **REFERENCES**

- De Beers (De Beers Canada Inc.). 2010. Environmental Impact Statement for the Gahcho Kué Project. Submitted to the Mackenzie Valley Environmental Impact Review Board, December 2010.
- De Beers (De Beers Canada Inc.). 2011. Environmental Impact Statement for the Gahcho Kué Project. Volumes 3a Revision 2, 3b Revision 2, 4 Revision 2, and 5 Revision 2. Submitted to the Mackenzie Valley Environmental Impact Review Board in Response to the Environmental Impact Statement Conformity Review. July 2011.
- De Beers (De Beers Canada Inc.). 2012a. Fisheries & Oceans Canada and Environment Canada Joint Information Request Responses – Gahcho Kué Project Environmental Impact Review. Submitted to Mackenzie Valley Environmental Impact Review Board. April 2012.
- De Beers. 2012b. Yellowknives Dene First Nation Information Request Responses Gahcho Kué Project Environmental Impact Review. Submitted to Mackenzie Valley Environmental Impact Review Board. April 2012.
- De Beers. 2012c. Environmental Impact Statement Supplement for the Gahcho Kué Project. Section 8: Key Line of Inquiry: Water Quality and Fish in Kennady Lake. Submitted to the Mackenzie Valley Environmental Impact Review Board, April 2012.
- Fritz, P. and S.K. Frape. 1987. Geochemical Trends for Groundwaters from the Canadian Shield. In Fritz, P. and Frape, S. (eds.). Saline Water and Gases in Crystalline Rocks. Geological Association of Canada. Special Paper 33. p. 19-38.
- Kuchling, K., D. Chorley and W. Zawadzki. 2000. *Hydrogeological modelling of mining operations at the Diavik Diamonds Project.* In Proceedings of the Sixth International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production, University of Calgary, Calgary AB.

APPENDIX A

Groundwater Quality Data for Monitoring Wells and Summary Statistics of Boreholes within the Kennady Lake Watershed

Well Site	Well Sample	Sample Date	Zone	Port Depth [m] ^(a)	Depth of Zone Bottom[m] ^(a)	Well Installatior Method
144C	MPV04-144C	15-May-04	-	106	182	-
202C	MPV04-202C	15-May-04	-	320	380	-
	MPV04-234C	21-Aug-04	-	28	54	-
234C	MPV04-234C	29-Aug-04	-	288	311	-
	MPV04-234C	29-Aug-04	-	93	119	-
	MPV04-234C	29-Aug-04	-	183	210	-
235C	MPV05-235C	8-Jan-05	-	56	85	AirLift
	MPV05-236C	15-Dec-05	1	431	461	Westbay
	MPV05-236C	15-Dec-05	2	381	430	Westbay
	MPV05-236C	15-Dec-05	3	346	380	Westbay
	MPV05-236C	31-Aug-05	4	336	345	Westbay
	MPV05-236C	15-Dec-05	4	335	344	Westbay
236C	MPV05-236C	15-Dec-05	5	287	334	Westbay
	MPV05-236C	15-Dec-05	6	250	285	Westbay
	MPV05-236C	16-Sep-05	7	230	249	Westbay
	MPV05-236C	15-Dec-05	7	230	249	Westbay
	MPV05-236C	16-Sep-05	8	192	229	Westbay
	MPV11-236C	6-Mar-11	1	431	461	Westbay
	MPV11-236C	6-Mar-11	4	335	345	Westbay
	MPV11-236C	7-Mar-11	7	230	249	Westbay
	MPV05-238C	15-Dec-05	1	441	472	Westbay
	MPV05-238C	16-Sep-05	4	323	350	Westbay
	MPV05-238C	15-Dec-05	4	322	350	Westbay
	MPV05-238C	15-Dec-05	6	231	260	Westbay
	MPV05-238C	17-Sep-05	6	231	260	Westbay
	MPV05-238C	17-Sep-05	8	167	201	Westbay
238C	MPV05-238C	17-Sep-05	11	62	89	Westbay
	MPV05-238C	8-Aug-05	-	321	353	AirLift
	MPV05-238C	16-Sep-05	-	172	203	AirLift
	MPV05-238C	10-Sep-05	4	323	350	Westbay
	MPV11-238C	2-Mar-11	1	442	473	Westbay
	MPV11-238C	3-Mar-11	4	323	350	Westbay
	MPV11-238C	3-Mar-11	6	231	260	Westbay
	MPV11-238C	4-Mar-11	8	167	201	Westbay
	MPV05-239C	-	2	347	368	Westbay
	MPV05-239C	-	3	318	345	Westbay
	MPV05-239C	10-Sep-05	1	370	396	Airlift
	MPV05-239C	6-Sep-05	4	295	317	Airlift

Table A-1 Details of Monitoring Wells for Groundwater Quality Data

239C	MPV11-239C	9-Mar-11	1	370	397	Westbay
	MPV11-239C	1-Mar-11	2	348	369	Westbay
	MPV11-239C	1-Mar-11	3	319	346	Westbay
	MPV11-239C	9-Mar-11	7	233	248	Westbay
	MPV11-239C	9-Mar-11	8	184	232	Westbay
	MPV11-239C	10-Mar-11	11	96	131	Westbay
	MPV05-240C	-	5	217	252	Westbay
240C	MPV05-240C	-	7	173	201	Westbay
	MPV05-240C	-	7	173	201	Westbay
	MPV05-240C	4-Sep-05	7	173	201	Airlift

Table A-1 Details of Monitoring Wells for Groundwater Quality Data (continued)

^(a) port depth and depth of zone bottom presented as distance corrected for hole angle.

- information was not available.

