

APPENDIX A

APPENDIX A VEGETATION

YELLOWKNIFE GOLD PROJECT

APPENDIX A

ECOLOGICAL LAND CLASSIFICATION FIELD REPORT

February, 2005

APPENDIX A ECOLOGICAL LAND CLASSIFICATION- FIELD REPORT TYHEE NWT CORP YELLOWKNIFE GOLD PROJECT

Prepared for:

TYHEE NWT CORP

Prepared by:

EBA ENGINEERING CONSULTANTS LTD. Yellowknife, Northwest Territories

FEBRUARY 2005

EXECUTIVE SUMMARY

Ecological land classification is a mapping process that involves the integration of site, soil and vegetation information. This information is used to organize ecological data into units that respond to disturbance in a consistent manner. This information is then used to development integrated and sustainable resource management plans.

The Yellowknife Gold Project (YGP) study area (~14,475 ha) is located within the Tazin Lake Upland Ecoregion of the Western Taiga Shield Ecozone. It is characterized by cool summers and cold winters and has a sub-humid, high boreal ecoclimate. Upland areas are dominated by bedrock exposes, while organic deposits cover lowlands. Dystric Brunisols are the dominant upland soils and Organic Cryosols are found in poorly drained, peat-filled depressions. Trembling aspen, jack pine, and white and black spruce dominate upland areas, while stands of tamarack and black spruce dominate poorly drained fens and bogs.

Baseline data was collected in July 2004. There were 91 field inspections completed in 12 ecosystem types resulting in a Terrestrial Ecosystem Mapping (TEM) sampling intensity level 5. Mapping at a 1:20,000 scale was completed using IKONOS imagery. Twenty-two ecosystem types were classified within the study area. Fourteen of these were naturally vegetated, three were classified as water, four were anthropogenic and one was cloud. Spruce-lichen (SL) was the dominant ecosystem type covering 33% of the YGP study area. Jack pine-lichen was second covering 19.5%. Treed bog was the most dominant wetland type covering 8.5% of the YGP study area. There were eight naturally vegetated ecosystem types of restricted distribution, each covering less than 1% of the YGP study area. Fifteen broad ecosystem units that correlated to the West Kitikmeot/Slave Study (WKSS) were assigned to each polygon. Dry Coniferous Woodland was the most abundant broad unit, with Burns second in abundance.

Complex polygons accounted for more than 35% of the polygons and over 50% of the area mapped. Spruce-lichen was the most common ecosystem that was complexed with one other unit. Treed bogs were the most common complexed with two other ecosystem types. This is due to the presence of small sedge and shrubby fens within the larger TB polygons. Coniferous stands accounted for close to 38% of the study area. The most abundant structural stage was young forest, with low/tall shrub woodland being the second most abundant. This is due to the fire history of the area, and the recent fire that affected the northeast portion of the study area.

The study area was mapped for potential rare plant habitat. A potential, rare plant habitat potential map was generated based on the abundance of rare plants potentially found within each ecosystem type. Each ecosystem rank was derived from a frequency histogram that correlated each ecosystem type with the number of rare plants potentially found within them. The following five ranks were assigned: very low (1 to 4 plants), low (5 to 9 plants), moderate (10 plants to 14 plants), high (15 plants to 19 plants) and very high (>20 plants). There is 15% of the study area ranked as either high or very high for rare plant habitat potential. The most common rank was moderate, covering 58% of the study area.

Confidence in the mapping and subsequent data analysis is moderate to high for most units, with the exception of the AM unit, which is low. Confidence in mapping structural stage, stand composition and broad ecosystem units is moderate. Confidence in mapping the rare plant habitat potential is moderate.

The project will have a direct effect on ~117 ha, the majority of which will be affected by the YGP infrastructure (88.2 ha) and ~28.9 ha associated with project roadways. Exploration, construction and site activities will require the clearing of vegetation, grading, cut and fill, extraction of borrow material and development of an all weather road. This will result in the potential impact to soil resources, and a direct loss of vegetation. As well, air emissions from the processing facility could affect vegetation health.

Based on proposed Project activities, the following impacts on vegetation have been identified: vegetation removal, alteration of soil properties, alternation of hydrology, change in water quality, air emissions, possible introduction of non-native or invasive species, increased risk of spills, site maintenance activities, increased risk of fire due to human presence. At this stage in the project planning, it is difficult to identify impacts that may occur. It is not possible to determine the level of significance.

TABLE OF CONTENTS

	EXE	<u>Pa</u> CUTIVE SUMMARY	
1.0	INTR	ODUCTION	.1
2.0	YELI	OWKNIFE GOLD PROJECT STUDY AREA	.3
3.0	ECO	LOGICAL LAND CLASSIFICATION OBJECTIVES	.3
4.0	MET	HODS	.3
	4.1 4.2 4.3 4.4	Preliminary Classification and Sampling Plan Field Sampling Satellite Image Preparation ELC Mapping	.4 .5
5.0	RESU	JLTS OF FIELD SAMPLING AND MAPPING	.6
	5.1 5.2	Soils Vegetation	
		5.2.1Defining ELC Units5.2.2Ecosystem Summaries5.2.3Broad Ecosystem Units5.2.4Ecosystem Descriptions in the YGP Study Area5.2.5Rare Plants and Rare Plant Habitat	12 16 18
	5.3	Discussion of Field Sampling and Mapping Results	30
		5.3.1 Defining Ecosystem Types	
6.0	THE	PROJECT FOOTPRINT	31
	6.1 6.2	Project Effects	
7.0	SUM	MARY	\$5
8.0	REFE	ERENCES	\$7

LIST OF TABLES

Table 1 – Recent Ecological Land Classification Projects North of Yellowknife	2
Table 2 – Soil Chemical and Physical Analysis	
Table 3 – Ecosystem Types in the YGP Study Area	
Table 4 – Site Modifiers for the YGP Study Area	
Table 5 – Structural Stages Used for the YGP Study Area10	
Table 6 – Stand Composition for the YGP Study Area11	
Table 7 – Disturbance Codes for the YGP Study Area	2
Table 8 – Broad Ecosystem Units Used in the YGP Study Area	7
Table 9 – Ecosystem Types Within the YGP Study Area	9
Table 10 – Broad Units Within the YGP Study Area)
Table 11 – Distribution Of Complex Polygons Within the YGP Study Area	1
Table 12 – Stand Composition Within the YGP Study Area	2
Table 13 – Structural Stages Within the YGP Study Area	3
Table 14 – Rare Plants that Could be Found in the YGP Study Area24	4
Table 15 – Rare Plant Habitat Potential for Each Ecosystem Type	9
Table 16 – Rare Plant Habitat Coverage in the YGP Study Area)
Table 17 - Vegetation Clearing Proposed for Each Ecosystem Type in the YGP Study Area .33	3
Table 18 – Vegetation Clearing Proposed for Each Rare Plant Habitat Potential	4
Table 19 – Potential Effects and Mitigation Strategies	5

LIST OF FIGURES

Figure 1 – Ecosystem Types in the YGP Study Area
Figure 2 – Broad Ecosystem Units in the YGP Study Area
Figure 3 – Rare Plant Potential in the YGP Study Area

LIST OF APPENDICES

Appendix A – ELC Field Data

Appendix B – Ecosystem Fact Sheets

1.0 INTRODUCTION

Ecological Land Classification (ELC), an ecological mapping process that involves the integration of site, soil and vegetation information, was undertaken as part of the integrated environmental baseline investigation conducted by EBA Engineering Consultants Ltd. (EBA) for Tyhee NWT Corp (Tyhee). Integrated and sustainable resource management requires an understanding of ecosystem dynamics and functioning, and ecosystem classification helps organize ecological data into units that respond to disturbance in a similar and predictable manner. Understanding past, present, and potential future development requires an understanding of environmental baseline conditions. This baseline provides a basis for long-term monitoring of the environment associated with future mining activities. The ELC is also a biophysical base for other resource components such as wildlife and biodiversity.

Despite its growth in many parts of Canada, ELC has been completed in only select areas of northern Canada and Alaska. Several ELC-related projects have been completed in the Northwest Territories (NWT). Larsen (1971) described the vegetation from Great Slave Lake north to Artillery Lake. He sampled high boreal forest, tundra and the forest-tundra transition zone, and classified a number of broad forest and tundra communities. Along the Mackenzie River, vegetation mapping was carried out at a scale of 1:125,000, including the mapping of several broad forest and tundra ecosystem units (Canada Forest Management Institute, 1974). Bradley *et al.* (1982) conducted an ecological land survey of the Lockhart River map area, an area that extends from Mackay Lake in the northwest to Selwyn Lake in the southeast. Based on field investigations, they described a range of ecological features, and classified and mapped Ecoregions and Subregions, Ecodistricts and basic structural vegetation types.

In recent years, new ELC work has been completed as part of the environmental assessments for development applications, particularly northeast of Yellowknife where diamond exploration and mining is underway. Table 1 provides a summary of ELC work that has occurred since 1995.

 Table 1

 Recent Ecological Land Classification Projects North of Yellowknife

Project	Description	Reference	
Ekati Diamond Mine™ NWT Diamonds Project	• New description and classification of 12 detailed ecosystem units.	• BHP (1995)	
Diavik Diamond Mine	 Broad mapping of landcover units using LandsatTM. Same methodology and units as Epp and Matthews (1999). YGP study area vegetation mapping was also completed using 11 vegetation units separate from the landcover units described above. 	 Golder Associates (1997a) Golder Associates (1997b) Diavik Associates (1997) 	
Ekati Diamond Mine [™] Sable, Pigeon and Beartooth Mines	• 1:20,000 scale ecosystem mapping completed for the Ekati Diamond Mine TM area.	• BHP (2000)	
Kennady Lake Diamond Project	 1:20,000 scale Ecosystem mapping of 225 km² using the tundra units developed for Ekati Diamond Mine[™]. One additional spruce unit added for a total of 13 ecosystem units. Continued ecosystem mapping for Gahcho Kué. 	 EBA and JWEL (2000) AMEC and EBA (2004) 	
West Kitikmeot Slave Study Region Final Report (WKSS)	• Broad mapping of landcover units using Landsat TM .	• Matthews and Epp (2001)	
Snap Lake	 Mapping of vegetation classes using LandsatTM. Same methodology and units as Epp and Matthews (1999) plus four new vegetation units. 	• De Beers (2001)	
Tibbit to Contwoyto Winter Road	 1:3,500 scale ecosystem mapping of the portages for the winter road corridor. Used 18 ecosystem units adapted from the above studies. 	• EBA (2002a, 2002b)	

2.0 YELLOWKNIFE GOLD PROJECT STUDY AREA

The Yellowknife Gold Project study area (YGP) is ~ 14,475 ha and is located within the Tazin Lake Upland Ecoregion, Western Taiga Shield Ecozone. The Tazin Lake Upland is characterized by cool summers and very cold winters and has a subhumid, high boreal ecoclimate. Uplands are dominated by bedrock exposures, while lowlands are covered by organic deposits. Dystric Brunisols are the dominant upland soils formed on discontinuous veneers of sandy till. There are significant inclusions of Turbic Cryosols on permanently frozen sites and Organic Cryosols in poorly drained, peat-filled depressions (Environment Canada, 2000).

Vegetation of the Tazin Lake Upland is characterized by medium to tall, closed stands of trembling aspen (*Populus tremuloides*), balsam poplar (*Populus balsamifera*) and paper birch (*Betula papyrifera*). Jack pine (*Pinus banksiana*) dominates early successional stands, while white spruce (*Picea glauca*) and black spruce (*Picea mariana*) dominate the later successional stands. Poorly drained fens and bogs in this region are covered with low, open stands of tamarack (*Larix laricina*) and black spruce (Environment Canada, 2000).

3.0 ECOLOGICAL LAND CLASSIFICATION OBJECTIVES

The objectives of the Ecological Land Classification (ELC) are to complete the following tasks:

- define ecosystem types on the basis of field studies;
- map and characterize the landscape in the YGP study area using ecosystem units and satellite imagery;
- characterize the aerial extent of the proposed development footprint on the landscape; and
- identify key management issues related to ecosystem types and the proposed development.

4.0 METHODS

The ELC project methods are divided into four phases: preliminary ecosystem classification and sampling plan, field sampling, satellite imagery preparation, and ELC mapping. The methods and approach associated with each phase are discussed below.

4.1 Preliminary Classification and Sampling Plan

A literature review was completed of relevant ecosystem mapping in NWT at the initiation of the project. A list of potential ecosystem types was compiled prior to the field sampling based on the ecosystem units defined for the Tibbitt to Contwoyto winter road (EBA, 2002a). The ecosystem sampling plan was adapted from British Columbia's Terrestrial Ecosystem Mapping (TEM) system (Resources Inventory Committee [RIC] 1998a, 1998b) and other established ELC approaches (see Sims *et al.*, 1996). The TEM standard has also been recently adopted for several other ELC mapping exercises conducted as a part of environmental assessments in northern Canada.

A TEM Level 4 survey intensity was planned for the ELC sampling of the study area. This sampling intensity includes 15% to 25% polygon visitation with a plot ratio of 5% detailed full plots, 20% ground inspection form (GIF) plots and 75% visual plots. This ratio was considered appropriate for the ELC mapping scale and the diversity of ELC units thought to be present within the study area. Given the size of the study area, and a mapping scale of 1:20,000 (average polygon size of 20 ha), it was estimated that a maximum of 188 plots (25% sampling intensity) would be needed of the following types:

- 10 full plots;
- 38 GIF plots; and
- 140 visual plots.

The minimum number of plots required would be 113 at a 15% sampling intensity. Prior to field sampling, potential sampling locations were identified using NTS maps and local knowledge of the study area.

4.2 Field Sampling

Field data collection occurred from July 19 to 24, 2004, and followed the standards established in British Columbia for Describing Terrestrial Ecosystems in the Field (DTEIF) (Province of British Columbia, 1998) and for TEM (RIC, 1998a). All plot position coordinates were determined using global positioning system (GPS) with an expected accuracy of 6 m to 8 m. The ELC field crew consisted of a two-person team, which undertook a range of field measurements that are described below.

A total of 37 full plots and 54 visuals were completed for a total of 91 sample plots. A sampling ratio of 41:0:59 was achieved for full, GIF and visual plots in the field. The 91 plots sampled within 1,294 polygons (not including water), resulted in a 7% sampling intensity for the project. This meets the requirements for a TEM Level 5 survey. The final number of plots sampled was reduced from the pre-field planning target numbers (as mentioned in Section 4.1). This adjustment was due to difficulties in accessing potential sample locations. To make up for the difficulties in access, more full plots were

completed to ensure sufficient information was collected to adequately describe the ecosystem types.

In each of the full plots, the following site information was collected: plot number, date, UTM coordinates, elevation, exposure, aspect, slope, macro- and meso-site position, soil moisture, drainage and nutrient regime, ecosystem unit name, successional status, structural stage, and surface substrate (bedrock, rocks, mineral soil, wood, organic matter and water). Notes describing the plot-in-context and variability within the polygon were recorded. Photographs were taken at each plot.

All vascular plant species, and most bryophytes and lichens were identified in the full plots. Vegetation cover, density and distribution estimates were recorded. Vascular plant identification followed Porsild and Cody (1968, 1980). Bryophyte and lichen identification followed Vitt *et al.* (1988).

Visual plots involved recording brief point or area characteristics made from the air or ground, and were used to note the basic ecosystem unit, vegetation or other key features. The primary function of visual plots is to aid in the delineation of polygon labels and to confirm the placement of polygon boundaries during the photo interpretation and mapping phases of the work. No GIF plots were completed.

During the ELC field sampling, special features and other observations were recorded when encountered. These included observations of burn severity, wildlife, and signs of wildlife use. Evidence of recent burns was observed in the eastern section of the study area. Attempts were made to establish plots in unburned woodlands, recent burns and several post-fire seral stages to characterize vegetation succession.

Following field sampling, GPS data associated with the plot locations were prepared for use in the project's GIS software (ESRI 3.2 and Arc/Info® 8.1). The ELC plot data was digitally transcribed from field plot forms, into MS Access database, using VPRO, an ecological data entry and management tool (Province of British Columbia, 1999). The ELC plot data is provided in Appendix A.

4.3 Satellite Image Preparation

The imagery used for mapping was created from two ortho-rectified IKONOS scenes acquired between July 27, 2004, and August 2, 2004. There was significant cloud cover in several areas in the northeastern portion of the study area. The clouds were visually identified, removed and imagery was replaced with Landsat 7TM imagery from August 11, 2001. IKONOS imagery has a resolution of 4 m in the multi-spectral bands and 1 m in the panchromatic band. The imagery was enhanced to increase visual interpretation using a linear transformation and several mosaics were produced highlighting different band combinations. Images produced include: 4 m true colour

image; 1 m pan-sharpened true colour image; 4 m false colour image (uses the near IR band to highlight vegetation); and 1m pan-sharpened false colour image.

4.4 ELC Mapping

Ecosystems were interpreted, mapped and labelled on-screen using ArcView® 3.2. Interpretation and labelling followed approaches defined by the RIC (1998a). To maintain a high level of consistency, the staff that completed the field sampling also attributed the polygons. Ecosystems were mapped at a nominal scale of 1:20,000. A quality assurance/quality control (QA/QC) review of the mapping was conducted concurrently with the line work. At the beginning of each day, 10% of the polygons that were previously mapped were revisited to ensure consistency from day to day. At the end of the mapping process, 10% of the polygons were audited for accuracy. Final ELC documents include ecosystem summaries, analysis of the ecosystem units within the study area and a map of the study area.

5.0 RESULTS OF FIELD SAMPLING AND MAPPING

Data collected in the field was used for ecosystem classification and mapping. Classification and mapping results for soils and vegetation are presented below.

5.1 Soils

A soil survey of the YGP study area was not completed as part of the baseline survey. The information contained in this report is based on a literature review of soils found in the region.

The YGP study area is described in the *Soils of Canada* as a strongly rolling plain comprised of igneous and metamorphic rockland with stony, sandy glacial till and fluvial deposits. The soil climate is subarctic (humid), with discontinuous permafrost. The dominant soils are Orthic Dystric Brunisols in rockland areas. Orthic Grey Luvisols and Orthic Eutric Brunisols occur to a lesser extent. Most soils are well-drained and are often stony and/or lithic (shallow) (Agriculture Canada, 1977).

In the immediate area of the Discovery Mine, soils are limited in extent as bedrock is generally at or very near the surface. Mineral soils were observed in the valley bottoms to the north of the mine site and southeast of the tailings area. Most of these soils have an organic surface of varying thickness. Shallow mineral soils also occur in depressions in the bedrock. The mineral soils have developed primarily on fine-textured (silt and clay) glacial fluvial or lacustrine materials. Organic soils are present in poorly drained bog and fen areas. Permafrost is common in organic soils (Klohn Leonoff, 1992).

Laboratory tests were conducted on several soil, sand and gravel samples to determine their ability to support plant growth (Klohn Leonoff, 1992). Analyses were completed on

fine and coarse textured material and a summary of the results is presented below in Table 2. Complete analysis is provided in the 1992 report completed by Klohn Leonoff.

	Fine Soil ¹	Coarse Soil ²			
Chemical Properties					
pH	6.28	5.55			
Electrical Conductivity (dS/cm)	1.50	1.60			
Cation Exchange Capacity (meq/100 g)	16.5	6.2			
Ca ⁺⁺	7.8	2.4			
Mg^{++}	3.5	0.5			
Na ⁺	0.1	0.2			
K ⁺	0.36	1.13			
Nutrient Analysis	•	·			
Organic carbon (%)	1.71	0.80			
Total N %	0.10	0.05			
NH ₄ -N	26	94			
NO ₃ -N	5.9	8.6			
PO ₄ -P (ppm)	57	4.9			
SO ₄ -S (ppm)	15	12			
Physical Properties					
Water holding capacity (% gravimetric)	17.7	4.4			
Sand (%)	7	99			
Silt (%)	52	0.5			
Clay (%)	41	0.5			

Table 2		
Soil Chemical and Physical Analysis		

¹ Fine soil is defined as having a median grain size $< 75 \mu$.

² Coarse soil is defined as having a median grain size > 75 μ .

5.2 Vegetation

Detailed vegetation data was collected in the field and used to determine ecosystem classification. Below is a description of how the ecosystem units were classified, what units were found and how they are distributed in the YGP study area.

5.2.1 Defining ELC Units

An ELC Unit (or Ecosystem Unit) is composed of five hierarchical components: zone, ecosystem type, site modifier, structural stage and stand composition. The zone is defined as Boreal. The ecosystem types developed for the boreal portion of the Tibbitt to

Contwoyto Winter Road project were used for this project. Table 3 lists each of the ecosystem types identified in the YGP study area.

Туре	Description			
Wetland Riparian				
BR	Wetland, non treed scrub birch cloudberry low shrub bog			
СА	Wetland, graminoid water sedge - narrow leaved cottongrass fen			
CE	Wetland, graminoid round fruited sedge – Chamisso's			
EA	Wetland, graminoid sheathed cottongrass – bog rosemary sedge			
EM	Wetland, graminoid water sedge – horsetail shallow shore marsh			
FA	Wetland, floating aquatic shallow open water			
SH	Wetland, non-treed willow – sedge low shrub fen			
TB	Wetland, treed spruce – cloudberry treed bog			
TF	Wetland, treed tamarack – blueberry treed fen			
WR	Riparian wetland, forest spruce – willow forest			
Forest and Wo	podland			
AM	Upland, spruce – moss forest			
JL	Upland, Jack pine – lichen woodland			
SL Upland, spruce – lichen woodland				
Sparsely Vege	etated			
BF	Upland, boulder field			
RO Upland rock outcrop				
Water				
OW	Open water, less than 2 m deep			
PD	Open water greater than 2 m deep and less than 50 ha in size			
LA Open water greater than 2 m deep and greater than 50 ha in size				
Anthropogenic				
GP	Gravel pit			
RP	Road surface			
RR	Rural development			
TD	Tailing deposit			
Other				
CD	Cloud			

Table 3Ecosystem Types in the YGP Study Area

Site modifiers for atypical conditions as developed by BHP (1995) were adopted for this project, as well a site modifier for high lichen cover and a site modifier to identify areas that had some coverage of mine tailings. The site modifiers used for this project are provided in Table 4.

Code	Description	
e Unit occurs on an esker.		
1 High lichen cover (visible from air).		
r 30% or more of surface cover is bedrock.		
t 30% or more of the surface cover is mine tai		

Table 4Site Modifiers for the YGP StudyArea

Structural stages describe the existing dominant stand appearance or physiognomy for an ecosystem unit. This parameter emphasises structural habitat characteristics and it can be used to help describe the seral variation within an ecosystem type. As was done for BHP (1995), structural stage classes as defined by the DTEIF system (RIC, 1998a) were adopted for this project (Table 5). The adoption of the tree heights with the associated structural stages can be problematic in northern Canada. Trees can fall within structural stages 4 to 7 as far as age, and be less than 10 m tall. For this project, we did not use tree height as a measure for structural stage.

Code	Structural Stage	Definition	
1	Sparse/Bryoid	Initial stages of primary and secondary succession; bryophytes and lichens often dominant; time since disturbance may be prolonged where there is little or no soil development (bedrock, boulderfields, etc.).	
1a	Sparse	Less than 10% vegetation cover.	
1b	Bryoid	Bryophyte and lichen-dominated community (>50% of total vegetative cover).	
2	Herb	Early successional stage or herb communities maintained by environmental conditions or disturbance; dominated by herbs; some invading or residual shrubs and trees may be present; many non-wooded communities are perpetually maintained in this stage.	
2a	Forb-dominated	Includes non-graminoid herbs and ferns.	
2b	Graminoid-dominated	Includes grasses, sedges, reeds, and rushes.	
2c	Aquatic	Floating or submerged; does not include sedges growing in marshes with standing water (classed as 2b).	
2d	Dwarf shrub-dominated	Dominated by dwarf woody species such as crowberry, mountain cranberry, twinflower, cloudberry, etc.	
3	Shrub/Woodland	Early successional stage or shrub communities maintained by environmental conditions or disturbance; dominated by shrubby vegetation; seedlings and advance regeneration may be abundant.	
3a	Low shrub	Dominated by shrubby vegetation < 2 m tall; seedlings and advance regeneration may be abundant; may be perpetuated indefinitely by environmental conditions or disturbance.	
3b	Tall shrub/Woodland	Dominated by shrubs or trees that are 2-10 m tall; often the near-climax structural stage for woodlands in the study area.	
4	Pole/Sapling	Typically densely stocked, have overtopped shrub and herb layers; self- thinning and vertical structure not yet evident in the canopy.	
5	Young Forest	Self-thinning has become evident and the forest canopy has begun to differentiate into distinct layers (dominant, main canopy, and overtopped).	
6	Mature Forest	Trees established after the last disturbance have matured; understories become well developed as the canopy opens up; time since disturbance generally 80-140 years.	
7	Old Forest	Old, structurally complex stands comprised mainly of shade-tolerant and regenerating tree species, although older seral and long-lived trees from a disturbance such as fire may still dominate the upper canopy; snags and coarse woody debris in all stages of decomposition and patchy understories typical; time since disturbance generally > 140 years.	

Table 5 Structural Stages Used for the YGP Study Area

Stand composition modifiers are used to further differentiate structural stages 4 to 7 (i.e., pole-sapling, young forest, mature forest and old forest) based upon coniferous, broadleaf or mixed conifer-broadleaf stand composition (Table 6).

Code	Stand Composition	Definition
В	Broadleaf	>75% of total tree cover is broadleaf
C	Coniferous	>75% of total tree cover is coniferous
М	Mixed	Neither coniferous or broadleaf account for >75% of total tree cover

Table 6Stand Composition for the YGP Study Area

Disturbance codes were also assigned to polygons when applicable (Table 7). Disturbance types were allocated into two classes: fire and soil. These two classes were further subdivided into a number of sub-classes (for example, fire was differentiated into severe or moderate sub-classes), to provide additional characterization of the disturbance type.

Disturbance Class Code Description		Description		
	Severe	Fs	Severe fire with few standing snags remaining (forested areas).	
Fire	Moderate	Fm	Moderate fire with significant proportion of standing snags (forested areas).	
	Excavation	Se	Applies to an area exposed through the removal of sand and gravel.	
Soil	Mining	Sm	Applies to a non-vegetated area used for the extraction of mineral ore and other materials.	
	Mining	Sd	Applies to areas that have tailing deposition.	

Table 7Disturbance Codes for the YGP Study Area

5.2.2 Ecosystem Summaries

Each field site was classified into an ecosystem type. The types were analyzed for similarities and differences. Summary sheets were produced to provide easy, quick review of the characteristics of the ecosystems that were mapped for this project. The summaries are constructed from the data that was collected during the field sampling. The descriptions are not meant to be a final characterization of the units, and should be viewed as a representation of the vegetation sampled in the study area.

In total, 14 summary sheets were produced for the ecosystem types that were mapped in the study area. Twelve of these summaries are based on quantitative data collected in the field, and two are based on qualitative data collected in the field. Fact sheets were not made for the non-vegetated or anthropogenic ecosystem types. Brief summaries are provided below, with detailed fact sheets located in Appendix B.

Forest and Woodland

The forested and woodland ecosystems are upland units that are dominated by black and white spruce and jack pine in climax communities. Immediately after fire, these communities are dominated by fast growing deciduous seral species, such as paper birch (*Betula papyrifera*) and alder (*Alnus* spp.). The slower growing jack pine (*Pinus banksiana*) becomes the dominant species a few years after fire. In the YGP study area, there are numerous successional stages observed in the upland areas due to fire. These upland units cover approximately 55% of the study area.

AM: spruce – moss forest

This is the most productive forest ecosystem of the study area and is generally found on lower slopes or toe positions in the landscape. This ecosystem has a moderate nutrient regime with a mesic moisture regime. White spruce (*Picea glauca*) is the climatic climax

species, but seral communities are dominated by paper birch. This ecosystem is uncommon and accounts for less than 4% of the study area.

JL: jack pine – lichen woodland

This woodland is typical of dry sites and occurs on upper slopes and crest positions of hills or esker complexes. It has a poor to very poor nutrient regime with a subxeric to xeric moisture regime. Jack pine is the common tree species while bearberry (*Arctostaphylos uva ursi*) is the common shrub. Paper birch is present in young seral communities. Cushion mosses (*Dicranum* spp.) and haircap mosses (*Polytrichum* spp.) are common, as well as numerous *Cladonia* lichens. This ecosystem covers approximately 20% of the study area.

SL: spruce – *lichen woodland*

This woodland is the most commonly occurring ecosystem and covers approximately 33% of the study area. It is found on upland sites, in all slope positions. It has a very poor to moderate nutrient regime with a mesic to submesic moisture regime. Black spruce (*Picea mariana*) is common in mature stands, and jack pine and paper birch may dominate seral communities. Labrador tea (*Ledum groenlandicum*), alder and bog cranberry (*Vaccinium vitis idaea*) are common shrubs.

Riparian

One riparian ecosystem was identified in the study area. This ecosystem usually occurs adjacent to streams or in drainage systems between lakes, has a rich nutrient regime and a subhygric moisture regime. The riparian succession results in a broad range of structural stages from young seral to mature climatic climax.

WR: spruce – willow riparian forest

Paper birch and white spruce dominate in mature stands. Forests that are slightly drier have inclusions of balsam poplar. Shrubs include willow (*Salix* spp.), red raspberry (*Rubus idaeus*), and high-bush cranberry (*Viburnum edule*). This ecosystem represents less than 2% of the study area.

Wetland

Wetland ecosystems include sedge fens, shrubby fens, treed fens and bogs, marsh and floating aquatic. The fens and bogs are generally restricted to upland plateaus of poorly drained organic soils. Differences in water movement distinguish fens from bogs. Marshes and floating aquatic ecosystems are restricted to the edges of standing water. The wetland ecosystems represent less than 15% of the study area.

BR: scrub birch – cloudberry low shrub bog

This shrubby bog ecosystem is found in close association with TB ecosystems and is present as islands within larger TB polygons. It is rarely mapped on its own. It has a very poor to poor nutrient regime and a hygric to subhygric moisture regime. Common species include scrub birch (*Betula glandulosa*), willow, sedges (*Carex* spp.) and marsh reed grass (*Calamagrostis canadensis*). This ecosystem covers less than 1% of the study area.

CA: water sedge narrow-leaved cottongrass fen

This sedge fen co-occurs with other sedge fens and shrub bogs. It is also found within TB polygons and is rarely mapped on its own. It has a very poor to poor nutrient regime with a hydric moisture regime. Sedges and cotton grass (*Eriophorum* spp.) are the common species. This ecosystem represents less than 1% of the study area.

CE: round-fruited sedge chamisso's cottongrass fen

This is a slightly richer sedge fen than CA or EA. It is found in association with other sedge fens, shrubby fens and treed fens and is rarely mapped individually. It has poor to medium nutrient regime with a subhydric to hygric moisture regime. Sedges, cotton grass and peat mosses (*Sphagnum* spp.) are the common species. This ecosystem represents less than 1% of the study area.

EA: sheathed cottongrass bog rosemary sedge fen

This wetland ecosystem is found in association with other sedge fens, shrubby bog, treed bogs and fens, and is rarely mapped on it own. It has a very poor to poor nutrient regime and a subhydric to hygric moisture regime. Leatherleaf (*Chamaedaphne calyculata*), sedges and peat moss are common. This ecosystem accounts for less than 1% of the study area.

EM: water sedge horsetail shallow shore marsh

This shallow shore marsh occurs along the edges of lakes, ponds and open water. It is has a poor nutrient regime and a hydric moisture regime. Water sedge is the dominant sedge, but forbs and other sedge species are common. Leatherleaf and willow are also found in small numbers. This ecosystem represents less than 1% of the study area.

FA: floating aquatic shallow open water

This ecosystem occurs in shallow open water in lakes, ponds and open water. It has a medium to rich nutrient regime and a hydric moisture regime. Horsetails

(*Equisetum* spp.) and water lily (*Nuphar* spp.) are common. This ecosystem covers less than 1% of the study area.

SH: willow – sedge low shrub fen

This shrubby fen often co-occurs with sedge fens. Common distribution is near open water, treed fens or drainage areas where it is restricted to wet sites with some water movement. It has a medium to rich nutrient regime and a hydric moisture regime. Willows and sedges are common with a minor component of leatherleaf. This ecosystem accounts for approximately 2% of the study area.

TB: spruce – cloudberry treed bog

This wetland ecosystem commonly occurs on upland peat plateaus with poor drainage and is often surrounded by bedrock outcrops. It has a very poor nutrient regime with a subhydric to subhygric moisture regime. Vegetation is dominated by black spruce, Labrador tea, bog bilberry (*Vaccinium uliginosum*), and bog cranberry. Peat moss is common. This ecosystem was the most abundant of the wetland types, covering over 8% of the study area.

TF: tamarack blueberry treed fen

This ecosystem occurs in upland peat plateaus with some water movement and in drainage areas between lakes. It has a poor to rich nutrient regime and a subhydric to hygric moisture regime. Black spruce and tamarack (*Larix laricina*) form an open canopy; willow, scrub birch and bog bilberry are the common shrubs. This ecosystem was the second most common wetland type, covering approximately 4% of the study area.

Sparsely Vegetated

The sparsely vegetated ecosystems are restricted to naturally occurring units that are dominated by boulder or bedrock outcrops. Vegetation is restricted to microenvironments that have developed due to localized weathering of rock. Soil development is poor or non-existent. These ecosystems make up less than 1% of the study area.

BF: boulder field

This ecosystem occurs on exposed slopes of hills that have significant rock outcrops. Nutrient regime is very poor and moisture regime is very xeric. Vegetation includes common juniper (*Juniperus communis*), bearberry, and three-toothed saxifrage (*Saxifraga tricuspidata*). Crustose lichens are common.

RO: rock outcrop

This ecosystem is typical of bedrock outcrops that have undergone little weathering. Nutrient regime is very poor and moisture regime is very xeric. Microsites that support vegetation growth are uncommon. Vegetation cover is sparse. Crustose lichens are common.

Other Units

The anthropogenic ecosystems varied in their degree of vegetation coverage. Tailings (TD) and gravel pits (GP) are generally devoid of vegetation. Ecosystems defined as rural (RR) (i.e. some residential or commercial development) are restricted to camp areas and ranged in vegetative coverage. The developed area around the old town site is interspersed with mature trees, while the present campsite has very little vegetation coverage. Roads (RP) also ranged in vegetation coverage. Those that are actively used have sparse vegetation coverage. Abandoned roads and portages have variable vegetation coverage.

Water was divided into three ecosystem types: lake, pond and open water. A size limit of 50 ha was used to differentiate lakes and ponds. The open water category had a depth threshold of less than 2 m. A portion of the study area was covered by cloud and could not be mapped. This area was classified as cloud (CD).

5.2.3 Broad Ecosystem Units

To provide a simplified view of ecosystems suitable for basic vegetation summaries and for map presentation, broad ecosystem units were also assigned to each mapped polygon. Table 8 describes the broad ecosystem units used for this project. The ecosystem types were also compared to the broad ecosystem units used in the West Kitikmeot / Slave Study (Matthews and Epp 2001).

YPG Ecosystem Type	Description	Broad Ecosystem Unit for YGP	West Kitikmeot / Slave Class
All units with the fire disturbance code (Fs, Fm).	Applies to areas that have evidence of relatively recent fire disturbance.	Burns	Burns
AM, JL, SL: seral stands that contain mixed or deciduous stands.	Mixed or deciduous stands.	Mixed and Deciduous Woodland	Spruce Forest
AM: young forest or mature stands of conifers.	Mesic conifer-dominated stands.	Mesic Coniferous Woodland	Spruce Forest
BR	This broad unit is composed solely of scrub birch - cloudberry low shrub bog.	Birch Hummock	Tussock/ Hummock
CA, CE, EA	Fens dominated by sedges and grasses.	Sedge Fen	Sedge Wetland
EM, FA	Includes herb-dominated wetlands that do not occur in other categories.	Other Wetlands	Unclassified
GP, RP, RR, TD	Areas with very low vascular plant cover as a result of anthropogenic disturbance.	Anthropogenic	Unclassified
JL: young forest or mature stand	Dry jack pine dominated stands.	Dry Coniferous Woodland	Unclassified
LA, PD	Includes Lakes and Ponds.	Water	Deep Water
OW	Shallow open water and rivers.	Water	Shallow water
RO, BF	Includes rock outcrops and boulderfields. They support minimal vegetation.	Bedrock and Boulder Fields	Bedrock and Boulder Associations
SH	Shrubby sites with saturated organic soils and some water movement.	Shrubby Fen	Riparian Tall Shrub
SL: young forest or mature stands	Dry black spruce dominated stands.	Dry Coniferous Woodland	Spruce Forest
TB and TF	Fens and bogs with an open canopy of trees.	Treed Fens and Bogs	Peat Bog
WR: seral, young or mature stands	Shrubby or treed areas along streams, rivers, and lake margins.	Riparian Woodland and Shrubland	Unclassified

Table 8Broad Ecosystem Units Used in the YGP Study Area

5.2.4 Ecosystem Descriptions in the YGP Study Area

The following section provides descriptive information on ecosystem types, broad units, complex polygons, stand composition, and structural stage, within the YGP study area.

Ecosystem Types

A total of 1,506 polygons were mapped in the 14,475 ha study area. The average polygon size was approximately 10 ha, with a range from 0.02 ha (an island) to 1,293 ha (a lake). While the average polygon size was 10 ha, the mode polygon size was 3.2 ha which indicates that over half of the polygons mapped were less than 3.2 ha in size. Twenty-two ecosystem types were assigned to the 1,506 polygons, 14 were naturally vegetated, three were classified as water, 4 were classified as anthropogenic and 1 was classified as cloud (Table 9). Visual distribution of the ecosystem types is provided in Figure 1.

Spruce-lichen woodland (SL) made up 33% of the study area, with jack pine-lichen (JL) comprising 19.5% of the study area (Table 9). Water covered 20.5% of the study area, and 6.3% of the study area in the northeast corner could not be mapped due to cloud cover. Treed bogs (TB) were the next most common ecosystem type, representing 8.5% of the study area. Eight of the natural ecosystem types had less than 1% cover. Ecosystems that have less than 1% cover are considered ecosystems of restricted distribution.

Some of the ecosystem types, mostly the sedge fens, are likely to be more common than the mapping indicates. This is because these ecosystems are small and are difficult to delineate individually. They were commonly mapped as the secondary or tertiary ecosystem type in the complexed TB or treed fen (TF) polygons. Complex polygons are discussed.

Ecosystem Type	Total Area (ha)	No. of Polygons	Average Polygon Size (ha)	Range (min – max) (ha)	Area as % Total Area
Wetland Ripa	rian			1 1	
BR	24	7	3.5	0.8 to 8.1	0.2
CA	0.4	1	0.4	N/A	0.0
CE	3	4	0.7	0.2 to 1.5	0.0
EA	2	2	1.0	0.3 to 1.7	0.0
EM	73	57	1.3	0.1 to 7.8	0.5
FA	41	35	1.2	0.2 to 5	0.3
SH	211	89	2.4	0.2 to 9.2	1.5
TB	1,236	293	4.2	0.3 to 36.7	8.5
TF	529	50	10.6	0.4 to 88.6	3.7
WR	277	83	3.3	0.2 to 15.1	1.9
Forest and W	oodland				
AM	528	64	8.2	1 to 53.8	3.6
JL	2,819	157	18.0	0.4 to 120.8	19.5
SL	4,753	415	11.5	0.0 to 101.6	32.8
Sparsely Vege	etated				
BF	28	5	5.5	0.4 to 13.7	0.2
RO	8	7	1.1	0.1 to 2.1	0.1
Water	<u> </u>				
OW	9	18	0.5	0.1 to 2.3	0.1
PD	295	127	2.3	0.1 to 22.7	2.0
LA	2,658	45	59.1	1.4 to 1,293.6	18.4
Anthropogeni	c				
GP	6	2	2.9	0.9 to 5.0	0.0
RP	18	18	1.0	0.4 to 2.3	0.1
RR	9	3	3.0	1.1 to 4.9	0.1
TD	37	2	18.4	3.6 to 33.1	0.3
Cloud	910	22	41.3	0.6 to 499.3	6.3
TOTAL	14,475	1,506			100

Table 9Ecosystem Types Within the YGP Study Area

Broad Ecosystem Units

Fifteen broad ecosystem units were assigned: 12 natural and one anthropogenic landbased units, 1 water-based unit and 1 cloud unit (Table 10). To visualize the abundance and distribution of the broad ecosystem types, the study area mapped according to each

type (Figure 2). Dry coniferous woodland was the most abundant unit, with the burns unit second in abundance. The next most abundant broad ecosystem unit included treed fens and bogs, followed by mixed and coniferous woodlands. The amount of mixed and deciduous woodland might be underestimated. It was difficult to interpret stand composition from the satellite imagery; this is issue is discussed in more detail in Section 5.3.2.

Broad Unit	Total Area (ha)	No. of Polygons	Average Polygon Size (ha)	Area as % Total Area
Birch Hummock	16	6	2.7	0.1
Sedge Fen	5	6	0.7	0.0
Shrubby Fen	140	64	2.2	1.0
Treed Fens and Bogs	1,253	208	6.0	8.7
Riparian Woodland and Shrubland	231	70	3.3	1.6
Other Wetlands	72	56	1.3	0.5
Aquatic Vegetation	41	35	1.2	0.3
Burns	3,292	346	9.5	22.7
Dry Coniferous Woodland	4,070	332	12.4	28.1
Mesic Coniferous Woodland	145	10	14.5	1.0
Mixed and Deciduous Woodland	1,247	126	9.1	8.6
Bedrock and Boulder Field	19	10	1.9	0.1
Anthropogenic	70	25	2.8	0.5
Water	2,962	190	23.3	20.5
Cloud	910	22	41.4	6.3
TOTAL	14,475	1,506		100

Table 10Broad Units Within the YGP Study Area

Complex Polygons

A number of polygons were mapped as complex polygons (i.e., they contained more than one ecosystem type). The most common ecosystem that was complexed with one other unit was SL. This is in part due to the high coverage that this ecosystem type has within the YGP study area. Treed bogs and the JL ecosystems also had a high number of polygons complexed with at least one other ecosystem type. Treed bogs were the most complexed with two other ecosystem types. This is due to the presence of small sedge and shrubby fens within the larger TB polygons. The distribution of complex polygons is provided in Table 11.

