9.7-16. Project effects on Lake N1 during dewatering are summarized in Figures 9.7-10 to 9.7-11 and Tables 9.7-17 to 9.7-20.

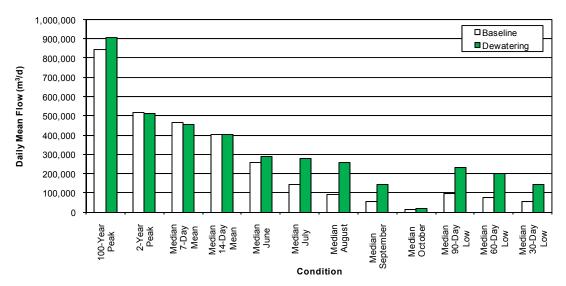


Figure 9.7-8 Comparison of Effects on Lake N11 Outlet Discharges – Dewatering

 m^{3}/d = cubic metres per day.

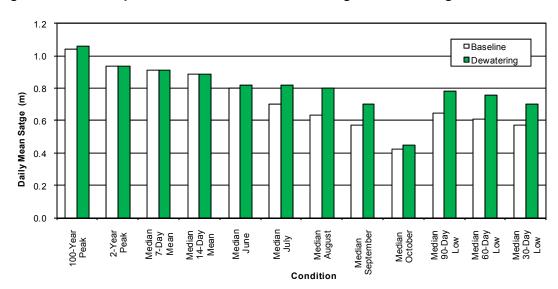


Figure 9.7-9 Comparison of Effects on Lake N11 Stages – Dewatering

	Return		Monthly Mean Discharge (m ³ /d)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	443,000	293,000	221,000	258,000	50,700			
Wet	100	dewatering	478,000	373,000	332,000	370,000	62,900			
vvei	10	baseline	359,000	215,000	147,000	123,000	28,200			
	10	dewatering	389,000	324,000	294,000	247,000	35,100			
Madian	2	baseline	257,000	141,000	91,400	56,800	14,700			
Median	2	dewatering	288,000	280,000	256,000	142,000	18,600			
	10	baseline	155,000	83,600	58,800	33,300	8,740			
Dry	10	dewatering	196,000	248,000	226,000	71,700	11,200			
	100	baseline	71,900	46,900	42,600	25,900	6,400			
	100	dewatering	126,000	230,000	207,000	32,400	8,380			

Table 9.7-13	Monthly Mean Discharges at the Lake N11 Outlet – Dewatering
--------------	---

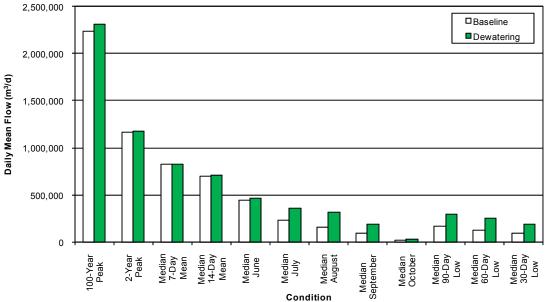
Table 9.7-14	Derived Representative Discharges at the Lake N11 Outlet – Dewatering
--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	9.8	747,000	630,000	179,000	198,000	215,000
Wet	100	dewatering	10.5	805,000	676,000	326,000	331,000	343,000
vvei	10	baseline	8.22	630,000	538,000	102,000	125,000	152,000
	10	dewatering	8.27	634,000	543,000	239,000	264,000	284,000
Madian	2	baseline	6.00	464,000	404,000	55,500	75,000	98,700
Median	2	dewatering	5.92	457,000	405,000	143,000	200,000	229,000
	10	baseline	3.36	269,000	240,000	33,900	48,500	64,200
Dru	10	dewatering	4.12	321,000	296,000	73,500	152,000	189,000
Dry	100	baseline	0.85	85,300	81,700	25,200	36,500	45,200
	100	dewatering	3.19	250,000	238,000	43,600	128,000	167,000

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

9-188

	Return		Monthly Mean Stage (m)					
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct	
	100	baseline	0.903	0.824	0.774	0.801	0.558	
Wet	100	dewatering	0.919	0.869	0.847	0.868	0.585	
vvei	10	baseline	0.862	0.769	0.707	0.680	0.490	
		dewatering	0.878	0.843	0.825	0.793	0.514	
Median	2	baseline	0.800	0.700	0.636	0.572	0.424	
weatan		dewatering	0.821	0.816	0.800	0.702	0.447	
	10	baseline	0.715	0.624	0.577	0.508	0.378	
Dry	10	dewatering	0.754	0.794	0.778	0.603	0.399	
	100	baseline	0.603	0.548	0.537	0.481	0.352	
	100	dewatering	0.683	0.781	0.763	0.505	0.374	


Table 9.7-15 Monthly Mean Stages at Lake N11 – Dewatering

m = metre.

Table 9.7-16	Derived Representative Stages at Lake N11 – Dewatering
--------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.043	1.015	0.977	0.739	0.755	0.769
Wet	100	dewatering	1.059	1.032	0.992	0.844	0.847	0.853
vvei		baseline	1.003	0.977	0.943	0.652	0.682	0.712
	10	dewatering	1.005	0.978	0.945	0.788	0.805	0.818
Median	2	baseline	0.935	0.913	0.885	0.569	0.609	0.647
Median	2	dewatering	0.933	0.910	0.886	0.703	0.757	0.780
	10	baseline	0.822	0.809	0.788	0.510	0.553	0.588
Drak	10	dewatering	0.861	0.841	0.826	0.606	0.712	0.748
Dry	100	baseline	0.606	0.626	0.620	0.478	0.519	0.544
	100	dewatering	0.813	0.796	0.787	0.540	0.686	0.727

Figure 9.7-10

 m^{3}/d = cubic metres per day.

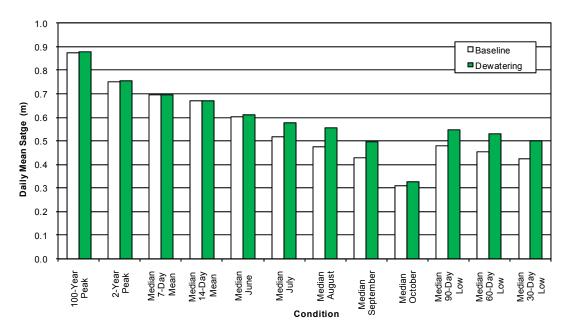


Figure 9.7-11 Comparison of Effects on Lake N1 Stages – Dewatering

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	737,000	470,000	370,000	398,000	84,100		
Wet	100	dewatering	764,000	550,000	499,000	490,000	99,600		
vvel	10	baseline	609,000	348,000	248,000	204,000	47,600		
		dewatering	632,000	453,000	396,000	326,000	57,400		
Median	2	baseline	444,000	229,000	156,000	99,000	25,100		
Median	2	dewatering	471,000	364,000	317,000	194,000	30,900		
	10	baseline	270,000	138,000	102,000	56,600	14,600		
Dru	10	dewatering	312,000	297,000	272,000	111,000	18,400		
Dry	100	baseline	121,000	79,300	75,400	41,600	10,300		
	100	dewatering	184,000	256,000	249,000	66,700	13,300		

 Table 9.7-17
 Monthly Mean Discharges at the Lake N1 Outlet – Dewatering

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	25.9	1,250,000	1,050,000	285,000	333,000	353,000
Wet	100	dewatering	26.7	1,280,000	1,070,000	417,000	462,000	482,000
wei	10	baseline	19.9	1,080,000	910,000	171,000	212,000	251,000
	10	dewatering	19.9	1,080,000	914,000	304,000	351,000	384,000
Median	2	baseline	13.5	827,000	704,000	95,600	128,000	166,000
Median	2	dewatering	13.6	826,000	705,000	195,000	257,000	296,000
	10	baseline	8.2	527,000	441,000	57,200	83,800	109,000
P	10	dewatering	8.8	561,000	473,000	112,000	195,000	235,000
Dry	100	baseline	4.5	242,000	174,000	40,500	63,800	77,100
	100	dewatering	5.8	335,000	264,000	59,400	161,000	199,000

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

De Beers Canada Inc.

Condition	Return Period	Spanahat	Monthly Mean Stage (m)					
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct	
	100	baseline	0.677	0.610	0.577	0.587	0.411	
\M/ot	100	dewatering	0.682	0.633	0.619	0.616	0.427	
Wet	10	baseline	0.648	0.569	0.527	0.504	0.360	
		dewatering	0.653	0.605	0.587	0.561	0.376	
Median	2	baseline	0.602	0.517	0.473	0.426	0.311	
weulan		dewatering	0.610	0.575	0.557	0.498	0.326	
	10	baseline	0.537	0.460	0.429	0.375	0.274	
Det	10	dewatering	0.555	0.549	0.538	0.438	0.289	
Dry	100	baseline	0.446	0.405	0.400	0.349	0.253	
	100	dewatering	0.492	0.531	0.527	0.389	0.269	

9-192

Table 9.7-19	Monthly Mean Stages at Lake N1 – Dewatering
--------------	---

m = metre.

 Table 9.7-20
 Derived Representative Stages at Lake N1 – Dewatering

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.874	0.764	0.734	0.544	0.564	0.571
\M/ot	100	dewatering	0.880	0.768	0.737	0.594	0.608	0.614
vvel	Wet 10	baseline	0.822	0.739	0.710	0.483	0.508	0.528
		dewatering	0.822	0.739	0.711	0.552	0.571	0.582
Median	2	baseline	0.752	0.695	0.670	0.423	0.452	0.480
Weulan	2	dewatering	0.753	0.695	0.670	0.498	0.531	0.549
	10	baseline	0.671	0.626	0.601	0.376	0.410	0.436
Day	10	dewatering	0.682	0.636	0.611	0.439	0.498	0.520
Dry	100	baseline	0.584	0.524	0.485	0.347	0.385	0.403
	100	dewatering	0.620	0.564	0.534	0.379	0.477	0.501

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake N11 Outlet Flows: The water balance results for Lake N11 show that during dewatering, monthly mean flows will increase due to pumping to Lake N11. The 2-year flood discharge during dewatering will be approximately equal to the baseline value, and the 100-year flood discharge will increase by approximately 7%. Low flows will also increase by 132% to 167%.

Lake N11 Water Levels: Lake N11 water levels are also expected to increase during dewatering. The 2-year flood level is expected to decrease by approximately 0.002 m, the 100-year flood level by 0.016 m, and monthly mean stages by 0.021 m (June), 0.116 m (July), 0.164 m (August), 0.130 m (September) and 0.023 m (October), under median conditions.

Lake N11 and Outlet Channel/Bank Stability: No effects on Lake N11 and Outlet channel or bank stability are expected during dewatering, because increases in flood magnitude are small relative to the existing flood regime. Additional information on the Lake N11 Outlet follows this summary.

Lake N1 Outlet Flows: The water balance results for Lake N1 show that during dewatering, monthly mean flows will increase due to pumping to Lake N11. The 2-year flood discharge during dewatering will increase by approximately 1% above the baseline value, and the 100-year flood discharge will increase by approximately 3%. Low flows will also increase by 78% to 104%.

Lake N1 Water Levels: Lake N1 water levels are also expected to increase during dewatering. The 2-year flood level is expected to increase by approximately 0.001 m, the 100-year flood level by 0.006 m, and monthly mean stages by 0.008 m (June), 0.058 m (July), 0.084 m (August), 0.072 m (September) and 0.015 m (October), under median conditions.

Lake N1 and Outlet Channel/Bank Stability: No effects on Lake N1 and Outlet channel or bank stability are expected during dewatering, because increases in flood magnitude are small relative to the existing flood regime.

Additional comment on the Lake N11 Outlet channel: The project description indicates that dewatering discharges to Lake N11 will be limited to 500,000 m³/d and a prior dewatering plan considered this magnitude of discharge. For that reason, a detailed analysis of hydraulic characteristics and erosion potential at the Lake N11 outlet was performed. The current dewatering plan involves dewatering a reduced quantity of water at a lower rate, such that dewatering discharges to Lake N11 will typically be on the order of 300,000 m³/d and occur after the freshet peak.

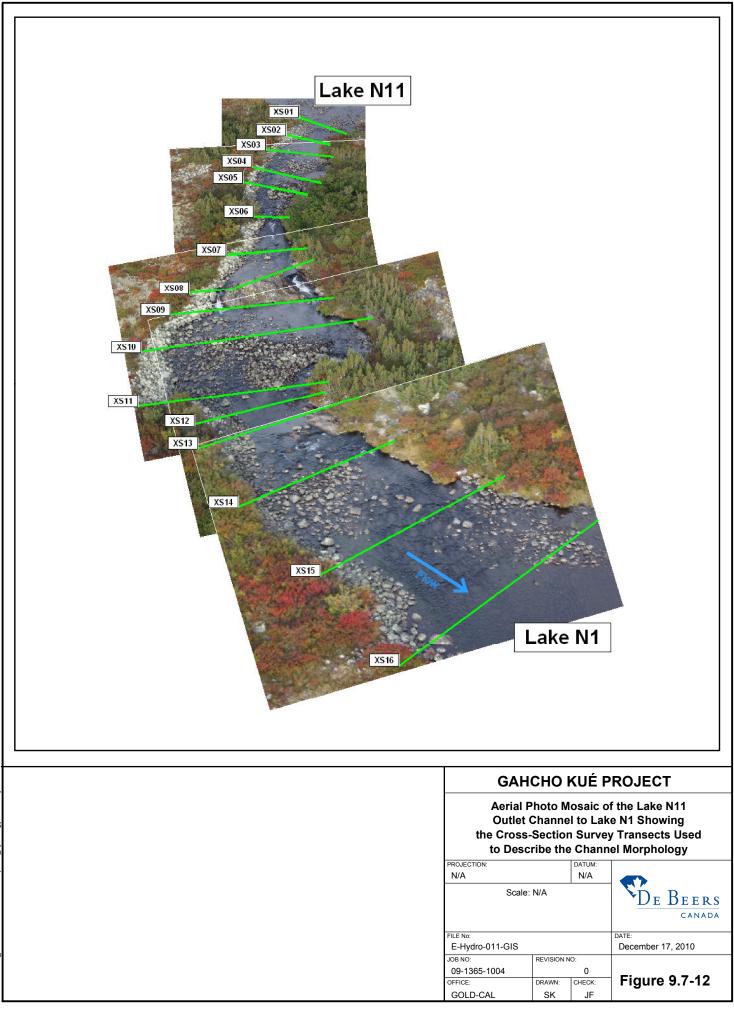
Surveys of the Lake N11 outlet channel indicate that it is naturally armoured with boulders and bedrock and any effects of the higher flows to scour of finer sediment fractions from interstitial areas between boulder and cobble substrates would be temporary and limited. A summary of the flow area, velocity and water surface elevation of each cross-section of the Lake N11 outlet channel during dewatering, is provided in Table 9.7-21 for 2, 10 and 100-year flood conditions.

The locations of these cross-sections are shown superimposed on an oblique aerial photo mosaic in Figure 9.7-12.

A conservative estimate of rock size required to resist local, depth-averaged flow velocities, as presented by TAC (2001), indicates that nominal rock diameters of 0.26 m, 0.54 m, 0.94 m and 1.48 m would be required for stability at flow velocities of 3 metres per second (m/s), 4 m/s, 5 m/s and 6 m/s, respectively. The largest mean channel velocities anticipated for the Lake N11 outflow channel are 1.9 m/s (2-year flood) and 2.3 m/s (100-year flood) at cross-section 6. Applying a conservative factor of 1.5 yields local, depth-averaged flow velocities of approximately 3 m/s (2-year flood) and 3.5 m/s (100-year flood). This indicates that boulders of diameter 0.26 m (2-year flood) and 0.40 m (100-year flood) would be stable at this section.

An evaluation of erosion potential at each section of the Lake N11 outlet is provided in Table 9.7-22. Based on this analysis, no erosion due to dewatering is expected in the outlet channel from Lake N11 outlet (i.e., stream N11).

	Quentitu	2-year Floo	d Discharge	10-year Floo	d Discharge	100-year Flo	od Discharge
Section	Quantity	Baseline	Dewatering	Baseline	Dewatering	Baseline	Dewatering
Coolion	Discharge (m³/s)	6.00	5.92	8.22	8.27	9.77	10.5
XS1	flow area (m ²)	17.87	17.74	21.27	21.34	23.29	24.16
	velocity (m/s)	0.34	0.34	0.39	0.39	0.43	0.44
	max depth (m)	1.02	1.02	1.13	1.14	1.2	1.23
XS2	flow area (m ²)	9.52	9.46	11.30	11.34	12.42	12.9
	velocity (m/s)	0.65	0.64	0.76	0.76	0.82	0.85
	max depth (m)	1.11	1.11	1.22	1.22	1.28	1.31
	flow area (m ²)	3.68	3.64	4.65	4.67	5.25	5.55
XS3	velocity (m/s)	1.67	1.66	1.82	1.82	1.91	1.95
	max depth (m)	0.44	0.44	0.51	0.51	0.55	0.57
	flow area (m ²)	15.52	15.39	18.98	19.06	21.26	22.30
XS4	velocity (m/s)	0.41	0.40	0.46	0.46	0.49	0.50
	max depth (m)	0.92	0.92	1.06	1.06	1.14	1.18
	flow area (m ²)	10.60	10.51	13.03	13.08	14.59	15.29
XS5	velocity (m/s)	0.61	0.61	0.69	0.69	0.74	0.76
	max depth (m)	1.13	1.12	1.25	1.26	1.34	1.37


Table 9.7-21Derived Changes to Discharge, Velocity, Flow Area and Water Surface
Elevation at the Lake N11 Outlet during Dewatering

	Oursetitus	2-year Floo	d Discharge	10-year Floo	d Discharge	100-year Flo	od Discharge
Section	Quantity	Baseline	Dewatering	Baseline	Dewatering	Baseline	Dewatering
occion	Discharge (m ³ /s)	6.00	5.92	8.22	8.27	9.77	10.5
	flow area (m ²)	3.14	3.1	3.88	3.89	4.35	4.57
XS6	velocity (m/s)	1.91	1.91	2.12	2.12	2.24	2.30
	max depth (m)	0.94	0.94	1.03	1.03	1.08	1.11
	flow area (m ²)	6.68	6.67	8.44	8.47	9.31	9.67
XS7	velocity (m/s)	0.95	0.94	1.03	1.04	1.12	1.16
	max depth (m)	0.93	0.93	1.05	1.05	1.10	1.12
	flow area (m ²)	3.26	3.09	4.52	4.54	5.39	5.68
XS8	velocity (m/s)	1.84	1.91	1.82	1.82	1.81	1.85
	max depth (m)	0.71	0.69	0.82	0.82	0.88	0.90
	flow area (m ²)	8.46	8.42	9.70	9.73	10.54	10.92
XS9	velocity (m/s)	0.71	0.70	0.85	0.85	0.93	0.96
	max depth (m)	0.87	0.87	0.94	0.95	0.99	1.01
	flow area (m ²)	4.73	4.68	5.85	5.88	6.41	6.74
XS10	velocity (m/s)	1.27	1.26	1.40	1.41	1.53	1.56
	max depth (m)	0.46	0.46	0.50	0.50	0.52	0.53
	flow area (m ²)	7.40	7.33	9.38	9.42	10.62	11.17
XS11	velocity (m/s)	0.81	0.81	0.88	0.88	0.92	0.94
	max depth (m)	0.79	0.79	0.89	0.90	0.96	0.98
	flow area (m ²)	7.15	7.1	8.42	8.44	9.21	9.56
XS12	velocity (m/s)	0.84	0.83	0.98	0.98	1.07	1.11
	max depth (m)	0.91	0.91	1.00	1.01	1.06	1.09
	flow area (m ²)	3.94	3.90	4.94	4.96	5.65	6.00
XS13	velocity (m/s)	1.53	1.53	1.69	1.69	1.76	1.78
	max depth (m)	0.60	0.60	0.67	0.67	0.72	0.75
	flow area (m ²)	6.11	6.06	7.32	7.35	8.14	8.56
XS14	velocity (m/s)	0.98	0.98	1.13	1.13	1.21	1.23
	max depth (m)	0.80	0.80	0.87	0.87	0.92	0.94
	flow area (m ²)	3.89	3.85	4.84	4.87	5.48	5.75
XS15	velocity (m/s)	1.54	1.54	1.70	1.70	1.78	1.82
	max depth (m)	0.50	0.50	0.55	0.56	0.59	0.61
	flow area (m ²)	12.47	12.42	12.96	12.98	13.31	13.48
XS16	velocity (m/s)	0.48	0.48	0.63	0.64	0.73	0.78
	max depth (m)	0.87	0.87	0.89	0.89	0.91	0.92

Table 9.7-21Derived Changes to Discharge, Velocity, Flow Area and Water Surface
Elevation at the Lake N11 Outlet during Dewatering (continued)

m/s = metres per second; m^3/s = cubic metres per second; m^2 = square metres; m = metres.

De Beers Canada Inc.