		<200 metres						>200 metres					
Parameter	Units	n	Min	Median	Мах	% Below MDL	n	Min	Median	Max	% Below MDL		
Conventional Parameters													
pH (25 °C)		11	7.11	7.52	7.97	0%	24	6.33	7.63	7.95	0%		
рН	-	2	7.6	-	8.8	0%	10	6.79	7.60	9.89	0%		
Specific conductivity	mS/cm	14	0.460	3.43	8.240	0%	34	0.514	6.65	21.0	0%		
Total hardness	mg CaCO₃/L	10	180	1,550	3,150	0%	14	189	3,290	7,570	0%		
Total Alkalinity	mg CaCO₃/L	14	36	66	113	0%	34	<5	51	145	3%		
True Colour	TCU	6	<1	5	10	17%	12	<1	5	20	25%		
Total dissolved solids, calculated	mg/L	3	409	541	3,710	0%	10	857	6,410	12,900	0%		
Total dissolved solids (105°C)	mg/L	9	376	2,900	5,880	0%	14	424	6,280	16,400	0%		
Total dissolved solids (180 °C)	mg/L	7	320	3,310	5,530	0%	22	376	2,935	14,700	0%		
Total suspended solids	mg/L	5	4	12	38	0%	10	2	13	55	0%		
Turbidity	NTU	11	4	11	64	0%	21	4	8	89	0%		
Major Ions													
Bicarbonate	mg/L	10	53	82	137	0%	14	14	56	124	0%		
Bromide	mg/L	0	-	-	-	-	1	8.3	-	8.3	0%		
Calcium	mg/L	14	54.1	408	958	0%	34	55.4	1,026	2,620	0%		
Carbonate	mg/L	10	<1	-	<1	100%	14	<1	-	<1	100%		
Chloride	mg/L	14	93.1	1,070	2,760	0%	34	108	2,735	7,590	0%		
Fluoride	mg/L	13	0.125	0.4	0.8	31%	24	0.3	0.6	1.49	8%		
Hydroxide	mg/L	10	<1	-	<1	100%	14	<1	-	<1	100%		
Magnesium	mg/L	14	0.6	56	185	0%	34	0.95	93	378	0%		
Potassium	mg/L	14	3.5	15	94.7	0%	34	2.6	8.0	31.5	0%		
Sodium	mg/L	14	7	250	502	0%	34	13.6	594	1,890	0%		
Sulphate	mg/L	14	0.385	66.3	738	14%	34	21.3	197	1,130	0%		
Nutrients													
Nitrate	mg N/L	13	<0.006	-	0.11	85%	24	<0.006	0.025	1.64	67%		

Table A-2 Summary Statistics of Groundwater Quality Data in Developed Boreholes within the Kennady Lake Watershed by Depth

Table A-2 Summary Statistics of Groundwater Quality Data in Developed Boreholes within the Kennady Lake Watershed by Depth (continued)

		<200 metres						>200 metres					
Parameter	Units	n	Min	Median	Max	% Below MDL	n	Min	Median	Max	% Below MDL		
Nitrite	mg N/L	13	<0.002	-	<5	100%	24	<0.002	-	<5	83%		
Total ammonia	mg N/L	10	0.3	0.85	2.2	10%	13	0.1	0.4	1.2	8%		
Total Kjeldahl nitrogen	mg N/L	3	<0.4	0.2	<0.4	33%	1	1.2	1.2	1.2	0%		
Total phosphorus	mg P/L	9	<0.02	0.04	0.221	56%	21	0.0093	0.010	0.078	52%		
Total dissolved phosphorus	mg P/L	4	<0.02	-	0.02	75%	11	<0.02	-	<0.02	100%		
Dissolved phosphorus	mg P/L	8	<0.005	-	<0.02	100%	11	<0.005	-	0.04	91%		
Orthophosphate	mg P/L	3	<0.001	-	<0.001	100%	9	<0.001	0.002	0.054	44%		
Total inorganic carbon	mg/L	6	7	17	22	0%	12	1	11	25	0%		
Total organic carbon	mg/L	6	2	3	7	0%	12	<1	3	24	17%		
Dissolved inorganic carbon	mg/L	3	2	17	22	0%	11	1	10	25	0%		
Dissolved organic carbon	mg/L	8	<0.02	3.5	6	13%	12	<1	3	24	17%		
Total Metals	•												
Aluminum	µg/L	8	<20	24	2,060	38%	11	<5	22	291	36%		
Antimony	µg/L	8	<0.1	-	<2	75%	11	<0.1	0.5	<2	64%		
Arsenic	µg/L	8	<5	30	128	25%	11	<5	30	159	18%		
Barium	µg/L	8	39	85	700	0%	11	<10	50	160	9%		
Beryllium	µg/L	8	<0.5	-	<0.5	100%	11	<0.5	-	<1	100%		
Boron	mg/L	8	<0.100	0.300	0.433	13%	11	0.027	0.273	1.18	0%		
Cadmium	µg/L	8	<0.1	0.075	0.3	63%	11	<0.1	0.1	0.4	64%		
Chromium	µg/L	8	<1	2.3	36	13%	11	<0.9	2	10	18%		
Cobalt	µg/L	8	<0.1	1.1	2.8	50%	11	0.3	0.9	2.7	18%		
Copper	µg/L	8	<2	3.7	10	13%	11	1.5	3.7	9.2	18%		
Iron	mg/L	8	<0.01	2.09	7.18	13%	11	0.56	2.9	8.54	0%		
Lead	µg/L	8	0.3	0.8	4	38%	11	0.3	0.8	5	18%		
Manganese	µg/L	8	75	150	<470	38%	11	100	157	226	9%		
Mercury	µg/L	8	<0.1	-	<10	100%	11	<0.1	-	<10	100%		
Molybdenum	µg/L	8	<1	6.45	13	25%	11	1	5	37.6	9%		
Nickel	µg/L	8	<2	3.9	69.2	13%	11	<2	20.3	61.3	18%		

Table A-2	Summary Statistics of Groundwater Quality Data in Developed Boreholes within the Kennady Lake Watershed by Depth
	(continued)

