

NICO PROJECT, FORTUNE MINERALS LIMITED

Geochemical Characterization of Waste Rock, Ore, and Tailings

Submitted to:

Report Number: 08 1118 0043 (5000)

Executive Summary

This report summarizes the results of baseline geochemical characterization for the NICO gold-cobalt-bismuth-copper Project (NICO Project), owned by Fortune Minerals Limited (Fortune). Geochemical characterization of Mine Rock, ore and tailings was undertaken in support of engineering design and environmental studies at the NICO Project.

The NICO Project is located approximately 170 kilometres (km) northwest of Yellowknife, Northwest Territories. The NICO Project site has a continental-subarctic climate, marked by short summers (average temperatures of 15 to 30 degrees Celsius [°C]) and longer winters with temperatures ranging from -15 to -30 °C (periodic lows of -45 °C). Zones of discontinuous permafrost have been identified at the NICO Project.

The ore deposit at the project is a polymetallic, IOCG type deposit (also referred to as an "Olympic Dam" type deposit). The main rock type at the NICO Project is black rock schist, or "BRS", which consists of ironstone and variably altered wacke. Prior to metamorphic alteration, the BRS consisted of amphibolite, a metamorphic rock rich in amphibole. Black rock schist is overlain by rhyolite, and cross-cut by felsic dykes (i.e., quartz-feldspar porphyry). Mineralization of the host rock was associated with an evolving metasomic alteration front (i.e., metamorphic alteration of host rocks by hot fluids). Polymetallic, ore grade Au-Co-Bi-Cu mineralization occurs in an IOGC type deposit, also referred to as an "Olympic Dam" type deposit. The ore deposit at the NICO Project consists of 3 sub-parallel zones, which occur within 300 meters (m) of the contact between BRS and rhyolite. Small lenses of mineralization also occur in the rhyolitic rock and altered quartz-feldspar porphyry dykes. The main Mine Rock lithologies at the NICO Project are BRS and wacke (i.e., ironstone), with lesser quantities of rhyolite and dykes. Siltstone underlies the main lithologies, and will be encountered in negligible quantities during Open Pit mining according to the most recent mine plan.

According to the current mine plan, Open Pit mining methods will be the primary method of ore extraction. Open Pit mining will take place in 4 stages, spanning approximately 18 years: Phase 1a, Phase 1, Phase 2, and Phase 3. Two years of underground mining will take place during Phase 1a to target a high grade zone of gold mineralization. The ultimate depth of the underground mine workings at the termination of underground mining will be approximately 170 m below ground surface. At the end of operations the Open Pit will be approximately 1450 m long by 500 m wide by 230 m deep. The design ore reserve is approximately 31.0 million tonnes (Mt), with a planned production rate of 4650 tonnes per day. Approximately 90.3 Mt of Mine Rock and 6.5 Mt of subeconomic mineralized rock will be produced from the underground mine workings and the Open Pit over the life of mine.

Ore from the Open Pit and underground mine workings will report directly to the mill for processing, with storage in temporary stockpiles for the purpose of producing customized, blended mixtures of ore as necessary. The on-site process will consist of a flotation circuit. The flotation concentration will be transported to the off-site hydrometallurgical facility by rail. Tailings will be thickened prior to discharge to the Co-Disposal Facility (CDF).

The principal mine wastes that will be produced during operations at the NICO Project include:

- tailings;
- Mine Rock; and

sub-economic mineralized rock.

Tailings, Mine Rock, and sub-economic mineralized rock will report to the CDF. Sub-economic mineralized rock will be segregated in a separate stockpile within the footprint of the CDF for future processing, as necessary. Mine Rock and tailings will be deposited within the CDF. The Mine Rock Management Plan for the NICO Project used the results of geochemical characterization of Mine Rock to define rock with a low potential for acid generation and metal leaching for construction of roads, building foundations, and lay down areas at the NICO Project (refer to the DAR, Section 3, Appendix 3.I).

The geochemical properties of Mine Rock, sub-economic mineralized rock, ore, and tailings can have implications on engineering designs, mine planning and environmental monitoring commitments. A detailed geochemical characterization program was conducted for each of these materials. Over 300 samples of Mine Rock, sub-economic mineralized rock and ore were evaluated from existing exploration drill core and stockpiled material at the NICO Project site as part of the geochemistry baseline program. In addition, tailings were generated during metallurgical testing at SGS Lakefield (under the direction of Fortune). Mine Rock, sub-economic mineralized rock, ore and tailings were submitted for laboratory analysis including: acid base accounting (ABA), metal analysis, short-term leach testing (synthetic leachate precipitation procedure (SPLP), and shake flask extraction (SFE), net acid generation (NAG) testing, including comprehensive analysis of NAG leachates, tailings decant water analysis and aging tests, and humidity cell tests. In addition to the laboratory tests, 4 samples of sub-economic mineralized rock, one sample of ore and one sample of tailings were used to construct on-site field cell tests for the purpose of evaluating the geochemistry of mine waste materials under site specific conditions.

Key conclusions of geochemical testing performed on samples of Mine Rock, sub-economic mineralized rock, ore, and tailings from the NICO Project are as follows:

Acid Generation Potential

- Based on the samples tested in the geochemical dataset, a relatively small amount of Mine Rock has a potential to generate acidity: 10% of the samples tested contained greater than 0.3% sulphide-sulphur. A preliminary Mine Rock management plan and operational monitoring program has been developed to minimize the potential for acid generation from Mine Rock used for the purpose of construction.
- Sub-economic mineralized rock has a greater potential for acid generation than Mine Rock (45% of the samples tested contained greater than 0.3% sulphide-sulphur). Appropriate storage and handling of sub-economic mineralized Mine Rock will be required to prevent release of potential acidity that could be produced during the long-term storage of this material.
- Ore has some potential for acid generation; however, ore will be stored in temporary stockpiles prior to processing. No ore will remain on-site in the long-term. Temporary stockpile areas should be monitored for short-term acid generation.
- The results of static and kinetic testing indicate that tailings samples are unlikely to generate acidity. The tailings materials may provide a reasonable material for use in developing mitigation plans and closure strategies when combined with Mine Rock.

Metal Leaching Potential

- Several trace metals occurred at elevated concentrations in the solid phase, including metals associated with metamorphic alteration and mineralization such as arsenic, bismuth, cobalt, and copper. Arsenic and cobalt are hosted by arsenopyrite and cobaltite, respectively. Bismuth occurs as native bismuth and bismuthinite. Copper is hosted by chalcopyrite. Geological description of the ore body and the results of mineralogical analysis indicate the presence of pyrite and pyrrhotite in site lithologies.
 - Statistical evaluation of the results of solid phase analysis indicated that arsenic and cobalt are strongly associated with sulphide minerals. Solid phase concentrations of selenium correlate strongly with bismuth.
- The results of geochemical characterization indicate that several metals can leach from Mine Rock, sub-economic mineralized rock ore and tailings and will require assessment within the context of the tailings and Mine Rock management plan for the NICO Project. Key metals that will require assessment include arsenic and selenium.
 - Based on the results of solid phase analysis, the likely source of elevated arsenic in laboratory leachates is the oxidation of sulphide minerals.
 - Selenium most likely leaches from bismuth minerals associated with ore mineralization. Elevated concentrations of selenium were detected in short-term leachates and field cell leachates from subeconomic mineralized rock, ore and tailings.

In addition to metal leaching, possible release of total suspended solids, major ions (such as nitrate and ammonia, chloride, and overall total dissolved solids) due to mine development (i.e., mine dewatering, explosives use) will also require evaluation within the context of site discharge. Appropriate mitigation strategies will be required.

Appropriate mine planning, project design, and mitigation are required to address the short-term and long-term geochemical stability of Mine Rock, sub-economic mineralized rock ore and tailings at the NICO Project. These will be described in the overall Developer's Assessment Report (DAR) document, and will require iterative review and refinement during ongoing operations as operational monitoring data becomes available.

Table of Contents

1.0	INTRO	DUCTION	1
	1.1	Objectives	1
	1.2	Scope of Work	3
	1.3	Program Development	3
	1.4	Work to Date	2
2.0	PROJI	ECT OVERVIEW	
	2.1	Physiographic Setting	
	2.2	Project Facilities	
	2.3	Mining and Processing	
3.0	GEOL	OGICAL SETTING	9
	3.1	Regional Geology	9
	3.2	Site Geology	10
	3.2.1	Alteration and Mineralization of Site Lithologies	12
	3.3	Mine Block Model	13
4.0	GEOC	HEMICAL CHARACTERIZATION PROGRAM	14
	4.1	Acid Rock Drainage and Metal Leaching at Mining Projects	14
	4.2	Overview of the Geochemical Characterization Program	15
	4.3	Sample Selection and Sample Collection	17
	4.3.1	Exploration Drill Core Samples	17
	4.3.2	Outcrop Samples	20
	4.3.3	Sub-Economic Mineralized Mine Rock and Ore Samples	20
	4.3.4	Tailings	20
	4.4	Analytical Program	20
5.0	RESU	LTS AND DATA EVALUATION	21
	5.1	Mineralogy	21
	5.1.1	Overview	2
	5.1.2	Sample Selection	2
	5.1.3	Data Analysis	2

5.1.4	Results	22
5.1.4.1	Sub-Economic Mineralized Mine Rock and Ore	22
5.1.4.2	Tailings	23
5.2	Trace Element Analysis	23
5.2.1	Overview	23
5.2.2	Sample Selection	23
5.2.3	Data Analysis	23
5.2.4	Results	24
5.2.4.1	Mine Rock, Sub-Economic Mineralized Mine Rock and Ore	24
5.2.4.2	Tailings	25
5.3	Acid Base Accounting and Net Acid Generation Testing	28
5.3.1	Overview	28
5.3.2	Sample Selection	28
5.3.3	Data Analysis	29
5.3.4	Results	30
5.3.4.1	Mine Rock, Sub-Economic Mineralized Mine Rock, and Ore	30
5.3.4.2	Tailings	40
5.4	Short-Term Leach Testing	40
5.4.1	Overview	40
5.4.2	Sample Selection	41
5.4.3	Data Analysis	41
5.4.4	Results	42
5.4.4.1	Mine Rock, Sub-Economic Mineralized Mine Rock and Ore	42
5.4.4.2	Tailings	47
5.5	Tailings Decant Water Quality Analysis	49
5.5.1	Overview	49
5.5.2	Results	49
5.6	Tailings Process Water Analysis	50
5.6.1	Results	50
5.7	Long-Term Leach Testing	52
5.7.1	Overview	52

	5.7.2	Sample Selection and Test Duration	52
	5.7.3	Data Analysis	53
	5.7.4	Results	54
	5.7.4.1	Mine Rock Humidity Cell Tests	54
	5.7.4.2	Tailings Humidity Cell Tests	62
	5.7.5	Persistence of Acid Generation and Metal Leaching in Mine Rock and Tailings Humidity Cell Tests	63
	5.8	Field Scale Testing	67
	5.8.1	Overview	67
	5.8.2	Sample Selection	67
	5.8.3	Data Analysis	68
	5.8.4	Results	69
6.0	GEOCH	HEMICAL FACTORS INFLUENCING MINE WASTE MANAGEMENT	72
	6.1	Mineral Distribution and Emplacement	72
	6.2	Distribution of Acid Generating Materials	73
	6.3	Metal Leaching Potential	75
	6.3.1	Arsenic Distribution	75
	6.3.2	Selenium Distribution	75
	6.3.3	Environmental Behaviour of Arsenic and Selenium	78
7.0	SUMMA	ARY OF KEY RESULTS OF GEOCHEMICAL CHARACTERIZATION	78
	7.1	Mine Rock, Sub-Economic Mineralized Mine Rock and Ore	78
	7.2	Tailings	79
8.0	CONCL	.usions	80
9.0	REFER	ENCES	81
TAB	LES		
Tabl	e 2-1: Pr	oposed Production Schedule for the NICO Project	8
Tabl	e 3-1: De	escription of Lithologies Present in the NICO Deposit	10
Tabl	e 3-2: Ne	et Smelter Return Criteria for Ore, Low Grade Ore and Waste at the NICO Project	13
Tabl		ımmary of the Relative Percentage of Each Lithology of Mine Rock Anticipated to be Encountered During ch Phase of Mining	14
Tabl		ronologic Overview of the NICO Project Geochemical Characterization Program	

Table 4-2: Geochemical Characterization of Mine Rock, Sub-Economic Mineralized Mine Rock and Ore Conducted i Support of the NICO Project	
Table 4-3: Geochemical Characterization of Tailings Conducted in Support of the NICO Project	19
Table 5-1: Correlation Coefficients for Sulphide and Bismuth with Select Trace Metals in Mine Rock, Sub-Economic Mineralized Mine Rock, and Ore	26
Table 5-2: Acid Rock Drainage Screening Criteria (after Price 1997)	29
Table 5-3: Acid Generation Potential of Mine Rock, Ore, and Tailings According to the Results of Acid Base Accounting and Net Acid Generation Testing	34
Table 5-4: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Synthetic Precipitation Leaching Procedure	43
Table 5-5: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Shake Flask Extraction	44
Table 5-6: Summary of the Results of Short-Term Leach Testing of Sub-Economic Mineralized Mine Rock and Ore (ROM Stockpiles) – Shake Flask Extraction	45
Table 5-7: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Comprehensive Analysi of Net Acid Generation Leachates	
Table 5-8: Summary of the Results of Short-Term Leach Testing of Sub-Economic Mineralized Mine Rock and Ore (ROM Stockpiles) – Comprehensive Analysis of Net Acid Generation Leachates	47
Table 5-9: Summary of the Results of Short-Term Leach Testing of Tailings – Synthetic Precipitation Leaching Procedure	48
Table 5-10: Summary of the Results of Short-Term Leach Testing of Tailings – Comprehensive Analysis of Net Acid Generation Leachates	
Table 5-11: Summary of the Results of Tailings Decant Water Quality Analysis	49
Table 5-12: Summary of the Results of Tailings Process Water Analysis	51
Table 5-13: Mine Rock Samples Submitted for Humidity Cell Testing	53
Table 5-14: Tailings Samples Submitted for Humidity Cell Testing	53
Table 5-15: Summary of Long-Term Acid Generation and Metal Leaching Potential in Mine Rock Humidity Cell Tests	3 65
Table 5-16: Summary of Long-Term Acid Generation and Metal Leaching Potential in Tailings Humidity Cell Tests	66
Table 5-17: Overview of Composition of Sub-Economic Mineralized Mine Rock, Ore and Tailings Field Cells	68
Table 5-18: Summary of Results of Field Cell Leachate Analysis (September 2008 to September 2010) – Sub- Economic Mineralized Mine Rock (FC-1 through FC-4) and Ore (FC-5)	70
Table 5-19: Summary of Results of Field Cell Leachate Analysis (April to September 2010) – Bulk Rougher Tailings (FC-8, FC-9, and FC-10)	71
Table 6-1: Preliminary Mine Rock Production Summary	74
FIGURES	
Figure 1-1: Location of the NICO Project	
Figure 2-1: Proposed Site Layout	
Figure 3-1: Plan View of Site Geology and Location of Geochemical Characterization Samples	11

Figure 5-1: Whisker Diagrams by Rock Type for Select Trace Metal Concentrations	. 27
Figure 5-2: Total Sulphur vs. Sulphide Sulphur - Waste Rock and Ore	.31
Figure 5-3: Neutralization Potential vs. Carbonate Neutralization Potential - Waste Rock and Ore	. 32
Figure 5-4: Evaluation of Acid Generation Potential - Waste Rock and Ore	. 35
Figure 5-5: Sulphide-Sulphur NP/AP ratio - Waste Rock, Ore, and Tailings	. 37
Figure 5-6: NAG-pH vs NP/AP ratio - Waste Rock, Ore, and Tailings	. 38
Figure 5-7: NAG-pH vs Sulphide-Sulphur (%) - Waste Rock, Ore, and Tailings	. 39
Figure 6-1: Metal Leaching Potential - Short-Term Leach Test Results versus Solid Phase Concentrations (Arsenic)	.76
Figure 6-2: Metal Leaching Potential - Short-Term Leach Test Results versus Solid Phase Concentrations (Selenium)	.77

APPENDICES

APPENDIX I

Sample Descriptions

APPENDIX II

Detailed Methods of Sample Collection and Sample Analysis

APPENDIX III

Cross Sections

APPENDIX IV

Results of Laboratory Static Testing of Mine Rock, Ore, and Tailings Samples

APPENDIX V

Results of Regression Analysis – Correlation Coefficients

APPENDIX VI

Reference Criteria for Evaluation of Geochemical Test Leachates

APPENDIX VII

Results of Laboratory Kinetic Testing of Mine Rock and Tailings Samples

APPENDIX VIII

Graphical Results of Selected Results of Kinetic Testing

APPENDIX IX

Results of Field Cell Monitoring – September 2008 to September 2009

List of Acronyms and Abbreviations

Acronyms					
ABA	Acid Base Accounting				
AP	acid potential				
BRS	Black Rock Schist				
BRS + magnetite	Black Rock Schist with magnetite				
BRS ± magnetite	Black Rock Schist with or without magnetite				
CDF	Co-Disposal Facility				
ETF	Effluent Treatment Facility				
HCT	Humidity Cells Tests				
NAG	Net Acid Generation				
NP	neutralization potential				
NSR	Net Smelter Return				
ROM	Run-of-mine				
SFE	Shake Flask Extraction				
SPLP	Synthetic Leachate Precipitation Procedure				
SSWQO	Site-specific Water Quality Objectives				
XRD	X-ray diffraction				
Abbreviations	·				
%	percent				
°C	degrees Celsius				
kg	kilogram				
km	kilometres				
L	Litre				
n meters					
masl	meters above sea level				
Mt	million tonnes				
%	percent				
t	tonne				
t/day	tonnes per day				
t/yr	tonnes per year				

1.0 INTRODUCTION

The NICO gold-cobalt-bismuth-copper Project (NICO Project), owned by Fortune Minerals Limited (Fortune), is located approximately 170 kilometres (km) northwest of Yellowknife, Northwest Territories (Figure 1-1). Fortune proposes the development of an Open Pit/underground mine at the NICO Project. Ore will be concentrated at the on-site Mineral Process Plant using a flotation circuit. The flotation concentrate will be shipped to a hydrometallurgical facility in Saskatchewan for further processing.

Baseline geochemical characterization of Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings was initiated in 2004. The geochemical characterization of Mine Rock, sub-economic mineralized rock, ore, and tailings is one component of a comprehensive environmental and socio-economic baseline program that has been undertaken in support of the NICO Project. This report summarizes the results of geochemical characterization of Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings. The principal conclusions of this report relate to the project description in Section 3 of the Developer's Assessment Report (DAR).

This report is structured as follows:

- Section 1 provides an overview of the baseline study and work conducted to date.
- Section 2 provides an overview of pertinent geochemical processes typical of mining projects.
- Sections 3 presents background information relevant to the geochemical investigation for the NICO Project.
- Section 4 summarizes the geochemical characterization program.
- Section 5 reports the methods of assessment and results of baseline geochemical characterization.
- Section 6 and 7 provide a discussion of the results of the geochemical investigation, including an overview of potential issues relating to Mine Rock, sub-economic mineralized rock, ore, and tailings at the NICO Project.
- Section 8 provides a summary of the principal conclusions of the geochemical characterization program.

1.1 Objectives

The objective of the baseline geochemical characterization program was to provide data regarding the chemical stability of Mine Rock, sub-economic mineralized rock, ore, and tailings that are expected to be generated during mining and mineral processing at the NICO Project. Specific objectives included:

- development of the NICO Project geochemical dataset for inclusion in pre-feasibility and feasibility site designs, water licensing and site licensing, and the environmental assessment;
- evaluation of the acid generation and metal leaching potential of Mine Rock, ore and tailings; and
- provision of sufficient information to support the development of operational and post-closure environmental management strategies and material handling options.

1.2 Scope of Work

The scope of the geochemical characterization program included:

- evaluation of background information and the results of exploration programs at the NICO Project (i.e., geological drill core logs, previous reporting) for the purpose of identifying parameters of significant with respect to the geochemical characteristics of Mine Rock, sub-economic Mine Rock and ore;
- site visits by Golder Associates Ltd. (Golder) geochemists, for the purpose of site reconnaissance, visual
 confirmation of lithological descriptions in drill core logs with respect to the actual drill core, and collection of
 representative drill core samples for laboratory analysis;
- site visits by Golder geochemists to collect samples from stockpiles of run-of-mine (ROM) Mine Rock, sub-economic Mine Rock and ore that were placed on surface during the extraction of the bulk sample;
- coordination of static and kinetic laboratory testing of Mine Rock, sub-economic Mine Rock, ore, and tailings;
- construction of field scale tests (i.e., field cells) to evaluate the geochemical characteristics of Mine Rock, sub-economic Mine Rock, ore and tailings under site specific conditions; and
- data compilation and its interpretation, including an evaluation of the acid generation and metal leaching potential of Mine Rock, low-grade ore and tailings.

The scope of work is consistent with the guidance in *Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Mine Sites in British Columbia* (Price 1997), the *Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials* (MEND 2009), and the Global Acid Rock Drainage (GARD) Guide (INAP 2009).

1.3 Program Development

The geochemical characterization program was initiated in 2004 and underwent iterative refinement to meet the objectives in Section 1.1. The sampling and analysis program evolved in response to the development of the project and advances in technical understanding. Factors taken into consideration during development and refinement of the geochemical characterization program included the following:

- mine geology;
- mine plan, tonnage, and disposal options for the various waste streams at the NICO Project;
- sampling requirements, as per Price (1997) and MEND (2009), for the selection of spatially and compositionally representative samples; and
- the requirement for the selection of defensible testing procedures, that are suitable for the anticipated conditions at the NICO Project site, while providing the data for comparisons to similar sites.

The initial stage of the geochemical characterization program (2004) consisted of a detailed review of the available site data, followed by the identification and collection of representative samples of exploration drill core and outcrop (Mine Rock and ore). The exploration drill core and outcrop samples were submitted for static tests. Static tests are one-time tests that were conducted to evaluate the acid generation and short-term metal

leaching potential. Long-term, kinetic tests (i.e., humidity cell tests) were initiated on exploration drill core samples that were selected based on the results of static testing.

Additional samples were collected from the NICO Project during advanced exploration. In 2006, an underground ramp was driven into the NICO deposit for the purpose of collecting a 250 tonne (t) bulk sample from the main mineralized zone (MICON 2007). Sub-economic mineralized rock and ore excavated from the underground exploration ramp were stored in the vicinity of the portal (i.e., mine ramp opening). In August 2008, this material was amalgamated into a smaller area, which was covered with low permeability geotextile. Samples were collected from the ROM rock stockpiles during the pile reconstruction effort in 2008. The ROM rock samples were submitted for static testing and used to construct Mine Rock and ore field scale tests (i.e., field cells). On-site monitoring of the field cells is ongoing.

Samples of drill core and ROM rock collected in 2004 and 2008 were submitted for follow-up analysis in 2009 to determine solid phase and leachate concentrations of specific metals at lower analytical detection limits.

Samples of the tailings generated during pilot plant testing in 2007 and 2008 were submitted for geochemical characterization. Tailings samples underwent static and kinetic tests in the laboratory. Larger tailings samples (i.e., several hundred kilograms [kg]) were shipped to the NICO Project site for the construction of field cells in 2008. In addition, a second pilot plant program was carried out in 2010. Process water samples collected from these tailings were submitted for analysis. The geochemical characterization of tailings from the 2010 pilot plant was ongoing at the date of preparation of this report.

1.4 Work to Date

This report is one of a series of reports and technical memoranda prepared by Golder in support of environmental and engineering studies for the NICO Project. The NICO Project team includes:

- owner Fortune;
- process design Aker Solutions Canada Inc.;
- construction specialist Aker Solutions Canada Inc.;
- mine planning and ore evaluation P&E Mining Consultants Inc.;
- baseline studies and environmental impact assessment Golder; and
- tailings and Mine Rock management Golder.