CLIENTS\DE_BEERS\09-1365-1004\maps\08_hydrology\EIA\E-Hydro-011-GIS.mxd

Table 9.7-22	Evaluation of Erosion Potential in the Lake N11 Outlet Channel during
	Dewatering

	Quantitu	2-year Disc	charge	10-year	Discharge	100-yea	r Discharge			
Section	Quantity	Natural	Dewatering	Natural	Dewatering	Natural	Dewatering			
	Discharge (m³/s)	6.00	5.92	8.22	8.27	9.77	10.5			
	velocity (m/s)	0.34	0.34	0.39	0.39	0.43	0.44			
XS1	materials	boulders with vegetation in low velocity areas of sediment deposition								
	evaluation	transition zone from Lake N11 with low velocities, low erosion potential								
	velocity (m/s)	0.65	0.65 0.64 0.76 0.76 0.82 0.85							
XS2	materials	boulders embedded in LDB high bank, large boulders at RDB								
	evaluation	low velocities, low erosion potential								
	velocity (m/s)	1.67	1.66	1.82	1.82	1.91	1.95			
XS3	materials	boulders embedd	ed in LDB bai	nk, large bou	Iders at RDB					
	evaluation	lake outlet sill; mean flow velocity increased by up to 20%, boulder armour adequate								
	velocity (m/s)	0.41	0.40	0.46	0.46	0.49	0.50			
XS4	materials	boulders embedded in LDB bank, large boulders at RDB								
	evaluation	low velocities because channel increases in width, low erosion potential								
	velocity (m/s)	0.61	0.61	0.69	0.69	0.74	0.76			
XS5	materials	large boulders at	LDB and RDB	3						
	evaluation	low velocities, low erosion potential								
	velocity (m/s)	1.91	1.91	2.12	2.12	2.24	2.30			
XS6	materials	natural rock boulders, D_{50} approximately 600 mm								
	evaluation	constriction causes highest velocities, but still well below stability threshold								
	velocity (m/s)	0.95	0.94	1.03	1.04	1.12	1.16			
XS7	materials	large boulders at	LDB and RDB	3						
	evaluation	low velocities, low	v erosion pote	ntial						
	velocity (m/s)	1.84	1.91	1.82	1.82	1.81	1.85			
XS8	materials	bedrock control ir	bed and ban	ks						
	evaluation	this section is res discharge	istant to erosi	on, and inse	nsitive to incre	ease in vel	ocity and			
	velocity (m/s)	0.71	0.70	0.85	0.85	0.93	0.96			
XS9	materials	bedrock at LDB, I	arge boulders	at RDB						
	evaluation	immediately below	w bedrock cor	ntrol. Low er	osion potentia	al				
	velocity (m/s)	1.27	1.26	1.40	1.41	1.53	1.56			
XS10	materials	bedrock in LDB, I	arge boulders	at RDB	•		•			
	evaluation	this section is inse	ensitive to inc	rease in velo	city and disch	arge				

	Quantity	2-year Dise	charge	10-year	Discharge	100-year Discharge					
Section	Quantity	Natural	Dewatering	Natural	Dewatering	Natural	Dewatering				
	Discharge (m³/s)	6.00	5.92	8.22	8.27	9.77	10.5				
	velocity (m/s)	0.81	0.81	0.88	0.88	0.92	0.94				
XS11	materials	bedrock in LDB, large boulders at RDB									
	evaluation	this section is insensitive to increase in velocity and discharge									
	velocity (m/s)	0.84	0.83	0.98	0.98	1.07	1.11				
XS12	materials	bedrock in LDB, large boulders at RDB									
	evaluation	this section is insensitive to increase in velocity and discharge									
	velocity (m/s)	1.53	1.53	1.69	1.69	1.76	1.78				
XS13	materials	bedrock at LDB, large boulders at RDB									
	evaluation	constriction causes relatively high velocities, but still well below stability threshold									
	velocity (m/s)	0.98	0.98	1.13	1.13	1.21	1.23				
XS14	materials	boulders embedd	ed in bank on	LDB, large	boulders at RI	ЭB					
	evaluation	this section is inse	ensitive to inc	rease in velo	city and disch	arge					
	velocity (m/s)	1.54	1.54	1.70	1.70	1.78	1.82				
XS15	materials	large boulders at	LDB and RDE	}							
	evaluation	this section is ins	ensitive to inc	rease in velo	city and disch	arge					
	velocity (m/s)	0.48	0.48	0.63	0.64	0.73	0.78				
XS16	materials	large boulders at	LDB and RDE	3							
	evaluation	transition zone to	Lake N1 with	low velocitie	es, low erosior	n potential					

Table 9.7-22Evaluation of Erosion Potential in the Lake N11 Outlet Channel during
Dewatering (continued)

9-198

m³/s =cubic metres per second; m/s = metres per second; RDB – right descending bank; LDB – left descending bank.

Lake 410 to Kirk Lake Outlet

Lake N1 and Lake M1 flow into Lake 410, which then drains through watershed P through to Kirk Lake. The water balance model for the Project examined all downstream waterbodies between Lake 410 and Kirk Lake. Project effects on Lake 410 during dewatering are summarized in Figures 9.7-13 to 9.7-14 and Tables 9.7-23 to 9.7-26. Project effects on Kirk Lake during dewatering are summarized in Figures 9.7-27 to 9.7-30.

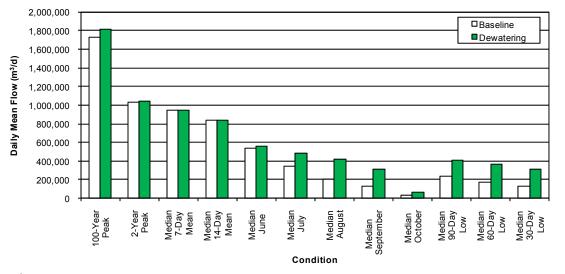


Figure 9.7-13 Comparison of Effects on Lake 410 Outlet Discharges – Dewatering

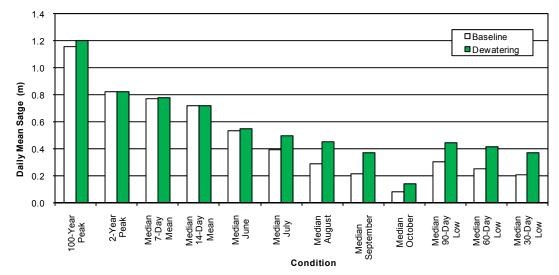


Figure 9.7-14 Comparison of Effects on Lake 410 Stages – Dewatering

Condition	Return Period	Granabat		Monthly M	/lean Discha	rge (m ³ /d)	
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct
	100	baseline	934,000	678,000	475,000	587,000	135,000
10/-1	100	dewatering	929,000	732,000	640,000	656,000	178,000
Wet	10	baseline	759,000	514,000	329,000	278,000	70,700
		dewatering	762,000	603,000	518,000	460,000	114,000
Madian	2	baseline	537,000	344,000	210,000	135,000	32,700
Median		dewatering	564,000	482,000	423,000	308,000	69,900
	10	baseline	329,000	203,000	132,000	73,900	16,000
	10	dewatering	374,000	392,000	365,000	217,000	46,400
Dry	100	baseline	190,000	106,000	90,100	49,800	9,660
		dewatering	225,000	337,000	336,000	170,000	35,700

 Table 9.7-23
 Monthly Mean Discharges at the Lake 410 Outlet – Dewatering

Table 9.7-24 Derived Representative Discharges at the Lake 410 Outlet – Dewaterin	Table 9.7-24	Derived Representative Discharges at the Lake 410 Outlet – Dewatering
---	--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m³/d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	baseline	20.00	1,420,000	1,240,000	404,000	443,000	491,000
Wet	100	dewatering	21.00	1,480,000	1,290,000	546,000	601,000	630,000
	10	baseline	16.50	1,230,000	1,080,000	237,000	287,000	355,000
		dewatering	16.70	1,240,000	1,090,000	426,000	472,000	513,000
Median	2	baseline	11.90	942,000	837,000	128,000	173,000	234,000
Weulan	2	dewatering	12.00	949,000	843,000	309,000	366,000	409,000
	10	baseline	7.11	580,000	523,000	74,200	108,000	150,000
Dru	10	dewatering	8.08	652,000	588,000	220,000	298,000	338,000
Dry	100	baseline	3.03	219,000	200,000	50,900	77,500	100,000
	100	dewatering	5.27	407,000	375,000	162,000	260,000	296,000

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return			Month	ly Mean Sta	ge (m)	
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct
	100	baseline	0.769	0.621	0.490	0.564	0.212
W/ot	100	dewatering	0.766	0.653	0.597	0.607	0.255
Wet	10	baseline	0.669	0.516	0.383	0.343	0.138
		dewatering	0.671	0.574	0.519	0.479	0.189
Median	2	baseline	0.531	0.395	0.284	0.212	0.082
Median		dewatering	0.549	0.495	0.453	0.367	0.136
	10	baseline	0.383	0.278	0.209	0.142	0.051
Dmi	10	dewatering	0.418	0.431	0.411	0.290	0.104
Dry	400	baseline	0.266	0.180	0.162	0.109	0.036
	100	dewatering	0.298	0.390	0.389	0.247	0.087

Table 9.7-25	Monthly Mea	an Stages at	Lake 410 – Dewatering

m =metre.

Table 9.7-26 Derived Representative Stages at Lake 410 – Dewatering

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.158	1.016	0.928	0.440	0.467	0.501
Wet	100	dewatering	1.197	1.045	0.953	0.537	0.573	0.591
10	baseline	1.019	0.923	0.847	0.308	0.350	0.403	
	10	dewatering	1.027	0.928	0.852	0.455	0.488	0.515
Median	2	baseline	0.819	0.773	0.714	0.204	0.250	0.305
Median	2	dewatering	0.824	0.777	0.718	0.368	0.412	0.443
	10	baseline	0.581	0.559	0.522	0.142	0.182	0.227
Drag	10	dewatering	0.633	0.605	0.565	0.293	0.359	0.390
Dry	100	baseline	0.329	0.292	0.275	0.110	0.146	0.173
	100	dewatering	0.476	0.442	0.418	0.239	0.328	0.357

m =metre.

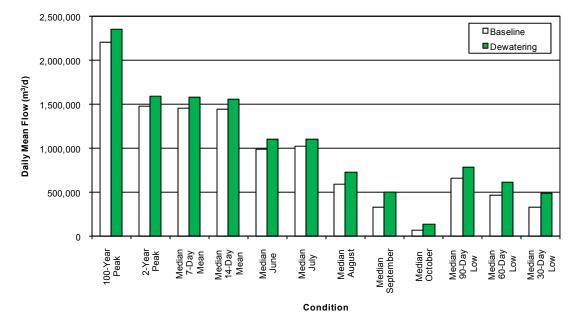


Figure 9.7-15 Comparison of Effects on Kirk Lake Outlet Discharges – Dewatering

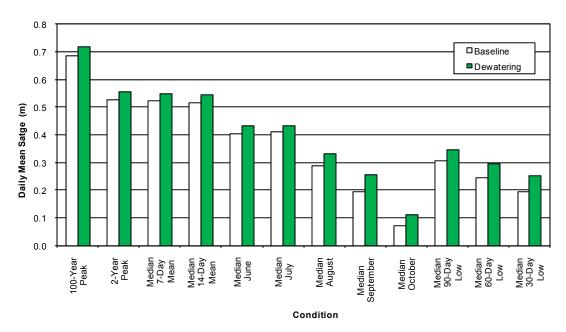


Figure 9.7-16 Comparison of Effects on Kirk Lake Stages – Dewatering

•	Return	•	Monthly Mean Discharge (m ³ /d)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	1,850,000	1,730,000	1,250,000	1,370,000	420,000			
Wet	100	dewatering	1,960,000	1,830,000	1,360,000	1,410,000	454,000			
wei	10	baseline	1,450,000	1,420,000	916,000	676,000	188,000			
		dewatering	1,570,000	1,500,000	1,040,000	860,000	266,000			
Median	2	baseline	995,000	1,020,000	596,000	332,000	75,700			
Median	2	dewatering	1,110,000	1,100,000	734,000	500,000	142,000			
	10	baseline	562,000	607,000	349,000	161,000	24,500			
Dra	10	dewatering	681,000	710,000	508,000	321,000	79,600			
Dry	100	baseline	226,000	255,000	191,000	85,200	4,760			
	100	dewatering	345,000	391,000	366,000	244,000	52,600			

Table 9.7-27	Monthly Mean Discharges at the Kirk Lake Outlet – Dewatering
--------------	--

Table 9.7-28	Derived Representative Discharges at the Kirk Lake Outlet – Dewatering
--------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	25.50	2,160,000	2,100,000	1,050,000	1,140,000	1,290,000
Wet	100	dewatering	27.30	2,360,000	2,260,000	1,200,000	1,260,000	1,410,000
vvel	10	baseline	22.10	1,890,000	1,850,000	636,000	774,000	981,000
	10	dewatering	23.70	2,030,000	1,980,000	795,000	916,000	1,100,000
Median	2	baseline	17.10	1,460,000	1,440,000	333,000	467,000	660,000
Median	2	dewatering	18.50	1,580,000	1,560,000	494,000	619,000	789,000
	10	baseline	10.60	902,000	884,000	163,000	262,000	395,000
P.	10	dewatering	12.30	1,060,000	1,030,000	323,000	422,000	540,000
Dry	100	baseline	3.98	321,000	290,000	82,100	148,000	213,000
	100	dewatering	6.28	576,000	497,000	239,000	311,000	374,000

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)					
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct	
	100	baseline	0.610	0.584	0.470	0.500	0.227	
Wet	100	dewatering	0.634	0.606	0.497	0.509	0.239	
vvei	10	baseline	0.519	0.512	0.382	0.312	0.133	
		dewatering	0.547	0.531	0.416	0.366	0.168	
Median	2	baseline	0.404	0.410	0.287	0.194	0.072	
Median		dewatering	0.434	0.432	0.330	0.255	0.110	
	10	baseline	0.276	0.290	0.201	0.120	0.034	
D	10	dewatering	0.314	0.322	0.258	0.190	0.075	
Dry	100	baseline	0.150	0.163	0.134	0.078	0.011	
	100	dewatering	0.199	0.217	0.207	0.158	0.057	

Table 9.7-29 Monthly Mean Stages at Kirk Lake – Dewatering

m = metre.

 Table 9.7-30
 Derived Representative Stages at Kirk Lake – Dewatering

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.686	0.677	0.664	0.418	0.442	0.480
Wet	100	dewatering	0.718	0.718	0.698	0.457	0.473	0.509
wei	10	baseline	0.623	0.619	0.610	0.300	0.342	0.400
		dewatering	0.653	0.649	0.639	0.348	0.382	0.432
Median	C	baseline	0.525	0.521	0.517	0.195	0.244	0.307
Median	2	dewatering	0.554	0.550	0.545	0.253	0.294	0.346
	10	baseline	0.382	0.378	0.373	0.121	0.166	0.218
Dn/	10	dewatering	0.422	0.421	0.413	0.191	0.228	0.269
Dry	100	baseline	0.199	0.190	0.177	0.077	0.113	0.144
	100	dewatering	0.269	0.280	0.254	0.156	0.186	0.210

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake 410 Outlet Flows: The water balance results for Lake 410 show that during dewatering, monthly mean flows will increase due to pumping to Lake N11 and Kennady Lake Area 8. The 2-year flood discharge during dewatering will increase by approximately 1% above the baseline value, and the 100-year flood discharge will increase by approximately 5%. Low flows will also increase by 75% to 141%.

Lake 410 Water Levels: Lake 410 water levels are also expected to increase during dewatering. The 2-year flood level is expected to increase by approximately 0.005 m, the 100-year flood level by 0.039 m, and monthly mean stages by 0.018 m (June), 0.100 m (July), 0.169 m (August), 0.155 m (September) and 0.054 m (October), under median conditions.

Lake 410 and Outlet Channel/Bank Stability: No effects on Lake 410 and Outlet channel or bank stability are expected during dewatering, because increases in flood magnitude are small relative to the existing flood regime.

Kirk Lake Outlet Flows: The water balance results for Kirk Lake show that during dewatering, monthly mean flows will increase due to pumping to Lake N11 and Kennady Lake Area 8. The 2-year flood discharge during dewatering will increase by approximately 8% above the baseline value, and the 100-year flood discharge will increase by approximately 7%. This apparent inconsistency with flow increases with Lake 410 is because the Kirk Lake natural flood peak typically occurs in July, later than upstream lakes which tend to peak in June. Therefore, while dewatering discharges to Lake N11 occur after the Lake N11 outlet flood peak and only cause slight increases in the flood peaks at the Lake N1 and Lake 410 outlets, the sustained post-peak flows cause an incremental increase in flood discharge at the later-peaking Kirk Lake outlet. Low flows will also increase by 20% to 48%.

Kirk Lake Water Levels: Kirk Lake water levels are also expected to increase during dewatering. The 2-year flood level is expected to increase by approximately 0.029 m, the 100-year flood level by 0.032 m, and monthly mean stages by 0.030 m (June), 0.022 m (July), 0.043 m (August), 0.061 m (September) and 0.038 m (October), under median conditions.

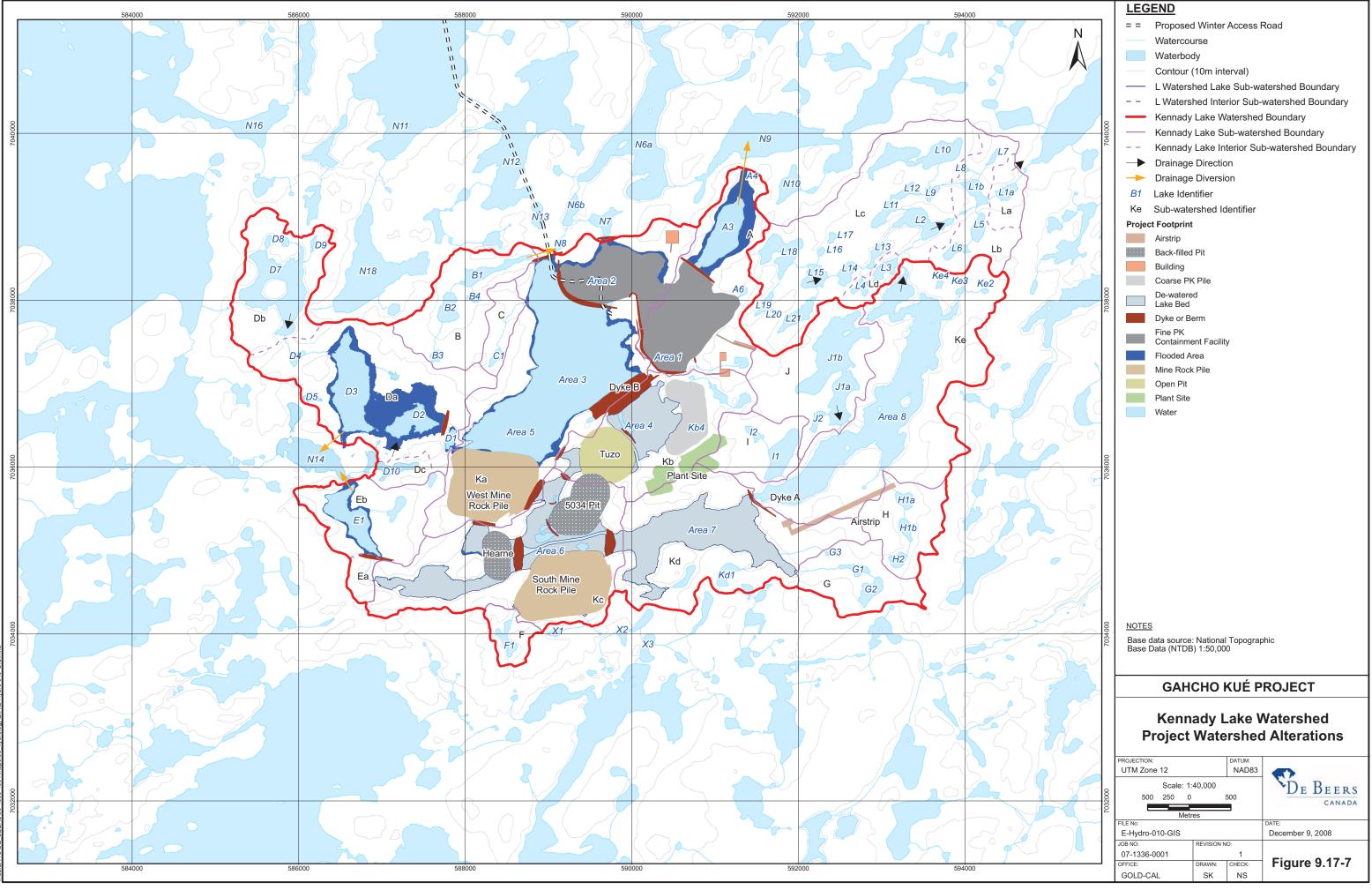
Kirk Lake and Outlet Channel/Bank Stability: No effects on Kirk Lake and Outlet channel or bank stability are expected during dewatering, because increases in flood magnitude are small relative to the existing flood regime.

9.7.3.2 Effect of Diversion in Watersheds A, B, D, and E to Flows, Water Levels and Channel/Bank Stability in Streams and Lakes in the N lakes Watershed

9.7.3.2.1 Project Activities

To reduce the amount of runoff into the dewatered Kennady Lake Areas 2 to 7, and the amount of water that must be managed by the mine water management system, four tributary watersheds will be diverted to the adjacent N watershed during operations. These diversions will remain in place until the start of

De Beers Canada Inc.


Kennady Lake refilling. The location and layout of these diversions are shown in Figure 9.7-17.

The A watershed above the Lake A3 outlet will be diverted to Lake N9 by constructing a diversion dyke (Dyke C) at the Lake A3 outlet and constructing a diversion channel or pipeline to Lake N9. The ultimate water level of the diverted lake will also inundate Lake A4. This will be a permanent diversion.

The B watershed above the Lake B1 outlet will be diverted to Lake N13 by constructing a diversion dyke (Dyke E) at the Lake B1 outlet and constructing a diversion channel or pipeline from Lake B1 to Lake N13. The dyke will be breached in Year 11 to restore drainage from the B watershed to Kennady Lake.

The D watershed above the Lake D2 outlet will be diverted to Lake N14 by constructing a diversion dyke (Dyke F) at the Lake D2 outlet and constructing a diversion channel or pipeline to Lake N14. The ultimate water level of the diverted lake will also inundate Lake D3. This will be a temporary diversion that is removed during mine closure.

The E watershed above the Lake E1 outlet will be diverted to Lake N14 by constructing a diversion dyke (Dyke G) at the Lake E1 outlet and constructing a diversion channel or pipeline to Lake N14. This will be a temporary diversion that is removed during mine closure.

9.7.3.2.2 Environmental Design Features

Diversion of the A, B, D and E watersheds into the N watershed will reduce the amount of runoff from undisturbed areas that must be managed by the mine water system. At diversion outlets, a channel or pipeline will be constructed to convey flows. A diversion outlet structure will be designed to approximate the natural hydrograph to the extent possible during operations, to manage the water level regime of the diverted lake. Diversion channels or pipeline foundations will be designed and constructed to prevent erosion and sedimentation and to incorporate lessons learned at the Ekati Diamond Mine (Jones et al. 2003a; see also Sections 9.6.1.1 and 9.10.3.7).

9.7.3.2.3 Effects Analysis

Effects of the Project activities on Kennady Lake tributary A, B, D and E watersheds were described in EIS Section 8.7. Diverted water from the A watershed will be conveyed to Lake N9, and from there will be combined with natural flow to Lake N6, N5, N4, N3 and N2 before reaching Lake N11. Diverted water from the B watershed will be conveyed to Lake N8, and from there will be combined with natural flow to Lake N6, N5, N4, N3 and N2 before reaching Lake N11. Diverted water from the B watershed will be conveyed to Lake N8, and from there will be combined with natural flow to Lake N6, N5, N4, N3 and N2 before reaching Lake N11. Diverted water from the D and E watersheds will be conveyed to Lake N14, and from there will be combined with natural flow to Lake N17, N16 and N15 before reaching Lake N11.

Effects of the Project on Lake N11 and Lake N1 due to the combined diversions are presented in this section. Downstream effects from Lake 410 to Kirk Lake were included in the assessment presented in Section 9.7.3.1.

Lake N8 and Lake N9 to Lake N1 Inflow (A Watershed and B Diversions)

The water balance model for the Project examined this receiving watershed by modeling the flow diverted from the A watershed into Lake N9, a tributary of Lake N6. Lake N8 was not modeled due to its small size and low storage/flow attenuation capacity, but was lumped, along with Lake N6b, as part of the entire Lake N6 watershed. Below Lake N6, Lake N5, Lake N3 (including Lake N4, lumped for the same reasons) and Lake N2 were modelled.

