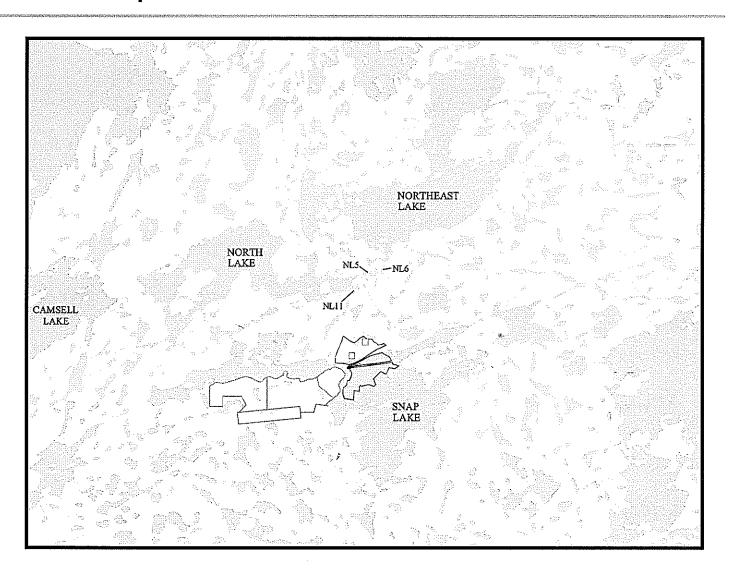
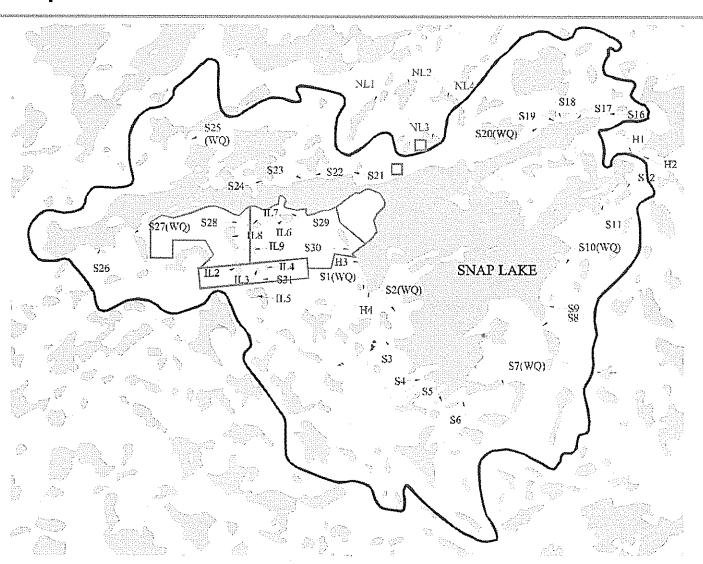

Snap Lake Diamond Project Technical Sessions


Aquatic Habitat and Aquatic Organisms

Project Location



De Beers

Location of North Lake, Northeast Lake and Snap Lake

Snap Lake Watershed

Aquatic Habitat and Aquatic Organisms Session

Morning

- Aquatic Organisms and Habitat Evaluation
- ♦ Bioaccumulation
- ♦ TDS/Chloride Effects on Aquatic Organisms

Aquatic Habitat and Aquatic Organisms Session

Afternoon

- ♦ Snap Lake Levels
- Phytoplankton Community Shifts
- Dissolved Oxygen Levels
- ♦ Small Lake Habitat

Dissolved Oxygen in Snap Lake

Purpose:

 to determine whether a reduction of dissolved oxygen of 1-2 mg/L could impact fish and fish habitat

Topic Has Been Addressed

- Environmental Assessment Report
 - Section 9.4.2.2.4
- Responses to Information Requests
 - IR 2.1.6
 - IR 3.4.6

Dissolved Oxygen Concentrations – Snap Lake

- Dissolved oxygen (DO) levels in Snap Lake in winter remain high near surface and decline with depth
- A gradual decline in DO levels in lakes over the winter period is common