At the date of preparation of this report, Golder's scope of work includes the following:

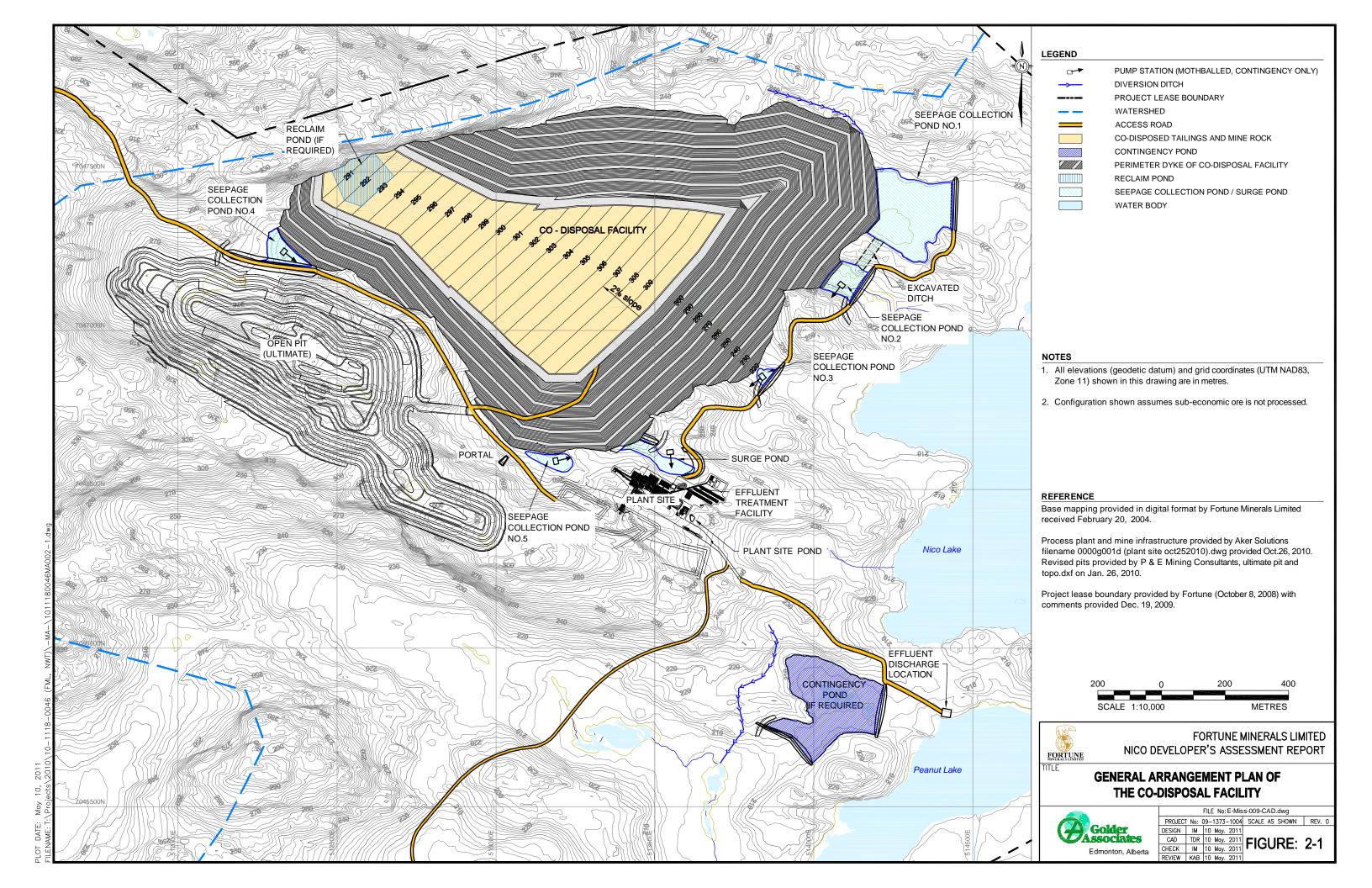
- baseline studies and preparation of the DAR, including geochemistry, rock and hydrogeology, water resources, surface water quality, wildlife, soils and terrain, vegetation, traditional knowledge and traditional land use, heritage resources, socio-economic, air quality and climate, and noise;
- geotechnical and hydrogeological investigations;
- paste thickening characterization;
- tailings and Mine Rock management; and

site water quality and geochemistry.

2.0 PROJECT OVERVIEW

2.1 Physiographic Setting

The NICO Project site is located within the Marian River drainage basin, approximately 10 km east of Hislop Lake at a latitude of 63 degrees and 33 minutes north, and a longitude of 116 degrees 45 minutes west. The site has a continental-subarctic climate, marked by short summers with average temperatures of 15°C. Winter temperatures range from -15 to -30°C, with periodic lows of up to -45°C. Geotechnical investigations at the site have identified zones of discontinuous permafrost.


The NICO Project site has rugged topography. Absolute elevations at the NICO Project site range from 150 to 350 meters above sea level (masl). The NICO ore body is located on the northern slope of a bowl-shaped depression referred to as the "Bowl Zone". The south end of the proposed mine is located on a ridge of exposed bedrock, which slopes down towards the north end of the proposed mine in the Grid Stream depression (Figure 2-1).

2.2 Project Facilities

The proposed site configuration is presented in Figure 2-1. Proposed on-site infrastructure includes:

- Open Pit and underground mine;
- Mineral Processing plant (Plant);
- Tailings and Mine Rock CDF;
- Sub-economic Mine Rock stockpile, located within the footprint of the CDF;
- Thickened tailings distribution system;
- Plant site pond;
- Seepage Collection Ponds;
- Surge Pond;
- Polishing Pond;
- Effluent Treatment Facility (ETF),
- Camp site;
- Internal access and haul roads;
- Drainage control systems;
- Pump house and fresh water intake on Lou Lake;
- Fuel and chemical storage facilities; and
- Powder magazine.

W.

GEOCHEMISTRY REPORT - NICO PROJECT

- Mine access road; and
- Borrow Areas.

2.3 Mining and Processing

Based on the current estimate, the NICO Project has about 31 Mt of ore which will be mined using underground and Open Pit mining methods. The NICO Project will generate approximately 90.3 Mt of Mine Rock and 6.5 Mt of sub-economic mineralized rock during the mine life. The yearly mine plan of the NICO Project is given in Table 2-1. Mining will commence by extracting the richer ore zones using underground mining techniques, followed by advancing an Open Pit through the underground openings. All underground mining is planned to be completed within the first 2 years.

The Plant will be constructed at the NICO Project site for the purpose of creating a metallurgical concentrate, which will be thickened and dewatered to 9% moisture prior to packaging in bags suitable for transport to the off-site metallurgical facility for further processing. The nominal milling rate of the on-site plant will be approximately 1.7Mt/y.

The 4 components of the Plant are:

- the primary crusher and transfer tower;
- the secondary and tertiary crushing building and fine ore bin;
- the grinding bay; and
- the Plant.

Run-of-mine ore from underground and Open Pit operations will be stockpiled on the surface adjacent the crusher for blending purposes, and then fed by front-end loader to a primary jaw crusher. Secondary crushing will be completed by a cone crusher and the product will be screened, producing ore finer than 12 millimetres that will be conveyed to a fine ore stockpile or bin. Oversize will be further reduced by a tertiary crusher operating in a closed circuit with the screen.

The fine ore will be fed at a controlled rate to 2 parallel grinding circuits. Hydrocyclones will control the slurry particles to 80% finer than 72 microns. Water for the grinding operation will be obtained from recycled water recovered from a tailings thickener and reclaimed water from the Surge Pond.

Cyclone overflow slurry from the grinding circuit is be pumped to a flotation circuit. The flotation circuit will result in the production of 4 tailings products: the primary rougher tailings (91% of the total tailings), the primary cleaner scavenger tailings, the secondary rougher tailings (9.2 % of the overall tailings product), and the secondary cleaner scavenger tailings (less than 1% of the tailings product).

The primary rougher flotation circuit will produce the primary rougher concentration froth. The primary rougher concentration froth will fed to the primary cleaner and primary cleaner scavenger section. The products of the primary rougher flotation circuit are the primary rougher tailings, the primary cleaner scavenger tailings, and the primary cleaner concentrate.

Table 2-1: Proposed Production Schedule for the NICO Project

	Phase	Ore (t/y)		Mine Rock (t/y)					
Year		Open Pit	Underground	Total	Open Pit	Underground	Sub- economic Mineralized Rock	Total	TOTAL MINED (t/y)
2012	Phase 1A / 1B	222,477	95,878	318,355	1,160,871	26,682	62,592	1,250,145	1,568,500
2013	Phase 1A / 1B/Phase 2	547,872	1,150,538	1,698,410	4,812,352	24,627	118,496	4,955,475	6,653,885
2014	Phase 1A / 1B/Phase 2	805,189	893,220	1,698,409	8,843,957	-	331,897	9,175,854	10,874,263
2015	Phase 1A / 1B/Phase 2	1,698,408	-	1,698,408	9,214,204	-	657,469	9,871,673	11,570,081
2016	Phase 1B/ Phase 2	1,698,408	-	1,698,408	9,939,869	-	250,579	10,190,448	11,888,856
2017	Phase 1B/ Phase 2	1,698,408	-	1,698,408	6,489,199	-	304,433	6,793,632	8,492,040
2018	Phase 1B/ Phase 2	1,698,408	-	1,698,408	5,527,876	-	416,552	5,944,428	7,642,836
2019	Phase 1B/ Phase 2	1,698,408	-	1,698,408	5,777,623	-	166,805	5,944,428	7,642,836
2020	Phase 1B/ Phase 2	1,698,408	-	1,698,408	5,517,507	-	426,921	5,944,428	7,642,836
2021	Phase 1B/ Phase 2	1,698,408	-	1,698,408	4,482,004	-	190,164	4,672,168	6,370,576
2022	Phase 1B/ Phase 2/Phase 3	1,698,408	-	1,698,408	5,625,017	-	319,411	5,944,428	7,642,836
2023	1B/ Phase 2/Phase 3	1,698,408	-	1,698,408	4,540,589	-	554,635	5,095,224	6,793,632
2024	1B/ Phase 2/Phase 3	1,698,408	-	1,698,408	4,763,402	-	331,822	5,095,224	6,793,632
2025	Phase 3	1,698,408	-	1,698,408	4,363,639	-	391,903	4,755,542	6,453,950
2026	Phase 3	1,698,408	-	1,698,408	3,536,821	-	709,199	4,246,020	5,944,428
2027	Phase 3	1,698,408	-	1,698,408	1,244,946	-	419,494	1,664,440	3,362,848
2028	Phase 3	1,698,408	-	1,698,408	1,397,294	-	267,146	1,664,440	3,362,848
2029	Phase 3	1,698,408	-	1,698,408	1,450,688	-	213,752	1,664,440	3,362,848
2030	Phase 3	1,698,408	-	1,698,408	1,540,064	-	294,783	1,834,846	3,533,254
2031	Phase 3	150,682	-	150,682	102,654	-	41,431	144,085	294,767
TOTAL		28,900,748	2,139,635	31,040,383	90,330,574	51,308	6,469,485	96,851,367	127,891,752

The primary rougher tailings, resulting from the first concentration stage, will be dewatered and sent to the CDF. The primary cleaner scavenger tailings will proceed to the regrind circuit to be ground and cycloned to a particle size target of 80% passing 20 microns, before being collected and fed to the secondary rougher flotation circuit.

The secondary rougher flotation circuit consists of a bank of 5 flotation cells. Secondary rougher concentrate froths are collected from one side of the flotation cells. The secondary rougher concentrate froth flow is pumped to a separate secondary cleaner flotation stage similar to the primary cleaner-scavenger flotation stage. The last secondary rougher cell discharges a tailings product that is combined with the secondary cleaner scavenger tails. The tailings from the secondary rougher flotation circuit will be combined with the primary rougher tailings prior to discharge to the CDF.

The secondary cleaner and secondary cleaner scavenger section consists of a bank of 4 circular tank-type flotation cells. The flotation bank is configured such that secondary cleaner flotation is carried out in the first 2 cells, while secondary cleaner-scavenger flotation is undertaken in the final 2 cells. Potassium amyl xanthate collector is added to the first secondary cleaner and first secondary cleaner-scavenger cells. Secondary cleaner concentrate and secondary cleaner scavenger froths are collected from one side of the flotation cells, where the secondary cleaner concentrate froth (at a finer grind) is combined with the primary second cleaner concentrate and pumped to the concentrate thickener. The secondary cleaner-scavenger concentrate froth is pumped back to the regrind cyclone feed tank.

During periods of low gold values, the regrind circuit can be turned off. In this situation the primary cleaner-scavenger tails (1CST) is combined with the primary rougher tailings. To operate in this fashion, it would be necessary to campaign the feed to the plant over a number of days, and require strict stockpile control of the low grade material.

3.0 GEOLOGICAL SETTING

3.1 Regional Geology

The NICO Project site is located along the western limit of the Archean Slave craton, in the southern region of the Great Bear magmatic zone. The Great Bear magmatic zone extends from Great Slave Lake in the south to Great Bear Lake in the north.

The dominant regional lithologies are metasedimentary and felsic volcanic rocks. Clastic metasediments of the Snare Group include lithologies that range from siltstones to subarkosic wackes, and impure dolostones. Hydrothermal alteration during metamorphism resulted in the addition of iron and potassium to clastic metasediments of the Snare Group.

Felsic volcanic rocks of the Faber Group overlie the Snare Group metasediments. Lithologies of the Faber Group include rhyodacitic ignimbrites, tuffs and volcaniclastics. Faber Group volcanics were subject to intense potassium metasomatism (i.e., a type of metamorphism resulting chemical alteration of a rock by a hydrothermal fluid), resulting in the development of microcline. This metamorphic event imparted a ubiquitous orange-pink colour to the rocks.

Felsic to intermediate dykes transect the Snare Group sediments and Faber Group volcanics, including quartz-feldspar porphyry and feldspar-amphibole-quartz porphyry.

3.2 Site Geology

Ore occurs in a polymetallic, IOCG type deposit, also referred to as an "Olympic Dam" type deposit (Goad et al 2000). The NICO ore deposit, referred to as the "Bowl Zone", is located on the northern slope of a bowl shaped depression (Figure 3-1).

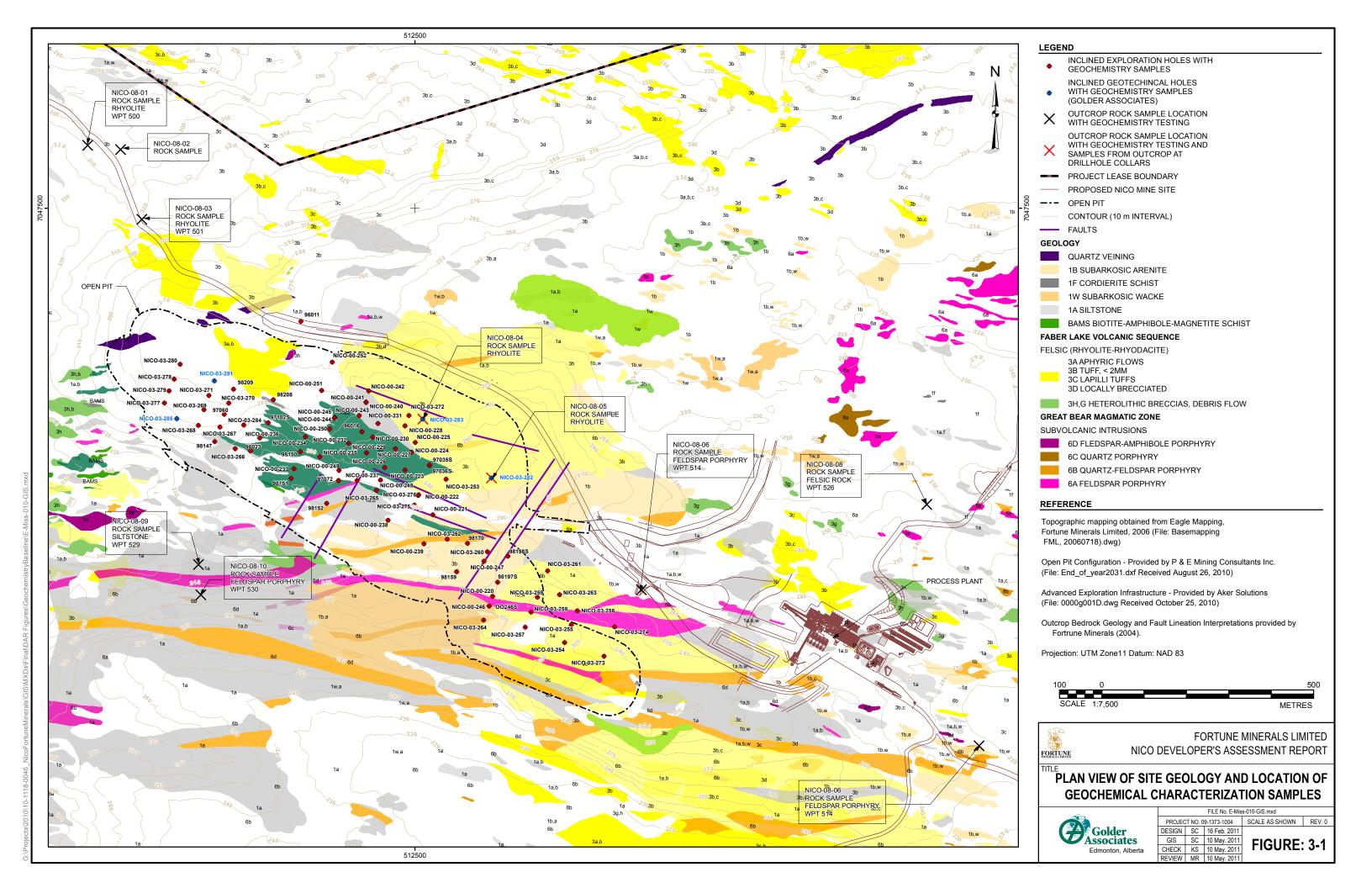

Table 3-1 provides a description of the main lithological units identified at the NICO deposit.

Table 3-1: Description of Lithologies Present in the NICO Deposit

Group	Lithology	Description
	Rhyolite	Orange-red, fine-grained to feldspar-phyric felsic volcanic rock.
Faber Group Volcanics	Feldspar Porphyry	Intrusive felsic volcanic rock, containing feldspar phenocrysts, with variable amounts of quartz and amphibole.
	Quartz Feldspar Porphyry	Intrusive felsic volcanic rock, containing quartz and feldspar phenocrysts.
	BRS (+ magnetite) and BRS (± magnetite)	BRS (BRS) is the alteration product of wacke. BRS occurs both with magnetite (i.e., BRS + magnetite) and without magnetite (BRS ± magnetite).
Snare Group Meta-sediments	Breccia	Fragmental unit that contains close-set clasts of subarkosic wacke, siltstone and felsic material in a matrix of quart-feldspar-amphibole-biotite-magnetite.
	Subarkosic Wacke	Dark grey to black, non-bedded to thickly bedded wacke.
	Siltstone	Dark grey to black, fine grained siltstone common to the footwall, where they represent the basal stratigraphic unit of the metasedimentary sequence.

A thick package of siltstone is the lowest member of the stratigraphic column at the NICO Project. Siltstone is overlain by a widespread lithological package consisting dominantly of non-bedded to thickly bedded wacke. This wacke unit is locally altered to BRS + magnetite and BRS ± magnetite, which is the dominant host of ore grade mineralization. Metasedimentary rocks (i.e., BRS + magnetite and BRS ± magnetite and wacke) are considered as a single unit in the mine block model. The metasedimentary rocks are unconformably overlain by the Faber Group rhyolite; these volcanic rocks form the higher topography in the NICO Project area, including the ridge that defines the extent of the Bowl Zone. The breccia unit, which consists of a fragmental mixture of siltstone, wacke and felsic volcanic rock, exists at or near the contact between the Faber Group volcanics and Snare Group metasediments. Felsic intrusive rocks (i.e., feldspar porphyry and quartz-feldspar porphyry) cross cut the rocks of the Snare and Faber Groups.

3.2.1 Alteration and Mineralization of Site Lithologies

Cobalt-gold-bismuth mineralization is associated with a regional scale metamorphic event, during which rocks of the Snare and Faber groups underwent iron and potassium metasomatism. This metamorphic event resulted in the alteration of wacke to variably mineralized ironstone (i.e., BRS) consisting of minerals including biotite $[K(Mg,Fe)_3AlSi_3O_{10}(OH,F)_2]$, amphibole $[Ca_2(Mg,Fe,Al)_5Si_8O_{22}(OH)_2]$, magnetite $[Fe_3O_4]$, hematite $[Fe_2O_3]$, feldspar $[KAlSi_3O_8]$, chlorite and calcite $[CaCO_3]$.

The ore deposit consists of sequence of 3 mineralized zones: the Upper, Middle, and Lower Zones. Ore grade mineralization is hosted by a package of metasedimentary rocks measuring 200 m thick. Gold mineralization is restricted to the Middle and Lower zones; the extent of cobalt-bismuth mineralization is much greater, extending throughout the Upper, Middle and Lower zones. The Lower/Middle zone and Middle/Upper zone boundaries are marked by units of less altered subarkosic wacke. Small lenses of mineralization also occur in the rhyolitic rock and altered quartz-feldspar porphyry dykes (Goad et al 2000).

Minerals that occur in mineralized zones include native bismuth, bismuth telluride, native gold and sulphide minerals including pyrrhotite [FeS], pyrite [FeS2], chalcopyrite [CuFeS2], bismuthinite [$B_{12}S_3$], cobaltite [CoAsS], arsenopyrite [FeAsS]. The dominant sulphide minerals in the NICO ore body are pyrite, pyrrhotite, and arsenopyrite.

Metamorphic alteration and paragenesis (i.e., sequence of mineral formation) of the NICO ore deposit has key implications with respect to the distribution, texture, and abundance of sulphide minerals in ore and waste zones. The following summary of the paragenesis of the NICO ore deposit is paraphrased from Petrologic, Inc. (1999):

- During the first stage of alteration, metamorphism of the host rock (amphibolite wacke) resulted in the formation of non-economic minerals including pyrite [FeS₂], pyrrhotite [FeS], and magnetite [Fe₂O₃]. Amphibolite was altered to BRS. Iron oxides that were formed during this stage form up to 20% of mineralized zones (Goad et al 2000).
- Copper and gold mineralization occurred during the second stage of alteration. Copper occurs in chalcopyrite [CuFeS₂] and copper sulphosalts, whereas gold occurs as native gold as well in association with bismuth telluride, bismuthinite and feldspar [KAISi₃O₈].
- Cobalt mineralization occurred during the third and fourth stages of alteration. Initially, cobalt was accumulated in cobaltite. During the fourth stage of alteration, cobaltite reacted with metasomatic alteration fluids rich in arsenic. Widespread precipitation of cobaltian arsenopyrite and bismuthinite occurred during this stage.
- In the fifth stage of alteration, arsenopyrite became the primary sulphide precipitating from the metasomatic fluids.
- Bismuth mineralization, in particular, began in the second stage of alteration, with the formation of native bismuth and bismuth tellurides. Bismuthinite crystallization occurred throughout the second, third, and fourth stage of alteration.

Owing to the sequence of metamorphic alteration, certain minerals occur within restricted zones of higher grade mineralization within the NICO ore deposit, including native gold and native bismuth, and bismuth tellurides. Native gold and native bismuth occur as disseminations, and in association with sulphide minerals. Similarly, the

occurrence of cobalt-bearing minerals is not widespread. Arsenopyrite occurs both in zones of higher grade mineralization and zones of weaker (i.e., non-ore grade) mineralization outside the ore body. Arsenopyrite and cobaltite are commonly aligned along foliation planes in the rock. Chalcopyrite, pyrrhotite and pyrite occur as localized fracture fillings and disseminations.

3.3 Mine Block Model

A mine block model has been generated for the NICO Project for the purpose of ore resource estimation and mine planning. The mine block model also provides key information required to support engineering designs for the NICO Project, including ore and Mine Rock volume estimates by phase of mining, and the distribution of various rock types and zones of mineralization within the Open Pit and underground mine workings.

The mine block model was developed using the exploration database for the NICO Project. The exploration dataset consists of 17 393 samples. All samples were analyzed for, at a minimum, cobalt, bismuth, copper, and arsenic. Select samples were analyzed for additional trace metals. Sample collection was performed by Fortune geologists; sample analysis took place under direction from Fortune.

The most recent version of the mine block model estimates an ore resource of approximately 31 Mt. Ore grade is based on Net Smelter Return (NSR), calculated based on gold, copper, bismuth, and cobalt concentrations. Table 3-2 summarizes the NSR criteria of ore, low grade ore and waste at the Project.

Table 3-2: Net Smelter Return Criteria for Ore, Low Grade Ore and Waste at the NICO Project

	NSR Criterion	Description
Ore	>= \$48.07 / tonne	Ore grade material to report to ore stockpile or directly to the Plant.
Sub-economic Mineralized Mine Rock	\$35.16 - \$48.06 / tonne	Material to be placed in Co-Disposal Facility.
Waste	< \$35.16 / tonne	Mine Rock to be classified according to geochemical characteristics prior to placement in the Co-Disposal Facility or use for site construction.

The 3-dimensional model was used to estimate the relative proportion of each lithology of Mine Rock and sub-economic mineralized Mine Rock that will be encountered during mining at the NICO Project (Table 3-3). Table 3-3 presents a high level overview of the relative proportion of each rock type that will be encountered during each stage of mining of the Open Pit. The summary in Table 3-3 is presented according to the lithological codes defined in the block model. It should be noted that the block model evaluates lithologies at a different scale than what was used to describe samples in exploration drill core logs. Table 3-3 relates the block model lithological definitions to the exploration drill core descriptions to the extent possible; however, high level simplifications were required to relate the geochemical dataset to the block model. For example, the lithological block model considers all BRS and subarkosic wacke as a single rock unit, identified as "wacke". Non-economic rock contained within the ore zone boundaries (assumed to be wacke or BRS) is presented according to the ore zone in which it occurs (i.e., upper, middle, and lower ore zone). The relative percentages in Table 3-3 are presented for the purposes of performing a screening level evaluation only. The relative proportions will change as the NSR criteria for the ore cut-off change during the life of mine.