Project effects on Lake N9, which receives the A watershed diversion, are presented in Figures 9.7-18 to 9.7-19 and Tables 9.7-31 to 9.7-34, Project effects on Lake N6, where the two diversions meet, are presented in Figures 9.7-20 to 9.7-21 and Tables 9.7-35 to 9.7-38, and Project effects on Lake N2, upstream of its confluence with Lake N1, are presented in Figures 9.7-22 to 9.7-23 and Tables 9.7-39 to 9.7-42.

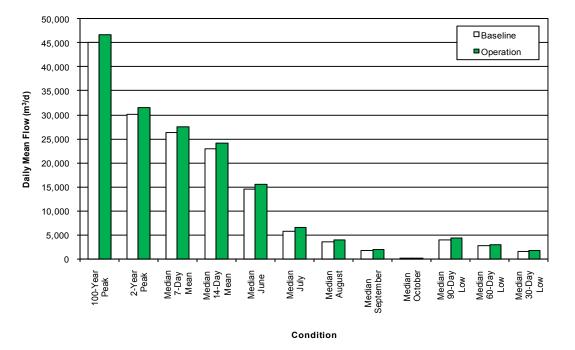


Figure 9.7-18 Comparison of Effects on Lake N9 Outlet Discharges – Operation

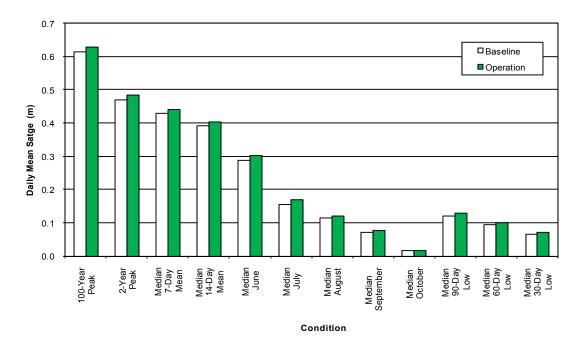


Figure 9.7-19 Comparison of Effects on Lake N9 Stages – Operation

Condition	Return Period	Chanabat	Monthly Mean Discharge (m ³ /d)						
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	22,600	13,900	10,700	12,000	1,340		
Wet	100	operation	24,800	15,800	12,300	13,500	1,570		
vvet	10	baseline	19,300	9,540	6,580	5,280	677		
		operation	20,900	11,000	7,390	5,800	767		
Median	2	baseline	14,500	5,670	3,580	1,810	195		
wedian		operation	15,500	6,580	3,970	1,970	215		
	10	baseline	8,690	2,960	1,920	507	0		
Dry	10	operation	9,260	3,420	2,150	570	0		
	100	baseline	3,010	1,370	1,120	73	0		
	100	operation	3,390	1,510	1,310	118	0		

9-210

Table 9.7-31	Monthly Mean Discharges at the Lake N9 Outlet – Operation
--------------	---

 m^3/d = cubic metres per day.

Table 9.7-32	Derived Representative Discharges at the Lake N9 Outlet – Operation
--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	0.52	38,100	32,300	7,810	9,920	9,650
Wet	100	operation	0.54	40,300	34,600	8,980	11,300	11,000
vvel	10	baseline	0.45	33,400	28,800	3,980	5,390	6,440
		operation	0.47	35,300	30,600	4,490	6,050	7,340
Median	2	baseline	0.35	26,300	22,900	1,610	2,670	3,860
Median	2	operation	0.36	27,500	24,100	1,800	2,950	4,360
	10	baseline	0.23	17,100	14,800	506	1,440	2,230
Dest	10	operation	0.23	17,700	15,300	576	1,590	2,490
Dry	100	baseline	0.11	7,830	5,810	58	951	1,370
	100	operation	0.10	7,590	5,860	97	1,060	1,500

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return	Snapshot	Monthly Mean Stage (m)							
Conditions	Period (years)		Jun	Jul	Aug	Sep	Oct			
	100	baseline	0.387	0.280	0.235	0.254	0.059			
Wet	100	operation	0.412	0.305	0.258	0.275	0.065			
wet	10	baseline	0.348	0.218	0.170	0.147	0.037			
		operation	0.367	0.240	0.184	0.156	0.041			
Median	2	baseline	0.288	0.154	0.113	0.072	0.016			
Median		operation	0.301	0.170	0.121	0.076	0.017			
	10	baseline	0.205	0.100	0.075	0.031	-			
Dat	10	operation	0.214	0.110	0.081	0.033	-			
Dry	100	baseline	0.101	0.060	0.052	0.008	-			
	100	operation	0.109	0.064	0.058	0.012	-			

Table 9.7-33	Monthly Mean Stages at Lake N9 – Operation
--------------	--

m = metre.

Table 9.7-34	Derived Representative Stages at Lake N9 – Operation

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.613	0.548	0.491	0.191	0.224	0.220
\A/at	100	operation	0.628	0.569	0.514	0.209	0.244	0.240
Wet 10	10	baseline	0.557	0.502	0.455	0.122	0.149	0.168
	10	operation	0.572	0.521	0.474	0.132	0.161	0.183
Madian		baseline	0.469	0.428	0.391	0.067	0.093	0.119
Median 2	2	operation	0.483	0.441	0.404	0.072	0.100	0.129
Desi	10	baseline	0.352	0.321	0.292	0.031	0.062	0.083
	10	operation	0.358	0.329	0.298	0.034	0.066	0.089
Dry	100	baseline	0.217	0.191	0.157	0.007	0.047	0.060
	100	operation	0.207	0.187	0.157	0.010	0.050	0.063

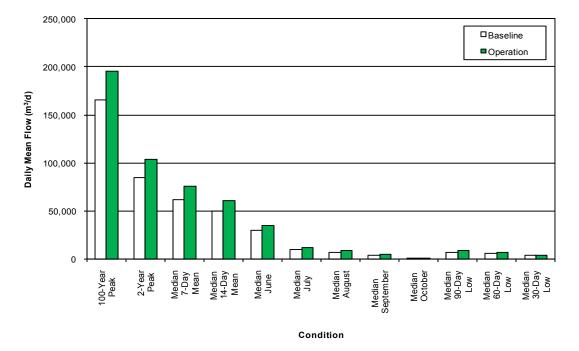


Figure 9.7-20 Comparison of Effects on Lake N6 Outlet Discharges – Operation

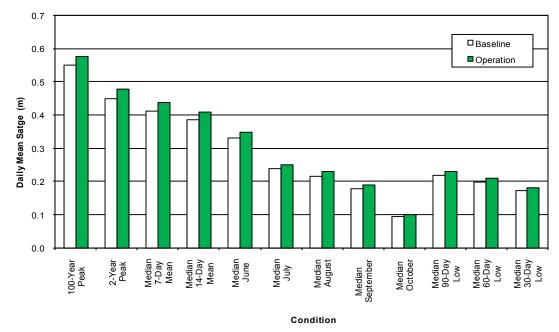


Figure 9.7-21 Comparison of Effects on Lake N6 Stages – Operation

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	44,300	25,100	22,200	22,200	3,600		
\M/ot	100	operation	53,000	29,900	27,100	26,500	4,220		
Wet 10	10	baseline	38,800	16,700	13,100	9,900	1,430		
	10	operation	46,500	20,000	16,000	11,900	1,670		
Madian	0	baseline	29,400	9,740	6,980	3,650	431		
Median	2	operation	35,100	11,600	8,530	4,390	505		
Dry -	10	baseline	15,800	5,140	3,860	1,330	102		
		operation	18,300	6,020	4,740	1,580	121		
	100	baseline	329	2,590	2,500	576	5		
	100	operation	0	2,910	3,080	656	9		

Table 9.7-35	Monthly Mean Discharges at the Lake N6 Outlet – Operation
--------------	---

Table 3.7-30 Derived Representative Discharges at the Lake NO Outlet - Operation	Table 9.7-36	Derived Representative Discharges at the Lake N6 Outlet – Operation
--	--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	1.91	91,800	70,600	13,400	19,300	18,200
Wet	100	operation	2.26	113,000	86,000	15,900	23,200	22,000
vvel	10	baseline	1.44	79,600	63,000	7,180	10,400	11,900
		operation	1.74	97,400	76,600	8,550	12,500	14,400
Median	2	baseline	0.98	61,800	50,000	3,220	5,240	7,140
WEUIAII	2	operation	1.20	75,700	60,800	3,860	6,380	8,570
	10	baseline	0.60	40,400	31,500	1,330	3,040	4,290
Desi	10	operation	0.75	50,300	38,500	1,580	3,730	5,170
Dry	100	baseline	0.35	19,700	10,500	547	2,220	2,840
	100	operation	0.44	26,300	13,500	622	2,740	3,470

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.373	0.315	0.304	0.304	0.178		
Wet	100	operation	0.393	0.332	0.322	0.320	0.186		
vvel	10	baseline	0.358	0.279	0.260	0.239	0.135		
	10	operation	0.378	0.295	0.276	0.253	0.142		
Modion	2	baseline	0.330	0.238	0.216	0.178	0.095		
Median	2	operation	0.348	0.251	0.229	0.188	0.100		
	10	baseline	0.275	0.197	0.181	0.132	0.062		
Dry	10	operation	0.287	0.207	0.193	0.139	0.065		
	100	baseline	0.088	0.161	0.160	0.103	0.025		
	100	operation	-	0.167	0.170	0.108	0.030		

Table 9.7-37	Monthly Mean Stages at Lake N6 – Operation
--------------	--

m = metre.

Table 9.7-38	Derived Representative Stages at Lake N6 – Operation
--------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.549	0.462	0.427	0.262	0.292	0.287
Wet	100	operation	0.577	0.491	0.453	0.275	0.308	0.303
10	10	baseline	0.505	0.443	0.413	0.218	0.243	0.253
	10	operation	0.534	0.470	0.438	0.229	0.256	0.267
Median	2	baseline	0.450	0.411	0.386	0.172	0.198	0.217
Median	2	operation	0.479	0.436	0.409	0.181	0.210	0.229
	10	baseline	0.391	0.363	0.337	0.132	0.169	0.187
Dmi	10	operation	0.417	0.387	0.357	0.139	0.180	0.198
Dry	100	baseline	0.334	0.293	0.244	0.102	0.154	0.166
	100	operation	0.355	0.319	0.262	0.106	0.164	0.176

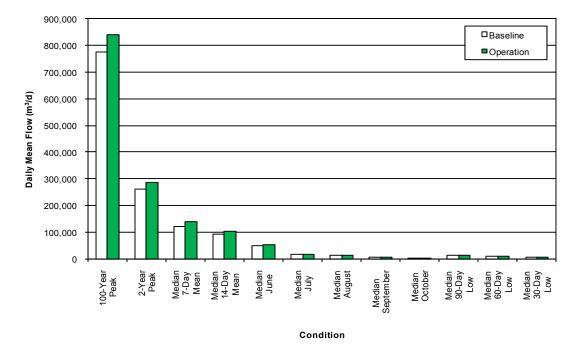


Figure 9.7-22 Comparison of Effects on Lake N2 Outlet Discharges – Operation

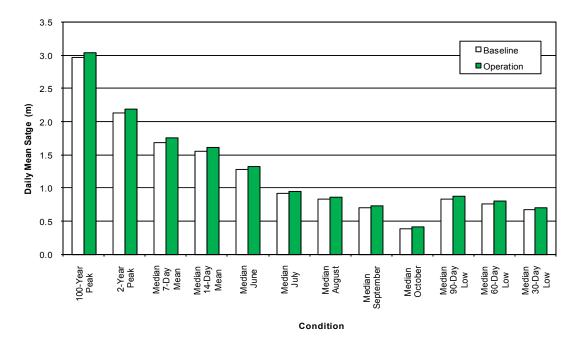


Figure 9.7-23 Comparison of Effects on Lake N2 Stages – Operation

	Return		Monthly Mean Discharge (m ³ /d)					
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct	
	100	baseline	74,000	40,000	33,500	36,300	6,640	
14/04	100	operation	82,800	44,500	38,100	41,000	7,360	
Wet -	10	baseline	63,800	27,200	20,700	17,000	2,840	
		operation	71,500	30,400	23,600	19,300	3,230	
Madian	0	baseline	47,900	16,200	11,600	6,710	964	
Median	2	operation	53,700	18,100	13,300	7,710	1,120	
Dry	10	baseline	27,100	8,800	6,590	2,710	282	
		operation	30,200	9,790	7,550	3,160	332	
	100	baseline	5,550	4,580	4,230	1,330	63	
	100	operation	5,630	4,990	4,850	1,580	70	

9-216

Table 9.7-39	Monthly Mean Discharges at the Lake N2 Outlet – Operation
--------------	---

 m^{3}/d = cubic metres per day.

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	8.96	159,000	123,000	22,300	30,700	29,400
\M/ot	100	operation	9.74	180,000	138,000	25,300	34,500	33,300
Wet	10	baseline	5.62	146,000	112,000	12,400	17,100	19,700
		operation	6.13	165,000	126,000	14,000	19,400	22,200
Madian	2	baseline	3.03	121,000	91,700	5,890	8,960	12,000
Median		operation	3.33	138,000	103,000	6,720	10,300	13,600
	10	baseline	1.49	81,300	60,200	2,680	5,350	7,360
Dec	10	operation	1.65	92,800	68,000	3,110	6,160	8,350
Dry	100	baseline	0.70	30,400	21,800	1,310	3,950	4,960
	100	operation	0.78	35,200	25,500	1,570	4,550	5,640

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	1.454	1.206	1.143	1.171	0.700		
Wet	100	operation	1.504	1.246	1.189	1.215	0.722		
vvel	10	baseline	1.390	1.073	0.988	0.931	0.541		
	10	operation	1.439	1.110	1.028	0.967	0.563		
Modion	edian 2	baseline	1.274	0.917	0.829	0.702	0.390		
Median		operation	1.319	0.949	0.864	0.732	0.408		
	10	baseline	1.072	0.762	0.698	0.534	0.269		
Dry	10	operation	1.108	0.787	0.728	0.559	0.282		
	100	baseline	0.663	0.625	0.611	0.430	0.171		
	100	operation	0.666	0.642	0.636	0.453	0.176		

Table 9.7-41 Mon	thly Mean Stages at La	ke N2 – Operation
------------------	------------------------	-------------------

m = metre.

 Table 9.7-42
 Derived Representative Stages at Lake N2 – Operation

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.372	2.962	1.833	1.696	1.011	1.113
\\/at	100	operation	0.372	3.037	1.903	1.756	1.050	1.154
Wet	10	baseline	0.322	2.571	1.786	1.648	0.846	0.932
10	10	operation	0.321	2.640	1.854	1.708	0.878	0.969
Madian	2	baseline	0.257	2.132	1.687	1.551	0.675	0.767
Median		operation	0.257	2.194	1.756	1.607	0.703	0.800
	10	baseline	0.189	1.719	1.496	1.366	0.532	0.656
Desi	10	operation	0.189	1.773	1.557	1.417	0.556	0.684
Dry	100	baseline	0.124	1.367	1.110	1.004	0.428	0.598
	100	operation	0.124	1.414	1.161	1.053	0.452	0.624

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Conveyance from Lake A3 to Lake N9 was discussed in Section 8.7. Because this will be a permanent diversion, an engineered channel will be constructed at this location.

Conveyance from Lake B1 to Lake N8 was also discussed in Section 8.7. This temporary diversion will comprise an engineered channel or pipeline, to prevent

erosion by flowing water. Because Lake N8 is small, it provides little storage or flow attenuation, and diverted flows in the Lake N8 outlet channel to Lake N6 will greatly exceed baseline values, particularly during spring freshet. Alternatives for flow conveyance from Lake N8 to Lake N6 include improving the existing outlet channel to ensure that it is resistant to erosion, or constructing a parallel engineered channel or pipeline to handle excess discharge. Any of these will allow flows and water levels to be managed to prevent adverse effects on Lake N8 and Outlet channel and bank stability.

Note that these values represent changes that will occur after Lake A3 fills to its spill elevation, which would take 11 years under median conditions. Changes to Lake N6 and downstream waterbodies due to the Lake B1 diversion only, which would occur in the first year of operation, would be lower.

Lake N9 Outlet Flows: The water balance results for Lake N9 show that during operation, monthly mean flows will increase in proportion to the additional flow from the diverted A watershed. The 2-year flood discharge during operation will increase by approximately 3% above the baseline value, and the 100-year flood discharge will increase by approximately 4%. Low flows will also increase by 10% to 13%.

Lake N9 Water Levels: Lake N9 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.014 m, the 100-year flood level by 0.015 m, and monthly mean stages by 0.013 m (June), 0.016 m (July), 0.008 m (August), 0.004 m (September) and 0.001 m (October), under median conditions.

Lake N9 and Outlet Channel/Bank Stability: No effects on Lake N9 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime.

Lake N6 Outlet Flows: The water balance results for Lake N6 show that during operation, monthly mean flows will increase in proportion to the additional flow from the diverted A and B watersheds. The 2-year flood discharge during operation will increase by approximately 22% above the baseline value, and the 100-year flood discharge will increase by approximately 18%. Low flows will also increase by 20% to 22%.

Lake N6 Water Levels: Lake N6 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.029 m, the 100-year flood level by 0.028 m, and monthly mean

stages by 0.018 m (June), 0.013 m (July), 0.013 m (August), 0.010 m (September) and 0.005 m (October), under median conditions.

Lake N6 and Outlet Channel/Bank Stability: No effects on Lake N6 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime.

Lake N2 Outlet Flows: The water balance results for Lake N2 show that during operation, monthly mean flows will increase in proportion to the additional flow from the diverted A and B watersheds. The 2-year flood discharge during operation will increase by approximately 10% above the baseline value, and the 100-year flood discharge will increase by approximately 9%. Low flows will also increase by 13% to 15%.

Lake N2 Water Levels: Lake N2 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.062 m, the 100-year flood level by 0.075 m, and monthly mean stages by 0.045 m (June), 0.032 m (July), 0.035 m (August), 0.030 m (September) and 0.018 m (October), under median conditions.

Lake N2 and Outlet Channel/Bank Stability: No effects on Lake N2 and outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime.

Lake N14 to Lake N11 Inflow (Watershed D and E Diversions)

The water balance model for the Project examined this receiving watershed by modeling the flow diverted from the D and E watersheds into Lake N17, with Lake N14 being lumped into the N17 watershed due to its small size and low storage/flow attenuation capacity. Lake N16, located below Lake N17, was modeled, and Lake N15 was not, due to its small size and low storage.

Project effects on Lake N17 are presented in Figures 9.7-24 to 9.7-25 and Tables 9.7-43 to 9.7-46, and Project effects on Lake N16 are presented in Figures 9.7-26 to 9.7-27 and Tables 9.7-47 to 9.7-50.

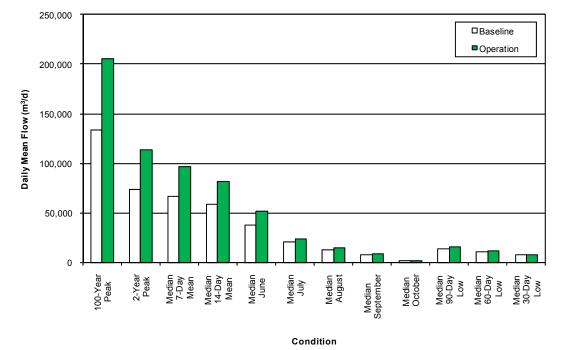


Figure 9.7-24 Comparison of Effects on Lake N17 Outlet Discharges – Operation

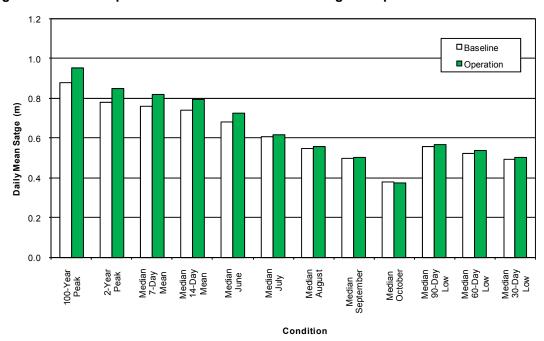


Figure 9.7-25 Comparison of Effects on Lake N17 Stages – Operation

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
Wet	100	baseline	66,800	44,200	31,800	36,800	7,720		
		operation	88,000	52,900	39,600	47,800	8,340		
	10	baseline	54,000	32,400	20,900	17,300	4,100		
		operation	72,300	37,300	24,700	20,400	4,210		
Median	2	baseline	38,000	21,100	12,800	7,830	2,040		
		operation	51,500	23,400	14,200	8,220	1,910		
Dry	10	baseline	21,800	12,400	8,050	4,500	1,160		
		operation	29,000	13,500	8,550	4,370	963		
	100	baseline	8,350	6,980	5,720	3,460	835		
		operation	9,180	7,620	5,920	3,270	620		

Table 9.7-43	Monthly Mean Discharges at the Lake N17 Outlet – Operation
--------------	--

Table 9.7-44 De	erived Representative Discharges at the Lake N17 Outlet – Operation
-----------------	---

Condition	Return Period (years)	Snapsho t	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	1.55	115,000	95,800	26,300	30,300	35,000
\M/ot		operation	2.38	168,000	133,000	30,800	36,500	42,200
Wet		baseline	1.28	96,700	82,100	14,300	17,800	22,400
10	10	operation	1.98	141,000	115,000	16,000	20,600	25,700
Madian	2	baseline	0.85	66,500	58,300	7,690	10,300	13,900
Median		operation	1.32	96,900	81,900	8,130	11,400	15,400
	10	baseline	0.42	34,700	32,300	4,340	6,590	9,200
Deri	10	operation	0.64	50,400	45,200	4,160	6,940	9,990
Dry	100	baseline	0.09	8,900	10,300	3,530	5,780	7,880
	100	operation	0.10	12,800	13,500	3,240	6,090	8,680

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

•	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.762	0.702	0.657	0.677	0.495		
Wet	100	operation	0.806	0.728	0.687	0.713	0.503		
vvei	10	baseline	0.731	0.660	0.604	0.582	0.436		
		operation	0.775	0.679	0.625	0.601	0.439		
Modian	Median 2	baseline	0.681	0.606	0.548	0.497	0.379		
Weulan		operation	0.724	0.618	0.559	0.501	0.375		
	10	baseline	0.609	0.544	0.499	0.445	0.339		
Dmi	10	operation	0.645	0.554	0.505	0.442	0.327		
Dry	100	baseline	0.503	0.485	0.466	0.422	0.317		
	100	operation	0.513	0.494	0.470	0.417	0.299		

9-222

Table 9.7-45	Monthly Mean Stages at Lake N17 – Operation
--------------	---

m = metre.