Dissolved Oxygen - Predicted

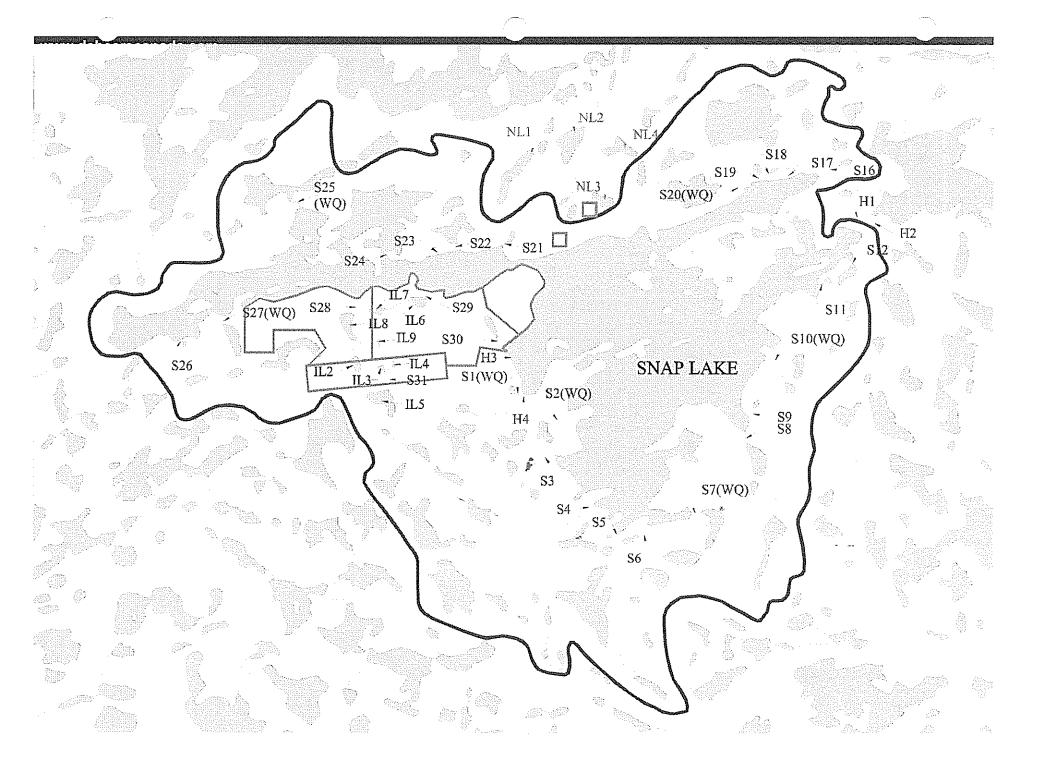
- Worst case prediction for DO in Snap Lake is a decrease to 3 mg/L
- ♦ CCME guideline is 5.5 mg/L
- This would occur in the deepest holes
- Effect would be limited to late winter
- Overall impact to aquatic community would be low since exposure to reduced DO would occur over a limited area and over a limited time