Ecosite Total Area (ha)		Simple (1) Poly				olex (3 Ecosites Polygon	
		Area (ha)	No. of Polygons	Area (ha)	No. of Polygons	Area (ha)	No. of Polygons
Wetland Ripa	rian						
BR	24	3.5	3	-	-	21.0	4
CA	0.4	-	-	0.4	1	-	-
CE	3	2.9	4	-	-	-	-
EA	2	0.3	1	1.7	1	-	-
EM	73	30.8	40	25.9	12	16.6	5
FA	41	40.8	35	-	-	-	-
SH	211	68.8	41	85.7	37	56.4	11
TB	1,236	429.7	158	456.9	97	349.6	38
TF	529	106.1	20	122.8	15	300.5	15
WR	277	214.4	71	49.2	10	13.7	2
Forest and W	oodland		•				
AM	528	229.8	40	161.9	19	135.8	5
JL	2,819	222.2	52	2,112.1	92	467.6	12
SL	4,753	1,803.8	262	2,109.1	123	857.2	31
Sparsely Vege	etated						
BF	28	21.9	4	5.8	1	-	-
RO	8	6.0	6	1.7	1	-	-
Water							
OW	9	7.1	17	2.0	1	-	-
PD	295	294.5	127	-	-	-	-
LA	2,658	2,658.2	45	-	-	-	-
Anthropogen	ic						
GP	6	5.9	2	-	-	-	-
RP	18	18.4	18	-	-	-	-
RR	9	8.9	3	-	-	-	-
TD	37	36.8	2	-	-	-	-
Cloud	910	22	910.3	-	-	-	-
TOTAL	14,475	7,121.0	973	5,135.2	410	2,218.4	123

 Table 11

 Distribution of Complex Polygons Within the YGP Study Area

Stand Composition

Stand Composition is provided in Table 12. Of the total study area (~14,475 ha), coniferdominated stands were the most common category covering approximately 5,500 ha, and [mixed wood stands covering approximately 4,300 ha. Mixed wood stands were predominately pine and birch, a result of historical fire disturbances. There were few white spruce – balsam poplar or aspen stands. Difficulties in mapping stand composition from the satellite imagery were encountered and are discussed in detail in Section 5.3.2.

Stand Composition	Total Area (ha)	Number of Polygons	Area as % Total Area	
Broadleaf	612	171	4.2	
Coniferous	5,475	517	37.8	
Mixed	4,319	476	29.8	
Not applicable ¹	4,069	342	28.1	
TOTAL	14,475	1,506	100	
¹ Includes non vegetated, sparsely vegetated, sedge fens and water.				

Table 12Stand Composition Within the YGP Study Area

Structural Stages

The most abundant structural stages were young forest and low-tall shrub woodland. Young forests were characteristic of the upland areas that had been disturbed by fire in the past, but not recently. The northeast portion of the study area had a recent burn, and much of this area was mapped as low-tall shrub/woodland. The dominant vegetation was birch and alder as tall shrubs, with jack pine an understory tree species. Distribution of the structural stages is provided in Table 13.

Structural Stage	Total Area (ha)	Number of Polygons	Area as % Total Area
1 – Sparse Bryoid	73	27	0.5
2 – Herb	123	103	0.8
3 – Low / Tall Shrub / Woodland	4,016	517	27.8
4 – Pole / Sapling	753	75	5.2
5 – Young Forest	5,456	548	37.7
6 – Mature Forest	180	24	1.2
7 – Old Forest	0	0	0
Not applicable ¹	3,872	212	26.7
TOTAL ²	14,475	1,294	100
¹ Water and cloud polygons. ² Individual units may not add to 14, ²	,	,	

Table 13Structural Stages Within the YGP Study Area

5.2.5 Rare Plants and Rare Plant Habitat

The intent of an ELC field program is to map vegetation units based on common characteristics so a rare plant survey was not conducted as part of the field program. Rare plants are often found in unique habitats that are not sampled within an ELC program.

To determine the potential impacts of the project on rare plants, a rare plant habitat potential map was generated based on the abundance of rare plants potentially found within each ecosystem type. Using existing information (McJannet *et al.* 1995 and Department of Resources, Wildlife, and Economic Development [RWED] data) on rare plants found in both the Taiga Plains and Taiga Shield Ecozones, a rare plant list was generated which includes 89 species (Table 14).

Latin Name	Common Name	Habitat	Potential Ecosystem Types
Acorus calamus (Acorus americanus)	Sweetflag	wetlands; borders of quiet water	EM, SH, WR
Adoxa moschatellina	Moschatel	rich leaf-mould in moist partly shaded alder and poplar woods; calcareous soils	AM
Agoseris aurantiaca	Orange False Dandelion	meadows, hot springs, disturbed areas	AM, RP
Agrostis exarata	Spike Redtop	moist, sedge meadows; open ground	CA, CE, EA
Anaphalis margaritacea	Pearly Everlasting	subalpine wooded areas and meadows, roadsides, open forests to subalpine	AM, SL
Apocynum cannabinum	Indian Hemp	exposed river banks	WR
Arabis holboellii	Reflexed Rock Cress	dry, open, sunny, calcareous slopes, open soil	JL, SL, BF, RO
Arabis lyrata	Lyre-leaved Rock Cress	sandy, open areas, moist stoney places, scree slopes	JL, SL
Asplenium viride (trichomanes- ramosum)	Green Spleenwort	moist rocky slope and crevices, crevices in calcareous rocks	SL, JL, BF. RO
Aster nahanniensis	Aster	hot springs and moist areas	AM, SL, JL, WR
Astragalus canadensis	Canadian Milk Vetch	river banks and moist, open woods	WR, AM
Botrychium minganense	Moonwort	grassy meadows, grassy slopes	AM, WR
Botrychium multifidum	Leather Grape Fern	circumpolar prairie clearings, sandy meadows and woods	AM, SL
Botrychium simplex	Dwarf Grape Fern	moist meadows and shores	AM, WR
Callitriche anceps	Water Starwort	shallow ponds, shallow water	EM, FA
Caltha palustris	Marsh marigold	shallow water or in wet marshy places, moist places	EM, CE, EA, SH
Carex arcta	Narrow Sedge	wet woodland bogs, marshes and sandy beaches, wet places	EM, CA, CE, EA, TB, TF, SH
Carex crawfordii	Crawford's Sedge	damp meadows	CA, CE, EA, WR, SH
Carex eleusinoides	Carex spp	wet gravelly river banks and meadows, wet places, gravel bars	WR, SH
Carex heleonastes	Hudson Bay Sedge	bogs, peat bogs and swamps	CA, CE, EA, TB, TF, SH
Carex prairea	Prairie Sedge	bogs	CA, CE, EA, TB, TF
Carex retrorsa	Turned Sedge	woodland marshes	EM
Carex sychnocephala	Long-beaked Sedge	wet places and open woodland meadows	CA, CE, EA, WR
Carex trisperma	Three-seeded Sedge	bogs	CA, CE, EA, TB

Table 14Rare Plants That Could be Found in the YGP Study Area

Latin Name	Common Name	Habitat	Potential Ecosystem Types
Castilleja yukonis	Indian Paintbrush	spruce woods, treed bogs, and grassy slopes, dry hillsides	TB, TF, SL
Cornus suecica	Dogwood	wet mossy areas, woods, marshes, bogs	CA, CE, EA, TB, TF, SH
Crassula aquatica (Tillaea aquatica)	Pigmyweed	shallow ponds, inundated shores	EM, WR
Cryptogramma sitchensis (crispa)	Parsley Fern	calcareous talus slopes and moraine	BF, RO
Cryptogramma stelleri	Fragile Rock-brake	moist shale slopes, crevices in calcareous rocks in shaded localities with dripping water	BF
Danthonia spicata	Poverty Oat Grass	rocky places, dry places	JL, BF, RO
Descurainia pinnata	Green Tansy Mustard	sandy beaches and disturbed areas	RR, RP
Draba incerta	Whitlow-grass	alpine tundra and rocky slopes	BF, JL
Dryopteris carthusiana (D. spinulosa)	Narrow Spinulose Shield Fern	rich woods	AM
Dryopteris expansa (D. dilatata)	Spinulose Shield Fern	moist woods and slopes	AM
Elatine triandra	Waterwort	muddy shores and shallow pond margins	EM, FA
Elymus canadensis	Canada Wild Rye	sandy and gravelly places	AM, SL, JL
Epilobium leptophyllum	Narrow-leaved Willowherb	marshes, sloughs, bogs, and sedge meadows, lowlands	EM, CE, EA
Erigeron acris	Northern Daisy Fleabane	alpine gravelly slopes or sandy river banks, spruce forests, sandy soil	SL, JL
Erigeron yukonensis	Fleabane	calcareous, stony slopes	JL, SL, BF, RO
Euthamia graminifolia (Solidago graminifolia)	Flat-topped Goldenrod	sandy, silty, and gravelly river banks and flats	WR
Heuchera richardsonii	Richardson's Alumroot	woodland meadows	AM
Hudsonia tomentosa	Sand Heather	sand blow-outs, sandy beaches and open jack pine woods	JL
Impatiens capensis (I. bifora)	Spotted Touch-me-not	low wet woodlands and moist banks, wet ground	WR, EM, TF, SH
Isoetes lacustris (I. macrospora)	Quillwort	shallow, sandy lake margins	EM, FA
Juncus dudleyi (J. tenuis)	Bog Rush	wet, calcareous, lowland meadows and river banks, roadsides, open ground	WR, TF, CA, CE, EA, SH, RP
Juncus stygius	Marsh Rush	wet margins of woodland bog pools, wet bogs	EM, TB, CA, EA,
Juncus vaseyi	Big-head Rush	lowland slough-margins, moist shores	EM

Table 14 continuedRare Plants That Could be Found in the YGP Study Area

Latin Name	Common Name	Habitat	Potential Ecosystem Types
Limosella aquatica	Mudwort	wet, muddy or sandy pond margins, wet mud	EM
Lobelia dortmanna	Water Lobelia	shallow, sandy shores of lakes and ponds	EM, FA
Luetkea pectinata	Partridgefoot	alpine tundra and snowbeds	Unknown
Luzula rufescens	Reddish Wood Rush	bogs, marshes and river banks	WR, EM, CA, CE, EA, TF, TB, SH
Lycopus uniflorus	Bugleweed	sandy margins of lakes and streams	WR, EM
Malaxis paludosa (Hammarbya paludosa)	Bog Adder's Mouth	treed bog, wet sphagnum bogs, quagmires	TB, CA, CE, EA
Mertensia paniculata var. alaskana	Bluebell	open woods and river banks	AM, WR
Mimulus guttatus	Yellow Monkey Flower	wet meadows and streams, margins of ponds and streams, wet rocky slopes	WR, EM
Myriophyllum alterniflorum	Water Milfoil	shallow lakes and ponds	EM, FA, OW
Najas flexilis	Slender Naiad	shallow lakes and ponds	EM, FA, OW
Nuphar lutea (Nuphar polysepala)	Yellow Pond Lily	lakes, ponds and slow moving streams	EM, FA, OW, WR
Nymphaea tetragona	White Water Lily	shallow lakes and slow moving streams	EM, FA, OW, WR
Osmorhiza depauperata	Spreading Sweet Cicely	rich woods	AM
Pedicularis macrodonta (P. parviflora)	Lousewort	bogs and marshes	EM, CA, CE, EA, SH, TB, TF
Pellae glabella	Smooth Cliff Brake	limestone cliffs	RO
Platanthera (Habenaria) orbiculata	Large Round-leaved Orchid	spruce and tamarack woodland, dry to moist woods	AM, SL
Poa secunda	Sandberg Blue Grass	fens	CE, EA, TF
Potamogeton foliosus	Leafy Pondweed	shallow still waters	FA, OW
Potamogeton illinoensis	Pondweed	still water	FA, OW
Potamogeton obtusifolius	Blunt-leaved Pondweed	shallow lakes and ponds	FA, OW
Potamogeton robbinsii	Robbin's Pondweed	muddy water	FA, OW
Potamogeton subsibiricus (P. porsildiorum)	Pondweed	shallow lakes and ponds	FA, OW
Prunus virginiana	Choke Cherry	thickets	AM, WR

Table 14 continuedRare Plants That Could be Found in the YGP Study Area

Latin Name	Common Name	Habitat	Potential Ecosystem Types
Ranunculus hispidus (R. septentrionalis)	Buttercup / Crowfoot spp.	willow thickets and slough margins	AM, WR, TF
Ranunculus pensylvanicus	Buttercup / Crowfoot spp.	disturbed and marshy places	CA, CE, EA, SH, TF, RP
Rhynchospora alba	White Beak-rush	fens and bogs, peaty or sandy soil	CA, CE, EA, SH, TF, TB, RP
Rorippa barbareifolia	Yellow Cress	disturbed sites	RR, RP, GP, TD
Rorippa crystallina	Marsh Yellow Cress	carex meadows and marshes	EM, CA, CE, EA
Rosa blanda	Rose	gravelly river terraces	WR, SH
Ruppia cirrhosa (R. spiralis)	Widgeon-grass spp.	shallow lakes, salt and brackish water	EM, FA, OW
Salix raupii	Raup's Willow	gravel floodplains and treed bogs	WR, TF, TB
Sanguisorba officinalis	Burnet	wet tundra, moist places	CA, CE, EA, BR, SH
Sarracenia purpurea	Pitcher Plant	bogs	CA, CE, EA, BR, TB
Scirpus rollandii (Trichophorum pumilum)	Bulrush	marshy lake shores and hot springs, wet places	EM, CE
Scirpus rufus (Blysmus rufus)	Bulrush	wet river banks and saline meadows, seashores	EM
Senecio sheldonensis	Groundsel	subalpine meadows	Unknown
Smelowskia calycina ssp. Media	Silver Rock Cress	stoney slopes and lakeshores, rocky hillsides, gravel	GP, TD, JL, SL
Sparganium eurycarpum	Giant Bur-reed	shallow ponds and sloughs	EM, FA, OW
Tanacetum bipinnatum (T. huronense)	Indian Tansy	sandy river banks	WR
Valeriana dioica (V. septentrionalis	Northern Valerian	fens and lake shores, moist places	EM, CE, EA, SH, TF
Viola canadensis (V. rugulosa)	Western Canada Violet	woodlands along streams and hot springs	WR
Viola selkirkii	Great-spurred Violet	moist thickets, woods, fens and alpine tundra	WR, AM

Table 14 continuedRare Plants That Could be Found in the YGP Study Area

Each plant was investigated for its preferred habitat using existing information sources (Anderson 1974, Douglas *et al.* 1981, Hulten 1968, McJannet *et al.* 1995, and Porsild and Cody 1980). Once habitat information was gathered, each ecosystem type was assessed for its potential to support each rare plant (Table 14). The total number of rare plants that potentially occur in each ecosystem type was then determined. The ecosystem types were ranked from very low potential to very high potential based on the total number of rare plant of rare plant species potentially present.

The habitat suitability rank was derived from a frequency histogram that correlated each ecosystem type with the number of rare plants potentially found within them. While this method is somewhat objective, it does provide a basis to rank ecosystem types against each other for their potential to support rare plants. As a note of caution, rare plants often occur in microsites that cannot always be identified from satellite imagery or through the ELC mapping process. While an ecosystem type may be ranked as very low for rare plant habitat, there is a possibility that rare plants could be found in microsites within that ecosystem type. Ecosystem types, the number of rare plants they could support and their ranking is provided in Table 15.

Ecosystem Type	Total Potential Rare Plants	Rank		
BR	2	Very Low		
GP	2	Very Low		
RR	2	Very Low		
TD	2	Very Low		
RP	5	Low		
RO	6	Low		
BF	7	Low		
JL	11	Moderate		
OW	11	Moderate		
SL	12	Moderate		
TB	14	Moderate		
FA	15	High		
SH	15	High		
TF	15	High		
AM	18	High		
CA	19	High		
CE	22	Very High		
EA	22	Very High		
WR	25	Very High		
EM	27	Very High		
Very Low: 1 to 4 spe	cies.			
Low: 5 to 9 species.				
Moderate: 10 to 14 sp	pecies.			
High: 15 to 19 species.				
Very High: > 20 spec	vies.			

Table 15Rare Plant Habitat Potential for Each Ecosystem Type

Initially area calculations for rare plant habitat were based on the primary ecosystem type. This method did not account for secondary or tertiary ecosystem types within complexed polygons. Consequently, small unmappable units that had high or very high habitat value (i.e., CA, EA or EM) were not included in the mapping process. This would result in the amount of high or very high habitat being underestimated. To be conservative, all complex polygons were mapped according to the ecosystem type that had the highest rare plant habitat potential regardless of whether it was the primary, secondary or tertiary unit identified in the polygon. Therefore, the map could represent an overestimation of high or very high habitat; but in early planning, it is better to be cautious (Figure 3). Area coverage for habitat potential is provided in Table 16.

Potential Number of Rare Plants	Total Area (ha)	Area as % Total Area
1 to 4	55	0.4
5 to 9	46	0.3
10 to 14	8,413	58.1
15 to 19	1,216	8.4
> 20	882	6.1
0	2,953	20.4
0	910	6.3
	14,475	100
	Rare Plants 1 to 4 5 to 9 10 to 14 15 to 19 > 20 0	Rare PlantsTotal Area (ha) $1 \text{ to } 4$ 55 $5 \text{ to } 9$ 46 $10 \text{ to } 14$ $8,413$ $15 \text{ to } 19$ $1,216$ > 20 882 0 $2,953$ 0 910

Table 16Rare Plant Habitat Coverage in the YGP Study Area

5.3 Discussion of Field Sampling and Mapping Results

There were four objectives outlined for the ELC: defining the ecosystem types, mapping and characterizing the landscape using ecosystem types, characterizing the extent the development footprint will have on the landscape, and identifying impacts and mitigation strategies for the development footprint. Meeting the first two objectives is discussed below.

5.3.1 Defining Ecosystem Types

Twelve ecosystem types were quantitatively sampled in the field, while two were characterized qualitatively. Eight of the ecosystem types had two or more plots and the most common ecosystem types had five or more plots for defining the ecosystem type. Four of the twelve ecosystem types sampled (i.e., BR, CA, EA and CE) had only one quantitative plot. While the numbers are low for these four, they have limited distribution within the YGP study area. The willow – sedge low shrub fen (SH) and the floating aquatic (FA) ecosystem types were qualitatively described. We feel that for mapping, the definitions are sufficient; however, further field characterization would enhance our knowledge of variability especially if any of these ecosystem types fall within the project footprint.

5.3.2 Mapping and Characterizing the Landscape

Landscape patterns and features associated with terrain and vegetation were mapped in the study area using the defined ecosystem types and satellite imagery. Confidence in mapping the vegetated units ranged from high to low, with high confidence for the EA,

EM, FA, SH, TB, TF and WR ecosystems, moderate confidence for the BR, BF, CA, CE, JL and SL ecosystems and low confidence for the AM ecosystem.

Confidence was moderate in the SL, JL and low in the AM due to a lack of detailed topographical information. In the field, SL units were often situated in level positions or on slopes, while the JL sites were confined to crests, areas of high bedrock or esker complexes. While it was possible to distinguish areas of high bedrock, without contour details, it was difficult to determine changes in slope position. Coloration of the SL and the JL units were similar and could not be used as an accurate tool to distinguish the two ecosystem units. During our field sampling, AM was found on a variety of slope positions, and its identification from the satellite image using color was not consistent. This resulted in a low confidence in the mapping of the AM unit.

Differentiation of the JL and the SLr (rock modifier for the SL unit) was made on the basis of the amount of continuous rock cover. From data collected in the field, JL units occurred in areas where there was high rock cover with sporadic vegetation. During the mapping process, if rock cover was high and vegetation cover was sparse, it was assigned as JL; if vegetation cover was moderate, it was mapped as an SLr unit. Eskers were not apparent from the imagery, and only those that were observed while in the field where identified in the mapping process.

Structural and stand composition was also attributed to each polygon. Confidence in mapping the structural stage is high in areas surrounding full and visual plots. Where possible, plot photos that were taken of the landscape were used to attribute polygons. There was little difference in the imagery color among deciduous, mixed or coniferous so mapping stand composition with the absence of field data was difficult. There is good coverage of the study area near the Discovery Mine and around Iguaçu, Maguire, Nicholas and Eclipse lakes. Plot coverage in the northwest and northeast is low resulting in low confidence in structural stage polygon attribution in these areas.

Confidence in mapping the broad ecosystem units is moderate. Confidence is not high due to the difficulty in mapping stand composition. The highest error is likely in the attribution of the mixed and deciduous stands versus the dry coniferous. Due the fire history, there were seral birch communities in what would eventually succeed to black spruce.

6.0 THE PROJECT FOOTPRINT

The purpose of this field report is not to provide a detailed impact assessment for the soil and vegetation and resources. The information provided below is an overview of the development and the potential effects and mitigation that may be required . Information is descriptive based on ecological principles and not necessarily based on the specific soils and vegetation types found within the footprint.

6.1 **Project Effects**

The project will have a direct effect on 117.2 ha, the majority of this from development around the processing facility, 88.2 ha, and 28.9 ha for the all weather road (Figure 1). Exploration, construction and site activities will require the clearing of vegetation, grading, cut and fills, excavations of borrow material and development of an all weather road. This may affect soil resources, and will result in a direct loss of vegetation. As well, air emissions from the processing facility could affect vegetation health.

Table 17 provides a list of the ecosystem types that will undergo vegetation removal. The majority of the clearing for both the plant area and the road will occur within the SL and JL ecosystems types. These are the most abundant types within the YGP study area. One ecosystem type of restricted distribution will be disturbed. The EM ecosystem will be affected by the facilities development. The size of the disturbance is 1.7 ha, which represents 1.5% of the footprint. No other natural ecosystems of restricted distribution will be disturbed by the proposed development. While the WR and AM ecosystems are not of restricted distribution, they are important ecosystems for wildlife habitat and biodiversity. Approximately 3.0 ha of WR and 1.8 ha of AM will be affected. Approximately 11.3 ha (9.7% of the footprint) will be on previously disturbed areas.

Table 18 provides details on the rare plant habitat that will be disturbed. The majority of the development, 79.3 ha or 67.7% of the footprint, will occur on moderate habitat potential. The footprint will affect 4.6 ha of high habitat and 5.3 ha of very high habitat. This represents 3.9% and 4.5% of the footprint, respectively. The coverage of these two habitats in the YGP study area is 8.4% and 6.3%, respectively.

Econvetom ¹	Plant	t Area	Road	l Area	– Total Area	Area as %
Ecosystem ¹ – Type	Area (ha)	Area as % Plant Area	Area (ha)	Area as % Road Area	- Total Area (ha)	Total Area
Wetland Ripa	arian					
EM	1.71	1.9	-	-	1.71	1.5
SH	0.23	0.3	-	-	0.23	0.2
TB	10.18	11.5	3.22	11.1	13.39	11.4
TF	1.16	1.3	0.57	2.0	1.73	1.5
WR	2.61	3.0	0.95	3.3	3.56	3.0
Forest and W	oodland					
AM	2.16	2.4	-	-	2.16	1.8
JL	14.33	16.2	8.21	28.4	22.53	19.2
SL	32.94	37.3	10.90	37.6	43.84	37.4
Water						
LA	11.54	13.1	-	-	11.54	9.9
Anthropogen	ic					
GP	0.54	0.6	0.01	0.0	0.54	0.5
RP	1.60	1.8	1.49	5.2	3.09	2.6
RR	2.58	2.9	0.15	0.5	2.73	2.3
TD	5.06	5.7	-	-	5.06	4.3
Cloud	1.60	1.8	3.45	11.9	5.04	4.3
TOTAL ²	88.21	100	28.94	100	117.16	100

Table 17Vegetation Removal Proposed for Each Ecosystem Type in the YGP Study Area

¹ Bolded ecosystem types are of restricted distribution (did not include anthropogenic units in this category).

² Due to rounding errors, numbers may not total similarly.

Rare Plant	Plan	t Area	Road	l Area	Total Area	Area as %
Habitat Potential	Area (ha)	Area as % Plant Area	Area (ha)	Area as % Road Area %	(ha)	Total Area
VL	8.17	9.3	0.16	0.6	8.32	7.1
L	1.60	1.8	1.49	5.2	3.09	2.6
М	57.45	65.1	21.81	75.4	79.26	67.7
Н	3.54	4.0	1.08	3.7	4.62	3.9
VH	4.32	4.9	0.95	3.3	5.27	4.5
NA ¹	13.13	14.9	3.44	11.9	16.59	14.16
TOTAL ²	88.21	100	28.94	100	125.57	100

Table 18Vegetation Removal Proposed for Each Rare Plant Habitat Area

¹NA – not applicable and includes lakes, ponds and cloud areas.

² Due to rounding errors, numbers may not total similarly.

Impacts are generally based on criteria such as direction, scope, duration, frequency, magnitude and confidence (Beanlands and Duinker, 1983; FEARO, 1994). Using these criteria, a level of significance can be placed on the impact. Significant impacts can occur if there is impairment to a resources function or process, if a large enough portion of the resource is impacted or if the impact is long term. At this time in the project planning it is only possible to indicate that impacts will occur; it is not possible to determine the level of significance at this time.

Based on the Project's activities, the following potential impacts on vegetation have been identified:

- vegetation removal;
- alteration of soil properties;
- increased air emissions;
- introduction of non-native or invasive species;
- increased risk of spills;
- site maintenance activities; and
- increased risk of fire due to human presence.

Mitigation measures, if required, are discussed below.

6.2 Mitigation Strategies

Potential mitigation strategies for the effects to soils and vegetation resources are provided in Table 19. This information is general in nature and is not meant to replace mitigation measures based on a more detailed impact assessment.

Potential Effect	Consequence	Mitigation
Vegetation Removal	Loss of vegetation; increase in ecosystem fragmentation; loss of high rare plant habitat; loss of ecosystems with restricted distribution.	Minimize footprint; minimize development on ecosystem types with restricted distribution or with high potential for rare plants; avoid sensitive ecosystems; minimize off-site activities such as ATV use; reclamation to restore to pre-disturbance conditions.
Alteration of Soil Properties	Loss of soil; compaction of mineral soil by vehicle traffic; erosion; changes in soil quality and chemistry due to spills.	Minimize footprint; where possible salvage mineral topsoil; minimize traffic off site; implement erosion control measures on slopes as required; implement emergency response plan.
Increased air Pollution	Increase dust fall from traffic; emissions of SO_2 and NOx are acidifying to vegetation (toxicity to leaf surfaces) and soil.	Use of dust suppressants; minimize traffic; minimize air emissions; continued monitoring of air emissions.
Introduction of Non-native or Invasive Species	Growth and spread of non-native or invasive species.	Clean all equipment before coming to site; train staff on the identification and control of non-native and invasive plants, vehicle washing as required.
Increased Risk of Spills	Direct impact to vegetation; contamination of soil and water.	Implement an emergency response system; follow appropriate procedures for spill containment and clean up.
Site Maintenance Activities	Use of herbicides, sterilants and dust suppressants; salts on road services can lead to contamination through surface water movement; waste disposal activities.	Implement vegetation control guidelines to minimize the affect of herbicides and sterilants on native vegetation; ensure use of road salts, oil, or dust suppressants is controlled and monitored; storage of chemicals must be in a facility that minimizes potential entry into the environment; dispose of all wastes in approved containers.
Increased Risk of Fire due to Human Presence	Fire is a natural disturbance, but human activity may increase the risk of fire, increasing risk to vegetation resources.	It is uncertain if mitigation is necessary since this can be considered a natural occurrence. More information is required.

Table 19Potential Effects and Mitigation Strategies

7.0 SUMMARY

Ecological land classification mapping was carried out for the YGP study area. Baseline data was collected in July 2004, and 22 ecosystem types were classified within the 14,475 ha study area. Fourteen of these were naturally vegetated, three were classified as water, four were anthropogenic and one was cloud. Fifteen broad ecosystem units that correlated to the West Kitikmeot/Slave Study were also assigned to each polygon. The study area was mapped for potential rare plant habitat. A rare plant habitat potential map was generated based on the abundance of rare plants potentially found within each ecosystem type.

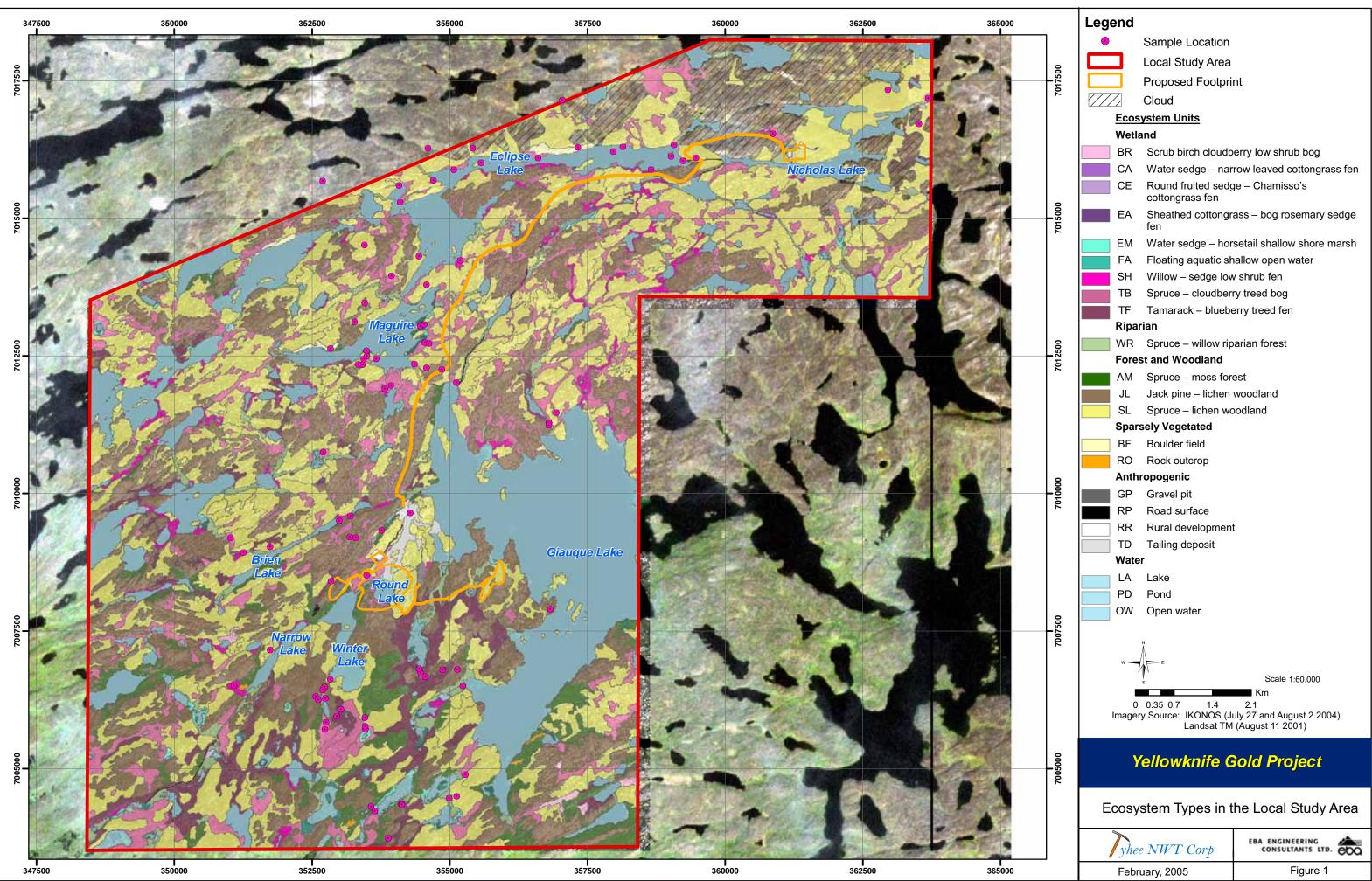
Confidence in the mapping and subsequent data analysis is moderate to high for most units, with the exception of the AM unit, which is low. Confidence in mapping structural stage, stand composition and broad ecosystem units is moderate. Confidence in mapping the rare plant habitat potential is moderate.

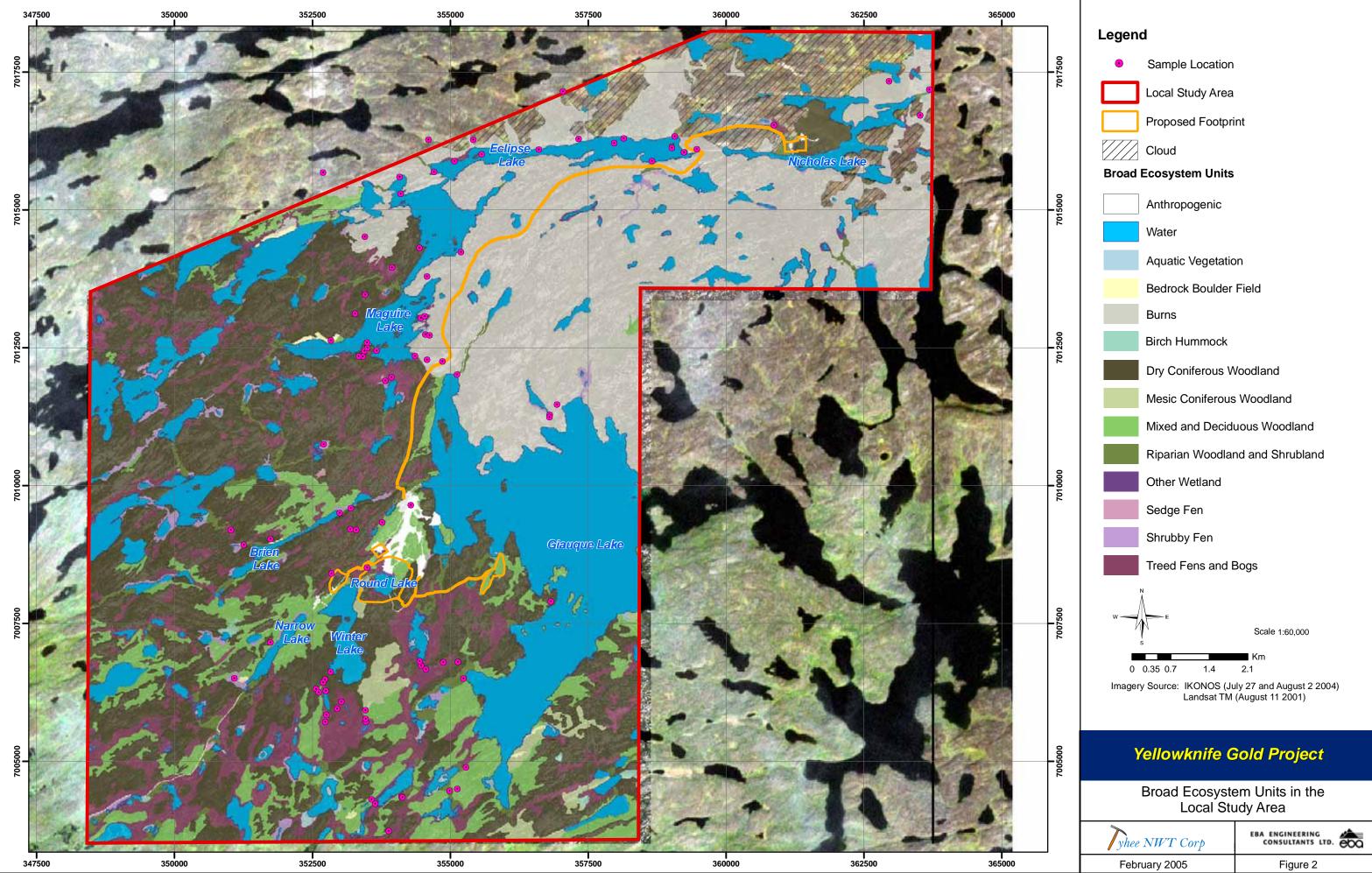
The project will have a direct impact on 117.2 ha, the majority of this is development of the processing facilities (88.2 ha) and the remaining 28.9 ha is from the all weather road. Based on the Project's activities, the following potential impacts have been identified: vegetation removal, alteration of soil properties, alternation of hydrology, change in water quality, increased air emissions, introduction of non-native or invasive species, increased risk of spills, site maintenance activities, increased risk of fire due to human presence. Potential mitigation strategies are identified for each of these impacts. At this time in the project planning, it is only possible to indicate that impacts will occur. It is not possible to determine the level of significance.

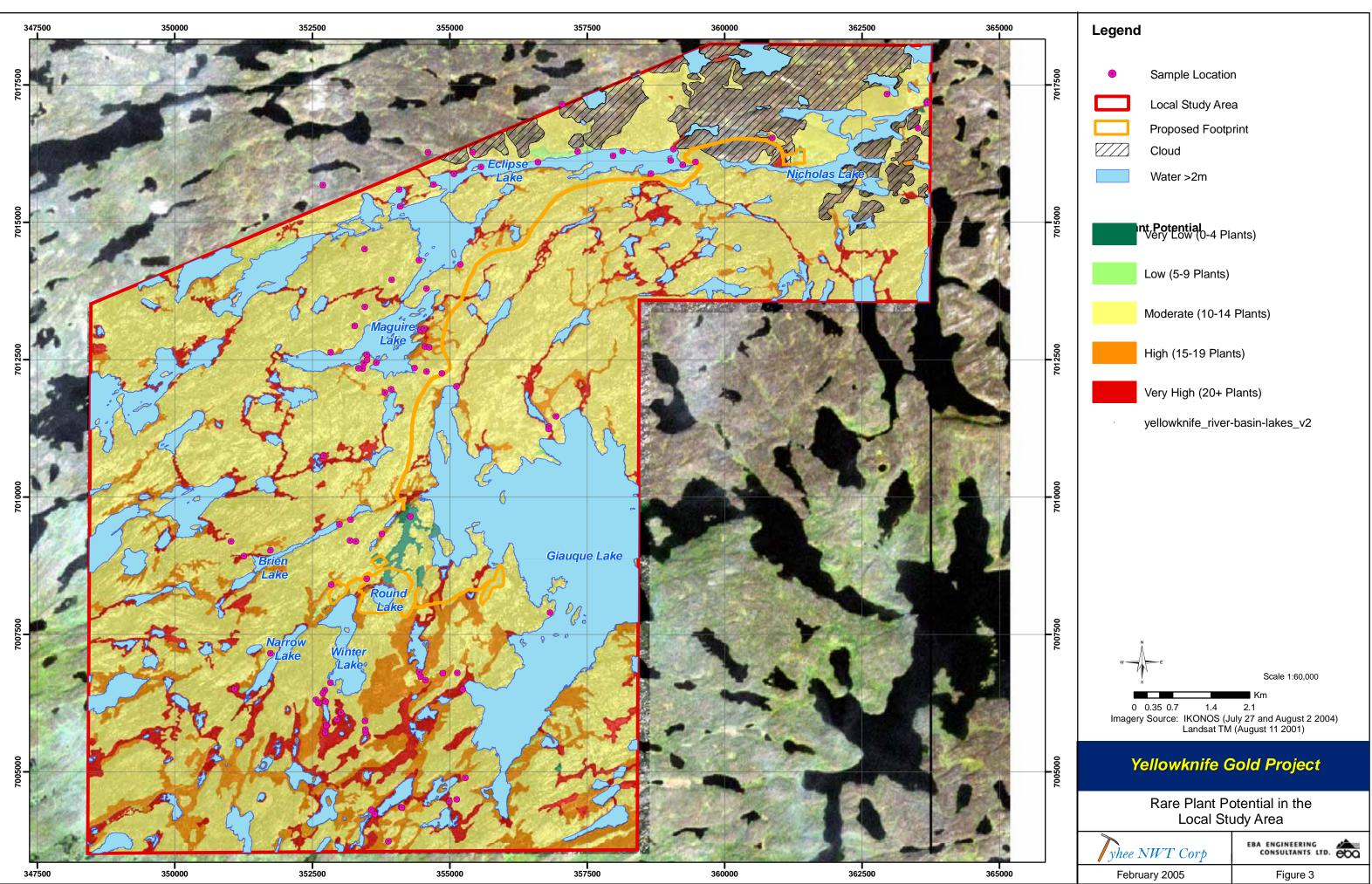
8.0 **REFERENCES**

- Agriculture Canada. 1977. Soils of Canada. Volume 1: Soil Report, Volume 2: Inventory, and maps. Research Branch, Canada Department of Agriculture. Ottawa, Ontario.
- Anderson, J.P. 1974. Anderson's Flora of Alaska and Adjacent Parts of Canada. Revised by Stanley L. Welsh. Brigham Young University Press, Provo, Utah.
- Beanlands, G.E. and P.N. Duinker. 1983. An Ecological Framework for Environmental Impact Assessment in Canada. Institute for Resource and Environmental Studies, Dalhousie University. Published in Cooperation with the Federal Environmental Assessment Review Office. 132 pp.
- BHP Diamonds Inc. 1995. NWT Diamonds Project Environmental Impact Statement. Submitted to the Federal Environmental Assessment Review Panel.
- BHP Diamonds Inc. 2000. Environmental Assessment Report for Sable, Pigeon and Beartooth Kimberlite Pipes.
- Bradley, S.W., Rowe, J.S. and C. Tarnocai. 1982. An Ecological Land Survey of the Lockhart River Map Area, North West Territories. Ecological Land Classification Series, No. 16. Ottawa, Ontario. 146 pp.
- Canada Forest Management Institute. 1974. Vegetation types of the Mackenzie Corridor. Prepared by Canadian Forestry Service, Environment Canada for the Environmental-Social Program, Northern Pipelines, March, 1974.
- De Beers. 2001. Snap Lake Diamond Project Scoping and Technical Support Document. Submitted to the Mackenzie Valley Land and Water Board. February 2000.
- Diavik Diamonds Project (Diavik). 1998. Environmental Assessment Submission.
- Douglas, G.W., G.W. Argus, H.L. Dickson and D.F. Brunton. 1981. The Rare Vascular Plants of the Yukon. Syllogeus No. 28. National Museum of Natural Sciences. Ottawa, Ontario.
- EBA Engineering Consultants Ltd. and Jacques Whitford Environmental Ltd. 2000. Gahcho Kué NT.
- EBA. 2002a. Tibbitt to Contwoyto Winter Road Ecological Land Classification. Prepared by: EBA Engineering Consultants Ltd., Yellowknife, NT. Submitted to: Tibbitt to Contwoyto Winter Road Joint Venture. Yellowknife, NT. Project No. 0101-01-014875. April 2002

- EBA. 2002b. Tibbitt to Contwoyto Winter Road Biophysical Map Book. Prepared by: EBA Engineering Consultants Ltd., Yellowknife, NT. Submitted to: Tibbitt to Contwoyto Winter Road Joint Venture. Yellowknife, NT. Project No. 0101-01-014875. April 2002
- Environment Canada. 2000. Terrestrial Ecozones and Ecoregions of Canada. Website address: <u>www.ec.gc.ca/soer-ree/English/Framework/NarDesc/taishdwe.cfm</u>.
- Federal Environmental Assessment Review Office. (FEARO). 1994. Reference Guide: Determining Whether a Project is likely to Cause Significant Adverse Environmental Effects. Canadian Environmental Assessment Agency. Ottawa, Ontario.
- Golder Associates. 1997a. Technical Memorandum #6. Extended Local Area Vegetation Mapping. Prepared for Diavik Diamonds Project.
- Golder Associates. 1997b. Technical Memorandum #8. Vegetation / Landcover Remote Sensing Analysis. Prepared for Diavik Diamonds Project.
- Hulten, E. 1968. Flora of Alaska and Neighboring Territories: A Manual of the Vascular Plants. Stanford University Press, Stanford, California.
- Klohn Leonoff. 1992. Discovery Mine, Options for Tailings Reclamation. Prepared for Department of Indian Affairs and Northern Development. PB 5843 01.
- Larsen, J.A. 1971. Vegetation of Fort Reliance, NWT. Canadian Field-Naturalist. 85(2): 147-178.
- Matthews, S. and H. Epp. 2001. Vegetation classification for the West Kitikmeot / Slave Study Region. Final Report Submitted to the West Kitikmeot / Slave Study Society by The Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories. Yellowknife, Northwest Territories.
- McJannet, C.L, G.W. Argus and W.J. Cody. 1995. Rare Vascular Plants in the Northwest Territories. Canadian Museum of Nature. Syllogeus No. 73. Ottawa, Ontario.
- Porsild, A. E. and W. J. Cody. 1968. Checklist of the vascular plants of continental Northwest Territories, Canada. Dept. of Agriculture, Plant Research Institute. Ottawa, Ontario. 102 p.
- Porsild A. E. and W.J. Cody. 1980. Vascular plants of the Continental Northwest Territories. Canada. National Museum of Canada, Ottawa, Ontario.