Table on the Bonnea Representative etagee at Eake Ith Operation	Table 9.7-46	Derived Representative Stages at Lake N17 – Operation
---	--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
Wet	100	baseline	0.876	0.850	0.819	0.633	0.651	0.670
		operation	0.955	0.917	0.875	0.653	0.676	0.696
	10	baseline	0.843	0.821	0.795	0.560	0.585	0.613
		operation	0.920	0.885	0.850	0.573	0.603	0.630
Median	2	baseline	0.778	0.762	0.742	0.495	0.525	0.557
		operation	0.849	0.821	0.794	0.500	0.535	0.569
Dry	10	baseline	0.675	0.669	0.659	0.441	0.480	0.513
		operation	0.735	0.721	0.705	0.438	0.485	0.521
	100	baseline	0.491	0.510	0.525	0.423	0.467	0.497
		operation	0.510	0.548	0.554	0.416	0.472	0.507

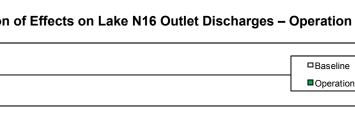
400,000

350,000

300,000

250,000

200,000


150,000

100,000

50,000

0

Daily Mean Flow (m³/d)

Median September

Median October

Median 90-Day Low

Median 60-Day Low

Median 30-Day Low

Median August

Median July

Condition

Comparison of Effects on Lake N16 Outlet Discharges – Operation Figure 9.7-26

 m^{3}/d = cubic metres per day.

100-Year Peak

2-Year Peak

Median 7-Day Mean

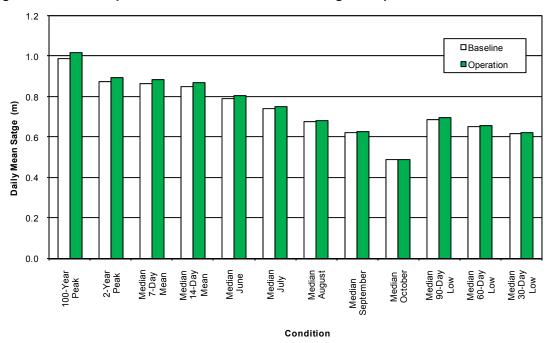


Figure 9.7-27 Comparison of Effects on Lake N16 Stages – Operation

Median 14-Day Mean

Median June

m = metres.

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	171,000	127,000	92,300	93,600	23,800		
Wet	100	operation	190,000	138,000	98,700	101,000	25,400		
vvel	10	baseline	134,000	97,800	64,700	51,400	14,100		
	10	operation	149,000	105,000	68,500	54,400	14,700		
Madian	2	baseline	91,900	66,900	42,400	27,300	7,910		
Median	2	operation	102,000	71,600	44,300	28,300	8,140		
	10	baseline	53,200	40,900	28,200	17,000	4,960		
Draw	10	operation	57,800	43,400	29,300	17,500	5,060		
Dry	100	baseline	23,900	22,600	20,500	13,200	3,740		
	100	operation	24,600	23,900	21,300	13,600	3,820		

Table 9.7-47	Monthly Mean Discharges at the Lake N16 Outlet – Operation
--------------	--

Table 9.7-48 Derived	Representative Discharges at the Lake N16 Outlet – Operation
----------------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	3.37	257,000	228,000	79,300	89,800	100,000
\M/ot	100	operation	3.86	295,000	258,000	84,700	96,100	108,000
Wet		baseline	2.71	212,000	190,000	45,800	55,800	69,400
		operation	3.07	242,000	215,000	48,200	58,800	73,900
Median	2	baseline	1.80	145,000	133,000	26,700	34,500	45,500
weulan	2	operation	2.00	163,000	149,000	27,700	36,000	48,000
	10	baseline	0.94	78,200	74,600	16,700	23,300	30,500
	10	operation	1.00	84,500	81,300	17,200	24,200	32,100
Dry	100	baseline	0.31	26,400	29,000	14,300	20,700	25,500
	100	operation	0.30	25,100	28,500	14,600	21,400	26,900

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.891	0.840	0.789	0.791	0.604		
Wet	100	operation	0.910	0.854	0.799	0.803	0.612		
wei	10	baseline	0.849	0.798	0.736	0.703	0.545		
		operation	0.867	0.809	0.744	0.711	0.549		
Median	2	baseline	0.788	0.740	0.677	0.621	0.486		
Median	2	operation	0.805	0.750	0.683	0.625	0.489		
	40	baseline	0.708	0.672	0.624	0.565	0.443		
Drak	10	operation	0.719	0.680	0.629	0.568	0.445		
Dry	100	baseline	0.604	0.598	0.586	0.538	0.419		
	100	operation	0.608	0.604	0.591	0.541	0.421		

9-225

Table 9.7-49 Mo	onthly Mean Stages	at Lake N16 – Operation
-----------------	--------------------	-------------------------

m = metre.

 Table 9.7-50
 Derived Representative Stages at Lake N16 – Operation

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.989	0.965	0.943	0.766	0.785	0.801
\A/ot	100	operation	1.016	0.992	0.966	0.776	0.795	0.814
Wet	10	baseline	0.948	0.929	0.910	0.687	0.714	0.746
		operation	0.971	0.954	0.932	0.694	0.722	0.755
Median	2	baseline	0.874	0.862	0.848	0.618	0.650	0.686
Median	2	operation	0.893	0.883	0.867	0.622	0.655	0.694
	10	baseline	0.769	0.764	0.757	0.563	0.601	0.634
Dn/	10	operation	0.779	0.775	0.769	0.566	0.606	0.641
Dry	100	baseline	0.619	0.616	0.628	0.546	0.588	0.612
	100	operation	0.612	0.610	0.626	0.548	0.591	0.619

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Conveyance from Lake D2/D3 and Lake E1 to Lake N14 was discussed in Section 8.7. These temporary diversion flows will be conveyed by engineered channel or pipeline to manage flows and water levels and prevent any adverse effects on diversion channel and bank stability.

9-226

Because the existing Lake N14 watershed is small relative to the upstream diverted area, diverted flows will greatly exceed baseline values, particularly during spring freshet. Alternatives for flow conveyance from Lake N14 to Lake N17 include improving the existing outlet channel to ensure that it is resistant to erosion, or constructing a parallel engineered channel or pipeline to handle excess discharge. Any of these will allow flows and water levels to be managed to prevent adverse effects on Lake N14 and Outlet channel and bank stability.

Note that these values presented here represent changes that will occur after Lake D2/D3 fills to its spill elevation, which will take 3 years under median conditions. Changes due to only the Lake E1 diversion, which would occur in the first year of operation, would be lower.

Lake N17 Outlet Flows: The water balance results for Lake N17 show that during operation, monthly mean flows will increase in proportion to the additional flow from the diverted D and E watersheds. The 2-year flood discharge during operation will increase by approximately 54% above the baseline value, and the 100-year flood discharge will increase by approximately 55%. Low flows will also increase by 6% to 11%.

Lake N17 Water Levels: Lake N17 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.071 m, the 100-year flood level by 0.079 m, and monthly mean stages by 0.043 m (June), 0.012 m (July), 0.011 m (August), 0.004 m (September) and -0.004 m (October), under median conditions.

Lake N17 and Outlet Channel/Bank Stability: No effects on Lake N17 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime. Water level increases of 50 to 80 mm are unlikely to affect lake shorelines, but increased flood magnitudes are large enough to warrant more intensive monitoring on this lake outlet channel. It is expected that bouldery substrates, along with frozen bank conditions during spring freshet, will prevent any adverse effects to the outlet channel.

Lake N16 Outlet Flows: The water balance results for Lake N16 show that during operation, monthly mean flows will increase in proportion to the additional flow from the diverted D and E watersheds. The 2-year flood discharge during operation will increase by approximately 11% above the baseline value, and the 100-year flood discharge will increase by approximately 15%. Low flows will also increase by 4% to 5%.

Lake N16 Water Levels: Lake N16 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.019 m, the 100-year flood level by 0.027 m, and monthly mean stages by 0.017 m (June), 0.010 m (July), 0.006 m (August), 0.004 m (September) and 0.003 m (October), under median conditions.

Lake N16 and Outlet Channel/Bank Stability: No effects on Lake N16 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime.

Lake N11 to Lake N1 (Combined Diversion)

The water balance model for the Project examined flows and water levels at Lake N11 and Lake N1. Project effects on Lake N11 are presented in Figures 9.7-28 to 9.7-29 and Tables 9.7-69 to 9.7-72, and Project effects on Lake N1 are presented in Figures 9.7-30 to 9.7-31 and Tables 9.7-73 to 9.7-76.

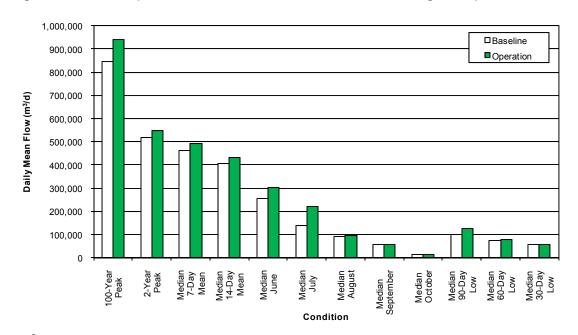


Figure 9.7-28 Comparison of Effects on Lake N11 Outlet Discharges – Operation

 m^{3}/d = cubic metres per day.

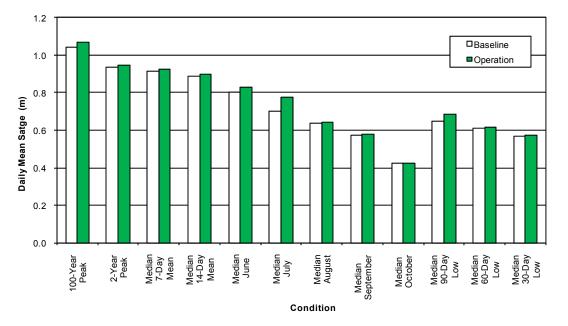


Figure 9.7-29 Comparison of Effects on Lake N11 Stages – Operation

m = metres.

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	443,000	293,000	221,000	258,000	50,700		
Wet	100	operation	508,000	388,000	243,000	267,000	53,300		
wei	10	baseline	359,000	215,000	147,000	123,000	28,200		
	10	operation	413,000	311,000	158,000	127,000	29,200		
Median	0	baseline	257,000	141,000	91,400	56,800	14,700		
median	2	operation	304,000	221,000	96,600	58,700	15,100		
	10	baseline	155,000	83,600	58,800	33,300	8,740		
Day	10	operation	202,000	132,000	62,200	34,400	8,880		
Dry	100	baseline	71,900	46,900	42,600	25,900	6,400		
	100	operation	123,000	62,600	45,700	26,700	6,510		

 m^{3}/d = cubic metres per day.

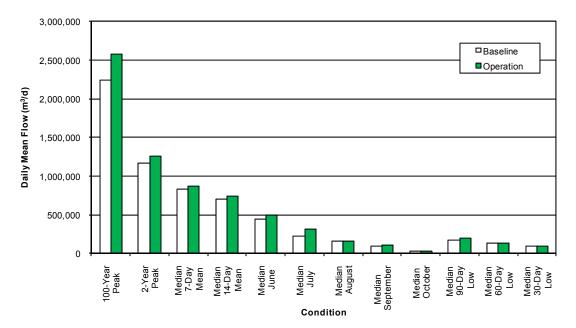
Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	9.77	747,000	630,000	179,000	198,000	215,000
Wet	100	operation	10.90	838,000	702,000	196,000	222,000	259,000
wei	10	baseline	8.22	630,000	538,000	102,000	125,000	152,000
		operation	8.86	680,000	580,000	109,000	135,000	189,000
Median	2	baseline	6.00	464,000	404,000	55,500	75,000	98,700
Wedian	2	operation	6.37	493,000	433,000	57,900	78,800	127,000
	10	baseline	3.36	269,000	240,000	33,900	48,500	64,200
Day	10	operation	3.87	311,000	288,000	34,900	50,700	83,000
Dry	100	baseline	0.85	85,300	81,700	25,200	36,500	45,200
	100	operation	1.82	167,000	172,000	25,900	38,600	57,000

 Table 9.7-52
 Derived Representative Discharges at the Lake N11 Outlet – Operation

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Table 9.7-53	Ionthly Mean Stages at Lake N11 – Operation
--------------	---

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.903	0.824	0.774	0.801	0.558		
Wet	100	operation	0.931	0.877	0.791	0.807	0.564		
wet	10	baseline	0.862	0.769	0.707	0.680	0.490		
		operation	0.889	0.835	0.718	0.684	0.494		
Median	2	baseline	0.800	0.700	0.636	0.572	0.424		
median	2	operation	0.831	0.774	0.644	0.577	0.426		
	10	baseline	0.715	0.624	0.577	0.508	0.378		
Day	10	operation	0.759	0.690	0.584	0.512	0.379		
Dry	100	baseline	0.603	0.548	0.537	0.481	0.352		
		operation	0.680	0.585	0.545	0.484	0.354		


m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.043	1.015	0.977	0.739	0.755	0.769
Wet	100	operation	1.068	1.041	1.001	0.754	0.775	0.802
wei	10	baseline	1.003	0.977	0.943	0.652	0.682	0.712
	10	operation	1.020	0.994	0.959	0.662	0.694	0.748
Median	2	baseline	0.935	0.913	0.885	0.569	0.609	0.647
Median	2	operation	0.948	0.925	0.899	0.575	0.616	0.684
	10	baseline	0.822	0.809	0.788	0.510	0.553	0.588
	10	operation	0.849	0.835	0.821	0.514	0.558	0.623
Dry	100	baseline	0.606	0.626	0.620	0.478	0.519	0.544
	100	operation	0.718	0.727	0.732	0.481	0.525	0.573

 Table 9.7-54
 Derived Representative Stages at Lake N11 – Operation

m = metre.

 m^{3}/d = cubic metres per day.

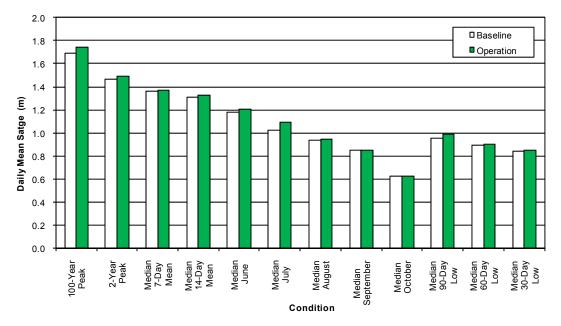


Figure 9.7-31 Comparison of Effects on Lake N1 Stages – Operation

m = metres.

Table 9.7-55	Monthly Mean Discharges at the Lake N1 Outlet – Operation
--------------	---

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	737,000	470,000	370,000	398,000	84,100		
Wet	100	operation	801,000	569,000	401,000	418,000	87,900		
vvel	10	baseline	609,000	348,000	248,000	204,000	47,600		
	10	operation	660,000	448,000	265,000	213,000	49,300		
Median	2	baseline	444,000	229,000	156,000	99,000	25,100		
weatan	2	operation	489,000	315,000	164,000	102,000	25,700		
	10	baseline	270,000	138,000	102,000	56,600	14,600		
Day	10	operation	319,000	197,000	107,000	58,300	14,900		
Dry	100	baseline	121,000	79,300	75,400	41,600	10,300		
	100	operation	183,000	111,000	79,700	43,000	10,500		

 m^{3}/d = cubic metres per day.

9-231

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	25.90	1,250,000	1,050,000	285,000	333,000	353,000
Wet	100	operation	29.80	1,350,000	1,110,000	312,000	368,000	404,000
vvel	10	baseline	19.90	1,080,000	910,000	171,000	212,000	251,000
	10	operation	22.10	1,150,000	962,000	183,000	227,000	293,000
Madian	2	baseline	13.50	827,000	704,000	95,600	128,000	166,000
Median	2	operation	14.60	872,000	740,000	100,000	134,000	197,000
	10	baseline	8.22	527,000	441,000	57,200	83,800	109,000
Drak	10	operation	8.68	557,000	472,000	59,100	87,500	132,000
Dry	100	baseline	4.51	242,000	174,000	40,500	63,800	77,100
	100	operation	4.84	270,000	211,000	41,600	67,200	95,000

 Table 9.7-56
 Derived Representative Discharges at the Lake N1 Outlet – Operation

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Table 9.7-57	Monthly Mean Stages at Lake N1 – Operation
--------------	--

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	1.323	1.197	1.135	1.154	0.817		
Wet	100	operation	1.348	1.249	1.156	1.166	0.825		
vvei	10	baseline	1.268	1.120	1.039	0.995	0.720		
	10	operation	1.291	1.185	1.054	1.004	0.725		
Median	2	baseline	1.182	1.020	0.937	0.847	0.624		
Median	2	operation	1.208	1.095	0.947	0.853	0.628		
	10	baseline	1.058	0.912	0.853	0.748	0.553		
Draw	10	operation	1.098	0.987	0.862	0.753	0.556		
Dry	100	baseline	0.886	0.806	0.797	0.698	0.512		
	100	operation	0.971	0.869	0.807	0.704	0.514		

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.693	1.488	1.431	1.071	1.109	1.123
Wet	100	operation	1.747	1.514	1.449	1.093	1.134	1.158
Wel	10	baseline	1.597	1.440	1.387	0.956	1.003	1.041
	10	operation	1.635	1.461	1.404	0.971	1.018	1.078
Median	2	baseline	1.465	1.357	1.310	0.840	0.897	0.950
weatan	2	operation	1.491	1.373	1.324	0.849	0.906	0.987
	10	baseline	1.312	1.228	1.180	0.750	0.816	0.865
D	10	operation	1.328	1.243	1.198	0.755	0.824	0.903
Dry	100	baseline	1.148	1.033	0.960	0.694	0.768	0.801
	100	operation	1.167	1.058	1.002	0.698	0.777	0.839

Table 9.7-58 Derived Representative Stages at Lake N1 – Operation

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake N11 Outlet Flows: The water balance results for Lake N11 show that during operations, monthly mean flows will increase due to the upstream diversion of the D and E watersheds. The peak daily discharges will increase by 6% (2-year flood) and 12% (100-year flood). Low flows will increase by up to 29% because of the increased upstream storage and flow area.

Lake N11 Water Levels: Lake N11 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.013 m, the 100-year flood level by 0.025 m, and monthly mean stages by 0.031 m (June), 0.074 m (July), 0.008 m (August), 0.005 m (September) and 0.002 m (October), under median conditions.

Lake N11 and Outlet Channel/Bank Stability: No effects on Lake N11 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime, and the channel is naturally well armoured.

Lake N1 Outlet Flows: The water balance results for Lake N1 show that during operations, monthly mean flows will increase due to the upstream diversion of the A, B, D and E watersheds. The peak daily discharges will increase by 8% (2-year flood) and 15% (100-year flood). Low flows will increase by up to 19% because of the increased upstream storage and flow area.

De Beers Canada Inc.

Lake N1 Water Levels: Lake N1 water levels are also expected to increase during operation. The 2-year flood level is expected to increase by approximately 0.026 m, the 100-year flood level by 0.054 m, and monthly mean stages by 0.026 m (June), 0.075 m (July), 0.010 m (August), 0.006 m (September) and 0.004 m (October), under median conditions.

9-234

Lake N1 and Outlet Channel/Bank Stability: No effects on Lake N1 and Outlet channel or bank stability are expected during operation, because increases in flood magnitude are small relative to the existing flood regime, and the channel is naturally well armoured.

9.7.3.3 Effect of Project Infrastructure in Kennady Lake Watershed to Flows, Water Levels, and Channel/Bank Stability in Streams and Lakes in Downstream Waters

9.7.3.3.1 Project Activities

Effects of the Project activities on the water balance of Kennady Lake Area 8 during operation were described in EIS Section 8.7. Water management activities that affect the water balance of Area 8 during operation (i.e., after Dyke A is constructed and dewatering is complete) include:

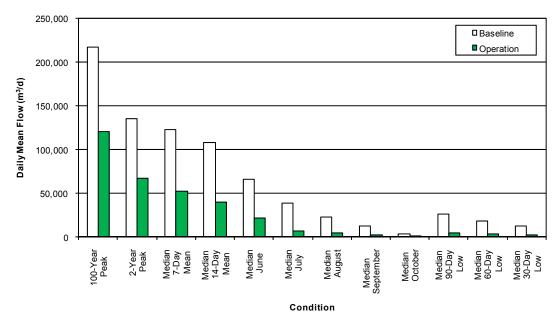
- Dewatered Areas 2 to 7 will be isolated from Area 8 of Kennady Lake.
- A reduction of inflow to dewatered Areas 2 to 7 will result from diversion of the A, B, D and E watersheds.

The effects of these activities on the water balance and water levels in Area 8 were assessed in Section 8.7 (Effects to Water Quality and Fish in Kennady Lake; Effects to Water Quantity). The effects of changes in the discharge from Area 8 on flows, water levels and channel/bank stability in the Area 8 outlet channel and downstream waterbodies is assessed herein. The assessment below includes mainstem lakes within the L and M watersheds, Lake 410, mainstem lakes within the P watershed, Kirk Lake and watersheds further downstream. The downstream watersheds and flow paths from Kennady Lake to Lake 410 (Figure 9.7-1), and the downstream watersheds and flow paths from Lake 410 to Kirk Lake (Figure 9.7-2).

The operational diversion of the A, B, D and E watersheds into watershed N is discussed further in Section 9.7.3.3. The effects of these diversions are included in modelling of effects on Lake 410 and downstream watersheds.

9.7.3.3.2 Environmental Design Features and Mitigation

During operation, all contact water, including Project site contact water and inflows to the dewatered lake bed will be collected in the WMP (Areas 3 and 5). In general, this will reduce flows in Kennady Lake Area 8 during spring runoff, due to closed-circuiting of Areas 2 to 7. The relative magnitude of these effects on each waterbody will diminish with downstream distance.


9.7.3.3.3 Effects Analysis

Kennady Lake (Area 8) Outlet (Stream K5) to Lake M1 Outlet

Dyke A will prevent water from flowing from Area 8 into Areas 2 to 7 during dewatering and operation. Area 8 will be preserved as a free-draining waterbody throughout this period, though its hydrological regime will be changed.

The water balance model for the Project examined all downstream waterbodies between the Kennady Lake Area 8 outlet channel and the Lake M1 outlet channel. Project effects on the Area 8 outlet channel during dewatering are summarized in Figure 9.7-32 and Tables 9.7-59 to 9.7-60. Project effects on Lake L1 during dewatering are summarized in Figure 9.7-33 to 9.7-34 and Tables 9.7-61 to 9.7-64. Project effects on Lake M1 during dewatering are summarized in Figures 9.7-35 to 9.7-36 and Tables 9.7-65 to 9.7-68.

Figure 9.7-32 Comparison of Effects on Area 8 Outlet Discharges – Operation

 m^{3}/d = cubic metres per day.