Table 3-3: Summary of the Relative Percentage of Each Lithology of Mine Rock Anticipated to be Encountered During Each Phase of Mining

Proportion of	of Mine Rock (< \$35.16 / tonne)	Phase 1a	Phase 1+1a*	Phase 2	Phase 3
Block Model ID ^a Description ^b		Relative Prop	oortion Accordin	g to Block M	odel ^c
Wacke / Bla	ack Rock Schist				
10 + 15	Lower Mineralization Zone	10%	2%	2%	3%
20 + 25	Middle Mineralization Zone	2%	4%	5%	6%
30 + 35	Upper Mineralization Zone	0%	7%	5%	5%
400	Wacke / Black Rock Schist	83%	60%	52%	57%
300	Rhyolite (Volcanics)	5%	13%	23%	18%
100 + 200	Quartz Amphibole Porphyry Dykes / Feldspar Porphyry Dykes	0%	14%	14%	11%
500	Siltstone	0%	0%	0%	0%

^a Lithological identification in mine block model.

4.0 GEOCHEMICAL CHARACTERIZATION PROGRAM

4.1 Acid Rock Drainage and Metal Leaching at Mining Projects

When metal-bearing sulphide minerals that occur in rock are disturbed by mining processes, exposure to the atmosphere (i.e., oxygen and water) can enhance natural rates of chemical weathering. The reaction of sulphide minerals with atmospheric oxygen and water can release acidity, sulphate and trace metals to water that comes in contact with the disturbed materials.

As outlined in Section 3.2.1, sulphide minerals are distributed throughout Mine Rock, sub-economic Mine Rock, and ore lithologies at the NICO Project. Sulphide minerals include arsenopyrite [FeAsS], cobaltite [CoAsS], bismuthinite [Bi_2S_3], chalcopyrite [CuFeS₂], and pyrite [FeS₂]. Reactions 1 and 2 present the typical oxidation of pyrite and arsenopyrite, which are 2 of the most common sulphide minerals at the NICO Project.

$$FeS_2 + 7/2O_2 + H2O \leftrightarrow 2SO_4^{2-} + Fe^{2+} + 2H^+$$
 (Reaction 1)

FeAsS + 3.5
$$O_2$$
 + $H_2O \leftrightarrow Fe^{3+}$ + $HAsO_4^{2-}$ + SO_4^{2-} + H^+ (Reaction 2)

Sulphide minerals represent the main source of acidity, or "acid potential" in geologic materials or mine wastes, such as Mine Rock, sub-economic mineralized Mine Rock or tailings. Acid generated by sulphide oxidation can be consumed by the dissolution minerals that have an inherent capacity to neutralize acid. The capability of a mineral to neutralize, or "buffer", acidity is a function of its composition and weathering rate (i.e., mineral reaction rate). Carbonate minerals, such as calcite [CaCO₃] are highly reactive, basic minerals, and readily dissolve to neutralize acid (Reaction 3).

^b Description according to geochemical dataset.

c Relative proportion of each rock type that will be encountered during each phase of mining.

$$CaCO_3 + H^+ \leftrightarrow Ca^{2+} + HCO_3^-$$

(Reaction 3)

Silicate minerals such as quartz $[SiO_2]$, feldspar $[KAlSi_3O_8]$, and plagioclase $[CaAlSi_3O_8]$ react slowly, and typically do not substantially contribute to the neutralization of acid rock drainage until (and unless) highly acidic conditions are achieved.

Acid rock drainage occurs when the acid potential (a reflection of the sulphide mineral content) exceeds the neutralization potential of a mine waste. The establishment of acidic conditions is often a catalyst for further sulphide oxidation: once acidic conditions have been established, the rate of sulphide oxidation increases due to bacterial mediation.

Oxidation of sulphide minerals and dissolution of soluble minerals in mine wastes rock may release metals to solution. Metal leaching from mine wastes can occur in both acidic and non-acidic conditions. Although most metals (e.g., cadmium, copper, lead) become more mobile under acidic conditions, some are also soluble under neutral conditions (e.g., zinc, arsenic, selenium, molybdenum). Metal mobility is governed by several processes. Some of the key processes that control metal mobility in mine contact waters include:

Reduction/oxidation (redox) state of the system: The redox state of a system, generally defined by the availability of oxygen, has key implications with respect to metal solubility. A change in the oxidation state of a metal can influence its capability to form complexes in solution, which can have implications with respect to solubility. Solid phases may dissolve as a result of variable redox conditions; vice versa, dissolved metals may precipitation from solution. Metal sorption is also frequently affected by redox conditions. Lastly, metals may encounter solubility constraints based on redox state.

Metal solubility controls: Mineral precipitation and/or dissolution, resulting from changes to the pH and redox state of a system, can control the metal concentrations in a system. Kinetic impediments may hinder the dissolution or formation of minerals. In addition, biological mediation and the presence of other competing ions may affect mineral solubility.

Solid-water metal partitioning (adsorption): Sorption involves formation of a layer of ions (often metal ions) on mineral particles and organic matter due to chemical interactions between dissolved ions and charged functional groups at the solid surface. Metal adsorption is impacted by a number of independent system variables, including the character of sorbate phases, surface charge on the solid sorbate phase, the concentration of the specific metal ion or competing ions in solution, metal complexation, and pH and redox state of the system.

4.2 Overview of the Geochemical Characterization Program

The geochemical characterization program was designed to evaluate the potential for generation of acid rock drainage and metal leaching from the various waste and low grade ore lithologies and tailings types at the NICO Project site. The geochemical characterization program developed in a staged approach, in response to changes to the NICO Project description and the availability of material for sampling and analysis.

Four types of samples were collected during the various stages of geochemical characterization at the NICO Project, as described in Appendix I:

Exploration drill core samples, consisting of composite sub-samples of exploration drill core collected over a defined sample interval.

- Outcrop samples, comprising rock broken from exposed outcrop using a rock hammer.
- Run-of-Mine Rock samples, comprising grab samples collected from stockpiled ROM rock excavated during the collection of the bulk sample.
- Tailings samples, consisting of the products of laboratory metallurgical testing that were submitted for geochemical evaluation.

Table 4-1 provides a chronologic overview of the development of the geochemical characterization program for the NICO Project.

Table 4-1: Chronologic Overview of the NICO Project Geochemical Characterization Program

	Task	Sample Analysis			
Mine Rock, Sub-economic Mineralized Mine Rock and Ore					
Pre- 2004	Exploration drill core program and collection of over 17 000 drill core samples by Fortune Geologists for the purpose of chemical assay and resource definition.	Trace metal analysis.			
2004	Collection of 8 composite samples of exploration drill core by Fortune geologists for the purpose of geochemical characterization	Acid base accounting, trace metal, and whole rock analysis and short-term leach testing on all samples.			
2004	Collection of 169 samples of exploration drill core and 4 samples of outcrop for the purpose of geochemical characterization.	Acid base accounting, trace metal, and whole rock analysis on all samples, and short-term leach testing and humidity cell testing of select samples.			
2008	Collection of 65 samples from stockpiles of run-of-mine sub-economic mineralized rock and ore placed on surface during the excavation of the underground bulk sample; including 5 larger samples for the construction of field scale tests. Three samples of exploration drill core and 10 samples of outcrop were also collected.	Acid base accounting, net acid generation testing (including comprehensive analysis of net acid generation leachates), trace metal analysis, whole rock analysis, and mineralogical analysis on select samples; short-term leach testing on all samples; and construction of field scale tests at the NICO Project site using 5 large samples collected from the bulk sample stockpiles.			
2009	Select samples of run-of-Mine Rock (collected in 2008) and split samples of exploration drill core held in storage since the 2004 geochemical testing program submitted for follow-up analysis.	Select samples submitted for short-term leach testing; all samples submitted for trace metal analysis and total sulphur analysis.			
Tailings		_			
2007 and 2008	Tailings generated at SGS Lakefield as part of pilot plant and bench scale metallurgical testing under the direction of Fortune.				
2009	Samples of select tailings products submitted for geochemical testing in January 2009.	ABA, NAG testing (including comprehensive analysis of NAG leachates), trace metal and whole rock analysis, mineralogical analysis, short-term leach testing, evaluation of decant water quality (including aging tests), humidity cell testing and construction of field scale tests at the Project site.			

Table 4-1: Chronologic Overview of the NICO Project Geochemical Characterization Program (continued)

	Task	Sample Analysis
2010	Supplemental samples of tailings and process water generated at SGS as part of a pilot plant operation.	Process water submitted for comprehensive chemical anlaysis. Geochemical testing of tailings ongoing.

4.3 Sample Selection and Sample Collection

Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings samples were collected over several sampling campaigns between 2004 and 2009, as summarized below. Tables 4-2 and 4-3 summarize Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings samples collected in support of the geochemical characterization program. A detailed overview of the methods of sample selection and sample collection is provided in Appendix II.

4.3.1 Exploration Drill Core Samples

Samples of exploration drill core were collected by a Golder geochemist in 2004 (169 samples) and 2008 (3 samples). Eight composite samples were collected by Fortune geologists prior to the start of the 2004 Golder geochemistry program.

During both stages of sample collection conducted by Golder (i.e., 2004 and 2008), drill core samples were selected from existing exploration drill core based on drill core logs provided by Fortune geologists. Samples were selected based on the relative proportion and spatial distribution of various rock types within the NICO ore deposit. The sample selection process was designed to achieve a final selection that captured the spatial (lateral and vertical) distribution of each lithology. Exploration drill holes sampled as part of the geochemical characterization program are presented in plan view in Figure 3-1.

Appendix III presents the location of drill core samples within the outline of the proposed Open Pit. Because most samples of exploration drill core were collected in 2004 (i.e., prior to the completion of the mine plan), some samples are located outside of the ultimate Open Pit.

The spatial location of the exploration drill core samples was evaluated in the context of the perimeter of the proposed Open Pit. Mine Rock sample selection was the focus of the 2004 and 2008 drill core sampling program.

Table 4-2: Geochemical Characterization of Mine Rock, Sub-Economic Mineralized Mine Rock and Ore Conducted in Support of the NICO Project

			Comprehensive Trace Metal Analysis	Mineralogical Analysis		Short-Term Leach Testing			Kinetic Testing	
	Total Sulphur	ABA			NAG	NAG Leachate	SFE	SPLP	нст	Field Cells
						Analysis				
Feldspar amphibole porphyry / Quartz amphibole porphyry	43	34	43		1		2	13	2	
Rhyolite	51	40	51		2	2	1	14	3	
Siltstone	19	19	19					8	1	
Black Rock Schist	83	67	83					34	5	
Wacke	35	25	35					11		
Breccia / Fault Zone	13	10	13					4	1	
Sub-economic mineralized Mine Rock (ROM stockpiles)	20	20	23	4	20	12	46			4
Ore (ROM Stockpiles)	17	17	42	1	17	10	19		0	1
Total	281	232	309		40	24	68	84	12	5

ABA = acid base accounting; HCT = humidity cells tests; NAG = net acid generation; ROM = run-of-mine; SFE = shake flask extraction; SPLP = synthetic leachate precipitation procedure

Table 4-3: Geochemical Characterization of Tailings Conducted in Support of the NICO Project

	Stream	Mineralogy	Metal Analysis	АВА	NAG and NAG Leachate Analysis	SPLP	Decant Water Quality Analysis	нст	Field Cell Testing			
Tailings												
Bulk Rougher Tailings	Bulk rougher flotation circuit	1	1	1	1	1	1	1	3			
Bulk Cleaner Tailings	Bulk cleaner flotation circuit	1	1	1	1	1						
Blended Tailings												
PP#14	Combined flotation tailings for average ore grade after 2 years of mine life	1	1	1	1	1	1	1				

ABA = acid base accounting; HCT = humidity cells tests; NAG = net acid generation; SPLP = synthetic leachate precipitation procedure

4.3.2 Outcrop Samples

Samples were collected from exposed bedrock surface outcrops for the purpose of supplementing the geochemical data set and evaluating potential borrow sources. Figure 3-1 presents the location of outcrop samples collected in 2004 and 2008.

4.3.3 Sub-Economic Mineralized Mine Rock and Ore Samples

A 250 t bulk sample was excavated from an underground tunnel at the NICO Project in 2006 and 2007. Stockpiles of ore and sub-economic mineralized rock were placed in 34 individual surface stockpiles during the excavation of the underground bulk exploration sample in 2006 and 2007. Fortune geologists segregated the rock piles according to the date which the material was mined: 15 piles consisted of material mined in October 2006, 5 of material mined in March 2007, and 14 of material mined in August 2007. According to Fortune geologists, BRS was the main rock type in 33 of the piles, and one rock pile consisted of (dominantly) feldspar porphyry.

During the excavation of the bulk sample, Fortune geologists collected sub-samples of rock from each pile. These samples were submitted for assay of gold, arsenic, bismuth, cobalt, and copper. Prior to the 2008 sample collection, the assay values were used to designate each pile as sub-economic mineralized rock or ore according to the NSR criteria at the time of sample collection in 2008. Appendix I-3 classifies rock as ore or sub-economic mineralized rock based on the estimated NSR at the time of sample collection. Rock was placed in these stockpiles during the advancement of the underground ramp within the ore zone; therefore, it is reasonable to assume that all non-ore grade rock collected from the stockpiles represents material that will be encountered in close proximity to mineralized zones.

A total of 65 grab samples were collected from the stockpiled ROM rock in 2008 to further evaluate the characteristics of ore and sub-economic mineralized rock. Five larger scale samples were collected for the purpose of construction of field scale tests.

4.3.4 Tailings

Samples of the tailings products were generated during pilot plant testing conducted at SGS Lakefield, under the direction of Fortune. Tailings samples were collected by SGS Lakefield following the completion of pilot plant testing. Samples of the bulk rougher and bulk cleaner tailings, respectively, were submitted for geochemical characterization in order to evaluate the composition of the potential tailings products.

PP#14 is a mixture of multiple tailings products, which were generated by SGS Lakefield under the direction of Fortune. PP#14 consists of combined bulk rougher and bulk cleaner flotation tailings, representative of material that would be produced after the first 2 years of mining.

4.4 Analytical Program

Tables 4-2 and 4-3 summarize the number of samples and analytical testing that was completed for the Mine Rock and ore, and tailings geochemical characterization programs. A detailed overview of the sample analysis program is provided in Appendix II. A brief summary is provided below.

Acid generation potential and metal-leaching rates were evaluated for each rock type using standard laboratory static and kinetic testing methods, consistent with the recommendations in Price (1997) and MEND (2009). Field scale evaluation of Mine Rock and ore was initiated at the NICO Project site in 2008.

\$37

GEOCHEMISTRY REPORT - NICO PROJECT

Static and kinetic laboratory testing of Mine Rock, ore, and tailings took place at SGS Lakefield in Lakefield, Ontario, including the following tests:

- mineralogical analysis (X-ray diffraction (XRD) including Rietveld refinement);
- trace metal analysis;
- acid base accounting;
- net acid generation testing including comprehensive analysis of NAG leachates;
- short-term leach testing using the SPLP and SFE methods;
- analysis of tailings decant water, including aging tests; and
- humidity cell testing.

Field cell leachate samples are collected bi-monthly during the spring freshet (typically May or June), and monthly between June and September. Analysis of leachates collected from the field cells installed at the NICO Project site is conducted at ALS Environmental in Edmonton, Alberta.

5.0 RESULTS AND DATA EVALUATION

5.1 Mineralogy

5.1.1 Overview

The mineralogical composition of a sample can provide insight into the long-term geochemical behaviour of a material. The purpose of mineralogical analysis was to identify the mineral phases present in sub-economic mineralized rock, ore and tailings samples that could be a source of acidity, neutralization capacity or metals.

5.1.2 Sample Selection

A total of 9 samples were submitted for mineralogical analysis, including the following:

- 4 sub-samples of the sub-economic mineralized rock used to construct the field cells at the NICO Project site (FC-1 through FC-4). This rock was collected from the ROM stockpiles placed during the extraction of the bulk sample.
- One sub-sample of ore used to construct the ore field cell at the NICO Project site (FC-5). This material was also collected from the ROM stockpiles.
- 3 samples of tailings generated during metallurgical testing at SGS Lakefield.

5.1.3 Data Analysis

Rietveld XRD detects the crystalline mineral phases present in a sample, normalizing mineral quantities to 100%. The results of mineralogical analysis were evaluated with respect to the occurrence and quantity of: 1) principal minerals in the rock matrix; 2) the presence of carbonate minerals, which serve as a measure of the neutralization potential of the rock sample; 3) the presence of sulphide minerals, which indicate the acid generation potential of a sample; and 4) alteration and oxidation products detected in the sample.

377

GEOCHEMISTRY REPORT - NICO PROJECT

For the purpose of this evaluation, the occurrence of minerals is discussed with respect to relative quantities measured in each sample. "Major" mineral phases occur in abundances greater than 10% and "minor" phases occur in abundances between 1 and 10%. "Trace" minerals are defined as phases that occur in abundances less than 1%.

The mineralogical quantities reported by XRD might not represent the full mineralogical compositions of the samples. XRD cannot identify amorphous phases, and therefore semi-crystalline precipitate minerals may not be fully represented by the results of XRD. Diffraction peak overlap between minerals can cause peaks to be exaggerated, obscured or misidentified. In addition, trace concentrations of minerals are difficult to identify due to the limitations of the analytical method: as a rule-of-thumb, the minimum detection limit for XRD is approximately 1%.

5.1.4 Results

Appendix IV-1 presents the quantitative mineralogical composition of sub-economic mineralized rock, ore, and tailings samples tested using Rietveld XRD.

5.1.4.1 Sub-Economic Mineralized Mine Rock and Ore

Mineralogical analysis was performed on one sample of mixed, mineralized feldspar porphyry and BRS (± magnetite):

- Major mineral phases (i.e., > 10%) included silicate minerals such as microcline [KAlSi₃O₈], albite [NaAlSi₃O₈], quartz [SiO₂] and siderophyllite [KFe²⁺Al(Al₂Si₂)O₁₀(F,OH)₂].
- Minor minerals included ferrohornblende [(Ca,Na)₂₋₃(Fe,Mg,Al)₅Si₈O₂₂(OH,F)₂], actinolite [Ca₂(Mg,Fe)₅Si₈O₂₂(OH)₂], clinochlore [(Mg,Fe²⁺)₅Al(Si₃Al)O₁₀(OH)₈], biotite [K(Mg,Fe)₃AlSi₃O₁₀(OH,F)₂], and diopside [MgCaSi₂O₈].
- Oxide minerals including ilmenite [FeTiO₃] and magnetite [Fe₃O₄] were present in minor amounts.
- No sulphide or carbonate minerals were identified by XRD, indicating that these minerals occurred at concentrations less than 1%.

The mineralogical composition of samples of sub-economic mineralized Mine Rock (BRS (± magnetite)), analyzed in 3 samples, was as follows:

- The dominant mineralogical phases were silicate minerals, including ferrohornblende, omphacite, diopside, and microcline.
- Minor minerals included tremolite, albite, quartz, biotite, siderophyllite, kaolinite, and forsterite. Ilmenite and magnetite were present in minor amounts.
- No carbonate or sulphide minerals were identified by XRD.

One sample of ore (BRS (± magnetite)) was submitted for mineralogical analysis. The mineralogical composition of ore was generally similar to that of Mine Rock, dominated by silicate minerals with no detectable carbonate minerals. FC-5 contained 6.5% arsenopyrite [FeAsS] and 2% pyrite [FeS₂].

37

GEOCHEMISTRY REPORT - NICO PROJECT

5.1.4.2 Tailings

Mineralogical evaluation of tailings samples indicated the following:

- Actinolite accounted for more than 50% of the total composition of bulk rougher tails, bulk cleaner tails, and sample PP#14. The next most common mineral phase in tailings samples was biotite, with abundances varying from 14 to 22%.
- Minor mineral phases in tailings samples included magnetite (4.3 to 8.5%), diopside (5.7 to 8.2%), quartz (3.3 to 4.3%), and calcite (1.6 to 2.2%).
- Claudetite [As₂O₃] occurred in minor concentrations (1.3 to 1.9%) in the bulk tails and sample PP#14.

5.2 Trace Element Analysis

5.2.1 Overview

Trace element analysis was performed to characterize the solid phase composition of Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings. The results of trace element analysis provide a basis for comparison of samples between and within lithologies. When compared to reference values, the relative concentrations of trace metals can be used to identify parameters that may require further consideration with respect to material handling and site discharges.

5.2.2 Sample Selection

Trace element chemistry is available for the following samples:

- 169 samples of drill core (Mine Rock and ore) collected by Golder, and 8 samples of drill core collected by Fortune were submitted for trace metal analysis in 2004 (Appendix IV-2a). In addition, 3 samples of drill core collected by Golder were submitted for trace metal analysis in 2008.
 - 50 of the drill core samples collected in 2004 were submitted for confirmation analysis in 2009 to achieve lower analytical detection limits for select metals (mainly selenium).
- 14 grab samples of outcrop, including 4 samples collected from the portal area in 2004 and 10 samples collected from various outcrops at the NICO Project site, were submitted for trace metal analysis (Appendix IV-2a).
- 42 samples of ore and 23 samples of sub-economic mineralized rock were collected from ROM stockpiles in 2008 (Appendix IV-2b).
- 3 samples of tailings, resulting from metallurgical testing, were submitted for trace metal analysis in 2009 (Appendix IV-2c).

5.2.3 Data Analysis

The results of trace metal analysis were compared to the typical crustal abundances of elements presented in Price (1997) to qualitatively identify elements that occurred at significantly elevated concentrations in Mine Rock, ore and tailings samples. A qualitative evaluation of trace metal composition was performed on samples of Mine Rock, ore and tailings.

In addition to the qualitative evaluation, summary statistics were calculated for samples of Mine Rock, sub-economic mineralized rock, and ore (Appendix IV-2a and Appendix IV-2b). Statistical correlation was used to assess elemental associations in samples of Mine Rock, sub-economic mineralized rock, and ore from the NICO deposit. When supplemented with the known mineralogy of a rock type, element associations can be used to infer the minerals in which trace metals occur. Correlation matrices were developed for solid phase metal concentrations in samples of Mine Rock (i.e., exploration drill core and outcrop), sub-economic mineralized rock (i.e., ROM rock samples) and ore (ROM rock samples and exploration drill core classified as ore). The correlation coefficient (R) values presented in Appendix V, are ratios that relate the covariance of 2 independent variables; a correlation coefficient of 1 indicates a direct relationship between 2 variables, and -1 indicates an inversely proportional relationship (Davis 1986). The typical interpretation of the correlation coefficient uses a cut-off of 0.75 / -0.75 to infer a statistically meaningful correlation.

5.2.4 Results

5.2.4.1 Mine Rock, Sub-Economic Mineralized Mine Rock and Ore

Appendix IV-2 Summarizes trace element concentrations in samples of Mine Rock, sub-economic mineralized Mine Rock and ore. Trace element concentrations were compared to the average crustal abundances of elements in Price (1997) to qualitatively identify metals with elevated solid phase concentrations. Trace metals with concentrations greater than 5 and 10 times the average crustal abundances were as follows:

- Arsenic, bismuth, and antimony occurred at concentrations 10 times greater than the average crustal abundance in samples from all Mine Rock, sub-economic mineralized rock and ore lithologies.
- Molybdenum occurs at concentrations 5 times greater than the average crustal abundance in samples of rhyolite, sub-economic mineralized rock and ore. Samples of sub-economic mineralized rock and ore report copper concentrations 5 times greater than the average crustal abundance.
- Cobalt concentrations vary from 5 to 10 times greater than average crustal abundances in samples from most Mine Rock, sub-economic mineralized rock and ore lithologies.

Elevated concentrations of bismuth, cobalt, and arsenic, in particular, are considered reasonable in the context of the nature of mineralization in the deposit.

Statistical correlation was used to assess elemental associations in samples of Mine Rock, sub-economic mineralized rock, and ore. When supplemented with the known mineralogy of a rock type, element associations can be used to infer the mineralogical host of trace metals.

As outlined in Section 5.1, 2 main varieties of mineralization are present at the NICO deposit: mineralization associated with sulphide minerals, and mineralization associated with bismuth minerals. Table 5-1 summarizes correlation coefficients for metals that occurred at elevated concentrations in Mine Rock and ore (i.e., arsenic, bismuth, antimony, cobalt, molybdenum, and selenium) with sulphur. This table also summarizes correlation coefficients of select metals with bismuth. The purpose of this evaluation is to determine the solid phase distribution (i.e., correlation) of certain metals in Mine Rock, sub-economic mineralized rock and ore.

Unique metal correlations were noted in Mine Rock, relative to sub-economic mineralized Mine Rock and ore. Metal correlations with sulphide and/or bismuth were better defined in sub-economic mineralized Mine

Rock and ore. The correlation of metals with sulphide and bismuth in Mine Rock (i.e., drill core and outcrop) samples is poorly defined.