- Province of British Columbia. 1998. Field Manual for Describing Terrestrial Ecosystems. Land Management Handbook Number 25, British Columbia Ministry of Environment, Lands, and Parks and British Columbia Ministry of Forests, Crown Publications, Victoria, British Columbia. 240 pp.
- Province of British Columbia. 1999. VENUS: Vegetation and Environment NexUS, dataentry, reporting, and analysis tool (software package). British Columbia Ministry of Environment, Lands, and Parks and British Columbia Ministry of Forests. Victoria, British Columbia. (<u>http://www.for.gov.bc.ca/research/venus</u>).
- Resources Inventory Committee (RIC). 1998a. Standards for Terrestrial Ecosystem Mapping in British Columbia. Ecosystems Working Group, Terrestrial Ecosystems Task Force. Victoria, British Columbia. 110 pp. Accessed by website: <u>http://www.for.gov.bc.ca/ric/Pubs/teEcolo/tem/indextem.htm</u>
- Resources Inventory Committee (RIC). 1998b. Standard for Digital Terrestrial Ecosystem Mapping (TEM) Data Capture in British Columbia. Ecosystem Working Group/Terrestrial Ecosystem Task Force, Resources Inventory Committee. Victoria, British Columbia. Accessed by website: http://www.for.gov.bc.ca/ric/pubs/teecolo/temdata/index.htm
- Sims, R.A., Corns, I.G.W. and K. Klinka. 1996. Introduction Global to Local: Ecological Land Classification *in* Sims, R.A., Corns, I.G.W. and K. Klinka (eds). Global to Local: Ecological Land Classification Kluwer Academic Publications. The Netherlands. 610 pp.
- Vitt, D.H., J.E. Marsh and R.B. Bovey. 1988. Mosses, Lichens and Ferns of Northwest North America. Lone Pine Publishing. Edmonton, Alberta.


FIGURES


- Figure 1 Ecosystem Types in the YGP Study Area
- Figure 2 Broad Ecosystem Units in the YGP Study Area Figure 3 Rare Plant Potential

Project No. 1740082

Project No. 1740082

APPENDIX A

ELC FIELD DATA

Vegetation Table Site Unit BR: scub birch - cloudberry low shrub bog

Lifeform	Spp	Common Name	Р	MC	F19
1	Larix laricina	tamarack	100.0%	6.0	6.0
1	Picea mariana	black spruce	100.0%	1.0	1.0
4	Betula nana	scrub birch	100.0%	85.0	85.0
4	Salix myrtillifolia	bilberry willow	100.0%	1.0	1.0
4	Salix sp.	willow	100.0%	1.0	1.0
5	Equisetum sylvaticum	wood horsetail	100.0%	0.1	0.1
6	Calamagrostis canadensis	bluejoint	100.0%	0.1	0.1
7	Epilobium sp.	willow herb	100.0%	0.1	0.1
12	Rubus chamaemorus	cloudberry	100.0%	8.0	8.0

Vegetation Table Site Unit CA: water sedge - narrow-leaved cottongrass fen

Lifeform	Spp	Common Name	Р	MC	F34
1	Larix laricina	tamarack	100.0%	3.0	3.0
3	Chamaedaphne calyculata	leatherleaf	100.0%	10.0	10.0
6	Carex aquatilis	water sedge	100.0%	70.0	70.0
9	Sphagnum sp.	Peat moss	100.0%	1.0	1.0
12	Andromeda polifolia	bog-rosemary	100.0%	3.0	3.0
12	Rubus chamaemorus	cloudberry	100.0%	5.0	5.0
12	Vaccinium vitis-idaea	bog cranberry	100.0%	1.0	1.0

Vegetation Table Site Unit CE: round-fruited sedge - Chamisso's cottongrass fen

Lifeform	Spp	Common Name	Р	MC	F09
3	Chamaedaphne calyculata	leatherleaf	100.0%	0.1	0.1
3	Ledum groenlandicum	Labrador tea	100.0%	1.0	1.0
6	Carex brunnescens	brownish sedge	100.0%	1.0	1.0
6	Carex capillaris	hairlike sedge	100.0%	20.0	20.0
6	Carex sp.	sedge	100.0%	2.0	2.0
6	Eriophorum chamissonis	Chamisso's cotton-grass	100.0%	10.0	10.0
6	Eriophorum vaginatum	sheathed cotton-grass	100.0%	5.0	5.0
6	Calamagrostis stricta ssp. inexpansa	slimstem reedgrass	100.0%	1.0	1.0
7	Epilobium sp.	willowherb	100.0%	0.1	0.1
9	Sphagnum fuscum	common brown sphagnum	100.0%	20.0	20.0
9	Sphagnum squarrosum	shaggy sphagnum	100.0%	5.0	5.0
12	Andromeda polifolia	bog-rosemary	100.0%	2.0	2.0
12	Oxycoccus oxycoccos	small bog cranberry	100.0%	0.1	0.1
12	Rubus chamaemorus	cloudberry	100.0%	5.0	5.0

Vegetation Table Site Unit EA: sheathed cottongrass - bog-rosemary sedge fen

Lifeform	Spp	Common Name	Р	MC	F10
1	Larix laricina	tamarack	100.0%	0.1	0.1
3	Chamaedaphne calyculata	leatherleaf	100.0%	10.0	10.0
4	Betula nana	scrub birch	100.0%	5.0	5.0
4	Salix arbusculoides	northern bush willow	100.0%	1.0	1.0
6	Carex aquatilis	water sedge	100.0%	60.0	60.0
6	Carex interior	inland sedge	100.0%	0.1	0.1
6	Eriophorum angustifolium	narrow-leaved cotton-grass	100.0%	0.1	0.1
6	Eriophorum chamissonis	Chamisso's cotton-grass	100.0%	0.1	0.1
7	Petasites sagittatus	arrow-leaved coltsfoot	100.0%	1.0	1.0
7	Comarum palustre	marsh cinquefoil	100.0%	0.1	0.1
9	Calliergon sp.	water moss	100.0%	1.0	1.0
9	Sphagnum fuscum	common brown sphagnum	100.0%	6.0	6.0
9	Sphagnum magellanicum	midway peat moss	100.0%	2.0	2.0
9	Sphagnum squarrosum	shaggy sphagnum	100.0%	30.0	30.0

Vegetation Table Site Unit EM: water sedge - horsetail shallow shore marsh

Lifeform	Spp	Common Name	Р	MC	F11	F17	F03	F06
3	Chamaedaphne calyculata	leatherleaf	50.0%	0.1			0.1	0.1
4	Myrica gale	sweet gale	50.0%	6.3			25.0	0.1
4	Salix myrtillifolia	bilberry willow	25.0%	0.3	1.0			
4	Salix sp.	willow	25.0%	0.0				0.1
6	Calamagrostis canadensis	bluejoint	50.0%	0.3	1.0	0.1		
6	Carex aquatilis	water sedge	100.0%	55.3	1.0	90.0	70.0	60.0
6	Carex brunnescens	brownish sedge	50.0%	0.8	2.0		1.0	
6	Carex capillaris	hairlike sedge	25.0%	0.0	0.1			
6	Carex paupercula	bog sedge	35.0%	0.3				1.0
6	Carex utriculata	beaked sedge	75.0%	12.5	40.0	0.1		10.0
6	Eleocharis palustris	common spike-rush	25.0%	0.0	0.1			
7	Calla palustris	wild calla	25.0%	2.5		10.0		
7	Cicuta bulbifera	bulbous water-hemlock	25.0%	0.0		0.1		
7	Epilobium sp.	willowherb	25.0%	0.0		0.1		
7	Galium trifidum	small bedstraw	25.0%	0.0		0.1		
7	Hippuris vulgaris	common mare's-tail	25.0%	0.0	0.1			
7	Potentilla norvegica	Norwegian cinquefoil	25.0%	0.0		0.1		
7	Comarum palustre	marsh cinquefoil	100.0%	2.1	0.1	0.1	3.0	5.0
7	Ranunculus gmelinii	small yellow water-buttercup	25.0%	0.0		0.1		
7	Rorippa palustris	marsh yellow cress	25.0%	0.0		0.1		
7	Sparganium sp.		25.0%	0.0		0.1		
7	Typha latifolia	common cattail	25.0%	0.0	0.1			
7	Utricularia intermedia	flat-leaved bladderwort	25.0%	0.3	1.0			
7	Utricularia macrorhiza	greater bladderwort	25.0%	1.0		4.0		
7	Utricularia sp.	bladderwort	25.0%	0.5			2.0	
9	Calliergon sp.	water moss	25.0%	0.5				2.0
9	Dicranum sp.		25.0%	10.0	40.0			
9	Drepanocladus sp.		25.0%	1.3				5.0
9	Polytrichum strictum	bog haircap moss	25.0%	2.5	10.0			
9	Sphagnum squarrosum	shaggy sphagnum	25.0%	0.5			2.0	
12	Andromeda polifolia	bog-rosemary	25.0%	0.3			1.0	

Vegetation Table Site Unit FA: floating aquatic shallow open water

Lifeform	Spp	Common Name	Р	MC

No quantitative data collected

Vegetation Table Site Unit SH: willow - sedge low shrub fen

Lifeform	Spp	Common Name	Р	MC

No quantitative data collected

Vegetation Table Site Unit TB: spruce - cloudberry treed bog

Lifeform	Spp	Common Name	Р	MC	F01	F12	F15	F25	F05
1	Larix laricina	tamarack	20.0%	0.6	3.0				
1	Picea mariana	black spruce	100.0%	12.0	6.0	10.0	8.0	36.0	0.1
1	Pinus banksiana	jack pine	40.0%	0.1	0.2				0.2
2	Betula occidentalis	water birch	40.0%	1.8			6.0		3.0
2	Betula papyrifera	paper birch	20.0%	1.6			8.0		
3	Ledum groenlandicum	Labrador tea	100.0%	44.0	40.0	70.0	50.0	40.0	20.0
3	Ledum palustre ssp. decumbens	northern Labrador tea	20.0%	0.0					0.1
4	Alnus viridis ssp. crispa	green alder	20.0%	0.6					3.0
4	Betula nana	scrub birch	20.0%	0.6					3.0
4	Salix glauca	grey-leaved willow	20.0%	0.0					0.1
4	Salix myrtillifolia	bilberry willow	20.0%	0.2					1.0
4	Salix planifolia	tea-leaved willow	40.0%	2.2			10.0		1.0
4	Salix sp.	willow	20.0%	0.0					0.1
4	Vaccinium uliginosum	bog blueberry	60.0%	0.8	1.0	2.0			1.0
5	Equisetum arvense	common horsetail	40.0%	0.6	0.1				3.0
5	Equisetum scirpoides	dwarf scouring-rush	20.0%	1.4			7.0		
5	Equisetum sylvaticum	wood horsetail	20.0%	0.2					1.0
6	Calamagrostis stricta ssp. inexpansa	slimstem reedgrass	40.0%	0.2	0.1		1.0		
6	Carex aquatilis	water sedge	20.0%	0.0					0.1
6	Carex brunnescens	brownish sedge	20.0%	0.0					0.1
7	Epilobium angustifolium	fireweed	20.0%	0.0					0.1
7	Geocaulon lividum	bastard toad-flax	20.0%	0.2	1.0				
7	Pinguicula vulgaris	common butterwort	20.0%	0.0	0.1				
9	Aulacomnium sp.		20.0%	0.2					1.0
9	Aulacomnium turgidum	fat glow moss	20.0%	0.0	0.1				
9	Calliergon sp.		20.0%	0.0					0.1
9	Dicranum sp.		60.0%	12.0	15.0	25.0			20.0
9	Drepanocladus sp.		20.0%	0.4		2.0			
9	Moss sp.	moss	20.0%	6.0			30.0		
9	Polytrichum strictum	bog haircap moss	60.0%	1.5	4.0	3.0			0.5
9	Sphagnum fuscum	common brown sphagnum	40.0%	3.4	2.0				15.0
9	Sphagnum squarrosum	shaggy sphagnum	20.0%	0.0					0.1
9	Tomentypnum nitens	golden fuzzy fen moss	20.0%	0.0					0.1
11	Cetraria sp.	icelandmoss lichens	20.0%	7.0	35.0				
11	Cladina mitis	lesser green reindeer	40.0%	1.6	5.0		3.0		
11	Cladina rangiferina	grey reindeer	80.0%	3.2	10.0	5.0	0.1	l	1.0
11	Cladina stellaris	star-tipped reindeer	20.0%	0.6	3.0				
11	Cladonia sp.	clad lichens	80.0%	6.0	5.1	15.0	4.0		6.0
11	Icmadophila ericetorum	spraypaint	40.0%	0.1	0.1				0.2
11	Peltigera aphthosa	freckle pelt	40.0%	0.0	0.0				0.1
11	Stereocaulon tomentosum	eyed foam	20.0%	0.4			2.0		
12	Andromeda polifolia	bog-rosemary	40.0%	1.2	3.0	3.0			
12	Arctostaphylos alpina var. rubra	alpine bearberry	20.0%	0.4					2.0
12	Empetrum nigrum	crowberry	60.0%	0.4	1.0			1.0	0.1
12	Oxycoccus oxycoccos	small bog cranberry	20.0%	0.0	0.1				
12	Rubus chamaemorus	cloudberry	80.0%	2.0		1.0	2.0	5.0	2.0
12	Vaccinium vitis-idaea	bog cranberry	60.0%	0.8	2.0		1.0	1.0	

Vegetation Table Site Unit TF: tamarack - blueberry treed fen

					9	0
Lifeform	Spp	Common Name	Р	MC	F36	F20
1	Larix laricina	tamarack	100.0%	6.0	9.0	3.0
1	Picea mariana	black spruce	100.0%	13.0	25.0	1.0
3	Ledum groenlandicum	Labrador tea	50.0%	5.0	10.0	
3	Ledum palustre ssp. decumbens	northern Labrador tea	50.0%	2.5	5.0	
4	Betula nana	scrub birch	100.0%	18.0	1.0	35.0
4	Salix arbusculoides	northern bush willow	50.0%	2.5		5.0
4	Salix glauca	grey-leaved willow	50.0%	0.1		0.2
4	Salix sp.	willow	100.0%	2.6	0.1	5.0
4	Shepherdia canadensis	russet buffalo berry	50.0%	0.1		0.1
4	Vaccinium uliginosum	bog blueberry	100.0%	0.6	1.0	0.1
5	Equisetum sylvaticum	wood horsetail	100.0%	0.6	1.0	0.1
6	Carex aquatilis	water sedge	100.0%	0.6	0.1	1.0
6	Eriophorum chamissonis	Chamisso's cotton grass	50.0%	0.1		0.1
7	Epilobium sp.	willow herb	50.0%	0.1		0.1
7	Pedicularis labradorica	Labrador lousewort	100.0%	0.1	0.1	0.1
7	Ranunculus lapponicus	Lapland buttercup	50.0%	0.1	0.1	
9	Aulacomnium sp.		50.0%	0.5	1.0	
9	Dicranum sp.		50.0%	2.5	5.0	
9	Polytrichum strictum	bog haircap moss	50.0%	1.0	2.0	
9	Sphagnum fuscum	common brown sphagnum	50.0%	15.0	30.0	
9	Sphagnum squarrosum	shaggy sphagnum	50.0%	1.0	2.0	
11	Cetraria sp.	icelandmoss lichens	50.0%	0.5	1.0	
11	Cladina mitis	lesser green reindeer	50.0%	2.5	5.0	
11	Cladina stellaris	star-tipped reindeer	50.0%	0.1	0.1	
11	Peltigera aphthosa	freckle pelt	50.0%	0.1	0.1	
12	Empetrum nigrum	crowberry	50.0%	2.0	4.0	
12	Rubus chamaemorus	cloudberry	50.0%	0.1		0.1
12	Vaccinium vitis-idaea	bog cranberry	100.0%	1.1	2.0	0.1

Vegetation Table Site Unit WR: spruce - willow riparian forest

Lifeform	Spp	Common Name	Р	MC	F37	F14	F23	F24
1	Picea glauca	white spruce	75.0%	4.0	2.1		3.0	11.0
1	Picea mariana	black spruce	25.0%	1.3		5.0		
2	Betula occidentalis	water birch	25.0%	5.0		20.0		
2	Betula papyrifera	paper birch	75.0%	22.5	5.0		40.0	45.0
2	Populus balsamifera	balsam poplar	25.0%	15.0	60.0			
4	Betula nana	scrub birch	25.0%	0.0		0.1		
4	Ribes hudsonianum	northern blackcurrant	25.0%	12.5				50.0
4	Ribes sp.	currant or gooseberry	50.0%	1.3	3.0		2.0	
4	Rosa acicularis	prickly rose	50.0%	0.8			0.1	3.0
4	Rubus idaeus	red raspberry	75.0%	2.0	3.0		0.1	5.0
4	Salix arbusculoides	northern bush willow	25.0%	0.8		3.0		
4	Salix planifolia ssp. planifolia	tea-leaved willow	25.0%	1.3		5.0		
4	Salix sp.	willow	75.0%	15.5	7.0		50.0	5.0
4	Vaccinium uliginosum	bog blueberry	25.0%	0.0		0.1		
4	Viburnum edule	highbush-cranberry	75.0%	5.0	0.1		5.0	15.0
5	Equisetum sylvaticum	wood horsetail	75.0%	1.3	0.1	2.0		3.0
6	Calamagrostis canadensis	bluejoint	50.0%	0.3	0.1			1.0
6	Calamagrostis sp.	reedgrass	50.0%	20.0	80.0		0.1	
6	Calamagrostis stricta ssp. inexpansa	slimstem reedgrass	25.0%	0.3		1.0		
6	Carex aquatilis	water sedge	25.0%	0.0		0.1		
6	Carex brunnescens	brownish sedge	25.0%	0.0		0.1		
6	Carex sp.	sedge	25.0%	0.0		0.1		
7	Epilobium angustifolium	fireweed	50.0%	0.3	0.1			1.0
7	Epilobium palustre	swamp willowherb	25.0%	0.1		0.2		
7	Mustard sp.	mustard	25.0%	0.0			0.1	
7	Orthilia secunda	one-sided wintergreen	25.0%	0.0		0.1		
7	Potentilla sp.	cinquefoil	75.0%	0.1	0.0	0.1	0.1	
7	Pyrola asarifolia	pink wintergreen	25.0%	0.0	0.1			
7	Pyrola minor	lesser wintergreen	25.0%	0.0		0.1		
7	Rubus arcticus ssp. acaulis	nagoonberry	25.0%	0.0	0.1			
7	Viola canadensis	Canada violet	25.0%	0.5			2.0	
9	Dicranum sp.		25.0%	0.0		0.1		
9	Plagiomnium sp.		25.0%	0.0				0.1
9	Polytrichum strictum	bog haircap moss	25.0%	0.0		0.1		
9	Sphagnum fuscum	common brown sphagnum	25.0%	0.0		0.1		

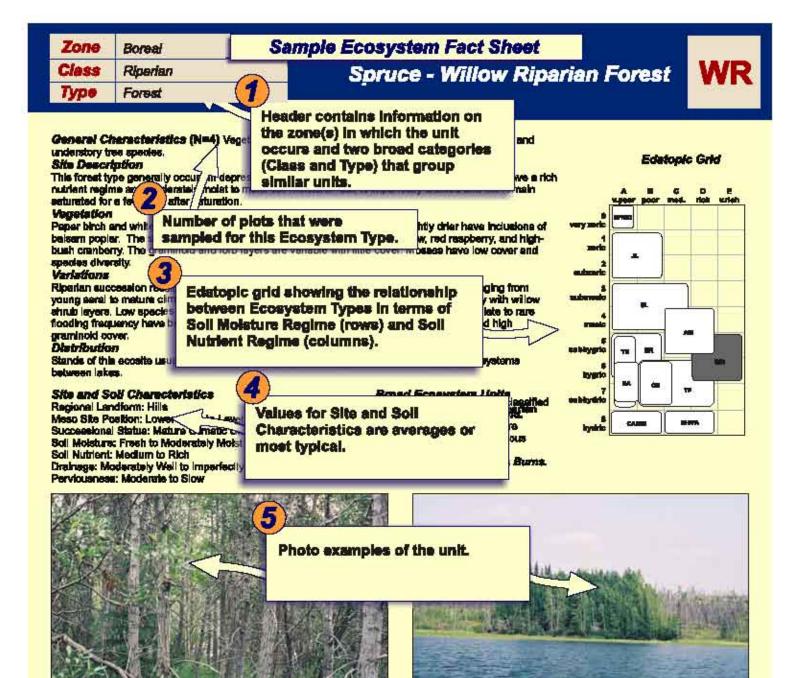
Common Name	Р	MC	F18	F21	F08
white spruce	100.0%	10.0	1.0	14.0	15.0
paper birch	100.0%	76.7	85.0	75.0	70.0
Labrador tea	33.3%	0.3		1.0	
green alder	33.3%	3.3		10.0	
wood horsetail	33.3%	1.7			5.0
bluejoint	33.3%	0.7	2.0		
reedgrass	33.3%	0.0			0.1
slimstem reedgrass	33.3%	0.3	1.0		
willowherb	33.3%	0.0	0.1		
	33.3%	1.7			5.0
step moss	33.3%	0.3		1.0	
red-stemmed feathermoss	33.3%	0.3		1.0	
bog haircap moss	33.3%	0.3			1.0
clad lichens	66.7%	0.4		1.0	0.1
bog cranberry	66.7%	3.4	10.0		0.1

Vegetation Table Site Unit JL: jack pine - lichen woodland

					5	0	5	3	9	7
Lifeform	Spp	Common Name	Р	MC	F02	F30	F35	F1	F16	F07
1	Picea mariana	black spruce	16.7%	1.2			7.0			
1	Picea sp.	spruce	33.3%	0.4					2.0	0.1
1	Pinus banksiana	jack pine	100.0%	23.0	7.0	20.0	1.1	30.0	30.0	50.0
2	Betula papyrifera	paper birch	66.7%	5.5		15.0	11.0	7.0		0.1
2	Salix bebbiana	Bebb's willow	16.7%	0.0				0.1		
3	Ledum groenlandicum	Labrador tea	16.7%	0.2					1.0	
4	Rubus idaeus	red raspberry	16.7%	0.3		2.0				
4	Salix glauca	grey-leaved willow	16.7%	0.0		0.1				
4	Salix sp.	willow	33.3%	0.4	2.0					0.1
4	Viburnum edule	highbush cranberry	16.7%	0.0				0.1		
5	Cryptogramma acrostichoides	parsley fern	16.7%	0.0	0.1					
5	Polypodium virginianum	Virginia polypody	33.3%	0.2		1.0				0.1
5	Woodsia ilvensis	rusty cliff fern	16.7%	0.0		0.1				
6	Agrostis scabra	hair bentgrass	33.3%	0.0	0.1					0.1
6	Calamagrostis purpurascens	purple reedgrass	33.3%	0.2		0.1		1.0		
6	Calamagrostis sp.	reedgrass	16.7%	0.0				0.1		
6	Carex aenea	bronze sedge	16.7%	0.0		0.1				
6	Carex tracyi	Tracy's sedge	16.7%	0.0						0.1
6	Festuca sp.	fescue	16.7%	0.0		0.1				
6	Poa glauca	glaucous bluegrass	50.0%	0.1	0.1	0.2				0.1
6	Trisetum spicatum	spike trisetum	16.7%	0.2			1.0			
7	Antennaria sp.	pussytoes	16.7%	0.0		0.2				
7	Epilobium angustifolium	fireweed	16.7%	0.3		2.0				
7	Geocaulon lividum	bastard toad-flax	16.7%	0.2			1.0			
7	Potentilla sp.	cinquefoil	16.7%	0.0		0.1				
7	Potentilla norvegica	Norwegian cinquefoil	16.7%	0.2		1.0				
7	Saxifraga sp.	saxifrage	16.7%	0.0	0.1					
7	Saxifraga tricuspidata	three-toothed saxifrage	33.3%	0.3		1.0				1.0
7	Senecio sp.		16.7%	0.2		1.0				
9	Dicranum sp.		33.3%	3.8	3.0	20.0				
9	Polytrichum juniperinum	juniper haircap moss	66.7%	1.9	0.1	5.0		4.0		2.0
9	Tortella sp.		16.7%	0.5						3.0
11	Cetraria sp.	icelandmoss lichens	33.3%	1.2	2.0	5.0				
11	Cladina mitis	lesser green reindeer	33.3%	0.7		4.0				0.1
11	Cladina rangiferina	grey reindeer	16.7%	0.0						0.1
11	Cladina sp.	reindeer lichens	16.7%	0.2				1.0		
11	Cladina stellaris	star-tipped reindeer	16.7%	0.5	3.0			-		
11	Cladonia sp.	clad lichens	33.3%	2.7				15.0		1.0
11	Crustose lichen	crust lichen	33.3%	5.8	30.0					5.0
11	Stereocaulon tomentosum	eyed foam	50.0%	3.7	10.0	10.0				2.0
12	Arctostaphylos uva-ursi	bearberry	66.7%	22.5	20.0		60.0	40.0	15.0	
12	Vaccinium vitis-idaea	bog cranberry	66.7%	1.8			3.0	5.0	2.0	1.0

Vegetation Table Site Unit SL: spruce - lichen woodland

Lifeform	Spp	Common Name	Р	МС	F27	F28	F32	F33	F22	F26	F04
1	Picea mariana	black spruce	85.7%	14.9	1.3	41.0		17.0	5.0	39.0	1.0
1	Pinus banksiana	jack pine	71.4%	12.5	10.0	0.2	0.1			2.0	75.0
2	Betula papyrifera	paper birch	71.4%	8.2	1.0	0.3	30.1		16.0	10.0	
3	Ledum groenlandicum	Labrador tea	100.0%	13.3	0.1	30.0	0.1	30.0	2.0	30.0	1.0
3	Ledum palustre ssp. decumbens	northern Labrador tea	14.3%	1.4				10.0			
4	Alnus viridis ssp. crispa	green alder	42.9%	1.9			8.0	5.0		0.1	
4	Salix glauca	grey-leaved willow	28.6%	0.4		0.1	3.0				
4	Salix sp.	willow	42.9%	0.1	0.1		0.1		0.2		
4	Vaccinium uliginosum	bog blueberry	28.6%	0.3		0.1		2.0			
5	Equisetum sylvaticum	wood horsetail	28.6%	0.3			0.1	2.0			
5	Polypodium virginianum	Virginia polypody	28.6%	0.0				0.1		0.1	
6	Calamagrostis canadensis	bluejoint	14.3%	0.0			0.1				
6	Calamagrostis sp.	reedgrass	28.6%	0.2				0.1	1.0		
6	Eriophorum brachyantherum	short-anthered cotton-grass	14.3%	0.0				0.1			
7	Corydalis sempervirens	pink corydalis	14.3%	0.0				0.1			
7	Epilobium angustifolium	fireweed	28.6%	0.7			3.0		2.0		
7	Geocaulon lividum	bastard toad-flax	14.3%	0.7						5.0	
9	Dicranum sp.		71.4%	2.6			1.0	10.0	1.0	5.0	1.0
9	Polytrichum commune	common hair-cap moss	14.3%	0.1						1.0	
9	Polytrichum juniperinum	juniper haircap moss	28.6%	0.9	3.0	3.0					
9	Polytrichum sp.		14.3%	0.1			1.0				
9	Polytrichum strictum	bog haircap moss	14.3%	0.7					5.0		
9	Sphagnum fuscum	common brown sphagnum	14.3%	0.4				3.0			
11	Cetraria sp.	icelandmoss lichens	57.1%	1.9	1.0	1.0				10.0	1.0
11	Cladina mitis	lesser green reindeer	57.1%	9.6	20.0	20.0		25.0		2.0	
11	Cladina rangiferina	grey reindeer	71.4%	6.4	5.0	5.0		10.0		25.0	0.1
11	Cladina stellaris	star-tipped reindeer	28.6%	0.2				0.1		1.0	
11	Cladonia sp.	clad lichens	42.9%	1.4		1.0				1.0	8.0
11	Peltigera sp.	pelt lichens	14.3%	0.1					1.0		
11	Stereocaulon tomentosum	eyed foam	28.6%	1.0	5.0					2.0	
12	Arctostaphylos uva-ursi	bearberry	28.6%	0.6	3.0						1.0
12	Empetrum nigrum	crowberry	14.3%	1.4				10.0			
12	Vaccinium vitis-idaea	bog cranberry	100.0%	6.7	0.1	5.0	0.1	15.0	1.0	25.0	1.0


Vegetation Table Site Unit BF: boulder field

Lifeform	Spp	Common Name	Р	MC	F29	F31
1	Picea mariana	black spruce	50.0%	0.1	0.2	
1	Pinus banksiana	jack pine	100.0%	0.2	0.1	0.2
2	Betula papyrifera	paper birch	100.0%	2.6	0.1	5.0
3	Juniperus communis	common juniper	100.0%	35.0	60.0	10.0
4	Rubus idaeus	red raspberry	100.0%	1.0	1.0	1.0
5	Dryopteris fragrans	fragrant wood fern	50.0%	0.1		0.1
5	Polypodium virginianum	Virginia polypody	50.0%	0.1	0.1	
5	Woodsia glabella	smooth cliff fern	50.0%	0.1		0.1
5	Woodsia ilvensis	rusty cliff fern	100.0%	0.1	0.1	0.1
6	Agrostis scabra	hair bentgrass	100.0%	0.1	0.1	0.1
6	Elymus trachycaulus ssp. trachycaulus	slender wheatgrass	50.0%	0.1	0.1	
6	Poa glauca	glaucous bluegrass	100.0%	1.0	1.0	1.0
7	Corydalis sempervirens	pink corydalis	50.0%	0.1	0.1	
7	Epilobium angustifolium	fireweed	50.0%	0.1	0.1	
7	Saxifraga tricuspidata	three-toothed saxifrage	100.0%	3.5	2.0	5.0
9	Polytrichum juniperinum	juniper haircap moss	50.0%	2.5		5.0
9	Polytrichum sp.	hair cap moss	50.0%	0.5	1.0	
11	Cetraria sp.	icelandmoss lichens	50.0%	1.0		2.0
11	Cladina mitis	lesser green reindeer	100.0%	7.5	10.0	5.0
11	Cladonia sp.	clad lichens	50.0%	0.1		0.1
11	Peltigera sp.	pelt lichens	50.0%	0.1		0.1
11	Stereocaulon tomentosum	eyed foam	100.0%	12.5	5.0	20.0
12	Arctostaphylos uva-ursi	bearberry	100.0%	2.6	0.2	5.0

APPENDIX B

ECOSYSTEM TYPE FACT SHEETS

Characteristic Spe	clee of WR	Species -	of WR F14
2.5 0-5.1 22.5 0-46.0 15.0 0-80.0 16.6 12.5 5.0 2.0 20.0 0.2	The Characteristic Species table show typical percent cover of plant species for these Ecosystem Units that were sampled. Other structural stages and stand compositions may occur.	* Cover 5.0 20.0 5.0 3.0 2.0 1.0	Confisiona tree black spruce (Plose mariane) Deciduous tree paper birch (Betuis papyrifere) Deciduous ahrub tes leaved willow (Seitz planifolia sp. planifolia) northern bush willow (Seitz arbuaculoidee) Fern and Fern Ally wood horeatall (Equisatum sylvaticum) Graminoid Silmstem reedgrass (Celamagroatic stricte sp. Inexpanse) Forb wamp willowherb (Epilobium palustre)
	Forb singuefail (Potentilla sp.)		

General Characteristics (N=4) Vegetation within each site varied, including dominant canopy and understory tree species.

Site Description

This forest type generally occurs in depressional areas within hilly landscapes. These ecotypes have a rich numeric regime and moderately moist to moist soil moisture. Soil is imperiectly drained and will remain saturated for a few days after saturation.

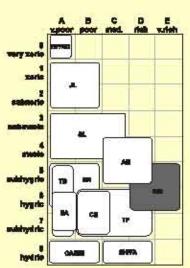
Vegetation

Paper birch and white spruce dominate in mature stands. Forests that are slightly drier have inclusions of balaam poplar. The shrub leyer tends to be sparse. Shrube may include willow, red rappenry, and highbush cranberry. The graminoid and forb layers are variable with little cover. Mosses have low cover and species diversity.

Variations

Riparian succession results in a broad range of structural stages of this ecceystem type, ranging from young seral to mature climatic climatic Frequently flooded sites support a paper birch canopy with willow shrub layers. Low species diversity is typical of frequently flooded sites. Sites with intermediate to rare flooding frequency have balaam poplar, and paper birch canopy with low shrub coverage and high graminoid cover.

Distribution


Stands of this society usually occur adjacent to streams in the boreal zone and in drainage systems between lakes.

Site and So8 Characteristics

Regional Landform: Hills Meao Site Position: Lower slope to Level Successional Status: Mature Climatic Climax to Young Serai Soll Molature: Fresh to Moderately Molat Soll Nutrient: Medium to Rich Drainage: Moderately Well to Imperfectly drained Perviousness: Moderate to Slow

Broad Ecosystem Units This unit is classified as Riperian

Woodland and Shrubland

Edetopic Grid

Characteristic Species of WR

Average % Cover	Range %	Configurates tree
4.0	100 C 100	white apruce (Pices glaucs)
		Deciduous tree
22.5	0-45.0	peper birch (Betule pepyrillere)
16.0	0-60.0	balsam poplar (Populus balsamiliara)
		Deciduous shrub
15.5	0-50.0	willow (Saltx upp.)
12.5	D- 60.0	northern bisckourrent (Ribes hudsonianum)
5.0	D- 16.0	highbush cranberry (V/burnum edule)
20	0-5.0	red namberry (Rubus Ideeus)
		Graminoid
20.0	0-80.0	Reedgress (Celemegroetis ep.)
0.2	0-1.0	bluejoint (Calamagrostia canadanais)
		Forb
0.1	0-0.1	olinquisioi (Potentille sp.)

Species of WR F23

% Cover	Confierous tree
3.0	white spruce (Pices gleuce)
	Deciduous tree
40.0	paper birch (Betula pepyrifiere)
	Deciduous ehrub
50.0	Willow (Selfr ap.)
5.0	highbush-cranberry (Viburnum edule)
2.0	northern blackcurrent. (RRbes hudeonienum)
	Graminoid
0.1	Reedgress (Celemegroatts ap.)
	Forb
2.0	Ceneda violet (Viole canadanais)

Spruce - Moss Forest

Edatopic Grid

B C

a

ntio

arie

-

.

-

50

-

TF

General Characteristics (N=3) This is a productive upland treed ecosystem. Understory vegetation composition varies between sites.

Site Description

This forest type develops on well drained shes underlain by fine-textured till veneers or bedrock. Moderately fresh so is assist with providing a modest amount of water and nutrients to plant forms. Vegetation

The closed canopy is dominated by white spruce in climatic climax stages and paper birch as a serai community. Understory vegetation is variable and limited in cover. Shrubs include Labrador tea, green aider, and bog cranberry. Graminoid species present include bluejoint, however species cover is minimal. The mose and lichen layers are poorly developed, dominated by step mose, red-stemmed feathermose and Ciedonia lichens.

Veriations

Paper birch is the dominant seral species following fire disturbance.

Distribution

Stands of this forest type were uncommon in the boreal zone of the study area. They were generally found on slopes above lake or at the top of slopes.

Site and Soli Characteristics

Regional Landform: Hills Meso Site Position: Toe to Upper Slope Successional Status: Young Serei to Young Climatic Climax Soli Molature: Moderately Fresh to Fresh Soil Nutrient: Medium Drainege: Well to Repidly drained Perviousness: Moderate to Rapid

Broad Ecosystem Units

Confier dominated stands are classified as Maeic Confierous Woodland. Deciduous and mixed stands are clausified as Mixed and Deciduous Woodland. Burned stands are classified as Burns.

Cherecteristic Species of AM

Average % Cover	Range % Cover	Coniferous tree
10.0	1.0-15.0	white spruce (Pices glauca) Deciduous tree
76.7	70 - 85.0	paper birch <i>(Betule pepyrtlare)</i> Deciduous shrub
3.3	0 - 10.0	green alder (Ainus virkäs sap. orispa) Denef ahrub
3.4	0 - 10.0	bog cranberry (Vaccinium vitis-klase) Fern and Fern Ally
1.7	0 - 6.0	wood horeetall (Equileetum sylveticum) Graminoid
0.7	0-2.0	blusjoint (Calamagrosite Canadansis) Mose
0.3	0 - 1.0	red-stemmed feathermose (Pfeurozium schre Liphen
3.4	0 - 10.0	CARACTER CONTRACTOR CONTRACTOR

Species of AM F18

(heda

% Cover	Conferous tree
1.0	white epruce (Picee glauce)
	Deciduous tree
85.0	peper birch (Betule papyrifera)
	Dwerf shrub
10.0	bog cranberry (Vaccinium vitia-idaea)
	Graminoid
2.0	bluejoint (Celemegrostis Cenedensis)
1.0	alimetem reedgrase (Celamagnatis stricts sap. Inspense)

Zone	Boreal
Class	Riparlan
Туре	Forest

BF

General Characteristics (N=2) The sites are generally similar in successional status, soil moisture and nutrients, and vegetation composition.

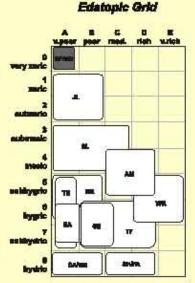
Site Description

This ecosite coours on exposed slopes on hills within the region. Bedrook is exposed and the available sol is nutrient poor. Vegetation growth on areas where shallow soil has developed, limiting species diversity and cover. As a result of exposed bedrock, drainage is very rapid and soil moisture is very dry. Vegetation

Stunted lack pine trees are scattered throughout the ecosite forming a very open canopy. Black apruce and paper birch present in very low numbers, provide limited cover. Shrub species composition is limited to common juniper, red rappberry, and bearborry. Fema within this eccette include rusty cliff fem and amouth cliff ferm. Minimal emounts of grase and forb species survive in this environment. The dominant grase species is glaucous bluegrase, and the most common forb is three-toothed saxingge. Mose life forms are limited within Boulder Fields, however, lichen cover and diversity is relatively high.

Variations

Species composition varies in relation to available soil and atta microenvironments. Distribution


The Boulder Field ecosite develope on erees that are dry, exposed, and have significant rock outcrops.

Site and Soll Characteristics

Regional Landscape: Hills Meao Site Poettion: Middle to Upper Slope Successionel Status: Young Seral to Mature Edephic Climex Soli Moleture: Very Dry Soll Nutrient Very Poor to Poor Drainage: Very Rapidly to Rapidly drained Perviousnees: not applicable because of significant rook outcropping

Broad Ecosystem Units

 This unit is classified as Bedrock and Bouider Fleid.

Characteristic Species of BF

Average % Cover	Range % Cover		
0.2	0.1-0.2	Contierous tree	jeck pine (Pinus benkslene)
0.1	0-0.2		black spruce (Picea meriane)
2.6	0.1-6.0	Deciduous bree	peper birch (Betuta pepyrifera)
35.0	10 - 60.0	Evergreen shrub	common juniper (Juniperus communis)
1.0	1.0	Deciduous shrub	red rampberry (Rubus idaeus)
2.6	02-5.0	Dwarf shrub	beerberry (Arctostephylos uve-ur
0.1	0.1	Fern and Fern Ally	rusty cliff ferm (Woodste Ivensis)
1.0	1.0	Graminoid	glaucous bluegrass (Poe glauce)
3.5	2.0-5.0	Forb	three-toothed excitrage (Sextillag tricuapidate)
2.5	0-5.0	Moss	juniper haircap moss (Polybichus kesperinum)
12.5	5.0-20.0	Lichen	eyed foam (Stereoceulon tomentoeum)
7.5	5.D-10.0		lesser green reindeer (Cledine m

Species of BF FM

tite)

% Cover		
0.2	Confisious tree	jack pine (Pinus banksiane)
5.0	Deciduous tree	peper birch (Betule pepyrifera)
10.0	Evergreen shrub	common juniper (Juniperus communis)
1.0	Deciduous shrub	red respherry (Rubus Ideeus)
5.0	Dwarf shrub	beerberry (Arctostephylos uve-urel)
0.1	Fern and Fern Ally	ruaty cliff forn (Woodsla Rvonals)
1.0	Graminoid	glaucous bluegrass (Poe glauce)
6.0	Forb	three-toothed saidinege (Saidinege fricularidets)
6.0	Nosa	Juniper heircep moes (Polybichum pasperinum)
20.0	Lichen	eyed foam (Stereocaulon tomentosum)
5.0		lessar green reindeer (Cledine milts)
2.0		Icelandmoes (Cetraria sp.)