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	121,000	86,500	59,600	68,600	13,500		
Wet	100	operation	35,500	19,600	14,700	16,900	2,030		
vvel	10	baseline	97,600	61,900	38,100	29,200	6,640		
	10	operation	30,700	12,000	8,680	6,620	967		
Madian	2	baseline	65,900	39,300	22,800	13,200	3,070		
Median	2	operation	21,900	6,670	4,580	2,460	371		
	10	baseline	36,900	23,100	13,900	6,880	1,430		
Dmi	10	operation	12,000	3,570	2,310	892	91		
Dry	100	baseline	12,900	12,000	9,420	4,910	878		
	100	operation	2,380	1,880	1,390	496	18		

Table 9.7-59	Monthly Mean Discharges at the Area 8 Outlet – Operation
--------------	--

Table 9.7-60	Derived Representative Discharges at the Area 8 Outlet – Operation
--------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	2.51	192,000	167,000	48,900	52,500	59,000
W/ot	100	operation	1.39	85,200	61,000	10,500	14,100	13,300
Wet	10	baseline	2.14	166,000	145,000	26,200	32,300	41,000
	10	operation	1.11	71,700	52,600	5,070	7,200	8,450
Median	2	baseline	1.56	123,000	108,000	12,800	18,300	26,000
Median	2	operation	0.78	52,900	39,900	2,100	3,390	4,830
	10	baseline	0.80	65,100	60,000	6,560	10,900	16,100
Dev	10	operation	0.46	31,100	23,700	900	1,820	2,720
Dry	100	baseline	0.15	14,900	17,300	5,000	9,340	13,200
	100	operation	0.21	10,800	7,400	473	1,260	1,680

Q = discharge; m³/s = cubic metres per second; m³/d = cubic metres per day.

9-236

Figure 9.7-33 Comparison of Effects on Lake L1 Outlet Discharges – Operation

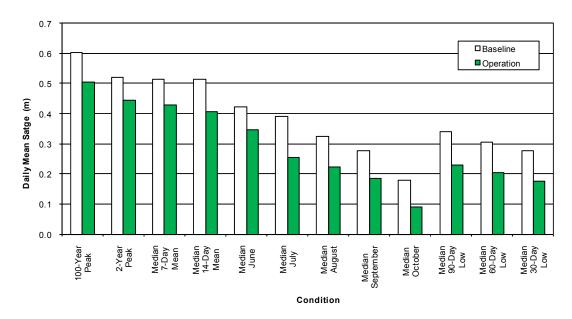


Figure 9.7-34 Comparison of Effects on Lake L1 Stages – Operation

m = metres.

	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	130,000	111,000	67,700	85,000	20,600		
Wet	100	operation	57,000	36,100	23,600	31,300	8,690		
vvel	10	baseline	102,000	81,400	45,700	38,900	9,240		
	10	operation	47,200	22,700	14,400	12,800	2,140		
Madian	2	baseline	67,800	52,300	28,100	16,400	3,630		
Median	2	operation	34,300	12,300	7,690	4,190	376		
	10	baseline	35,700	29,300	17,100	8,310	1,620		
Dmi	10	operation	20,500	6,140	3,940	1,310	57		
Dry	100	baseline	10,700	14,200	11,300	5,750	976		
	100	operation	8,500	2,980	2,130	448	4		

9-238

Table 9.7-61 Mon	nthly Mean Discharges	at the Lake L1	Outlet – Operation
------------------	-----------------------	----------------	--------------------

 m^{3}/d = cubic metres per day.

Table 3.7-02 Derived Representative Discharges at the Lake LT Outlet - Operation	Table 9.7-62	Derived Representative Discharges at the Lake L1 Outlet – Operation
--	--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	2.62	214,000	189,000	57,000	63,400	76,800
\M/ot	100	operation	1.42	112,000	89,500	17,000	23,300	23,000
vvei	Wet 10	baseline	2.25	185,000	164,000	31,300	38,900	51,900
		operation	1.23	96,200	77,900	8,570	12,100	14,800
Median	2	baseline	1.59	131,000	119,000	16,100	22,400	32,500
weatan	2	operation	0.93	72,200	59,700	3,540	5,780	8,520
	10	baseline	0.86	71,700	66,800	7,980	13,000	19,900
	10	operation	0.54	42,100	35,500	1,300	3,100	4,770
Dry	100	baseline	0.23	20,000	21,000	5,770	9,970	15,000
	100	operation	0.13	12,000	10,200	427	2,120	2,860

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.512	0.488	0.422	0.451	0.297		
Wet	100	operation	0.401	0.351	0.309	0.336	0.230		
vvel	10	baseline	0.476	0.446	0.376	0.358	0.235		
	10	operation	0.380	0.306	0.267	0.258	0.152		
Madian	2	baseline	0.422	0.391	0.326	0.278	0.178		
Median	2	operation	0.345	0.255	0.222	0.186	0.091		
	40	baseline	0.350	0.330	0.281	0.227	0.140		
	10	operation	0.297	0.208	0.182	0.132	0.052		
Dry	100	baseline	0.245	0.266	0.249	0.204	0.121		
	100	operation	0.229	0.168	0.152	0.096	0.023		

Table 9.7-63	Monthly Mean Stages at Lake L1 – Operation
--------------	--

m = metre.

Table 9.7-64	Derived Representative Stages at Lake L1 – Operation
--------------	--

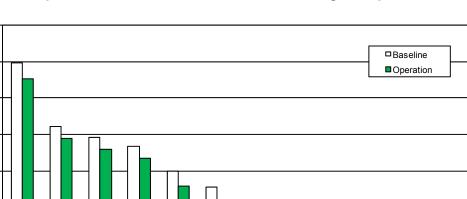
Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.603	0.593	0.571	0.401	0.414	0.438
Wet	100	operation	0.503	0.490	0.458	0.281	0.308	0.307
10	10	baseline	0.576	0.568	0.548	0.336	0.358	0.390
	10	operation	0.482	0.468	0.440	0.229	0.254	0.270
Median	2	baseline	0.520	0.513	0.499	0.276	0.305	0.340
Median	Z	operation	0.443	0.430	0.407	0.177	0.204	0.229
	10	baseline	0.433	0.429	0.420	0.225	0.259	0.294
Davi	10	operation	0.377	0.367	0.349	0.132	0.170	0.193
Dry	100	baseline	0.292	0.295	0.299	0.204	0.240	0.271
	100	operation	0.250	0.253	0.242	0.095	0.152	0.166

m = metre.

300,000

250,000

200,000


150,000

100,000

50,000

0

Daily Mean Flow (m³/d)

Median September Median October Median 90-Day Low

Figure 9.7-35 Comparison of Effects on Lake M1 Outlet Discharges – Operation

Median June Median July

Condition

Median August

 m^{3}/d = cubic metres per day.

100-Year Peak 2-Year Peak Median 7-Day Mean

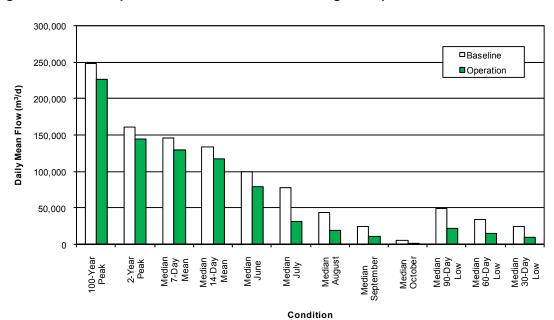


Figure 9.7-36 Comparison of Effects on Lake M1 Stages – Operation

Median 14-Day Mean

m = metres.

Median 30-Day Low

Median 60-Day Low

	Return		Monthly Mean Discharge (m ³ /d)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	178,000	152,000	102,000	116,000	29,300			
Wet	100	operation	126,000	83,900	57,800	70,300	8,410			
vvel	10	baseline	142,000	116,000	69,100	56,400	13,500			
	10	operation	106,000	55,600	35,800	30,500	4,450			
Madian	2	baseline	100,000	77,600	43,200	25,100	5,140			
Median	2	operation	78,800	31,900	19,600	11,000	1,500			
	10	baseline	61,000	43,900	27,300	12,900	1,880			
Davi	10	operation	48,000	16,300	10,600	3,890	0			
Dry	100	baseline	30,800	19,800	19,100	8,800	762			
	100	operation	20,100	7,750	6,180	1,640	0			

Table 9.7-65	Monthly Mean Discharges at the Lake M1 Outlet – Operation
--------------	---

Table 9.7-66	Derived Representative Discharges at the Lake M1 Outlet – Operation
--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	2.88	220,000	205,000	84,900	92,300	105,000
Wet	100	operation	2.62	187,000	169,000	44,200	57,600	54,800
vvel	10	baseline	2.45	189,000	176,000	48,200	58,500	75,700
	10	operation	2.22	165,000	149,000	22,400	30,200	36,400
Median	2	baseline	1.87	146,000	134,000	24,700	34,400	49,700
Median	2	operation	1.68	130,000	117,000	9,470	14,800	21,800
	10	baseline	1.26	96,400	85,100	13,200	21,300	31,200
Davi	10	operation	1.09	83,500	73,600	3,790	8,480	12,800
Dry	100	baseline	0.73	50,300	38,600	8,380	15,200	20,200
	100	operation	0.56	34,300	28,300	1,600	6,170	8,000

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.626	0.563	0.432	0.470	0.188		
Wet	100	operation	0.497	0.379	0.296	0.337	0.082		
vvel	10	baseline	0.538	0.470	0.333	0.291	0.112		
	10	operation	0.443	0.288	0.215	0.193	0.053		
Median	2	baseline	0.426	0.360	0.243	0.170	0.059		
Median	2	operation	0.363	0.199	0.144	0.098	0.026		
	10	baseline	0.306	0.246	0.179	0.109	0.030		
Draw	10	operation	0.261	0.127	0.095	0.049	-		
Dry	100	baseline	0.194	0.145	0.141	0.084	0.016		
	100	operation	0.146	0.077	0.067	0.027	_		

9-242

Table 9.7-67 Monthly Mean Stages at Lake	M1 – Operation
--	----------------

m = metre.

 Table 9.7-68
 Derived Representative Stages at Lake M1 – Operation

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.782	0.721	0.687	0.382	0.404	0.440
Wet	100	operation	0.734	0.647	0.604	0.247	0.295	0.285
vvel	10	baseline	0.702	0.651	0.621	0.262	0.298	0.354
	10	operation	0.658	0.595	0.556	0.157	0.192	0.217
Median	2	baseline	0.587	0.548	0.518	0.168	0.209	0.267
Median	2	operation	0.546	0.507	0.473	0.089	0.119	0.154
	10	baseline	0.451	0.416	0.383	0.110	0.152	0.196
Dru	10	operation	0.409	0.378	0.347	0.048	0.082	0.108
Dry	100	baseline	0.314	0.269	0.226	0.082	0.121	0.147
	100	operation	0.263	0.209	0.184	0.027	0.067	0.079

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Area 8 Outlet Flows: The water balance results for Area 8 show that during operations, monthly mean flows will decrease due to the upstream closed-circuiting. The peak daily discharges will decrease by 50% (2-year flood) and 45% (100-year flood). Low flows will decrease by up to 84% because of the reduction of upstream storage and flow area. A flow mitigation plan is being developed to mitigate any fish habitat losses due to reduced flows. The specifics

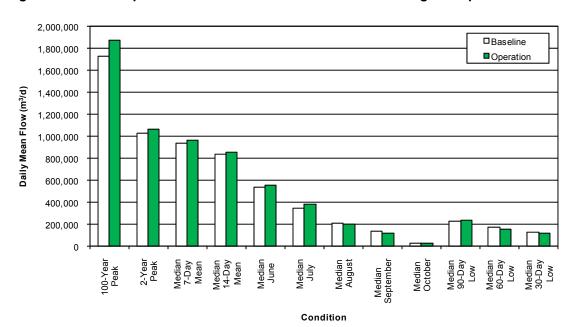
of the mitigation plan have not been developed, but would focus on providing suitable spawning and rearing habitat for Arctic grayling (*Thymallus arcticus*).

Area 8 Outlet Channel/Bank Stability: No effects on Area 8 outlet channel or bank stability are expected, because flows and water levels will decrease during operation.

Lake L1 Outlet Flows: The water balance results for Lake L1 show that during operations, monthly mean flows will decrease due to the upstream closed-circuiting. The peak daily discharges will decrease by 42% (2-year flood) and 46% (100-year flood). Low flows will decrease by up to 78% because of the reduction of upstream storage and flow area. A flow mitigation plan is being developed to mitigate any fish habitat losses due to reduced flows. The specifics of the mitigation plan have not been developed, but would focus on providing suitable spawning and rearing habitat for Arctic grayling (*Thymallus arcticus*).

Lake L1 Water Levels: Lake L1 water levels are also expected to decrease during operation. The 2-year flood level is expected to decrease by approximately 0.077 m, and monthly mean stages are expected to decrease by 0.077 m (June), 0.136 m (July), 0.104 m (August), 0.092 m (September) and 0.087 m (October), under median conditions.

Lake L1 and Outlet Channel/Bank Stability: No effects on Lake L1 and outlet channel or bank stability are expected, because flows and water levels will decrease during operation.


Lake M1 Outlet Flows: The water balance results for Lake M1 show that during operations, monthly mean flows will decrease due to the upstream closed-circuiting. The peak daily discharges will decrease by 10% (2-year flood) and 9% (100-year flood). Low flows will decrease by up to 62% because of the reduction of upstream storage and flow area. A flow mitigation plan is being developed to mitigate any fish habitat losses due to reduced flows. The specifics of the mitigation plan have not been developed, but would focus on providing suitable spawning and rearing habitat for Arctic grayling (*Thymallus arcticus*).

Lake M1 Water Levels: Lake M1 water levels are also expected to decrease during operation. The 2-year flood level is expected to decrease by approximately 0.041 m, and monthly mean stages are expected to decrease by 0.063 m (June), 0.161 m (July), 0.099 m (August), 0.072 m (September) and 0.033 m (October), under median conditions.

Lake M1 and Outlet Channel/Bank Stability: No effects on Lake M1 and outlet channel or bank stability are expected, because flows and water levels will decrease during operation.

Lake 410 to Kirk Lake Outlet

Lake M1 flows into Lake 410, which also receives inflow from Lake N1. Lake 410 then drains through watershed P to Kirk Lake. The water balance model for the Project examined all downstream waterbodies between Lake 410 and Kirk Lake. Project effects on Lake 410 during dewatering are summarized in Figures 9.7-37 to 9.7-38 and Tables 9.7-69 to 9.7-72. Project effects on Kirk Lake during dewatering are summarized in Figures 9.7-37 to 9.7-38 to 9.7-40 and Tables 9.7-73 to 9.7-76.

 m^{3}/d = cubic metres per day.

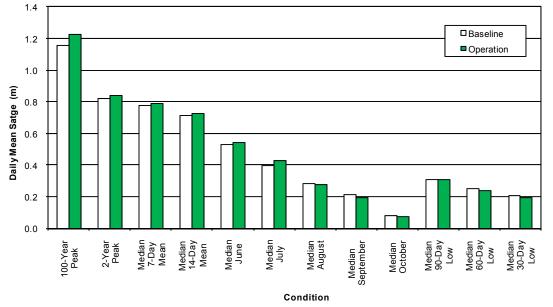


Figure 9.7-38 Comparison of Effects on Lake 410 Stages – Operation

m = metres.

Condition	Return Period	Snapshot	Monthly Mean Discharge (m ³ /d)						
(years	(years)	Shapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	934,000	678,000	475,000	587,000	135,000		
Wet	100	operation	935,000	710,000	467,000	534,000	123,000		
VVEL	10	baseline	759,000	514,000	329,000	278,000	70,700		
10	10	operation	762,000	553,000	317,000	264,000	63,400		
Median	2	baseline	537,000	344,000	210,000	135,000	32,700		
Meulan	2	operation	555,000	388,000	198,000	121,000	28,900		
	10	baseline	329,000	203,000	132,000	73,900	16,000		
Dry	10	operation	353,000	248,000	123,000	65,400	14,000		
Dry	100	baseline	190,000	106,000	90,100	49,800	9,660		
	100	operation	193,000	149,000	82,800	46,100	8,420		

 Table 9.7-69
 Monthly Mean Discharges at the Lake 410 Outlet – Operation

 m^3/d = cubic metres per day.

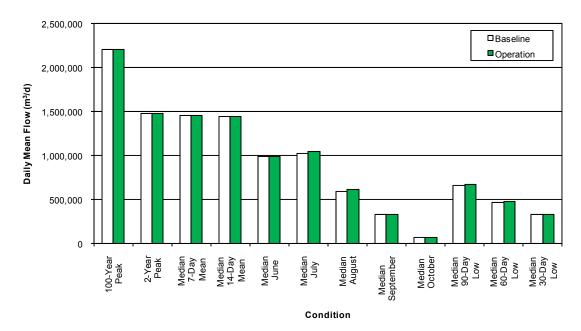
Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	20.00	1,420,000	1,240,000	404,000	443,000	491,000
Wet	100	operation	21.70	1,490,000	1,280,000	388,000	441,000	495,000
vvel	10	baseline	16.50	1,230,000	1,080,000	237,000	287,000	355,000
		operation	17.40	1,280,000	1,110,000	224,000	276,000	358,000
Median	2	baseline	11.90	942,000	837,000	128,000	173,000	234,000
Median	2	operation	12.30	966,000	859,000	118,000	161,000	240,000
	10	baseline	7.11	580,000	523,000	74,200	108,000	150,000
Dn/	10	operation	7.33	596,000	539,000	66,300	100,000	159,000
Dry	100	baseline	3.03	219,000	200,000	50,900	77,500	100,000
	100	operation	3.44	241,000	218,000	44,500	72,300	113,000

Table 3.1-10 Derived Representative Discharges at the Lake 410 Outlet - Operation	Table 9.7-70	Derived Representative Discharges at the Lake 410 Outlet – Operation
---	--------------	--

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day

Table 9.7-71Monthly Mean Stages at Lake 410 – Operation

Condition	Return Period	Snanahat	Monthly Mean Stage (m)						
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	0.769	0.621	0.490	0.564	0.212		
Wet	100	operation	0.769	0.640	0.484	0.529	0.199		
wei	10	baseline	0.669	0.516	0.383	0.343	0.138		
	10	operation	0.671	0.542	0.374	0.331	0.128		
Median	2	baseline	0.531	0.395	0.284	0.212	0.082		
Median	2	operation	0.543	0.428	0.273	0.197	0.076		
	10	baseline	0.383	0.278	0.209	0.142	0.051		
D.	10	operation	0.402	0.318	0.199	0.131	0.047		
Dry	100	baseline	0.266	0.180	0.162	0.109	0.036		
	100	operation	0.269	0.226	0.153	0.103	0.033		


m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.158	1.016	0.928	0.440	0.467	0.501
Wet	100	operation	1.223	1.049	0.948	0.428	0.466	0.503
vvel	10	baseline	1.019	0.923	0.847	0.308	0.350	0.403
10	10	operation	1.056	0.948	0.862	0.297	0.341	0.406
Median	2	baseline	0.819	0.773	0.714	0.204	0.250	0.305
Weulan	2	operation	0.838	0.786	0.727	0.194	0.238	0.311
	10	baseline	0.581	0.559	0.522	0.142	0.182	0.227
Dru	10	operation	0.593	0.570	0.533	0.132	0.173	0.236
Dry	100	baseline	0.329	0.292	0.275	0.110	0.146	0.173
	100	operation	0.358	0.312	0.291	0.101	0.140	0.188

 Table 9.7-72
 Derived Representative Stages at Lake 410 – Operation

m = metre.

 m^{3}/d = cubic metres per day.

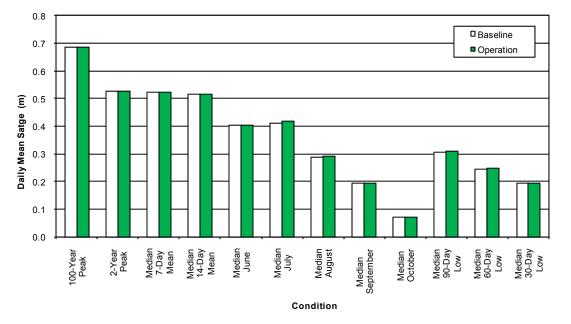


Figure 9.7-40 Comparison of Effects on Kirk Lake Stages – Operation

m = metres.

Condition	Return Period	Spanshot	Monthly Mean Discharge (m ³ /d)							
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	1,850,000	1,730,000	1,250,000	1,370,000	420,000			
Wet	100	operation	1,840,000	1,750,000	1,270,000	1,220,000	390,000			
vvel	10	baseline	1,450,000	1,420,000	916,000	676,000	188,000			
		operation	1,450,000	1,440,000	937,000	683,000	190,000			
Median	2	baseline	995,000	1,020,000	596,000	332,000	75,700			
Median	2	operation	993,000	1,050,000	615,000	335,000	73,900			
	10	baseline	562,000	607,000	349,000	161,000	24,500			
Dn/	10	operation	560,000	637,000	368,000	164,000	24,100			
Dry	100	baseline	226,000	255,000	191,000	85,200	4,760			
	100	operation	224,000	292,000	210,000	90,900	5,370			

 Table 9.7-73
 Monthly Mean Discharges at the Kirk Lake Outlet – Operation

 m^{3}/d = cubic metres per day.

9-248

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	25.50	2,160,000	2,100,000	1,050,000	1,140,000	1,290,000
Wet		operation	25.50	2,170,000	2,110,000	1,070,000	1,150,000	1,300,000
wei		baseline	22.10	1,890,000	1,850,000	636,000	774,000	981,000
	10	operation	22.20	1,890,000	1,850,000	638,000	784,000	992,000
Median	2	baseline	17.10	1,460,000	1,440,000	333,000	467,000	660,000
Median	2	operation	17.10	1,460,000	1,440,000	333,000	476,000	674,000
	10	baseline	10.60	902,000	884,000	163,000	262,000	395,000
Dry	10	operation	10.60	906,000	889,000	166,000	274,000	413,000
Dry	100	baseline	3.98	321,000	290,000	82,100	148,000	213,000
	100	operation	4.14	335,000	303,000	88,200	161,000	235,000

 Table 9.7-74
 Derived Representative Discharges at the Kirk Lake Outlet – Operation

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Table 9.7-75 Monthly Mean Stages at Kirk Lake – Operation

	Return			Month	ly Mean Stag	je (m)	
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct
400	baseline	0.610	0.584	0.470	0.500	0.227	
Wet	100	operation	0.608	0.588	0.475	0.463	0.216
vvel		baseline	0.519	0.512	0.382	0.312	0.133
	10	operation	0.519	0.517	0.388	0.314	0.134
Madian	2	baseline	0.404	0.410	0.287	0.194	0.072
Median	2	operation	0.403	0.418	0.293	0.195	0.071
	10	baseline	0.276	0.290	0.201	0.120	0.034
Day	10	operation	0.275	0.300	0.208	0.121	0.034
Dry	100	baseline	0.150	0.163	0.134	0.078	0.011
	100	operation	0.149	0.178	0.143	0.082	0.012

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.686	0.677	0.664	0.418	0.442	0.480
Wet	100	operation	0.686	0.679	0.666	0.424	0.445	0.483
wei	10	baseline	0.623	0.619	0.610	0.300	0.342	0.400
10	10	operation	0.625	0.619	0.610	0.300	0.344	0.403
Median	2	baseline	0.525	0.521	0.517	0.195	0.244	0.307
Median	2	operation	0.525	0.521	0.517	0.195	0.247	0.311
	10	baseline	0.382	0.378	0.373	0.121	0.166	0.218
Dry	10	operation	0.382	0.379	0.375	0.122	0.171	0.225
ыу	100	baseline	0.199	0.190	0.177	0.077	0.113	0.144
	100	operation	0.204	0.195	0.183	0.080	0.120	0.154

9-250

 Table 9.7-76
 Derived Representative Stages at Kirk Lake – Operation

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake 410 Outlet Flows: The water balance results for Lake 410 show that during operations, monthly mean flows will increase slightly in the early open water season and decrease slightly in the late open water season, due to the upstream closed-circuiting and diversions. The peak daily discharges will increase by 3% (2-year flood) and 9% (100-year flood). Low flows will decrease by up to 8% because of the reduction of upstream storage and flow area.