	Units	<200 metres						>200 metres					
Parameter		n	Min	Median	Max	% Below MDL	n	Min	Median	Мах	% Below MDL		
Selenium	µg/L	8	<0.8	14	229	38%	11	<0.8	11	223	9%		
Silicon	mg/L	8	2.6	5.0	7.5	0%	11	0.68	3.8	6.0	0%		
Silver	µg/L	8	<0.2	-	3.4	88%	11	<0.2	-	<0.5	100%		
Thallium	µg/L	8	<0.05	-	<2	88%	11	<0.05	-	<2	91%		
Uranium	µg/L	8	0.5	5	<10	38%	11	0.31	1.3	34.7	18%		
Vanadium	µg/L	8	0.3	0.5	<1	50%	11	<0.1	0.5	1.2	55%		
Zinc	µg/L	8	6	21	152	13%	11	13	45	99	18%		
Dissolved Metals													
Aluminum	µg/L	11	3	10	150	36%	20	<2	8	56	35%		
Antimony	µg/L	11	<0.03	-	<2	91%	20	<0.1	-	<2	90%		
Arsenic	µg/L	11	0.13	2.5	53.7	27%	20	<0.15	2.5	127	50%		
Barium	µg/L	11	34	118	410	0%	20	12	51	269	0%		
Beryllium	µg/L	11	<0.1	-	<2	100%	20	<0.1	-	<4	100%		
Boron	mg/L	11	0.037	0.205	5.03	9%	20	0.027	0.42	3.72	0%		
Cadmium	µg/L	11	<0.05	-	<0.5	82%	20	<0.05	-	<1	70%		
Chromium	μg/L	11	0.13	0.5	48	45%	20	<0.3	0.5	2.2	70%		
Cobalt	μg/L	11	<0.05	0.5	2.07	64%	20	0.07	0.6	2.21	55%		
Copper	μg/L	11	0.6	2.8	8.2	36%	20	1.3	2.5	<12	55%		
Iron	mg/L	11	<0.010	1.21	5.73	36%	20	<0.010	0.609	5.03	20%		
Lead	µg/L	11	<0.05	-	<2	73%	20	<0.05	-	2	80%		
Manganese	µg/L	11	23.4	143	<418	27%	20	<1	162	298	10%		
Mercury	µg/L	11	<0.02	-	<10	100%	20	<0.02	-	<10	100%		
Molybdenum	µg/L	11	<1	8	42.2	18%	20	<0.3	4	37	20%		
Nickel	µg/L	11	0.57	3	37.7	9%	20	<0.1	3	44.3	35%		
Selenium	µg/L	11	<0.4	1.9	111	64%	20	<0.4	0.2	137	65%		
Silicon	mg/L	8	2.3	3.9	7.0	0%	11	0.38	3.9	5.1	0%		
Silver	µg/L	11	<0.05	-	<1	100%	20	<0.05	-	<2	100%		
Thallium	µg/L	8	<0.02	-	<2	88%	11	<0.02	-	<2	100%		

Table A-2 Summary Statistics of Groundwater Quality Data in Developed Boreholes within the Kennady Lake Watershed by Depth (continued)

Parameter		<200 metres						>200 metres					
	Units	n	Min	Median	Max	% Below MDL	n	Min	Median	Max	% Below MDL		
Uranium	µg/L	11	<0.25	5	<10	55%	20	0.17	0.7	31.5	35%		
Vanadium	µg/L	11	<0.25	-	<10	82%	20	<0.25	-	2.37	75%		
Zinc	µg/L	11	<2	12.5	142	27%	20	<4	9	55	35%		

Note: MDL= method detection limit; - = not available; mg/L = milligrams per litre; TCU = true colour unit; μS/cm = microSiemens per centimetre; NTU = nephelometric turbidity unit; mg CaCO₃/L = milligrams per litre as calcium carbonate; mg N/L = milligrams per litre as nitrogen; mg P/L = milligrams per litre as phosphorus; μg/L = micrograms per litre.

< = less than; > = greater than; % = percent, n = number of samples; Min = minimum; Max = maximum.

When calculating the median:

If, "% Less Than MDL", was less than 33% the results below detection were halved.

If, "% Less Than MDL", was greater than 33% but less than 66% the results below detection were not used.

If, "% Less Than MDL", was greater than 66% the median was not calculated.

APPENDIX B

Groundwater Chemistry Data Box and Whisker Plots and Piper Plots

Conventional Parameters

Note:

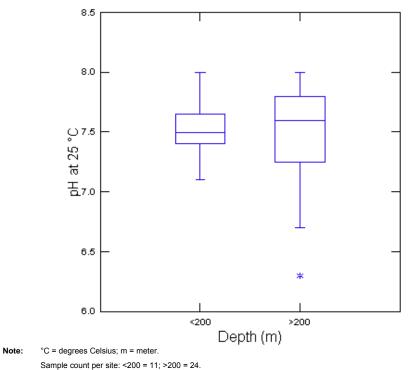
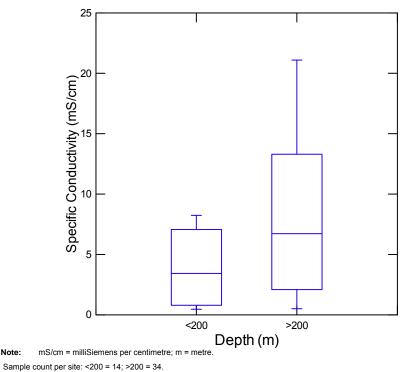
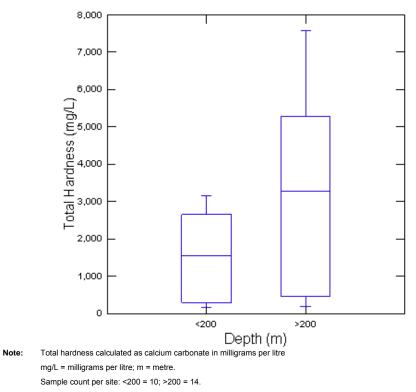




Figure B-2 Summary Specific Conductivity for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

