Snap Lake Diamond Project Technical Sessions

Water Quality and Quantity

Project Location

Location of North Lake, Northeast Lake and Snap Lake

Water Quality and Quantity Session

November 26, 2002:

Morning:

- ♦ Description of Site Water Flows
- ♦ Groundwater

Afternoon:

- ♦ Water Management System Overview
- ♦ Sewage and Water Treatment

Water Quality and Quantity Session

November 27, 2002

- ♦ Snap Lake Water Quality Predictions
- ♦ Snap Lake Sediment Impacts
- North Lakes Groundwater and Surface Water Quality and Quantity

Water Quantity and Quality North Lakes

- Groundwater Flow Directions and Quantities
- Changes in Groundwater Quality between Snap Lake and Northeast Lake
- North Lakes Water Quality

Location of North Lake, Northeast Lake and Snap Lake

Topic Has Been Addressed

- Environmental Assessment Report
- North Lakes Report
- North Lakes Technical Information Session
- Responses to Information Requests

Water Quality Near the Discharge in Snap Lake

Purpose

To provide more information on the assessment of water quality near the discharge in Snap Lake:

- To determine the area within which substance concentrations may be above guidelines
- To describe the effects related to that area

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.4
 - Appendix IX-7
- Responses to Information Requests
 - IR 1.56
 - IR 3.4.7
 - IR 4.1.7

Water Discharge Location in Snap Lake

Water Quality Near the Discharge in Snap Lake

Water Quality Near the Discharge in Snap Lake

Diffuser for Mine Water Discharge

Water Quality Near the Discharge in Snap Lake

Maximum Areas Above Water Quality Benchmarks in Snap Lake

<u></u>				Chronic
Water Quality			Hexavalent	Whole Effluent
Benchmark	Cadmium	Copper	Chromium	Toxicity
>HC ₅	<1%	0	<1%	-
>HC ₁₀	0	0	<1%	-
>HC ₂₀	0	0	0	-
Threshold	-	-	-	1.1%

Conclusions

 Water quality assessment used a protective threshold for negligible effects to aquatic populations and communities in Snap Lake

Concentrations > benchmarks in <1% of Snap Lake

- This threshold:
 - Provides overall protection for aquatic populations and communities in Snap Lake
 - Limits potential effects to sensitive aquatic organisms to
 <1% of Snap Lake

Water Quality Benchmarks and Impact Assessment Criteria

Purpose:

- To provide information on the methodology used to develop the water quality benchmarks and impact assessment criteria
- To clarify the hazard concentrations used as cut-offs for identifying minor, moderate and major effects (i.e., HC₅, HC₁₀, HC₂₀)

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.4.2
 - Section 9.4.2.1.1
 - Appendix IX.8
- Responses to Information Requests
 - IR 3.4.5
 - IR 3.4.7

Development of Water Quality Benchmarks Specific to Snap Lake

- Impact Assessment Process:
 - Step 1: Maximum discharge concentrations were compared to available water quality guidelines
 - Step 2: Parameters exceeding generic guidelines in the discharge were carried forward and modelled in Snap Lake
 - Step 3: More detailed assessment was completed on parameters that exceeded generic guidelines within Snap Lake
- Site-specific benchmarks were developed as part of Step 3 for application to Snap Lake

Example: Water Quality Benchmark Development

Hexavalent Chromium Species Sensitivity Distribution Based on Measured or Predicted Chronic Concentrations (●= cladocerans, ■= fish and ◆= other invertebrates)

Site-Specific Benchmarks Relative to Measured Effect Levels – Cadmium

Site-Specific Benchmarks Relative to Measured Effect Levels – Chromium VI

Summary of Site-specific Water Quality Benchmarks

		General Water Quality	Site-Specific Water Quality Benchmarks		
Parameter	Units	Guideline	HC ₅	HC ₁₀	HC ₂₀
Cadmium	μg/L	0.055	0.36	1.0	3.4
Copper	μg/L	4	7.9	12.6	21.3
Trivalent chromium	µg/L	8.9	46.0	*72.2	118.2
Hexavalent chromium	µg/L	1	2.1	3.5	10