Zone	Boreal	
Class	Wetland	
Туре	Non-treed	

- Scrub birch Cloudberry Low Shrub Bog

Broad Ecosystem Units

Hummock

.This unit is classified as Birch

BR

General Characteristics (N=1) The term "bog" is applied to this ecception in the broad sense. Strictly, though, it is probably a "poor fer".

Site Description

This eccelle occurs in depression areas within upland regions. The soil remains moist due to poor drainage. The amount of nutrients available to vegetation is considered moderate. Vegetation

Understory vegetation is generally homogeneous with acrub birch dominating and minimal cover from willows, horsetall, bluejoint, and fireweed. No moss and itohen life forms are present within this ecosite. Vertations

Water levels and fire can alter the distribution of shrubs, graminoids, mosses, and lichens. Distribution

BR tends to occur in the polygon centres, while graminoid fen ecceystems (EA, CE, CA) occupy polygon perimeters. It is found in close association with TB ecceites and is present as islands within larger TB polygons. It is rarely mapped on its own.

Edatopic Grid

Site and Soll Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression Successional Status: Mature Serai (ecrub birch), Young Edephic Climex (black spruce) Soil Molature: Molat Soil Nutrient: Poor to Medium Drainage: Poorty drained Perviousness; Slow

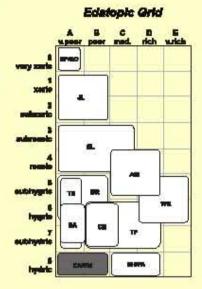
Characteristic Species of BR

Average % Cover	Range % Cover	Configrous tree
8.0	6.0	temereck (Lerix levicine)
1.0	1.0	black spruce (Pices mariens)
		Deciduous shrub
85.0	85.0	scrub birch (Betule name)
1.0	1.0	willow (Selfr app.)
1.0	1.0	bliberry willow (Selb: myrtthifolia)
		Fern and Fern Ally
0.1	0.1	wood horsetall (Equisetum sylveticum)
		Graminoid
0.1	0.1	biuejoint (Calamagrostia canadonala)
		Forb
0.1	0.1	fireweed (Epilabkan enguetifalkan)

Zone	Borsel
Class	Wetland
Туре	Non-treed

General Characteristics (N=1) This is the wetlest graminoid fen ecosities in the study area. Site Description

This ecception occurs on acturated organic soils derived from sedge peat blankets and veneers. The soil is very poorly drained and there is standing water within this wetland type. These graminoid fens occur in depressions within larger benchland topography.


Vegetation

A moderate to lush cover of water sadge dominates the vegetation with moderate amount of cover from dwarf shrube such as leatherisaf and bog rosemary. Moss cover is sparse and dominated by *Sphegman* sp. *Vertetions*

Changes in water movement may alter species composition.

Distribution

This common ecceystem often co-occurs with other graminoid fens (CE, EA), low shrub bogs (BR), and open water (OW). It is restricted to very wet sites with some water movement.

Site and Soll Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression Successional Status: Mature Edaphic Climex Soil Moleture: Wet Soil Nutrient: Rich Drainage: Very Poorly drained Pervicuences: Slow

Broad Ecosystem Units

 This unit if classified as Sedge Fen.
 Complexes of BR, EA, and CA are classified as Wetland Complex.

No photo available

Characteristic Species of CA

Average % Cover	Range % Cover	Conferous tree
3.0	3.0	temerack (Larix laricina)
		Evergreen shrub
10.0	10.0	leatheriest (Chamaedaphne calyculate)
		Dearf shrub
5.0	5.0	cloudberry (Rubus chameemorus)
3.0	3.0	bog rosemery (Andromede polifolia)
1.0	1.0	bog crenberry (Vaccinium vitis-idaea)
		Graminoid
70.0	70.0	water sedge (Carex equatilis)
		Noss
1.0	1.0	Sphegnum species (Sphegnum sp.)

Zone	Boreal
Class	Wetland
Туре	Non-treed

Round-fruited sedge Chamisso's cottongrass Fen

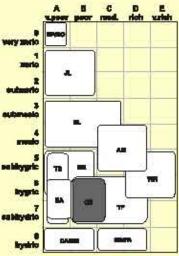
General Characteristics (N=1) These graminoid fans can vary in vegetation composition in relation to alte and soil characteristics. For example, Chamieso's cottongress is present within this site, but no roundfruited sedge was observed at the time of the site investigation.

Site Description

This ecosystem occurs on saturated organic solis in depressional areas. Nutrients available for vegetation are considered moderate.

Vegetetion

Cottongrase and eedges are the dominant vegetation. Scattered bog resemany and cloudberry are present. Common brown Sphagnum forms a significant component of the moss layer.


Variations

Changes in water movement may alter species composition.

Distribution

This ecosystem often co-occurs with other graminoid fens (CA, CE, EA) and low shrub bogs (BR). It is restricted to wat altes with some water movement.

Site and Soll Characteristics

Regional Landform: Hills, Pietseu Maso Sita Position: Depression Successional Status: Mature Serai Soll Molature: Wet Soll Nutrient: Medium Drainage: Very Poorly drained Pervioueness: Slow

Broad Ecosystem Units

•This unit is classified as Sedge Fen. •Complexes of BR, EA, and CE are classified as Wetland Complex.

Characteristic Species of CE

Average % Cover	Range % Cover	Evergreen shrub
1.0	1.0	Labrador tea (Leckim groenlendicium)
		Dwarf shrub
5.0	5.0	cloudberry (Rubus chemeemorue)
2.0	2.0	bog rosemary (Andromeda polifolia)
		Graminold
20.0	20.0	sedge species (Cerex ep.)
10.0	10.D	Chamieso's cotton grass (Eriophorum chamissonis)
5.0	5.0	sheathed cotton-grass (Erlophorum vaginatum)
		Moss
20.0	20.0	common brown sphegnum (Sphegnum fuecum)
5.0	5.0	sheggy aphagnum (Sphagnum aquarrosum)
	0.0	and/had an an internation adama and

Zone	Boreal
Class	Wotland
Туре	Non-treed

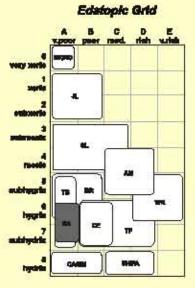
Sheathed cottongrass Bog-rosemary Sedge Fen

General Characteristics (N=1) This graminoid fan occurs within a Tamarack. Bluebany Treed Fan (TF).

Site Description

This ecception occurs in depressional areas within regional plateaus. As a result of poor drainage and alow perviousness, the soil is moderately wet.

Vegetation


A moderate cover of sadgee dominates the vegetation, in perticular water sadge. Sheggy aphagnum and other sphagnum species including common brown and midway peet more are present. Scattered leatheriest and ecrub birch may occur.

Variations

Changes in water movement may alter species composition.

Distribution

This ecceyatem was uncommon and only found in small patches with TF ecceites.

Site and Soli Characteristics Regional Landform: Hills, Plateau Maso Site Position: Depression Successional Sistus: Mature Seral Soli Moleture: Moderately Wet Soli Nutrient: Medium Drainage: Poorly drained

Broad Ecosystem Units •This unit is classified as Sedge Fen. •Complexes of BR and EA are classified as Wetland Complex.

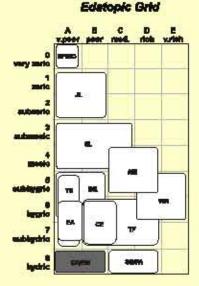
Characteristic Species of EA

yhee NWT Corp

Average % Cover	Range % Cover	Everyseen shrub
10.0	10.0	leatherisef (Chamaedephne celyculate)
		Deciduous shrub
5.0	5.0	ecrub birch (Betule nane)
		Graminold
60.0	60.0	water sedge (Carex equettis)
		Forb
1.0	1.0	arrow-leaved coltateot (Petasites sagitatus)
		Noe
30.0	80.0	shaggy sphagnum (Sphagnum squarosum)
6.0	6.0	common brown sphegnum (Sphegnmum fuscum)
2.0	2.0	midway peatmose (Sphegnum megellenicum)

Zone	Boreal	
Class	Wetlend	
Туре	Non-treed	

Water sedge Horsetail Shallow Shore Marsh


General Characteristics (N=4) This shellow shore merch occurs along lake and pond shores. Site Description

This ecceystem occurs in shallow open water. High available nutrients support a variety of sedges. Magnetation

Vegetation is patchy and interspersed with shallow open water. Water sedge is the dominant species. Potentilla and other sedge species are common. Forb cover is sparse but diverse. Vertations

Water fluctuations can determine species composition and cover. Low water levels during drier years within the shallow shore marsh provide substrate for pioneer forb species to establish. Distribution

This ecceystem is commonly found as a fringe along lake and pond shores.

Site and Solf Characteristics Regional Landform: Hills, Plateau Meso Site Position: Depression and Level Successional Status: Mature Seral Soll Molature: Wet Soll Nutrient: Medium and Rich Drainage: Poorly to Very Poorly drained Perviousnese: Slow

Broad Ecosystem Units •This unit is classified as Other Wetlands.

Characteristic Species of EM

Average % Cover	Range % Cover	Evergreen Shrub
0.1	0-0.1	leatherleaf (Chamasdephns celyculate)
		Deciduous shrub
0.4	0-4.0	sweet gale (Myrice gale)
		Graminoid
55.8	1.0-90.0	water sedge (Carex equatilis)
12.5	0-40.0	beaked sedge (Cerex utriculate)
		Forb
2.0	0-5.0	cinquefol (Polentille sp.)
2.5	0-10.0	wild calls (Calls pelusits)

Species of EM 17

Graminoid
water sedge (Carex equatRis)
Forb
wiid cella (Celle palustits)
greater bladderwort (Utricularie macrostriza)

Broad Ecosystem Units

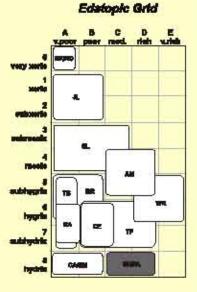
•This unit is classified as Aquatic Vegetation.

General Characteristics (N=0)

Visual assessments only were completed for this ecosite. Site Description

Standing water is present throughout the year.

Vegetation

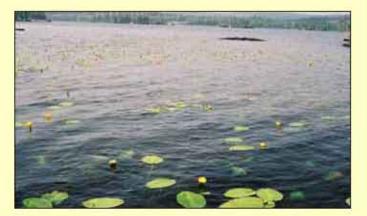

Vegetation is composed of floating equatic vascular plants, including small yellow pond illy, water sedge, emergent horsetail, and pondweed.

Variations

Variations in species composition would depend on water depth and chemistry.

Distribution

Floating equatic ecosities occur in shallow open water, approximately < 2 m in depth or in shallow portions of lakes or ponds.



Site and Solf Characteristics Regional Landform: Hills, Plateau Maso Site Position: Depression topography Successional Status: Mature Seral Soll Moleture: Wet Soll Nutrient: Moderate Drainage: Very Poorly drained Perviouences: Slow

Man Addition in the Andrews

Characteristic Species of FA

No species composition data available

Zone	Boreal
Class	Upland
Туре	Woodland

General Characteristics (N=5) This woodland type is typical of dry sites in the boreal zone. Site Description

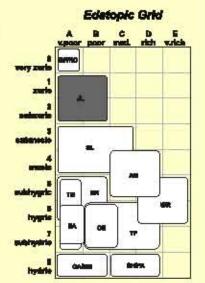
Jack pine lichen woodlands develop on crest of hills or eaker complexes. Solis tend to be shallow with bedrock outcroppings or bedrock near the surface. As a result, nutrients and water are limited as drainage is very rapid and the soli is less permeable to water.

Vegetation

Stunted jack pine trees form a very open canopy. The understory is sparse, due to lack of soll development. Forbs typically include beerberry and bog cranberry. Graminolds are scant and limited to readgresses and bluegrass. Lichens cover much of the ground surface, and bedrock tends to be covered with crustose lichens. Eyed foam, cled lichen and icelandmose lichen have significant covers. Small patches of bryophytes include *Dicramum* spp. and helicep mosses.

Verletions Rights present on early

Birch la present as seral apecies on burnt stiss. Distribution


This ecception is mostly restricted to dry bedrook knolls, but it occasionally occurs on rapidly drained aandy deposits and rocky eaker complexes.

Site and Soll Characteristics

Regional Landform,: Hills Meso Site Position: Middle Slope to Creat Successional Status: Young Saral to Matura Edaphic Climax Soll Molsture: Very Dry to Dry Soll Nutriant: Very Poor to Poor Drainege: Very Rapidly to Rapidly drained Pervicuanese: not applicable because of significant rock outcropping

Broad Ecosystem Units

Confier dominated stands are classified as Dry Confierous Woodland. Deciduous and mixed stands are classified as Mixed and Deciduous Woodland. Sumed stands are classified as Burne.

Characteristic Species of JL

C

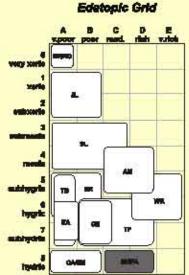
Nage %	Range % Cover			K (
23.0	1.1-50.0	Confierous tree	Jack pine (Pinus benkalane)	
5.5	0-15.0	Decidous tree	peper birch (Betula pepyrifers)	
0.4	0-4.0	Deciduous shrub	willow species (Saltx sp.)	1
22.5	D-60.0	Dwarf ehrub	beerberry (Arciostephylos uve-	
1.8	0-5.0		bog cranbarry (Vaccinium vitia- idasa)	Ē
0.2	0-1.0	Fem and Fem Ally	Virginia polypody (Polypodium virginianum)	
0.1	0-0.2	Graminoid	glaucous bluegrass (Pos glauca)	
3.8	0-20.0	Mons	dicranum species (Dicranum sp.)	
1.9	D-6.D		juniper heircep moes (Polybichum juniperinum)	
5.8	0-30.0	Lichen	cruat lichen (Crustose lichen)	
3.7	D-10.0		eyed toam (Stereocaulon tomentosum)	
2.7	0-15.0		ded Ichens (Cledonis ep.)	

Species of JL F35

Cover	Coniferous tree
7.0	black spruce (Plose meriane)
1.1	Jack pine (Pinus berskelane)
	Decidous tree
11.0	paper birch (Betula papyrifiera)
	Dwarf shrub
0.08	bearberry (Arctostephylos uve-use)
3.0	bog cranberry (Vaccinium vitie-Ideas)
	Graminoid
1.0	spike triestum (Trisetum spicetum)
	Forb
1.0	besterd toed-flex (Geoceulon Wickm)

Zone	Boreal
Class	Wetlend
Туре	Non-treed

General Characteristics (N=0) Visual assessments only were made for this ecceystem.


Site Description This ecceystem occurs on saturated organic soils derived from sedge peet blanksta and veneors.

Vegetation

Low chrube and actiges dominate the vegetation. The moderate shrub layer is mostly composed of willows, with leatherleaf present as a minor component. Several species of sedges may be present, but water sedge is usually the dominant species. Cloudberry plants may be scattered throughout the herb layer. The moderate mose layer has variable species composition. Past mosess are often present. **Variations**

Species composition will vary with water movement and frequency of fire. Distribution

This shrubby fan often co-occurs with graminoid fens. Common distribution was near open water, treed fens or drainage grass. It is restricted to wet sites with some water movement.

Site and Soll Characteristics

Regional Landform: Hills, Pietseu Meso Site Position: Depression and Level Successional Status: Young Seral to Mature Seral Soll Molature: Wet Soll Nutrient: Medium to Rich Drainege: Very Poorty drained Perviousness: Slow

Broad Ecosystem Units •This unit is classified as Shrubby Fen.

Characteristic Species of SH

No apecies composition data available

Zone	Boreal
Class	Upland
Туре	Woodland

Spruce - Lichen Woodland

SL

General Characteristics (N=7) This Spruce - Lichen woodland commonly occurs within the study area. Site Description

The Spruce-Lichen Woodland type typically occurs on slopes of hills. Solis range from Regosole with boulder and till deposits, or Brunisol solis over til veneer. Soli nutrient levels are low and solis are moderately dry.

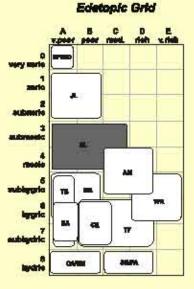
Vegetation

Mature stands are dominated by black spruce. The ehrub layer is composed of Labrador tes, green alder, willow, and bog crenberry. The herb layer is sparse and lacks species diversity. Moss are dominated by *Dicremum* species and have moderate cover. Reindeer, icelandmoss lichens, and clad lichens are common. Lichen cover is high in mature stands.

Vertations

Stands are subjected to relatively frequent free. Following fire, frewsed and deciduous shrube are pioneer species. Paper birch and jeck pine are seral canopy species with black spruce regeneration. Lichen coverage is limited in seral stands.

Distribution


This ecceystem occurs on a broad range of well-drained alter undertain by till and bedrock. It is also found on a variety of slope positions and aspects.

Site and Soll Characteristics

Regional Landform: Hills Meso Site Position: Creat to Lavai Successional Status: Young Serai to Young Climatic Climax Soll Motature: Dry to Moderately Fresh Soll Nutrient: Very Poor to Medium Drainage: Very Rapidly to Moderately drained Perviousness: Moderate to Rapid

Broad Ecosystem Units

«Contifer dominated stands are classified as Dry Contiferous Woodland. «Deciduous and mixed stands are classified as libbed and Deciduous Woodland. «Burnt stands are classified as Burns.

Characteristic Species of SL

Average % Cover	Range % Gover	Coniferous tree
14.9	0-41.0	black apruce (Picee martena)
12.5	0-75.0	Jack pine (Pinus benkslans)
		Decidous tree
8.2	0-18.0	paper birch (Betule papyrffera)
		Everyreen shrub
13.3	0.1-30.0	Labrador tea (Ledum groenlandicum)
		Deciduous shrub
1.9	0-8.0	green alder (Alnus viridis sap. crispa)
		Dwarf shrub
6.7	0.1-25.0	bog cranberry (Vecchikan ultis-idaea)
		Nozs
2.6	0-10.0	dicranum species (Dicranum ap.)
0.9	Q-3.0	Juniper hairoap mose (Polyinchum Juniperiman)
		Lichen
9.6	0-25.0	lesser green reindeer (Cledina milis)
#4	0-250	conv coludiner (Cladine repoliticion)

Species of SL F4

% Cover	Contierous tree
75.0	Jank pine (Pince bankstana)
1.0	bleck spruce (Picee mariene)
	Evergreen shrub
1.0	Labrador tea (Leckan groenlandician)
	Dwarf shrub
1.0	bog cranberry (Vaccintum vitie-klase)
1.0	bearberry (Arctostaphylos uva-ural)
	Noss
1.0	dicranum apecies (Dicranum sp.)
	Lichen
8.0	cied lichens (Cledonie sp.)
1.0	Icelandmoss lichen (Cetraris sp.)

ТВ

General Characteristics (N=5)

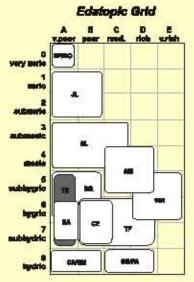
This wetland type is a Treed Northern Plateau Bog. The term "bog" is applied to this ecosystem in the broad sense. Strictly, though, it is probably a "poor fen".

Site Description

Treed bogs occur on Sphegnom peet deposits. This wetland type typically occurs in depressional areas within upland or hilly regions. These sites have low levels of nutrients available for plant growth and are generally moist. Organic solis develop over time due to poor drainage and elevated water levels. Vegetation

Stunted black apruce usually forms a very open canopy with a relatively homogeneous abrub layer. Labrador isa, as well as minor components of cloudberry, bog blueberry and bog cranberry dominate the shrub layer. Graminoids and forbs are insignificant understory components. Moss and lichen life forms are diverse and contribute to a considerable amount of total cover within this wetland. *Variations*

The lichen form (TBI) occurs when the ground surface becomes elevated and experiences moisture deficits. It has a carpet of reindeer lichens, with little living *Sphagnum* on the ground surface. In young serail and edaphic successional types, understory vegetation is more diverse with higher cover, compared to the mature stands.


Distribution

Treed bogs are located as pleteaus within upland areas. They are often surrounded by bedrock outcrops aupporting SL or JL eccettee.

Site and Soli Characteristics

Regional Landform: Hills, Piateau Maso Sita Poetion: Level to Depressional Successional Status: Young Senal to Mature Edephic Climex Soll Moleture: Moderately Wat to Molet Soll Nutrient: Very Poor to Poor Drainage: Poor Pervioueness: Slow Broad Ecosystem Units

•This unit is classified as Treed Fena and Bogs. •Burned occurrences are classified as Burns.

Characteristic Species of TB

Aw

teracter)	stic Specie	is of TB		Species
remage % Cover	Range % Cover			% Cover 0.2
				0.02230
12.0	0.1-36.0	Confisious tree	black spruce (Pfoee mariane)	3,0
1.8	0-6.0	Deciduous tree	water birch (Betule occidentalis)	20.0
44.0	20.0 - 70.0	Evergreen shrub	Labrador tee (Ledum	3.0
			groensendoum)	3.0
0.8	0-20	Deciduous shrub	the second s	1.0
			uliginosum)	2.0
2.0	Q - 5.0	Dwerf shrub	cloudberry (Rubus chamaomorus)	2.0
8,0	0-2.0		bog cranberry (Vaccinium villa- Idaee)	3.0
0.4	0-1.0		crowberry (Empetrum rigrum)	20.0
12.0	0-25.0	Moss	dicranum epecies (Dicranum sp.)	15.0
3.4	0-15.0		common brown sphagnum (Sphagnonun fuscum)	D.6
6.0	0-16.0	Lichen	cled lichen (Cledonie sp.)	
3.2	0-10.0		gray reindeer (Cladina	6.0
227/247	17927-7476		rangilerina)	1.0

Species of TB F5

and t		
6	Conferous tree	Jack pine (Pinus benkslane)
Ľ.	Deckluous tree	weter birch (Betuda occidentalis)
۵	Evergreen ehrub	Labrador tae (Ledum groenlandicum)
i.	Deciduous shrub	green sider (Alnus vinkis sp. crisps)
Ê.		scrub birch (Betada name)
Ê.		bog blueberry (Veccinium uliginosum)
10 1	Dwarf shrub	cloudberry (Rubus chameemorus)
Ľ,		alpine bearberry (Arctostaphylos alpine var. rubra)
Ŭ.	Fern and Fern Ally	common hometall (Equiestum envence)
0	Noss	dicranum species (Dicranum sp.)
0		common brown sphagnum (Sphagnmun fuscum)
		bog haircap mose (Polytrichum strictum)
Ğ.	Liohen	cied lichen (Cladonia sp.)
		gray raindear (Cladina rangliarina)

Zone	Boreal
Class	Wetland
Туре	Treed

General Characteristics (N=2) This ecosits appears within a variety of topographic conditions including upland and valley floor environments. Vegetation composition and cover varies between sites. Site Description

Treed fens occur on well developed organic layers that are molet to moderately wet and relatively nutrient rich. These altes are poorly drained with slow perviousness.

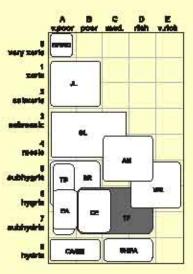
Vegetation

Stunted black spruce and tamarack usually form a very open canopy. The moderate sitrub layer is variable, and can include Labrador tea, northern Labrador tea, acrub birch, willow species, and bog blueberry. Dwarf woody plants also occur including crowberry and bog crantserry. The moss layer is well developed and la the main component of the understory vegetation. Common mose species include common brown aphagnum, Diorenum sp., and Aulecommum ep. Lichen cover is low.

Variations

Sites categorized as Tamarack Blueberry Treed Fens may vary slightly in vagetation species composition and cover in relation to soil moisture conditions. In young seral and edaphic successional types, understory vegetation is more diverse with higher cover, compared to the mature stands. Distribution

Treed fens occur in drainage areas of the boreal zone. They are usually found in upland plateaus that have water movement or near open wetlands.


Site and Soll Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression to Level topography Successional Status: Mature Seral to Young Edaphic Climax Soll Molsture: Molst to Moderately Wet Soll Nutrient: Medium to Rich **Drainage: Poorly drained** Perviousness: Skow

Broad Ecosystem Units •This unit is classified as Tread Fens

and Bogs. Burned areas are classified as Burne.

Characteristic Species of TF

Average % Range % Course Con

COMEL	COVEL	
13.0	1.0-25.0	Coniferous into
6.0	8.0-9.0	
6.0	0-10.0	Evergreen shrub
25	Q - 5.Q	
18.0	1.0 - 35.0	Deciduous algui
26	0.1-5.0	
0.6	0.1 - 1.0	
20	0 - 4.0	Dearf strub
1.1	0.1 - 2.0	
30.0	30.9	Nos
8.0	6.C	
20	2.0	
8.0	6.0	Licken
1.0	1.0	

bleck spruce (Pices mediane)	9.0
terneneck (Lerb: Javioine)	10.0
Labrador las (Ladum groenianolicum)	50
northern Labrador les (Lectum patratre a decumbena)	40. 1.0
scrub birch (Betals nens)	0.1
willow apacies (Satix ap.)	1.0
hog blueberry (Veccinium uliginoaum)	4.0
arawberry (Empelaan régrum)	2.0
bog cranberry (Vaccinium villa-idaed)	30.0
common brown aphagnum (Sphagomun Recom)	6.0
dicremum apecies (Okonsman ap.)	2.0
eheggy ephognum (Sohognum	20
equarrosum	5.0

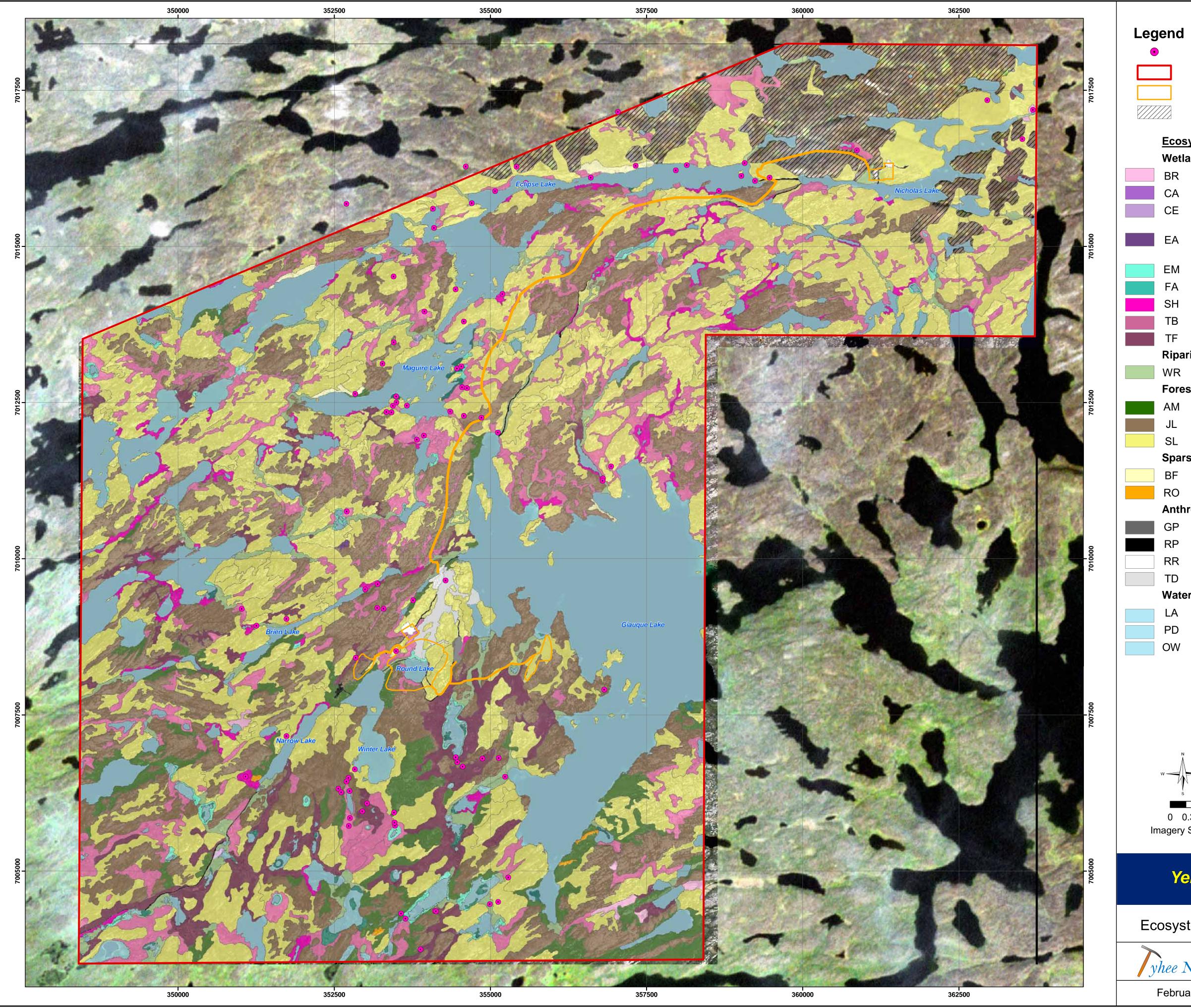
ergreen Ichen (Cledina milita)

Icelandmose (Cetaste ap.)

Species of TF F38 % Cov

26.0

1.0


Contineous tree	black spruce (Pices mariana)
	tamaradı: (Larix Iaricina)
Evergreen skrub	Labrador tea (Lodum groenlandicum)
and the second	northern Labrador ten (Lectarn pelustre sap. documbens)
Deciduous shrub	ecrub birch (Bistule nene)
	wilow species (Selfr sp.)
	bog blueberry (Veceintum utigtnosum)
Dwarf elsuis	crowberry (Empetrum nigrum)
	bog cranberry (Vaccinium vitia-ideae)
Mosa	common brown sphagnum (Sphagnmun fueoum)
	dicranum apoclos (Dicramum sp.)
	sheggy sphagnum (Sphagnum sphartosum)
	bog heimep mose (Polythohum abiotum)
Lichen	lesser green lichen (Cledine milite)
	Icelandmore (Catravia ap.)

APPENDIX C

LARGE SCALE MAPS OF STUDY AREA

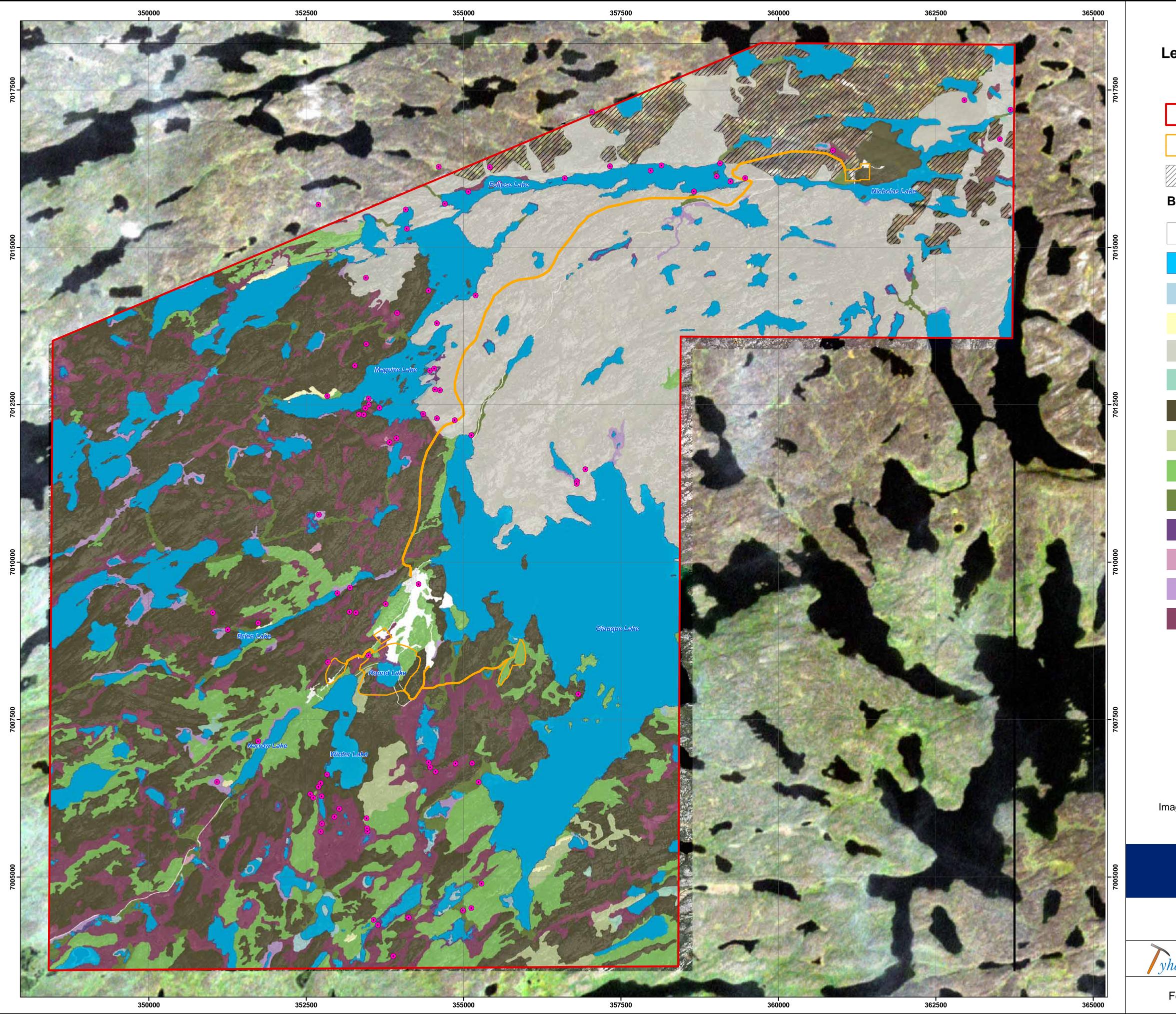
	Sample Location
	Local Study Area
	Proposed Footprint
\square	Cloud

Ecosystem Units

Wetland

vvetia	na
BR	Scrub birch cloudberry low shrub bog
CA	Water sedge – narrow leaved cottongrass fen
CE	Round fruited sedge – Chamisso's cottongrass fen
EA	Sheathed cottongrass – bog rosemary sedge fen
EM	Water sedge – horsetail shallow shore marsh
FA	Floating aquatic shallow open water
SH	Willow – sedge low shrub fen
ΤВ	Spruce – cloudberry treed bog
TF	Tamarack – blueberry treed fen
Ripari	an
WR	Spruce – willow riparian forest
Fores	t and Woodland
AM	Spruce – moss forest
JL	Jack pine – lichen woodland
SL	Spruce – lichen woodland
Spars	ely Vegetated
BF	Boulder field
RO	Rock outcrop
Anthr	opogenic
GP	Gravel pit
RP	Road surface
RR	Rural development
TD	Tailing deposit

Water


- LA Lake
- PD Pond
- OW Open water

W E		Scale	1:29,986	
0 0.375 0.75	1.5	2.25		
agery Source: IK La	ONOS (July 2 ndsat TM (Aug	•	,	
Vellowk	nife Gol	d Proi	oct	

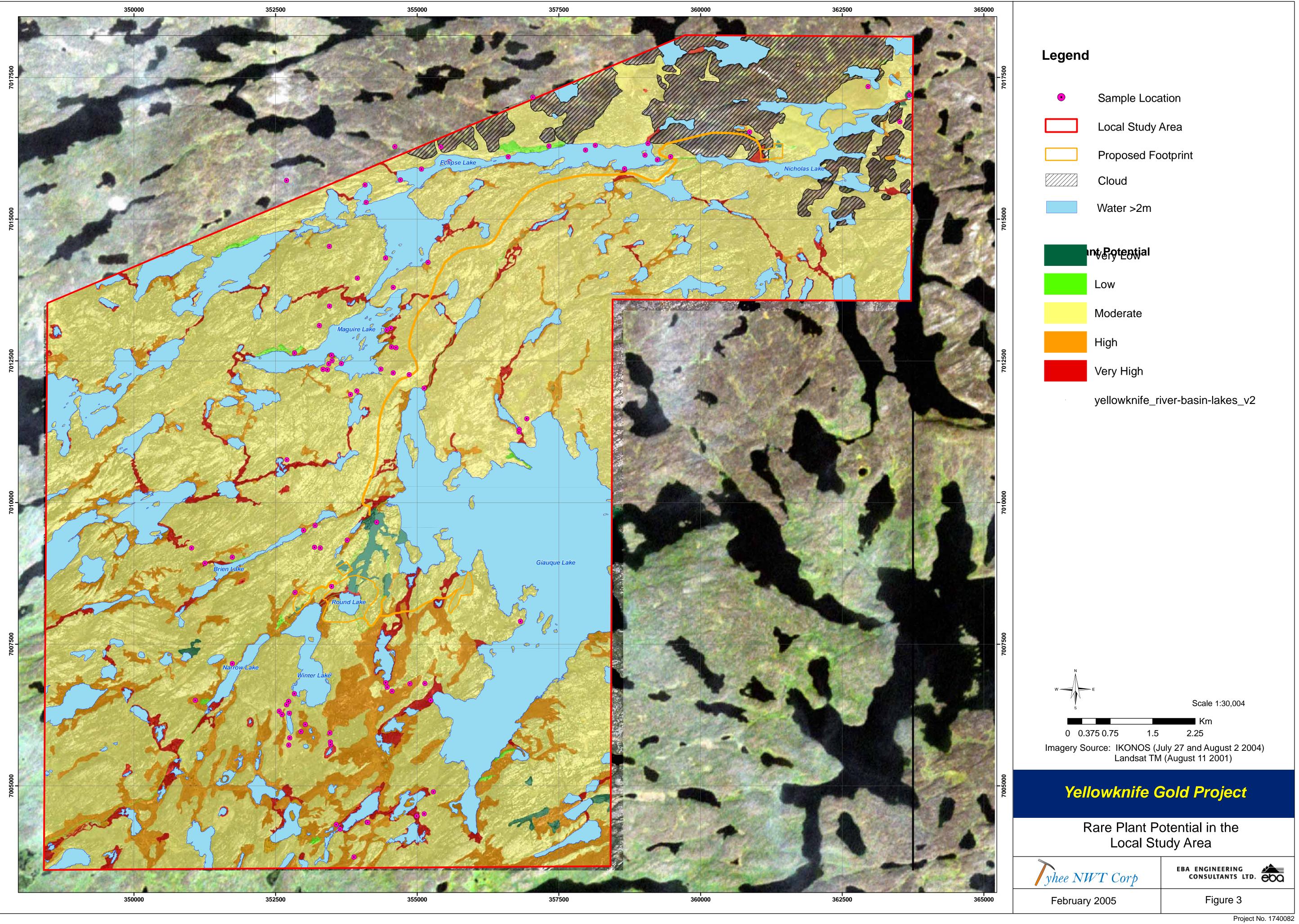
Yellowknite Gold Project

osystem Types in t	he Local Study Area

hee NWT Corp	EBA ENGINEERING CONSULTANTS LTD.
ebruary, 2005	Figure 1

egen	d
•	Sample Location
	Local Study Area
	Proposed Footprint
	Cloud
Broad	Ecosystem Units
	Anthropogenic
	Water
	Aquatic Vegetation
	Bedrock Boulder Field
	Burns
	Birch Hummock
	Dry Coniferous Woodland
	Mesic Coniferous Woodland
	Mixed and Deciduous Woodland
	Riparian Woodland and Shrubland
	Other Wetland
	Sedge Fen
	Shrubby Fen
	Treed Fens and Bogs

Scale 1:29,983 Km 0 0.375 0.75 1.5 2.25


Imagery Source: IKONOS (July 27 and August 2 2004) Landsat TM (August 11 2001)

Yellowknife Gold Project

Broad Ecosystem Units in the Local Study Area

EBA ENGINEERING CONSULTANTS LTD. yhee NWT Corp Figure 2 February 2005

Project No. 1740082

YELLOWKNIFE GOLD PROJECT

2005 ECOLOGICAL LAND CLASSIFICATION -FIELD REPORT AND RARE PLANT SURVEY

May 2006

CREATING AND DELIVERING BETTER SOLUTIONS

Tyhee NWT Corp.

2005 ECOLOGICAL LAND CLASSIFICATION AND RARE PLANT SURVEY FIELD REPORT

YELLOWKNIFE GOLD PROJECT

1740180.001

May 2006

EXECUTIVE SUMMARY

Ecological land classification is a mapping process that involves the integration of site, soil, and vegetation information. This information is used to organize ecological data into units that respond to disturbance in a consistent manner. This information is then used to development integrated and sustainable resource management plans.

The Yellowknife Gold Project (YGP) study area (~14,475 ha) is located within the Tazin Lake Upland Ecoregion of the Western Taiga Shield Ecozone. It is characterized by cool summers and cold winters and has a sub-humid, high boreal ecoclimate. Upland areas are dominated by bedrock exposures, while organic deposits cover lowlands. Dystric Brunisols are the dominant upland soils and Organic Cryosols are found in poorly drained, peat-filled depressions. Trembling aspen, jack pine, and white and black spruce dominate upland areas, while stands of tamarack and black spruce dominate poorly drained fens and bogs.

Baseline data was collected in July 2004 and in July and August 2005 during the rare plant survey. There were 130 field inspections completed in 12 ecosystem types resulting in a Terrestrial Ecosystem Mapping (TEM) sampling intensity level 5. Mapping at a 1:20,000 scale was completed using IKONOS imagery. Twenty-two ecosystem types were classified within the study area. Fourteen of these were naturally vegetated, three were classified as water, four were anthropogenic and one was cloud. Spruce-lichen (SL) was the dominant ecosystem type covering 33% of the YGP study area. Jack pine-lichen was second covering 19.1%. Treed bog was the most dominant wetland type covering 8.3% of the YGP study area. There were eight naturally vegetated ecosystem types of restricted distribution, each covering less than 1% of the YGP study area. Fifteen broad ecosystem units that correlated to the West Kitikmeot Slave Study (WKSS) were assigned to each polygon. Dry Coniferous Woodland was the most abundant broad unit, with Burns second in abundance.

Complex polygons accounted for more than 35% of the polygons mapped and over 50% of the area mapped. Spruce-lichen was the most common ecosystem that was complexed with one other unit. Treed bogs were the most common complexed with two other ecosystem types. This is due to the presence of small sedge and shrubby fens within the larger TB polygons. Coniferous stands accounted for close to 36% of the study area. The most abundant structural stage was young forest, with low/tall shrub woodland being the second most abundant. This is due to the fire history of the area, and the recent fire that affected the northeast portion of the study area.