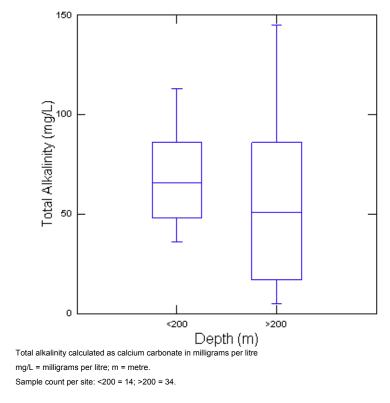


Figure B-3 Summary Total Hardness for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-4 Summary Total Alkalinity for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-5 Summary True Colour for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

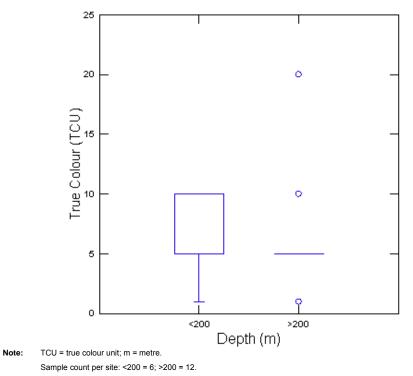
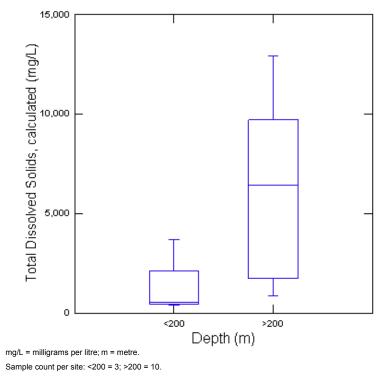



Figure B-6 Summary Total Dissolved Solids (Calculated) Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-7 Summary Total Dissolved Solids (105°C) Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

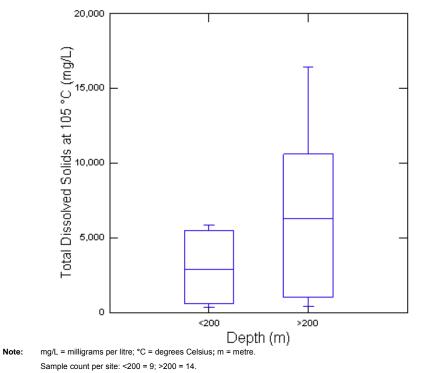
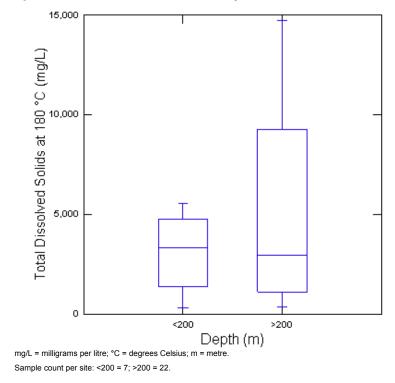
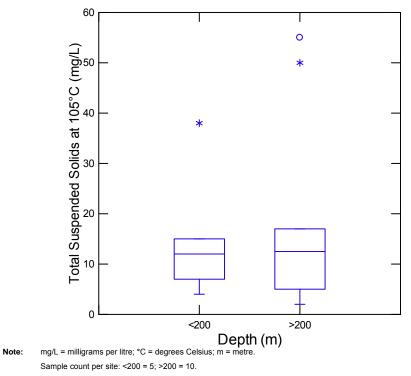
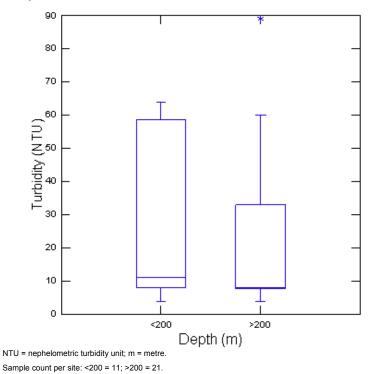
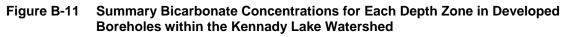
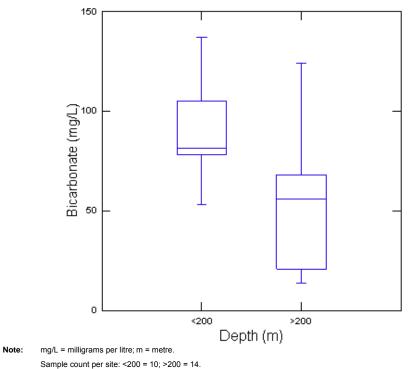
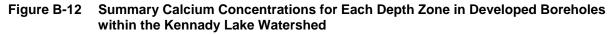



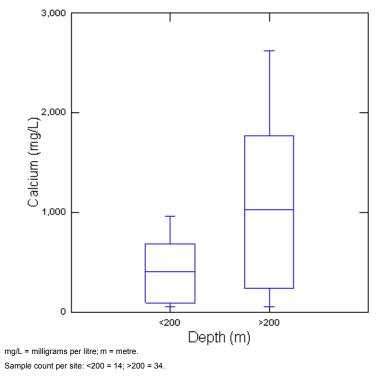
Figure B-8 Summary Total Dissolved Solids (180°C) Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-9 Summary Total Suspended Solids (105°C) Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

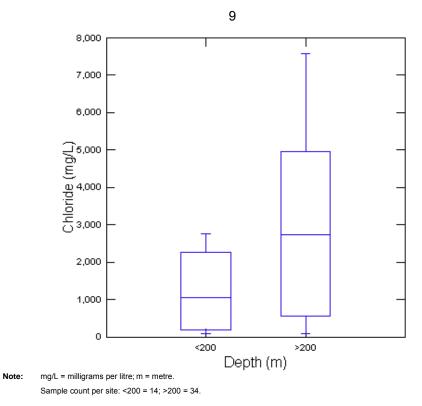





Figure B-10 Summary Turbidity for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed