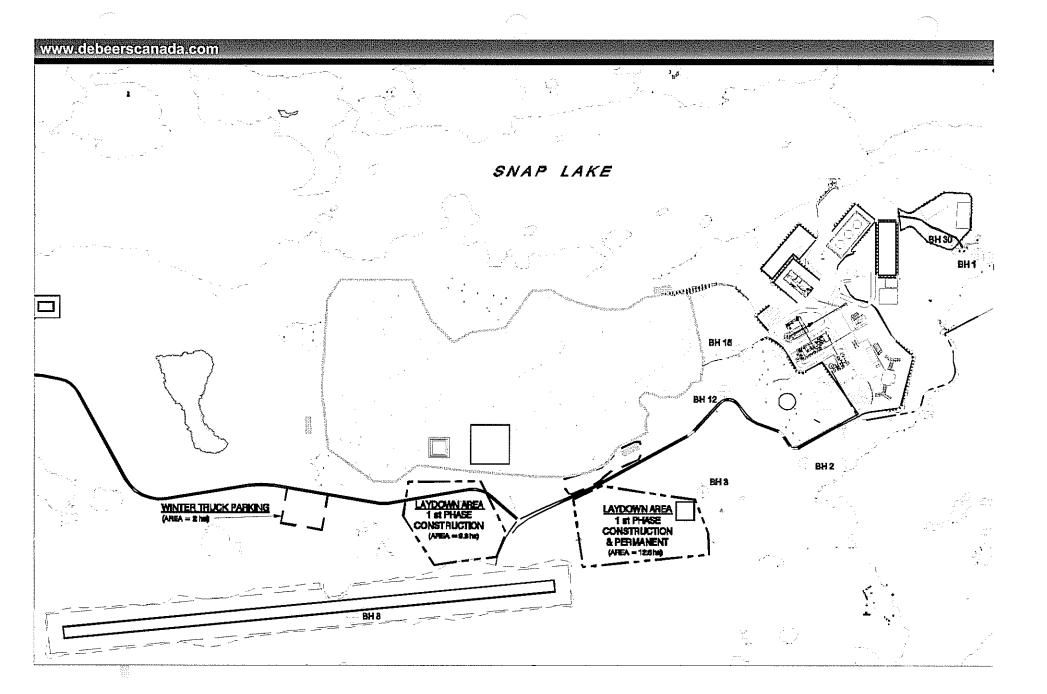
Small Lake Habitat Criteria

Purpose:

 to clarify the criteria used to evaluate fish habitat potential in small lakes and streams within or near the project footprint

Topic Has Been Addressed:


- Environmental Assessment Report
 - Section 9.5.2.1
 - Appendix IX.9
 - Appendix IX.12
- Responses to Information Requests
 - IRs 2.1.1, 3.10.12, 3.10.14, 3.10.16, 4.11.12, 4.11.14


Small Lake Habitat Criteria

- Impact Assessment Process:
 - Step 1: Establish habitat criteria for small lakes and streams
 - Step 2: Determine which lakes have the potential to be directly or indirectly affected by the project
 - Step 3: Assess the habitat of the lakes chosen
 - Step 4: Compare habitat features of lakes with habitat criteria

Small Lake Habitat Criteria

- Potentially affected water bodies included water bodies:
 - Directly affected by infrastructure (sedimentation ponds, water management pond)
 - Located within a sub-basin with infrastructure resulting in run-off alteration
 - In close proximity to mine activity

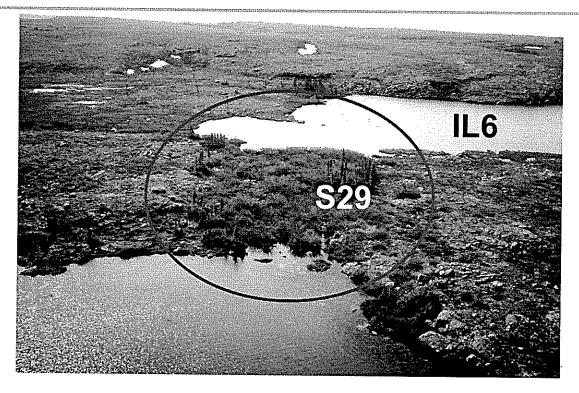
Small Lake Habitat Criteria

- Water body depth
 - <2 m no overwintering potential</p>
 - 2 to 3 m marginal overwintering potential
 - > 4 m overwintering available
- Connectivity to other water bodies
 - Is there a passable channel?
 - How persistent is the channel?
- Observation or capture of fish

Small Stream Habitat Criteria

- Physical characteristics of the flow path
 - Is there a channel?
 - Observations of depth, width, and obstructions
- Sub-basin size
 - What is the expected flow pattern for a stream in this basin (seasonal flow duration and volume of flow)?