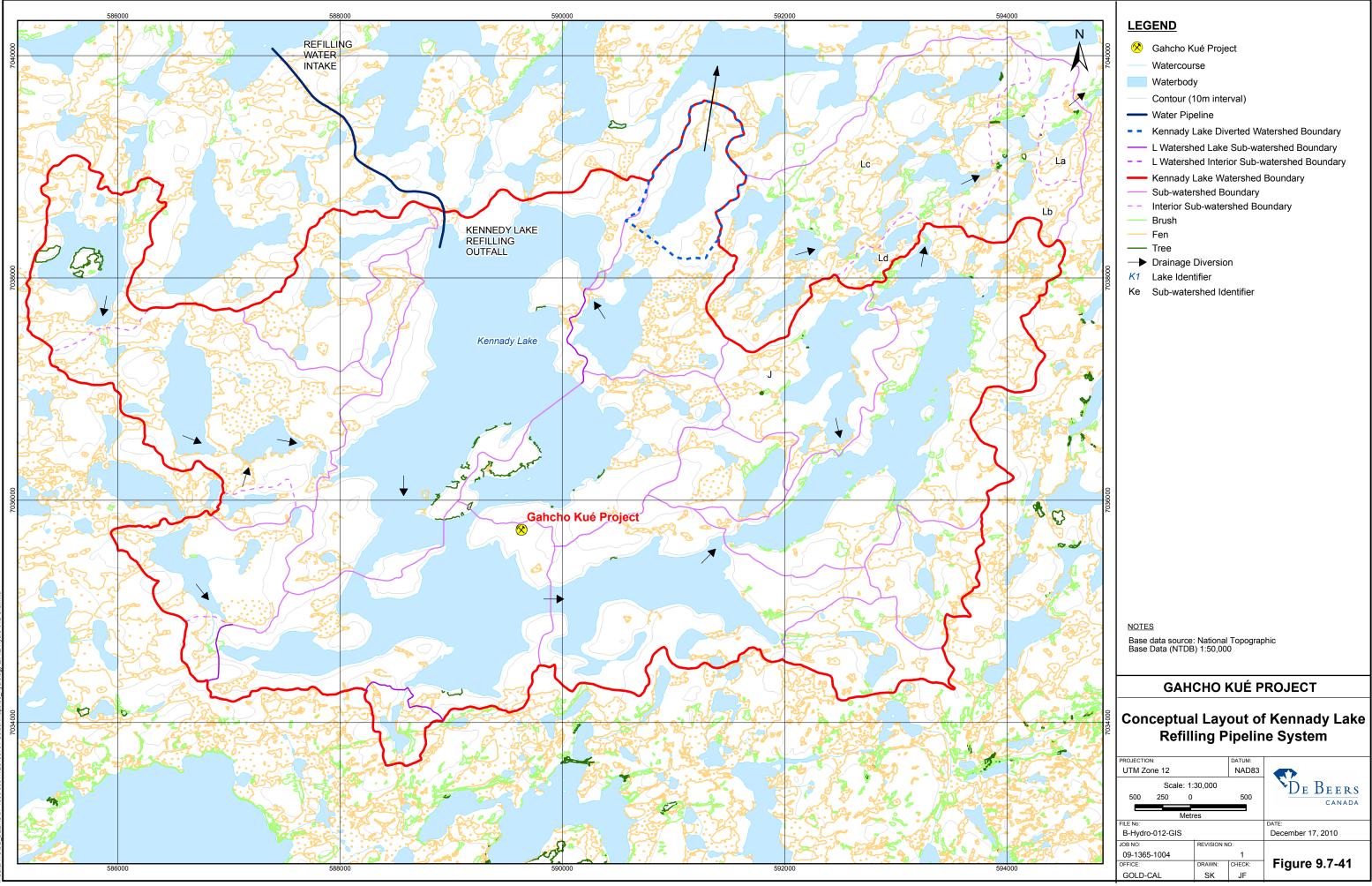
Lake 410 Water Levels: Lake 410 water levels are also expected to decrease during operation. The 2-year flood level is expected to increase by approximately 0.019 m, and monthly mean stages are expected to increase by 0.012 m (June) and 0.033 m (July), and decrease by 0.011 m (August), 0.015 m (September) and 0.006 m (October), under median conditions.

Lake 410 and Outlet Channel/Bank Stability: No effects on Lake 410 and Outlet channel or bank stability are expected during operation, because flow and water level increases will be small.

The water balance results for Kirk Lake show that during operations, changes to floods and mean flows will be negligible, as will corresponding changes to water levels. No adverse effects on downstream channel/bank stability are anticipated.

De Beers Canada Inc.

9.7.4 Effects Analysis Results – Closure


9.7.4.1 Effect of Pumping Supplemental Flows from Lake N11 to Kennady Lake during Refilling to Flows, Water Levels, and Channel/Bank Stability in Streams and Lakes in the N Watershed

9.7.4.1.1 Activity Description

To expedite the refilling of Kennady Lake Areas 2 to 7, water will be pumped from Lake N11. Pumping will typically begin in June and end in July, although it may extend into August. The conceptual layout of the refilling system is shown in Figure 9.7-41. In wet years, flow forecasts, based on snow pack conditions and seasonal precipitation trends, will be used to estimate annual water yields from Lake N11. Planned pumping rates will be set accordingly to ensure that the total annual discharge from Lake N11 does not drop below the 1-in-5 year dry condition. During the pumping season, pumping rates will be adjusted as required to meet this objective. In years where the Lake N11 discharge is forecast to naturally fall below the 5-year dry condition, no pumping will occur.

The total annual average diversion from Lake N11 will be on the order of 3.7 million cubic metres per year (Mm^3/y), which represents no more than 20% of the normal annual flow to Lake N1. The 20% cut-off will be used to ensure that sufficient water remains in Lake N11 to support downstream aquatic systems in the N watershed. The value of 3.7 Mm^3/y represents the difference between the flow reporting to Lake N11 under median/normal flow conditions, and that which occurs under 1-in-5 year dry conditions. Based on a six-week pumping period, the average pumping rate will be in the order of 88,100 m³/d. It is anticipated that more water will be withdrawn during wet years, i.e., up to a maximum of 175,200 m³/d. In drier years, less water will be withdrawn. At no time will the diversion cause discharge from Lake N11 to drop below that which occurs under a 1-in-5 year dry condition.

During closure, the permanent diversion of Lake A3 to Lake N9, as described in Section 9.7.3.2.1, will continue.

9.7.4.1.2 Environmental Design Features and Mitigation

Pumping water from Lake N11 to reduce the time required to refill Kennady Lake will be done to accelerate the recovery of the aquatic ecosystem in Kennady Lake. Pumping rates will be managed to minimize effects in Lake N11 and downstream waterbodies.

9.7.4.1.3 Effects and Mitigation

Lake N11 to Lake N1 Outlet

Effects to Lake N11 and downstream waterbodies to the Lake N1 outlet are due to the abstraction of flow for Kennady Lake refilling. Pumping will be limited to mitigate downstream effects of the water pumped from Lake N11. Additional effects to the N1 outlet will occur due to the permanent diversion of Lake A3. The operational diversions of the B, D and E watersheds will be removed so that their flow has been rerouted back to Kennady Lake.

The water balance model for the Project examined all downstream waterbodies between Lake N11 and the Lake N1 outlet channel. Project effects on Lake N11 and outlet during refilling are shown in Figures 9.7-42 and 9.7-43 and summarized in Tables 9.7-77 to 9.7-80. Project effects on Lake N1 during refilling are shown in Figures 9.7-44 and 9.7-45 and summarized in Tables 9.7-81 to 9.7-84.

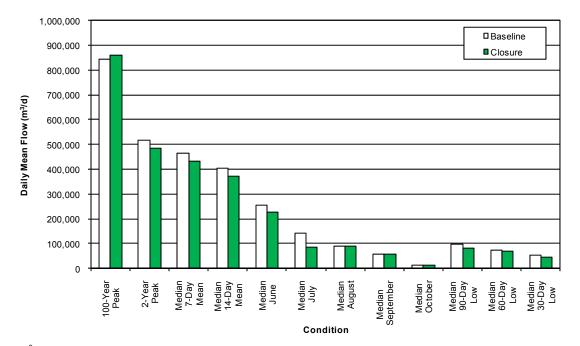


Figure 9.7-42 Comparison of Effects on Lake N11 Outlet Discharges – Closure

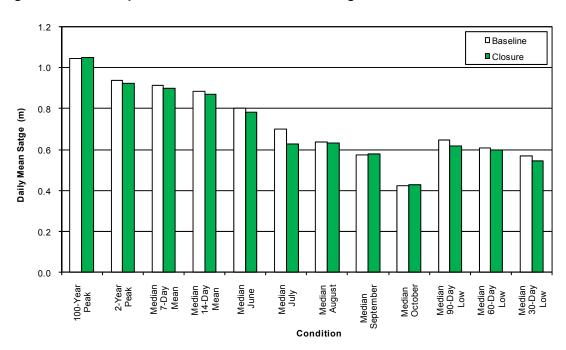


Figure 9.7-43 Comparison of Effects on Lake N11 Stages – Closure

m = metres

9-254

Condition	Return Period	Spanabat	Monthly Mean Discharge (m ³ /d)						
Condition	(years)	Snapshot	June	July	August	September	October		
	100	baseline	443,000	293,000	221,000	258,000	50,700		
\M/ot	100	closure	395,000	201,000	221,000	268,000	53,600		
Wet	10	baseline	359,000	215,000	147,000	123,000	28,200		
	10	closure	320,000	144,000	146,000	127,000	29,300		
Madian	2	baseline	257,000	141,000	91,400	56,800	14,700		
Median	2	closure	228,000	85,100	88,800	58,600	15,100		
	10	baseline	155,000	83,600	58,800	33,300	8,740		
	10	closure	138,000	37,400	54,400	34,300	8,890		
Dry	100	baseline	71,900	46,900	42,600	25,900	6,400		
	100	closure	65,000	5,180	36,800	26,700	6,520		

Table 9.7-77	Monthly Mean Discharges at the Lake N11 Outlet – Closure
--------------	--

Table 9.7-78 Representative Discharges at the Basin N11 Outlet – Closure

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	9.77	747,000	630,000	179,000	198,000	215,000
Wet	100	closure	9.93	751,000	600,000	106,000	145,000	175,000
vvel	10	baseline	8.22	630,000	538,000	102,000	125,000	152,000
		closure	7.96	607,000	501,000	75,000	106,000	122,000
Median	2	baseline	6.00	464,000	404,000	55,500	75,000	98,700
wedian		closure	5.62	434,000	373,000	46,200	69,700	80,500
	10	baseline	3.36	269,000	240,000	33,900	48,500	64,200
Dmi		closure	3.38	266,000	237,000	25,100	42,800	54,700
Dry	100	baseline	0.85	85,300	81,700	25,200	36,500	45,200
	100	closure	1.61	132,000	119,000	12,100	26,300	41,200

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Condition	Return		Monthly Mean Stage (m)						
	Period (years)	Snapshot	June	July	August	September	October		
	100	baseline	0.903	0.824	0.774	0.801	0.558		
	100	closure	0.881	0.758	0.774	0.808	0.565		
Wet	10	baseline	0.862	0.769	0.707	0.680	0.490		
		closure	0.840	0.704	0.706	0.684	0.494		
Madian	2	baseline	0.800	0.700	0.636	0.572	0.424		
Median		closure	0.779	0.626	0.632	0.576	0.426		
	10	baseline	0.715	0.624	0.577	0.508	0.378		
Dry		closure	0.697	0.522	0.567	0.512	0.379		
		baseline	0.603	0.548	0.537	0.481	0.352		
	100	closure	0.590	0.336	0.520	0.484	0.354		

m = metre.

 Table 9.7-80
 Representative Stages at the Basin N11 Outlet – Closure

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.043	1.015	0.977	0.739	0.755	0.769
Wet	100	closure	1.046	1.016	0.966	0.657	0.705	0.735
	10	baseline	1.003	0.977	0.943	0.652	0.682	0.712
		closure	0.996	0.969	0.928	0.609	0.657	0.678
Median	2	baseline	0.935	0.913	0.885	0.569	0.609	0.647
weatan		closure	0.922	0.899	0.869	0.547	0.599	0.618
	10	baseline	0.822	0.809	0.788	0.510	0.553	0.588
Dry		closure	0.823	0.807	0.786	0.477	0.537	0.568
	100	baseline	0.606	0.626	0.620	0.478	0.519	0.544
	100	closure	0.698	0.690	0.675	0.406	0.482	0.533

m = metre.

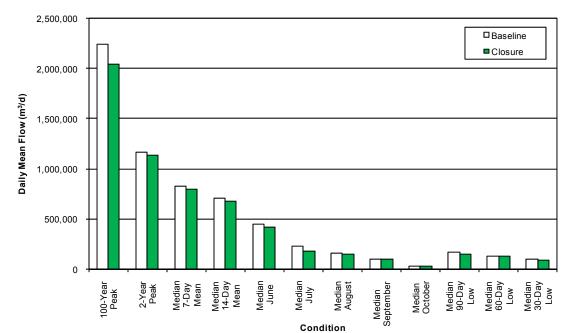


Figure 9.7-44 Comparison of Effects on Lake N1 Outlet Discharges – Closure

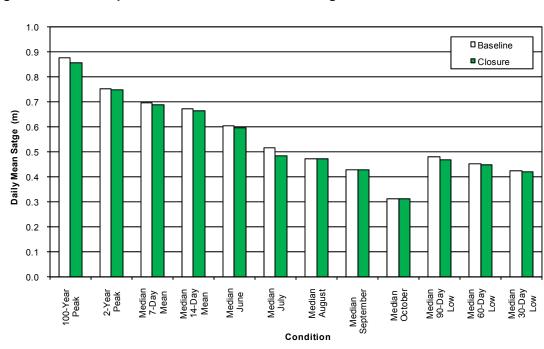


Figure 9.7-45 Comparison of Effects on Lake N1 Stages – Closure

m = metres.

Condition	Return		Monthly Mean Discharge (m ³ /d)						
	Period (years)	Snapshot	June	July	August	September	October		
	100	baseline	737,000	470,000	370,000	398,000	84,100		
Wet	100	closure	691,000	375,000	375,000	415,000	87,700		
vvet	10	baseline	609,000	348,000	248,000	204,000	47,600		
		closure	570,000	265,000	247,000	211,000	49,200		
Madian	2	baseline	444,000	229,000	156,000	99,000	25,100		
Median		closure	417,000	172,000	151,000	101,000	25,600		
	10	baseline	270,000	138,000	102,000	56,600	14,600		
Dry	10	closure	259,000	110,000	97,300	57,800	14,800		
	100	baseline	121,000	79,300	75,400	41,600	10,300		
	100	closure	127,000	75,100	70,900	42,700	10,500		

Table 9.7-81	Monthly Mean Discharges at the Lake N1 Outlet – Closure
--------------	---

Table 9.7-82	Representative Discharges at the Lake N1 Outlet – Closure
--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m³/s)	7-Day Mean Peak Q (m³/d)	14-Day Mean Peak Q (m³/d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	25.90	1,250,000	1,050,000	285,000	333,000	353,000
Wet	100	closure	23.60	1,250,000	1,020,000	229,000	294,000	305,000
vvet	10	baseline	19.90	1,080,000	910,000	171,000	212,000	251,000
		closure	18.60	1,050,000	878,000	149,000	195,000	219,000
Median	2	baseline	13.50	827,000	704,000	95,600	128,000	166,000
Median		closure	13.10	797,000	676,000	90,800	124,000	148,000
	10	baseline	8.22	527,000	441,000	57,200	83,800	109,000
Dry		closure	8.27	527,000	443,000	57,700	83,600	102,000
	100	baseline	4.51	242,000	174,000	40,500	63,800	77,100
	100	closure	4.74	294,000	226,000	41,800	64,500	77,500

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return			Month	Monthly Mean Stage (m)				
Condition	Period (years)	Snapshot	June	July	August	September	October		
	100	baseline	0.677	0.610	0.577	0.587	0.411		
\M/ot	100	closure	0.667	0.579	0.579	0.593	0.415		
Wet	10	baseline	0.648	0.569	0.527	0.504	0.360		
		closure	0.638	0.535	0.526	0.507	0.363		
Madian	2	baseline	0.602	0.517	0.473	0.426	0.311		
Median		closure	0.594	0.484	0.470	0.428	0.312		
	10	baseline	0.537	0.460	0.429	0.375	0.274		
Dry		closure	0.532	0.437	0.425	0.377	0.275		
	100	baseline	0.446	0.405	0.400	0.349	0.253		
	100	closure	0.451	0.400	0.395	0.351	0.254		

9-259

m = metre.

 Table 9.7-84
 Representative Stages at the Basin N1 Outlet – Closure

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.874	0.764	0.734	0.544	0.564	0.571
Wet	100	closure	0.855	0.764	0.729	0.517	0.548	0.552
wei	10	baseline	0.822	0.739	0.710	0.483	0.508	0.528
		closure	0.810	0.734	0.705	0.468	0.498	0.512
Median	2	baseline	0.752	0.695	0.670	0.423	0.452	0.480
Median	2	closure	0.747	0.689	0.663	0.418	0.449	0.468
	10	baseline	0.671	0.626	0.601	0.376	0.410	0.436
Dec	10	closure	0.672	0.626	0.602	0.377	0.410	0.429
Dry	100	baseline	0.584	0.524	0.485	0.347	0.385	0.403
	100	closure	0.591	0.548	0.516	0.350	0.386	0.403

m = metre.

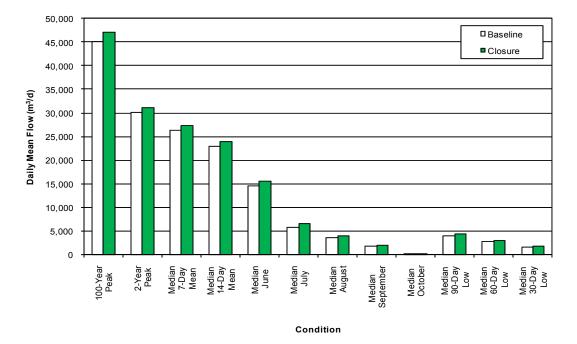
Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake N11 Outlet Flows: The water balance results for Lake N11 show that during closure, monthly mean flows will decrease in proportion to the flow diverted to refill Kennady Lake. The 2-year flood discharge during operation will decrease by approximately 6% above the baseline value, and the 100-year flood discharge will be approximately equal to baseline. Low flows will also decrease by 7% to 18%.

Lake N11 Water Levels: Lake N11 water levels are also expected to decrease during closure. The 2-year flood level is expected to decrease by approximately 0.013 m, the 100-year flood level remain approximately the same as for baseline, and monthly mean stages to decrease by 0.021 m (June), 0.074 m (July), 0.004 m (August), under median conditions, with smaller increases in September and October.

Lake N11 and Outlet Channel/Bank Stability: No effects on Lake N11 and outlet channel or bank stability are expected during closure, because flood discharges and water levels will be equal to or reduced from baseline.

Lake N1 Outlet Flows: The water balance results for Lake N1 show that during closure, monthly mean flows will decrease in proportion to the flow diverted to refill Kennady Lake. The 2-year flood discharge during closure will decrease by approximately 3% below the baseline value, and the 100-year flood discharge will decrease by approximately 9%. Low flows will also increase by 3% to 11%.

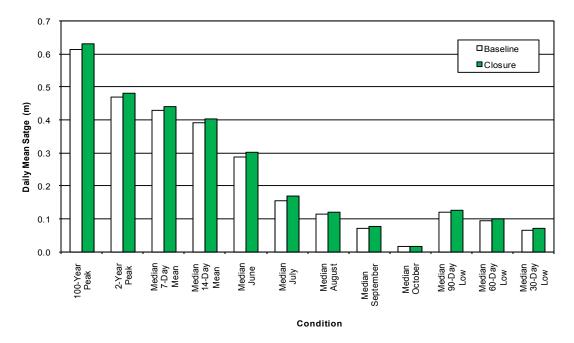

Lake N1 Water Levels: Lake N1 water levels are also expected to decrease during closure. The 2-year flood level is expected to decrease by approximately 0.005 m, the 100-year flood level by 0.019 m, and monthly mean stages by 0.008 m (June), 0.033 m (July), 0.003 m (August), under median conditions, with smaller increases in September and October.

Lake N1 and Outlet Channel/Bank Stability: No effects on Lake N1 and Outlet channel or bank stability are expected during closure, because flood discharges and water levels will be equal to or reduced from baseline.

Lake N9 to Lake N1 Inflow (Watershed A Diversion)

The water balance model for the Project examined this receiving watershed by modeling the flow diverted from Watershed A into Lake N9, a tributary of Lake N6. Below Lake N6, Lake N5, Lake N3 (including Lake N4, lumped for the same reasons) and Lake N2 were modeled.

Project effects on Lake N9, which receives the A watershed diversion, are presented in Figures 9.7-46 to 9.7-47 and Tables 9.7-85 to 9.7-88, Project effects on Lake N6 are presented in Figures 9.7-48 to 9.7-49 and Tables 9.7-89 to 9.7-92, and Project effects on Lake N2, upstream of its confluence with Lake N1, are presented in Figures 9.7-50 to 9.7-51 and Tables 9.7-93 to 9.7-96.



9-261

Figure 9.7-46 Comparison of Effects on Lake N9 Outlet Discharges – Closure

 m^{3}/d = cubic metres per day.

Figure 9.7-47 Comparison of Effects on Lake N9 Stages – Closure

m = metres.