Major Ions



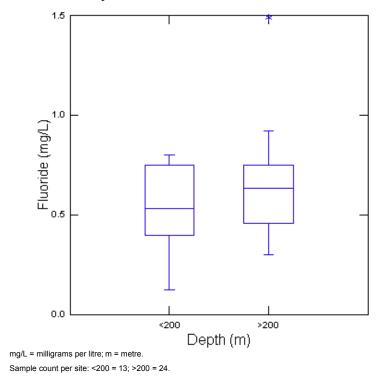


Figure B-13 Summary Chloride Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-14 Summary Fluoride Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-15 Summary Magnesium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

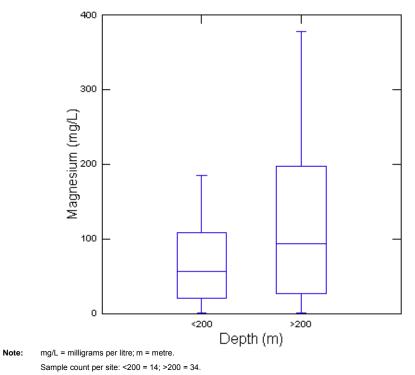
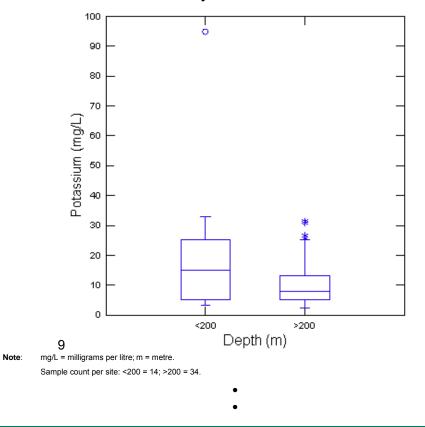



Figure B-16 Summary Potassium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-17 Summary Sodium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

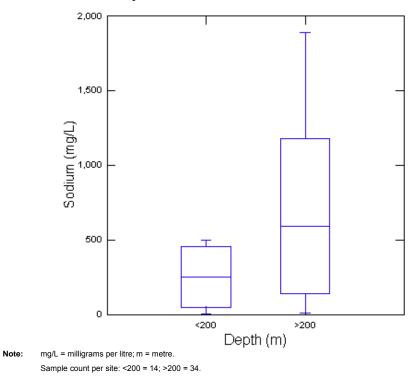
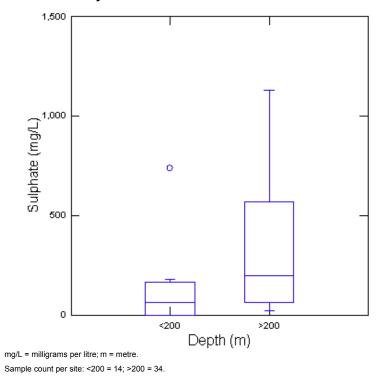
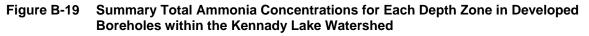




Figure B-18 Summary Sulphate Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Nutrients

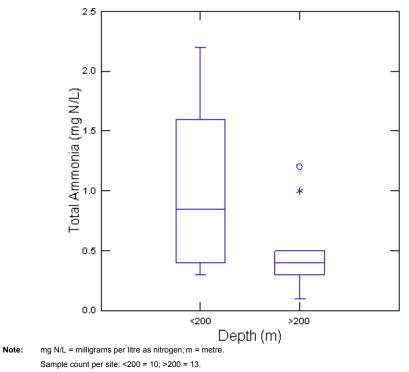
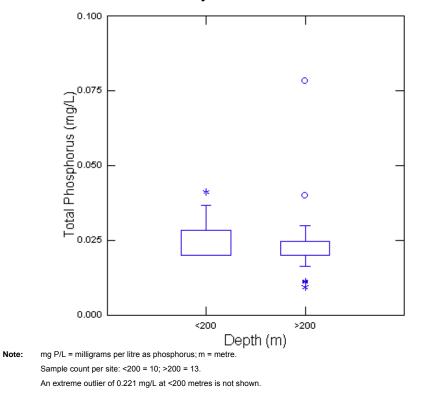



Figure B-20 Summary Total Phosphorus Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-21 Summary Orthophosphate Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

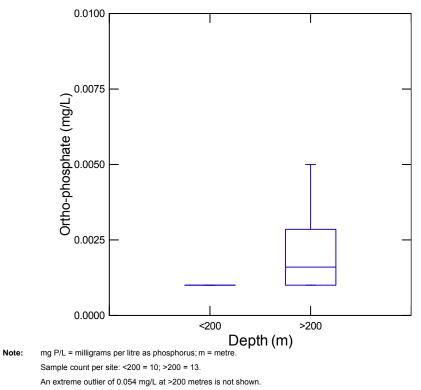
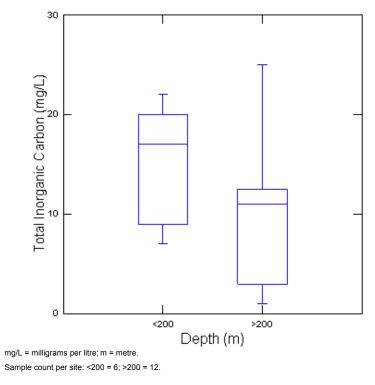



Figure B-22 Summary Total Inorganic Carbon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-23 Summary Dissolved Inorganic Carbon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