- In sub-economic mineralized Mine Rock (i.e., ROM samples), arsenic and cobalt correlate with sulphide, and selenium and molybdenum with bismuth:
 - Selenium and bismuth do not correlate with sulphur in the solid phase. This result is consistent with the description of the mineralogical occurrence of bismuth in the ore zone (Petrologic Inc. 1999). Bismuth mineralization typically occurs as native bismuth and bismuth telluride [BiTe₃], with less common bismuthinite [Bi₂S₃], and bismuth sulphosalts (Petrologic Inc, 1999).
 - Arsenic and cobalt correlate strongly with sulphur in sub-economic mineralized rock and ore. In mineralized zones, arsenic and cobalt are hosted by sulphide minerals including arsenopyrite [FeAsS], cobaltite [(Co,Fe)AsS], and cobaltian arsenopyrite (Petrologic Inc, 1999).
- Antimony did not consistently correlate with bismuth or sulphide in Mine Rock, sub-economic mineralized Mine Rock or ore.

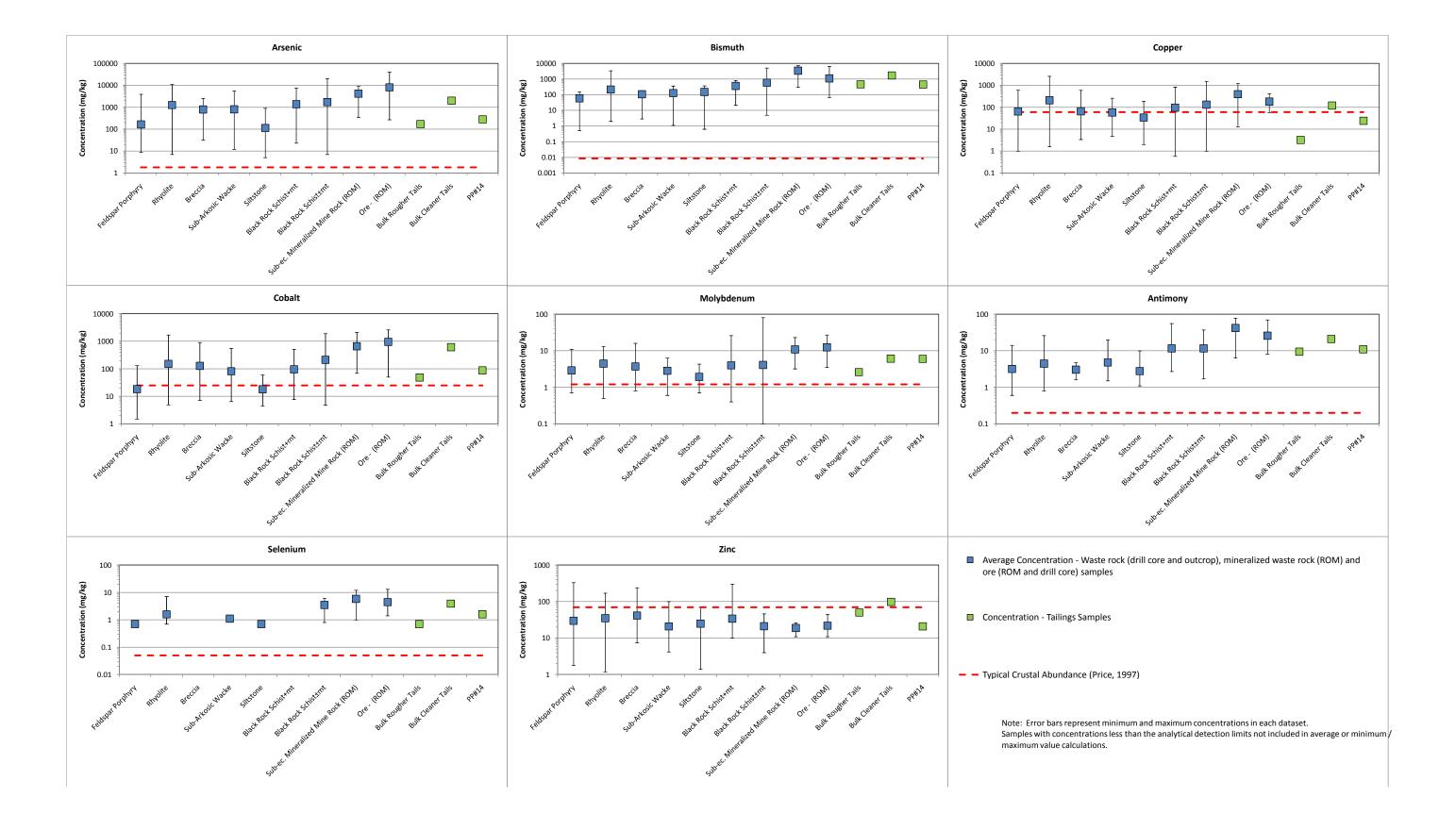
5.2.4.2 Tailings

Concentrations of select trace metals in tailings are compared to the concentration range of the same metals in samples of Mine Rock and ore in Figure 5-1. Statistical analysis was not performed on tailings samples, as only one sample of each tailings product was submitted for testing.

The trace metal composition of tailings is consistent with the results of trace metal analysis of Mine Rock, sub-economic mineralized Mine Rock and ore. All tailings samples reported elevated concentrations of arsenic, bismuth, antimony, and selenium. Concentrations of these parameters were greater than 10 times the average crustal abundances. Metals that occur at elevated concentrations in select samples of tailings include molybdenum (bulk cleaner tailings), cobalt (bulk cleaner tailings), and cadmium (PP#14).

Table 5-1: Correlation Coefficients for Sulphide and Bismuth with Select Trace Metals in Mine Rock, Sub-Economic Mineralized Mine Rock, and Ore

	Sulphide Correlation Coefficients (R)						Bismuth	Bismuth Correlation Coefficients(R)					
	As	Bi	Sb	Со	Мо	Se	As	Sb	Co	Мо	Se		
Mine Rock (Drill Core and Outcrop Samples)													
Feldspar Porphyry	0.10	-0.02	-0.02	0.17	-0.01		0.07	0.08	-0.07	0.04			
Rhyolite	0.43	0.15	0.28	0.25	0.38	0.99	0.73	0.89	0.56	0.32	0.90		
Breccia	0.71	0.27	0.38	0.99	0.96		-0.03	-0.65	0.21	0.35			
BRS (+ magnetite)	0.33	0.12	0.08	0.13	-0.10		-0.01	0.25	0.30	-0.21			
BRS (± magnetite)	0.08	0.02	0.04	-0.12	-0.10		0.30	0.39	0.17	0.33			
Sub-Arkosic Wacke	0.82	-0.06	0.45	0.07	0.26		-0.05	0.25	0.22	-0.03	1.00		
Siltstone	0.95	0.41	0.65	0.31	0.09		0.55	0.51	0.22	0.38			
Sub-economic mineralized rock (ROM Stockpiles)													
BRS (± magnetite) (ROM Stockpiles)	0.90	-0.50	0.35	0.63	-0.42	-0.51	-0.25	0.65	-0.63	0.87	0.99		
Feldspar Porphyry (ROM Stockpiles)	0.81	-0.53	0.39	0.70	-0.45	0.84	-0.24	0.45	-0.14	0.78	-0.83		
Ore (ROM Stockpiles)													
BRS (± magnetite) (ROM Stockpiles)	0.96	-0.48	0.38	0.84	-0.32	-0.23	-0.23	0.73	-0.40	0.18	0.82		
Concentrations loss than the analytical detection limit not included		· · ·			-		-	-	-	-			


Concentrations less than the analytical detection limit not included in correlation coefficient calculations.

Correlation coefficients highlighted in **bold italic** font are >0.75 or <-0.75.

As = arsenic; Bi = bismuth; Co = copper; Mo = molybdenum; Sb = antimony; Se = selenium; ROM = run-of-mine

[&]quot;---" indicates that a correlation coefficient could not be calculated owing to lack of data (i.e., concentrations less than the analytical detection limit).

5.3 Acid Base Accounting and Net Acid Generation Testing

5.3.1 Overview

Acid base accounting was performed to evaluate the acid generation potential of Mine Rock, sub-economic mineralized rock, ore, and tailings samples. Acid generation potential was assessed as a function of the balance between acid producing and acid neutralizing minerals in a sample.

Acid potential was calculated using sulphide-sulphur, assuming that sulphide minerals (such as pyrite, arsenopyrite, and cobaltite) are the dominant source of sulphur. Total sulphur concentrations often include amounts of oxidized, non-reactive forms of sulphur, such as sulphate. Although the dissolution of sulphate minerals can contribute some AP in the short-term, sulphate minerals do not generally contribute to the long-term acid generation potential of a material. Therefore, calculation of AP using sulphide-sulphur, rather than total sulphur, avoids the overestimation of AP.

Bulk NP was measured by titration. Neutralization potential is a measurement of all forms of NP contained in a sample (Sobek et al. 1978). Carbonate NP was calculated using total carbonate concentrations. Carbonate NP is a measure of the NP attributable to carbonate mineral dissolution in a sample. When bulk NP is approximately equal to CaNP, NP is likely attributable to the dissolution of carbonate minerals. In cases where the bulk NP is significantly greater than CaNP, the bulk NP could be overestimated due to the dissolution of silicate minerals. The kinetics of silicate mineral dissolution are generally too slow to provide effective buffering capacity; silicate minerals typically only provide substantial NP if (and when) acidic conditions develop. If CaNP significantly exceeds bulk NP, it is probable that CaNP reflects the dissolution of metal carbonate minerals (i.e., siderite [FeCO₃] and rhodochrosite [MnCO₃]), which contribute no net buffering capacity upon dissolution.

Select samples of Mine Rock, sub-economic mineralized rock, ore, and tailings samples were submitted for NAG testing. The purpose of the NAG test is to promote complete oxidation of all sulfide minerals using hydrogen peroxide. The pH of the oxidized solution provides an indication of the buffering capacity of a sample upon the complete oxidation of all sulphide minerals in a sample, and dissolution of all mineral phases capable of contributing NP in the oxidizing test condition.

5.3.2 Sample Selection

The results of ABA are available for the following samples:

- 169 samples of drill core collected by Golder, and 8 samples of drill core collected by Fortune were submitted for ABA in 2004 (Appendix IV-3a). Three samples of drill core collected by Golder were submitted for ABA in 2008.
 - 50 of the drill core samples collected in 2004 were submitted for total sulphur analysis in 2009 as part of the follow-up, confirmation program. These samples are labelled as "-follow up" in Appendix IV-3a.
- 14 samples of outcrop, including 4 samples collected from the portal area in 2004 and 10 samples collected from various outcrops at the NICO Project site, were submitted for ABA (Appendix IV-3a).
- A sub-set of the ROM sample set was submitted for ABA, including 17 samples of ore and 20 samples of sub-economic mineralized Mine Rock collected from ROM stockpiles in 2008 (Appendix IV-3b).
- 3 samples of tailings, resulting from metallurgical testing, were submitted for ABA in 2009 (Appendix IV-3c).

W.

GEOCHEMISTRY REPORT - NICO PROJECT

Net acid generation testing was performed on the following samples:

- 3 samples of drill core collected in 2008 were submitted for NAG testing (Appendix IV-3a).
- Net acid generation testing was performed on 17 samples of ore and 20 samples of sub-economic mineralized Mine Rock collected from the ROM stockpiles in 2008 (Appendix IV-3b). Net acid generation testing was performed according to the standard test method (i.e., samples crushed and ground to 9.5 mm) on all samples. A sub-set of 7 samples underwent NAG testing with no grain size reduction (i.e., samples tested as received) to evaluate the effect of grain size reduction on the results of NAG testing.
- 3 tailings samples underwent NAG testing in 2009 (Appendix IV-3c).

5.3.3 Data Analysis

A screening level evaluation of the acid generation potential of Mine Rock, sub-economic mineralized Mine Rock, ore, and tailings was conducted using a combination of mineral (sulphide) abundance, the results of ABA, and the results of NAG testing. At a screening level, acid generation potential was assigned to each sample according to the NP to AP ratio (NP/AP). The NP/AP ratio was interpreted according to the commonly used guidelines recommended by Price (1997), as summarized in Table 5-2.

Table 5-2: Acid Rock Drainage Screening Criteria (after Price 1997)

Potential for Acid Rock Drainage	Criteria	Comments
Likely	NP/AP <1	Likely acid generating, unless sulphide minerals are non-reactive.
Uncertain	1< NP/AP <2	Possibly acid generating if NP is insufficiently reactive or is depleted at a rate faster than sulphides.
Low	2< NP/AP <4	Not potentially acid generating unless significant preferential exposure of sulphides along fractures planes, or extremely reactive sulphides in combination with insufficiently reactive NP.
Unlikely	NP/AP > 4	Not expected to generate acidity.

AP = acid potential; NP = neutralization potential

The results of NAG testing were then used to confirm the acid generation potential indicated by the ABA evaluation. During the NAG test, sulphide minerals in a sample are completely oxidized with hydrogen peroxide. The acidity generated by sulphide oxidation is in turn consumed by the dissolution of neutralizing minerals. The pH of the resulting solution is an indication of the propensity of the sample to generate acidity, since the test is an inherent measure of the relative proportion of acid generating and acid consuming mineral phases.

The results of NAG testing were assessed according to the typical interpretation recommended by AMIRA (2002):

- NAG pH values greater than 4.5 indicate that a sample is unlikely to be potential acid generating.
- NAG pH values less than 4.5 indicate that a sample could generate acidity upon the complete oxidation of sulphide minerals and dissolution of minerals that are soluble in the highly oxidizing conditions that exist at the completion of the NAG test.

Sulphide-sulphur concentrations are also commonly used to classify rock with respect to acid generation since very low sulphide concentrations do not possess substantial potential for generation of long term acidity. The sulphide values can often be rapidly assessed during operational monitoring and as such are often used as operational indicators for acid generation potential for the purposes of waste management. As such, the measured sulphide-sulphur concentrations were evaluated in the context of the NP/AP ratio of rock samples and NAG-pH. The purpose of this evaluation was to determine if a screening level cut-off concentration that can be used to classify "potentially acid generating" from "non acid generating" rock.

In addition to the above static tests, acid generation potential was confirmed with short-term and long-term laboratory leach testing, and the field tests that are currently underway at the NICO Project site. This is necessary since, for several reasons, no single NP/AP ratio, sulphide-sulphur concentration, or NAG-pH has universal applicability with respect to acid generation prediction. The actual threshold values for a particular solid are material specific, and could depend on several factors, including: the relative proportion and concentration of acid generating and acid neutralizing minerals; the morphology (i.e., grain size, texture and crystallinity) acid generating and acid neutralizing minerals; the chemical composition of the constituent minerals in a sample; and, rock texture and site specific exposure conditions.

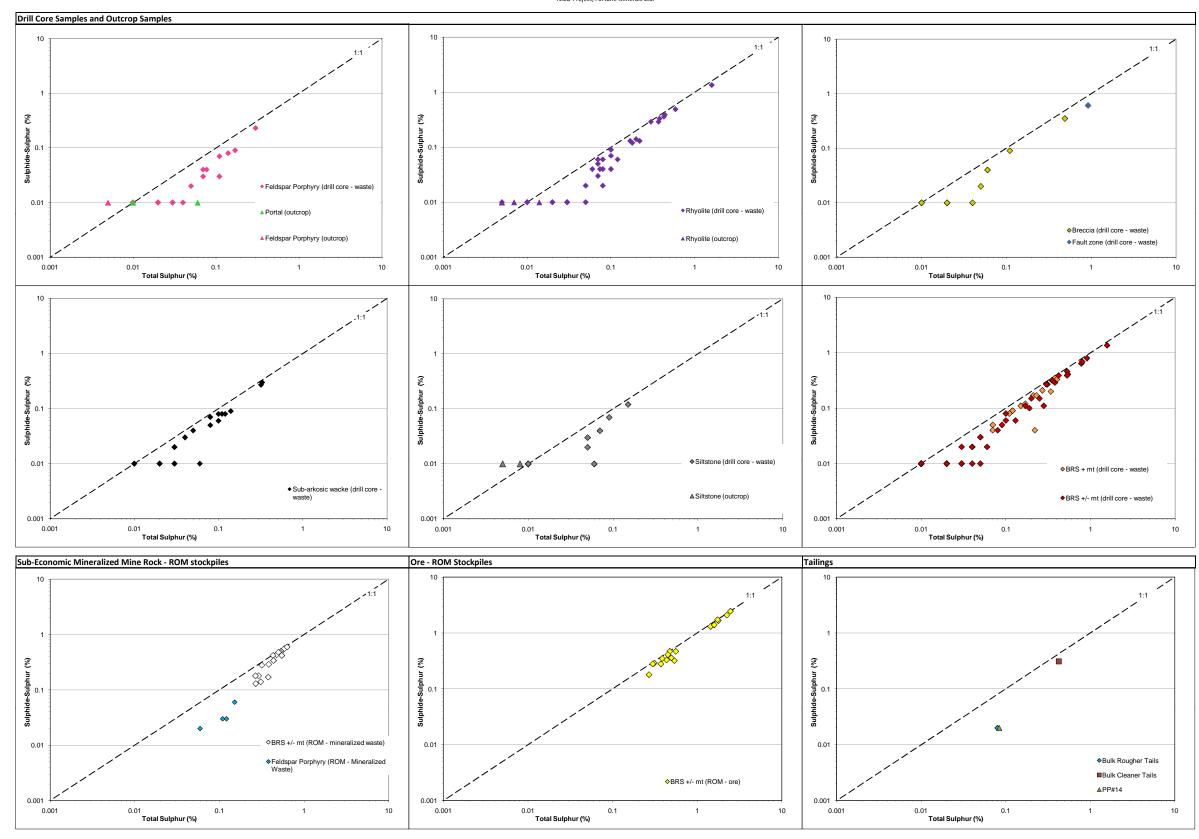
5.3.4 Results

5.3.4.1 Mine Rock, Sub-Economic Mineralized Mine Rock, and Ore

Detailed results of ABA and NAG testing of samples Mine Rock, sub-economic mineralized rock, ore, and tailings are presented in Appendix IV-3. Figures 5-2 through 5-7 present select results of ABA and NAG testing.

The total sulphur content of Mine Rock samples (including drill core, outcrop samples and bulk sample stockpile samples) ranged from <0.01 to 1.60%. The dominant sulphur species in all lithologies of Mine Rock was sulphide-sulphur (Figure 5-2). With the exception of one sample of breccia, all samples of feldspar porphyry, wacke, siltstone and breccia Mine Rock contained less than 0.3% sulphide-sulphur. The sulphide-sulphur content of rhyolite and BRS Mine Rock was greater, ranging from <0.01 to 1.4% in rhyolite, <0.01 to 0.35% in BRS (+magnetite), and from <0.01 to 1.4% in BRS (±magnetite).

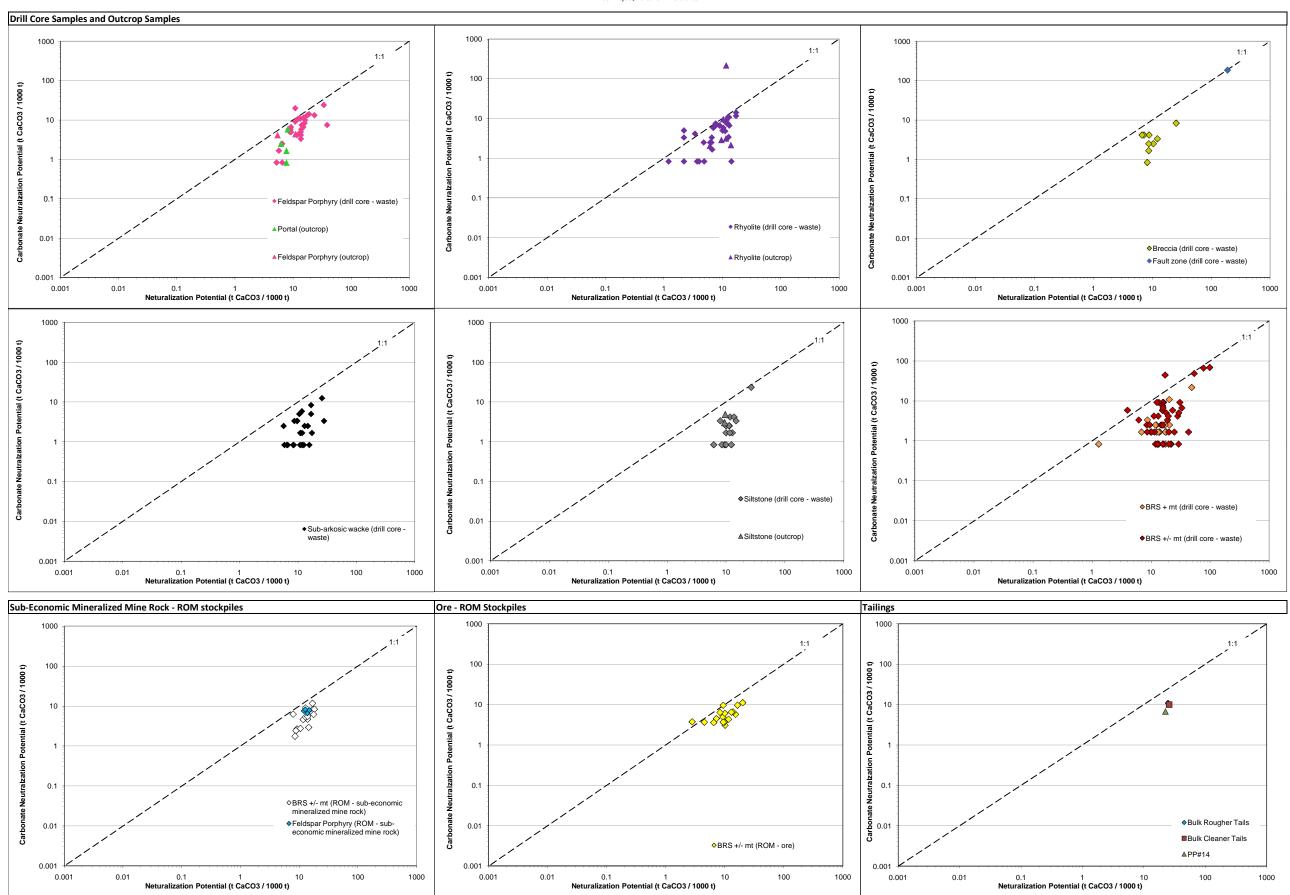
The NP of Mine Rock samples varied from -13.6 to 190 t $CaCO_3$ / 1000 t (Figure 5-3). Several samples reported negative bulk NP values, indicating the presence of stored mineral acidity in the sample. One sample of drill core, representative of a fault zone, contained 190 t $CaCO_3$ / 1000 t NP. Neutralization potential was less than 10 t $CaCO_3$ /1000 t in most Mine Rock samples.


The total carbon content of Mine Rock samples ranged from <0.01 to 2.62%. Carbonate NP calculated using the inorganic carbon concentrations, was less than the bulk NP in all but 7 Mine Rock samples (Figure 5-3). The dominance of NP indicates that the dissolution of non-carbonate minerals (i.e., silicate minerals) contributed to the measurement of bulk NP.

Sub-economic mineralized rock samples reported total sulphur concentrations that ranged from 0.059 to 0.628% (0.02 to 0.6 % sulphide-sulphur). The NP of sub-economic mineralized rock samples ranged from 7.9 to 18.1 t $CaCO_3$ / 1000 t.

May 2011

Figure 5-2
Total Sulphur vs. Sulphide Sulphur - Mine Rock Rock and Ore
NICO Project, Fortune Minerals Ltd.



10f1 Golder Associates

Figure 5-3

Neutralization Potential (NP) vs. Carbonate Neutralization Potential (CaNP) - Waste Rock and Ore

NICO Project, Fortune Minerals Ltd.