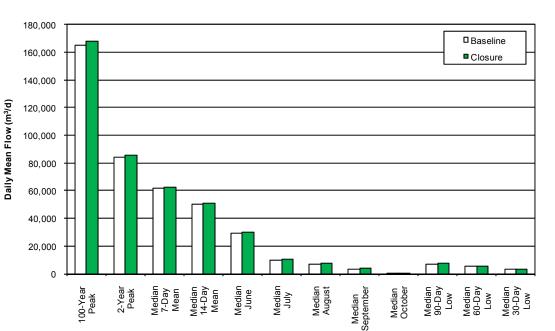
	Return		Monthly Mean Discharge (m ³ /d)						
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	22,600	13,900	10,700	12,000	1,340		
Wet	100	closure	24,800	15,800	12,300	13,500	1,570		
wei	10	baseline	19,300	9,540	6,580	5,280	677		
		closure	20,900	11,000	7,390	5,800	767		
	2	baseline	14,500	5,670	3,580	1,810	195		
Median		closure	15,500	6,580	3,970	1,970	215		
	10	baseline	8,690	2,960	1,920	507	0		
Dry		closure	9,260	3,420	2,150	570	0		
	100	baseline	3,010	1,370	1,120	73	0		
	100	closure	3,390	1,520	1,310	118	0		

Table 9.7-85	Monthly Mean Discharges at the Lake N9 Outlet – Closure
--------------	---

 m^3/d = cubic metres per day.

Table 9.7-86 Derived Representative Discharges at the Lake N9 Outlet – Clos

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	0.52	38,100	32,300	7,810	9,920	9,650
Wet	100	closure	0.55	40,600	35,000	8,980	11,300	12,000
vvei	10	baseline	0.45	33,400	28,800	3,980	5,390	6,440
	10	closure	0.48	35,900	31,200	4,490	6,050	7,350
Median	2	baseline	0.35	26,300	22,900	1,610	2,670	3,860
weulan	2	closure	0.36	27,300	23,900	1,800	2,950	4,260
	10	baseline	0.23	17,100	14,800	506	1,440	2,230
Deri	10	closure	0.23	17,600	15,300	576	1,590	2,540
Dry	100	baseline	0.11	7,830	5,810	58	951	1,370
	100	closure	0.11	8,340	6,930	97	1,060	2,080


Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	0.387	0.280	0.235	0.254	0.059			
Wet	100	closure	0.412	0.305	0.258	0.275	0.065			
vvet	10	baseline	0.348	0.218	0.170	0.147	0.037			
		closure	0.367	0.240	0.184	0.156	0.041			
Median	2	baseline	0.288	0.154	0.113	0.072	0.016			
Median		closure	0.301	0.170	0.121	0.076	0.017			
	10	baseline	0.205	0.100	0.075	0.031	-			
P	10	closure	0.214	0.110	0.081	0.033	-			
Dry	100	baseline	0.101	0.060	0.052	0.008	-			
	100	closure	0.109	0.064	0.058	0.012	-			

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.613	0.548	0.491	0.191	0.224	0.220
Wet	100	closure	0.632	0.572	0.518	0.209	0.244	0.254
wei	10	baseline	0.557	0.502	0.455	0.122	0.149	0.168
	10	closure	0.579	0.527	0.480	0.132	0.161	0.183
Median	2	baseline	0.469	0.428	0.391	0.067	0.093	0.119
Median	Z	closure	0.480	0.439	0.402	0.072	0.100	0.127
	10	baseline	0.352	0.321	0.292	0.031	0.062	0.083
Davi	10	closure	0.357	0.328	0.298	0.034	0.066	0.090
Dry	100	baseline	0.217	0.191	0.157	0.007	0.047	0.060
	100	closure	0.221	0.199	0.176	0.010	0.050	0.079

m = metre.

Condition

Figure 9.7-48 Comparison of Effects on Lake N6 Outlet Discharges - Closure

 m^{3}/d = cubic metres per day.

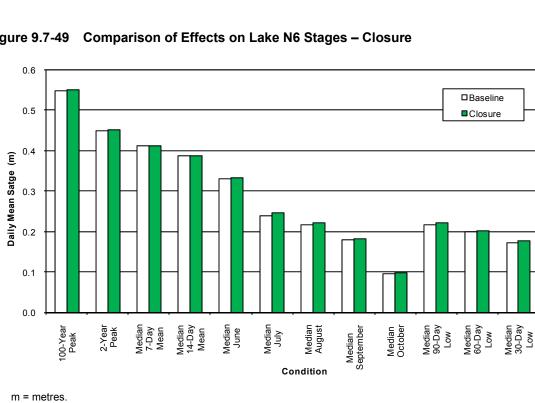


Figure 9.7-49 Comparison of Effects on Lake N6 Stages – Closure

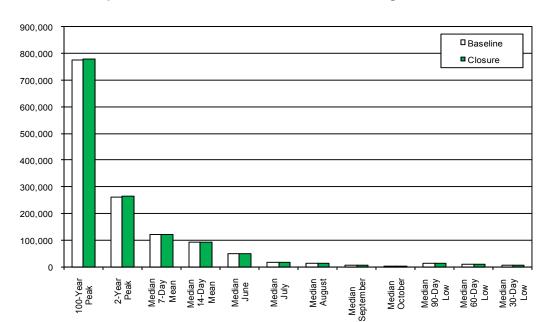
Condition	Return Period	Chanabat	Monthly Mean Discharge (m ³ /d)						
Condition	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	44,300	25,100	22,200	22,200	3,600		
\A/ot	100	closure	46,200	26,900	23,900	23,500	3,830		
Wet	10	baseline	38,800	16,700	13,100	9,900	1,430		
		closure	40,200	18,200	14,000	10,500	1,520		
Median	2	baseline	29,400	9,740	6,980	3,650	431		
		closure	30,300	10,700	7,480	3,870	465		
	10	baseline	15,800	5,140	3,860	1,330	102		
Dry		closure	16,500	5,680	4,200	1,440	112		
	100	baseline	329	2,590	2,500	576	5		
	100	closure	1,320	2,810	2,780	644	8		

Table 9.7-89	Monthly Mean Discharges at the Lake N6 Outlet – Closure
--------------	---

 m^3/d = cubic metres per day.

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	1.91	91,800	70,600	13,400	19,300	18,200
	100	closure	1.94	92,700	72,000	14,600	20,700	19,500
Wet	10	baseline	1.44	79,600	63,000	7,180	10,400	11,900
		closure	1.46	80,500	64,100	7,790	11,100	12,900
Median	2	baseline	0.98	61,800	50,000	3,220	5,240	7,140
Median	2	closure	0.99	62,600	50,900	3,490	5,630	7,730
	40	baseline	0.60	40,400	31,500	1,330	3,040	4,290
Dm/	10	closure	0.61	40,900	31,900	1,440	3,280	4,630
Dry	100	baseline	0.35	19,700	10,500	547	2,220	2,840
	100	closure	0.36	19,800	10,700	601	2,400	3,040

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.


	Return		Monthly Mean Stage (m)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	0.373	0.315	0.304	0.304	0.178			
Wet	100	closure	0.377	0.322	0.311	0.309	0.181			
vvel	10	baseline	0.358	0.279	0.260	0.239	0.135			
		closure	0.362	0.287	0.265	0.244	0.138			
Median	2	baseline	0.330	0.238	0.216	0.178	0.095			
Median		closure	0.333	0.245	0.220	0.181	0.097			
	10	baseline	0.275	0.197	0.181	0.132	0.062			
Dry		closure	0.278	0.203	0.186	0.136	0.064			
	100	baseline	0.088	0.161	0.160	0.103	0.025			
	100	closure	0.132	0.165	0.165	0.107	0.029			

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.549	0.462	0.427	0.262	0.292	0.287
Wet	100	closure	0.552	0.463	0.430	0.269	0.298	0.292
wei	10	baseline	0.505	0.443	0.413	0.218	0.243	0.253
		closure	0.507	0.444	0.415	0.223	0.248	0.259
Median	2	baseline	0.450	0.411	0.386	0.172	0.198	0.217
Median	2	closure	0.452	0.413	0.388	0.176	0.203	0.223
	10	baseline	0.391	0.363	0.337	0.132	0.169	0.187
Dry	10	closure	0.392	0.364	0.338	0.136	0.173	0.191
	100	baseline	0.334	0.293	0.244	0.102	0.154	0.166
	100	closure	0.334	0.294	0.245	0.105	0.158	0.169

m = metre.

Daily Mean Flow (m³/d)

Condition

Figure 9.7-50 Comparison of Effects on Lake N2 Outlet Discharges – Closure

m³/d = cubic metres per day.

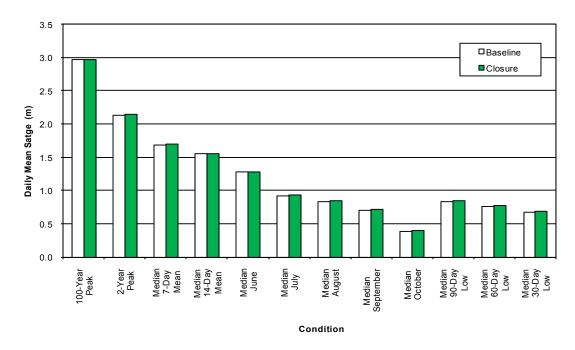


Figure 9.7-51 Comparison of Effects on Lake N2 Stages – Closure

m = metres.

Condition	Return Period	Omerschaft	Monthly Mean Discharge (m ³ /d)						
	(years)	Snapshot	Jun	Jul	Aug	Sep	Oct		
	100	baseline	74,000	40,000	33,500	36,300	6,640		
Wet	100	closure	75,700	41,800	35,200	37,600	6,890		
vvei	10	baseline	63,800	27,200	20,700	17,000	2,840		
		closure	65,000	28,700	21,800	17,600	2,990		
Median	2	baseline	47,900	16,200	11,600	6,710	964		
weatan		closure	48,600	17,300	12,300	7,040	1,030		
	10	baseline	27,100	8,800	6,590	2,710	282		
Dry	10	closure	27,700	9,430	7,070	2,880	304		
	100	baseline	5,550	4,580	4,230	1,330	63		
	100	closure	6,350	4,860	4,630	1,440	69		

Table 9.7-93	Monthly Mean Discharges at the Lake N2 Outlet – Closure
--------------	---

 m^3/d = cubic metres per day.

Table 9.7-94	Derived Representative Discharges at the Lake N2 Outlet – Closure
--------------	---

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	8.96	159,000	123,000	22,300	30,700	29,400
Wet	100	closure	9.00	160,000	124,000	23,600	32,000	30,900
	10	baseline	5.62	146,000	112,000	12,400	17,100	19,700
		closure	5.67	147,000	113,000	13,100	17,900	20,700
Median	2	baseline	3.03	121,000	91,700	5,890	8,960	12,000
Wedian		closure	3.07	122,000	92,600	6,270	9,490	12,700
	40	baseline	1.49	81,300	60,200	2,680	5,350	7,360
Dry	10	closure	1.51	82,000	60,800	2,870	5,690	7,800
	100	baseline	0.70	30,400	21,800	1,310	3,950	4,960
	100	closure	0.71	30,900	22,300	1,410	4,200	5,240

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

	Return		Monthly Mean Stage (m)							
Condition	Period (years)	Snapshot	Jun	Jul	Aug	Sep	Oct			
	100	baseline	1.454	1.206	1.143	1.171	0.700			
Wet	100	closure	1.464	1.223	1.161	1.184	0.708			
vvel	10	baseline	1.390	1.073	0.988	0.931	0.541			
		closure	1.398	1.091	1.004	0.941	0.550			
Median	2	baseline	1.274	0.917	0.829	0.702	0.390			
median	2	closure	1.280	0.936	0.844	0.713	0.398			
	10	baseline	1.072	0.762	0.698	0.534	0.269			
Drak		closure	1.079	0.779	0.713	0.543	0.275			
Dry	100	baseline	0.663	0.625	0.611	0.430	0.171			
	100	closure	0.691	0.637	0.628	0.440	0.176			

9-269

Table 9.7-95	Monthly Mean	Stages at Lake N2 – Closure
--------------	--------------	-----------------------------

m = metre.

Table 9.7-96	Derived Representative Stages at Lake N2 – Closure
--------------	--

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	2.962	1.833	1.696	1.011	1.113	1.099
Wet	100	closure	2.966	1.836	1.700	1.028	1.128	1.116
vvel	10	baseline	2.571	1.786	1.648	0.846	0.932	0.973
		closure	2.578	1.790	1.653	0.860	0.945	0.988
Median	2	baseline	2.132	1.687	1.551	0.675	0.767	0.838
Median	2	closure	2.141	1.692	1.556	0.688	0.780	0.852
	10	baseline	1.719	1.496	1.366	0.532	0.656	0.722
Dm	10	closure	1.726	1.500	1.370	0.543	0.668	0.735
Dry	100	baseline	1.367	1.110	1.004	0.428	0.598	0.641
	100	closure	1.372	1.116	1.011	0.438	0.609	0.652

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake N9 Outlet Flows: The water balance results for Lake N9 show that during closure, monthly mean flows will increase in proportion to the additional flow from the diverted A watershed. The 2-year flood discharge during closure will increase by approximately 3% above the baseline value, and the 100-year flood discharge will increase by approximately 6%. Low flows will also increase by 10% to 12%.

Lake N9 Water Levels: Lake N9 water levels are also expected to increase during closure. The 2-year flood level is expected to increase by approximately 0.011 m, the 100-year flood level by 0.019 m, and monthly mean stages by 0.013 m (June), 0.016 m (July), 0.008 m (August), 0.004 m (September) and 0.001 m (October), under median conditions.

Lake N9 and Outlet Channel/Bank Stability: No effects on Lake N9 and outlet channel or bank stability are expected during closure, because increases in flood magnitude are small relative to the existing flood regime.

Lake N6 Outlet Flows: The water balance results for Lake N6 show that during closure, monthly mean flows will increase in proportion to the additional flow from the diverted A watershed. The 2-year flood discharge during closure will increase by approximately 1% above the baseline value, and the 100-year flood discharge will increase by approximately 2%. Low flows will also increase by 7% to 8%.

Lake N6 Water Levels: Lake N6 water levels are also expected to increase during closure. The 2-year flood level is expected to increase by approximately 0.002 m, the 100-year flood level by 0.003 m, and monthly mean stages by 0.003 m (June), 0.007 m (July), 0.004 m (August), 0.003 m (September) and 0.002 m (October), under median conditions.

Lake N6 and Outlet Channel/Bank Stability: No effects on Lake N6 and outlet channel or bank stability are expected during closure, because increases in flood magnitude are small relative to the existing flood regime.

Lake N2 Outlet Flows: The water balance results for Lake N2 show that during closure, monthly mean flows will increase in proportion to the additional flow from the diverted A watershed. The 2-year flood discharge during closure will increase by approximately 1% above the baseline value, and the 100-year flood discharge by less than 1%. Low flows will also increase by 6%.

Lake N2 Water Levels: Lake N2 water levels are also expected to increase during closure. The 2-year flood level is expected to increase by approximately 0.009 m, the 100-year flood level by 0.004 m, and monthly mean stages by 0.006 m (June), 0.019 m (July), 0.015 m (August), 0.011 m (September) and 0.008 m (October), under median conditions.

Lake N2 and Outlet Channel/Bank Stability: No effects on Lake N2 and outlet channel or bank stability are expected during closure, because increases in flood magnitude are small relative to the existing flood regime.

De Beers Canada Inc.

Kennady Lake Area 8 Outlet to Lake M1 Outlet

Effects of the Project on the reach from the Area 8 outlet to the Lake M1 outlet during closure are identical to the effects during operation, as presented in Section 9.7.3.3.

Lake 410 to Kirk Lake Outlet

Effects on the reach from Lake 410 to the Kirk Lake outlet during closure are due to the abstraction of flow from Lake N11 for Kennady Lake refilling and the removal of flow from 77% of the natural drainage area (Areas 2 to 7) during the refilling period of Kennady Lake.

The water balance model for the Project examined all downstream waterbodies between Lake 410 and the Kirk Lake outlet channel. Project effects on Lake 410 and outlet during refilling are shown in Figures 9.7-52 and 9.7-53, and summarized in Tables 9.7-97 to 9.7-100. Project effects on Kirk Lake during refilling are shown in Figures 9.7-54 and 9.7-55, and summarized in Tables 9.7-101 to 9.7-104.

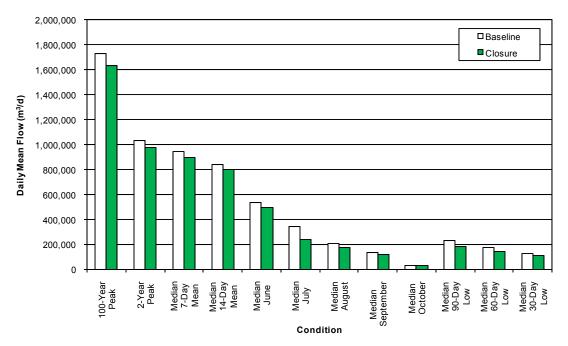


Figure 9.7-52 Comparison of Effects on Lake 410 Outlet Discharges – Closure

 m^{3}/d = cubic metres per day.

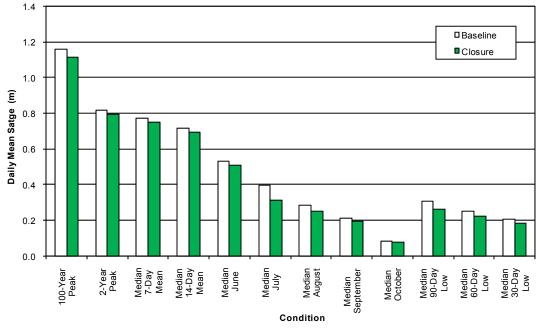


Figure 9.7-53 Comparison of Effects on Lake 410 Stages – Closure

m = metres.

 Table 9.7-97
 Monthly Mean Discharges at the Lake 410 Outlet – Closure

	Return	0	Monthly Mean Discharge (m ³ /d)							
Condition	Period (years)	Snapshot	June	July	August	September	October			
	100	baseline	934,000	678,000	475,000	587,000	135,000			
Wet	100	closure	852,000	518,000	427,000	531,000	123,000			
vvei	10	baseline	759,000	514,000	329,000	278,000	70,700			
	10	closure	691,000	371,000	283,000	262,000	63,200			
Madian		baseline	537,000	344,000	210,000	135,000	32,700			
Median	2	closure	499,000	240,000	172,000	120,000	28,800			
	10	baseline	329,000	203,000	132,000	73,900	16,000			
Dmi	10	closure	313,000	148,000	105,000	64,600	13,900			
Dry	400	baseline	190,000	106,000	90,100	49,800	9,660			
	100	closure	164,000	94,600	71,200	45,700	8,400			

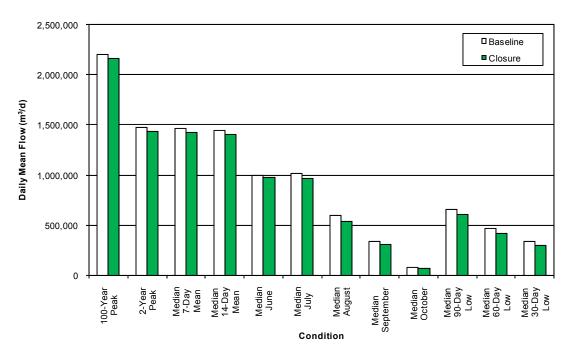
 m^{3}/d = cubic metres per day.

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m ³ /d)	90-Day Low Flow Q (m ³ /d)
	100	baseline	20.00	1,420,000	1,240,000	404,000	443,000	491,000
Wet	100	closure	18.90	1,400,000	1,190,000	298,000	364,000	388,000
vvel	10	baseline	16.50	1,230,000	1,080,000	237,000	287,000	355,000
		closure	15.60	1,190,000	1,030,000	187,000	237,000	277,000
Median	2	baseline	11.90	942,000	837,000	128,000	173,000	234,000
Median	2	closure	11.30	897,000	796,000	108,000	144,000	184,000
	10	baseline	7.11	580,000	523,000	74,200	108,000	150,000
Day	10	closure	7.00	572,000	515,000	64,600	92,700	122,000
Dry	100	baseline	3.03	219,000	200,000	50,900	77,500	100,000
	100	closure	3.37	276,000	246,000	44,600	68,100	87,900

 Table 9.7-98
 Representative Discharges at the Lake 410 Outlet – Closure

Q =discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Table 9.7-99 Monthly Mean Stages at the Lake 410 Outlet – Closure


	Return		Monthly Mean Stage (m)							
Condition	Period (years)	Snapshot	June	July	August	September	October			
	100	baseline	0.769	0.621	0.490	0.564	0.212			
Wet	100	closure	0.723	0.519	0.456	0.527	0.199			
vvel	10	baseline	0.669	0.516	0.383	0.343	0.138			
	10	closure	0.629	0.415	0.347	0.329	0.128			
Median	2	baseline	0.531	0.395	0.284	0.212	0.082			
Weulan	2	closure	0.506	0.311	0.249	0.196	0.076			
	10	baseline	0.383	0.278	0.209	0.142	0.051			
Day	10	closure	0.371	0.225	0.179	0.130	0.047			
Dry	100	baseline	0.266	0.180	0.162	0.109	0.036			
	100	closure	0.241	0.167	0.138	0.103	0.033			

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	1.158	1.016	0.928	0.440	0.467	0.501
Wet	100	closure	1.115	1.007	0.903	0.359	0.410	0.428
vvel	10	baseline	1.019	0.923	0.847	0.308	0.350	0.403
	10	closure	0.982	0.903	0.820	0.263	0.308	0.342
Median	2	baseline	0.819	0.773	0.714	0.204	0.250	0.305
Median	2	closure	0.792	0.748	0.691	0.182	0.221	0.260
	10	baseline	0.581	0.559	0.522	0.142	0.182	0.227
Dm/	10	closure	0.575	0.554	0.517	0.130	0.165	0.198
Dry	100	baseline	0.329	0.292	0.275	0.110	0.146	0.173
	100	closure	0.353	0.341	0.316	0.101	0.134	0.159

m = metre.

 m^{3}/d = cubic metres per day.

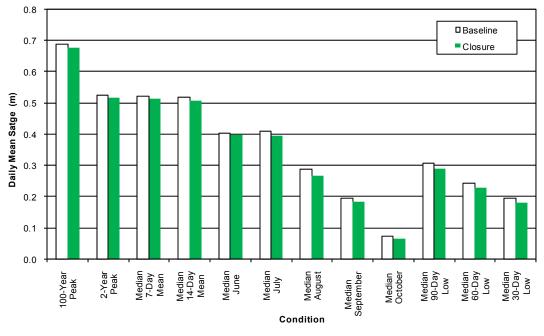


Figure 9.7-55 Comparison of Effects on Kirk Lake Stages – Closure

m = metres.