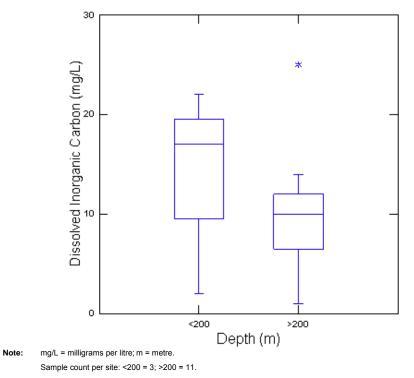
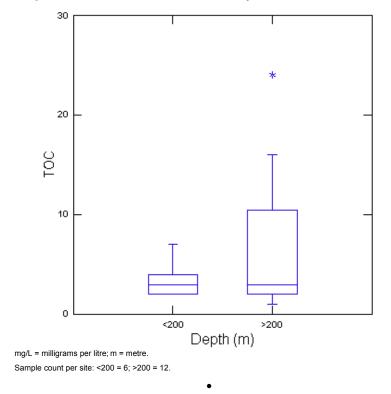
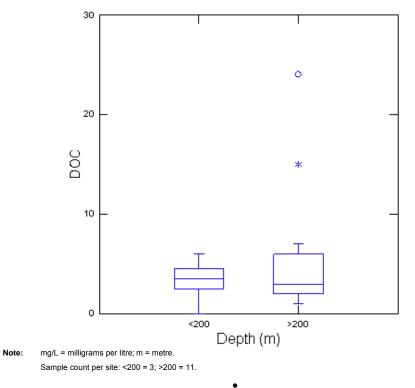
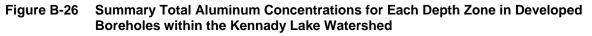




Figure B-24 Summary Total Organic Carbon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-25 Summary Dissolved Organic Carbon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed Area



Trace Metals

Note:

Note:

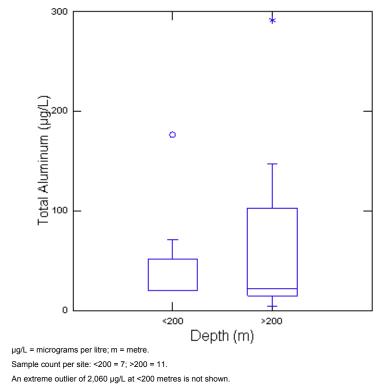
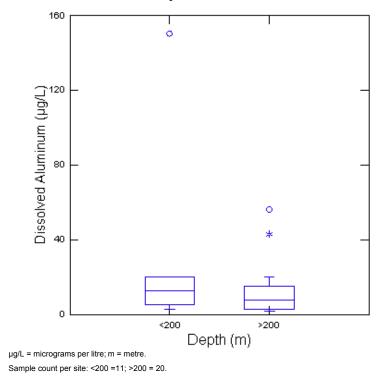



Figure B-27 Summary Dissolved Aluminum Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-28 Summary Total Arsenic Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

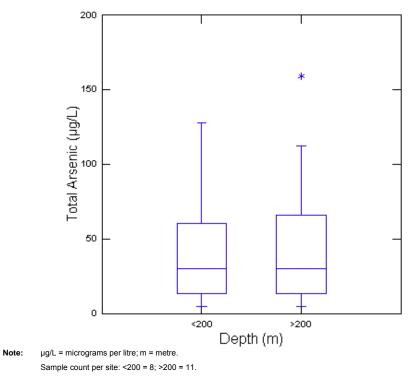
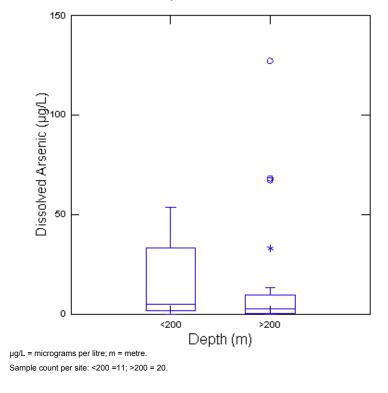



Figure B-29 Summary Dissolved Arsenic Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-30 Summary Total Barium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

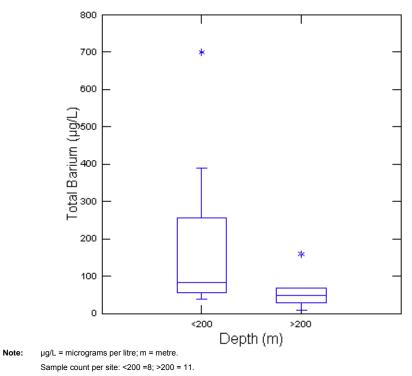
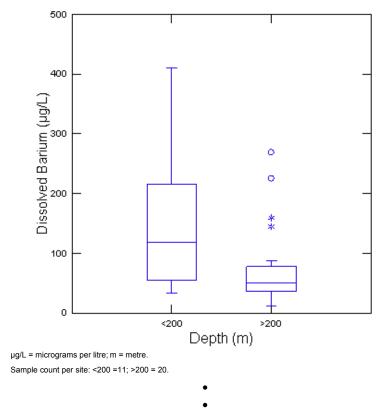



Figure B-31 Summary Dissolved Barium for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-32 Summary Total Boron Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

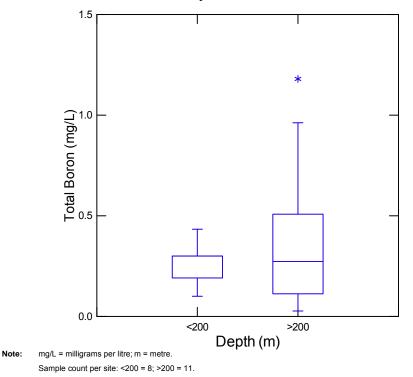
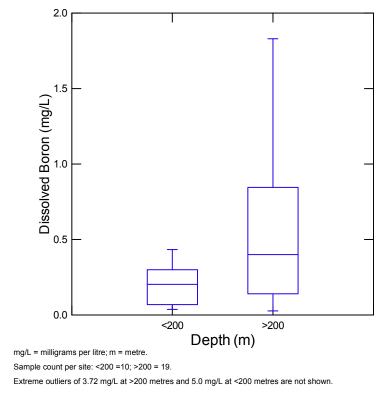



Figure B-33 Summary Dissolved Boron Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

.