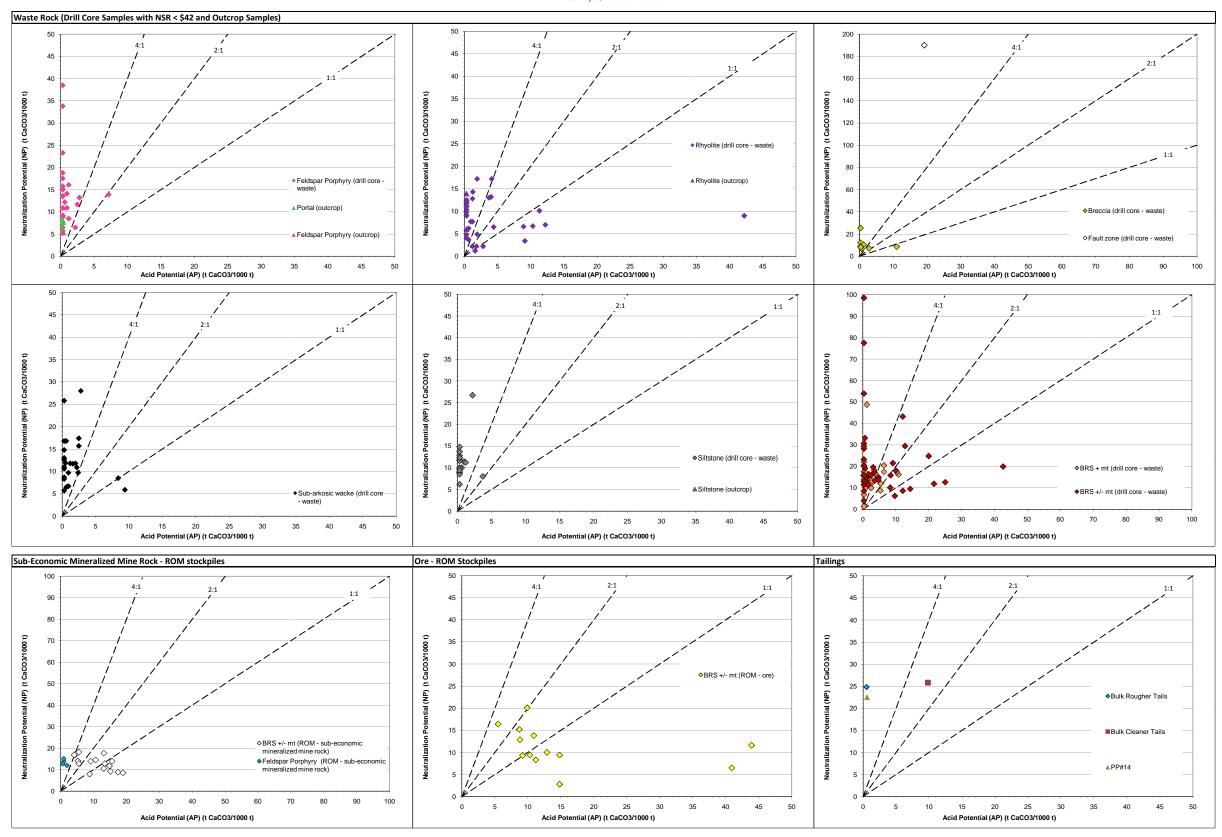
The total sulphur content of ore samples ranged from 0.04 to 2.47%. The dominant sulphur species in ore samples was sulphide-sulphur (Figure 5-2). Consistent with the results of mineralogical analysis, which indicated the accumulation of sulphide minerals such as arsenopyrite and pyrite in the ore zone, all but 2 samples of ore contained greater than 0.3% sulphide-sulphur. Ore samples contained little NP, ranging from 2.80 to 20.1 t CaCO₃ / 1000 t (Figure 5-3). The total carbon content of ore samples ranged <0.01 to 0.13%. Carbonate NP was slightly less than bulk NP, indicating that the dissolution of silicate minerals affected the NP measurement.

The acid generation potential of samples of Mine Rock, sub-economic mineralized rock, and ore was evaluated based on the NP/AP criteria outlined in Table 5-2, sulphide-sulphur concentrations and NAG-pH. Table 5-3 summarizes the acid generation potential of Mine Rock, sub-economic mineralized rock, and ore.

The acid generation potential of Mine Rock, sub-economic mineralized rock, and ore (by lithology) is presented in Figure 5-3. Most samples of Mine Rock are considered unlikely to generate acidity according to NP/AP ratio: 77% of all Mine Rock samples had NP/AP ratios greater than 4. Only 14% of the Mine Rock samples submitted for ABA have an NP/AP ratio indicative of a potential for acid generation (i.e., NP/AP < 2). The remaining 9% of the Mine Rock samples have an uncertain acid generation potential (i.e., NP/AP between 2 and 4).

As demonstrated in Figure 5-4, a reasonable correlation exists between NP/AP ratio and Sulphide-sulphur content. Most samples with a likely potential for acid generation (i.e., NP/AP < 2) contained greater than 0.3% sulphide-sulphur.

Table 5-3: Acid Generation Potential of Mine Rock, Ore, and Tailings According to the Results of Acid Base Accounting and Net Acid Generation Testing


	Number of	Percent of	f Samples			Percent of Sampl	es	Number of	Percent of	f Samples
Lithology	Samples (ABA)	NP/AP<1	1 <np ap<2<="" th=""><th>2<np ap<4<="" th=""><th>NP/AP>4</th><th>Sulphide- sulphur > 0.3%</th><th>Sulphide- sulphur < 0.3%</th><th>Samples (NAG)</th><th>NAG-pH < 4.5</th><th>NAG-pH > 4.5</th></np></th></np>	2 <np ap<4<="" th=""><th>NP/AP>4</th><th>Sulphide- sulphur > 0.3%</th><th>Sulphide- sulphur < 0.3%</th><th>Samples (NAG)</th><th>NAG-pH < 4.5</th><th>NAG-pH > 4.5</th></np>	NP/AP>4	Sulphide- sulphur > 0.3%	Sulphide- sulphur < 0.3%	Samples (NAG)	NAG-pH < 4.5	NAG-pH > 4.5
Mine Rock	•	•								<u>.</u>
Feldspar Porphyry	34	0%	3%	3%	94%	0%	100%	1	100%	0%
Rhyolite	40	25%	8%	8%	60%	13%	88%	2	100%	0%
Breccia	9	11%	0%	11%	78%	11%	89%	N/A	N/A	N/A
Fault Zone	1	0%	0%	0%	100%	100%	0%	N/A	N/A	N/A
BRS (+ magnetite)	25	8%	12%	16%	64%	16%	84%	N/A	N/A	N/A
BRS (± magnetite)	42	12%	10%	14%	64%	19%	81%	N/A	N/A	N/A
Sub-Arkosic Wacke	25	4%	4%	0%	92%	4%	96%	N/A	N/A	N/A
Siltstone	18	0%	0%	6%	94%	0%	100%	N/A	N/A	N/A
Sub-economic Miner	ralized Rock (F	ROM Stockp	iles)				-	-		
BRS (± magnetite)	16	50%	19%	25%	6%	56%	44%	16	44%	56%
Feldspar Porphyry	4	0%	0%	0%	100%	0%	100%	4	100%	0%
Ore (ROM Stockpiles	s)									
BRS (± magnetite)	17	71%	24%	6%	0%	76%	24%	19	37%	63%
Tailings										
Bulk rougher tailings	1				100%	100%		1	0	100%
Bulk cleaner tailings	1				100%		100%	1	0	100%
PP#14	1				100%	100%		1	0	100%

ABA = acid base accounting; AP = acid potential; BRS = black rock schist; NAG = net acid generation; NP = neutralization potential; ROM = run-of-mine

Figure 5-4

Evaluation of Acid Generation Potential - Waste Rock and Ore NICO Project, Fortune Minerals Ltd.

10f1 Golder Associates

Sub-economic mineralized rock and ore have a greater potential for acid generation, on a whole, than Mine Rock. The sulphide-sulphur content is greater in sub-economic mineralized rock and ore than Mine Rock that occurs distal to the ore zones. Up to 55% of the sub-economic mineralized rock samples and 79% of the ore samples submitted for ABA have NP/AP ratios less than 2 (Figure 5-4). All samples with NP/AP ratios less than 2 contained greater than 0.3% sulphide-sulphur (Figure 5-5).

A limited number of drill core samples and samples collected from the bulk sample stockpiles were submitted for NAG testing. Although the NAG testing dataset largely consisted of sub-economic mineralized rock and ore collected from the bulk sample stockpiles, the correlation between NAG pH and ABA parameters can be used to confirm the ABA classification criteria outlined in Table 5.2 (Figure 5-6):

- The NAG pH of samples of rhyolite and feldspar porphyry varied from 7.01 to 7.87. These samples had NP/AP ratios greater than 4 (Figure 5-6) and contained less than 0.3% sulphide-sulphur (Figure 5-7). The results of NAG testing confirm that Mine Rock with low sulphide content is unlikely to generate acidity.
- The NAG pH of sub-economic mineralized rock varied from 3.24 to 8.84. All samples of mineralized waste with NAG-pH values less than 4.5 had NP/AP ratios less than 2 (Figure 5-6), and contained greater than 0.3% sulphide-sulphur (Figure 5-7).
- The NAG pH of ore varied ranged from 2.23 to 8.13. Again, an excellent correlation existed between NP/AP ratio, sulphide-sulphur content and NAG-pH.

The results of ABA and NAG testing indicate that Mine Rock, in general, has a low potential for acid generation. Sub-economic mineralized rock that occurs in close proximity to ore zones has a greater potential for acid generation. As indicated in Table 5-1, metals that correlate strongly with sulphide-sulphur include arsenic and cobalt. According to the correlation matrices in Appendix V, trace metals generally did not correlate with NP or total carbon concentrations. This result indicates that the oxidation of sulphide minerals could result in the release of metals including arsenic and cobalt to solution.

Figure 5-5
Sulphide-Sulphurvs NP/AP ratio - Waste Rock, Ore and Tailings
NICO Project, Fortune Minerals Ltd.

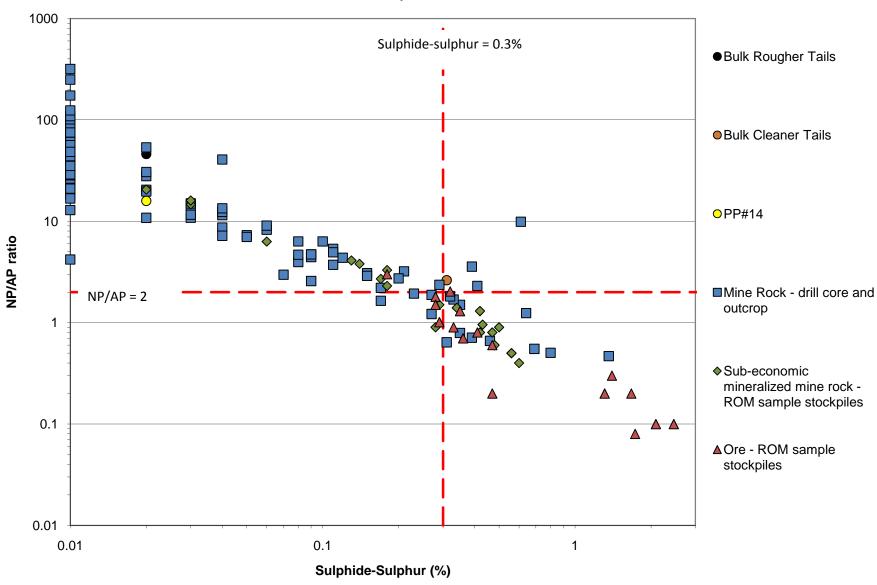


Figure 5-6

NAG-pH vs NP/AP ratio - Waste Rock, Ore and Tailings
NICO Project, Fortune Minerals Ltd.

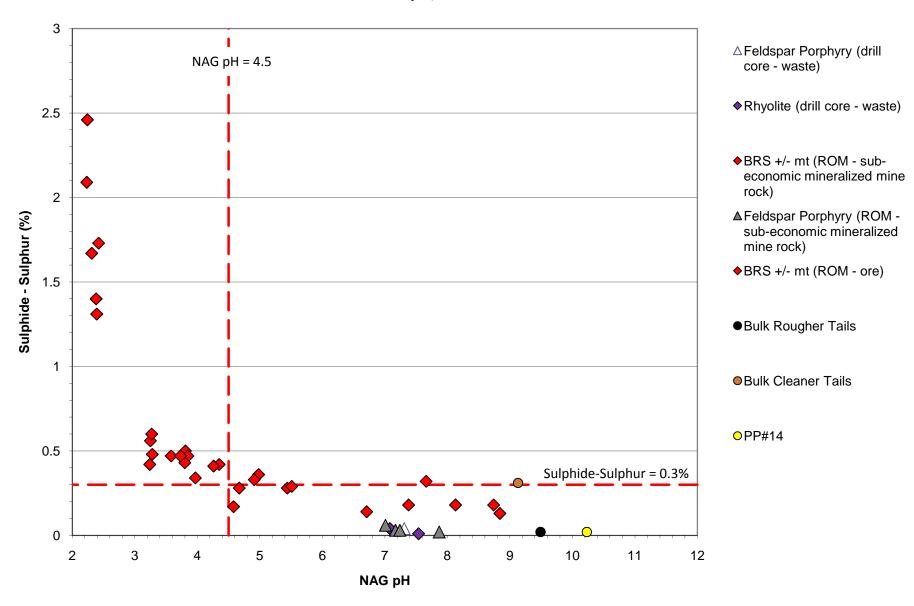



Figure 5-7

NAG-pH vs Sulphide-Sulphur (%) - Waste Rock , Ore and Tailings

NICO Project, Fortune Minerals Ltd.

5.3.4.2 *Tailings*

The results of ABA and NAG testing of tailings samples (including bulk rougher tails, bulk cleaner tails, PP#14 and NICO Field Test Blend) are summarized in Table 5-2, and Figures 5-2 through 5-6.

The total sulphur content of bulk rougher tails and PP#14 was 0.08%, dominated by sulphate sulphur. The total sulphur content of the bulk cleaner tailings was 0.43%, which was dominated by sulphide-sulphur (Figure 5-2). Similar to Mine Rock and ore, the NP of tailings was low, ranging from 23 to 26 t CaCO₃ / 1000 t. Carbonate NP, calculated using the inorganic carbon concentrations, was less than the bulk NP in all tailings samples. The dominance of NP indicates that the NP measurement was affected by the dissolution of non-carbonate minerals (i.e., silicates). NP and total carbon measurements agree with the results of mineralogical analysis, which indicate that calcite is present in very low quantities in the tailings samples.

The acid generation potential of tailings samples is low, owing to the low sulphide-sulphur content of the tailings samples (Figure 5-4). Net acid generation testing confirmed that tailings have a very low acid generation potential (Figure 5-6 and Figure 5-7). Net acid generation pH values ranged from 9.1 and 10.2, indicating that sufficient NP exists in the tailings samples to buffer the acidity generated by the complete oxidation of sulphide minerals present.

5.4 Short-Term Leach Testing

5.4.1 Overview

Short-term leach testing was conducted to determine metals that could leach from samples of Mine Rock, sub-economic mineralized rock, ore, and tailings, respectively, at concentrations requiring further consideration in the context of site water quality. The objectives of short-term leach testing were to: perform a screening level evaluation of the metal leaching potential of the various waste materials at the NICO Project, and to identify correlations between leachate pH, solid phase concentrations, and leachate concentrations by rock type/waste material.

The results of short-term leach tests are commonly used to estimate the potential composition of runoff that could result from the rapid dissolution of soluble mineral phases. Evaluation of short-term leach tests in the context of leaching capability under site conditions should be conducted with caution. The results of these tests do not directly translate to the expected environmental behaviour of Mine Rock, for several reasons:

- Often, minerals present in the finest grain size component control the chemical composition of runoff and infiltration from blasted Mine Rock. Although this effect was accounted for by testing the finer component of ROM rock in the bulk sample stockpiles, it is possible that all compositional and grain size heterogeneities were not captured during the sampling process. The majority of the geochemistry dataset consists of samples of exploration drill core and outcrop that were crushed and ground prior to leach testing.
- The geochemical test sample size and leachate volume are significantly less than the mass of rock and volume of water interacting with material in an operational setting (i.e., Mine Rock piles or tailings impoundments).
- The contact between the test solution and solid test charge is enhanced relative to the contact between runoff/infiltration water and rock or tailings in site conditions, owing to the nature of agitation during the test.

5.4.2 Sample Selection

Short-term leach testing was conducted iteratively, as the understanding of the project progressed and different materials became available for sampling. Several test methods were used to evaluation the short-term leaching potential of Mine Rock, sub-economic mineralized rock, ore and tailings, including SPLP, SFE, and NAG testing.

Synthetic leachate precipitation procedure was conducted to evaluate the stability of samples in weakly acidic leachate. Samples of Mine Rock and tailings were submitted for SPLP (4:1 leachate to solid ratio, using a standard dilute pH 5 sulphuric / nitric acid solution), including:

- 84 samples of exploration drill core submitted for SPLP in 2004 (Appendix IV-4a); and
- 4 samples of tailings submitted for SPLP in 2009 (Appendix IV-4b).

Shake flask extraction was carried out on samples of exploration drill core, mineralized ROM Mine Rock, and ROM ore. Shake flask extraction simulates the dissolution of soluble mineral phases from a sample in de-ionized water (i.e., neutral pH solution). SFE was conducted on samples collected in 2008 using 2 methods of sample preparation:

- 3 samples of exploration drill core (Appendix IV-5a), and 8 samples of ROM sub-economic mineralized rock and ore (Appendix IV-5b) samples were crushed and ground to a maximum grain size of 9.5 mm prior to SFE.
- 65 samples of ROM sub-economic mineralized rock and ore did not undergo grain size reduction prior to SFE, to better represent actual grain sizes observed, and reduce uncertainty that could be introduced in the testing by crushing and grinding (Appendix IV-5c).

To evaluate the composition of leachate that could result from the complete oxidation of sulphide minerals and dissolution of non-sulphide minerals, NAG supernatant water quality was analyzed after oxidation by hydrogen peroxide but before sample titration. Net acid generation supernatant analysis was performed on samples collected in 2008, including:

- 2samples of exploration drill core (Appendix IV-6a).
- 22 samples of ROM sub-economic mineralized rock and ore (Appendix IV-6b).

5.4.3 Data Analysis

The results of short-term leach tests are sensitive to test methodology (i.e., leachate-to-solid ratio, leachate composition and pH, grain size reduction). The same sample can report a range of leachate concentrations depending on the method of short-term leach testing used. Therefore, the results of short-term leach tests are discussed by method of leach testing to evaluation the leachability of Mine Rock, sub-economic mineralized rock, ore, and tailings samples in specific laboratory test conditions.

The results of short-term leach test results were compared to the site-specific water quality objectives (SSWQO) for the NICO Project, as outlined in Appendix VI. The purpose of this evaluation is to qualitatively identify parameters that leach from Mine Rock, sub-economic mineralized rock, ore, and tailings samples at concentrations that may require further evaluation in the context of overall site water quality. The SSWQO do not directly apply to the results of short-term leach tests.

5.4.4 Results

5.4.4.1 Mine Rock, Sub-Economic Mineralized Mine Rock and Ore Synthetic Precipitation Leaching Procedure

The results of SPLP conducted on samples of Mine Rock are presented in Appendix IV-4a. Table 5-4 summarizes select results of SPLP with respect to parameters that occur at concentrations in excess of the SSWQO. Parameters presented in Table 5-4 were selected based on the range of solid phase concentrations, and metals known to occur in association with ore mineralization at the NICO Project.

Table 5-4: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Synthetic Precipitation Leaching Procedure

		Feldspar Porphy	/ry	Rhyolite		Breccia		BRS (+ magnetit	e)	BRS (± magnetit	e)	Sub-Arkosic Wa	cke	Siltstone	
	n ^a	13		14		4		12		22		11		8	
	Reference Criteriab	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c
рН	6.5 - 9	8.4- 9.8	0	6.8- 9.7	0	8.6- 9.4	0	8.6- 9.8	0	7.8- 9.9	0	8.0- 9.8	0	8.8- 9.8	0
Sulphate (mg/L)	500	4.4- 30	0	5- 47	0	2.5- 21	0	4.0- 8.6	0	3.7- 20	0	13- 24	0	5- 19	0
Aluminum (mg/L)	0.41	0.23- 5.6	12	0.34- 7.3	13	0.51- 1.3	4	0.88- 3.3	12	0.15- 2.9	21	3.5- 15	11	0.98- 14	8
Arsenic (mg/L)	0.05	0.00- 2.1	7	0.008- 1.9	12	0.18- 0.68	4	0.05- 1.9	12	0.02- 10	16	0.013- 0.90	6	0.005- 0.25	2
Cadmium (mg/L)	0.00015	0.0005- 0.0005	13	0.0005- 0.0005	14	0.0005- 0.0005	4	0.0005- 0.0005	12	0.0005- 0.0005	22	0.0005- 0.0005	11	0.0005- 0.0005	8
Cobalt (mg/L)	0.01	0.0003- 0.006	0	0.0003- 0.104	9	0.0007- 0.012	2	0.0006- 0.018	1	0.0003- 0.009	0	0.0006- 0.019	2	0.0003- 0.004	0
Copper (mg/L)	0.022	0.0008- 0.006	0	0.0015- 0.208	6	0.0008- 0.016	0	0.0007- 0.036	2	0.0007- 0.007	0	0.0008- 0.041	2	0.0010- 0.007	0
Iron (mg/L)	1.5	0.07- 7.5	6	0.21- 7.0	13	0.05- 1.0	0	1.3- 2.7	11	0.4- 7	21	9.1- 43	11	1.3- 45	7
Molybdenum (mg/L)	0.073	0.0003- 0.027	0	0.0007- 0.012	0	0.0008- 0.010	0	0.0003- 0.007	0	0.0003- 0.013	0	0.0003- 0.002	0	0.0003- 0.002	0
Lead (mg/L)	0.0076	0.0001- 0.003	0	0.0002- 0.008	1	0.0003- 0.001	0	0.0003- 0.0008	0	0.0001- 0.01	1	0.0010- 0.021	1	0.0002- 0.002	0
Antimony (mg/L)	0.03	0.002- 0.014	0	0.002- 0.009	0	0.002- 0.008	0	0.004- 0.054	2	0.003- 0.199	5	0.002- 0.038	1	0.004- 0.010	0
Selenium (mg/L)	0.005	0.005- 0.005	0	0.005- 0.005	0	0.005- 0.005	0	0.005- 0.005	0	0.005- 0.005	0	0.005- 0.005	0	0.005- 0.005	0
Uranium (mg/L)	0.027	0.0002- 0.0057	0	0.0006- 0.0071	0	0.0003- 0.001	0	0.0001- 0.0007	0	0.0001- 0.0028	0	0.0003- 0.0019	0	0.0005- 0.0017	0
Zinc (mg/L)	0.11	0.002- 0.14	3	0.004- 0.19	10	0.006- 0.012	0	0.007- 0.023	0	0.004- 0.034	0	0.093- 0.25	7	0.002- 0.16	5

^a Total number of samples.

BRS = black rock schist; mg/L = milligrams per Litre

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria.

Shake Flask Extraction

Shake flask extraction was conducted on 2 samples of drill core (rhyolite Mine Rock) collected in 2008 (Appendix IV-5a). Table 5-5 summarizes the results of SFE of rhyolite Mine Rock in the context of the reference criteria for the NICO Project.

Table 5-5: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Shake Flask Extraction

		Rhyolite		Feldspar Porp	hyry
	n ^a	2		1	
	Reference Criteria ^b	Results	n (ex) ^c	Results	n (ex) ^c
рН	6.5 - 9	8.9- 9	0	8.85	0
Sulphate (mg/L)	500	2.1- 4.8	0	4	0
Aluminum (mg/L)	0.41	0.264- 0.372	0	0.358	0
Arsenic (mg/L)	0.05	0.116- 0.303	2	0.379	1
Cadmium (mg/L)	0.00015	0.000005- 0.00001	0	0.000008	0
Cobalt (mg/L)	0.01	0.0003- 0.001	0	0.00025	0
Copper (mg/L)	0.022	0.005- 0.007	0	0.0005	0
Iron (mg/L)	1.5	0.29- 0.3	0	0.42	0
Molybdenum (mg/L)	0.073	0.010- 0.035	0	0.0264	0
Lead (mg/L)	0.0076	0.0001- 0.0003	0	0.00014	0
Antimony (mg/L)	0.03	0.014- 0.018	0	0.0778	1
Selenium (mg/L)	0.005	0.001- 0.001	0	0.001	0
Uranium (mg/L)	0.027	0.002- 0.005	0	0.00187	0
Zinc (mg/L)	0.11	0.002- 0.003	0	0.003	0

^a Total number of samples.

Several samples of mineralized, ROM rock were collected from the bulk sample stockpiles, to evaluate the presence of soluble minerals in rock that had been stored on surface for a period of 1 to 2 years. All samples of ROM rock were submitted for SFE without grain size reduction (i.e., "unprepared samples") (Appendix IV-5b). Table 5-6 compares the results of SFE conducted on unprepared samples of ROM sub-economic mineralized Mine Rock and ore to the reference criteria.

Eight samples of rock were split into 2 sub-samples. A split of each sample underwent SFE without grain size reduction. The other split was crushed and ground to a maximum grain size of 9.5 mm to evaluate the effect of grain size reduction on the leachability of ROM rock samples ("prepared samples") (Appendix IV-5c). Appendix IV-5d compares the results of SFE conducted on unprepared samples the results of SFE conducted on prepared samples. In all cases, the pH of the unprepared sample was greater than that of the sample which had been crushed and ground. With the exception of arsenic, concentrations of most trace metals were greater in the crushed and ground samples. Arsenic concentrations were greatest in the samples which had not undergone any form of sample preparation.