Impact Magnitudes Developed from Water Quality Benchmarks

 Impact assessment takes into consideration both concentration and the area affected

	Percent of Waterbody Affected				
Concentration	0 – 1%	1 – 10%	10 – 20%	20-100%	
<hc<sub>5</hc<sub>	negligible	negligible	negligible	negligible	
HC ₅ - HC ₁₀	negligible	low	* low	low	
HC ₁₀ - HC ₂₀	negligible	low	moderate	moderate	
>HC ₂₀	negligible	low	moderate	high	
> General Guideline	negligible	low	moderate	high	

Confidence in Approach

- Benchmark approach used by other jurisdictions
- Benchmark approach uses all data and also provides a level of conservatism for the development of the HC₅ benchmark value
- HC₁₀ and HC₂₀ are consistent with risk-based thresholds used by other agencies and expert working groups

Conclusions

- Impact assessments are based on the maximum concentrations predicted to occur in Snap Lake
- At no point within Snap Lake are concentrations predicted to exceed the HC₂₀
- ◆ Concentrations above the HC₁₀ or HC₅ are predicted to occur within less than 1% of the lake

Secondary Effects of Eutrophication

Purpose:

To provide more information on secondary effects of increased algal concentrations on water quality in Snap Lake

- Potential secondary effects:
 - Increased algal decomposition could result in decreased levels of dissolved oxygen particularly in winter
 - Decrease in oxygen concentrations could result in changes in nutrient and metal mobility in sediments

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.4
 - Appendix IX-7
- Responses to Information Requests
 - IR 2.1.6
 - IR 3.4.6

Dissolved Oxygen Cycle

Secondary Effects on Dissolved Oxygen - EA Approach

- Effects of increased algal concentrations on dissolved oxygen levels were assessed:
 - Nutrient model was used to predict changes in summer dissolved oxygen concentrations
 - Winter oxygen modelling assumed that all algae would decay over winter and consume oxygen
 - Modelling also accounted for nitrification of ammonia

Dissolved Oxygen (DO) Profiles: Baseline

Dissolved Oxygen (DO) Profiles: Project

Conclusions

- Changes in dissolved oxygen concentration will be:
 - Not measurable in summer
 - A maximum decrease of 1 to 2 mg/L in winter
- Dissolved oxygen levels will remain above levels that could affect mobility of nutrients and metals in Snap Lake

Effect on Snap Lake Sediment Quality

Purpose:

To provide more information on potential effects to sediment quality in Snap Lake

- Potential Pathways to Sediments:
 - Settling of fine solids in treated discharge
 - Adsorption of metals to suspended solids or directly to bed sediments

Topic Has Been Addressed:

- Environmental Assessment Report
 - Sections 9.4 and 9.5
- Responses to Information Requests
 - IR 1.62
 - IR 3.4.8

Settling of Suspended Solids

- Water treatment plant will achieve a very high level of solids removal (< 5 mg/L)
- Remaining fine suspended solids are not expected to settle in Snap Lake

Sediment Reactivity

- Metals in mine water come from groundwater and rock material, which have low reactivity
 - Low levels of dissolved metals tend to remain dissolved
 - Particulate metals tend to remain as particulates, either incorporated into the mineral framework or adsorbed to solids
- Mining and process plant do not add metals to water discharge
- Water treatment process will preferentially remove reactive forms of metals

Conclusions

- Effects on sediment quality are expected to be negligible for two reasons:
 - High level of suspended solids removal in water treatment plant (< 5 mg/L in discharge)
 - Low sediment "reactivity"

Eutrophication Modelling In Snap Lake

Purpose:

To provide more information on:

- The nutrient model
- Phosphorus in groundwater, which makes up most of the treated water discharge
- Response of algae in Snap Lake to nutrient inputs from the treated water discharge

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.4
 - Appendix IX.7
- Responses to Information Requests
 - IR 1.53
 - IR 3.3.5
 - IR 3.4.6
 - IR 3.8.9
 - IR 4.1.8