Figure B-34 Summary Total Chromium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

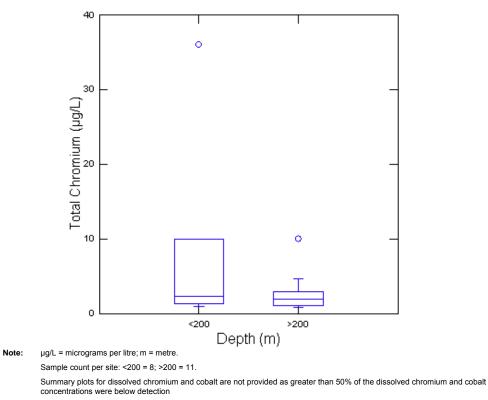
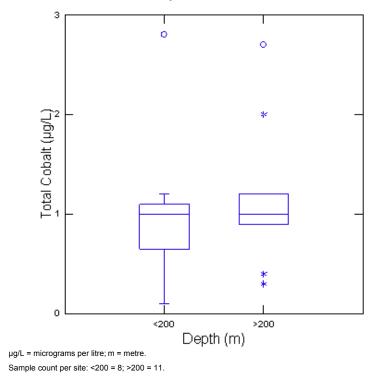



Figure B-35 Summary Total Cobalt Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

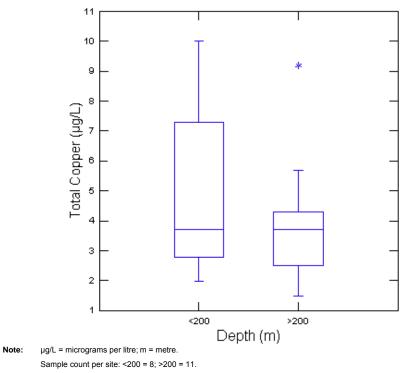
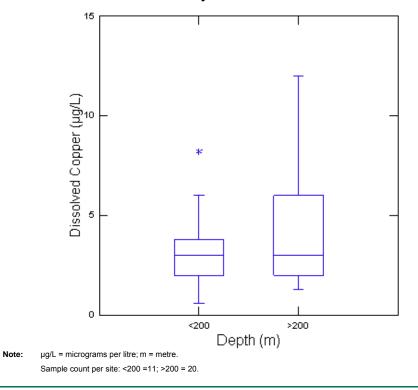



Figure B-37 Summary Dissolved Copper Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-38 Summary Total Iron Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

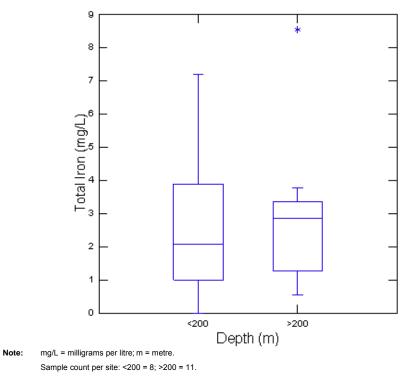
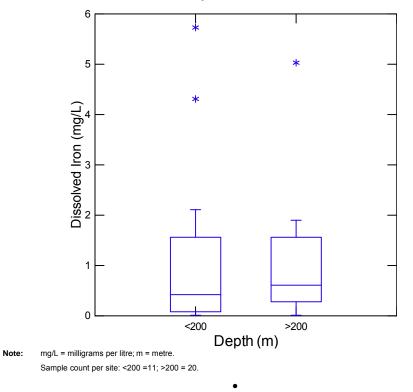
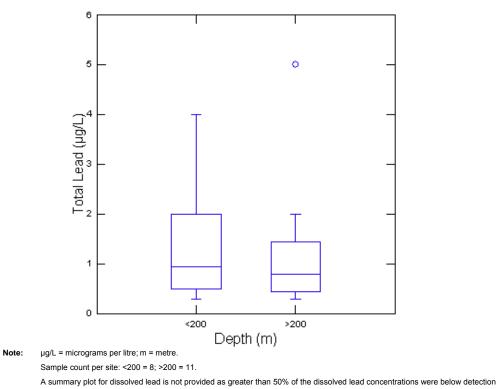




Figure B-39 Summary Dissolved Iron Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

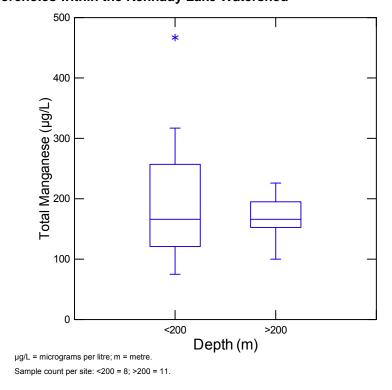


Figure B-40 Summary Total Lead Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-41 Summary Total Manganese Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-42 Summary Dissolved Manganese Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

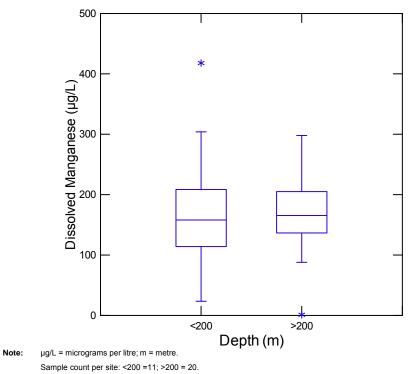
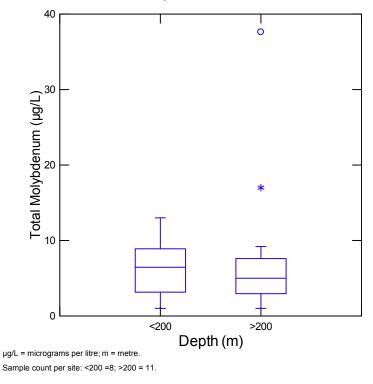



Figure B-43 Summary Total Molybdenum Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-44 Summary Dissolved Molybdenum Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