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria. mg/L = milligrams per Litre

Table 5-6: Summary of the Results of Short-Term Leach Testing of Sub-Economic Mineralized Mine Rock and Ore (ROM Stockpiles) – Shake Flask Extraction

		Sub-economic Mine	ralized Ro	ock (ROM Stockpiles)		Ore (ROM Stockpile	s)
		Feldspar Porphyry	BRS (± magnetite) / magnetite)	BRS (+	BRS (± magnetite) / BRS (+ magnetite)		
	n ^a	4		19		42	
	Reference Criteria ^b	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c
рН	6.5 - 9	9.2- 9.5	0	9.0- 10	0	8.1- 9.7	0
Sulphate (mg/L)	500	2.1- 6.9	0	3.8- 24	0	2.3- 86	0
Aluminum (mg/L)	0.41	0.33- 0.52	3	0.04- 0.31	0	0.04- 0.48	1
Arsenic (mg/L)	0.05	1.6- 2.5	4	0.0- 2.9	18	0.02- 9.6	40
Cadmium (mg/L)	0.00015	0.000003- 0.0001	1	0.000003- 0.00009	0	0.000003- 0.00031	2
Cobalt (mg/L)	0.01	0.0004- 0.0007	0	0.0001- 0.0013	0	0.0001- 0.004	0
Copper (mg/L)	0.022	0.0005- 0.0005	0	0.0005- 0.0032	0	0.0005- 0.001	0
Iron (mg/L)	1.5	0.19- 0.41	0	0.14- 1.1	0	0.01- 1.0	0
Molybdenum (mg/L)	0.073	0.004- 0.007	0	0.002- 0.016	0	0.001- 0.01	0
Lead (mg/L)	0.0076	0.0003- 0.0006	0	0.00008- 0.0006	0	0.00002- 0.001	0
Antimony (mg/L)	0.03	0.01- 0.02	0	0.05- 0.15	19	0.01- 0.10	39
Selenium (mg/L)	0.005	0.006- 0.009	4	0.013- 0.062	19	0.003- 0.095	24
Uranium (mg/L)	0.027	0.002- 0.007	0	0.0001- 0.0008	0	0.0004- 0.007	0
Zinc (mg/L)	0.11	0.001- 0.002	0	0.001- 0.005	0	0.001- 0.004	0

a Total number of samples.

BRS = black rock schist; ROM = run-of-mine; mg/L = milligrams per Litre

Comprehensive Analysis of Net Acid Generation Leachates

Appendix IV-6a presents the results of comprehensive analysis of NAG leachates from 2 samples of rhyolite Mine Rock. Table 5-7 presents parameters in NAG leachates that exceed the reference criteria.

Net acid generation leachates from select samples of sub-economic mineralized rock and ore (ROM stockpiles) were submitted for comprehensive analysis (Appendix IV-6b). Table 5-8 presents a summary of parameters in NAG leachates from sub-economic mineralized rock and ore that occur at concentrations in excess of the reference criteria.

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria.

Table 5-7: Summary of the Results of Short-Term Leach Testing of Mine Rock (Drill Core) – Comprehensive Analysis of Net Acid Generation Leachates

		Rhyolite	
	n ^a	2	
	Reference Criteria ^b	Results	n (ex) ^c
рН	6.5 - 9	6.8- 7.4	0
Sulphate (mg/L)	500	15- 51	0
Aluminum (mg/L)	0.41	0.07- 0.17	0
Arsenic (mg/L)	0.05	0.02- 0.13	1
Cadmium (mg/L)	0.00015	0.000006- 0.00004	0
Cobalt (mg/L)	0.01	0.013- 0.11	2
Copper (mg/L)	0.022	0.0031- 0.007	0
Iron (mg/L)	1.5	0.02- 0.03	0
Molybdenum (mg/L)	0.073	0.0094- 0.125	1
Lead (mg/L)	0.0076	0.00005- 0.00005	0
Antimony (mg/L)	0.03	0.007- 0.019	0
Selenium (mg/L)	0.005	0.001- 0.002	0
Uranium (mg/L)	0.027	0.0001- 0.005	0
Zinc (mg/L)	0.11	0.006- 0.038	0

^a Total number of samples.

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria. mg/L = milligrams per Litre

Table 5-8: Summary of the Results of Short-Term Leach Testing of Sub-Economic Mineralized Mine Rock and Ore (ROM Stockpiles) – Comprehensive Analysis of Net Acid Generation Leachates

		Sub-economic Mi	neralized	Rock (ROM Stock)	piles)	Ore (ROM Stock)	oiles)
		Feldspar Porphyr	у	BRS (± magnetite BRS (+ magnetite	•	BRS (± magnetite) / BRS (+ magnetite)	
	n ^a	3	3			10	
	Reference Criteria ^b	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c
рН	6.5 - 9	7.0- 7.3	0	3.1- 7.7	7	2.1- 6.7	9
Sulphate (mg/L)	500	30- 47	0	52- 200	0	69- 630	4
Aluminum (mg/L)	0.41	0.03- 0.58	1	0.01- 1.5	5	0.01- 12	8
Arsenic (mg/L)	0.05	2.8- 6.0	3	0.005- 6.9	8	0.010- 26	9
Cadmium (mg/L)	0.00015	0.00003- 0.00008	0	0.00004- 0.0001	2	0.00003- 0.0011	3
Cobalt (mg/L)	0.01	0.0008- 0.01	1	0.0085- 13	8	0.07- 27	10
Copper (mg/L)	0.022	0.0005- 0.002	0	0.0005- 9.4	5	0.0033- 2.5	8
Iron (mg/L)	1.5	0.02- 0.08	0	0.01- 16	2	0.01- 39	3
Molybdenum (mg/L)	0.073	0.07- 0.16	2	0.0007- 0.11	4	0.0011- 0.13	1
Lead (mg/L)	0.0076	0.00005- 0.00006	0	0.00002- 0.0082	0	0.00003- 0.005	0
Antimony (mg/L)	0.03	0.02- 0.03	1	0.001- 0.11	3	0.002- 0.05	1
Selenium (mg/L)	0.005	0.02- 0.02	3	0.032- 0.16	9	0.011- 0.13	10
Uranium (mg/L)	0.027	0.00007- 0.0004	0	0.00003- 0.02	1	0.00048- 0.09	5
Zinc (mg/L)	0.11	0.006- 0.04	0	0.006- 0.79	5	0.022- 0.91	5

^a Total number of samples.

BRS = black rock schist; ROM = run-of-mine; mg/L = milligrams per Litre

5.4.4.2 Tailings

Synthetic Precipitation Leaching Procedure

Appendix IV-4b presents the results of SPLP conducted on 4 samples of tailings. Parameters leached from the samples at concentrations requiring further consideration with respect to overall site water quality were as follows are summarized in Table 5-9.

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria.

Table 5-9: Summary of the Results of Short-Term Leach Testing of Tailings – Synthetic Precipitation Leaching Procedure

	Reference Criteria ^a	Bulk Rougher Tails	Bulk Cleaner Tails	PP#14
рН	6.5 - 9	9.61	9.53	8.94
Sulphate (mg/L)	500	N/A	N/A	N/A
Aluminum (mg/L)	0.41	0.808	1.24	0.0292
Arsenic (mg/L)	0.05	0.807	1.25	0.271
Cadmium (mg/L)	0.00015	< 0.000003	1E-05	< 0.000003
Cobalt (mg/L)	0.01	0.0079	0.0164	0.000996
Copper (mg/L)	0.022	0.0038	0.0051	0.007
Iron (mg/L)	1.5	3.75	5.92	0.02
Molybdenum (mg/L)	0.073	0.00517	0.0074	0.00712
Lead (mg/L)	0.0076	0.0012	0.0018	0.00018
Antimony (mg/L)	0.03	0.018	0.033	0.0217
Selenium (mg/L)	0.005	0.008	0.019	0.014
Uranium (mg/L)	0.027	0.0113	0.0145	0.013
Zinc (mg/L)	0.11	0.026	0.047	0.021

^a Reference criteria as listed in Appendix VI.

N/A = indicates that the parameter was not measured in solution; mg/L = milligrams per Litre

Comprehensive Analysis of Net Acid Generation Leachates

Detailed results of comprehensive analysis of tailings NAG leachates are presented in Appendix IV-6c. Table 5-10 presents a summary of the results of NAG testing in the context of the reference criteria.

Table 5-10: Summary of the Results of Short-Term Leach Testing of Tailings – Comprehensive Analysis of Net Acid Generation Leachates

	Reference Criteria ^a	Bulk Rougher Tails	Bulk Cleaner Tails	PP#14
рН	6.5 - 9	N/A	N/A	N/A
Sulphate (mg/L)	500	N/A	N/A	N/A
Aluminum (mg/L)	0.41	1.25	0.97	1.31
Arsenic (mg/L)	0.05	0.18	1.84	0.824
Cadmium (mg/L)	0.00015	0.000034	3.6E-05	< 0.000003
Cobalt (mg/L)	0.01	0.0225	0.00997	0.00726
Copper (mg/L)	0.022	0.0183	0.0074	0.0093
Iron (mg/L)	1.5	0.06	0.02	0.05
Molybdenum (mg/L)	0.073	0.0204	0.053	0.0197
Lead (mg/L)	0.0076	0.00015	0.00007	0.0002
Antimony (mg/L)	0.03	0.0277	0.0858	0.0338
Selenium (mg/L)	0.005	0.013	0.048	0.014
Uranium (mg/L)	0.027	0.0011	0.00151	0.0012
Zinc (mg/L)	0.11	< 0.001	< 0.001	0.001

^a Reference criteria as listed in Appendix VI.

N/A = indicates that the parameter was not measured in solution; mg/L = milligrams per Litre

5.5 Tailings Decant Water Quality Analysis

5.5.1 Overview

Water was decanted from select tailings samples and submitted for analysis. The composition of this decant water is likely to most closely resemble that of process water that will be discharged with the tailings samples relative to the other samples tested during the geochemistry baseline studies. It is however acknowledged that refinements in process design and site-specific conditions will influence the actual tailings water composition during operations and at closure. Two methods of decant water quality analysis were performed: decant water quality analysis, and aging tests:

- Water was decanted from each sample of bulk rougher tailings and cleaner flotation tailings, respectively, and submitted for chemical analysis. Analysis of this water provides an indication of the chemical composition of process water in contact with tailings.
- Water decanted from bulk rougher tailings during the construction of the tailings field tests at the NICO Project site was submitted for analysis at ALS Environmental in Edmonton, Alberta.
- Water was decanted from cleaner flotation tailings (PP #14) at SGS Lakefield.

The results of short-term leach test results were compared to the reference criteria for the NICO Project, defined in Appendix VI. The purpose of this evaluation is to qualitatively identify parameters in tailings decant water that may require further evaluation in the context of overall site water quality.

5.5.2 Results

The results of tailings decant water quality analysis are presented in Appendix IV-7. Table 5-11 presents a summary of the results of decant water quality analysis in the context of the reference criteria.

Table 5-11: Summary of the Results of Tailings Decant Water Quality Analysis

	Reference Criteria ^a	Bulk Rougher Tails (FC-6)	PP#14
рН	6.5 - 9	8.2	8.18
Sulphate (mg/L)	500	132	60
Dissolved Metals			
Aluminum (mg/L)	0.41	0.09	0.08
Arsenic (mg/L)	0.05	0.22	0.625
Cadmium (mg/L)	0.00015	0.0004	5.5E-05
Cobalt (mg/L)	0.01	0.0045	0.00141
Copper (mg/L)	0.022	0.0021	0.002
Iron (mg/L)	1.5	0.235	0.11
Molybdenum (mg/L)	0.073	0.0603	0.0534
Lead (mg/L)	0.0076	<0.0001	0.00
Antimony (mg/L)	0.03	0.0142	0.012
Selenium (mg/L)	0.005	0.0569	0.0623
Uranium (mg/L)	0.027	0.0952	0.0363
Zinc (mg/L)	0.11	0.003	<0.001

^a Reference criteria as listed in Appendix VI. mg/L = milligrams per Litre

5.6 Tailings Process Water Analysis

Fortune initiated a pilot plant in 2010 for the purposes of metallurgical testing. Seven pilot plant test runs were completed using 2 ore samples: P3 (a sample having typical to high bismuth concentrations, and low cobalt) and P4 (a sample having typical cobalt concentrations, and low bismuth). The combination of the 2 samples, results in composite P5 which has cobalt and bismuth concentration of typical ore.

The pilot plant was run over a period of 7 days. The various pilot plant test runs are labeled according to the day of the 7 day duration test run. Samples of recycled water from the pilot plant were collected at the end of each pilot plant test run. The mass load in process water samples is considered to be a reasonable representation of the mass that could accumulate during the cycling of water through the mill. Process water will be discharged from the process plant as a component of the tailings slurry.

The results of process water analysis were compared to the reference criteria for the NICO Project, defined in Appendix VI. The purpose of this evaluation is to qualitatively identify parameters in tailings process water that may require further evaluation in the context of overall site water quality.

5.6.1 Results

The results of process water analysis are presented in Appendix IV-8. Table 5-12 presents a summary of the results of process water analysis in the context of the reference criteria.

Arsenic and selenium speciation were completed on process water samples collected on the final day of pilot plan operation. No difference in selenium speciation was noted. The relative proportions of trivalent and pentavalent arsenic were similar in process water; however, process water contained slightly more trivalent arsenic. Geochemical testing of solid samples collected from the pilot plant was ongoing as of the date of preparation of this report.

Table 5-12: Summary of the Results of Tailings Process Water Analysis

	Pilot Plant Shift	PP-01	PP-02	PP-03	PP-03	PP-05	PP-7A
	Day of pilot plant operation	1	2	3	3	5	7
	Time of sample collection	16:00	16:00	11:00	16:00	14:30	13:00
	Reference Criteria ^a						
рН	6.5 - 9	8.72	8.56	8.43	8.57	8.51	8.02
Sulphate (mg/L)	500	95	83	77	100	110	140
Aluminum (mg/L)	0.41	0.06	0.07	0.04	0.07	0.09	0.05
Arsenic (mg/L)	0.05	0.035	0.045	0.033	0.038	0.028	0.025
Cadmium (mg/L)	0.00015	0.000026	0.000056	0.00004	0.000048	0.000054	0.000088
Cobalt (mg/L)	0.01	0.001092	0.00103	0.00235	0.00229	0.00215	0.00185
Copper (mg/L)	0.022	0.0009	0.0019	0.0016	0.0012	0.0006	0.0015
Iron (mg/L)	1.5	0.014	0.011	< 0.002	0.003	0.005	0.008
Molybdenum (mg/L)	0.073	0.03553	0.0357	0.0466	0.046	0.0517	0.07904
Lead (mg/L)	0.0076	0.00053	0.0001	0.00088	0.00005	0.00006	0.00016
Antimony (mg/L)	0.03	0.0093	0.0098	0.0107	0.0084	0.0171	0.0214
Selenium (mg/L)	0.005	0.065	< 0.005	0.019	0.008	< 0.005	< 0.005
Uranium (mg/L)	0.027	0.007833	0.00803	0.0101	0.00928	0.0119	0.017088
Zinc (mg/L)	0.11	< 0.002	< 0.002	0.004	< 0.002	< 0.002	0.007
As ⁺³ (mg/L)							0.018
As ⁺⁵ (mg/L)							0.008
Se ⁴ (mg/L)							< 0.005
Se ⁶ (mg/L)							< 0.005

^a Reference criteria as listed in Appendix VI. mg/L = milligrams per Litre

5.7 Long-Term Leach Testing

5.7.1 Overview

Long-term, laboratory leach tests were conducted using humidity cells, according to the protocol outlined in ASTM D5744-96 (Standard Method for Accelerated Weathering of Solid Materials Using a Modified Humidity Cell) (ASTM 2001). Method ASTM D 5744-96 is a commonly used standard technique for accelerated weathering, which has gained widespread acceptance by regulatory agencies.

Humidity Cell Tests (HCTs) are repetitive leach tests. Samples are placed in a weathering chamber (i.e., a humidity cell) designed to provide control over air, temperature, and moisture content. The samples undergo a weakly cycling of air and water: for 3 days, the cell is inundated with wet air, followed by 3 days of inundation with water-saturated air. On the seventh day, the sample is leached with 1 Litre of distilled water.

Humidity cells provide a conservative approximation of rates of mineral oxidation. Although not directly analogous to actual rates of weathering in site conditions, the results of humidity cell tests can provide meaningful trends for chemical reactions of interest, including sulphide oxidation, metal leaching, and mineral dissolution.

5.7.2 Sample Selection and Test Duration

Humidity cell tests of Mine Rock and ore were initiated in 2004. Twelve samples were submitted for humidity cell testing (Table 5-13). Seven Mine Rock humidity cell tests were conducted for a period of 40 weeks. The remaining 5 samples underwent humidity cell testing for a period of 169 weeks to evaluate longer-term trends in Mine Rock reactivity.

Samples were selected from each of the major rock types present at the NICO Project. Samples were selected to achieve compositional representation of the main rock types based on the results of static testing (i.e., ABA, trace metal analysis, and results of SPLP). Samples were selected for testing prior to the completion of the mine block model. None of the kinetic test samples were collected from zones classified as ore in the mine block model. Although some samples were collected from zones outside the extent of the proposed Open Pit, the results of static testing indicate that the composition of these samples is analogous to the composition of rock that occurs within the outline of the Open Pit. Therefore, the results of these kinetic tests are relevant to the evaluation of the long-term geochemical characteristics of Mine Rock that will be encountered during mining.

Tailings humidity cell tests were initiated in 2009. One sample of each of the main tailings types from site was submitted for humidity cell testing (Table 5-14). Tailings humidity cell tests were discontinued after approximately 20 weeks. Supplemental tailings humidity cell tests were initiated in 2011. The results of the supplemental tailings tests were not available at the date of preparation of this report.

Table 5-13: Mine Rock Samples Submitted for Humidity Cell Testing

Sample ID	Test Duration (Number of Weeks)	Sulphide-sulphur (%)	Neutralization Potential (t CaCO ₃ /1000 t)	NP/AP	Arsenic (ppm)
Feldspar Po	rphyry				•
100859	40	0.02	12	20	21
100913	40	0.04	16	13	65
Rhyolite	•			•	
100863	169	<0.01	11	36	200
100932	169	0.49	0	0	200
100872	40	0.01	12	40	36
Breccia				•	
100925	169	0.01	8.7	28	200
BRS (+ mag	netite)			•	
100890	40	0.03	10.2	11	1700
100977	40	0.04	14	12	1100
BRS (± mag	netite)				
100802	40	<0.01	28	90	41
100907	169	0.27	10	1.2	5100
Sub-Arkosio	Wacke			•	
100881	40	0.02	17	27	38
Siltstone		-		-	
100914	169	<0.01	9.5	31	5

AP = acid potential; BRS = black rock schist; NP = neutralization potential; t = tonne; ppm = parts per million; % = percent; t CaCO₃/1000 t = tonnes calcium carbonate per one thousand tonnes

Table 5-14: Tailings Samples Submitted for Humidity Cell Testing

Sample ID	Test Duration (Number of Weeks)	Sulphide- sulphur (%)	Neutralization Potential (t CaCO₃/1000 t)	NP/AP	Arsenic (ppm)
Bulk Rougher Tails	20	0.02	24.8	46	170
PP#14	22	0.02	22.5	15.9	280

AP = acid potential; NP = neutralization potential; t = tonne; ppm = parts per million; % = percent

5.7.3 Data Analysis

Humidity cell tests are design to evaluate rates of mineral reaction in controlled, laboratory conditions. The objection of the humidity cell testing program was to evaluate the rate of oxidation of sulphide minerals and dissolution of minerals capable of contributing NP, metal concentration trends, and mineral depletion rates over time. This was achieved by tracking concentrations of select, diagnostic parameters over the duration of the test, including:

parameters indicative of the processes of sulphide oxidation (i.e., pH and sulphate);

- parameters indicated of the processes of carbonate mineral dissolution (i.e., alkalinity); and
- metals of interest defined based on the results of solid phase analysis and short-term leach testing, including aluminum, arsenic, cobalt, iron, molybdenum, selenium, and zinc.

Concentrations of the parameters listed above were compared to the reference criteria outlined in Appendix VI to qualitatively identify parameters that require further consideration within the context of the overall site water quality.

The results of humidity cell testing were using to conduct sulphide and NP depletion calculation. Depletion calculations, based on the relative rate of production of sulphate and alkalinity in humidity cell leachate, are a useful method of predicting the time to onset of acid generation (if ever) in laboratory conditions. Sulphide and NP depletion calculations were conducted to evaluate the rate of depletion of acid producing (i.e., sulphide) and acid neutralizing (i.e., carbonate) minerals from the kinetic testing samples. Empirical rates of NP depletion were calculated according to the recommendations in Price (1997), which assumes that the NP depletion is equivalent to the rate of sulphate production and the rate of alkalinity production/acidity consumption. If acid producing minerals are depleted from the humidity cell prior to soluble, neutralizing minerals, it is unlikely that acid generating conditions will be realized in the humidity cell. However, if the rate of dissolution of carbonate minerals exceeds the rate of oxidation of sulphide minerals, acid generation could occur.

5.7.4 Results

The subsequent sections provide a detailed overview of the results of kinetic testing, including an overview of the potential for long-term persistence of acid generation and metal leaching in the Mine Rock and tailings humidity cell tests.

5.7.4.1 Mine Rock Humidity Cell Tests

Detailed results of Mine Rock humidity cell tests are presented in Appendix VII-1. Appendix VIII-1 presents concentration trends of select parameters in each humidity cell test over time.

Feldspar Porphyry

Two samples of feldspar porphyry were submitted for humidity cell testing: 100859 (Appendix VII-1a) and 100913 (Appendix VII-1b). Feldspar porphyry samples submitted for kinetic testing had low sulphide-sulphur concentrations (0.02% and 0.04%, respectively). Kinetic testing of over a period of 40 weeks indicated the following:

- Leachate pH values were relatively stable throughout the duration of the kinetic tests, varying between 6.79 and 7.71 in sample 100859, and 6.93 and 8.8 in sample 100913.
- After the initial flushing of the humidity cell tests, sulphate concentrations decreased from 3.3 mg/L (100859) and 3.7 mg/L (100913) to less than the analytical detection limit of 0.5 mg/L.
- Aluminum concentrations increased over time in sample 100859, exceeding the reference criteria of 0.1 mg/L during the first flush (0.13 mg/L) and week 35 (0.13 mg/L). In sample 100913, aluminum concentrations peaked during the initial flush of the cell (0.33 mg/L), and stabilized after week 5 with longer-term concentrations ranging from 0.06 to 0.12 mg/L.

- Both samples reported arsenic concentrations in excess of the reference criterion of 0.005 mg/L throughout the duration of the 40 week test. Arsenic concentrations ranged from 0.008 to 0.073 mg/L in 100859 and from 0.006 to 0.065 mg/L in 100913, decreasing to stable concentrations after the initial flush of the cells.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations remained below the detection limit of 0.0003 mg/L in both samples, with the exception of a spike at week 10 in sample 100859 (0.168 mg/L).
- Copper concentrations were below the reference guidelines of 0.004 mg/L throughout testing on both samples, with the exception of a spike at week 10 in sample 100859 (0.219 mg/L).
- Iron concentrations remained below the reference criterion of 0.3 mg/L in all but week 15 of testing. In week 15, iron concentrations were 2.83 mg/L in 100859 and 0.53 mg/L in 100913.
- Molybdenum concentrations decreased over time in both samples.
- Lead concentrations did not exceed the analytical detection limit of 0.0002 mg/L.
- Selenium concentrations did not exceed the detection limit of 0.005 mg/L during the 40 week period of kinetic testing.
- Antimony concentrations varied from <0.0004 to 0.0071 mg/L in 100913 and < 0.0004 to 0.0131 mg/L in 100859.</p>
- Lead concentrations ranged from <0.0002 to 0.0011 mg/L in 100913 and 0.0004 to 0.0336 mg/L in 100859.</p>
- Zinc concentrations were less than the reference criteria through the duration of the kinetic tests in both samples.

Concentrations of most parameters were less than the SSWQO in almost all HCT leachate samples collected from feldspar porphyry kinetic tests. Concentrations of iron, cobalt and copper (100859) and arsenic (100913) exceeded the SSWQO in one out of 40 leachates. Uranium exceeded the SSWQO in 2 leachates in 100859. In general, the low-sulphide feldspar porphyry samples submitted for humidity cell testing had a low potential for acid generation and metal leaching.

Rhyolite

Three samples of rhyolite were submitted for humidity cell testing. Samples 100863 and 100872 had low sulphide-sulphur contents (0.01%), whereas the sulphide content of 100932 was 0.5%. Kinetic testing was conducted on sample 100872 over a period of 40 weeks. Samples 100863 and 100932 underwent kinetic testing for a period of 169 weeks to confirm long-term trends in acid generation and metal leaching. The results of kinetic testing of rhyolite samples are presented in Appendix VII-1c through VII-1e.

Kinetic testing of low sulphide samples 100872 and 100863 indicated the following:

- Neutral leachate pH values maintained throughout the duration of testing, varying from 5.01 to 8.59 in 100863 and 6.8 to 8.48 in 100872.
- Sulphate concentrations were low in both samples, varying from <0.5 to 6.3 mg/L in 100863 and <0.5 to 2.1 mg/L in 100872.