Small Lake Example: IL6


- Is the lake potentially affected? Yes, as a sedimentation pond
- Habitat Evaluation:
 - Maximum depth is2.5 m, 2.88 ha in size
 - Ephemeral flow toSnap Lake no access
 - No fish captured or observed

- Evaluation effort:
 - Fished using minnow traps and gill nets in 1999, 2001
 - Habitat assessed in spring and summer 1999, summer 2001, and spring 2002 – on-the-ground surveys

De Beers

Small Stream Example: S29 (Between IL6 and Snap Lake)

- No defined or visible stream channel, dispersed flow through vegetated terrain, areas of completely sub-surface flow
- No access for fish, no migration corridor to other habitat
- ♦ Located in sub-basin "O" with an area of 0.89 km², run-off conditions expected to be short-term spring flow (approximately 1-2 week duration)

Conclusions

- Criteria were established to determine the fish-bearing status of small lakes
- Lakes that will be affected by the project footprint were determined to be non-fish bearing
- Contribution of non-fish bearing lakes to Snap Lake fishery were evaluated as negligible due to very low, seasonal and dispersed flows

De Beers

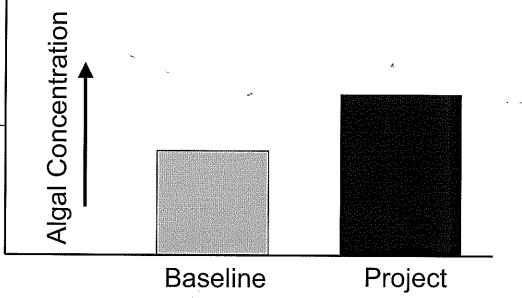
Phytoplankton/Zooplankton Communities in Snap Lake

Purpose:

 to discuss the relationship between predicted chlorophyll a levels (algal concentrations) and a shift in the community structure of phytoplankton and zooplankton in Snap Lake

Topic Has Been Addressed

- Environmental Assessment Report
 - Section 9.4.2.2.4
 - No IR's directly related to this topic


Increase in Algal Concentrations

- Under baseline conditions, trophic status of Snap Lake is upper oligotrophic
- Trophic status defined by Chlorophyll a level.

Eutrophic

Mesotrophic

Oligotrophic

Typical Arctic/Subarctic Oligotrophic Phytoplankton Communities

- Holmgren (1983) established four phytoplankton assemblages for unpolluted arctic and subarctic lakes:
- 1 Golden algae dominant
- 2 Golden algae/diatoms dominant
- 3 Golden algae/small flagellates dominant
- 4 Golden algae/dinophytes dominant

Baseline Phytoplankton Community in Snap Lake

- Phytoplankton community characteristics:
 - High density/moderate biomass of Cyanophytes (bluegreens)
 - High density/High biomass of diatoms (*Tabellaria*)
 - Moderate density/low biomass of Chlorophytes (greens)
 - Low density/low biomass of Cryptophytes (small flagellates)
 - Low density/low biomass of Chrysophytes (golden)
- Snap Lake phytoplankton community displays characteristics of both oligotrophic and mesotrophic lakes

Baseline Zooplankton Community in Snap Lake

- Community is characteristic of a mesotrophic lake
 - Calanoid copepods had the highest density/biomass
 - Cyclopoid copepods had the second highest density/biomass
 - Cladoceran density/biomass was much lower than either previous group

Oligotrophy to Mesotrophy

- Phytoplankton/zooplankton communities differ naturally between lakes
- When lakes are changing from oligotrophic to mesotrophic, the following changes are known to occur:
 - Decline of golden algae and diatoms
 - Replaced with green algae and increasing presence of blue-green algae
 - Cyclopoid and calanoid copepods increase in dominance as conditions approach mesotrophy

Conclusions

 Snap Lake may shift from upper oligotrophic to lower mesotrophic – based on algal concentrations

However,

increased productivity caused by nutrient inputs will not likely cause a shift in phytoplankton/zooplankton community structure since community structure is already typical of mesotrophic lakes

Clarification of Snap Lake Water Levels

 Lake level fluctuations may impact fish and fish habitat

Purpose:

- to describe the adequacy of baseline data to determine fluctuations in lake levels
- to compare the frequency, timing and duration of fluctuations to natural water levels and the effect on fish habitat

Topic Has Been Addressed:

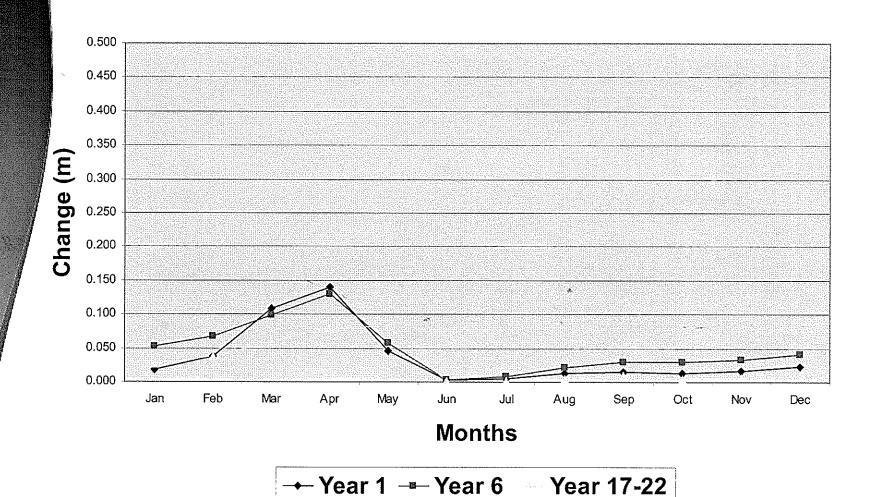
- Environmental Impact Assessment
 - Section 9.3.1.4.4
 - Section 9.3.2.2.3
 - Appendix 9.4
- Response to Information Request
 - IR 3.10.17

Setting – Lake Levels

- Lake level and outflow data collected daily over the open water period from 1999 to 2000
- Flow data were extended over a 22 year period by using statistical methods and regional flow data
- Peak flow and water level were from snowmelt in June
- Small amounts of outflow occur in winter
- Range in lake level is approximately 50 cm

Lake Level Change

- Outflow rates and lake levels are closely related
- Long-term lake levels established from longterm flow estimates
- Natural monthly outflow and lake levels adjusted according to net change in outflow from mining operations
- Minewater and site runoff collection are main factors contributing to flow increase
- Groundwater recharge and intercepted site runoff reduce flow


Results of Lake Level Assessment

- Results incorporate both short-term local baseline data and regional data to extend the period of record
- Project related inflows and losses were evaluated over three representative periods of mining operations

Operating Year	Average Annual Lake Level Increase (cm)
1	4.2
6	5.3
17-22	3.3

- By month, the largest increase (8-14 cm) is expected in low flow months
- By month, the smallest change would occur during the spring runoff period (1-3 mm)

Predicted Snap Lake Water Level Increase by Month

Conclusions

- Results indicate that increases in Snap Lake level will be very small
- Increases are well within natural ranges (maximum increase occurs during low flow)
- Increases are unlikely to have a negative effect on spawning activity, habitat or recruitment for fish species in Snap Lake
- Snap Lake water level will be monitored over the period of operations

Total Dissolved Solids in Snap Lake

Purpose:

 to discuss the potential effect of the increase in Total Dissolved Solids (TDS) levels on the aquatic organisms in Snap Lake

Topic Has Been Addressed:

- ♦ Environmental Assessment Report
 - Section 9.5.2.2.3
- Responses to Information Requests
 - IR 2.1.8
 - IR 2.1.9
 - IR 1.67

Total Dissolved Solids in Snap Lake

Impact Assessment Process:

- Step 1: Reviewed water quality modelling results for TDS
- Step 2: Determined the ion mixture of the effluent
- Step 3: Reviewed available literature on effects of major ions on aquatic organisms
- Step 4: Completed impact assessment

Total Dissolved Solids in Snap Lake

- ♦ From 1998-2001, TDS levels observed in Snap Lake ranged from <10 to 70 mg/L</p>
- TDS concentrations are predicted to increase in Snap Lake to a maximum average concentration in Snap Lake of about 330 mg/L
- Chloride (CI) is a major constituent of the increased TDS
- Maximum predicted Cl concentration within Snap Lake is 137 mg/L