Confidence in the mapping and subsequent data analysis is moderate to high for most units, with the exception of the AM unit, which is low. Confidence in mapping structural stage, stand composition, and broad ecosystem units is moderate.

The study area was mapped for potential rare plant habitat. Each ecosystem rank was derived from a frequency histogram that correlated each ecosystem type with the number of rare plants potentially found within them. The following five ranks were assigned: very low (1 to 4 plants), low (5 to 9 plants), moderate (10 to 14 plants), high (15 to 19 plants) and very high (>20 plants). Fifteen percent (15%) of the study area is ranked as either high or very high for rare plant habitat potential.

The most common rank was moderate, covering 58% of the study area. Confidence in mapping the rare plant habitat potential is moderate.

Exploration, construction, and site activities will require the clearing of vegetation, grading, cut and fill, extraction of borrow material, development of an all weather road and a tailings containment areas. This will result in the potential impact to soil resources, and a direct loss of vegetation. As well, air emissions from the processing facility could affect vegetation health. Development of Winter Lake as the tailings containment area could affect aquatic vegetation. *Potamogeton foliosus*, a rare plant, was field identified two locations in Winter Lake. This identification was not confirmed by the University of Alberta, Herbarium.

Based on proposed Project activities, the following impacts on vegetation communities have been identified: vegetation removal, alteration of soil properties, alternation of hydrology, change in water quality, air emissions, possible introduction of non-native or invasive **s**pecies, increased risk of spills, site maintenance activities, increased risk of fire due to human presence. Many of these impacts can be mitigated by applying best management practices to minimize the projects' footprint. Impact to *P. follosus*, if identification is confirmed, could be mitigated.

TABLE OF CONTENTS

EXEC	UTIVE	e summ	ARY		I
1.0	INTR	ODUCTI	ON		1
2.0	YELL	.OWKNI	FE GOLD	PROJECT STUDY AREA	3
3.0	PRO.	JECT OF	BJECTIVE	S	3
4.0	ECOI	OGICA	L LAND C	LASSIFICATION	
	4.1				
		4.1.1	Prelimina	ary Classification and Sampling Plan	4
		4.1.2	Field San	npling	4
		4.1.3	Satellite I	Image Preparation	5
		4.1.4	Mapping.		6
	4.2	Results	of Field S	Sampling and Mapping	6
		4.2.1	Soils		6
		4.2.2	Vegetatio	on	7
			4.2.2.1	Defining ELC Units	8
			4.2.2.2	Ecosystem Summaries	
			4.2.2.3	Broad Ecosystem Units	
			4.2.2.4	Ecosystem Descriptions in the YGP Study Area	
	4.3			Id Sampling and Mapping Results	
		4.3.1	-	Ecosystem Types	
		4.3.2		and Characterizing the Landscape	
5.0	RARI	e plan	SURVEY	/	22
	5.1	Method	ls		
	5.2	Results	5		
		5.2.1		lapping	
		5.2.2	,	ntensity	
		5.2.3	Rare Plar	nt Observations	30
6.0	THE	PROJEC	T FOOTP	PRINT	30
	6.1	Soil an	d Plant Co	ommunities	
		6.1.1	Project E	iffects	
		6.1.2	U	٦	
	6.2	Rare P	lants		

TABLE OF CONTENTS

	6.2.1	Project Effects	33
		Mitigation Strategies	
7.0	SUMMARY		34
8.0	REFERENCE	S	35

TABLES

- Table 1
 Recent Ecological Land Classification Projects North of Yellowknife
- Table 2Soil Chemical and Physical Analysis
- Table 3Ecosystem Types in the YGP Study Area
- Table 4Site Modifiers for the YGP Study Area
- Table 5Structural Stages Used for the YGP Study Area
- Table 6Stand Composition for the YGP Study Area
- Table 7Disturbance Codes for the YGP Study Area
- Table 8Broad Ecosystem Units Used in the YGP Study Area
- Table 9Ecosystem Types within the YGP Study Area
- Table 10 Broad Units within the YGP Study Area
- Table 11 Distribution of Complex Polygons within the YGP Study Area
- Table 12 Stand Composition within the YGP Study Area
- Table 13 Structural Stages within the YGP Study Area
- Table 14
 Rare Plants That Could Be Found in the YGP Study Area
- Table 15
 Rare Plant Habitat Potential for Each Ecosystem Type
- Table 16 Rare Plant Habitat Coverage in the YGP Study Area
- Table 17
 Potential Effects and Mitigation Strategies

TABLE OF CONTENTS

FIGURES

- Figure 1 Ecosystem Types in the YGP Study Area
- Figure 2 Broad Ecosystem Units in the YGP Study Area
- Figure 3 Rare Plant Potential in the YGP Study Area
- Figure 4 Rare Plant Survey Areas in Southern Portion of Study Area
- Figure 5 Rare Plant Survey Areas in Northern Portion of Study Area

APPENDICES

- Appendix A ELC Field Data
- Appendix B Ecosystem Type Fact Sheets
- Appendix C Rare Plant Survey Vegetation Data

1.0 INTRODUCTION

Ecological Land Classification (ELC), an ecological mapping process that involves the integration of site, soil and vegetation information, was undertaken as part of the integrated environmental baseline investigation conducted by EBA Engineering Consultants Ltd. (EBA) for Tyhee NWT Corp. (Tyhee). Integrated and sustainable resource management requires an understanding of ecosystem dynamics and functioning, and ecosystem classification helps organize ecological data into units that respond to disturbance in a similar and predictable manner. Understanding past, present, and potential future development requires an understanding of environmental baseline conditions. This baseline provides a basis for long-term monitoring of the environment associated with future mining activities. The ELC is also a biophysical base for other resource components such as wildlife and biodiversity.

Despite its growth in many parts of Canada, ELC has been completed in only select areas of northern Canada and Alaska. Several ELC-related projects have been completed in the Northwest Territories (NWT). Larsen (1971) described the vegetation from Great Slave Lake north to Artillery Lake. He sampled high boreal forest, tundra, and the forest-tundra transition zone, and classified a number of broad forest and tundra communities. Along the Mackenzie River, vegetation mapping was carried out at a scale of 1:125,000, including the mapping of several broad forest and tundra ecosystem units (Canada Forest Management Institute 1974). Bradley *et al.* (1982) conducted an ecological land survey of the Lockhart River map area, an area that extends from Mackay Lake in the northwest to Selwyn Lake in the southeast. Based on field investigations, they described a range of ecological features, and classified and mapped Ecoregions and Subregions, Ecodistricts, and basic structural vegetation types.

In recent years, new ELC work has been completed as part of the environmental assessments for development applications, particularly northeast of Yellowknife where diamond exploration and mining is underway. Table 1 provides a summary of ELC work that has occurred since 1995.

Project	Description	Reference
EKATI Diamond Mine NWT Diamonds Project	New description and classification of 12 detailed ecosystem units	• BHP (1995)
Diavik Diamond Mine	 Broad mapping of landcover units using LandsatTM Same methodology and units as Epp and Matthews (1999) YGP study area vegetation mapping was also completed using 11 vegetation units separate from the landcover units described above 	 Golder Associates (1997a) Golder Associates (1997b) Diavik Associates (1997)
EKATI Diamond Mine Sable, Pigeon and Beartooth Mines	1:20,000 scale ecosystem mapping completed for the EKATI Diamond Mine area	• BHP (2000)
Kennady Lake Diamond Project	 1:20,000 scale Ecosystem mapping of 225 km² using the tundra units developed for EKATI Diamond Mine One additional spruce unit added for a total of 13 ecosystem units Continued ecosystem mapping for Gahcho Kué 	 EBA and JWEL (2000) AMEC and EBA (2004)
West Kitikmeot Slave Study Region Final Report (WKSS)	Broad mapping of land cover units using Landsat TM	• Matthews and Epp (2001)
Snap Lake	 Mapping of vegetation classes using LandsatTM Same methodology and units as Epp and Matthews (1999) plus four new vegetation units 	• De Beers (2001)
Tibbit to Contwoyto Winter Road	 1:3,500 scale ecosystem mapping of the portages for the winter road corridor Used 18 ecosystem units adapted from the above studies 	• EBA (2002a, 2002b)

2.0 YELLOWKNIFE GOLD PROJECT STUDY AREA

The Yellowknife Gold Project study area (YGP) is ~14,475 ha and is located within the Tazin Lake Upland Ecoregion, Western Taiga Shield Ecozone. The Tazin Lake Upland is characterized by cool summers and very cold winters and has a sub-humid, high boreal ecoclimate. Uplands are dominated by bedrock exposures, while lowlands are covered by organic deposits. Dystric Brunisols are the dominant upland soils formed on discontinuous veneers of sandy till. There are significant inclusions of Turbic Cryosols on permanently frozen sites and Organic Cryosols in poorly drained, peat-filled depressions (Environment Canada 2000).

Vegetation of the Tazin Lake Upland is characterized by medium to tall, closed stands of trembling aspen (*Populus tremuloides*), balsam poplar (*Populus balsamifera*), and paper birch (*Betula papyrifera*). Jack pine (*Pinus banksiana*) dominates early successional stands, while white spruce (*Picea glauca*) and black spruce (*Picea mariana*) dominate the later successional stands. Poorly drained fens and bogs in this region are covered with low, open stands of tamarack (*Larix laricina*) and black spruce (Environment Canada 2000).

3.0 PROJECT OBJECTIVES

The objectives of the ELC are to complete the following tasks:

- define ecosystem types on the basis of field studies;
- map and characterize the landscape in the YGP study area using ecosystem units and satellite imagery;
- characterize the aerial extent of the proposed development footprint on the landscape; and
- identify key management issues related to ecosystem types and the proposed development.

The objective of the Rare Plant Survey (RPS) is to:

• determine if any rare vascular plants are present within areas that will be directly affected by the development footprint.

4.0 ECOLOGICAL LAND CLASSIFICATION

The following sections provide information on the methods, results, and discussion on the ELC portion of this project.

4.1 METHODS

The ELC project methods are divided into four phases: preliminary ecosystem classification and sampling plan, field sampling, satellite imagery preparation, and ELC mapping. The methods and approach associated with each phase are discussed below.

4.1.1 Preliminary Classification and Sampling Plan

A literature review was completed of relevant ecosystem mapping in NWT at the initiation of the project. A list of potential ecosystem types was compiled prior to the field sampling based on the ecosystem units defined for the Tibbitt to Contwoyto Winter Road (EBA, 2002a). The ecosystem sampling plan was adapted from British Columbia's Terrestrial Ecosystem Mapping (TEM) system (Resources Inventory Committee [RIC] 1998a, 1998b) and other established ELC approaches (see Sims *et al.* 1996). The TEM standard has also been recently adopted for several other ELC mapping exercises conducted as a part of environmental assessments in northern Canada.

A TEM Level 4 survey intensity was planned for the ELC sampling of the study area. This sampling intensity includes 15% to 25% polygon visitation with a plot ratio of 5% detailed full plots, 20% ground inspection form (GIF) plots and 75% visual plots. This ratio was considered appropriate for the ELC mapping scale and the diversity of ELC units thought to be present within the study area. Given the size of the study area, and a mapping scale of 1:20,000 (average polygon size of 20 ha), it was estimated that a maximum of 188 plots (25% sampling intensity) would be needed of the following types:

- 10 full plots;
- 38 GIF plots; and
- 140 visual plots.

The minimum number of plots required would be 113 at a 15% sampling intensity (based on the above assumptions). Prior to field sampling, potential sampling locations were identified using national topographic system (NTS) maps and local knowledge of the study area.

4.1.2 Field Sampling

Field data collection occurred from July 19, 2004 to July 24, 2004, and July 8, 2005 to July 10, 2005 and August 13, 2005 to August 15, 2005, and followed the standards established in British Columbia for Describing Terrestrial Ecosystems in the Field (DTEIF) (Province of British Columbia 1998) and for TEM (RIC 1998a). All plot position

1740180.001

coordinates were determined using global positioning system (GPS) with an expected accuracy of 6 m to 8 m. The ELC field crew consisted of a two-person team, which undertook a range of field measurements that are described below.

A total of 37 full plots and 93 visuals were completed for a total of 130 sample plots. A sampling ratio of 28:0:72 was achieved for full, GIF, and visual plots in the field. The 130 plots sampled within 1,294 polygons (not including water), resulted in a 10% sampling intensity for the project. This meets the requirements for a TEM Level 5 survey. The final number of plots sampled was reduced from the pre-field planning target numbers (as mentioned in Section 4.1). This adjustment was due to difficulties in accessing potential sample locations. To make up for the difficulties in access, more full plots were completed to ensure sufficient information was collected to adequately describe the ecosystem types.

In each of the full plots, the following site information was collected: plot number, date, UTM coordinates, elevation, exposure, aspect, slope, macro- and meso-site position, soil moisture, drainage and nutrient regime, ecosystem unit name, successional status, structural stage, and surface substrate (bedrock, rocks, mineral soil, wood, organic matter, and water). Notes describing the plot, in context and variability within the polygon, were recorded. Photographs were taken at each plot.

All vascular plant species, and most bryophytes and lichens were identified in the full plots. Vegetation cover, density, and distribution estimates were recorded. Vascular plant identification followed Porsild and Cody (1968, 1980). Bryophyte and lichen identification followed Vitt *et al.* (1988).

Visual plots involved recording brief point or area characteristics made from the air or ground, and were used to note the basic ecosystem unit, vegetation, or other key features. The primary function of visual plots is to aid in the delineation of polygon labels and to confirm the placement of polygon boundaries during the photo interpretation and mapping phases of the work. No GIF plots were completed.

During the ELC field sampling, special features and other observations were recorded when encountered. These included observations of burn severity, wildlife, and signs of wildlife use. Evidence of recent burns was observed in the eastern section of the study area. Attempts were made to establish plots in unburned woodlands, recent burns, and several post-fire seral stages to characterize vegetation succession.

Following field sampling, GPS data associated with the plot locations were prepared for use in the project's GIS software (ESRI 3.2 and Arc/Info® 8.1). The ELC plot data was digitally transcribed from field plot forms, into MS Access database, using VPRO, an ecological data entry and management tool (Province of British Columbia 1999). The ELC plot data is provided in Appendix A.

4.1.3 Satellite Image Preparation

The imagery used for mapping was created from two ortho-rectified IKONOS scenes acquired between July 27, 2004, and August 2, 2004. There was significant cloud cover in

several areas in the northeastern portion of the study area. The clouds were visually identified, removed and imagery was replaced with Landsat 7TM imagery from August 11, 2001. IKONOS imagery has a resolution of 4 m in the multi-spectral bands and 1 m in the panchromatic band. The imagery was enhanced to increase visual interpretation using a linear transformation and several mosaics were produced highlighting different band combinations. Images produced include: 4 m true colour image, 1 m pan-sharpened true colour image, 4 m false colour image (uses the near IR band to highlight vegetation), and 1 m pan-sharpened false colour image.

4.1.4 Mapping

Ecosystems were interpreted, mapped and labelled on-screen using ArcView® GIS 3.2. Interpretation and labelling followed approaches defined by the RIC (1998a). To maintain a high level of consistency, the staff that completed the field sampling also attributed the polygons. Ecosystems were mapped at a nominal scale of 1:20,000. A quality assurance/quality control (QA/QC) review of the mapping was conducted concurrently with the line work. At the beginning of each day, 10% of the polygons that were previously mapped were revisited to ensure consistency from day to day. At the end of the mapping process, 10% of the polygons were audited for accuracy. Final ELC documents include ecosystem summaries, analysis of the ecosystem units within the study area, and a map of the study area.

4.2 RESULTS OF FIELD SAMPLING AND MAPPING

Data collected in the field was used for ecosystem classification and mapping. Classification and mapping results for soils and vegetation are presented below.

4.2.1 Soils

A soil survey of the YGP study area was not completed as part of the baseline survey. The information contained in this report is based on a literature review of soils found in the region.

The YGP study area is described in the *Soils of Canada* as a strongly rolling plain comprised of igneous and metamorphic rockland with stony, sandy glacial till, and fluvial deposits. The soil climate is subarctic (humid), with discontinuous permafrost. The dominant soils are Orthic Dystric Brunisols in rockland areas. Orthic Grey Luvisols and Orthic Eutric Brunisols occur to a lesser extent. Most soils are well drained and are often stony and/or lithic (shallow) (Agriculture Canada 1977).

In the immediate area of the historic Discovery Mine, soils are limited in extent as bedrock is generally at, or very near, the surface. Mineral soils were observed in the valley bottoms to the north of the Ormsby portal and southeast of the proposed tailings containment area. Most of these soils have an organic surface of varying thickness. Shallow mineral soils also occur in depressions in the bedrock. The mineral soils have developed primarily on fine-textured (silt and clay) glacial fluvial or lacustrine materials. Organic soils are present in

1740180.001

poorly drained bog and fen areas. Permafrost is common in organic soils (Klohn Leonoff 1992)

Laboratory tests were conducted on several soil samples to determine their ability to support plant growth (Klohn Leonoff 1992). Analyses were completed on fine- and coarsetextured material and a summary of the results is presented below in Table 2. Complete analysis is provided in the 1992 report completed by Klohn Leonoff.

	Fine Soil ¹	Coarse Soil ²
Chemical	Properties	
pН	6.28	5.55
Electrical Conductivity (dS/cm)	1.50	1.60
Cation Exchange Capacity (meq/100 g)	16.5	6.2
Ca ⁺⁺	7.8	2.4
Mg ⁺⁺	3.5	0.5
Na ⁺	0.1	0.2
K+	0.36	1.13
Nutrien	t Analysis	·
Organic carbon (%)	1.71	0.80
Total N %	0.10	0.05
NH4-N	26	94
NO ₃ -N	5.9	8.6
PO ₄ -P (ppm)	57	4.9
SO ₄ -S (ppm)	15	12
Physical	Properties	
Water holding capacity (% gravimetric)	17.7	4.4
Sand (%)	7	99
Silt (%)	52	0.5
Clay (%)	41	0.5

4.2.2 Vegetation

Detailed vegetation data was collected in the field and used to determine ecosystem classification. Below is a description of how the ecosystem units were classified, what units were found, and how they are distributed in the YGP study area.

4.2.2.1 Defining ELC Units

An ELC Unit (or Ecosystem Unit) is composed of five hierarchical components: zone, ecosystem type, site modifier, structural stage, and stand composition. The zone is defined as Boreal. The ecosystem types developed for the boreal portion of the Tibbitt to Contwoyto Winter Road project (EBA 2002a) were used for this project. Table 3 lists each of the ecosystem types identified in the YGP study area.

Туре	Description
	Wetland and Riparian
BR	Wetland, non treed scrub birch cloudberry low shrub bog
СА	Wetland, graminoid water sedge – narrow leaved cottongrass fen
CE	Wetland, graminoid round fruited sedge - Chamisso's cottongrass fen
EA	Wetland, graminoid sheathed cottongrass - bog rosemary sedge fen
EM	Wetland, graminoid water sedge - horsetail shallow shore marsh
FA	Wetland, floating aquatic shallow open water
SH	Wetland, non-treed willow – sedge low shrub fen
TB	Wetland, treed spruce – cloudberry treed bog
TF	Wetland, treed tamarack – blueberry treed fen
WR	Riparian Wetland, forest spruce – willow forest
	Forest and Woodland
AM	Upland, spruce – moss forest
JL	Upland, Jack pine – lichen woodland
SL	Upland, spruce – lichen woodland
	Sparsely Vegetated
BF	Upland, boulder field
RO	Upland, rock outcrop
	Water
OW	Open water, less than 2 m deep
PD	Open water, greater than 2 m deep and less than 50 ha in size
LA	Open water, greater than 2 m deep and greater than 50 ha in size
	Anthropogenic
GP	Gravel pit
RP	Road surface
RR	Rural development
TD	Tailing deposit

1740180.001

TABLE 3: ECOSYSTEM TYPES IN THE YGP STUDY AREA		
Туре	Description	
CD	Cloud	

Site modifiers for atypical conditions as developed by BHP (1995) were adopted for this project, as well a site modifier for high lichen cover and a site modifier to identify areas that had some coverage of mine tailings. The site modifiers used for this project are provided in Table 4.

TABLE 4 : SITE MODIFIERS FOR THE YGP STUDY AREA		
Code	Description	
e	Unit occurs on an esker	
1	High lichen cover (visible from air)	
r	30% or more of surface cover is bedrock	
t	30% or more of the surface cover is mine tailings	

Structural stages describe the existing dominant stand appearance or physiognomy for an ecosystem unit. This parameter emphasises structural habitat characteristics and it can be used to help describe the seral variation within an ecosystem type. As was done for BHP (1995), structural stage classes as defined by the DTEIF system (RIC 1998a) were adopted for this project (Table 5). The adoption of the tree heights with the associated structural stages can be problematic in northern Canada. Trees can fall within structural stages 4 to 7 as far as age, and be less than 10 m tall. For this project, we did not use tree height as a measure for structural stage.

TABLE 5: STRUCTURAL STAGES USED FOR THE YGP STUDY AREA		
Code	Structural Stage	Definition
1	Sparse/Bryoid	Initial stages of primary and secondary succession; bryophytes, and lichens often dominant; time since disturbance may be prolonged where there is little or no soil development (bedrock, boulder fields, etc.)
1a	Sparse	Less than 10% vegetation cover
1b	Bryoid	Bryophyte and lichen-dominated community (>50% of total vegetative cover)
2	Herb	Early successional stage or herb communities maintained by environmental conditions or disturbance; dominated by herbs; some invading or residual shrubs and trees may be present; many non-wooded communities are perpetually maintained in this stage
2a	Forb-dominated	Includes non-graminoid herbs and ferns

1740180.001

Code	Structural Stage	Definition
2b	Graminoid- dominated	Includes grasses, sedges, reeds, and rushes
2c	Aquatic	Floating or submerged; does not include sedges growing in marshes with standing water (classed as 2b)
2d	Dwarf shrub-dominated	Dominated by dwarf woody species such as crowberry, mountain cranberry, twinflower, cloudberry, etc.
3	Shrub/Woodland	Early successional stage or shrub communities maintained by environmental conditions or disturbance; dominated by shrubby vegetation; seedlings and advance regeneration may be abundant
3a	Low shrub	Dominated by shrubby vegetation < 2 m tall; seedlings and advance regeneration may be abundant; may be perpetuated indefinitely by environmental conditions or disturbance
3b	Tall shrub/Woodland	Dominated by shrubs or trees that are 2 m to 10 m tall; often the near-climax structural stage for woodlands in the study area
4	Pole/Sapling	Typically densely stocked, have overtopped shrub and herb layers; self-thinning and vertical structure not yet evident in the canopy
5	Young Forest	Self-thinning has become evident and the forest canopy has begun to differentiate into distinct layers (dominant, main canopy, and overtopped)
6	Mature Forest	Trees established after the last disturbance have matured; understories become well developed as the canopy opens up; time since disturbanc generally 80 to 140 years
7	Old Forest	Old, structurally complex stands comprised mainly of shade-tolerant and regenerating tree species, although older seral and long-lived trees from a disturbance such as fire may still dominate the upper canopy; snags and coarse woody debris in all stages of decomposition and patchy understories typical; time since disturbance generally > 140 yea

Stand composition modifiers are used to further differentiate structural stages 4 to 7 (i.e., pole/sapling, young forest, mature forest, and old forest) based upon coniferous, broadleaf or mixed conifer-broadleaf stand composition (Table 6).

TABLE 6:	TABLE 6: STAND COMPOSITION FOR THE YGP STUDY AREA					
Code	Stand Composition	Definition				
В	Broadleaf	>75% of total tree cover is broadleaf				
С	Coniferous	>75% of total tree cover is coniferous				
М	Mixed	Neither coniferous or broadleaf account for >75% of total tree cover				

Disturbance codes were also assigned to polygons when applicable (Table 7). Disturbance types were allocated into two classes: fire and soil. These two classes were further

subdivided into a number of sub-classes (for example, fire was differentiated into severe or moderate sub-classes) to provide additional characterization of the disturbance type.

TABLE 7: DIST	TABLE 7: DISTURBANCE CODES FOR THE YGP STUDY AREA					
Disturbance	Class	Code	Description			
	Severe	Fs	Severe fire with few standing snags remaining (forested areas)			
Fire	Moderate	Fm	Moderate fire with significant proportion of standing snags (forested areas)			
	Excavation	Se	Applies to an area exposed through the removal of sand and gravel			
Soil	Mining	Sm	Applies to a non-vegetated area used for the extraction of mineral ore and other materials			
	Mining	Sd	Applies to areas that have tailing deposition			

4.2.2.2 Ecosystem Summaries

Using data that was collected during the field sampling, each field site was classified into an ecosystem type, and types were analyzed for similarities and differences. Summary sheets were produced to provide easy, quick review of the characteristics of the ecosystems that were mapped for this project. The descriptions are not meant to be a final characterization of the units and should be viewed as a representation of the vegetation sampled in the study area.

In total, 14 summary sheets were produced for the ecosystem types that were mapped in the study area. Twelve of these summaries are based on quantitative data collected in the field and two are based on qualitative data collected in the field. Fact sheets were not made for the non-vegetated or anthropogenic ecosystem types. Brief summaries are provided below, with detailed fact sheets located in Appendix B.

Forest and Woodland

The forested and woodland ecosystems are upland units that are dominated by black and white spruce and jack pine in climax communities. Immediately after fire, these communities are dominated by fast growing deciduous seral species, such as paper birch (*Betula papyrifera*) and alder (*Alnus* spp.). The slower growing jack pine (*Pinus banksiana*) becomes the dominant species a few years after fire. In the YGP study area, there are numerous successional stages observed in the upland areas due to fire. These upland units cover approximately 56% of the study area.

AM: Spruce – Moss Forest

This is the most productive forest ecosystem of the study area and is generally found on lower slopes or toe positions in the landscape. This ecosystem has a moderate nutrient

regime with a mesic moisture regime. White spruce (*Picea glauca*) is the climatic climax species, but seral communities are dominated by paper birch. This ecosystem is uncommon and accounts for less than 4% of the study area.

JL: Jack Pine – Lichen Woodland

This woodland is typical of dry sites and occurs on upper slopes and crest positions of hills or esker complexes. It has a poor to very poor nutrient regime with a subxeric to xeric moisture regime. Jack pine is the common tree species while bearberry (*Arctostaphylos uva-ursi*) is the common shrub. Paper birch is present in young seral communities. Cushion mosses (*Dicranum* spp.) and haircap mosses (*Polytrichum* spp.) are common, as well as numerous *Cladonia* lichens. This ecosystem covers approximately 19% of the study area.

SL: Spruce – Lichen Woodland

This woodland is the most commonly occurring ecosystem and covers approximately 33% of the study area. It is found on upland sites, in all slope positions. It has a very poor to moderate nutrient regime with a mesic to submesic moisture regime. Black spruce (*Picea mariana*) is common in mature stands, and jack pine and paper birch may dominate seral communities. Labrador tea (*Ledum groenlandicum*), alder and bog cranberry (*Vaccinium vitis- idaea*) are common shrubs.

Riparian

One riparian ecosystem was identified in the study area. This ecosystem usually occurs adjacent to streams or in drainage systems between lakes, has a rich nutrient regime and a subhygric moisture regime. The riparian succession results in a broad range of structural stages from young seral to mature edaphic climax.

WR: Spruce – Willow Riparian Forest

Paper birch and white spruce dominate in mature stands. Forests that are slightly drier have inclusions of balsam poplar. Shrubs include willow (*Salix* spp.), red raspberry (*Rubus idaeus*), and high-bush cranberry (*Viburnum edule*). This ecosystem represents approximately 2% of the study area.

Wetland

Wetland ecosystems include sedge fens, shrubby fens, treed fens and bogs, marsh and floating aquatic. The fens and bogs are generally restricted to upland plateaus of poorly drained organic soils. Differences in water movement distinguish fens from bogs. Marshes and floating aquatic ecosystems are restricted to the edges of standing water. The wetland ecosystems represent less than 15% of the study area.

BR: Scrub Birch – Vloudberry Low Shrub Bog

This shrubby bog ecosystem is found in close association with TB ecosystems and is present as islands within larger TB polygons. It is rarely mapped on its own. It has a very

poor to poor nutrient regime and a hygric to subhygric moisture regime. Common species include scrub birch (*Betula glandulosa*), willow, sedges (*Carex* spp.) and marsh reed grass (*Calamagrostis canadensis*). This ecosystem covers less than 1% of the study area.

CA: Water Sedge Narrow-leaved Vottongrass Fen

This sedge fen co-occurs with other sedge fens and shrub bogs. It is also found within TB polygons and is rarely mapped on its own. It has a very poor to poor nutrient regime with a hydric moisture regime. Sedges and cotton grass (*Eriophorum* spp.) are the common species. This ecosystem represents less than 1% of the study area.

CE: Round-fruited Sedge Vhamisso's Vottongrass Fen

This is a slightly richer sedge fen than CA or EA. It is found in association with other sedge fens, shrubby fens and treed fens and is rarely mapped individually. It has poor to medium nutrient regime with a subhydric to hygric moisture regime. Sedges, cotton grass and peat mosses (*Sphagnum* spp.) are the common species. This ecosystem represents less than 1% of the study area.

EA: Sheathed Vottongrass Bog Rosemary Sedge Fen

This wetland ecosystem is found in association with other sedge fens, shrubby bog, treed bogs and fens, and is rarely mapped on it own. It has a very poor to poor nutrient regime and a subhydric to hygric moisture regime. Leatherleaf (*Chamaedaphne calyculata*), sedges and peat moss are common. This ecosystem accounts for less than 1% of the study area.

EM: Water Sedge Horsetail Shallow Shore Marsh

This shallow shore marsh occurs along the edges of lakes, ponds, and open water. It is has a poor nutrient regime and a hydric moisture regime. Water sedge is the dominant sedge, but forbs and other sedge species are common. Leatherleaf and willow are also found in small numbers. This ecosystem represents less than 1% of the study area.

FA: Floating Aquatic Shallow Open Water

This ecosystem occurs in shallow open water in lakes, ponds, and open water. It has a medium to rich nutrient regime and a hydric moisture regime. Horsetails (*Equisetum spp.*) and water lily (Nuphar spp.) are common. This ecosystem covers less than 1% of the study area.

SH: Willow – Sedge Low Shrub Fen

This shrubby fen often co-occurs with sedge fens. Common distribution is near open water, treed fens, or drainage areas where it is restricted to wet sites with some water movement. It has a medium to rich nutrient regime and a hydric moisture regime. Willows and sedges are common with a minor component of leatherleaf. This ecosystem accounts for approximately 2% of the study area.

TB: Spruce – Vloudberry Treed Bog

This wetland ecosystem commonly occurs on upland peat plateaus with poor drainage and is often surrounded by bedrock outcrops. It has a very poor nutrient regime with a subhydric to subhygric moisture regime. Vegetation is dominated by black spruce, Labrador tea, bog bilberry (*Vaccinium uliginosum*), and bog cranberry. Peat moss is common. This ecosystem was the most abundant of the wetland types, covering over 8% of the study area.

TF: Tamarack Blueberry Treed Fen

This ecosystem occurs in upland peat plateaus with some water movement and in drainage areas between lakes. It has a poor to rich nutrient regime and a subhydric to hygric moisture regime. Black spruce and tamarack (*Larix laricina*) form an open canopy; willow, scrub birch and bog bilberry are the common shrubs. This ecosystem was the second most common wetland type, covering approximately 4% of the study area.

Sparsely Vegetated

The sparsely vegetated ecosystems are restricted to naturally occurring units that are dominated by boulder or bedrock outcrops. Vegetation is restricted to microenvironments that have developed due to localized weathering of rock. Soil development is poor or non-existent. These ecosystems make up less than 1% of the study area.

BF: Boulder Field

This ecosystem occurs on exposed slopes of hills that have significant rock outcrops. Nutrient regime is very poor and moisture regime is very xeric. Vegetation includes common juniper (*Juniperus communis*), bearberry, and three-toothed saxifrage (*Saxifraga tricuspidata*). Crustose lichens are common.

RO: Rock Outcrop

This ecosystem is typical of bedrock outcrops that have undergone little weathering. Nutrient regime is very poor and moisture regime is very xeric. Microsites that support vegetation growth are uncommon. Vegetation cover is sparse. Crustose lichens are common.

Other Units

The anthropogenic ecosystems varied in their degree of vegetation coverage. Tailings (TD) and gravel pits (GP) are generally devoid of vegetation. Ecosystems defined as rural (RR) (i.e., some residential or commercial development) are restricted to camp areas and ranged in vegetative coverage. The developed area around the old town site is interspersed with mature trees, while the present campsite has very little vegetation coverage. Roads (RP) also ranged in vegetation coverage. Those that are actively used have sparse vegetation coverage. Abandoned roads and portages have variable vegetation coverage.

Water was divided into three ecosystem types: lake, pond, and open water. A size limit of 50 ha was used to differentiate lakes and ponds. The open water category had a depth

threshold of less than 2 m. A portion of the study area was covered by cloud and could not be mapped. This area was classified as cloud (CD).

4.2.2.3 Broad Ecosystem Units

To provide a simplified view of ecosystems suitable for basic vegetation summaries and for map presentation, broad ecosystem units were also assigned to each mapped polygon. Table 8 describes the broad ecosystem units used for this project. The ecosystem types were also compared to the broad ecosystem units used in the West Kitikmeot/Slave Study (Matthews and Epp 2001).

TABLE 8: BROAD ECOSYS	TEM UNITS USED IN THE Y	GP STUDY AREA	
YPG Ecosystem Type	Description	Broad Ecosystem Unit for YGP	West Kitikmeot/Slave Class
All units with the fire disturbance code (Fs, Fm)	Applies to areas that have evidence of relatively recent fire disturbance	Burns	Burns
AM, JL, SL: seral stands that contain mixed or deciduous stands	Mixed or deciduous stands	Mixed and deciduous woodland	Spruce forest
AM: young forest or mature stands of conifers	Mesic conifer-dominated stands.	Mesic coniferous woodland	Spruce forest
BR	This broad unit is composed solely of scrub birch – cloudberry low shrub bog	Birch hummock	Tussock/hummock
CA, CE, EA	Fens dominated by sedges and grasses	Sedge fen	Sedge wetland
EM, FA	Includes herb-dominated wetlands that do not occur in other categories	Other wetlands	Unclassified
GP, RP, RR, TD	Areas with very low vascular plant cover as a result of anthropogenic disturbance	Anthropogenic	Unclassified
JL: young forest or mature stand	Dry jack pine dominated stands	Dry coniferous woodland	Unclassified
LA, PD	Includes lakes and ponds	Water	Deep water
OW	Shallow open water and rivers	Water	Shallow water
RO, BF	Includes rock outcrops and boulderfields – they support minimal vegetation	Bedrock and boulder fields	Bedrock and boulder associations

YPG Ecosystem Type	Description	Broad Ecosystem Unit for YGP	West Kitikmeot/Slave Class
SH	Shrubby sites with saturated organic soils and some water movement	Shrubby fen	Riparian tall shrub
SL: young forest or mature stands	Dry black spruce dominated stands	Dry coniferous woodland	Spruce forest
TB and TF	Fens and bogs with an open canopy of trees	Treed fens and bogs	Peat bog
WR: seral, young or mature stands	Shrubby or treed areas along streams, rivers, and lake margins	Riparian woodland and shrubland	Unclassified

4.2.2.4 Ecosystem Descriptions in the YGP Study Area

The following section provides descriptive information on ecosystem types, broad units, complex polygons, stand composition, and structural stage within the YGP study area.

Ecosystem Types

A total of 1,506 polygons were mapped in the 14,475 ha study area. The average polygon size was approximately 10 ha, with a range from 0.02 ha (an island) to 1,293 ha (a lake). While the average polygon size was 10 ha, the model polygon size was 3.2 ha which indicates that over half of the polygons mapped were less than 3.2 ha in size. Twenty-two ecosystem types were assigned to the 1,506 polygons, 14 were naturally vegetated, three were classified as water, four were classified as anthropogenic and one was classified as cloud (Table 9). Visual distribution of the ecosystem types is provided in Figure 1.

Spruce-lichen woodland (SL) made up 33% of the study area, with jack pine-lichen (JL) comprising 19.1% of the study area. Water covered 21.2% of the study area, and 5.6% of the study area in the northeast corner could not be mapped due to cloud cover. Treed bogs (TB) were the next most common ecosystem type, representing 8.3% of the study area. Eight of the natural ecosystem types had less than 1% cover. Ecosystems that have less than 1% cover are considered ecosystems of restricted distribution.

Some of the ecosystem types, mostly the sedge fens, are likely to be more common than the mapping indicates. This is because these ecosystems are small and are difficult to delineate individually. They were commonly mapped as the secondary or tertiary ecosystem type in the complexed TB or treed fen (TF) polygons. Complex polygons are discussed further in this section.

Ecosystem Type	Total Area (ha)	No. of Polygons	Average Polygon Size (ha)	Range (min to max) (ha)	Area as % Total Are
		Wetlan	d and Riparian		
BR	25	7	3.5	0.8 to 8.1	0.2
СА	0.4	1	0.4	0.4 to 0.4	0.0
CE	3	4	0.7	0.2 to 1.5	0.0
EA	2	2	1.0	0.3 to 1.7	0.0
EM	73	57	1.3	0.1 to 7.9	0.5
FA	41	35	1.2	0.2 to 5	0.3
SH	211	89	2.4	0.2 to 9.2	1.5
TB	1,208	292	4.1	0.3 to 36.7	8.3
TF	567	51	11.1	0.4 to 88.6	3.9
WR	271	82	3.3	0.2 to 15.1	1.9
		Forest	and Woodland		
AM	534	65	8.2	1.1 to 53.8	3.7
JL	2,769	155	17.9	0.4 to 120.8	19.1
SL	4,794	417	11.5	0.0 to 101.6	33.1
		Spars	ely Vegetated		
BF	28	5	5.5	0.4 to 13.7	0.2
RO	8	7	1.1	0.1 to 2.1	0.1
	- - - - - - - -		Water		
OW	9	18	0.5	0.1 to 2.3	0.1
PD	295	127	2.3	0.1 to 22.7	2.0
LA	2,764	46	60.1	1.4 to 1,293.6	19.1
		Anthropo	genic and Other		
GP	6	2	2.9	0.9 to 5.0	0.0
RP	18	18	1.0	0.4 to 2.3	0.1
RR	9	3	3.0	1.1 to 4.9	0.1
TD	37	2	18.4	3.6 to 33.1	0.3
CD	804	21	38.3	0.6 to 499.3	5.6
TOTAL ¹	14,475	1,506			100

Broad Ecosystem Units

Fifteen broad ecosystem units were assigned: twelve natural and one anthropogenic land-based, one water-based, and one cloud (Table 10). To visualize the abundance and distribution of the broad ecosystem types, the study area was mapped according to each type (Figure 2). Dry coniferous woodland was the most abundant unit, with burns second. The next most abundant broad ecosystem unit after burns included treed fens and bogs, and mixed and coniferous woodlands. The amount of mixed and deciduous woodland might be underestimated. It was difficult to interpret stand composition from the satellite imagery; this is issue is discussed in more detail in Section 4.3.2.

Broad Unit	Total Area (ha)	No. of Polygons	Average Polygon Size (ha)	Area as % Total Area
Birch Hummock	16	6	2.7	0.1
Sedge Fen	5	6	0.8	0.0
Shrubby Fen	140	64	2.2	1.0
Treed Fens and Bogs	1,263	208	6.1	8.7
Riparian Woodland and Shrubland	224	69	3.2	1.5
Other Wetlands	72	56	1.3	0.5
Aquatic Vegetation	41	35	1.2	0.3
Burns	3,292	346	9.5	22.7
Dry Coniferous Woodland	4,061	332	12.2	28.1
Mesic Coniferous Woodland	145	10	14.5	1.0
Mixed and Deciduous Woodland	1,254	127	9.9	8.7
Bedrock and Boulder Field	19	10	1.9	0.1
Anthropogenic	70	25	2.8	0.5
Water	3,068	191	16.1	21.2
Cloud	804	21	38.3	5.6
TOTAL ¹	14,475	1,506		100

Complex Polygons

A number of polygons were mapped as complex polygons (i.e., they contained more than one ecosystem type). The most common ecosystem that was complexed with one other unit was SL. This is in part due to the high coverage that this ecosystem type has within the YGP study area. Treed bogs and the JL ecosystems also had a high number of polygons

complexed with at least one other ecosystem type. Treed bogs were the most complexed with two other ecosystem types. This is due to the presence of small sedge and shrubby fens within the larger TB polygons. The distribution of complex polygons is provided in Table 11.

TABLE 11:	DISTRIBUT				HE YGP STUD			
Ecosite	Total Area	Simple (One Ecosite per Polygon)			Complex (Two Ecosites per Polygon)		Very Complex (Three Ecosites per Polygon	
ECOSILE	(ha)	Area (ha)	No. of Polygons	Area (ha)	No. of Polygons	Area (ha)	No. of Polygons	
	1	1	Wetlar	nd and Ripar	ian	<u> </u>		
BR	25	3.5	3	-	-	21.0	4	
СА	0.4	-	-	0.4	1	-	-	
CE	3	2.9	4	-	-	-	-	
EA	2	0.3	1	1.7	1	-	-	
EM	73	30.8	40	25.9	12	16.6	5	
FA	41	40.8	35	-	-	-	-	
SH	211	68.8	41	85.7	37	56.4	11	
TB	1,208	401.7	157	456.9	97	349.6	38	
TF	567	106.1	20	122.8	15	337.6	16	
WR	271	207.6	70	49.2	10	13.7	2	
			Forest	and Woodla	nd			
AM	534	236.6	41	161.9	19	135.8	5	
JL	2,769	222.2	52	2,078.9	91	467.6	12	
SL	4,794	1,803.8	262	2,133.1	124	857.2	31	
			Spars	sely Vegetate	d			
BF	28	21.9	4	5.8	1	-	-	
RO	8	6.0	6	1.7	1	-	-	
				Water	·			
OW	9	7.1	17	2.0	1	-	-	
PD	295	294.5	127	-	-	-	-	
LA	2,764	2,764.1	46	-	-	-	-	
			Anthrop	ogenic and C	Other			
GP	6	5.9	2	-	-	-	-	
RP	18	18.4	18	-	-	-	-	
RR	9	8.9	3	-	-	-	-	
TD	37	36.8	2	-	-	-	-	

TABLE 11:	DISTRIBUTI	Simple (0	IPLEX POLYGO Dne Ecosite olygon)	Complex (T	HE YGP STUDY wo Ecosites blygon)		blex (Three er Polygon
CD	804	804.4	21	-	-	-	-
TOTAL ¹	14,475	7,093.0	972	5,126.1	410	2,255.5	124
¹ Individua	l units may	not add to 1	4,475, due to 1	ounding to wl	nole numbers.		