- Aluminum concentrations varied from 0.02 to 0.2 mg/L in 100863 and <0.01 to 0.14 mg/L in 100872.
- Arsenic concentrations were similar to or exceeded the SSWQO of 0.05 mg/L in most leachate samples from 100863 (ranging from 0.0399 to 0.543 mg/L). Concentrations ranged from 0.013 to 0.113 mg/L in 100872.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations were generally less than the analytical detection limit of 0.0003 mg/L throughout the 40 week test of 100872. Cobalt concentrations increased over time in sample 100863, ranging from 0.00098 to 0.00674 mg/L.
- Copper concentrations varied from <0.0008 to 0.0037 mg/L in 100863, and <0.0008 to 0.002 mg/L in 100872.
- Iron concentrations varied from <0.1 to 0.40 mg/L in 100863 and <0.02 to 0.62 mg/L in 100872.</p>
- Molybdenum concentrations ranged from 0.0006 to 0.0305 mg/L in 100863 and <0.0003 to 0.0276 mg/L in 100872.
- Lead concentrations were either less than or equal to the analytical detection limit of 0.0002 mg/L.
- Antimony concentrations varied from 0.00051 to 0.0384 mg/L in 100863, and 0.0049 to 0.0742 mg/L in 100872.
- Selenium concentrations did not exceed the analytical detection limits through the duration of testing of 100863 and 100872.
- Zinc concentrations varied from <0.001 to 0.0056 mg/L in 100863 and from <0.001 to 0.004 mg/L in 100872.

With the exception of arsenic, low-sulphide rhyolite samples had a low potential for acid generation and metal leaching. Arsenic concentrations exceeded the SSWQO in many leachates from low-sulphide rhyolite humidity cell tests.

Results of kinetic testing of sample 100963, which contained 0.5% sulphide-sulphur, were as follows:

- Leachate pH varied from 4.36 to 7, stabilizing at weakly acidic values (i.e., less than pH 5) after 20 weeks of testing.
- Sulphate concentrations varied from 1.6 to 29 mg/L over the 169 week duration of testing. Steady state sulphate concentrations were less than 10 mg/L.
- Aluminum concentrations varied from 0.0032 to 0.21 mg/L.
- Arsenic concentrations decreased from an initial concentration of 0.02 mg/L to 0.002 mg/L.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations decreased from 0.348 mg/L to 0.0125 mg/L through the 169 week test duration.

- Copper concentrations varied from 0.0336 to 0.67 mg/L. Concentrations increased to 0.67 mg/L through the first 20 weeks of testing, decreasing to longer-term concentration between 0.1 and 0.3 mg/L.
- Iron concentrations increased over time in leachates from sample 100932, ranging from 0.02 to 0.69 mg/L.
- Molybdenum concentrations were at or below the analytical detection limit for the majority of the 169 week testing period.
- Lead concentrations were either less than or equal to the analytical detection limit of 0.0002 mg/L.
- Antimony ranged from <0.0004 to 0.0009 mg/L.
- Selenium concentrations did not exceed the analytical detection limits during the 169 week test.
- Uranium varied from 0.0004 to 0.0031 mg/L.
- Zinc concentrations varied from 0.002 to 0.016 mg/L. Zinc did not exceed the reference criterion of 0.03 mg/L.

Sample 100963 generated acidity from the onset of testing. Copper and cobalt concentrations exceeded the SSWQO in most leachates collected from 100963. The results of kinetic testing indicate that potentially acid generating rhyolite can leach metals at concentrations of the SSWQO.

Breccia

One sample of breccia, 100925, underwent kinetic testing for a period of 169 weeks (Appendix VII-1f). Select results of kinetic testing of 100925 are presented in Appendix VII-1f:

- Neutral pH values, between 6 and 6.5, were maintained for the majority of the test period. pH values less than 6 were measured in 7 out of 169 weeks of testing.
- Sulphate concentrations decreased from 1.4 mg/L in the first week of testing to <0.5 mg/L.
- Aluminum concentrations exceeded the reference criterion of 0.1 mg/L in week 2, with a concentration of 2.17 mg/L. After week 2, aluminum concentrations varied between <0.01 to 0.06 mg/L.
- Arsenic concentrations exceeded reference criteria throughout testing. Arsenic concentrations decreased from 0.113 mg/L during the initial weeks of testing to longer-term concentration of 0.01 mg/L during later weeks of testing.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations ranged from 0.0013 to 0.00017 mg/L.
- Copper concentrations varied between <0.0008 to 0.0034 mg/L.
- Iron concentrations ranged from 0.01 to 0.19 mg/L
- Molybdenum concentrations varied between 0.00002 to 0.00538 mg/L.
- Lead concentrations ranged from <0.0002 to 0.0008 mg/L.
- Antimony ranged from 0.00024 to 0.0028 mg/L.

- Selenium concentrations did not exceed the analytical detection limits during the 169 week test.
- Uranium ranged from <0.0002 to 0.0007 mg/L.
- Zinc concentrations ranged from 0.0005 mg/L to 0.0023 mg/L.

In general, breccia had a low potential for metal leaching, demonstrated by the results of kinetic testing of sample 100925. Concentrations of arsenic exceeded the SSWQO during the early weeks of testing. Acidic pH values were measured in some HCT leachates collected near the end of the 169 week test duration.

Black Rock Schist + Magnetite

Two samples of BRS + mt were submitted for kinetic testing: 100890 (0.03% sulphide) and 100977 (0.04% sulphide). Detailed results of kinetic testing are reported in Appendix VII-1g and VI-1h, respectively. Appendix VII-1g and Appendix VII-1h present select results over the 40 week duration of kinetic testing.

The results of kinetic testing of BRS + mt were as follows:

- Leachate pH varied from 6.39 to 7.9 in 100890 and 5.73 to 7.83 in 100977.
- Both samples reported low sulphate concentrations over the duration of testing. Sulphate varied from <0.5 to 3.7 mg/L in 100890 and <0.5 to 1.6 mg/L in 100977.
- Aluminum decreased from an initial concentration of 0.17 mg/L to 0.02 mg/L in 100890 and from 0.13 mg/L to 0.01 mg/L in 100977.
- Arsenic concentrations decreased from 0.611 to 0.105 mg/L in 100890, and 0.113 to 0.01 in sample 100977.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations ranged from <0.0003 mg/L to 0.0012 mg/L in 100890. Sample 100977 reported cobalt concentrations less than the detection limit of 0.0003 mg/L through the duration of the 40 week test.
- Copper concentrations were generally less than the analytical detection limit of 0.0008 mg/L in both samples.
- Iron concentrations were generally less than or close to the analytical detection limit of 0.02 mg/L in both samples, with the exception of week 15 of testing of 100890 which reported an iron concentration of 3.67 mg/L.
- Molybdenum concentrations decreased during the initial flushing of the samples from 0.0085 mg/L (100890) and 0.0014 mg/L (100977) to less than the analytical detection limit of 0.0003 mg/L.
- Selenium concentrations did not exceed the detection limit of 0.005 mg/L.
- Lead and uranium concentrations were at or near the analytical detection limits.
- Antimony concentrations ranged from 0.0012 to 0.0484 mg/L in 100890, and 0.001 to 0.0183 mg/L in 100977.

Zinc concentrations rarely exceed the analytical detection limit of 0.001 mg/L during the 40 week period of testing of both samples.

The results of kinetic testing of low-sulphide BRS + mt sample 100977 and 100890 indicate a low potential for acid generation. However, BRS +mt has the potential to leach concentrations of arsenic in excess of the SSWQO, as indicated by the results of kinetic test 100890.

Black Rock Schist ± Magnetite

Two samples of BRS ± mt were submitted for humidity cell testing. Sample 100802, which had a sulphide content of <0.01%, underwent kinetic testing for a period of 40 weeks. Sample 100907 had the second highest Sulphide-sulphur content of the kinetic testing dataset (0.27% sulphide-sulphur). Sample 100907 underwent kinetic testing for a period of 169 weeks. Detailed results of humidity cell testing of sample 100802 and 100907 are presented in Appendix VII-1i and Appendix VII-1j, respectively.

Results of kinetic testing for the low sulphide sample of BRS ± mt (100802) were as follows (Appendix VII-1i):

- Leachate pH values varied from 5.74 to 7.65.
- Sulphate concentrations decreased from 1.1 mg/L to <0.5 mg/L over the 40 week duration of testing.
- Aluminum concentrations ranged from 0.02 to 0.07 mg/L, below the reference criterion of 0.1 mg/L.
- Arsenic concentrations exceeded the analytical detection limit of 0.005 mg/L only once during the 40 week period of testing (0.006 mg/L in week 2).
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations were below the analytical detection limit of 0.0003 mg/L.
- Copper concentrations varied from <0.0008 to 0.0012 mg/L, never exceeding the reference criterion of 0.004 mg/L.
- Iron concentrations were generally less than 0.08 mg/L, with the exception of week 15 of testing (1.54 mg/L).
- Molybdenum concentrations decreased from 0.0006 mg/L to less than the analytical detection limit of 0.0003 mg/L.
- Selenium concentrations did not exceed the analytical detection limits.
- Lead and uranium concentrations were at or near the analytical detection limits.
- Antimony concentrations ranged from 0.0012 to 0.0484 mg/L in 100890, and 0.001 to 0.0183 mg/L in 100977.
- Zinc concentrations varied from <0.001 to 0.002 mg/L, below the reference criterion of 0.03 mg/L.

Appendix VII-1j presents select results of kinetic testing of sample 100907:

Leachate pH decreased from approximately 7.5 at the start of the 169 week test to approximately 6 at the terminus of testing. Values as low as pH 3.88 were measured during the final weeks of testing.

- Sulphate concentrations decreased from sulphate concentrations decreased 2.2 mg/L (100907) to <0.5 mg/L during the 169 week duration of the test. One sample (week 161) reported a sulphate concentration of 3.8 mg/L.</p>
- Aluminum concentrations varied from <0.01 to 0.13 mg/L, exceeding the reference criterion of 0.1 mg/L once during the initial flushing of the cell (week 0).
- Arsenic concentrations ranged from 0.0076 to 0.191 mg/L. The highest arsenic concentrations were measured during the initial flush of the HCT, decreasing to concentrations of approximately 0.007 to 0.03 mg/L for the remainder of the test.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations increased over time from below the detection limit to 0.00045 mg/L.
- Copper concentrations varied between <0.0008 mg/L and 0.112 mg/L, exceeding the reference criterion of 0.004 mg/L in one sample (week 5).</p>
- Iron concentrations were generally near, or less than, the analytical detection limit of 0.02 mg/L. One sample collected in week 15 contained 6.08 mg/L iron.
- Molybdenum ranged from <0.0003 to 0.0015 mg/L.
- Selenium concentrations did not exceed the analytical detection limits.
- Antimony concentrations ranged from 0.00068 to 0.0257 mg/L.
- Lead concentrations ranged from < 0.0002 to 0.0252 mg/L, and uranium from < 0.0002 to 0.0013 mg/L.
- Zinc concentrations were generally less than 0.02 mg/L, with the exception of one sample collected in week 5 (0.109 mg/L).

Black rock schist ± Magnetite with a low sulphide content has a low potential for acid generation and metal leaching, as indicated by the results of kinetic testing of 100802.

Black rock schist ± Magnetite with a sulphide content of approximately 0.3 % has a greater long-term potential for acid generation and metal leaching (i.e., arsenic), indicated by the results of kinetic testing of sample 100907. Discrete, low pH leachate measurements made during the final weeks of testing are likely the result of long-term depletion of buffering capacity from the BRS ± Magnetite.

Sub-Arkosic Wacke

One sample of sub-arkosic wacke was submitted for kinetic testing. Sample 100881 had a sulphide content of 0.02%. Kinetic testing was conducted on this sample for a period of 40 weeks (Appendix VII-1k). Select results of kinetic testing are plotted in Appendix VII-1k.

The results of kinetic testing indicated the following:

- Leachate pH ranged from 6.66 to 8.66, stabilizing at approximately 7 after 10 weeks of testing.
- Sulphate concentrations decreased from approximately 2.1 mg/L at the onset of testing to less than the analytical detection limit of 0.5 mg/L.

- Aluminum concentrations decreased from 0.13 mg/L during the first week of testing to 0.02 mg/L. The reference criterion of 0.1 mg/L was exceeded only during the first week of testing.
- Arsenic concentrations remained above the guideline criteria of 0.005 mg/L during the entire 40 week test, ranging from 0.019 to 0.066 mg/L.
- Bismuth concentrations remained below the detection limit of 0.0003 mg/L.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations remained below the detection limit of 0.0003 mg/L of leachate collected in week 2, which contained 0.004 mg/L cobalt.
- Copper concentrations were below the reference criterion of 0.004 mg/L, with the exception of one sample (week 10, 0.0137 mg/L copper).
- Iron concentrations were less than the reference criterion of 0.3 mg/L, except in week 15, when leachate contained 7.99 mg/L iron.
- Molybdenum concentrations varied from 0.0003 to 0.0035 mg/L, less than the reference criterion of 0.15 mg/L.
- Selenium concentrations did not exceed the analytical detection limit of 0.005 mg/L.
- Antimony concentrations ranged from 0.0004 to 0.003 mg/L.
- Lead and uranium concentrations were at or near the analytical detection limits.
- Zinc concentrations varied between <0.001 and 0.002 mg/L, less than the reference criterion of 0.03 mg/L.</p>

The results of kinetic testing of sample 100881 indicate that low-sulphide wacke has a low potential for acid generation and metal leaching.

Siltstone

One sample of siltstone (100914) underwent kinetic testing over a period of 169 weeks. Sample 100914 contained <0.01% sulphide-sulphur. Detailed results of kinetic testing are presented in Appendix VII-1I, and select results are plotted in Appendix VII-1I.

The results of kinetic testing indicated the following:

- Leachate pH decreased from initial values of approximately 7.5 to 6, with discrete occurrences of acidic pH values (i.e., less than 5.5) measured in leachates collected after 120 weeks of testing.
- Sulphate concentrations were generally less than the analytical detection limit of 0.5 mg/L, ranging to 3.2 mg/L.
- Aluminum concentrations decreased from 0.26 mg/L to 0.01 mg/L, exceeding the reference criterion of 0.1 mg/L only during the initial flushing of the sample.
- Arsenic concentrations decreased over time from 0.011 to 0.0003 mg/L, exceeding the reference criterion of 0.005 mg/L during the first 5 weeks of testing.

- Bismuth concentrations were less than the analytical detection limit for the duration of testing.
- Cadmium concentrations did not exceed the analytical detection limit of 0.0001 mg/L.
- Cobalt concentrations ranged from 0.000009 to 0.000126 mg/L.
- Copper concentrations varied between <0.0008 and 0.0012 mg/L.
- Iron concentrations were varied between 0.02 and 0.06 mg/L for most of the 169 week test duration, with the exception of week 15 (7.73 mg/L iron).
- Molybdenum concentrations decreased from 0.0076 mg/L to <0.00003 mg/L.
- Selenium concentrations were less than the analytical detection limit for the duration of testing.
- Antimony concentrations ranged from 0.0003 to 0.019 mg/L.
- Lead and uranium concentrations were at or near the analytical detection limits.
- Zinc concentrations ranged from <0.0004 to 0.005 mg/L.</p>

In general, low-sulphide siltstone (represented by 100914) has a low potential for acid generation and metal leaching. However, discrete measurements of low pH leachates were made during the final weeks of testing. This is likely the result of the long-term consumption of buffering capacity in the siltstone.

5.7.4.2 Tailings Humidity Cell Tests

Detailed results of humidity cell tests conducted on tailings are presented in Appendix VII-2. Concentration trends of select parameters are presented in Appendix VIII-2.

Bulk Rougher Tailings

One sample of bulk rougher tailings, with a sulphide-sulphur content of 0.02%, underwent kinetic testing for a period of 20 weeks. The results of kinetic testing of bulk rougher tailings are presented in Appendix VII-2a.

Kinetic testing of over a period of 20 weeks indicated the following:

- pH values have been relatively stable since the start of testing, ranging from 7.28 to 7.77.
- Sulphate concentrations in bulk rougher tails leachate decreased from 18 mg/L during the initial flush of the samples to 4 mg/L.
- Aluminum concentrations ranged from 0.02 to 0.05 mg/L.
- Arsenic concentrations varied from 0.097 during the initial flush of the cell to stable concentrations of approximately 0.03 mg/L during later weeks of testing.
- Cadmium concentrations ranged from <0.000003 to 0.000114 mg/L.
- Cobalt concentrations have ranged from 0.0004 to 0.0001 mg/L.
- Copper concentrations were generally less than the analytical detection limit of 0.001 mg/L.
- Iron concentrations ranged from 0.02 to 0.05 mg/L.

W.

GEOCHEMISTRY REPORT - NICO PROJECT

- Molybdenum concentrations varied between decreased from 0.004 to 0.0005 mg/L through the duration of testing.
- Lead concentrations ranged from 0.00003 to 0.00022 mg/L, and antimony from 0.003 to 0.0057 mg/L.
- Uranium concentrations ranged from 0.003 to 0.015 mg/L.
- Selenium concentrations varied between 0.002 and 0.004 mg/L.
- Zinc concentrations were below the detection limit (0.01 mg/L).

The results of kinetic testing of bulk rougher tailings suggest a low long-term acid generation and metal leaching potential in laboratory conditions. As discussed in Section 5.8, field scale tests were initiated using large-scale samples of bulk rougher tailings to determine the metal leaching potential of tailings in site specific conditions.

PP#14

Appendix VII-2c presents the results of kinetic testing of PP#14:

- pH varied between 6.57 and 7.75 through the duration of the test.
- Aluminum concentrations ranged from 0.03 to 0.05 mg/L.
- Arsenic concentrations exceeded reference guidelines throughout the test, decreasing from 0.05 mg/L to a steady state concentration of approximately 0.02 mg/L.
- Cadmium concentrations ranged from <0.000003 to 0.000067 mg/L.
- Cobalt concentrations varied between 0.0006 mg/L to 0.0012 mg/L.
- Copper concentrations were less than the analytical detection limit of 0.001 mg/L for most of the test.
- Iron concentrations decreased from 0.12 mg/L during the initial week of testing to approximately 0.02 mg/L.
- Molybdenum concentrations ranged from 0.0017 mg/L to 0.0036 mg/L.
- Lead concentrations ranged from <0.00002 to 0.00009 mg/L, and antimony from 0.002 to 0.005mg/L.
- Uranium concentrations ranged from 0.001 to 0.005 mg/L.
- Selenium concentrations varied between <0.001 to 0.003 mg/L.
- Zinc concentrations remained below the detection limit (0.01 mg/L).

The results of kinetic testing of PP#14 suggest that the combined bulk rougher and bulk cleaner tailings have a low long-term potential for acid generation and metal leaching in laboratory conditions.

5.7.5 Persistence of Acid Generation and Metal Leaching in Mine Rock and Tailings Humidity Cell Tests

The results of kinetic testing were used to calculate rates of sulphide and NP depletion to predict the lag time to the onset of acid generating conditions (if ever) in laboratory scale samples of Mine Rock and tailings. The calculation use the last 5 weeks of data and assume that all sulphide and NP are available for reaction.

These calculations are estimates, at best, since there will be variable site specific exposure conditions, such as the variation in grain size between the crushed samples of Mine Rock in the laboratory versus the grain size distribution of Mine Rock, and the nature of water to rock / tailings contact).

A summary of results for the kinetic testing of Mine Rock are presented in Table 5-15. Depletion calculations indicate that samples 100932 (rhyolite) and 100907 (BRS±mt) have a long-term potential for acid generation. The onset of acidic conditions occurred at week 20 in 100932. The results of kinetic testing of 100907 trended towards acidic conditions throughout the 169 week duration of testing. Despite the onset of acid generating conditions, both samples reported relatively low concentrations of sulphate through the duration of testing (i.e., below 10 mg/L after the initial flushing of the cells). These concentration trends indicate a relatively slow, steady rate of sulphide oxidation and metal release. Acid generation is the result of the lack of available NP in the samples.

Concentrations of metals that occurred at elevated concentrations in short-term leach tests, including aluminum, iron, copper, and zinc, rarely exceeded the reference criteria in long-term leachates. Trace metal concentrations peaked during the initial flush of the cells (i.e., during the dissolution of soluble mineral phases), stabilizing at long-term, steady state concentrations. In general, arsenic concentrations peaked during the initial flush of the cells, stabilizing at long-term concentrations after several weeks of laboratory testing. Most Mine Rock HCTs reported measureable long-term arsenic concentrations; however, only one HCT reported a long-term arsenic concentration in excess of the SSWQO for arsenic. Sample 100890 (BRS (+ magnetite)) had a solid phase concentration of 1900 parts per million (ppm) arsenic. The long-term arsenic concentration in this HCT was 0.119 mg/L.

A summary of results for the kinetic testing of tailings are presented in Table 5-16. Kinetic testing confirmed that tailings are unlikely to generate acidity in the long-term. Long-term arsenic concentrations in tailings samples were less than steady state concentrations from Mine Rock HCTs and less than the SSWQO. In addition, selenium concentrations in long-term HCT leachates were less than the SSWQO for selenium. Long-term concentrations of all other metals that occurred at elevated concentrations in short-term tailings leachates and decant water, including aluminum, cadmium, copper, iron, and zinc, were less than the reference criteria.

Table 5-15: Summary of Long-Term Acid Generation and Metal Leaching Potential in Mine Rock Humidity Cell Tests

	Sulphide I	Depletion		NP Depletion	on			Metal Leaching	Potential
Sample ID	Sulphide -sulphur (%)	Depletion Rate (mg/kg/week)	Time to Depletion (Years)	NP (t CaCO ₃ / 1000 t)	Depletion Rate (mg/kg/week)	Time to Depletion (Years)	Acid Generation Potential	Solid Phase Arsenic Concentration (ppm)	Steady-State Arsenic (mg/L) ^a
Feldspar Por	ohyry	•	•			•	•		•
100859	0.02	0.16	24	12	6	41	Non-ARD	21	0.008
100913	0.04	0.16	48	16	7	41	Non-ARD - negligible sulphide content	65	0.007
Rhyolite									
100863	<0.01	0.16	8	11	4	45	Non-ARD	200	0.0493
100932	0.49	2.0	45	0	N/A ^b	N/A ^b	ARD - acid generated during kinetic testing	200	0.0022
100872	0.01	0.18	10	12	8	29	Non-ARD	36	0.0135
Breccia		•			-	-			
100925	0.01	0.16	8	9	1	148	Non-ARD	200	0.0094
BRS (+ magn	etite)	•			-	-			
100890	0.03	0.16	34	10	2	84	Non-ARD	1700	0.119
100977	0.04	0.16	46	14	3	90	Non-ARD	1100	0.01
BRS (± magn	etite)								
100802	<0.01	0.16	11	28	2	246	Non-ARD	41	<0.005
100907	0.27	0.18	285	10	0	514	ARD - acid generated during kinetic testing	5100	0.03
Sub-Arkosic \	Wacke	-	-	•	-	-		-	-
100881	0.02	0.16	8	10	1	165	Non-ARD	38	0.038
Siltstone	-	-	-	•	-	-		-	-
100914	<0.01	0.16	24	17	4	85	Non-ARD	5	0.0003

^a Average concentration measured during the last 5 weeks of kinetic testing (i.e., "steady state" concentration)

ARD = acid rock drainage; BRS = black rock schist; NP = neutralization potential; mg/kg/week = milligram per kilogram per week; mg/L = milligram per Litre; t = tonne; ppm = parts per million

^b Initial NP is zero and therefore these calculations cannot be competed.

Table 5-16: Summary of Long-Term Acid Generation and Metal Leaching Potential in Tailings Humidity Cell Tests

	Sulphide-D	epletion		NP Depletion				Metal Leacl	ning Potential
Sample ID	Sulphide- sulphur (%)	Depletion Rate (mg/kg/week)	Time to Depletion (Years)	NP (t CaCO ₃ / 1000 t)	Depletion Rate (mg/kg/week)	Time to Depletion (Years)	Acid Generation Potential	Arsenic (ppm)	Steady-State Arsenic (mg/L) ^a
Bulk Rougher Tailings	0.02	1.4	2	25	9	51	Non-ARD	170	0.03
PP#14	0.02	5.4	0	23	22	19	Non-ARD	280	0.025

^a Average concentration measured during the last 5 weeks of kinetic testing (i.e., "steady state" concentration)

ARD = acid rock drainage; NP = neutralization potential; mg/kg/week = milligram per kilogram per week; mg/L = milligram per Litre; t = tonne; ppm = parts per million

W.

GEOCHEMISTRY REPORT - NICO PROJECT

5.8 Field Scale Testing

5.8.1 Overview

Several large-scale field scale geochemical leach tests were constructed at the NICO site in 2008 and 2009, using samples of ROM rock collected from the bulk sample stockpiles and pilot plant tailings. The field tests, referred to as "field cells" were constructed to evaluate the long-term reaction rates of sub-economic mineralized rock, ore and tailings in ambient site conditions. Field cells consist of a large mass of sample that is contained in a large, enclosed container that remains open to the atmosphere (Appendix II). Ambient precipitation filters through the field cells. Leachates collected from the field cell on a monthly basis represent the interaction/reaction of the input water (i.e., ambient precipitation for field cells) with the minerals of the test material.

The principal objective of the field cell program at the NICO Project is to evaluate the rate of reaction of subeconomic mineralized Mine Rock, ore, and tailings in the sub-arctic conditions that prevail at the NICO Project site. This information will form a key input to operational and post-closure engineering designs at the NICO Project, including mine planning and site design (i.e., tailings and rock disposal), evaluation of mitigation strategies, and consideration of long-term treatment options.