Snap Lake Nutrient Model

- Because the Project doesn't yet exist, changes that could occur in Snap Lake must be predicted
- A two-dimensional hydrodynamic and water quality model called RMA was selected
- Why RMA?
 - Uses established equations for nutrient and phytoplankton dynamics
 - Simulates lake circulation and mixing
 - Predicts changes in water quality over time
 - Model credibility widely used, proven

Simplified Nutrient and Algae Processes

Snap Lake Nutrient Model

- How was RMA used?
 - Model was calibrated to baseline conditions
 - Model parameters varied within accepted ranges and ranges appropriate for northern lakes
 - Model included the sources of nutrients that could affect eutrophication in Snap Lake

Parameter	Units	Measured	Calibration
Algal Concentration .	mg/L	0.057	0.052
Total Phosphorus	ug/L	9	9
Orthophosphate	ug/L	2	2
Total Nitrogen	mg/L	0.331	0.336
Ammonia	mg/L	0.018	0.018
Nitrate	mg/L	0.020	0.023

Snap Lake Nutrient Model

- How was RMA used?
 - Model was calibrated to baseline conditions
 - Model parameters varied within accepted ranges and ranges appropriate for northern lakes
 - Model included the sources of nutrients that could affect algal concentrations in Snap Lake

Phosphorus Sources in Mine Inflow

- Initial source of mine inflow is connate groundwater
- Proportion of inflow from Snap Lake increases over time

Forms of Phosphorus in Lakes and Groundwater/Minewater

Mineral Forms Organic

Orthophosphate

Increasing biological availability

Ground Water

Changes in Phosphorus in Inflows to Snap Lake

Maximum Predicted Increases in Algal Concentrations in Snap Lake

Phosphorus Removal During Water Treatment Pilot Testing

Why EA results are conservative:

Parameter	Units	Untreated	Treated
Total Phosphorus	ug/L	111	9
Dissolved Phosphorus	ug/L	15	8
Orthophosphorus	ug/L	20	5

- ♦ EA OrthoP in Water Discharge = 8 23 ug/L
- ♦ EA OrthoP > Total P in treated water from pilot testing

Decrease in Phosphorus Concentrations in Snap Lake

- No increase total bioavailable phosphorus in releases
- Considerable increase in proportion of orthophosphate
- Increase in Algae without increase in TP
- Results in an increase P loss to sediment through settling
- ♦ P loss = [Algae] x Fraction P x Algal Settling Rate

Baseline Modelling Results

Parameter	Units	Calibration	No Algal Settling
Total Phosphorus	ug/L	9	11
Algae	mg/L	0.05	0.08

Conclusions

- The nutrient model was appropriate for predicting effects of nutrient inputs in Snap Lake
- Concentrations of total bioavailable phosphorus in Snap Lake are not expected to increase above baseline concentrations
- The greater proportion of orthophosphate in the minewater discharge could increase algal concentrations in Snap Lake by up to 40%
- Water treatment is expected to result in lower increases in algal concentrations in Snap Lake

END

Algal and Particulate Organic Phosphorus Settling and Nutrient Removal

Water Quality Near the Discharge in Snap Lake

Background

- Water from the project is treated prior to release to Snap Lake
- With treatment, concentrations of some substances > water quality guidelines
- Concentrations < guidelines are achieved close to the point of discharge in Snap Lake
- In the EAR, the overall effect was determined to be negligible to low

Groundwater Flow Directions and Quantities

 Purpose: to provide information on groundwater flow directions and quantities to the North Lakes during all phases of the project

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.2.2
- North Lakes Report
- Responses to Information Requests
 - IR 2.1.5
 - IR 4.1.5

Conclusions - Groundwater Flow During Mining

Conclusions - Groundwater Flow Post-Closure

Legend:

- ---- groundwater that passes through the mine
- groundwater that does NOT pass through the mine

Groundwater That Has Passed Through Mine Workings

Changes in Groundwater Quality between Snap Lake and Northeast Lake

 Purpose: to provide background and rationale for the expected changes in groundwater quality between Snap Lake and Northeast Lake