Stand Composition

Stand Composition is provided in Table 12. Of the total study area, conifer-dominated stands were the most common category covering approximately 5,206 ha, with mixed wood stands covering approximately 4,590 ha. Mixed wood stands were predominately pine and birch, a result of historical fire disturbances. There were few white spruce – balsam poplar or aspen stands. Difficulties in mapping stand composition from the satellite imagery were encountered and are discussed in detail in Section 4.3.2.

Stand Composition	Total Area (ha)	Number of Polygons	Area as % Total Area
Broadleaf	610	171	4.2
Coniferous	5,206	501	36.0
Mixed	4,590	492	29.8
Not applicable ¹	4,069	342	28.1
TOTAL ²	14,475	1,506	100

Structural Stages

The most abundant structural stages were young forest and low-tall shrub woodland. Young forests were characteristic of the upland areas that had been disturbed by fire in the past, but not recently. The northeast portion of the study area had a recent burn, and much of this area was mapped as low-tall shrub/woodland. The dominant vegetation was birch and alder as tall shrubs, with jack pine an understory tree species. Distribution of the structural stages is provided in Table 13.

Structural Stage	Total Area (ha)	Number of Polygons	Area as % Tot Area
1. Sparse Bryoid	73	27	0.5
2. Herb	123	103	0.9
3. Low-tall Shrub/Woodland	4,016	517	27.7
4. Pole/Sapling	753	75	5.2
5. Young Forest	5,517	550	38.1
6. Mature Forest	119	22	0.8
7. Old Forest	0	0	0
Not applicable ¹	3,872	212	26.8
TOTAL ²	14,475	1,506	100

² Individual units may not add to 14,475, due to rounding to whole numbers.

4.3 DISCUSSION OF FIELD SAMPLING AND MAPPING RESULTS

There were four objectives outlined for the ELC: defining the ecosystem types, mapping, and characterizing the landscape using ecosystem types, characterizing the extent the development footprint will have on the landscape, and identifying impacts and mitigation strategies for the development footprint. Meeting the first two objectives is discussed below.

4.3.1 Defining Ecosystem Types

Twelve ecosystem types were quantitatively sampled in the field, while two were characterized qualitatively. Eight of the ecosystem types had two or more plots and the most common ecosystem types had five or more plots for defining the ecosystem type. Four of the twelve ecosystem types sampled (i.e., BR, CA, EA, and CE) had only one quantitative plot. While the numbers are low for these four, they have limited distribution within the YGP study area. The willow – sedge low shrub fen (SH) and the floating aquatic (FA) ecosystem types were qualitatively described. We feel that for mapping, the definitions are sufficient; however, further field characterization would enhance our knowledge of variability especially if any of these ecosystem types fall within the project footprint.

4.3.2 Mapping and Characterizing the Landscape

Landscape patterns and features associated with terrain and vegetation were mapped in the study area using the defined ecosystem types and satellite imagery. Confidence in mapping the vegetated units ranged from high to low, with high confidence for the EA, EM, FA, SH, TB, TF, and WR ecosystems, moderate confidence for the BR, BF, CA, CE, JL, and SL ecosystems and low confidence for the AM ecosystem.

Confidence was moderate in the SL, JL, and low in the AM due to a lack of detailed topographical information. In the field, SL units were often situated in level positions or on slopes, while the JL sites were confined to crests, areas of high bedrock or esker complexes. While it was possible to distinguish areas of high bedrock, without contour details, it was difficult to determine changes in slope position. Coloration of the SL and the JL units were similar and could not be used as an accurate tool to distinguish the two ecosystem units. During our field sampling, AM was found on a variety of slope positions, and its identification from the satellite image using color was not consistent. This resulted in a low confidence in the mapping of the AM unit.

Differentiation of the JL and the SLr (rock modifier for the SL unit) was made on the basis of the amount of continuous rock cover. From data collected in the field, JL units occurred in areas where there was high rock cover with sporadic vegetation. During the mapping process, if rock cover was high and vegetation cover was sparse, it was assigned as JL; if vegetation cover was moderate, it was mapped as an SLr unit. Eskers were not apparent from the imagery, and only those that were observed while in the field where identified in the mapping process.

Structural and stand composition was also attributed to each polygon. Confidence in mapping the structural stage is high in areas surrounding full and visual plots. Where possible, plot photos that were taken of the landscape were used to attribute polygons. There was little difference in the imagery color among deciduous, mixed or coniferous so mapping stand composition with the absence of field data was difficult. There is good coverage of the study area near the Discovery Mine and around Giauque, Maguire, Nicholas and Eclipse lakes. Plot coverage in the northwest and northeast is low resulting in low confidence in structural stage polygon attribution in these areas.

Confidence in mapping the broad ecosystem units is moderate. Confidence is not high due to the difficulty in mapping stand composition. The highest error is likely in the attribution of the mixed and deciduous stands versus the dry coniferous. Due the fire history, there were seral birch communities in what would eventually succeed to black spruce.

5.0 RARE PLANT SURVEY

The following section provides information on the rare plant survey methods, mapping, and survey results.

5.1 METHODS

Prior to conducting the rare plant survey, lists of rare plants and plant communities of special concern potentially occurring in the study area and in similar habitats in the local region (Tazin Lake Upland Ecoregion of the Western Taiga Shield Ecozone) were obtained from Department of Resources, Wildlife, and Economic Development (RWED) and McJannet *et al.* (1995). A rare plant list, appropriate for this landscape, was generated which includes 89 species (Table 14). A variety of vascular plant references (e.g. Anderson 1974; Douglas *et al.* 1981; Hulten 1968; McJannet *et al.* 1995; and Porsild and Cody 1980) were

consulted for taxonomic diagnostic information. EBA also used pressed plant specimens located at the University of Alberta's herbarium to help with plant identifications prior to field surveys.

Along with taxonomic information, habitat information was gathered to determine the potential for each ecosystem type to support rare plants. A rare plant habitat potential map was generated based on the number of rare plants potentially found within each ecosystem type (Figure 3). The habitat suitability rank was derived from a frequency histogram that correlated each ecosystem type with the number of rare plants potentially found within them. While this method is somewhat objective, it does provide a basis to rank ecosystem types against each other for their potential to support rare plants. As a note of caution, rare plants often occur in microsites that cannot always be identified from satellite imagery or through the ELC mapping process. While an ecosystem type may be ranked as very low for rare plant habitat, there is a possibility that rare plants could be found in microsites within that ecosystem type. The ecosystem types were ranked from very low potential to very high potential based on the total number of rare plant species potentially present.

The RPS focussed on those areas that would be directly impacted by the project footprint with a moderate to very high potential to support rare plants. Survey methods followed Alberta Native Plant Council (ANPC) guidelines for qualitative and quantitative rare plant surveys (Lancaster 2000). Other references were consulted in refining the field approach for the rare plant survey. This included identifying ecosystem types, landscape features and landscape anomalies for field examination.

Fieldwork for the rare plant survey was conducted in two parts. The first survey was completed from July 8, 2005 to July 10, 2005, and the second survey was completed from August 13, 2005 to August 15, 2005. The survey occurred at two times during the growing season to respond to plants that flower in response to the photoperiod (long, short, or neutral day-length). This also allowed for the inclusion of plants with a neutral response to photoperiod.

Latin Name	Common Name	Habitat	Potential Ecosystem Types
Acorus calamus (Acorus americanus)	sweetflag	Wetlands; borders of quiet water	EM, SH, WR
Adoxa moschatellina	moschatel	Rich leaf-mould in moist partly shaded alder and poplar woods; calcareous soils	AM
Agoseris aurantiaca	orange false dandelion	Meadows, hot springs, disturbed areas	AM, RP
Agrostis exarata	spike redtop	Moist, sedge meadows; open ground	CA, CE, EA
Anaphalis margaritacea	pearly everlasting	Subalpine wooded areas and meadows, roadsides, open forests to subalpine	AM, SL
Apocynum cannabinum	indian hemp	Exposed river banks	WR
Arabis holboellii	reflexed rock cress	Dry, open, sunny, calcareous slopes, open soil	JL, SL, BF, RO
Arabis lyrata	lyre-leaved rock cress	Sandy, open areas, moist stoney places, scree slopes	JL, SL
Asplenium viride (trichomanes-ramosum)	green spleenwort	Moist rocky slope and crevices, crevices in calcareous rocks	SL, JL, BF, RO
Aster nahanniensis	sster	Hot springs and moist areas	AM, SL, JL, WR
Astragalus canadensis	Canadian milk vetch	River banks and moist, open woods	WR, AM
Botrychium minganense	moonwort	Grassy meadows, grassy slopes	AM, WR
Botrychium multifidum	leather grape fern	Circumpolar prairie clearings, sandy meadows and woods	AM, SL
Botrychium simplex	dwarf grape fern	Moist meadows and shores	AM, WR
Callitriche anceps	water starwort	Shallow ponds, shallow water	EM, FA
Caltha palustris	marsh marigold	Shallow water or in wet marshy places, moist places	EM, CE, EA, SH
Carex arcta	narrow sedge	Wet woodland bogs, marshes and sandy beaches, wet places	EM, CA, CE, EA, TB, TF, SH
Carex crawfordii	Crawford's sedge	Damp meadows	CA, CE, EA, WR, SH
Carex eleusinoides	-	Wet gravelly river banks and meadows, wet places, gravel bars	WR, SH
Carex heleonastes	Hudson Bay sedge	Bogs, peat bogs and swamps	CA, CE, EA, TB, TF, SH
Carex prairea	prairie sedge	Bogs	CA, CE, EA, TB, TF

Latin Name	Common Name	Habitat	Potential Ecosystem Typ	
Carex retrorsa	turned sedge	Woodland marshes	EM	
Carex sychnocephala	long-beaked sedge	Wet places and open woodland meadows	CA, CE, EA, WR	
Carex trisperma	three-seeded sedge	Bogs	CA, CE, EA, TB	
Castilleja yukonis	indian paintbrush	Spruce woods, treed bogs, and grassy slopes, dry hillsides	TB, TF, SL	
Cornus suecica	dogwood	Wet mossy areas, woods, marshes, bogs	CA, CE, EA, TB, TF, SH	
Crassula aquatica (Tillaea aquatica)	pigmyweed	Shallow ponds, inundated shores	EM, WR	
Cryptogramma sitchensis (crispa)	parsley fern	Calcareous talus slopes and moraine	BF, RO	
Cryptogramma stelleri	fragile rock-brake	Moist shale slopes, crevices in calcareous rocks in shaded localities with dripping water	BF	
Danthonia spicata	poverty oat grass	Rocky places, dry places	JL, BF, RO	
Descurainia pinnata	green tansy mustard	Sandy beaches and disturbed areas	RR, RP	
Draba incerta	Whitlow-grass	Alpine tundra and rocky slopes	BF, JL	
Dryopteris carthusiana (D. spinulosa)	narrow spinulose shield fern	Rich woods	AM	
Dryopteris expansa (D. dilatata)	spinulose shield fern	Moist woods and slopes	AM	
Elatine triandra	waterwort	Muddy shores and shallow pond margins	EM, FA	
Elymus canadensis	Canada wild rye	Sandy and gravelly places	AM, SL, JL	
Epilobium leptophyllum	narrow-leaved willowherb	Marshes, sloughs, bogs, and sedge meadows, lowlands	EM, CE, EA	
Erigeron acris	northern daisy fleabane	Alpine gravelly slopes or sandy river banks, spruce forests, sandy soil	SL, JL	
Erigeron yukonensis	fleabane	Calcareous, stony slopes	JL, SL, BF, RO	
Euthamia graminifolia (Solidago graminifolia)	flat-topped goldenrod	Sandy, silty, and gravelly river banks and flats	WR	
Heuchera richardsonii	Richardson's alumroot	Woodland meadows	AM	
Hudsonia tomentosa	sand heather	Sand blow-outs, sandy beaches, and open jack pine woods	JL	
Impatiens capensis (I. bifora)	spotted touch-me-not	Low wet woodlands and moist banks, wet ground	WR, EM, TF, SH	

Latin Name	Common Name	Habitat	Potential Ecosystem Types	
Isoetes lacustris (I. macrospora)	quillwort	Shallow, sandy lake margins	EM, FA	
Juncus dudleyi (J. tenuis)	bog rush	Wet, calcareous, lowland meadows and river banks, roadsides, open ground	WR, TF, CA, CE, EA, SH, RP	
Juncus stygius	marsh rush	Wet margins of woodland bog pools, wet bogs	EM, TB, CA, EA,	
Juncus vaseyi	big-head rush	Lowland slough-margins, moist shores	EM	
Limosella aquatica	mudwort	Wet, muddy or sandy pond margins, wet mud	EM	
Lobelia dortmanna	water lobelia	Shallow, sandy shores of lakes and ponds	EM, FA	
Luetkea pectinata	partridgefoot	Alpine tundra and snowbeds	Unknown	
Luzula rufescens	reddish wood rush	Bogs, marshes, and river banks	WR, EM, CA, CE, EA, TF, TB, SH	
Lycopus uniflorus	bugleweed	Sandy margins of lakes and streams	WR, EM	
Malaxis paludosa (Hammarbya paludosa)	bog adder's mouth	Treed bog, wet sphagnum bogs, quagmires	TB, CA, CE, EA	
Mertensia paniculata var. alaskana	bluebell	Open woods and river banks	AM, WR	
Mimulus guttatus	yellow monkey flower	Wet meadows and streams, margins of ponds and streams, wet rocky slopes	WR, EM	
Myriophyllum alterniflorum	water milfoil	Shallow lakes and ponds	EM, FA, OW	
Najas flexilis	slender naiad	Shallow lakes and ponds	EM, FA, OW	
Nuphar lutea (Nuphar polysepala)	yellow pond lily	Lakes, ponds, and slow moving streams	EM, FA, OW, WR	
Nymphaea tetragona	white water lily	Shallow lakes and slow moving streams	EM, FA, OW, WR	
Osmorhiza depauperata	spreading sweet cicely	Rich woods	AM	
Pedicularis macrodonta (P. parviflora)	lousewort	Bogs and marshes	EM, CA, CE, EA, SH, TB, TF	
Pellae glabella	smooth cliff brake	Limestone cliffs	RO	
Platanthera (Habenaria) orbiculata	large round-leaved orchid	Spruce and tamarack woodland, dry to moist woods	AM, SL	
Poa secunda	Sandberg blue grass	Fens	CE, EA, TF	
Potamogeton foliosus	leafy pondweed	Shallow still waters	FA, OW	
Potamogeton illinoensis	pondweed	Still water	FA, OW	

Latin Name	Common Name	Habitat	Potential Ecosystem Types	
Potamogeton obtusifolius	blunt-leaved pondweed	Shallow lakes and ponds	FA, OW	
Potamogeton robbinsii	Robbin's pondweed	Muddy water	FA, OW	
Potamogeton subsibiricus (P. porsildiorum)	pondweed	Shallow lakes and ponds	FA, OW	
Prunus virginiana	choke cherry	Thickets	AM, WR	
Ranunculus hispidus (R. septentrionalis)	buttercup/crowfoot spp.	Willow thickets and slough margins	AM, WR, TF	
Ranunculus pensylvanicus	buttercup/crowfoot spp.	Disturbed and marshy places	CA, CE, EA, SH, TF, RP	
Rhynchospora alba	white beak-rush	Fens and bogs, peaty, or sandy soil	CA, CE, EA, SH, TF, TB, RP	
Rorippa barbareifolia	yellow cress	Disturbed sites	RR, RP, GP, TD	
Rorippa crystallina	marsh yellow cress	Carex meadows and marshes	EM, CA, CE, EA	
Rosa blanda	rose	Gravelly river terraces	WR, SH	
Ruppia cirrhosa (R. spiralis)	widgeon-grass spp.	Shallow lakes, salt, and brackish water	EM, FA, OW	
Salix raupii	Raup's willow	Gravel floodplains and treed bogs	WR, TF, TB	
Sanguisorba officinalis	Burnet	Wet tundra, moist places	CA, CE, EA, BR, SH	
Sarracenia purpurea	pitcher plant	Bogs	CA, CE, EA, BR, TB	
Scirpus rollandii (Trichophorum pumilum)	bulrush	Marshy lake shores and hot springs, wet places	EM, CE	
Scirpus rufus (Blysmus rufus)	bulrush	Wet river banks and saline meadows, seashores	EM	
Senecio sheldonensis	groundsel	Subalpine meadows	Unknown	
Smelowskia calycina ssp. Media	silver rock cress	Stoney slopes and lakeshores, rocky hillsides, gravel	GP, TD, JL, SL	
Sparganium eurycarpum	giant bur-reed	Shallow ponds and sloughs	EM, FA, OW	
Tanacetum bipinnatum (T. huronense)	indian tansy	Sandy river banks	WR	
Valeriana dioica (V. septentrionalis	northern valerian	Fens and lake shores, moist places	EM, CE, EA, SH, TF	
Viola canadensis (V. rugulosa)	western Canada violet	Woodlands along streams and hot springs	WR	
Viola selkirkii	great-spurred violet	Moist thickets, woods, fens and alpine tundra	WR, AM	

5.2 **RESULTS**

The objective of the RPS was to discover if any rare plants are present within areas that will be directly affected by the development footprint. This RPS is done because mapping vegetation units during an ELC is based on common characteristics. Rare plants may be found in unique habitats that are not sampled within an ELC program, so a RPS is often conducted in addition to an ELC program. Below is a discussion of the mapping and the survey results.

5.2.1 Habitat Mapping

A rare plant habitat potential map was generated based on the number of rare plants potentially found within each ecosystem type (Figure 3). Initially, area calculations for rare plant habitat were based on the primary ecosystem type. This method did not account for secondary or tertiary ecosystem types within complexed polygons. Consequently, small unmappable units that had high or very high habitat value (i.e., CA, EA, or EM) were not included in the mapping process. This would result in the amount of high or very high habitat being underestimated. To be conservative, all complex polygons were mapped according to the ecosystem type that had the highest rare plant habitat potential regardless of whether it was the primary, secondary or tertiary unit identified in the polygon. The map could represent an overestimation of high or very high habitat. Area coverage for habitat potential is provided in Table 15.

Habitat Potential	Potential Number of Rare Plants	Total Area (ha)	Area as % Total Area
Very Low	1 to 4	55	0.4
Low	5 to 9	46	0.3
Moderate	10 to 14	8,413	58.1
High	15 to 19	1,216	8.4
Very High	> 20	881	6.1
Water ¹	0	3,068	21.2
Cloud	0	804	5.6
TOTAL		14,475	100

¹ Only includes water > 2 m depth.

5.2.2 Survey Intensity

Five areas within the study area were surveyed for rare plants:

- camp area;
- gravel pit area and potential access road;
- portal;

- Round Lake;
- Winter Lake; and
- proposed road route to Nicholas Lake.

Vegetation data for each area is presented in Appendix C. Survey locations are shown in Figure 4 and Figure 5. Due to time restrictions, the entire length of road going to Nicholas Lake was not surveyed; for this area focus was placed on locations where it appeared potential for rare plants was high or very high.

A total of 92 km was surveyed in 14 ecosystem types. Table 16 provides the level of effort for each ecosystem type.

TABLE 16: RARE PLANT HABITAT POTENTIAL FOR FACH ECOSYSTEM TYPE					
Ecosystem Type	Total Potential Rare Plants	Rank	Transect Distances (July) (m)	Transect Distances (August)	
BR	2	Very Low	-	-	
GP	2	Very Low	-	176	
RR	2	Very Low	2,086	-	
TD	2	Very Low	2,556	-	
RP	5	Low	450	1,111	
RO	6	Low	-	-	
BF	7	Low	-	-	
JL	11	Moderate	10,325	4,999	
OW	11	Moderate	-	8,675	
SL	12	Moderate	12,771	6,196	
TB	14	Moderate	3,131	941	
FA	15	High	-	5,205	
SH	15	High	793	362	
TF	15	High	3,819	7,747	
AM	18	High	3,452	2,545	
СА	19	High	-	-	
CE	22	Very High	-	-	
EA	22	Very High	-	-	
WR	25	Very High	1,290	506	
EM	27	Very High	1,189	3,470	
		Total Length ¹	41,864	50,429	

TABLE 16: RARE PLANT HABITAT POTENTIAL FOR FACH ECOSYSTEM TYPE

Very Low: 1 to 4 species Low: 5 to 9 species

Moderate: 10 to 14 species

High: 15 to 19 species

Very High: > 20 species

¹ There were two surveyors for each of the July and August survey dates. Surveys were done over six days.

5.2.3 Rare Plant Observations

No rare plants were observed in July. There was one field identification of a rare plant during the August survey (Figure 4). A *Potamogeton* specie (pondweed) was identified (but not confirmed) as *Potamogeton foliosus* (leafy pondweed). This is listed as a rare species. The pondweeds are difficult to key and often plants at various stages of development are required to properly identify to species level.

The distinguishing characteristic in the key identifying this pondweed from one that is not rare (*P. pusillus*), is the prominence of the keel and beak on the achene (seed) (Moss 1994, Brayshaw 1985). This feature is only apparent with mature achenes. Another difference between *P. foliosus* and *P. pusillus* is the sheath margin of *P. foliosus* is connate (joined) when young, whereas with *P. pusillus* is open when young. On young specimens this may be apparent, but with older specimens this characteristic is not always apparent. A sample of this pondweed was collected from Winter Lake and sent to the University of Alberta herbarium for confirmation. They could not confirm its classification to *P. foliosus*.

This plant is located in two small bays on the southwest side of Winter Lake. Water was approximately 1 m deep and was protected from wave movement on the lake from surficial features (thought to be stagnant ice moraines). The ecosystem type immediately adjacent to the lake is treed fen. There was standing water in the fen area.

6.0 THE PROJECT FOOTPRINT

The purpose of this field report is not to provide a detailed impact assessment for the soil and vegetation resources. The information provided below is an overview of the development, its potential effects and mitigation that may be required. With the exception of the rare plant information, information is descriptive based on ecological principles and not necessarily based on the specific soils and vegetation types found within the projects' footprint.

6.1 SOIL AND PLANT COMMUNITIES

The project will affect soil and vegetation resources. The sections below discuss impacts to vegetation and soils.

6.1.1 Project Effects

Impacts are generally based on criteria such as direction, scope, duration, frequency, magnitude, and confidence (Beanlands and Duinker 1983; FEARO 1994). Using these criteria, a level of significance can be placed on the impact. Significant impacts can occur if there is impairment to a resources function or process, if a large enough portion of the resource is impacted or if the impact is long term. At this time in the project planning it is only possible to indicate that impacts will occur; it is not possible to determine the level of significance at this time.

Based on the Project's activities, the following potential impacts on soil and vegetation have been identified:

- vegetation removal;
- alteration of soil properties;
- increased air emissions;
- introduction of non-native or invasive species;
- increased risk of spills;
- site maintenance activities; and
- increased risk of fire due to human presence.

Exploration, construction, and site activities will require the clearing of vegetation, grading, cut, and fill, excavations of borrow material and development of an access route to Nicholas Lake. This may affect soil resources, and will result in a direct loss of vegetation. As well, air emissions from the processing facility could affect vegetation health.

6.1.2 Mitigation

Potential mitigation strategies for the effects to soils and vegetation communities are provided in Table 17. This information is general in nature and is not meant to replace mitigation measures based on a more detailed impact assessment.

TABLE 17: POTENTIAL EFFECTS AND MITIGATION STRATEGIES			
Potential Effect	Consequence	Mitigation	
Vegetation Removal	Loss of vegetation; increase in ecosystem fragmentation; loss of high rare plant habitat; loss of ecosystems with restricted distribution	Minimize footprint; minimize development on ecosystem types with restricted distribution or with high potential for rare plants; avoid sensitive ecosystems; minimize off-site activities such as ATV use; reclamation to restore to pre-disturbance conditions.	
Alteration of Soil Properties	Loss of soil; compaction of mineral soil by vehicle traffic; erosion; changes in soil quality and chemistry due to spills	Minimize footprint; where possible salvage mineral topsoil; minimize traffic off site; implement erosion control measures on slopes as required; implement emergency response plan.	
Increased air Pollution	Increase dust fall from traffic; emissions of SO ₂ and NOx are acidifying to vegetation (toxicity to leaf surfaces) and soil	Use of dust suppressants; minimize traffic; minimize air emissions; continued monitoring of air emissions.	
Introduction of Non-native or Invasive Species	Growth and spread of non-native or invasive species	Clean all equipment before coming to site; train staff on the identification and control of non-native and invasive plants, vehicle washing as required.	
Increased Risk of Spills	Direct impact to vegetation; contamination of soil and water	Implement an emergency response system; follow appropriate procedures for spill containment and clean up.	
Site Maintenance Activities	Use of herbicides, sterilants and dust suppressants; salts on road services can lead to contamination through surface water movement; waste disposal activities	Implement vegetation control guidelines to minimize the affect of herbicides and sterilants on native vegetation; ensure use of road salts, oil, or dust suppressants is controlled and monitored; storage of chemicals must be in a facility that minimizes potential entry into the environment; dispose of all wastes in approved containers.	
Increased Risk of Fire due to Human Presence	Fire is a natural disturbance, but human activity may increase the risk of fire, increasing risk to vegetation resources	It is uncertain if mitigation is necessary since this can be considered a natural occurrence. More information is required.	

6.2 RARE PLANTS

6.2.1 Project Effects

Development of Winter Lake as a tailings containment area including a polishing area will impact the population of *P. foliosus* growing in the lake. The following section discusses the habitat and growth requirements of *P. foliosus*.

These pondweeds have long, narrow leaves and, except for an occasional flower spike that briefly rises above the water, they remain underwater for their entire lives. *Potamogeton foliosus* is generally found in shallow open water, often greater than 1 m in depth (University of Wisconsin 2006). It can grow in eutrophic water, as well as slightly brackish (University of Wisconsin 2006; Environment Canada 2000). Detailed habitat data is lacking.

These plants are perennials and reproduce both sexually and asexually. Seeds require soft sediment soil in which to germinate, and water must be present above the sediment surface (Mortsch et al. 2006). *Potamogetan* seeds are a valuable food source for numerous waterfowl (Hellquist and Pike 2003). Research shows an increase in germination after the seed has passed through the digestive system of waterfowl; the waterfowl can digest both the exocarp and the mesocarp, while the endocarp passes through the digestive system (Haynes 1974). Little is known about the viability of the fruits or seed banking. For many *Potamogetons*, cold stratification is required for germination (Muenscher 1936).

The plant reproduces vegetatively by producing dense leafy winter buds at the tips of branches (Kershaw et al. 2001). These drop in the autumn and over-winter in the sediment. In the spring the buds sprout and new plants are produced. Since they reproduce both by seed and vegetatively, they have the ability to spread moderately well, within the water that they are situated, and to other open water via waterfowl movement.

Potamogeton foliosus is moderately tolerant to changes in water level; however, they are not tolerant to drying, nor will they germinate without water (Hoyer and Canfield 1997). They are affected by moose herbivory, especially in shallow water (Crete *et al.* 2001). The amount of impact is proportional to moose density.

6.2.2 Mitigation Strategies

There are three potential mitigation strategies for *P. foliosus*. The first is to confirm the identification, second is to determine the relative abundance of this plant relative to its rare designation. The third examines the opportunity for transplantation.

The first strategy is to get a positive identification of the *P. foliosus*. This would involve sampling the known locations again at an appropriate sampling time (ideally late summer, after achene maturation) and sending the sample in for confirmation.

The second strategy, after confirmation as *P. foliosus*, is to determine if it occurs commonly throughout the area. A plant may be designated rare within a larger region or territory when it can be quite common in a small local area if growing conditions are favourable. If there are other lakes that are already populated with *P. foliosus*, then mitigation for the population

within Winter Lake is may not be needed. This would require a survey of other lakes in the area.

The third strategy is to transplant the *P. foliosus*. This would be recommended if a survey of the other lakes is not done, or if the survey is done and no other populations are found. In a controlled experiment, seedlings of *P. foliosus* demonstrated substantial growth subsequent to transplanting (McFarland and Rogers 1998), and given that the plants produce winter buds in the fall, this could be a viable mitigation strategy. The transplant lake(s) would have to be similar to Winter Lake. Basic water biology and chemistry data, substrate conditions, and lake bathymetry would be collected and assessed to confirm viability of the transplant lake(s).

7.0 SUMMARY

Ecological land classification mapping was carried out for the YGP study area. Baseline data was collected in July 2004, and 22 ecosystem types were classified within the 14,475 ha study area. Fourteen of these were naturally vegetated, three were classified as water, four were anthropogenic, and one was cloud. Fifteen broad ecosystem units that correlated to the West Kitikmeot Slave Study were also assigned to each polygon. Confidence in the mapping and subsequent data analysis is moderate to high for most units, with the exception of the AM unit, which is low. Confidence in mapping structural stage, stand composition, and broad ecosystem units is moderate.

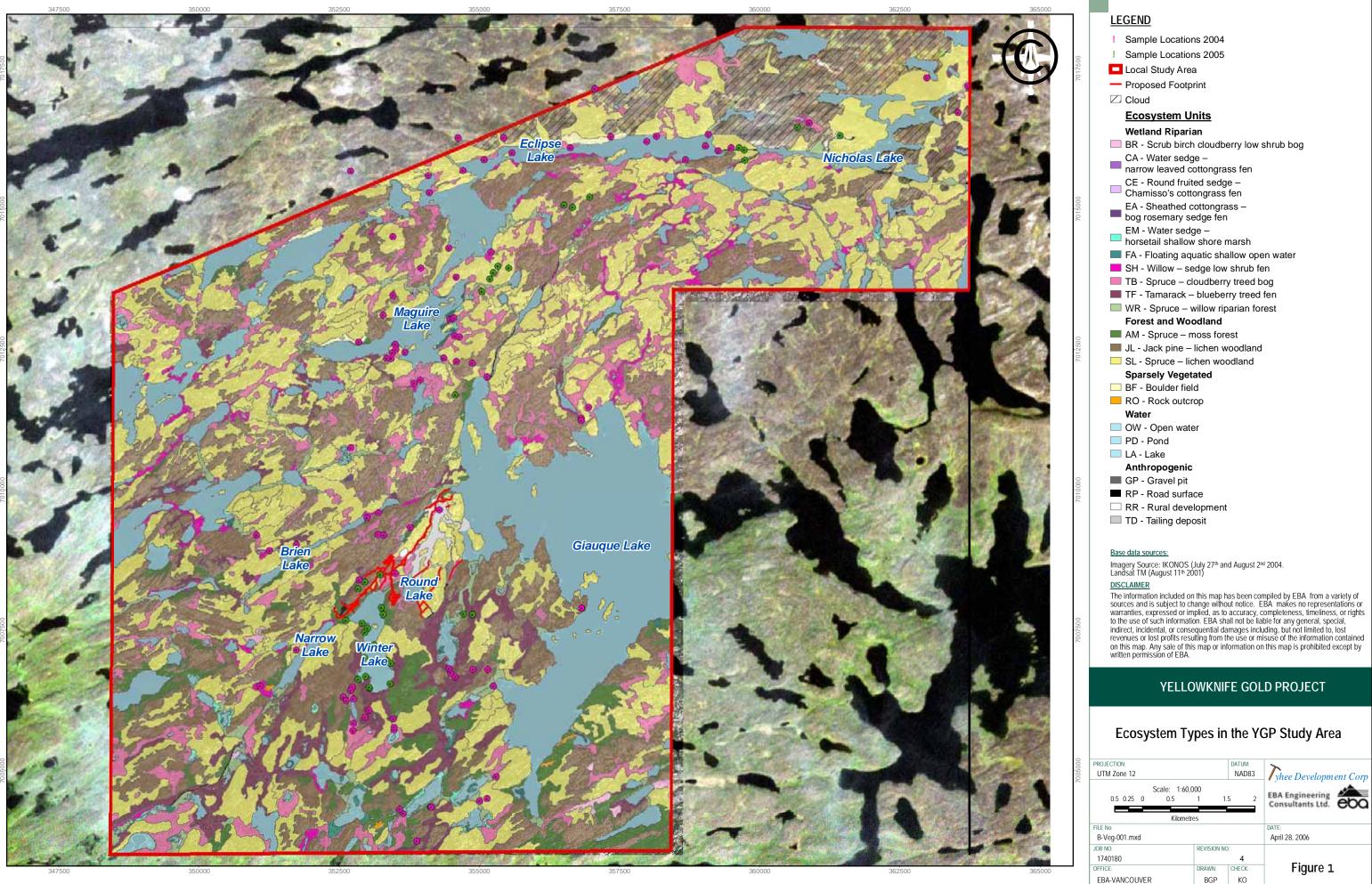
The project will have a direct impact on soils and vegetation communities. Based on the Project's activities, the following potential impacts have been identified: vegetation removal, alteration of soil properties, alternation of hydrology, change in water quality, increased air emissions, introduction of non-native or invasive species, increased risk of spills, site maintenance activities, increased risk of fire due to human presence. Potential mitigation strategies are identified for each of these impacts. At this time in the project planning, it is only possible to indicate that impacts will occur. It is not possible to determine the level of significance.

One rare plant was field identified (but not confirmed) during the RPS. If the identification is confirmed, mitigation strategies can be adopted to minimize the impact.

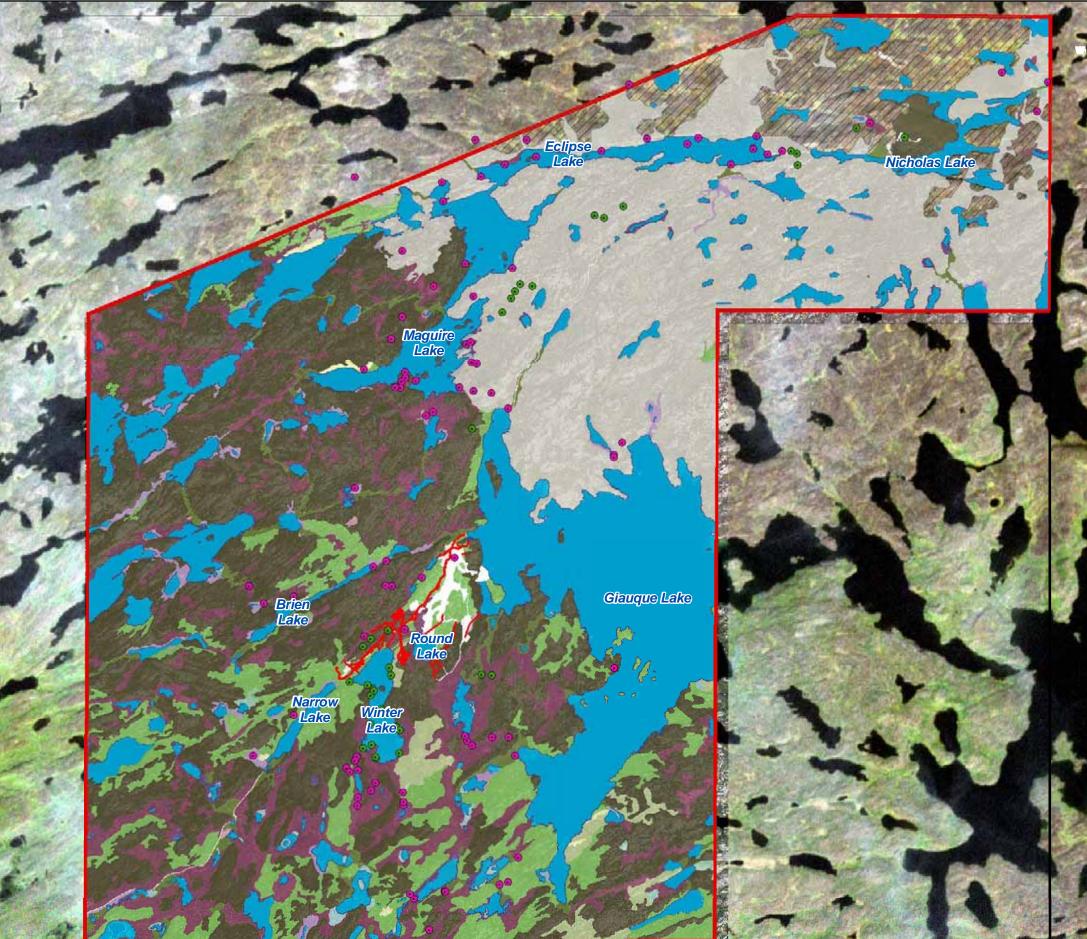
8.0 REFERENCES

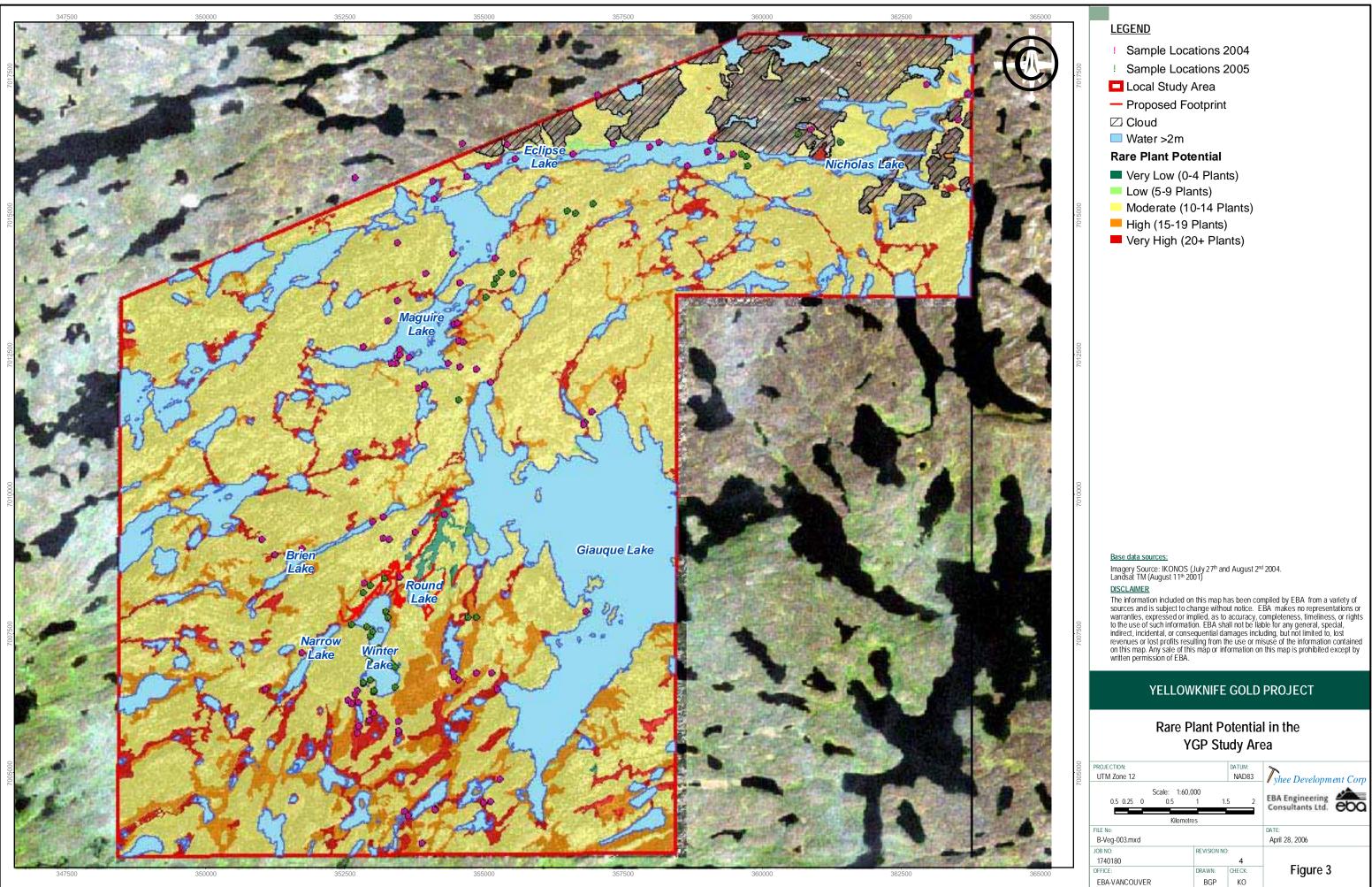
- Agriculture Canada. 1977. Soils of Canada. Volume 1: Soil Report, Volume 2: Inventory, and maps. Research Branch, Canada Department of Agriculture. Ottawa, Ontario.
- Anderson, J.P. 1974. Anderson's Flora of Alaska and Adjacent Parts of Canada. Revised by Stanley L. Welsh. Brigham Young University Press, Provo, Utah.
- Beanlands, G.E. and P.N. Duinker. 1983. An Ecological Framework for Environmental Impact Assessment in Canada. Institute for Resource and Environmental Studies, Dalhousie University. Published in Cooperation with the Federal Environmental Assessment Review Office. 132 pp.
- BHP Diamonds Inc. 1995. NWT Diamonds Project Environmental Impact Statement. Submitted to the Federal Environmental Assessment Review Panel.
- BHP Diamonds Inc. 2000. Environmental Assessment Report for Sable, Pigeon and Beartooth Kimberlite Pipes.
- Bradley, S.W., Rowe, J.S. and C. Tarnocai. 1982. An Ecological Land Survey of the Lockhart River Map Area, Northwest Territories. Ecological Land Classification Series, No. 16. Ottawa, Ontario. 146 pp.
- Canada Forest Management Institute. 1974. Vegetation Types of the Mackenzie Corridor. Prepared by Canadian Forestry Service, Environment Canada for the Environmental-Social Program, Northern Pipelines, March 1974.
- Crete, M., J. Ouellet and L. Lesage. 2001. Comparative Effects on Plants of Caribou/Reindeer, Moose and White-Tailed Deer Herbivory. *Arctic* 54(4): 407-417.
- De Beers. 2001. Snap Lake Diamond Project Scoping and Technical Support Document. Submitted to the Mackenzie Valley Land and Water Board. February 2000.
- Diavik Diamonds Project (Diavik). 1998. Environmental Assessment Submission.
- Douglas, G.W., G.W. Argus, H.L. Dickson and D.F. Brunton. 1981. The Rare Vascular Plants of the Yukon. Syllogeus No. 28. National Museum of Natural Sciences. Ottawa, Ontario.
- EBA Engineering Consultants Ltd. and Jacques Whitford Environmental Ltd. 2000. Gahcho Kué, NT.
- EBA. 2002a. Tibbitt to Contwoyto Winter Road Ecological Land Classification. Prepared by: EBA Engineering Consultants Ltd., Yellowknife, NT. Submitted to: Tibbitt to Contwoyto Winter Road Joint Venture. Yellowknife, NT. Project No. 0101-01-014875. April 2002
- EBA. 2002b. Tibbitt to Contwoyto Winter Road Biophysical Map Book. Prepared by: EBA Engineering Consultants Ltd., Yellowknife, NT. Submitted to: Tibbitt to Contwoyto Winter Road Joint Venture. Yellowknife, NT. Project No. 0101-01-014875. April 2002.

