12/07/2012



# CALPUFF AIR DISPERSION MODELLING

Giant Mine Remediation Project Environmental Assessment Technical Report Workshop – June 27-28, 2012 Bruce Halbert, SENES Consultants Limited



### Presentation Outline

- Background Information
- Assessment Basis
- Emission Sources
- CALPUFF/CALMET
- Modelling Results



- Background Information
  - ISCST3 screening assessment completed in February 2010
  - air quality impacts were assessed for GMRP activities including 3MW of incremental power from the Jackfish Power Plant
  - model results were comparable to baseline monitoring at Giant Mine site
  - no exceedances were predicted at identified sensitive receptor locations



- Background Information
  - In response to EC Information Request, subsequent ISCST3 modelling was completed
    - Jackfish Power Plant at maximum capacity (27MW)
    - significant NO<sub>2</sub> exceedances were predicted
  - Advanced CALPUFF modelling assessment was undertaken to refine GMRP activities including maximum Jackfish Power Plant operations



### CALPUFF Assessment Scenarios

- 1. GMRP activities plus Jackfish Power Plant operating at 18MW year round
- 2. GMRP activities plus Jackfish Power Plant operating at 12MW year round
- 3. Jackfish Power Plant operating at 27MW year round **not** including GMRP activities



#### Emission Sources

| Activity                                            | Emission Location                                                    | Equipment                                                                    |
|-----------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|
| Freeze plant and active freezing                    | Jackfish Power Plant                                                 | Diesel generators                                                            |
| Baker Creek rehabilitation                          | <ul><li>Baker Creek</li><li>Borrow Pit A2</li></ul>                  | <ul><li>Excavators</li><li>Compactors</li><li>Haul trucks</li></ul>          |
| Contaminated soils<br>excavation and<br>reclamation | <ul><li> Roaster Building</li><li> B1 Pit</li></ul>                  | <ul><li>Excavator</li><li>Haul trucks</li><li>Bulldozer/Compactor</li></ul>  |
| Tailings and sludge pond<br>remediation             | <ul><li>South Tailings Pond</li><li>Borrow Pit A2 &amp; C1</li></ul> | <ul><li>Bulldozers/Compactor</li><li>Excavator</li><li>Haul Trucks</li></ul> |
| Freeze system install                               | Underground vaults                                                   | • Drills                                                                     |
| Building and infrastructure demolition and disposal | Roaster Building                                                     | <ul><li>Concrete saws</li><li>Crane</li></ul>                                |



#### Emission Sources





## CALPUFF/CALMET Modelling Package

- CALPUFF is an advanced, integrated air dispersion modelling system that considers spatial changes in meteorology, surface conditions, and interacts with terrain
  - Preferred model for areas having complex terrain (e.g., coastal areas)



### CALPUFF/CALMET Modelling Package

- CALMET is a diagnostic, 3-D meteorological model used as an input to CALPUFF
  - Prepared using Yellowknife Airport surface observations and upper wind fields from a U.S. nonhydrostatic mesoscale model (NMM)



### CALPUFF Model Receptor Grid

- Full model grid:
  - 100 m by 100 m spacing for a distance of approximately 2 km from GMRP site
  - 1 km by 1 km spacing further out from GMRP site
- Discrete receptors:
  - 6 identified sensitive receptor locations
  - air monitoring station

12/07/2012





- NO<sub>x</sub> to NO<sub>2</sub> Conversion
  - ISCST3 screening level assessment
    - NO<sub>2</sub>/NO<sub>x</sub> ratio from monitoring data was applied
  - CALPUFF modelling assessment
    - Ozone limiting method was applied



#### Scenario 2 - 12MW Model Results

| Receptor                        | Model Predicted 1-hour NO <sub>2</sub><br>Concentration (µg/m <sup>3</sup> ) |
|---------------------------------|------------------------------------------------------------------------------|
| R1                              | 61                                                                           |
| R2                              | 71                                                                           |
| R3                              | 80                                                                           |
| R4                              | 71                                                                           |
| R5                              | 207                                                                          |
| R6                              | 295                                                                          |
| Background (µg/m <sup>3</sup> ) | 6                                                                            |
| AAQC (µg/m³)                    | 400                                                                          |



#### Scenario 1 - 18MW Model Results

|                       | Maximum Predicted Concentration (µg/m <sup>3</sup> ) |       |                 |       |
|-----------------------|------------------------------------------------------|-------|-----------------|-------|
| Receptor              | <b>PM</b> <sub>10</sub>                              | As    | NO <sub>2</sub> |       |
|                       | 24-hr                                                | 24-hr | 1-hr            | 24-hr |
| R1                    | 27                                                   | 0.08  | 65              | 19    |
| R2                    | 46                                                   | 0.15  | 81              | 55    |
| R3                    | 48                                                   | 0.16  | 94              | 59    |
| R4                    | 47                                                   | 0.16  | 80              | 38    |
| R5                    | 28                                                   | 0.08  | 285             | 113   |
| R6                    | 25                                                   | 0.07  | 410             | 174   |
| Background<br>(µg/m³) | 9                                                    | 0.004 | 6               | 6     |
| AAQC<br>(µq/m³)       | 50                                                   | 0.3   | 400             | 200   |





#### Model Predicted 24-hr Arsenic Concentration (µg/m<sup>3</sup>) Scenario 1 – 18MW









#### Scenario 3 - 27MW Model Results

| Receptor                        | Model Predicted 1-hour NO <sub>2</sub><br>Concentration (µg/m <sup>3</sup> ) |
|---------------------------------|------------------------------------------------------------------------------|
| R1                              | 71                                                                           |
| R2                              | 94                                                                           |
| R3                              | 115                                                                          |
| R4                              | 64                                                                           |
| R5                              | 425                                                                          |
| R6                              | 598                                                                          |
| Background (µg/m <sup>3</sup> ) | 6                                                                            |
| AAQC (µg/m <sup>3</sup> )       | 400                                                                          |







- Conclusions
  - CALPUFF results for particulate and arsenic consistent with the screening assessment
  - 1-hour NO<sub>2</sub> criterion exceeded at sensitive receptor locations if Jackfish Power Plant operates continuously at 27MW or 18MW
    - Typical operating capacity is only 12MW
    - Mitigation measures are available for peak power use periods
    - Monitoring is planned at nearby residences to validate model predictions