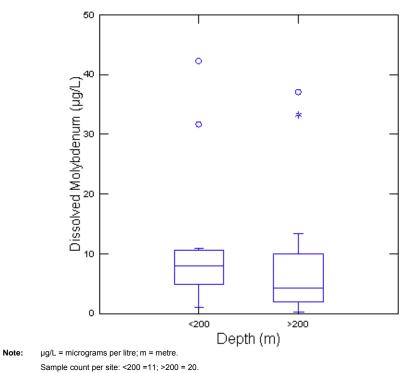
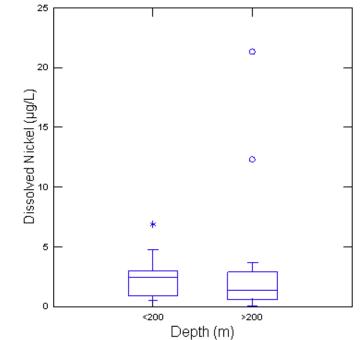



Figure B-45 Summary Total Nickel Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

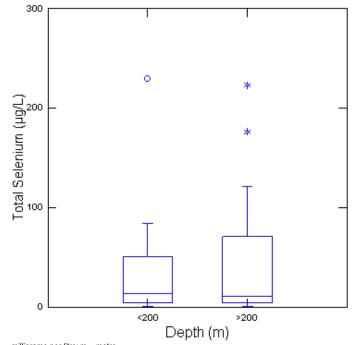


Figure B-46 Summary Dissolved Nickel Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Note: $\mu g/L = micrograms per litre; m = metre; Sample count per site: <200 = 10; >200 = 18.$ Extreme outliers of 37.7 $\mu g/L$ at <200 metres, and 35.9 $\mu g/L$ and 44.3 $\mu g/L$ at >200 metres are not shown.

Figure B-47 Summary Total Selenium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Note: $\mu g/L = milligrams per litre; m = metre.$

Sample count per site: <200 = 8; >200 = 11.

A summary plot for dissolved selenium is not provided as greater than 50% of the dissolved selenium concentrations were below detection

Figure B-48 Summary Total Silicon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

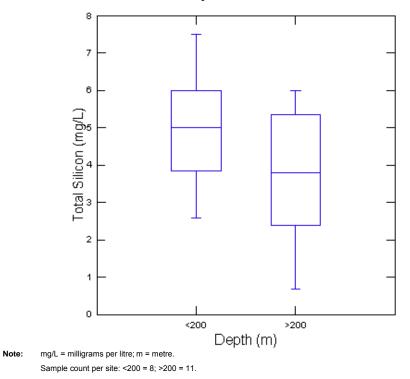
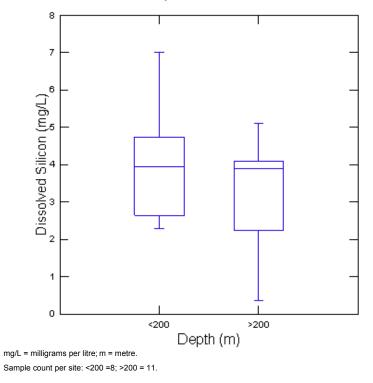
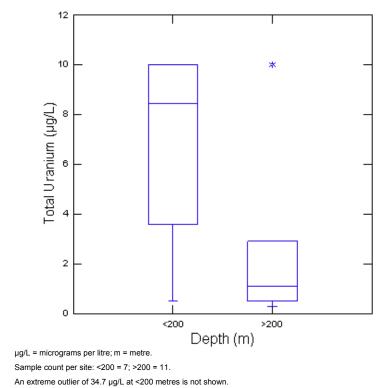
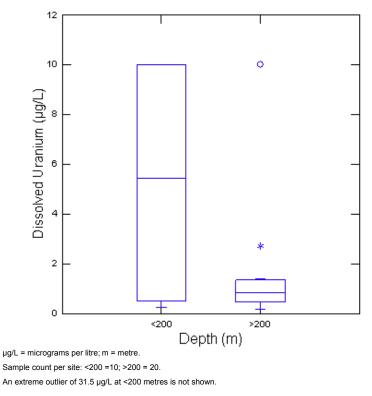
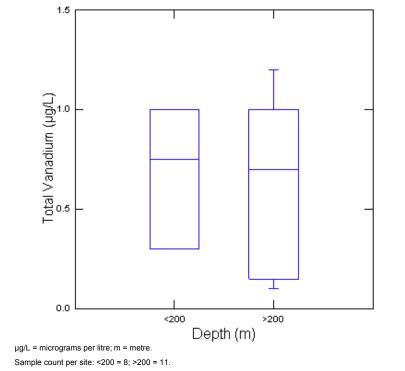



Figure B-49 Summary Dissolved Silicon Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Note:

Figure B-50 Summary Total Uranium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed


Figure B-51 Summary Dissolved Uranium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

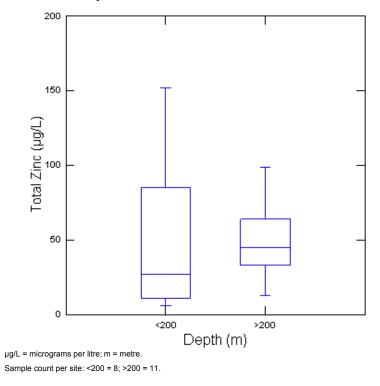

Note:

Figure B-52 Summary Total Vanadium Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

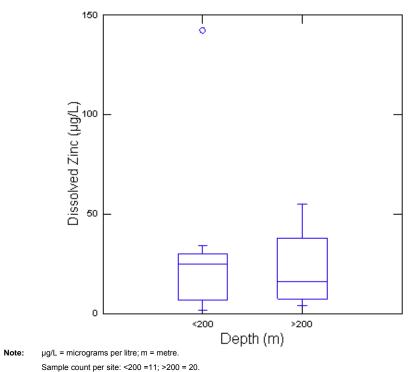

A summary plot for dissolved vanadium is not provided as greater than 50% of the dissolved vanadium concentrations were below detection

Figure B-53 Summary Total Zinc Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-54 Summary Dissolved Zinc Concentrations for Each Depth Zone in Developed Boreholes within the Kennady Lake Watershed

Figure B-55 Major Ion Distributions for Groundwater Samples Representing Two Depth Zones in Developed Boreholes within the Kennady Lake Watershed

Note: Data applies to TDS at 105 °C.