 Table 9.7-101
 Monthly Mean Discharges at the Kirk Lake Outlet – Closure

	Return		Monthly Mean Discharge (m ³ /d)							
Condition	Period (years)	Snapshot	June	July	August	September	October			
	100	baseline	1,850,000	1,730,000	1,250,000	1,370,000	420,000			
Wet	100	closure	1,820,000	1,600,000	1,110,000	1,140,000	382,000			
vvei	10	baseline	1,450,000	1,420,000	916,000	676,000	188,000			
	10	closure	1,430,000	1,330,000	812,000	632,000	180,000			
Median	2	baseline	995,000	1,020,000	596,000	332,000	75,700			
weatan	Z	closure	975,000	964,000	533,000	304,000	66,800			
	10	baseline	562,000	607,000	349,000	161,000	24,500			
	10	closure	546,000	582,000	321,000	144,000	20,200			
Dry	100	baseline	226,000	255,000	191,000	85,200	4,760			
	100	closure	216,000	254,000	188,000	77,200	3,290			

 m^{3}/d = cubic metres per day.

Condition	Return Period (years)	Snapshot	Peak Daily Q (m ³ /s)	7-Day Mean Peak Q (m ³ /d)	14-Day Mean Peak Q (m ³ /d)	30-Day Low Flow Q (m ³ /d)	60-Day Low Flow Q (m³/d)	90-Day Low Flow Q (m³/d)
	100	baseline	25.50	2,160,000	2,100,000	1,050,000	1,140,000	1,290,000
Wet	100	closure	25.00	2,130,000	2,070,000	950,000	1,020,000	1,170,000
vvei	10	baseline	22.10	1,890,000	1,850,000	636,000	774,000	981,000
	10	closure	21.70	1,850,000	1,810,000	573,000	693,000	894,000
Median	2	baseline	17.10	1,460,000	1,440,000	333,000	467,000	660,000
Median	2	closure	16.60	1,420,000	1,400,000	299,000	420,000	608,000
	10	baseline	10.60	902,000	884,000	163,000	262,000	395,000
Dra	10	closure	10.40	886,000	868,000	147,000	240,000	373,000
Dry	100	baseline	3.98	321,000	290,000	82,100	148,000	213,000
	100	closure	4.24	343,000	310,000	74,400	140,000	213,000

 Table 9.7-102
 Representative Discharges at the Kirk Lake Outlet – Closure

Q = discharge; m^3/s = cubic metres per second; m^3/d = cubic metres per day.

Table 9.7-103 Monthly Mean Stages at the Kirk Lake Outlet – Closure

	Return		Monthly Mean Stage (m)							
Condition	Period (years)	Snapshot	June	July	August	September	October			
	100	baseline	0.610	0.584	0.470	0.500	0.227			
Wet	100	closure	0.604	0.554	0.434	0.442	0.213			
vvei	10	baseline	0.519	0.512	0.382	0.312	0.133			
	10	closure	0.514	0.490	0.353	0.298	0.129			
Median	2	baseline	0.404	0.410	0.287	0.194	0.072			
Median	2	closure	0.398	0.395	0.266	0.183	0.067			
	10	baseline	0.276	0.290	0.201	0.120	0.034			
Draw	10	closure	0.271	0.282	0.190	0.111	0.030			
Dry	100	baseline	0.150	0.163	0.134	0.078	0.011			
	100	closure	0.146	0.162	0.133	0.073	0.009			

m = metre.

Condition	Return Period (years)	Snapshot	Peak Daily Stage (m)	7-Day Mean Peak Stage (m)	14-Day Mean Peak Stage (m)	30-Day Low Flow Stage (m)	60-Day Low Flow Stage (m)	90-Day Low Flow Stage (m)
	100	baseline	0.686	0.677	0.664	0.418	0.442	0.480
Wet	100	closure	0.677	0.671	0.658	0.391	0.410	0.450
vvel	10	baseline	0.623	0.619	0.610	0.300	0.342	0.400
	10	closure	0.616	0.610	0.602	0.279	0.317	0.376
Median	2	baseline	0.525	0.521	0.517	0.195	0.244	0.307
wedian	2	closure	0.515	0.512	0.507	0.181	0.227	0.291
	10	baseline	0.382	0.378	0.373	0.121	0.166	0.218
Dm	10	closure	0.377	0.374	0.369	0.113	0.156	0.210
Dry	100	baseline	0.199	0.190	0.177	0.077	0.113	0.144
	100	closure	0.207	0.198	0.186	0.072	0.109	0.144

Table 9.7-104 R	epresentative Stages at the Kirk Lake Outlet – Closure
-----------------	--

m = metre.

Summary of Effects on Flows, Water Levels and Channel/Bank Stability

Lake 410 Outlet Flows: The water balance results for Lake 410 show that during closure, monthly mean flows will decrease, as withdrawals from Lake N11 for Kennady Lake refilling combined with the continued closed-circuiting of Kennady Lake upstream of Area 8, are greater than increased inflow to Lake N1 due to the Lake A3 diversion. The 2-year flood discharge during closure will decrease by approximately 5% from the baseline value, and the 100-year flood discharge will decrease by approximately 6%. Low flows will also decrease by 16% to 21%.

Lake 410 Water Levels: Lake 410 water levels are also expected to decrease during closure. The 2-year flood level is expected to decrease by approximately 0.027 m, the 100-year flood level by 0.043 m, and monthly mean stages by 0.025 m (June), 0.084 m (July), 0.035 m (August), 0.016 m (September) and 0.006 m (October), under median conditions.

Lake 410 and Outlet Channel/Bank Stability: No effects on Lake 410 and Outlet channel or bank stability are expected during operation, because flood discharges and water levels will be reduced from baseline.

Kirk Lake Outlet Flows: The water balance results for Kirk Lake show that during closure, monthly mean flows will decrease, as withdrawals from Lake N11 for Kennady Lake refilling combined with the continued closed-circuiting of Kennady Lake upstream of Area 8, are greater than increased inflow to Lake N1

De Beers Canada Inc.

due to the Lake A3 diversion. The 2-year flood discharge during closure will decrease by approximately 3% from the baseline value, and the 100-year flood discharge will decrease by approximately 2%. Low flows will also decrease by 8% to 10%.

Kirk Lake Water Levels: Kirk Lake water levels are also expected to decrease during closure. The 2-year flood level is expected to decrease by approximately 0.010 m, the 100-year flood level by 0.009 m, and monthly mean stages by 0.006 m (June), 0.015 m (July), 0.021 m (August), 0.011 m (September) and 0.005 m (October), under median conditions.

Kirk Lake and Outlet Channel/Bank Stability: No effects on Kirk Lake and Outlet channel or bank stability are expected during operation, because flood discharges and water levels will be reduced from baseline.

9.7.4.2 Effect of Permanent Diversion in the A Watershed

The effects of the permanent diversion of Lake A3 to Lake N9 during and beyond closure will be identical to those presented in Section 9.7.4.1.3 for downstream lakes N9, N6 and N2. Because effects on Lake N2 are negligible, effects on further downstream lakes are not presented.

9.7.4.3 Effects of the Project to Long-Term Hydrology Downstream of Area 8

Changes to the post closure hydrological regime of the Kennady Lake watershed were discussed in Section 8.7.4.4. Expected changes are minor and include a 3.8% increase in mean annual water yield and a slight increase in flood peak discharges. Because the changes are so small, effects to watersheds downstream of Kennady Lake will be proportionately small at Lake L1 and diminish with distance downstream.

The post-closure hydrological regimes of the N11 and upstream watersheds will be identical to the baseline regimes. The post-closure regimes of the N2 and upstream watersheds will be as discussed in Section 9.7.4.2, with negligible changes due to the permanent diversion of Lake A3 into Lake N9. Changes to the post-closure regime of the N1 watershed will similarly be negligible.

9.8 EFFECTS TO SURFACE WATER QUALITY

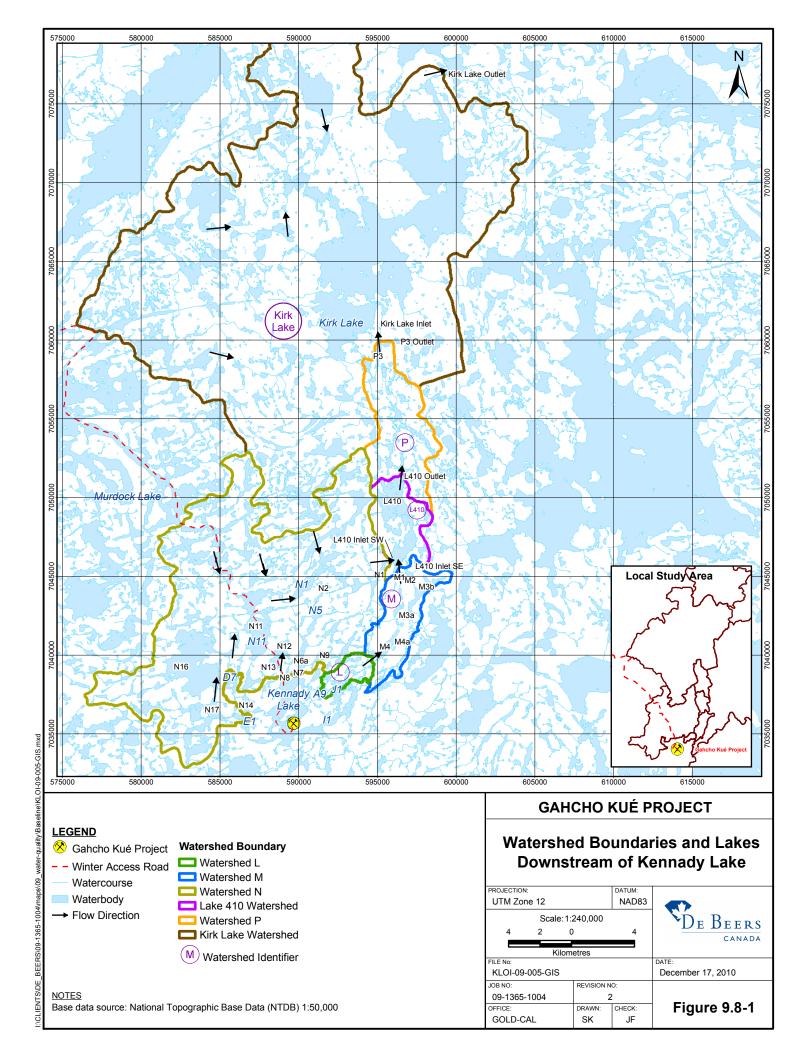
The pathway analysis presented in Section 9.6 considered potential effects to water quality downstream of Kennady Lake and in Lake N11. The implementation of the Gahcho Kué Project (Project) environmental design features and mitigation reduced the number of potential effects that were carried forward to the detailed effect analysis. A summary of the primary pathways by which changes to downstream water quality could occur during construction and operation is presented in Table 9.8-1.

Table 9.8-1Valid Pathways and Effect Statements for Effects to Water Quality
Downstream of Kennady Lake – Construction and Operation

Project Component	Pathway	Effects Statement	Effects Addressed
Dewatering of Kennady Lake to downstream waterbodies	dewatering of Kennady Lake to Lake N11 may change water quality (i.e., suspended sediments, major ions, metals, and nutrients concentrations) in downstream waterbodies	Effects of dewatering Kennady Lake to Lake N11 to water quality in downstream waters	Section 9.8.2.1

A summary of the primary pathways by which changes to downstream water quality could occur during closure is presented in Table 9.8-2.

Table 9.8-2 Valid Pathways and Effect Statements for Effects to Water Quality Downstream of Kennady Lake – Closure


Project Component	Pathway	Effects Statement	Effects Addressed
Removal and reclamation of Project infrastructure	seepage from mine rock and processed kimberlite storage repositories, and the open Tuzo Pit may change water quality in Kennady Lake, and affect water quality in downstream waterbodies	Effects of Project activities to water quality in downstream waters	Section 9.8.2.2 and 9.8.2.3
	reclaimed project area may result in long-term changes to water quality in downstream watersheds		
Breaching and Removal of Dyke A to reconnect Kennady Lake with downstream watersheds	reconnection of Kennady Lake with Area 8 may change the water quality of downstream waterbodies		

Section 9.8.1 provides an overview of the methodology used to analyze the effects to water quality downstream of Kennady Lake during construction operations, and closure. The discussion of analysis results for construction and operation, and closure is provided in Section 9.8.2.

During the mine operation phase of the Project there will be discharges from the Water Management Pond (WMP) to Lake N11. Details regarding water management during all phases of the project are included in Section 9.4. From the N watershed, water drains into Lake 410. The effect to water quality in this system during the construction and operation phases is assessed by downstream mass balance modelling using GoldSimTM.

During the initial dewatering in the construction phase, there will be discharges from Area 7 to Area 8. This water will continue to flow through the downstream lake system. This discharge will be comprised of natural, background waters, so there is no primary pathway for effects to water quality during this period. During the closure phase, the refilled Kennady Lake will be reconnected to Area 8, and mine-affected waters will flow through Area 8 (see Section 8.8) and continue through to the downstream lake system. The downstream lake system consists of a number of small and medium interconnected lakes (Figure 9.8-1), which includes lakes in the L watershed, and a chain of lakes in the M watershed. The lakes modelled in the L and M watershed are referred to as the Interlakes system. From the M watershed, water drains into Lake 410. The effect to water quality in this system at during the closure phase is assessed by downstream mass balance modelling using GoldSimTM.

The assessment of potential effects of water releases from the WMP and the refilled Kennady Lake to the water quality in the downstream lake systems will include a comparison of modelled water quality results to background natural levels and applicable guidelines for water quality constituents.

Another potential source of effects to the downstream lakes is atmospheric deposition of Project emissions, such as dust and metals, as well as effects from acidifying emissions. These effects are associated with the transport of Project emissions through the airshed and their deposition onto watersheds and/or waterbodies. The level of effects depends on the distance from emission sources as well as downstream transport through lakes and streams. The effects analysis within Kennady Lake watershed (Section 8.8.3) shows that measurable effects from dust and metal depositions onto lakes water quality are projected to occur within the immediate vicinity to the Project (i.e., within 2 kilometres [km] of the Project); however, these effects are anticipated to be primarily limited to the freshet period when accumulated winter deposition to the watershed is transported through the lakes with the snow melt at a time that peak total suspended sediment (TSS) and metals concentrations naturally occur for short peak flow periods. Therefore, it is expected that there will be negligible effects to water quality from dust or metals deposition outside of the Kennady Lake watershed, and as a result this assessment was not carried through to the downstream lakes system.

Potential acidification analysis outside of the Kennady Lake watershed, including the Lockhart River and Hoarfrost River watersheds, is also expected to be a No Linkage pathway (Section 9.6). The effects analysis within Kennady Lake watershed (Section 8.8.3) shows that non-measurable effects from potentially acidifying deposition onto lakes are projected within the Kennady Lake watershed.

Effects of changes in water quality on the health of aquatic life in Area 8 during closure and post-closure was assessed in Section 8.9.3.1, considering fish tissue accumulation, and direct exposure. During all phases of the Project, including closure and post-closure, predicted changes to water quality in Area 8 were projected to result in negligible effects to fish tissue quality and, by association, aquatic health, because fish tissue concentrations were projected to be below toxicological benchmarks for all parameters considered in the assessment. Predicted peak concentrations for all substances of potential concern (SOPCs) resulting from direct exposure during closure and post-closure phases were lower than the corresponding chronic effects benchmark (CEB). Potential effects to fish tissue quality and aquatic health for Lake 410 during closure and post-closure benchmark (CEB).

9.8.1 Effects Analysis Methods

9.8.1.1 Effect of Water Releases on Water Quality in Downstream Waterbodies – Construction, Operations and Closure Phases

9.8.1.1.1 Introduction

Water quality and quantity in Kennady Lake will vary over time as the Project proceeds through the construction and operations, and closure phases. As water from the WMP is discharged to Lake N11, water quality in Lake N11 and downstream waterbodies may be affected by loading inputs from this discharge. Following the refilling of Kennady Lake and reconnection to Area 8, mine-affected water will flow through Area 8 and continue downstream through the interlakes watersheds and into Lake 410.

During the construction and operations phases, water quality within Kennady Lake was modelled throughout these phases to determine the quality of water that would be discharged to Lake N11, and to determine the quality of water in Kennady Lake when it becomes reconnected to Area 8. Details of this modelling are provided in Appendix 8.I and Section 8.8.2.1.1. The water quality parameter concentration time series plots predicted by the Kennady Lake model were used as inputs to the downstream water quality model, which includes Area 8, the L, M and N watersheds and Lake 410. Inputs from the Kennady Lake model included a discharge to Lake N11 during the construction and operational phase and an outflow to Area 8 during post-closure. The downstream water quality model, developed in GoldSimTM, is detailed briefly below and fully described in Appendix 8.I.

The hydrology model (see Section 9.7.1) formed the basis of the downstream water quality model. Within each watershed, water quality profiles were assigned as baseline or background chemistry. Throughout the construction, operations, and closure phases of the project, the downstream watershed was assumed to behave according to baseline conditions, with the following exceptions, which are included in the model:

- inflow to Kennady Lake from its immediate watershed will be diverted to the N watershed;
- water will be discharged from the WMP to Lake N11 during the construction and operations phases;
- water will be drawn from Lake N11 to refill Kennady Lake during the closure phase;

- the flow path from Area 7 to Area 8 will be disconnected during the operations and closure phases; and
- the flow path from Area 7 to Area 8 will be reconnected after Kennady Lake has refilled (i.e., post-closure).

The water quality model simulated concentrations for a range of water quality parameters at all downstream nodes during the construction and operations, and closure phases. The model assumed fully mixed conditions within each waterbody at each daily timestep.

Projections of water quality in the downstream waterbodies did not include the development and persistence of permafrost conditions within the mine rock piles, the Coarse PK Pile, and the Fine PKC Facility. It was assumed that seepage quantities from these facilities would be representative of no permafrost conditions, and provide seasonal geochemical loading to Kennady Lake after closure. It is recognized that frozen layers may establish during the development of these facilities and that permafrost will likely continue to develop following closure, which will result in lower rates of seepage through the facilities and geochemical loading to Kennady Lake than simulated in this assessment. However, as the assessment of impacts to the suitability of the water quality to support aquatic life includes time periods that extend into the long-term (200 years), the assessment was designed to represent potential future climatic conditions where there would be no permafrost.

A median climate scenario (i.e., 1-in-2 year wet climate condition) was used to assess likely changes in water quality in the downstream watersheds. This scenario represents an average climate condition.

9.8.1.1.2 Data Sources

Background water quality data in the L, M and N watersheds and Lake 410 were collected between 1995 and 2010. The data were collected by various consultants during open water and under-ice conditions (Section 9.3). For the purposes of the downstream lakes water quality assessment, data collected from the sources presented in Table 9.8-3 were used.

Table 9.8-3	Water Quality Studies Used in the Assessment of Kennady Lake, 1995 to
	2010

Report Author(s)	Publication Date	Report Title
JWEL	July 1998	Water Quality Assessment of Kennady Lake, 1998 Final Report. Project No. BCV50016. Submitted to Monopros Limited, Yellowknife, NWT (Jacques Whitford 1998)
JWEL	October 14, 1999	Results of Water Sampling Program for Kennady Lake July 1999 Survey. Project No. 50091. Submitted to Monopros Limited, Yellowknife, NWT (Jacques Whitford 1999a)
EBA & JWEL	2001	Gahcho Kué (Kennady Lake) Environmental Baseline Investigations (2000) Submitted to De Beers Canada Exploration Ltd., Yellowknife, NWT (EBA and Jacques Whitford 2001)
JWEL	April 29, 2002	Data Compilation (1995-2001) and Trends Analysis Gahcho Kué (Kennady Lake). Project No. ABC50310. Submitted to De Beers Canada Exploration Inc., Yellowknife, NWT (Jacques Whitford 2002b)
JWEL	June 4, 2003	Gahcho Kué (Kennady Lake) Limnological Survey of Potentially Affected Bodies of Water (2002). Project No. NTY71008. Submitted to De Beers Canada Exploration Inc., Yellowknife, NWT (Jacques Whitford 2003a)
JWEL	January 20, 2004	Baseline Limnology Program (2003) Gahcho Kué (Kennady Lake). Project No. NTY71037. Submitted to De Beers Canada Exploration Inc., Yellowknife, NWT (Jacques Whitford 2004)
EBA	2004	Faraday Lake Winter 2003 Water Quality Sampling Program. Submitted to DeBeers Canada Exploration Inc., Yellowknife, NWT (EBA 2004a)
EBA	2004	Kelvin Lake Winter 2003 Water Quality Sampling Program. Submitted to DeBeers Canada Exploration Inc., Yellowknife, NWT (EBA 2004b)
AMEC	2004-2005	Unpublished water chemistry and field data collected in Kennady Lake and surrounding watersheds (AMEC 2004 and 2005)
Section 9.3	2010	Additional baseline data collected in support of this application

JWEL = Jacques Whitford Environment Ltd.; EBA = EBA Environmental Consultants Ltd.; AMEC = AMEC Earth & Environmental.

9.8.2 Effects Analysis Results

9.8.2.1 Effect of Project Activities on Water Quality in Lake N11 during Construction and Operations, and Closure Phases

During the construction and operations phases of the project, Kennady Lake will be segmented by dykes into separate areas to allow for the creation of a WMP and to allow dewatering in the areas with active mine pits (Section 8.4). Initially, clean water will be withdrawn from the lake to increase the water storage capacity during mining operations. This water will be pumped from the WMP to Lake N11 and from Area 7 to Area 8. Throughout the operations phase, water will continue to be discharged from the WMP to Lake N11.

Because the WMP will receive runoff and direct discharge from mine-related sources, discharge of this water to Lake N11 may potentially affect water quality in Lake N11 and downstream waterbodies. Therefore, water quality was assessed in Lake N11, which represents the node of maximum potential impact

De Beers Canada Inc.

in the N watershed, and in Lake 410 (see Section 9.8), which represents far-field effects.

Maximum concentrations of each of the water quality parameters in Lake N11 during all phases are presented in Table 9.8-4. Results for phosphorus, which include supplemental mitigation strategies (described below), are provided in Table 9.8-5. Maximum concentrations for all parameters are attained either early in the operations phase, when discharges to Lake N11 are highest, or at the end of the operations phase, when concentrations in the WMP are highest.

Concentrations of parameters in Lake N11 were predicted to return to background levels during the closure or post-closure phases within five years after discharges to Lake N11 cease.

A discussion of the water quality modelling results is provided below, which includes time series plots for selected water quality parameters. Time series plots for each water quality parameter listed in Tables 9.8-4 and 9.8-5 are provided in Appendix 9.1.

Table 9.8-4 includes a comparison to the Canadian Water Quality Guidelines for the Protection of Aquatic Life (CCME 2007) for reference; however, the assessment of effects of changes in water quality to aquatic life is presented in Section 9.9, and a summary of the assessment of potential effects to human and wildlife health is presented in Section 9.11.

Within each assessment, the water quality modelling results have been grouped into three categories:

- total dissolved solids (TDS) and major ions;
- nutrients; and
- trace metals.