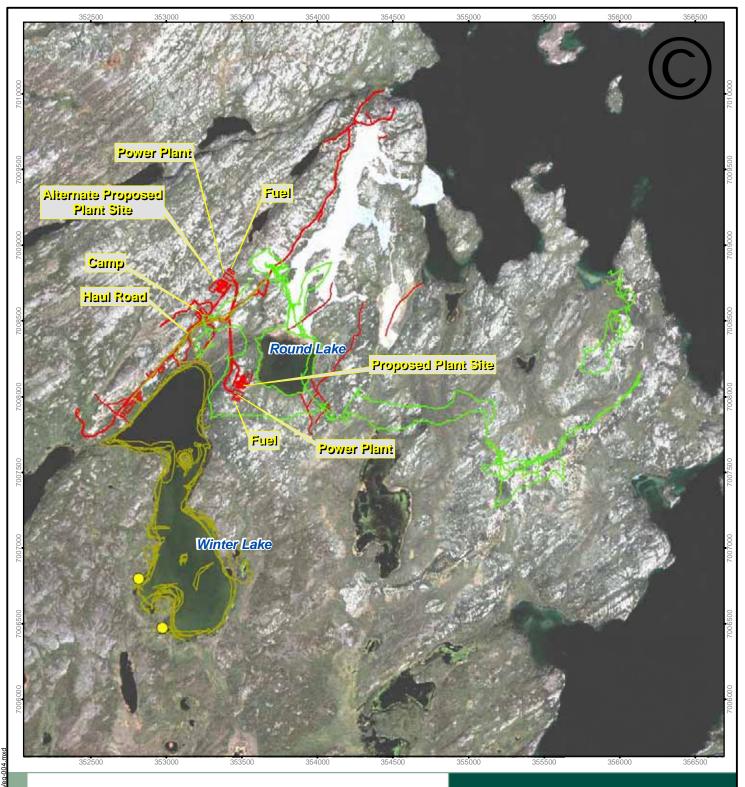
- Environment Canada. 2006. Biodiversity Portrait of the St. Lawrence. Saint Lawrence Vision 2000 Action Plan a Joint project between Environment Canada and Quebec Department of the Environment. Website accessed April 2006: <u>http://www.qc.ec.gc.ca/faune/biodiv/en/</u> recherche/especes/PV_PZ_EN.asp.
- Environment Canada. 2000. Terrestrial Ecozones and Ecoregions of Canada. Website address: www.ec.gc.ca/soer-ree/English/Framework/NarDesc/taishdwe.cfm.
- Federal Environmental Assessment Review Office. (FEARO). 1994. Reference Guide: Determining Whether a Project is Likely to Cause Significant Adverse Environmental Effects. Canadian Environmental Assessment Agency. Ottawa, Ontario.
- Golder Associates. 1997a. Technical Memorandum #6. Extended Local Area Vegetation Mapping. Prepared for Diavik Diamonds Project.
- Golder Associates. 1997b. Technical Memorandum #8. Vegetation/Landcover Remote Sensing Analysis. Prepared for Diavik Diamonds Project.
- Haynes, R.R. 1974. A revision of the North America *Potamogeton* Subsection Pusilli (Potamogetonaceae). *Rhodora* 76: 564-649.
- Hellquist, C.B. and A.R. Pike. 2003. *Potamogeton strictifolius* A.Benett Straight-leaved Pondweed. Conservation and Research Plan for New England. Prepared for New England Wild Flower Society. Framingham, Massachusetts.
- Hoyer, M.V. and D.E. Canfield, Jr. (eds.). 1997. Aquatic Plant Management in Lakes and Reservoirs. Prepared by the North American Lake Management Society (P.O. Box 5443, Madison, WI 53705-5443) and the Aquatic Plant Management Society (P.O. Box 1477, Lehigh, FL 33970) for U.S. Environmental Protection Agency, Washington, DC.
- Hulten, E. 1968. Flora of Alaska and Neighboring Territories: A Manual of the Vascular Plants. Stanford University Press, Stanford, California.
- Kershaw, L. J. Gould, Derek Johnson, J. Lancaster. 2001. Rare Vascular Plants of Alberta. University of Alberta Press. Edmonton, Alberta.
- Klohn Leonoff. 1992. Discovery Mine, Options for Tailings Reclamation. Prepared for Department of Indian Affairs and Northern Development. PB 5843 01.
- Lancaster, J. 2000. Guidelines For Rare Plant Surveys. Prepared for the Alberta Native Plant Council. Edmonton, Alberta.
- Larsen, J.A. 1971. Vegetation of Fort Reliance, NWT. Canadian Field-Naturalist. 85(2): 147-178.
- Matthews, S. and H. Epp. 2001. Vegetation Classification for the West Kitikmeot/Slave Study Region. Final Report Submitted to the West Kitikmeot/Slave Study Society by The Department of Resources, Wildlife and Economic Development, Government of the Northwest Territories. Yellowknife, Northwest Territories.
- McFarland, D.G. and S.J. Rogers. 1998. The Aquatic Macrophyte Seed Bank in Lake Onalaska, Wisconsin. J. Aquat. Plant Management. 36: 33-39.


- McJannet, C.L, G.W. Argus and W.J. Cody. 1995. Rare Vascular Plants in the Northwest Territories. Canadian Museum of Nature. Syllogeus No. 73. Ottawa, Ontario.
- Mortsch, L., J. Ingram, A. Hebb and S. Doka (eds.). 2006. Great Lakes Coastal Wetland Communities: Vulnerability to Climate Change and Response to Adaptation Strategies. Final report submitted to the Canadian Climate Change Action Fund, Natural Resources Canada. Environment Canada and the Department of Fisheries and Oceans. Toronto, Ontario. 247 p + appendices.
- Muenscher, W.C. 1933. The Germination of Seeds of Potamogeton. Annals of Botany 50: 805-821.
- Porsild A. E. and W.J. Cody. 1980. Vascular Plants of the Continental Northwest Territories. Canada. National Museum of Canada, Ottawa, Ontario.
- Porsild, A. E. and W. J. Cody. 1968. Checklist of the Vascular Plants of Continental Northwest Territories, Canada. Dept. of Agriculture, Plant Research Institute. Ottawa, Ontario. 102 p.
- Province of British Columbia. 1998. Field Manual for Describing Terrestrial Ecosystems. Land Management Handbook Number 25, British Columbia Ministry of Environment, Lands, and Parks and British Columbia Ministry of Forests, Crown Publications, Victoria, British Columbia. 240 pp.
- Province of British Columbia. 1999. VENUS: Vegetation and Environment NexUS, Data-entry, Reporting, and Analysis Tool (software package). British Columbia Ministry of Environment, Lands, and Parks and British Columbia Ministry of Forests. Victoria, British Columbia. (http://www.for.gov.bc.ca/research/venus).
- Resources Inventory Committee (RIC). 1998a. Standards for Terrestrial Ecosystem Mapping in British Columbia. Ecosystems Working Group, Terrestrial Ecosystems Task Force. Victoria, British Columbia. 110 pp. Accessed by website: http://www.for.gov.bc.ca/ric/Pubs/teEcolo/tem/indextem.htm
- Resources Inventory Committee (RIC). 1998b. Standard for Digital Terrestrial Ecosystem Mapping (TEM) Data Capture in British Columbia. Ecosystem Working Group/Terrestrial Ecosystem Task Force, Resources Inventory Committee. Victoria, British Columbia. Accessed by website: http://www.for.gov.bc.ca/ric/pubs/teecolo/temdata/index.htm.
- Sims, R.A., Corns, I.G.W. and K. Klinka. 1996. Introduction Global to Local: Ecological Land Classification in Sims, R.A., Corns, I.G.W. and K. Klinka (eds). Global to Local: Ecological Land Classification Kluwer Academic Publications. The Netherlands. 610 pp.
- University of Wisconsin, RobertW. Freekmann Herbarium. Accessed online, website address: http://wisplants.uwsp.edu/scripts/detail.asp?SpCode=POTFOLsFOL.
- Vitt, D.H., J.E. Marsh and R.B. Bovey. 1988. Mosses, Lichens and Ferns of Northwest North America. Lone Pine Publishing. Edmonton, Alberta.

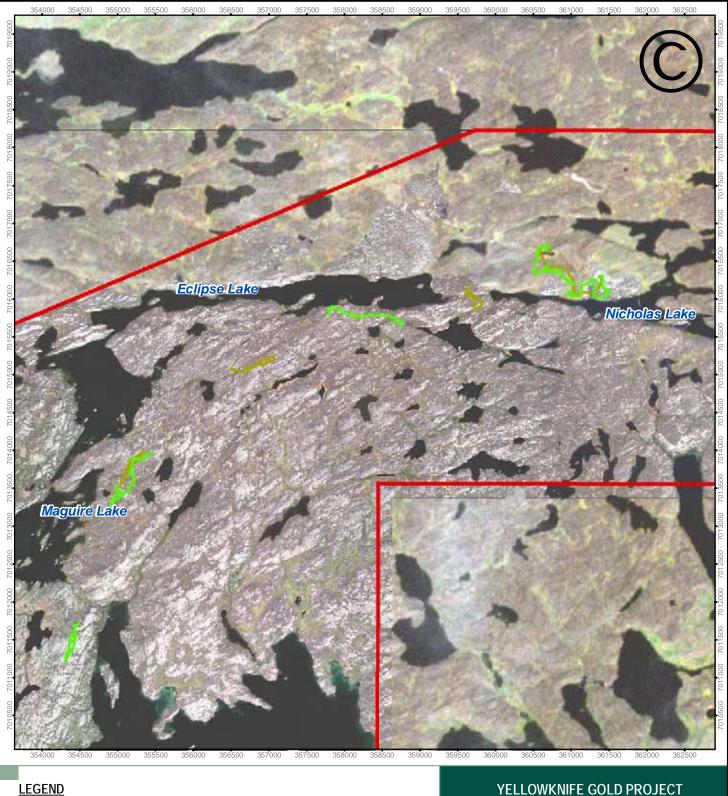
FIGURES




EBA-VANCOUVER


KO

- Proposed Footprint
- July Sampling Tracks
- August Sampling Tracks
- (Locations of *Potamogeton foliosus* (unconfirmed)


YELLOWKNIFE GOLD PROJECT

Rare Plant Survey Areas in Southern Portion of Study Area

PROJECTION:		DATUM:		
UTM Zone 12		NAD83	$\mathbf{\lambda}$	
Scale: 1:25,000 0 0.25 0.5 1 Kilometres		1	Image: Whee Development Corp EBA Engineering Consultants Ltd.	
FILE No:			DATE:	
B-Veg-004.mxd			April 28, 2006	
JOB NO:	REVISION	10:		
1740180		1	Elemente d	
OFFICE:	DRAWN:	CHECK:	Figure 4	
EBA-VANC	BGP	КО		

Base data sources:

Imagery Source: IKONOS (July 27th and August 2nd 2004. Landsat TM (August 11th 2001) Water Features: Extracted from IKONOS imagery

Local Study Area

Base data sources:

July Sampling Tracks August Sampling Tracks

YELLOWKNIFE GOLD PROJECT

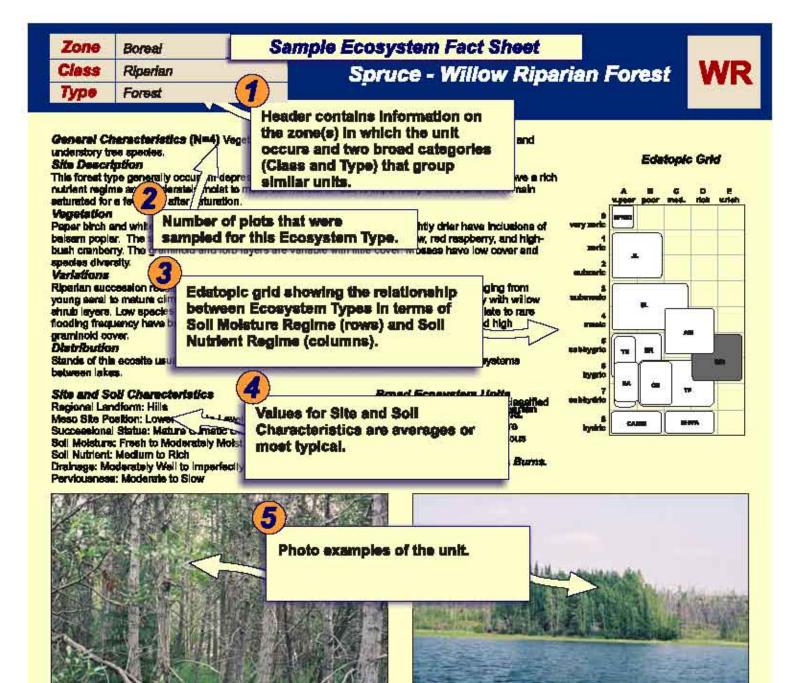
Rare Plant Survey Areas in Northern Portion of Study Area

PROJECTION: DATUM: UTM Zone 12 NAD83 yhee Development Corp Scale: 1:50,000 0.25 0 EBA Engineering Consultants Ltd. Kilometres DATE: FILE No: B-Veg-005.mxd April 28, 2006 JOB NO: REVISION NO: 1740180 1 Figure 5 OFFICE: DRAWN: CHECK: EBA-VANC BGP КО

Imagery Source: IKONOS (July 27th and August 2nd 2004. Landsat TM (August 11th 2001) Water Features: Extracted from IKONOS imagery

APPENDIX

APPENDIX A ELC FIELD DATA


Lifeform	Spp	Common Name	Р	MC	F29	F31
1	Picea mariana	black spruce	50.0%	0.1	0.2	
1	Pinus banksiana	jack pine	100.0%	0.2	0.1	0.2
2	Betula papyrifera	paper birch	100.0%	2.6	0.1	5.0
3	Juniperus communis	common juniper	100.0%	35.0	60.0	10.0
4	Rubus idaeus	red raspberry	100.0%	1.0	1.0	1.0
5	Dryopteris fragrans	fragrant wood fern	50.0%	0.1		0.1
5	Polypodium virginianum	Virginia polypody	50.0%	0.1	0.1	
5	Woodsia glabella	smooth cliff fern	50.0%	0.1		0.1
5	Woodsia ilvensis	rusty cliff fern	100.0%	0.1	0.1	0.1
6	Agrostis scabra	hair bentgrass	100.0%	0.1	0.1	0.1
6	Elymus trachycaulus ssp. trachycaulus	slender wheatgrass	50.0%	0.1	0.1	
6	Poa glauca	glaucous bluegrass	100.0%	1.0	1.0	1.0
7	Corydalis sempervirens	pink corydalis	50.0%	0.1	0.1	
7	Epilobium angustifolium	fireweed	50.0%	0.1	0.1	
7	Saxifraga tricuspidata	three-toothed saxifrage	100.0%	3.5	2.0	5.0
9	Polytrichum juniperinum	juniper haircap moss	50.0%	2.5		5.0
9	Polytrichum sp.	hair cap moss	50.0%	0.5	1.0	
11	Cetraria sp.	icelandmoss lichens	50.0%	1.0		2.0
11	Cladina mitis	lesser green reindeer	100.0%	7.5	10.0	5.0
11	Cladonia sp.	clad lichens	50.0%	0.1		0.1
11	Peltigera sp.	pelt lichens	50.0%	0.1		0.1
11	Stereocaulon tomentosum	eyed foam	100.0%	12.5	5.0	20.0
12	Arctostaphylos uva-ursi	bearberry	100.0%	2.6	0.2	5.0

APPENDIX

APPENDIX B ECOSYSTEM TYPE FACT SHEETS

Characte	vistic Spec	les of WR	Species	of WR F14
Average % Gover 4.0	Range % Cover D - 11.0	apruce (Picee piece	% Cover 5.0	Confierous tree black spruce (Picee mariane) Deciduous tree
2.5	0-5.1	The Characteristic Species table show typical percent cover of	20.0	paper birch (Betula papyrifera) Deciduous shrub
22.5	D-45.0 p	plant species for these		
15.0	0-80.0 b		5.0	tes leaved willow (Saltx planfiolia sp. plantiolia)
	D	Ecosystem Units that were sampled. Other structural stages	3.0	northern bush willow (Salix arbusculoides) Fern and Fern Ally
15.5			1222	
12.5	n	and stand compositions may	2.0	wood horestell (Equiestum sylveticum)
5.0	h	occur.		Graminoid
2.0			1.0	Silmstem reedgrass (Celamagroatis stricts ap. inexpansa)
	G		_	Forb
20.0	R			wamp willowherb (Epilobium petustre)
0.2	b		~~~	
	F	orb		
0.1	G	inquefail (Patentilla sp.)		

Zone	Boreal
Class	Riparlan
Туре	Forest

General Characteristics (N=4) Vegetation within each site varied, including dominant canopy and understory tree species.

Site Description

This forest type generally occurs in depressional areas within hilly landscapes. These ecotypes have a rich nutrient regime and moderately moist to moist soil moisture. Soil is imperiectly drained and will remain esturated for a few days after esturation.

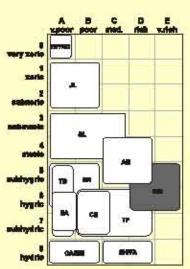
Vegetation

Paper birch and white spruce dominate in mature stands. Forests that are slightly drier have inclusions of balaam poplar. The shrub leyer tends to be sparse. Shrube may include willow, red rappenry, and highbush cranberry. The graminoid and forb layers are variable with little cover. Mosses have low cover and species diversity.

Variations

Riparian succession results in a broad range of structural stages of this ecceystem type, ranging from young seral to mature climatic climatic Frequently flooded sites support a paper birch canopy with willow shrub layers. Low species diversity is typical of frequently flooded sites. Sites with intermediate to rare flooding frequency have balsam poplar, and paper birch canopy with low shrub coverage and high graminoid cover.

Distribution


Stands of this society usually occur adjacent to streams in the boreal zone and in drainage systems between lakes.

Site and So8 Characteristics

Regional Landform: Hills Meao Site Position: Lower alops to Level Successional Status: Mature Climatic Climax to Young Seral Soil Molature: Frash to Moderately Molat Soil Nutrient: Medium to Rich Drainage: Moderately Well to imperfectly drained Perviousness: Moderate to Slow

Broad Ecosystem Units •This unit is classified as Riperian

Woodland and Shrubland.

Edetopic Grid

Characteristic Species of WR

Average % Cover	Range %	Configuous tree
40	10 State 1	white spruce (Pices glauce)
		Deciduous tree
22.5	0-45.0	peper birch (Betula pepyrifera)
16.0	0-60.0	balsam poplar (Populus balsamiliana)
		Deciduous shrub
15.5	0-50.0	willow (Saltr app.)
12.5	0-60.0	northern bleckourrent (Ribes hudsoniemen)
5.0	D- 16.0	highbush cranberry (V/burnum eckle)
20	0-5.0	red nampberry (Rubus Ideous)
		Graminoici
20.0	0-80.0	Reedgrass (Calamagnostis ep.)
0.2	0-10	bluejoint (Calamagrostia canadanais)
		Forb
0.1	0-0.1	olnqusioi (Potentiite sp.)

Species of WR F23

% Cover	Contierous tree
3.0	white spruce (Pices gleuce)
	Deciduous tree
40.0	paper birch (Batula pepyrifiera)
	Deciduous shrub
50.0	Willow (Selfx ap.)
5.0	highbush-cranberry (Viburnum edule)
2.0	northern blackcurrent. (Ribes hudeonlanum)
	Graminoid
0.1	Reedgress (Celemegroatts ap.)
	Forb
2.0	Cenada violet (Viole canadanate)

Spruce - Moss Forest

Edatopic Grid

B C

a

ntio

arie

-

.

-

50

-

TF

General Characteristics (N=3) This is a productive upland treed ecosystem. Understory vegetation composition varies between sites.

Site Description

This forest type develops on well drained shes undertain by fine-textured till veneers or bedrock. Moderately fresh soils assist with providing a modest amount of water and nutrients to plant forms. Vegetation

The closed canopy is dominated by white spruce in climatic climax stages and paper birch as a serai community. Understory vegetation is variable and limited in cover. Shrubs include Labrador tea, green aider, and bog cranberry. Graminoid species present include bluejoint, however species cover is minimal. The mose and lichen layers are poorly developed, dominated by step mose, red-stemmed feathermose and Ciedonia lichens.

Variationa

Paper birch is the dominant seral species following fire disturbance.

Distribution

Stands of this forest type were uncommon in the boreal zone of the study area. They were generally found on slopes above lake or at the top of slopes.

Site and Soli Characteristics

Regional Landform: Hills Meso Site Position: Toe to Upper Slope Successional Status: Young Serei to Young Climatic Climax Soli Molature: Moderately Fresh to Fresh Soil Nutrient: Medium Drainege: Well to Repidly drained Perviousness: Moderate to Rapid

Broad Ecosystem Units

Confier dominated stands are classified as Maeic Confierous Woodland. Deciduous and mixed stands are clausified as Mixed and Deciduous Woodland. Burned stands are classified as Burns.

Cherecteristic Species of AM

Average % Cover	Range % Cover	Coniferous tree
10.0	1.0-15.0	white spruce (Pices glauca) Deciduous tree
76.7	70 - 85.0	paper birch <i>(Betule pepyrtlere)</i> Deciduous shrub
3.3	0 - 10.0	green alder (Ainus virkäs sap. orispa) Denaf ahrub
3.4	0 - 10.0	bog cranberry (Vaccinium vitis-kiese) Fern and Fern Ally
1.7	0 - 6.0	wood horestall (Equilectum sylveticum) Graminold
0.7	0-2.0	blusjoint (Calamagrosifs Canadansis) Mone
0.3	0 — 1.0	red-stemmed feathermose (Pleuroztum schre
3.4	0 - 10.0	Liohen cied lichen (Cledonia sp.)

Species of AM F18

(heda

	Conferous tree
1.0	white epruce (Picee glauce)
	Deciduous tree
85.0	peper birch (Betule pepystiers)
	Dwarf shrub
10.0	bog cranberry (Vecchium vitia-ideea)
	Graminoid
2.0	bluejoint (Celemegrostis Canedensis)
1.0	silmetern reedgrase (Celemegroatis stricte sap. Inexpense)

yhee Development Corp

Zone	Boreal
Class	Riparlan
Туре	Forest

BF

General Characteristics (N=2) The sites are generally similar in successional status, soil moisture and nutrients, and vegetation composition.

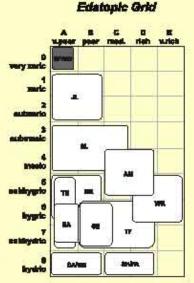
Site Description

This ecosite coours on exposed slopes on hills within the region. Bedrook is exposed and the available soll is nutrient poor. Vegetation growth on areas where shallow soil has developed, limiting species diversity and cover. As a result of exposed bedrock, drainage is very rapid and soil moisture is very dry. Vegetation

Stunted lack pine trees are scattered throughout the eccelte forming a very open canopy. Black apruce and paper birch present in very low numbers, provide limited cover. Shrub species composition is limited to common juniper, red rappberry, and bearborry. Fema within this eccette include rusty cliff fem and amouth cliff ferm. Minimal emounts of grase and forb species survive in this environment. The dominant grase species is glaucous bluegrase, and the most common forb is three-toothed saxingge. Mose life forms are limited within Boulder Fields, however, lichen cover and diversity is relatively high.

Variations

Species composition varies in relation to available soil and atta microenvironments. Distribution


The Boulder Field ecosite develope on areas that are dry, exposed, and have significant rock outcrops.

Site and Soll Characteristics

Regional Landscape: Hills Meao Site Poettion: Middle to Upper Slope Successionel Status: Young Seral to Mature Edephic Climex Soli Moleture: Very Dry Soll Nutrient Very Poor to Poor Drainage: Very Repidly to Repidly drained Perviousnees: not applicable because of significant rook outcropping

Broad Ecosystem Units

 This unit is classified as Bedrock and Bouider Fleid.

Characteristic Species of BF

Average % Cover	Range %		
0.2	0.1-0.2	Contierous tree	jeck pine (Pinus benkslene)
0.1	0-0.2		black spruce (Pices meriane)
2.8	0.1-6.0	Deciduous tree	peper birch (Beada pepyrifera)
35.0	10 - 60.0	Evergreen shrub	common juniper (Juniperus
1.0	1.0	Deciduous shrub	red rampberry (Rubus idaeus)
2.6	02-5.0	Dwarf shrub	beerberry (Arciostaphylos uve-u
0.1	0.1	Fem and Fem Ally	rusty cliff fern (Woodste Ilvensie
1.0	1.0	Graminoid	glaucous bluegrass (Poe glauce
3.5	2.0-5.0	Forb	three-toothed excitrage (Sexifia tricuapidata)
2.5	0 - 5.0	Moss	juniper haircap moes (Polytrich, kesperinum)
12.5	5.0-20.0	Lichen	eyed foam (Stereoceulon tomentosum)
7.5	5.D-10.0		lesser green reindeer (Cledine /

Species of BF F31

1.0.1

KO6

100

milia)

9	Gover		
	0.2	Coniferous tree	jack pine (Pinus banksiane)
	5.0	Deciduous tree	paper birch (Betule pepyrillers)
	10.0	Evergreen shrub	common juniper (Juniperus communis)
	1.0	Deciduous shrub	red raspberry (Robus Ideeus)
	5.0	Dwarf shrub	beerberry (Arctostephylos uve-ural)
	0.1	Fern and Fern Ally	rusty cliff fern (Woodsle Rvensis)
	1.0	Graminoid	glaucous bluegrass (Poe glauce)
	6.0	Forb	three-toothed saidlinege (Saidlinege tricuspidets)
	6.0	Nosa	Juniper heircep mose (Polytrichum juniperinum)
	20.0	Lichen	eyed foam (Stareocaulon tomentosom)
	5.0		lessar green reindeer (Cledine milts,
S	2.0		Icelandmoss (Cetraria sp.)

nilis)

Zone	Boreal
Class	Wetland
Туре	Non-treed

- Scrub birch Cloudberry Low Shrub Bog

Broad Ecosystem Units

Hummock

.This unit is classified as Birch

BR

General Characteristics (N=1) The term "bog" is applied to this ecception in the broad sense. Strictly, though, it is probably a "poor fer".

Site Description

This eccelle occurs in depression areas within upland regions. The soil remains moist due to poor drainage. The amount of nutrients available to vegetation is considered moderate. Vegetation

Understory vegetation is generally homogeneous with acrub birch dominating and minimal cover from willows, horsetall, bluejoint, and fireweed. No moss and itohen life forms are present within this ecosite. *Vertations*

Water levels and fire can alter the distribution of shrubs, graminoids, mosses, and lichens. Distribution

BR tends to occur in the polygon centres, while graminoid fan acceptions (EA, CE, CA) occupy polygon perimeters. It is found in close association with TB acceptes and is present as islands within larger TB polygons. It is rarely mapped on its own.

A B C D E very more very more automore aut

Edatopic Grid

Site and Soll Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression Successional Status: Mature Serai (ecrub birch), Young Edephic Climex (black spruce) Soil Molature: Molat Soil Nutrient: Poor to Medium Drainage: Poorly drained Perviousness; Slow

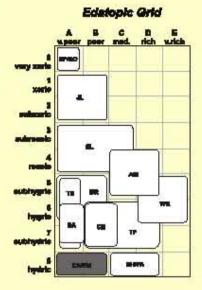
Characteristic Species of BR

Average % Cover	Range % Cover	Configrous tree
8.0	6.0	temereck (Lerix levicine)
1.0	1.0	black spruce (Pices mariens)
		Deciduous shrub
85.0	85.0	scrub birch (Betule name)
1.0	1.0	willow (Settr app.)
1.0	1.0	bliberry willow (Seltx myrtitellose)
		Fern and Fern Ally
0.1	0.1	wood horsetall (Equisetum sylveticum)
		Graminoid
0.1	0.1	biuejoint (Calamagrostia canadenala)
		Forb
0.1	0.1	fi reweed (Epilabium enguetifalium)

Zone	Borsel
Class	Wetland
Туре	Non-treed

General Characteristics (N=1) This is the wetlest graminoid fen ecosities in the study area. Site Description

This ecception occurs on acturated organic soils derived from sedge peat blankets and veneers. The soil is very poorly drained and there is standing water within this wetland type. These graminoid fens occur in depressions within larger benchland topography.


Vegetation

A moderate to lush cover of water sadge dominates the vegetation with moderate amount of cover from dwarf shrube such as leatherisef and bog rosemary. Moss cover is sparse and dominated by *Sphegman* sp. *Vertetions*

Changes in water movement may alter species composition.

Distribution

This common ecceystem often co-occurs with other graminoid fens (CE, EA), low shrub bogs (BR), and open water (OW). It is restricted to very wet sites with some water movement.

Site and Soll Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression Successional Status: Mature Edaphic Climex Soil Moleture: Wet Soil Nutrient: Rich Drainage: Very Poorly drained Pervicuences: Slow

Broad Ecosystem Units

 This unit if classified as Sedge Fen.
 Complexes of BR, EA, and CA are classified as Wetland Complex.

No photo available

Characteristic Species of CA

Average % Cover	Range % Cover	Conferous tree
3.0	3.0	temerack (Larix laricina)
		Evergreen shrub
10.0	10.0	leatheriest (Chamaedaphne calyculate)
		Dearf shrub
5.0	5.0	cloudberry (Rubus chameemorus)
3.0	3.0	bog rosemery (Andromede polifolia)
1.0	1.0	bog crenberry (Vaccinium vitis-idaea)
		Graminoid
70.0	70.0	water sedge (Carex equatilis)
		Noss
1.0	1.0	Sphagnum species (Sphagnum sp.)

Zone	Boreal
Class	Wetland
Туре	Non-treed

Round-fruited sedge Chamisso's cottongrass Fen

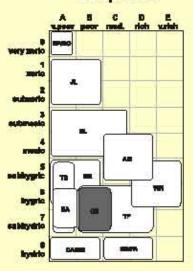
General Characteristics (N=1) These graminoid fans can vary in vegetation composition in relation to alte and soil characteristics. For example, Chamieso's cottongress is present within this site, but no roundfruited sedge was observed at the time of the site investigation.

Site Description

This ecosystem occurs on saturated organic solis in depressional areas. Nutrients available for vegetation are considered moderate.

Vegetetion

Cottongrase and eedges are the dominant vegetation. Scattered bog resemany and cloudberry are present. Common brown Sphagnum forms a significant component of the moss layer.


Variations

Changes in water movement may alter species composition.

Distribution

This ecosystem often co-cocurs with other graminoid fens (CA, CE, EA) and low shrub bogs (BR). It is restricted to wat altes with some water movement.

Edatopic Grid

Site and Soll Characteristics

Regional Landform: Hills, Pietseu Maso Sita Position: Depression Successional Status: Mature Serai Soll Molature: Wet Soll Nutrient: Medium Drainage: Very Poorly drained Pervioueness: Slow

Broad Ecosystem Units

•This unit is classified as Sedge Fen. •Complexes of BR, EA, and CE are classified as Wetland Complex.

Cherecteristic Species of CE

Average % Cover	Range % Cover	Evergreen shrub
1.0	1.0	Labrador tea (Leckm groenlendicum)
		Dwarf shrub
5.0	5.0	cloudberry (Rubus chemeemorue)
2.0	2.0	bog rosemary (Andromeda polifolia)
		Graminold
20.0	20.0	sedge species (Cerex sp.)
10.0	10.D	Chamieso's cotton grass (Eriophorum chamissonis)
5.0	5.0	sheathed cotton-grass (Erlophorum vaginatum)
		Moss
20.0	20.0	common brown sphegnum (Sphegnum fuscum)
5.0	5.0	shaggy sphagnum (Sphagnum squarrosum)

Zone	Boreal
Class	Wotland
Туре	Non-treed

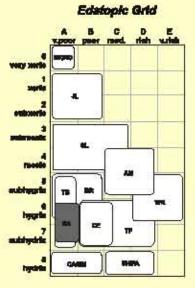
Sheathed cottongrass Bog-rosemary Sedge Fen

General Characteristics (N=1) This graminoid fan occurs within a Tamarack Blueberry Treed Fan (TF).

Site Description

This ecception occurs in depressional areas within regional plateaus. As a result of poor drainage and alow perviousness, the soil is moderately wet.

Vegetation


A moderate cover of sadgee dominates the vegetation, in perticular water sadge. Sheggy aphagnum and other sphagnum species including common brown and midway peet more are present. Scattered leatherleaf and ecrub birch may occur.

Variations

Changes in water movement may alter species composition.

Distribution

This ecception was uncommon and only found in small patches with TF ecceltes.

Site and Soli Characteristics Regional Landform: Hills, Plateau Maso Site Position: Depression Successional Sistus: Mature Seral Soli Moleture: Moderately Wet Soli Nutrient: Medium Drainage: Poorly drained

Broad Ecosystem Units •This unit is classified as Sedge Fen. •Complexes of BR and EA are classified as Wetland Complex.

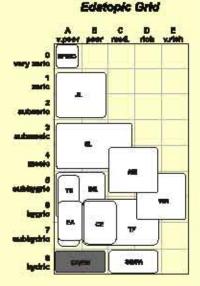
Characteristic Species of EA

whee Development Corp

Average % Cover	Range % Cover	Evenancen shrub
10.0	10.0	leatherisef (Chamaedephne celyculata)
		Deciduous shrub
5.0	5.0	ecrub birch (Betule nane)
		Graminold
60.Q	60.0	water sedge (Carex equettis)
		Forb
1.0	1.0	arrow-leaved coltateot (Peteckes sagitatus)
		Moss
30.0	80.0	shaggy sphagnum (Sphagnum squarrosum)
6.0	6.0	common brown sphegnum (Sphegnmum fuscum)
2.0	2.0	midway peatmose (Sphagnum mageRenicum)

Zone	Boreal	
Class	Wetlend	
Туре	Non-treed	

Water sedge Horsetail Shallow Shore Marsh


General Characteristics (N=4) This shellow shore merch occurs along lake and pond shores. Site Description

This ecceystem occurs in shallow open water. High available nutrients support a variety of sedges. Magnetation

Vegetation is patchy and interspersed with shallow open water. Water sedge is the dominant species. Potentilla and other sedge species are common. Forb cover is sparse but diverse. Vertations

Water fluctuations can determine species composition and cover. Low water levels during drier years within the shallow shore marsh provide substrate for pioneer forb species to establish. Distribution

This ecceystem is commonly found as a fringe along lake and pond shores.

Site and Solf Characteristics Regional Landform: Hills, Platsau Meso Site Position: Depression and Level Successional Status: Mature Seral Soll Molature: Wet Soll Nutrient: Medium and Rich Drainage: Poorly to Very Poorly drained Perviousnese: Slow Broad Ecosystem Units •This unit is classified as Other Wetlands.

Characteristic Species of EM

Average %	Range %	
Cover	Cover	Evergreen Shrub
0.1	0-0.1	leatherieal (Chamaedephne celyculate)
		Deciduous shrub
0.4	0-4.0	sweet gale (Myrice gale)
		Graminold
55.3	1.0-90.0	water sodge (Carex equatilis)
12.5	0-40.0	beaked sedge (Carax utriculate)
		Forb
2.0	0-5.0	cinquefoli (Potentitle sp.)
2.6	0-10.0	wild calls (Calls palustris)

Species of EM 17

% Cover	Graminoid
90.0	water sedge (Cerex equatilis)
	Forb
10.D	wild cella (Calle paluetrie)
4.0	greater bladderwort (Utricularie macrostize)

Broad Ecosystem Units

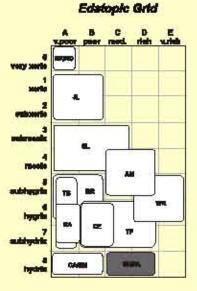
•This unit is classified as Aquatic Vegetation.

General Characteristics (N=0)

Visual assessments only were completed for this ecosite. Site Description

Standing water is present throughout the year.

Vegetation


Vegetation is composed of floating equatic vascular plants, including small yellow pond illy, water sedge, emergent horsetail, and pondweed.

Variations

Variations in species composition would depend on water depth and chemistry.

Distribution

Floating equatic ecosities occur in shallow open water, approximately < 2 m in depth or in shallow portions of lakes or ponds.

Site and Solf Characteristics Regional Landform: Hills, Plateau Maso Site Position: Depression topography Successional Status: Mature Seral Soll Moleture: Wet Soll Nutrient: Moderate Drainage: Very Poorly drained Perviouences: Slow

Characteristic Species of FA

No species composition data available

Zone	Boreal
Class	Upland
Туре	Woodland

General Characteristics (N=5) This woodland type is typical of dry sites in the boreal zone. Site Description

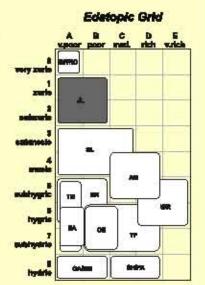
Jack pine lichen woodlands develop on crest of hills or eaker complexes. Solis tend to be shallow with bedrock outcroppings or bedrock near the surface. As a result, nutrients and water are limited as drainage is very rapid and the soli is less permeable to water.

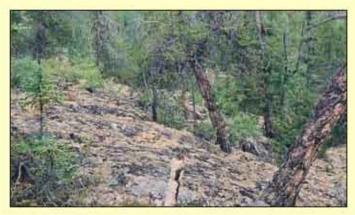
Vegetation

Stunted jack pine trees form a very open canopy. The understory is sparse, due to lack of soll development. Forbs typically include beerberry and bog cranberry. Graminolds are scant and limited to readgresses and bluegrass. Lichens cover much of the ground surface, and bedrock tends to be covered with crustose lichens. Eyed foam, cled lichen and icelandmose lichen have significant covers. Small patches of bryophytes include *Distantum* spp. and helicep mosses.

Variations Birch is present as seral species on burnt sites.

Distribution


This ecceystem is mostly restricted to dry bedrook knoils, but it occasionally occurs on rapidly drained aandy deposits and rocky esker complexes.


Site and Soll Characteristics

Regional Landform,: Hills Meso Site Position: Middle Slope to Creat Successional Status: Young Seral to Matura Edaphic Climax Soll Molsture: Very Dry to Dry Soll Nutriant: Very Poor to Poor Drainage: Very Rapidly to Rapidly drained Pervicuances: not applicable because of significant rock outcropping

Broad Ecosystem Units

Confer dominated stands are classified as Dry Confierous Woodland. Deciduous and mixed stands are classified as Mixed and Deciduous Woodland. Sumed stands are classified as Burne.

Characteristic Species of JL

Average 5 Cover 23.0 5.5 0.4 22.5 1.8 0.2 0.1 3.6 1.9 5.6 3.7 2.7

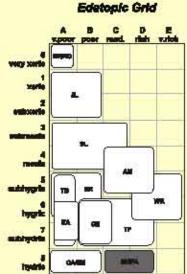
%	Range % Cover			% (
	1.1-50.0	Confierous tree	Jack pine (Pinus benkalane)	100
	0-15.0	Decidous tree	peper birch (Betula pepyrifera)	
	0-4.0	Deciduous shrub	willow species (Saltx sp.)	1
	D-60.0	Dwarf ehrub	beerberry (Arctostephylos uve-	
	0-5.0		bog cranbarry (Vaccinium vitia- idasa)	- 6
	0-1.0	Fem and Fem Alty	Virginia polypody (Polypochan virginianum)	
	0-0.2	Graminoid	glaucous bluegrass (Pos glauca)	1
	D-20.0	Hous	dicranum species (Dicranum sp.)	
	D-6.D		juniper heircep moes (Polybichum juniperinum)	
	0-30.0	Lichen	cruat lichen (Crustose lichen)	
	D-10.0		eyed toam (Stereocaulon tomentosum)	
	0-15.0		dad Ichens (Cladonis sp.)	

Species of JL F35

Cover	Coniferous tree
7.0	black spruce (Plose meriane)
1.1	Jack pine (Pinus berskelane)
	Decidous tree
11.0	paper birch (Betula papyrifiera)
	Dwarf shrub
80.0	bearberry (Arctostephylos uve-ural)
3.0	bog cranberry (Vaccinium vitie-Ideas)
	Graminoid
1.0	spike trisetum (Trisetum spicatum)
	Forb
1.0	bestard toed-flax (Geocevion Widum)

Zone	Boreal
Class	Wetlend
Туре	Non-treed

General Characteristics (N=0) Visual assessments only were made for this ecceystem.


Site Description This ecceystem occurs on saturated organic soils derived from sedge peat blanksta and veneors.

Vegetation

Low chrube and actiges dominate the vegetation. The moderate shrub layer is mostly composed of willows, with leatherleaf present as a minor component. Several species of sedges may be present, but water sedge is usually the dominant species. Cloudberry plants may be scattered throughout the herb layer. The moderate mose layer has variable species composition. Past mosses are often present. Vertations

Species composition will vary with water movement and trequency of fire. Distribution

This shrubby fan often co-occurs with graminoid fens. Common distribution was near open water, treed fens or drainage grass. It is restricted to wet sites with some water movement.

Site and Soll Characteristics

Regional Landform: Hills, Pietseu Meto Site Position: Depression and Level Successional Status: Young Seral to Mature Seral Soll Molature: Wet Soll Nutrient: Medium to Rich Drainege: Very Poorty drained Perviousness: Slow

Broad Ecosystem Units •This unit is classified as Shrubby Fen.

Characteristic Species of SH

No apecies composition data available

Zone	Boreal
Class	Upland
Туре	Woodland

Spruce - Lichen Woodland

SL

General Characteristics (N=7) This Spruce - Lichen woodland commonly occurs within the study area. Site Description

The Spruce-Lichen Woodland type typically occurs on slopes of hills. Solis range from Regosole with boulder and till deposits, or Brunisol solis over til veneer. Soli nutrient levels are low and solis are moderately dry.