Topic Has Been Addressed:

- North Lakes Report
- North Lakes Workshop
- Relevant External References
 - Palmer and Puls (1994)
 - Drever (1988)
 - Appelo and Postma (1993)
 - Brookins (1988)
 - Freeze and Cherry (1979)

Changes Along the Flow Path

Changes in Groundwater Chemistry

Expected Chemical Changes

- Decrease in pH value
 - Alkaline cemented paste backfill
 - Equilibration with bedrock
- Decrease in concentrations of Al, Cr, Cu
- No change expected for Mo

Chemical Mechanisms

Adsorption (sticks to surface)

Fracture Surface

Precipitation (scaling)

Fracture Surface

Setting

- ♦ Time (> 150 years)
- Isolated system
- Equilibrium / Interaction with Bedrock

Conclusion

Given the timeframe for flow and the geological system between Snap Lake and Northeast Lake, the expected changes to groundwater chemistry are considered appropriate

North Lakes Water Quality

Purpose:

To provide more information on how the Project could affect water quality in the north lakes after mine closure

- Changes controlled by:
 - Amount of groundwater flow to north lakes
 - Maximum concentrations in groundwater
 - Changes along groundwater flow pathway and in sediment porewater
 - Dispersion in sediment porewater

Topic Has Been Addressed:

- Environmental Assessment Report
 - Section 9.4
 - Appendix IX-7
- North Lakes Report
- Responses to Information Requests
 - IR 3.9.8
 - IR 4.1.9

Groundwater Flow to North Lakes

- Groundwater modelling showed that after mine closure:
 - No water passing through the mine workings will reach the north lake
 - 30% of groundwater inflows to the northeast lake will pass through the mine workings
- Water quality results were used to determine the total amount of groundwater flow to northeast lake

De Beers

Updated Chloride Mass Balance: Northeast Lake - Baseline

Surface Inflow

Flow 37900

Conc.

0.3

Northeast Lake

Concentration =

1.7 mg/L

Groundwater Inflow

Flow

160

Conc.

335

Units

flow = m^3/day

conc. = mg/L

Groundwater Flow to North Lakes

- Groundwater flow to northeast lake
 - Mass balance results showed that total groundwater inflows to the northeast lake are between 40 and 160 m³/day
 - 30% of these total flows or 12 to 51 m³/day of this inflow would pass through mine workings
- Groundwater flow to north lake
 - No water passing through the mine workings will reach the north lake

Changes in Groundwater Chemistry

- As presented earlier:
 - Ongoing kinetic test work has indicated that metal concentrations in groundwater within the paste backfill will be lower than predicted in the EA
 - Concentrations of metals and pH levels in groundwater will decrease between the mine workings and the northeast lake

Changes in Porewater Chemistry

- Within lake bottom sediments:
 - Denitrification will decrease nitrate concentrations within lake bottom sediments
 - Chemical reactions and precipitation may result in additional decreases in metal concentrations

Dispersion in Coarse Sediment and Water Column

- Groundwater inflow to the northeast lake will mix rapidly within the water column and concentration gradients will not develop
- Porewater chemistry of coarse sediments will be similar to the overlying water column

Dispersion in Fine Sediment

- Mixing in porewater controlled by molecular diffusion
- Concentrations equal to water column at top of sediment and to groundwater at base

De Beers

Conclusions

- North Lake Water Column and Sediment
 - No effect on water quality or sediment quality in north lake

JE BUN

Conclusions

- Northeast Lake Water Column
 - Water quality guidelines will be met for all parameters throughout the water column
 - Assessment was completed without including expected decreases in groundwater chemistry

Conclusions

- Northeast Lake Lake Bottom Sediment
 - Assessment area in the northeast lake consists of about 85% coarse sediment and 15% fine sediment
 - Water quality guidelines will be met at the sediment-water interface for all parameters in areas of coarse and fine sediments
 - Water quality guidelines will be met within porewater of areas with coarse substrate
 - Porewater concentrations within areas of fine sediment could not be quantified, but are expected to be substantially lower than predicted in the EA