Chloride Guidelines

- There is no Canadian (CCME) guideline to protect aquatic life for chloride
- An ambient guideline for chloride was recently developed for British Columbia
- ♦ In their review of chloride chronic toxicity test results for zooplankton, benthic invertebrates and fish, the lowest LOEC was for Ceriodaphnia dubia at 735 mg/L
- Based on this, a guideline of 150 mg/L was developed using a safety factor of 5 (approximately 1/5 of 735)
- Quebec and U.S. EPA guidelines are 230 mg/L

Conclusions

 Chloride concentrations in Snap Lake will be below any know effects level and below the new BC guideline

Potential Bioaccumulation of Selenium and Cadmium

- Purpose to describe and clarify issues pertaining to the potential for:
 - cadmium and selenium in discharge water
 - bioaccumulation of cadmium and selenium in fish in Snap Lake
 - fish health effects from cadmium and selenium
 - human health effects from eating fish that have taken up cadmium and selenium

Topic Has Been Addressed

- Environmental Assessment Report
 - Section 9.4.2.2.4
 - Section 9.5.2.4
- Reponses to Information Requests
 - IR 1.52
 - IR 2.1.2

De Beers

Background: Cadmium

- Cadmium was screened out during the assessment because predicted concentrations in discharge water were less than water quality benchmarks
- The bioaccumulation analyses for cadmium was carried forward to ensure that the water quality benchmark was protective of aquatic life

Background: Selenium

- Initial selenium analysis of mine water discharge was invalid; atomic adsorption showed that most selenium concentrations were at the analytical detection limits
- The detection limit for selenium (0.4 μg/L) is less than the CCME water quality guideline (1 μg/L)

How Bioaccumulation was Addressed

- The degree to which fish take up cadmium from water can be calculated using a bioaccumulation factor (BAF)
- BAF = concentration in fish concentration in water
- Site-specific BAFs were calculated using baseline Snap Lake water and fish tissue (muscle and liver) concentrations of cadmium

How Bioaccumulation was Addressed (cont.)

Fish tissue concentrations during the Project operation were predicted

Concentration in fish = BAF x predicted maximum annual average mine water discharge concentration

 Fish tissue concentrations were compared with no-effect levels for growth, reproduction and survival of lake trout and rainbow trout

How Bioaccumulation was Addressed (cont.)

- Predicted fish tissue concentrations were also compared with risk-based concentrations (RBCs) for humans and wildlife
- RBCs are safe concentrations based on toxicity data and human or wildlife fish ingestion rates
- RBCs are not guidelines, but provide a concentration for safe exposure

De Beers

Results: Cadmium

Predicted Fish Tissue Concentration (mg/kg)	No Effect Level (mg/kg)	Risk-Based Concentration (mg/kg)
	Fish Health	Human and Wildlife Health
0.1 (muscle tissue)		
0.2 (muscle and liver tissue)	2	1.4
for both lake trout and round whitefish	<u>-</u>	

Conclusions

- No adverse effects on fish health due to exposure to selenium because predicted concentrations are below the CCME water quality guideline
- No adverse effects on fish health, and human and wildlife health due to uptake of cadmium from water because predicted levels are an order of magnitude below the RBC

De Beers

Aquatic Organisms and Habitat Assessment

Purpose:

 to provide an overview of the aquatic organism and habitat assessment procedure

Topic Has Been Assessed

- Environmental Assessment Report
 - Section 9.5.2

Fish

Health

DE BEERS Linkage Summary **Project Activities** Direct Effects to Habitat Charge to Water Quality Fish Habitat Non-fish Aquatic **Organisms**

Fish

Populations

Example – Hexavalent Chromium

- Low environmental consequence in water quality assessment – carried forward to Aquatic Organisms
 - Potential effect to non-fish aquatic organisms evaluated
 - Potential effect to fish health evaluated
 - All life stages
 - Direct and indirect sources
 - If a potential effect to any life stage of fish identified - further evaluation of spatial location and extent
 - Potential effect to fish population