North Pile Development

Purpose:

- to describe:
 - Pile stability
 - Operation scenarios
 - Processed kimberlite (PK) material properties

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 10.2
 - Appendix III.1
- Response to Information Requests
 - IRs 2.2.3, 2.4.20, 2.4.22, 2.4.24, 2.4.27, 2.4.28, 2.4.30, 2.4.35, 2.4.36
 - IRs 3.4.15, 3.4.16, 3.4.18, 3.4.19, 3.4.20, 3.4.21, 3.8.2, 3.9.2, 3.10.1, 3.10.2, 3.10.3, 3.10.4, 3.10.5, 4.1.3, 4.1.6

Conventional Tailings Impoundment with Large Water Pond

Example from Elliot Lake, Ontario

Paste Tailings Pile

Paste Tailings Pile

North Pile Setting

COMPLETED AREAS

DE BEERS

North Pile Sections

North Pile Stability

- Pore pressure development
- Freeze / thaw characteristics

North Pile Stability

Project Operation Scenarios

- Discharge methodology
- Internal pond management
- Perimeter ditch design and efficiency
- Identification of non-potentially acid generating (non-PAG) materials
- Impact of moving PAG underground

Discharge Methodology

Internal Pond Management

Internal Pond Management

Internal Pond Management

Perimeter Ditch Design

Processed Kimberlite Material Properties:

- Grain size variation
- Pore water chemistry variation
- Pore water content variation
- Previous paste experience in permafrost environment

Conclusions

- Use of paste technology reduces the largest risk by eliminating the need for a large permanent pond
- Pile embankments constructed with granular materials using conventional construction techniques
- North Pile is founded on ice-free granite bedrock

North Pile Management

Purpose – to describe:

- Field test program
 - containment berms
 - pipe movements
 - cover closure
- Monitoring programs
 - processed kimberlite (PK) deposition
 - closure works

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 10.2
 - Appendix III.1
- Responses to Information Requests
 - IRs 2.2.3, 2.2.10, 2.4.7, 2.4.8, 2.4.20, 2.4.26,
 2.4.27, 2.4.28, 2.4.29,2.4.30, 2.4.31, 2.5.12,
 2.5.26

North Pile Setting

North Pile Sections

Adaptive Management Process

- Preliminary design
- Environmental assessment (EA)
- Detail design using EA feedback
- Construct and operate North Pile
- Monitor North Pile performance
- Refine design and operation
- Progressive closure
- Monitor during mine life (minimum 15 years)
- Adjust closure plan

Starter Cell Program

- Deposition slopes winter and summer
- PK slope movement
- Frozen and unfrozen layers
- Pore pressures in PK
- Bleed water from PK
- Seepage collection system
- Field test program

Starter Cell Program

- Temperature thermistors
- Pore pressure vibrating wire piezometers
- Deposition slope survey
- ♦ Slope movement periodic survey
- Flow measurements
- Construction test fills

Closure

- Progressive reclamation starting about year 3
 when starter cell complete
- Program same as starter cell program. In addition, surface erosion and dust will be monitored

Conclusions

- North Pile Management Plan includes monitoring and field tests to confirm construction methods
- Design includes progressive closure of North Pile
- North Pile cover performance can be monitored for at least 15 years during mine operations

North Pile Thermal Regime

Purpose – to describe:

- Thermal properties
- Thermal gradient
- N factors
- Climate change
- Adequacy of air temperature modeling
- Rate of freezeback

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 10.2
 - Appendix III.1
- Responses to Information Requests
 - IRs 1.11, 2.2.9, 2.4.8, 2.4.28, 2.4.30, 2.4.34, 2.4.35, 2.6.18, 2.4.35
 - IRs 3.8.2, 3.4.7, 3.4.16, 3.4.17, 3.8.2

Thermal Setting

- Arctic permafrost environment
- ♦ Mean annual temperature -8°C
- Mean annual precipitation 370 mm
- Thin soil layer over granite bedrock
- ♦ Ice-free bedrock

Status of Design

- Thermal model part of engineering study
- Purpose:
 - to provide sufficient information to understand critical issues and general performance of the North Pile
 - to allow design concepts to be developed and agreed upon
 - to demonstrate sufficient storage capacity
 - to demonstrate deposition plan flexibility to accommodate changing operating conditions
- Detailed engineering to be done

Thermal Model

Model Results

- North Pile will have frozen and unfrozen layers during operation
- North Pile will completely freeze
 - excluding active layer
- Most of the precipitation will run off the pile surface
- If pile thaws, water surface will be near pile base
 - good for stability
- North Pile constructed on ice-free bedrock
- Frozen or thawed pile is stable

Likelihood of pregnancy relative to body weight

Design Planning

- No large permanent tailings pond
- Carry out detailed engineering design
- Construct Starter Cell using conventional construction methods, well away from lake
- Study processed kimberlite (PK) deposition to optimize external berm construction
- Pile design will not change until pile performance using other construction techniques are successfully demonstrated in the Starter Cell

Conclusions

- North Pile will have frozen and unfrozen layers during operation, but will completely freeze
- North Pile will be stable whether frozen or thawed