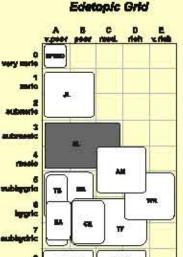
Vegetation

Mature stands are dominated by black spruce. The ehrub layer is composed of Labrador tes, green alder, willow, and bog crenberry. The herb layer is sparse and lacks species diversity. Moss are dominated by *Dicremum* species and have moderate cover. Reindeer, icelandmoss lichens, and clad lichens are common. Lichen cover is high in mature stands.

Vertations

Stands are subjected to relatively frequent free. Following fire, frewsed and deciduous shrube are pioneer species. Paper birch and jeck pine are seral canopy species with black spruce regeneration. Lichen coverage is limited in seral stands.

Distribution


This ecception occurs on a broad range of well-drained alter undertain by till and bedrock. It is also found on a variety of slope positions and aspects.

Site and Soll Characteristics

Regional Landform: Hills Meso Site Position: Creat to Lavai Successional Status: Young Serai to Young Climatic Climax Soll Motature: Dry to Moderately Fresh Soll Nutrient: Very Poor to Medium Drainage: Very Rapidly to Moderately drained Perviousness: Moderate to Rapid

Broad Ecosystem Units

«Confier dominated stands are classified as Dry Confisious Woodland. «Deciducus and mixed stands are classified as Mixed and Deciduous Woodland. «Burnt stands are classified as Burns.

Cherecteristic Species of SL

Average % Cover	Range % Gover	Coniferous tree
14.8	0-41.0	black apruce (Picee martene)
12.5	0-75.0	Jack pine (Pinus benkslens) Decidious tree
8.2	0-18.0	paper birch (Betule papyrifera) Everyreen stirub
13.3	0.1 - 30.0	Labrador tea (Ledum groenlandicum) Deciduous shrub
1.9	0-8.0	green elder (Alnus viridis sep. crispe) Dwarf shrub
6.7	0.1 - 25.0	bog cranberry (Vecchikan vitis-idaea) Nose
2.6	0-10.0	dicranum apecies (Dicranum ap.)
0.9	Q - 3,0	juniper hairoap moss (Polyinichum juniperimum) Lichen
9.6	0-25.0	lesser green reindeer (Cladina milita)
	0_250	conv reindeer (Cledine conditions)

Species of SL F4

% Cover	Confierous tree
75.0	Jaok pine (Pinus bankstana)
1.0	bleck spruce (Picee mariene)
	Evergreen shrub
1.0	Labrador tea (Lectern groenlandicien)
	Dwarf shrub
1.0	bog cranberry (Vaccintum vitis-idaee)
1.0	bearberry (Arctostaphylos uva-ural)
	Nos
1.0	dicranum apecies (Dicranum sp.)
	Lichen
8.0	cied lichens (Cledonie sp.)
1.0	Icelandmose lichen (Cetraria sp.)

General Characteristics (N=5)

This wetland type is a Treed Northern Plateau Bog. The term "bog" is applied to this ecosystem in the broad sense. Strictly, though, it is probably a "poor fen".

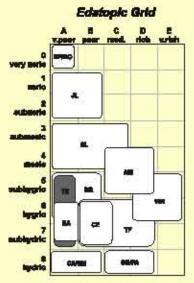
Site Description

Treed bogs occur on Sphagnom peet deposits. This wetland type typically occurs in depressional areas within upland or hilly regions. These sites have low levels of nutrients available for plant growth and are generally motet. Organic solis develop over time due to poor drainage and elevated water levels. Vegetation

Stunted black apruce usually forms a very open canopy with a relatively homogeneous abrub layer. Labrador tea, as well as minor components of cloudberry, bog blueberry and bog cranberry dominate the shrub layer. Graminoids and forbs are insignificant understory components. Moss and lichen life forms are diverse and contribute to a considerable amount of total cover within this wetland. Variations

The lichen form (TBI) occurs when the ground surface becomes elevated and experiences moleture deficite. It has a carpet of reindeer lichens, with little living Sphagnum on the ground aurlace. In young seral and edaphic successional types, understory vegetation is more diverse with higher cover, compared to the mature stands.

Distribution


Treed bogs are located as plateaus within upland areas. They are often surrounded by bedrock outcrops aupporting SL or JL ecceltes.

Site and Soll Characteristics

Regional Landform: Hills, Plateau Maso Site Position: Level to Depressional Successional Status: Young Sensi to Mature Edephic Climex Soli Moleture: Moderately Wet to Molet Soll Nutrient: Very Poor to Poor Drainage: Poor Perviouences: Slow

Broad Ecosystem Units

•This unit is classified as Treed Fens and Bogs. Burned occurrences are classified as Burns.

Ch

Ann

aracter)	suc Speck	is of TB		Species
erage % Cover	Range % Cover			% Cover 0.2
12.0	0.1-36.0	Confiscous tres	black spruce (Pfoee mariane)	3.0
1.8	0-6.0	Deciduous tree	water birch (Betule occidentalis)	20.0
44.0	20.0 - 70.0	Evergreen shrub	Labrador tes (Ledum	3.0
		and the second sec	groenskandbourn)	3.0
0.8	0-20	Deciduoue shrub		1.0
		6 2 5 6 3	ulighoaum)	2.0
2.0	Q - 5.0	Dwerf shrub	cloudberry (Rubus chameemonus)	2.0
0.8	0-2.0		bog cranberry (Vaccinium villa- kisee)	3.0
0.4	0-1.0		crowberry (Empetrum nigrum)	20.0
12.0	0-25.0	Moss	dicranum species (Dicranum sp.)	15.0
3.4	0-15.0		common brown sphagnum (Sphagnonun fuscum)	D.6
6.0	0-16.0	Lichen	clad lichen (Cledonie sp.)	-
3.2	0-10.0		grav reindeer /Cladina	6.0
2007/2017	12022200		rangilerina)	1.0

of TB FS

THE PARTY IS		
2	Conferous tree	Jack pine (Pinus banksiana)
0	Deciduous tree	weter birch (Betada occidentalia)
٥	Evergreen ehrub	Labrador tae (Ledum groenlandicum)
0	Deciduous shrub	green sider (Alnus viridis sp. crisps)
0		scrub birch (Betuda name)
0		bog blueberry (Veccinium uliginosum)
0	Dwarf shrub	cloudberry (Rubus chameemorus)
0		alpine bearbony (Arctostsphylos alpine var. rubra)
٥	Fern and Fern Ally	common hometall (Equisetum ervense)
0	Noss	dicranum species (Dicranum sp.)
0		common brown sphagnum (Sphagnmun fuscum)
5		bog haircap mose (Polytrichum strictum)
0	Liohen	cied lichen (Cladonia sp.)
٥		grey reindeer (Cladina rangilarina)

Zone	Boreal
Class	Wetland
Туре	Treed

General Characteristics (N=2) This ecosite appears within a variety of topographic conditions including upland and valley floor environments. Vegetation composition and cover varies between sites. Site Description

Treed fere occur on well developed organic layers that are molet to moderately wet and relatively nutrient rich. These altes are poorly drained with elow perviousness.

Vegetation

Stunted bleck spruce and tamarack usually form a very open canopy. The moderate shrub layer is variable, and can include Labrador tea, northern Labrador tea, acrub birch, whow species, and bog blueberry. Dwarf woody plants also occur including provberry and bog granberry. The moss layer is well developed and la the main component of the understory vegetation. Common mose species include common brown sphagnum, *Disrenum* sp., and *Autoconstan* ep. Lichen cover is low.

Variations

Sites categorized as Temarack Bluebony Treed Fens may vary slightly in vegetation species composition and cover in relation to soil moisture conditions. In young serai and edaphic successional types, understory vegetation is more diverse with higher cover, compared to the mature stands. **Distribution**

Treed fere occur in drainage areas of the boreal zone. They are usually found in upland plateaus that have water movement or near open watlands.

> black spruce (Pices mariane) temaneck (Lerb: lariofna)

scrub birch (Betals nans) willow apocles (Satir sp.)

common brown sphegnum (Sphegnman fuecum)

dicremum apacies (Dicremum ap.) eheaary eoheanum (Soheanum

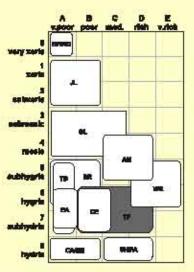
lesser green lichen (Cledine milie) Icolandmose (Cetrarie ap.)

documbrens)

action on and

Labrador tea (Ladum groeniansicum) northern Labrador tea (Ledum paluatre sa)

bog blueberry (Veccinium uliginosum) anwoerry (Empetrum rignum) bog cranberry (Vaccinium višo-idace)


Site and Soli Characteristics

Regional Landform: Hills, Plateau Meso Site Position: Depression to Level topography Successional Status: Mature Seral to Young Edaphic Climax Soll Molature: Molst to Moderately Wet Soll Nutrient: Medium to Rich Drainage: Poorly drained Perviousness: Slow

Broad Ecosystem Units •This unit is classified as Treed Fens

and Bogs. «Burned areas are classified as Burne.

Characteristic Species of TF

Average % Range % Cover Cover

COREL	COARL	
13.0	1.0-25.0	Coniferous inse
6.0	8.0-9.0	
6.0	0-10.0	Evergreen shrub
25	0 - 5.0	
18.0	1.0 - 35.0	Deciduous algub
26	0.1-5.0	
0.6	0.1 - 1.0	
20	0 - 4.0	Duarf strub
1.1	0.1 - 2.0	
30.0	30.0	Moss
8.0	6.0	
20	Z.0	
8.0	6.0	Licken
1.0	1.0	

Species of TF F38

& Cover	in an	
26.0	Conferous tree	biack spruce (Pices mariane)
9.0		temereok (Larix Ierioine)
10.0	Evergreen skrub	Labrador tea (Lodum groenlandicum)
5.Ó		northern Labrador tea (Leckan pelustre ssp. decumbente)
1.0	Deciduous shrub	ecrub birch (Biotule neme)
0.1		willow species (Selfs ap.)
1.0		bog blueberry (Vecolnium alighnaum)
4.0	Dwarf etyde	crowberry (Empelhan nigram)
2.0		bog crenberry (Vaccinium vibia-klase)
30.0	Mosa	common brown sphagnum (Sphagnman Azeoum)
6.0		dicranum apocios (Dicranum sp.)
2.0		sheggy sphagnum (Sphagnum squarrusum)
2.0		bog heimep mose (Polyblohum abiotum)
6.0	Lichen	lesser green lichen (Cledine milite)
1.0		Icelandmose (Cetrarie ap.)

APPENDIX

APPENDIX C RARE PLANT SURVEY VEGETATION DATA

Manadatian Truna	Latin Nama	Common Nama	Ni-t
Vegetation Type	Latin Name	Common Name	Notes
_	Corydalis sempervirens	Pale Corydalis	
_	Cryptogramma sitchensis	Parsley Fern	Also known as Cryptogramma sitchensis crispa
	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
	Epilobium palustre	Marsh Willow Herb	
Forb	Equisetum arvense	Field Horsetail	
	Geocaulon lividum	False Toadflax	
	Polygonum spp	Knotweed, Smartweed	
_	Saxifraga tricuspidata	Prickly Saxifrage	
	Stellaria borealis	Northern Stitchwort	Also known as Stellaria calycantha
	Stellaria crassifolia	Fleashy Stitchwort	
	Agrostis scabra	Rough Bentgrass	
	Calamagrostis neglecta	Reed Bentgrass	
	Carex aenea	Bronze Sedge	
	Carex aquatilis	Water Sedge	
Grass/Grass-like	Carex aurea	Golden Fruit Sedge	
Grass/Grass-like	Carex canescens	Hoary Sedge	
-	Eriophorum angustifolium	Cotton Grass	Includes Eriophorum triste
_	Glyceria striata	Fowl Manna Grass	
_	Poa spp	Bluegrass	
-	Trisetum spicatum	Narrow False Oat	
	Cetraria nivalis		
-	Cladina mitis	Green reindeer lichen	
_	Cladina rangiferina	Gray reindeer lichen	
Lichen —	Cladonia spp	Club lichen	
-	Peltigera aphthosa	Common freckle pelt, felt lichen	
-	Stereocaulon tomentosum	Woolly foam lichen, eyed foam lichen	
	Aulacomnium palustre	Tufted Moss, glow moss	
Moss —	Polytrichum juniperinum	Haircap Moss	
	Alnus viridis	Green Alder	Includes Alnus crispa
-	Arctostaphylos uva-ursi	Bear Berry	
_	Betula occidentalis	· · · ·	Also known as <i>Betula fontinalis</i>
_	Calamagrostis canadensis	Spring Birch	Also known as <i>Detuid Iulillidiis</i>
-	•	Blue-Joint	
_	Empetrum nigrum	Black Crowberry	
_	Juniperus communis	Common Juniper	Also known as Ground Juniper
_	Ledum groenlandicum	Common Labrador Tea	
_	Potentilla norvegica	Norwegian Cinqefoil	
_	Ribes oxyacanthoides	Canada Gooseberry	
Shrub	Rosa acicularis	Prickly Rose	
	Rubus idaeus	Wild Raspberry	Also known as <i>Rubus idaeus ssp. strigosus</i>
	Salix bebbiana	Bebb Willow	Also known as Salix rostrata, Long-beaked Willow
	Salix glauca	Gray willow	Also known as Salix glauca cordiflora ssp callicarpea, Sa glauca ssp stenolepsis
	Salix myrtillifolia	Myrtle-Leaf Willow	
	Salix planifolia	Tea-leaved Willow	Includes Salix pulchra, Salix tyrrellii
	Salix tyrrellii	Willow spp	
Γ	Vaccinium uliginosum	Alpine Blueberry	
	Vaccinium vitis-idaea	Mountain Cranberry	
	Viburnum edule	Squashberry	
	Betula papyrifera	Paper birch	Also known as <i>Betula papyrifera var. commutata</i> , Whi Birch
F	Larix laricina	Larch	Also known as Tamarack
Tree	Picea mariana	Black Spruce	
-	Pinus banksiana	Jack Pine	Also known as <i>Pinus divaricata</i>
	Populus tremuloides	Quaking Aspen	

legetation Type	Latin Name	Common Name	Notes
- gotation Type	Arctostaphylos rubra	Red Manzanita	NOICO
	Astragalus alpinus	Alpine Milk Vetch	
	Astragalus americanus	American Milk Vetch	
	Compositae (family)	American Milk Veten	
	Corydalis sempervirens	Pale Corydalis	
			Al 1 Cristaramma altabanaia ariana
	Cryptogramma sitchensis	Parsley Fern	Also known as Cryptogramma sitchensis crispa
	Dryopteris fragrans	Fragrant Cliff Wood-Fern	
	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
	Equisetum arvense	Field Horsetail	
	Equisetum spp	Horsetail	
	Erigeron elatus	Swamp Fleabane	
	Erigeron glabellus	Smooth Fleabane	
	Erigeron spp	Fleabane	
Forb	Geocaulon lividum	Northern Comandra	
1010	Linnaea borealis	Twinflower	
	Orthilia secunda Pyrola secunda	One-sided Wintergreen	Also known as Pyrola secunda
	Oxycoccos microcarpus	Small Bog Cranberry	
	Pedicularis labradorica	Labrador Lousewort	
	Pinguicula vulgaris	Common Butterwort	
	Pyrola spp.	Wintergreen	
	Ranunculus gmelinii	Small Yellow Water-Buttercup	Includes Ranunculus purshii
	Ranunculus lapponicus	Lapland Buttercup	· ·
	Rubus acaulis	Dwarf Raspberry	
	Rubus chamaemorus	Cloudberry	
	Saxifraga tricuspidata	Prickly Saxifrage	
	Senecio streptanthifolius	Rocky Mountain Groundsel	
	Stellaria spp.	Chickweed, Starwort	
	Woodsia ilvensis	Rusty Woodsia	
	Agrostis scabra	Rough Bentgrass	
	Calamagrostis canadensis	Blue-Joint	
	Carex aenea	Bronze Sedge	
	Carex aquatilis	Water Sedge	
	Carex aurea	Golden Fruit Sedge	
	Carex brunnescens	Brownish Sedge	
	Carex canescens	Hoary Sedge	
	Carex capillaris	Hair-like Sedge	
	Carex concinna	Beautiful Sedge	
	Carex deflexa	Short-stemmed Sedge	
	Carex disperma	0	
	Carex insperma	Softleaf Sedge	
rass/Grass-like —		Inland Sedge	
	Carex norvegica	Scandinavian Sedge	
	Carex parryana	Parry's Sedge	
	Carex vaginata	Sheathed Sedge	
	Eleocharis palustris	Creeping Spike Rush	T 1 1 Frienkemmenteiste
	Eriophorum angustifolium	Cotton Grass	Includes Eriophorum triste
	Eriophorum chamissonis	Russet Cotton Grass	Also known as Eriophorum russeolum var. albindur
	Eriophorum scheuchzeri	Schechzeri Cotton Grass	
	Gramineae (family)	Grass spp	
	Poa glauca	White Blue Grass	
	Poa spp	Bluegrass	
	Scirpus cespitosus	Tufted Club-rush	
	Trisetum spicatum	Narrow False Oat	
	Cetraria spp		
	Cladina mitis	Green reindeer lichen	
	Cladina rangiferina	Gray reindeer lichen	
Lichen	Cladina stellaris	Star-tipped reindeer lichen	
	Cladonia spp	Club licken	
	Peltigera aphthosa	Common freckle pelt, felt lichen	
	Peltigera neopolydactyla	Carpet pelt	
	Aulacomnium palustre	Tufted Moss, glow moss	
Moss —	Polytrichum juniperinum	Haircap	

STUDY AREA: G	RAVEL PIT		
	Alnus viridis	Green Alder	Includes Alnus crispa
	Arctostaphylos uva-ursi	Bear Berry	
	Betula nana	Arctic Dwarf Birch	Also known as Betula glandulosa, Dwarf Birch
	Betula occidentalis	Spring Birch	Also known as Betula fontinalis
	Chamaedaphne calyculata	Leather leaf	
	Empetrum nigrum	Black Crowberry	
	Ledum groenlandicum	Common Labrador Tea	
	Ribes hudsonianum	Northern Black Currant	
	Rosa acicularis	Prickly Rose	
	Rubus idaeus	Wild Raspberry	Also known as <i>Rubus idaeus ssp. strigosus</i>
Shrub	Salix arbusculoides	Littletree Willow	
	Salix bebbiana	Bebb Willow	Also known as Salix rostrata, Long-beaked Willow
	Salix fuscescens	Alaska Bog Willow	
	Salix glauca	Gray willow	Also known as Salix glauca cordiflora ssp callicarpea, Salix glauca ssp stenolepsis
	Salix myrtillifolia	Myrtle-Leaf Willow	
	Salix scouleriana	Scouler Willow	Also known as Mountain willow, Fire willow
	Salix spp	Willow	
	Salix tyrrellii		
	Vaccinium uliginosum	Alpine Blueberry	
	Vaccinium vitis-idaea	Mountain Cranberry	
	Betula papyrifera	Paper birch	Also known as Betula papyrifera var. commutata, White Birch
Tree	Larix Iaricina	Larch	Also known as Tamarack
	Picea glauca	White Spruce	
	Picea mariana	Black Spruce	

UDY AREA: N	ICHOLAS LAKE AND RO		
Vegetation Type	Latin Name	Common Name	Notes
	Comarum palustre	Marsh Cinqefoil	Also known as Potentilla palustris
	Corydalis sempervirens	Pale Corydalis	
	Cryptogramma sitchensis	Parsley Fern	Also known as Cryptogramma sitchensis crispa
	Diphasiastrum complanatum	Northern running-pine	Also known as Lycopodium complanatum
	Drosera rotundifolia	Round-leaved Sundew	
F	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
F	Épilobium glandulosum	Willow Herb	
	Epilobium palustre	Marsh Willow Herb	
-	Equisetum arvense	Field Horsetail	
F	Geocaulon lividum	Northern Comandra	
F	Lycopodium lagopus	Running Pine	
-	Oxycoccos microcarpus	Small Bog Cranberry	
Forb	Packera paucifora	Few-Flower Ragwort	Also known as Senecio pauciflorus
F	Packera paupercula	Balsam Ragweed	Also known as Senecio pauperculus
-	Pedicularis labradorica	Labrador Lousewort	
F	Potamogeton richardsonii	Redheadgrass	
F	Potentilla nivea	Snow Cingefoil	
F	Potentilla norvegica	Norwegian Cinqefoil	
F	Potentilla rubricaulis	Rocky Mountain Cinqefoil	
ŀ	Ranunculus lapponicus	Lapland Buttercup	
ŀ	Rubus chamaemorus	Cloudberry	
ŀ	Saxifraga nivalis	Snow Saxifrage	
F	Saxifraga tricuspidata	Prickly Saxifrage	
ŀ	Utricularia intermedia	Flatleaf Bladderwort	
ŀ	Woodsia ilvensis	Rusty Woodsia	
	Agrostis scabra	Rough Bentgrass	
ŀ	Calamagrostis canadensis	Blue-Joint	
ŀ	Calamagrostis purpurascens	Purple Reed Grass	
ŀ	Calla palustris	Wild Calla	Also known as Water Dragon
ŀ	Carex aenea	Bronze Sedge	
	Carex aquatilis	Water Sedge	
F	Carex concinna	Beautiful Sedge	
	Carex Iapponica	Lapland Sedge	Also known as Carex canescens ssp. subloliacea
ŀ	Carex livida	Livid Sedge	1130 KIIOWII as Oarth tantituris sip. subionatea
Grass/Grass-like	Carex magellanica	Magellan's Carex	Also known as Carex paupercula
112337 (51233-11KC	Carex vaginata	Sheathed Sedge	1150 KHOWH as Carth paupirtuna
F	Eriophorum angustifolium	Cotton Grass	Includes Eriophorum triste
-	Eriophorum brachyantherum	Short-Antler Cotton Grass	Also known as <i>Eriophorum opacum</i>
	Eriophorum scheuchzeri	Schechzeri Cotton Grass	1130 kilowit as Eriophoram opatam
ŀ	Gramineae (family)	Grass sp.	
F	Poa glauca	White Blue Grass	
ŀ	Poa spp	Bluegrass	
ŀ	Sparganium angustifolium	Narrow-leaf Bur-reed	
ŀ	Trisetum spicatum	Narrow False Oat	
	<i>Cladina mitis</i>	Green reindeer lichen	
-	Cladina rangiferina	Gray reindeer lichen	
Lichen	Cladonia spp		
	Peltigera neopolydactyla	Carpet pelt	
-	Stereocaulon tomentosum	Woolly foam lichen, eyed foam lichen	
	Aulacomnium palustre	Glow Moss, tufted moss	
ŀ	Calliergon spp	GIOW MOSS, tuited moss	
Maaa	Polytrichum juniperinum	+	
	Polytrichum spp	+	
Moss	Sphagnum angustifolium		
F	Sphagnum fuscum	1	

STUDY AREA:	NICHOLAS LAKE AND ROA	D	
	Alnus crispa, ssp crispa	Green Alder	
	Alnus viridis	Green Alder	Inlcudes Alnus crispa
	Arctostaphylos uva-ursi	Bear Berry	
	Betula nana	Arctic Dwarf Birch	Also known as B <i>etula glandulosa</i> , Dwarf Birch
	Betula occidentalis	Spring Birch	Also known as Betula fontinalis
	Chamaedaphne calyculata	Leather leaf	
	Empetrum nigrum	Black Crowberry	
	Juniperus communis	Common Juniper	Also known as Ground Juniper
	Ledum groenlandicum	Common Labrador Tea	
	Myrica gale	Sweet Bayberry	
	Ribes glandulosum	Skunk Currant	
	Rubus idaeus	Wild Raspberry	Also known as Rubus idaeus ssp. strigosus
	Salix arbusculoides	Littletree Willow	
	Salix arctica	Arctic Willow	Also known as Salix anglorum, Salix crassijulis, Salix hudsonensis
Shrub	Salix arctophila	Northern Willow	
	Salix bebbiana	Bebb Willow	Also known as Salix rostrata, Long-beaked Willow
	Salix brachycarpa	Short-fruit Willow	Ť
	Salix fuscescens	Alaska Bog Willow	
	Salix glauca	Gray willow	Also known as Salix cordiflora ssp callicarpea, Salix glauca ssp stenolepsis
	Salix maccalliana	Mccall"s Willow	
	Salix myrtillifolia	Myrtle-Leaf Willow	
	Salix niphoclada	Barren-ground Willow	
	Salix planifolia	Tea-leaved Willow	Includes Salix pulchra, Salix tyrrellii
	Salix pyrifolia	Balsam Willow	Also known as Salix balsamifera
	Salix scouleriana	Scouler Willow	Also known as Mountain Willow, Fire Willow
	Salix spp	Willow	
	Salix tyrrellii		
	Vaccinium uliginosum	Alpine Blueberry	
	Vaccinium vitis-idaea	Mountain Cranberry	
	Betula papyrifera	Paper birch	Also known as <i>Betula papyrifera var. commutata</i> , White Birch
Tree	Larix Iaricina	American Larch	Also known as Tamarack
Tree	Picea glauca	White Spruce	
	Picea mariana	Black Spruce	
	Pinus banksiana	Jack Pine	Also known as Pinus divaricata

Manadatian Tuna	Latin Nama	Common Norse	Nataa
Vegetation Type	Latin Name	Common Name	Notes
	Anemone multifida	Hudson Bay Anemone	
	Arctostaphylos rubra	Red Manzanita	
	Corydalis spp	Pink corydalis	
	Cryptogramma sitchensis	Parsley Fern	Also known as Cryptogramma sitchensis crispa
	Dryopteris fragrans	Fragrant Cliff Wood-Fern	
	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
	Epilobium glandulosum	Willow Herb	
Forb	Equisetum arvense	Field Horsetail	
1 010	Erigeron elatus	Swamp Fleabane	
	Orthilia secunda	One-sided Wintergreen	Also known as <i>Pyrola secunda</i>
	Pedicularis labradorica	Labrador Lousewort	
	Rubus chamaemorus	Cloudberry	
	Saxifraga spp	Saxifrage	
	Saxifraga tricuspidata	Prickly Saxifrage	
	Tofieldia pusilla Tofieldia palustris	Scotch False Asphodel	Also known as <i>Tofieldia palustris</i>
	Woodsia ilvensis	Rusty Woodsia	
	Agrostis scabra	Rough Bentgrass	
	Calamagrostis canadensis	Blue-Joint	
	Calamagrostis purpurascens	Purple Reed Grass	
	Carex aquatilis	Water Sedge	
	Carex aurea	Golden Fruit Sedge	
	Carex bebbii	Bebb's Sedge	
	Carex capillaris	Hair-like Sedge	
Grass/Grass-like	Carex vaginata	Sheathed Sedge	
	Eriophorum angustifolium	Cotton Grass	Includes Eriophorum triste
	Eriophorum chamissonis	Russet Cotton Grass	Also known as <i>Eriophorum russeolum var. albindum</i>
	Festuca spp	Fescue	
	Geocaulon lividum	Northern Comandra	
	Poa glauca	White Blue Grass	
	Trisetum spicatum	Narrow False Oat	
	Alnus viridis	Green Alder	Includes Alnus crispa
			Includes Allius urspa
	Arctostaphylos uva-ursi	Bear Berry	A1 1 Detulo glandulaca D (D) 1
	Betula nana	Arctic Dwarf Birch	Also known as <i>Betula glandulosa</i> , Dwarf Birch
	Betula occidentalis	Spring Birch	Also known as Betula fontinalis
	Betula papyrifera	Paper Birch	Also known as Betula papyrifera var. commutata, White Bi
	Empetrum nigrum	Black Crowberry	
	Juniperus communis	Common Juniper	Also known as Ground Juniper
	Ledum groenlandicum	Common Labrador Tea	
	Myrica gale	Sweet Bayberry	
	Potentilla norvegica	Norwegian Cinqefoil	
Shrub	Rosa acicularis	Prickly Rose	
	Rubus idaeus	Wild Raspberry	Also known as Rubus idaeus ssp. strigosus
	Salix glauca	Gray willow	Also known as Salix cordiflora ssp callicarpea, Salix glauca stenolepsis
	Salix myrtillifolia	Manual Tan GW/11-	Steriotepsis
	,	Myrtle-Leaf Willow	Includes Saliv nulchra Saliv turrallii
	Salix planifolia	Tea-leaved Willow	Includes Salix pulchra, Salix tyrrellii
	Salix scouleriana	Scouler Willow	Also known as Mountain Willow and Fire Willow
	Salix sp	Willow	
	Shepherdia canadensis	Canada Buffalo-Berry	
	Vaccinium uliginosum	Alpine Blueberry	
	Vaccinium vitis-idaea	Mountain Cranberry	
	∨iburnum edule	Squashberry	
Tree	Picea glauca	White Spruce	
1100	Piœa mariana	Black Spruce	

TUDY AREA: R			
Vegetation Type	Latin Name	Common Name	Notes
	Arctostaphylos rubra	Red Manzanita	
	Barbarea orthoceras	American Winter Cress	
	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
	Epilobium palustre	Marsh Willow Herb	
	Equisetum arvense	Field Horsetail	
	Equisetum sylvaticum	Woodland Horsetail	
	Galium tinctorium	Bedstraw spp	
	Galium trifidum	Small Bedstraw	Includes Galium brandegei, Galium tinctorium
	Geocaulon lividum	Northern Comandra	
	Lycopodium annotinum	Stiff Club Moss	
	Myriophyllum sibiricum	Water Milfoil spp	Also known as Myriophyllum exalbescens
	Oxycoccos microcarpus	Small Bog Cranberry	
	Pedicularis labradorica	Labrador Lousewort	
	Pinguicula vulgaris	Common Butterwort	
Forb	Potamogeton alpinus	Northern Pondweed	
1 010	Potamogeton filiformis	Thread-leaved Pondweed	
	Potamogeton gramineus	Grassy Pondweed	
	Potamogeton pusillus	Slender Pondweed	Also known as Potamogeton pusillus ssp. tenuissimus
	Potamogeton richardsonii	Redheadgrass	
	Potentilla palustris	Marsh Cinquefoil	
	, Ranunculus gmelinii	Small Yellow Water-Buttercup	Inludes Ranunculus purshii
	Ranunculus hyperboreus	Arctic Buttercup	
	Ranunculus lapponicus	Lapland Buttercup	
	Rorippa palustris	Bog Yellowcress	Also known as <i>Rorippa islandica</i>
	Rubus acaulis	Dwarf Raspberry	
	Rubus chamaemorus	Cloudberry	
	Stellaria borealis	Northern Stitchwort	Also known as Stellaria calycantha
	Triglochin palustre	Slender Bog Arrow Grass	
	Utricularia minor	Lesser Bladderwort	
	Agrostis scabra	Rough Bentgrass	
	Calamagrostis canadensis	Blue-Joint	
	Carex aenea	Bronze sedge	
	Carex aquatilis	Water Sedge	
	Carex brevior	Shortbeak Sedge	
	Carex canescens	Hoary Sedge	
	Carex concinna	Beautiful sedge	
	Carex interior	Inland Sedge	
		8	
	Carex leptalea Carex rossii	Bristly-Stalk Sedge Short Sedge	
	Carex rossii	Russet Sedge	Also known as Carex physocarpa
	Carex tenuiflora	Sparse- Flowered Sedge	Also known as carex physical pa
	Carex vaginata	Sheathed Sedge	
Grass/Grass-like	Eleocharis palustris	0	
	Eriophorum angustifolium	Creeping Spike Rush	Includes Eriophorum triste
		Cotton Grass spp Russet Cotton Grass	Inlcudes Eriophorum russeolum var. albindum
	Eriophorum chamissonis		Inicudes Eriophorum russeorum var. albindum
	Glyceria pulchella	Mackenzie Valley Manna Grass	
	Hordeum jubatum	Fox-Tail Barley	Also known as Juncus balticus var. littoralis
	Juncus balticus	Baltic Rush	Also known as Junius Dallikus Val. III.lufalls
	Juncus bufonius	Toad Rush	
	Juncus castaneus	Chestnut Rush	
	Juncus filiformis	Thread Rush	
	Poa glauca	White Blue Grass	
	Schoenoplectus tabernaemontani	Soft-Stem Bulrush	Also known as <i>Scirpus validus</i>
	Sparganium hyperboreum	Northern Bur-reed	
	Typha latifolia	Broad -leaf Cat-tail	

	Cladonia sp.	Club lichen	
Lichen	Peltigera aphthosa	Common freckle pelt, felt lichen	
	Stereocaulon tomentosum	Woolly foam lichen, eyed foam lichen	
	Aulacomnium palustre	woony toant netten, eyed toant netten	
Moss	Dicranum spp		
141055	Sphagnum squarrosum		
	Alnus viridis	Green Alder	T 1 1 Alaus mina
	Allius VII Iuis	Green Alder	Includes Alnus crispa
	Betula nana	Arctic Dwarf Birch	Also known as Betula glandulosa, Dwarf Birch
	Betula occidentalis	Spring Birch	Also known as Betula fontinalis
	Chamaedaphne calyculata	Leather leaf spp	
	Empetrum nigrum	Black Crowberry	
	Juniperus communis	Common Juniper	Also known as Ground Juniper
	Ledum groenlandicum	Common Labrador Tea	
	Myrica gale	Sweet Bayberry	
Shrub	Rosa acicularis	Prickly Rose	
	Salix fuscescens	Alaska Bog Willow	
	Salix glauca	Gray willow	Also known as Salix glauca cordiflora ssp callicarpea, Sa glauca ssp stenolepsis
	Salix lutea	Yellow Willow	
	Salix maccalliana	Mccall"s Willow	
	Salix myrtillifolia	Myrtle-Leaf Willow	
	Salix planifolia	Tea-leaved Willow	Includes Salix pulchra, Salix tyrrellii
	Salix pyrifolia	Balsam Willow	Also known as Salix balsamifera
	Vaccinium vitis-idaea	Mountain Cranberry	
	Betula papyrifera	Paper birch	Also known as Betula papyrifera var. commutata, Whie Birch
Tree	Picea glauca	White Spruce	
	Picea mariana	Black Spruce	

	VINTER LAKE AND SURRO		
legetation Type	Latin Name	Common Name	Notes
Algae	Chara spp		
	Antennaria microphylla	Small-leaf Cat's-foot	Also known as Antennaria nitida
	Arnica angustifolia	Narrowleaf Arnica	Also known as Arnica alpina var. tomentosa
	Calla palustris	Wild Calla	Also known as Water Dragon
	Cardamine bellidifolia	Alpine Bitter Cress spp	
	Cicuta bulbifera	Bulb-Bearing Water-Hemlock	
	Corydalis sempervirens	Pale Corydalis	
	Cryptogramma sitchensis	Parsley Fern	Also known as Cryptogramma crispa
	Drosera rotundifolia	Round-leaved Sundew	
	Epilobium angustifolium	Fireweed	Also known as Chamerion angustifolium
	Epilobium glandulosum	Willow Herb	`
	Epilobium palustre	Marsh Willow Herb	
	Equisetum arvense	Field Horsetail	
	Equisetum hyemale var. affine	Scouring Rush	
	Equisetum scirpoides	Dwarf Scouring Rush	
	Equisetum sylvaticum	Woodland Horsetail	
	Erigeron acris	Bitter Fleabane	Includes Erigeron jucundus, also known as Erigeron acris debilis
	Erigeron elatus	Swamp Fleabane	
	Erigeron uniflorus	One-flower Fleabane	Also known as Erigeron uniflorus ssp. eriocephalus, Erige eriocephalus
	Galium trifidum	Small Bedstraw	Includes Galium brandegei, Galium tinctorium
	Geocaulon lividum	Northern Comandra	metudes Ganun brandeger, Ganun initionum
	Hippuris vulgaris	Common Mare's Tail	
	Huperzia selago	Mountain Club Moss	Ales Lucence Lucencelium calage
		Alternate-Flower Water Milfoil	Also known as <i>Lycopodium selago</i>
	Myriophyllum alterniflorum Myriophyllum sibiricum	Alternate-Flower Water Milfoil Water Milfoil	Also known as Myriophyllum exalbescens
	Nuphar variegata	Yellow Cowlily	Also known as Nuphar variegatum, Nuphar lutea ssp. variegata
Forb	Orthilia secunda	One-sided Wintergreen	Also known as <i>Pyrola secunda</i>
	Oxycoccos microcarpus	Small Bog Cranberry	
	Pedicularis labradorica	Labrador Lousewort	
	Petasites sagittatus	Arrow-Leaved Sweet-Coltsfoot	Also known as Petasites frigidus var. sagittatus
	Polygonum scabrum	Knotweed	
	Potamogeton filiformis	Thread-leaved Pondweed	
	Potamogeton foliosus	Leafy Pondweed	
	Potamogeton gramineus	Grassy Pondweed	
	Potamogeton praelongus	White-Stem Pondweed	
	Potamogeton richardsonii		
	Potentilla norvegica	Redheadgrass	
		Norwegian Cinqefoil	
	Pyrola grandiflora	Arctic Wintergreen	
	Ranunculus gmelinii	Small Yellow Water-Buttercup	Includes Ranunculus purshii
-	Ranunculus lapponicus Rhinanthus minor	Lapland Buttercup Yellow Rattle	Also known as Rhinanthus minor ssp. borealis, Rhinanth
			borealis
	Rorippa palustris	Bog Yellowcress	Also known as <i>Rorippa islandica</i>
	Rubus acaulis	Dwarf Raspberry	
	Rubus chamaemorus	Cloudberry	
	Sagittaria cuneata	Wapatum Arrowhead	
	Shepherdia canadensis	Canada Buffalo-Berry	
	Spiranthes romanzoffiana	Hooded Ladies' -tresses	
	Stellaria longifolia	Longleaf Stitchwort	Also known as Stellaria atrata
	Utricularia intermedia	Flatleaf Bladderwort	
	Utricularia macrorhiza	Bladderwort spp	Also known as Utricularia vulgaris
	Utricularia minor	Lesser Bladderwort	
	Viola macloskeyi	Smooth white violet	Also known as <i>Viola pallens</i>
	Woodsia ilvensis	Rusty Woodsia	

STUDY AREA: V	VINTER LAKE AND SURRO	DUNDING AREA	
	Agrostis scabra	Rough Bentgrass	
	Alopecurus aegualis	Short-Awn Meadow-Foxtail	
	Calamagrostis canadensis	Blue-Joint	
	Carex aenea	Bronze Sedge	
	Carex aquatilis	Water Sedge	
	Carex capillaris	Hair-like Sedge	
	Carex concinna	Beautiful Sedge	
	Carex disperma	Softleaf Sedge	
	Carex interior	Inland Sedge	
	Carex lapponica	Lapland Sedge	Also known as Carex canescens ssp. subloliacea
	Carex magellanica	Magellan's Carex	Also known as Carex paupercula
	Carex spp		, ,
o (o "	Carex utriculata	Northwest Territory Sedge	
Grass/Grass-like	Eriophorum angustifolium	Cotton Grass	Includes Eriophorum triste
	Eriophorum brachyantherum	Short-Antler Cotton Grass	Also known as Eriophorum opacum
	Eriophorum viridicarinatum	Green Keeled Cotton Grass	1 1
	Festuca brachyphylla	Short-Leaved Fescue	
	Festuca saximontana	Rocky Mountain Fescue	
	Juncus bufonius	Toad Rush	
	Poa glauca	White Blue Grass	
	Poa lanata	Arctic Blue Grass	
	Schoenoplectus tabernaemontani	Soft-Stem Bulrush	Also known as Scirpus validus
	Sparganium angustifolium	Narrow-leaf Bur-reed	ł.
	Sparganium multipedunculatum	Bur-reed spp	
	Sparganium natans	Small bur-reed	Also known as Sparganium minimum
	Typha latifolia	Broad -leaf Cat-tail	
	Cladina mitis	Green reindeer lichen	
	Cladina rangiferina	Gray reindeer lichen	
	Cladina spp		
	Cladonia spp	Club lichen	
Lichen	Flavocetraria nivalis	Crinkled snow lichen	
	Icmadophila ericetorum	Candy lichen, spraypaint	
	Peltigera aphthosa	Common freckle pelt, felt lichen	
	Peltigera neopolydactyla	Carpet pelt	
	Stereocaulon tomentosum	Woolly foam lichen, eyed foam lichen	
Liverwort	Lophozia incisa		
LAVELWOIT	Ptilidium ciliare	northern naugehyde liverwort	
	Aulacomnium palustre		
	Calliergon spp		
	Dicranum polysetum		
	Dicranum spp		
	Hylocomium splendens		
	Pleurozium schreberi		
Moss	Polytrichum commune		
	Polytrichum strictum		
	Spagnum spp		
	Sphagnum angustifolium		
	Sphagnum fuscum		
	Sphagnum nemoreum		
	Sphagnum squarrosum		

STUDY AREA:	WINTER LAKE AND SURRO	UNDING AREA	
	Alnus viridis	Green Alder	Includes Alnus crispa
	Arctostaphylos rubra	Red Manzanita	
	Arctostaphylos uva-ursi	Bear Berry	
	Betula nana	Arctic Dwarf Birch	Also known as Betula glandulosa, Dwarf Birch
	Betula occidentalis	Spring Birch	Also known as Betula fontinalis
	Betula papyrifera	Paper birch	Also known as <i>Betula papyrifera var. commutata,</i> White Birch
	Chamaedaphne calyculata	Leather leaf spp	
	Empetrum nigrum	Black Crowberry	
	Juniperus communis	Common Juniper	Also known as Ground Juniper
	Ledum groenlandicum	Common Labrador Tea	
	Ledum palustre ssp decumbens	Labrador Tea	Also known as Ledum decumbens
Shrub	Myrica gale	Sweet Bayberry	
Siliub	Ribes hudsonianum	Northern Black Currant	
	Ribes oxyacanthoides	Canada Gooseberry	
	Ribes triste	Swamp Red Currant	
	Rosa acicularis	Prickly Rose	
	Rubus idaeus	Wild Raspberry	Also known as Rubus idaeus ssp. strigosus
	Salix glauca	Gray willow	Also known as Salix glauca cordiflora ssp callicarpea, Salix glauca ssp stenolepsis
	Salix myrtillifolia	Myrtle-Leaf Willow	
	Salix spp	Willow	
	Salix tyrrellii		
	<i>∨accinium uliginosum</i>	Alpine Blueberry	
	Vaccinium vitis-idaea	Mountain Cranberry	
	∨iburnum edule	Squashberry	
	Larix Iaricina	American Larch	Also known as Tamarack
Tree	Picea glauca	White Spruce	
1100	Picea mariana	Black Spruce	
	Pinus banksiana	Jack Pine	Also known as Pinus divaricata