Despite the inherent advantages to field scale testing (i.e., larger sample size and site specific weathering conditions), certain limitations remain with respect to the application of field cell data for prediction of full scale geochemical characteristics of mine facilities, including:

- Due to natural geological variability, samples selected for field cell construction may not represent the compositional variability of the overall materials to be encountered at the site. Five field sub-economic mineralized rock and ore field cells were constructed with samples of feldspar porphyry and BRS in August 2008. The 3 tailings field cells constructed in April 2010 represent the dominant tailings type (bulk rougher tailings).
- Field cell temperatures will closely resemble ambient air temperatures. The internal temperature in mine waste containment facilities constructed at the site could differ from the ambient air temperature.
- Air completely infiltrates the field cells; however, complete infiltration of air may not occur in mine waste containment facilities constructed at the site.
- Due to physical containment of the rock and tailings within the field cells, infiltration contacts a high proportion of material surfaces. It is probable that a significant portion of reaction products will be removed by infiltration through the field cells. The contact between solids and infiltration may not be the same in actual the mine waste containment facilities at the site, owing to lower water to solid ratios.

5.8.2 Sample Selection

Field cells were installed at the NICO Project to evaluate the long-term stability of Mine Rock, ore and tailings in site-specific conditions. Each field cell consists of a single rock type, ore type, or tailings type. Large scale samples of sub-economic mineralized rock and ore used in field cell construction were collected from the ROM stockpiles in August 2008. The method of sample collection is outlined in Appendix II. Five samples weighing approximately 200 kg were collected from 5 stockpiles, respectively (Table 5-16). Stockpiles were targeted for

sampling based on the ore grade assays provided by Fortune geologists, and field observations made during the sample collection.

Large scale samples of the tailings products that could be produced at the NICO site were provided by SGS Lakefield. These samples are the product of metallurgical pilot plant testing that was conducted in 2008. Samples were shipped to the NICO site for field cell construction, which took place in April 2010 (Table 5-16).

Representative sub-samples of each sample used for field cell construction were submitted for geochemical characterization, including static testing, mineralogy, and grain size analysis to quantify the source of reaction products measured in field cell leachate. The results of geochemical analysis of samples used to construct the field cells are reported in Sections 5.1 through 5.5. Table 5-17 summarizes key parameters in samples used to construct the field cells at the NICO Project.

Table 5-17: Overview of Composition of Sub-Economic Mineralized Mine Rock, Ore and Tailings Field Cells

	00110									
Field Cell ID	Description	Date of Installation	Sulphide- sulphur %	NP (t CaCO ₃ /1000 t)	NP/AP	NAG- pH	Arsenic ppm	Bisuth ppm		
Sub-Economic Mineralized Mine Rock										
FC-1	Feldspar Porphyry with some BRS (Oct 5 DS)	24-Aug-08	0.02	12.7	20.5	7.87	1200	320		
FC-2	BRS (Oct 9 NS)	24-Aug-08	0.18	12.8	2.3	7.38	580	4900		
FC-3	BRS (Mar 10 NS)	24-Aug-08	0.29	13.9	1.5	5.51	5400	2600		
FC-4	BRS (Mar 8 NS)	24-Aug-08	0.34	14.5	1.4	3.97	4300	2200		
Ore										
FC-5	BRS / Ore (Aug 28 DS)	24-Aug-08	1.4	11.6	0.3	2.38	33 000	380		
Tailings										
FC-8, 9, and 10	Bulk Rougher Tails	16-Mar-09	0.02	24.8	46	9.49	170	460		

AP = acid potential; BRS = black rock schist; NAG = net acid generation; NP = neutralization potential; t = tonne; ppm = parts per million

5.8.3 Data Analysis

Leachate samples were collected from the field cells several times between the date of construction and September 2010. Samples are collected during the spring/summer months (i.e., May/June through September). The results of analysis of leachates collected, to date, are presented in Appendix IX. Monthly leachates are submitted for analysis including standard parameters (i.e., pH, alkalinity and conductivity), nitrate and nitrite, major ions, and dissolved trace metals.

The composition of field cell leachates was compared to the reference criteria outlined in Appendix VI. This comparison was performed to qualitatively identify parameters that require further consideration within the context of the overall site water quality. It is anticipated that several years of evaluation of the sub-economic mineralized Mine Rock, ore, and tailings field cells will be required to develop meaningful concentration trends, indicative of reaction rates in site conditions. Field cell tests were ongoing at the date of preparation of this report.

5.8.4 Results

Sub-Economic Mineralized Mine Rock – FC-1, FC-2, FC-3, and FC-4

Sub-economic mineralized Mine Rock samples were used to construct 4 field cells. Two of the sub-economic mineralized rock field cells (FC-1 and FC-2) have a low potential for acid generation, according to the results of ABA and NAG testing. FC-3 has an uncertain potential for acid generation. Sample FC-4 is considered likely to generate acidity based on the results of ABA and NAG testing.

Detailed results of field cell leachate analysis conducted during the first year of testing are presented in Appendix IX. Table 5-18 summarizes the results of field cell leachate analysis available at the date of preparation of this report.

Neutral pH values have been measured in sub-economic mineralized mien rock field cell leachates since the date of installation in 2008. Parameters that occurred at concentrations in excess of SSWQO in field cell leachates include arsenic, selenium, molybdenum, antimony, and uranium. Stable concentration trends have not yet been achieved in field cell leachates; monitoring of field cell leachate concentration trends is ongoing to determine the rate of mineral reaction in sub-economic mineralized Mine Rock in site conditions.

Nitrate and nitrite concentrations were measured in sub-economic mineralized rock field cell leachates, as summarized in Table 5-17. Nitrate is a primary component of the blasting agent ANFO (NH₄NO₃). ANFO residuals often remain in ROM rock after blasting, which is the likely source of nitrate and nitrite concentrations in field cell leachates. Ongoing field cell monitoring will evaluate the rate of decomposition of nitrogen species over time in site specific conditions.

Ore - FC-5

One field cell was constructed with rock collected from a bulk sample stockpile that contained ore (as defined by Fortune geologists at the time of sample collection). The results of ABA and NAG testing indicated a likely potential for acid generation. The solid phase arsenic concentration of this sample was the greatest of all field cell samples at 33 000 ppm.

Appendix IX presents detailed results of field cell leachate analysis, as summarized in Table 5-17.

Neutral leachate pH conditions have been maintained in leachate from FC-5 since the date of installation of the field cell. Arsenic concentrations have been consistently greater than 1 mg/L in FC-5 field cell leachate, exceeding the SSWQO of 0.05 mg/L. In addition to arsenic, parameters that occurred at concentrations in excess of SSWQO in field cell leachates include sulphate, cadmium, cobalt, molybdenum, lead, selenium, and uranium. Stable concentration trends have not yet been achieved in field cell leachates; monitoring of FC-5 is ongoing to determine the rate of reaction of ore in site specific conditions.

Concentrations of nitrate and nitrite were measured in ore field cell leachates collected during the first year of monitoring (Table 5-18). Field cell monitoring will evaluate the decomposition of nitrogen species in site specific conditions.

Table 5-18: Summary of Results of Field Cell Leachate Analysis (September 2008 to September 2010) – Sub-Economic Mineralized Mine Rock (FC-1 through FC-4) and Ore (FC-5)

•	Description	Sub-economic M	ineralized	Rock (ROM Stock	cpiles)					Ore (ROM Stock	piles)
	Field Cell ID	FC-1		FC-2		FC-3		FC-4		FC-5	
	n ^a	7		5		5		7	7		
	Reference Criteria ^b	Results	n (ex) ^c								
pH	6.5 - 9	7.3- 8	0	7.8- 8	0	7.1- 7.9	0	7.4- 7.9	0	7.5- 7.8	0
Sulphate (mg/L)	500	31- 197	0	29- 284	0	63- 284	0	213- 363	0	140- 960	1
Aluminum (mg/L)	0.41	<0.010- 0.039	0	<0.01- 0.01	0	<0.010- 0.088	0	<0.010	0	<0.010	0
Arsenic (mg/L)	0.05	0.08- 0.24	7	0.003- 0.01	0	0.01- 0.04	0	0.005- 0.05	1	1.4- 2.3	7
Cadmium (mg/L)	0.00015	<0.0001- 0.0002	1	<0.00010	0	<0.0001- 0.0002	1	<0.0001- 0.0001	0	<0.0001- 0.0003	2
Cobalt (mg/L)	0.01	0.0013- 0.0062	0	0.0002- 0.0013	0	0.0024- 0.0038	0	0.0008- 0.0058	0	0.0010- 0.0105	1
Copper (mg/L)	0.022	0.0019- 0.0039	0	0.0018- 0.0038	0	0.0030- 0.0049	0	0.0018- 0.0038	0	0.0016- 0.0053	0
Iron (mg/L)	1.5	<0.005- 0.019	0	<0.005- 0.019	0	<0.010- 0.118	0	<0.005- 0.021	0	<0.005- <0.010	0
Molybdenum (mg/L)	0.073	0.02- 0.12	1	0.010- 0.030	0	0.01- 0.05	0	0.006- 0.012	0	0.02- 0.14	1
Lead (mg/L)	0.0076	<0.00010	0	<0.0001	0	<0.00010	0	<0.00010	0	<0.00010	0
Antimony (mg/L)	0.03	0.023- 0.064	4	0.02- 0.023	0	0.021- 0.058	4	0.015- 0.032	3	0.034- 0.090	7
Selenium (mg/L)	0.005	0.003- 0.03	5	0.035- 0.099	3	0.012- 0.04	5	0.028- 0.09	7	0.003- 0.04	6
Uranium (mg/L)	0.027	0.04- 0.16	7	0.014- 0.042	1	0.001- 0.059	2	0.002- 0.030	1	0.01- 0.33	6
Zinc (mg/L)	0.11	<0.001- 0.0097	0	0.0011- 0.006	0	0.0035- 0.0035	0	0.0012- 0.006	0	0.0011- 0.026	0

^a Total number of samples.

ROM = run-of-mine; mg/L = milligrams per Litre

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria.

Tailings – FC-8, FC-9, and FC-10

Three field cells were constructed using a sample of bulk rougher tailings from the 2008 pilot plant. The results of ABA and NAG testing, and laboratory scale humidity cell testing indicate that the bulk rougher tailings have a low potential for acid generation. Appendix IX presents detailed results of tailings field cell leachate analysis, as summarized in Table 5-19.

Neutral leachate pH conditions have been maintained in tailings field cell leachates. Parameters that occur at concentration in excess of the SSWQO in tailings field cell leachates include: arsenic, selenium, and uranium. Iron, aluminum, lead, cobalt, and copper exceeded the SSWQO in one sample collected from FC-8 immediately after field cell set-up. Stable concentration trends have not yet been achieved in the tailings field cell leachates; monitoring of the tailings field cells is ongoing to determine the rate of reaction of ore in site specific conditions.

Table 5-19: Summary of Results of Field Cell Leachate Analysis (April to September 2010) – Bulk Rougher Tailings (FC-8, FC-9, and FC-10)

	Description	Bulk Rougher Tailin	ıgs				
	Field Cell ID	FC-8		FC-9		FC-10	
	n ^a	4		3		3	
	Reference Criteria ^b	Results	n (ex) ^c	Results	n (ex) ^c	Results	n (ex) ^c
рН	6.5 - 9	7.8- 8.0	0	7.7- 7.9	0	7.8- 8.0	0
Sulphate (mg/L)	500	27- 206	0	10- 213	0	59- 192	0
Aluminum (mg/L)	0.41	0.01- 7.4	1	<0.01- 0.036	0	<0.01- 0.013	0
Arsenic (mg/L)	0.05	0.07- 0.41	4	0.08- 0.13	3	0.14- 0.20	3
Cadmium (mg/L)	0.00015	<0.000- 0.0001	0	<0.00010	0	<0.0001- 0.00011	0
Cobalt (mg/L)	0.01	0.0004- 0.05	1	0.0006- 0.0018	0	0.0002- 0.0015	0
Copper (mg/L)	0.022	0.0008- 0.02	1	0.0009- 0.0019	0	0.0008- 0.0027	0
Iron (mg/L)	1.5	<0.010- 31	1	<0.010- 0.147	0	<0.010- 0.048	0
Molybdenum (mg/L)	0.073	0.002- 0.038	0	0.001- 0.040	0	0.004- 0.034	0
Lead (mg/L)	0.0076	<0.0001- 0.0125	1	<0.00010	0	<0.0001- 0.0002	0
Antimony (mg/L)	0.03	0.013- 0.028	0	0.007- 0.018	0	0.016- 0.023	0
Selenium (mg/L)	0.005	0.004- 0.04	3	0.002- 0.04	2	0.011- 0.04	3
Uranium (mg/L)	0.027	0.067- 0.16	4	0.021- 0.21	2	0.094- 0.25	3
Zinc (mg/L)	0.11	0.0016- 0.204	1	0.0017- 0.004	0	0.0025- 0.0076	0

^a Total number of samples.

^b Reference criteria as listed in Appendix VI.

^c Number of samples with leachate concentrations in excess of the reference criteria. mg/L = milligrams per Litre

6.0 GEOCHEMICAL FACTORS INFLUENCING MINE WASTE MANAGEMENT

Based on the results of the geochemical characterization program, key factors that could influence the overall Mine Rock and tailings management, mitigation, and treatment requirements at the NICO Project include:

- distribution of acid generating materials; and
- distribution of solid phase arsenic and selenium, and associated leaching potential.

The distribution of acid generating minerals (i.e., sulphide minerals) and metals in ore and waste lithologies at the NICO Project is a function of the degree of mineralization of the host rocks (associated with metamorphic alteration) and proximity to the ore zone. The following sections provide an overview of the causes of mineral emplacement and resulting mineral distribution within the NICO ore body, followed by an overview of the distribution of acid generating and metal leaching mine wastes. Appendix 3.I of Section 3 of the DAR presents the preliminary Mine Rock management plan for the NICO Project, including a detailed discussion of how the criteria for Mine Rock management were developed. This section provides a high level overview of factors that could influence mine waste management at the NICO Project.

6.1 Mineral Distribution and Emplacement

Ore grade mineralization at the NICO Project is the product of metamorphic alteration (i.e., metasomatism) of existing host rocks. The main rock types that will be encountered during mining include BRS and wacke, rhyolite and feldspar porphyry. Metasomatism of these rocks resulted in the formation of 3 ore zones, referred to as the upper, middle, and lower ore zones, and small lenses of mineralization within the rhyolite and feldspar porphyry. The degree of metamorphic alteration defines the extent of ore-grade and non-ore grade mineralization, and associated geochemical characteristics of site lithologies. Native gold and bismuth and bismuth tellurides are restricted zones of greater metamorphic alteration. The extent of cobaltite mineralization, to some extent, is also restricted. The occurrence of arsenopyrite is widespread, with elevated concentrations noted in both zones of higher grade mineralization and zones of weaker (i.e., non-ore grade) mineralization.

Solids content of the rock is a function of the mineralogy. Analyses of solids content show several metals occurred at concentrations in excess of the average crustal abundances, including antimony, arsenic, bismuth, cobalt, copper, tin and uranium. Elevated concentrations of arsenic, cobalt, and bismuth, in particular, are reasonable in consideration of the alteration and mineralization associated with metamorphic alteration. Statistical analyses indicated that in sub-economic mineralized rock and ore, arsenic and cobalt correlate positively with sulphide-sulphur. Cobaltite [(Co,Fe)AsS] and cobalt-bearing arsenopyrite [FeAsS] are ubiquitous in mineralized zones in the NICO ore deposit.

Although selenium minerals were not identified during exploration stage mineralogical analysis (Petrologic Inc. 1999), follow-up analysis of exploration drill core confirmed the solid phase correlation of selenium and bismuth, indicating that these minerals likely occur in the same mineral phase in mineralized rock. Selenium and bismuth correlate poorly with solid phase concentrations of sulphur, which is consistent with descriptions of the mineralogical occurrence of bismuth in the ore zone. According to Petrologic Inc. (1999), bismuth mineralization occurs as native bismuth and bismuth telluride [BiTe₃], with less common bismuthinite [Bi₂S₃] and bismuth sulphosalts. Furthermore, a literature review indicated that bismuth selenide [Bi₂Se₃] is commonly associated

W.

GEOCHEMISTRY REPORT - NICO PROJECT

with bismuth ore deposits. The results of solid phase analysis indicate that selenium mineralization is likely associated with the same zones of mineralization in the ore deposit as native bismuth and bismuth telluride.

6.2 Distribution of Acid Generating Materials

The results of ABA indicated that Mine Rock, sub-economic mineralized rock and low grade ore contains relatively little NP; therefore, the acid generation potential of Mine Rock, sub-economic mineralized rock, and ore is largely a function of the sulphide-content of the material. The evaluation of the results of the geochemical characterization program indicated that most Mine Rock can be classified as non potentially acid generating (non-PAG). Sulphide minerals represent the main source of AP in a sample. The range of sulphur concentrations in Mine Rock samples was <0.01 to 1.6% (median 0.05%). Although Mine Rock has a low buffering capacity (i.e., low carbonate mineral concentrations), the sulphide concentrations in most samples were so low that that the samples were not capable of generating acidic runoff or seepage. Mine Rock samples that contain elevated sulphur concentrations have a higher potential for acid generation. Sub-economic mineralized Mine Rock had a higher potential for acid generation owing greater higher sulphur concentrations (0.06 and 0.63%, median 0.38%).

Sulphide minerals are the primary reactive source of acidity, metals, and sulfate in Mine Rock samples from the NICO Project. Measurement of the sulphur content is an indicator of the potential reactivity of a sample. Sulphide sulphur can be obtained quickly and reliably on-site, which is a key requirement for an operational Mine Rock management tool. On-site measurement of sulphur content by Leco furnace is one of the most common methods used for operational classification of Mine Rock (MEND 2009). Using the sulphide-sulphur content of samples in the geochemical characterization dataset, the occurrence of acid generating waste material is as follows:

- Overall, only 10% of the samples of exploration drill core and outcrop collected from the NICO Project had a potential for acid generation based on sulphide-sulphur content;
 - 13% of the rhyolite Mine Rock samples submitted for geochemical characterization contained greater than 0.3% sulphide-sulphur;
 - 15% of the sub arkosic wacke, BRS (+magnetite), BRS (± magnetite) breccia and faulted Mine Rock samples contained greater than 0.3% sulphide-sulphur; and
 - None of the feldspar porphyry samples submitted for ABA contained greater than 0.3% sulphidesulphur.
- Sub-economic mineralized rock samples collected from the ROM stockpiles had greater accumulations of sulphide minerals, and therefore has a greater potential to generate acidity, 45% of the samples of subeconomic mineralized Mine Rock submitted for geochemical testing contained greater than 0.3% sulphide sulphur.
- 76% of the ore samples collected from the ROM stockpiles contained greater than 0.3% sulphide-sulphur.

The results of long-term, laboratory humidity cell tests confirmed that samples of Mine Rock with low sulphide-sulphur content have a low potential for acid generation. The results of kinetic tests provide rates for acid generation, acid neutralization, and metal release in laboratory conditions (i.e., enhanced leaching conditions). Of the 12 samples of Mine Rock submitted for kinetic testing, only 2 samples generated acidic leachate pH

values in the duration of the tests. Both samples had sulphide-sulphur concentrations approximately equal to or greater than 0.3%.

The potential for acid generation of sub-economic Mine Rock samples is currently being evaluated using on-site field tests. Field tests were initiated in 2008; although all samples are considered potentially acid generating based on NP:AP ratio and sulphide sulphur content, acidic pH values have not yet been measured in the field cell leachates.

The evaluation of the results of geochemical characterization indicates that rock that contains less than 0.3% sulphide-sulphur has a low long-term potential for acid generation. A mine block model was created to evaluate the concentrations of key metals that could be used for the purpose of Mine Rock classification, including sulphide-sulphur, arsenic and bismuth. Table 6-1 presents preliminary estimates of the tonnage of PAG rock that could be encountered during each year of mining that contains less than 0.3% sulphide-sulphur according to the mine block model.

Table 6-1: Preliminary Mine Rock Production Summary

	Estimated Tonnaç	ge ^a		Total Mine Rock Tonnages ^b		
Sulphide Sulphur Content	<0.3%		<0.3%		Sub-economic	
Bismuth Content		<50 ppm	<50 ppm	Mine Rock	Mineralized Mine Rock	
Arsenic Content			<1,000 ppm			
Year 1	1 275 412	419 900	197 296	1 019 513	58 877	
Year 2	4 749 594	2 730 550	1 210 431	4 898 390	110 416	
Year 3	7 696 083	3 165 486	1 020 565	7 751 431	285 586	
Year 4	11 973 095	5 155 147	2 579 658	11 193 692	676 627	
Year 5	10 322 302	6 647 836	3 668 388	10 048 962	254 404	
Year 6	7 299 347	3 878 730	1 822 596	6 274 724	312 153	
Year 7	6 379 712	3 819 390	1 924 929	6 142 827	282 159	
Year 8	6 503 804	3 849 622	1 975 131	6 334 860	260 530	
Year 9	5 999 813	3 907 045	2 278 094	5 917 521	323 976	
Year 10	5 034 389	2 914 227	1 963 420	4 748 152	267 470	
Year 11	5 364 186	2 943 865	1 883 961	4 894 501	377 169	
Year 12	5 843 061	2 895 516	1 699 550	5 664 242	540 102	
Year 13	4 051 726	2 124 413	767 512	5 090 228	337 110	
Year 14	3 420 996	2 050 381	378 569	5 312 509	410 499	
Year 15	3 144 801	1 039 899	243 295	3 991 675	650 796	
Year 16	1 167 657	1 167 657	133 077	1 508 183	462 112	
Year 17	1 926 132	1 192 298	398 913	1 760 747	253 621	
Year 18	1 817 368	1 064 553	342 683	1 899 878	327 120	
Year 19	1 883 685	1 278 488	495 467	2 238 879	242 060	
Year 20	122 320	92 867	6 838	109 144	36 696	

^a Tonnages provided by P&E Mining Consultants on 2 July 2010. The estimate tonnage of rock represents the total tonnage of rock according to the defined geochemical characteristics.

^b Total tonnage of Mine Rock produced each year, based on the production schedule provided by P&E Mining Consultants on 9 July 2010. ppm = parts per million; < = less than; % = percent

Appendix 3.I of Section 3 of the DAR further discusses the preliminary Mine Rock management plan for the NICO Project, including a detailed discussion of the handling of potentially acid generating Mine Rock.

The current mine plan indicates that 31 Mt of tailings will be generated during the life of mine. In general, tailings from the project are predicted to have a low acid generation potential: the NP/AP ratio of bulk rougher tailings was 46; bulk cleaner tailings had an NP/AP ratio of 3.

6.3 Metal Leaching Potential

Laboratory and field scale leach tests were conducted to evaluate the metal leaching potential of Mine Rock, sub-economic mineralized rock, ore and tailings. As discussed in Sections 5.4, 5.5, 5.6 and 5.7, several metals leached at concentrations in excess of the reference criteria for the project in laboratory and field test leachates.

Arsenic and selenium are considered the key metals that may require further evaluation with respect to site water quality. Laboratory leach tests indicate that arsenic and selenium are capable of leaching from mine waste materials in both neutral pH and acidic pH conditions. The following sections provide an overview of the solid phase distribution and leachability of arsenic and selenium in Mine Rock, sub-economic mineralized rock, ore, and tailings at the NICO Project.

6.3.1 Arsenic Distribution

Statistical analysis indicated that arsenic is associated with sulphide and cobalt in sub-economic mineralized rock and ore. Geological descriptions of the deposit indicate that arsenopyrite and cobaltite formed in association with the alteration sequence that formed the NICO ore deposit. However, the correlation between arsenic and sulphide is not as well defined in Mine Rock that occurs outside of the zones of mineralization.

As presented in Figure 6-1, a reasonable correlation exists between solid phase concentrations of arsenic and arsenic concentrations in geochemical test leachates. Short-term leachate concentrations of arsenic correlate strongly with solid phase arsenic concentrations, but not necessarily with solid phase sulphide concentrations. This result indicates that arsenic leachability is not necessarily correlated with the acid generation potential of waste materials from the project. Humidity cell tests confirm that samples with a low acid generation potential are capable of leaching elevated concentrations of arsenic in the long-term. Arsenic leaching potential does not correlate with bismuth mineralization (Figure 6-1). Mine Rock from outside the ore zone is capable of leaching elevated concentrations of arsenic, as well as sub-economic mineralized rock, ore and tailings.

6.3.2 Selenium Distribution

Solid phase selenium concentrations correlate with solid phase bismuth concentrations, indicating that selenium is associated with bismuth mineralization in the ore deposit. Short-term leachate concentrations of selenium correlate with both solid phase bismuth and selenium concentrations (Figure 6-2). Selenium was not detected in short-term leachates or HCT leachates from Mine Rock (i.e., drill core) outside of the mineralized zones. Short-term leachates, decant water and humidity cell test leachates reported concentrations of selenium in excess of the reference criteria. The results of geochemical characterization indicate that selenium leaching potential may be associated with tailings, ore and sub-economic mineralized rock contact waters.

Figure 6-1

Metal Leaching Potential - Short-Term Leach Test Results versus Solid Phase Concentrations (Arsenic)

NICO Project, Fortune Minerals Limited

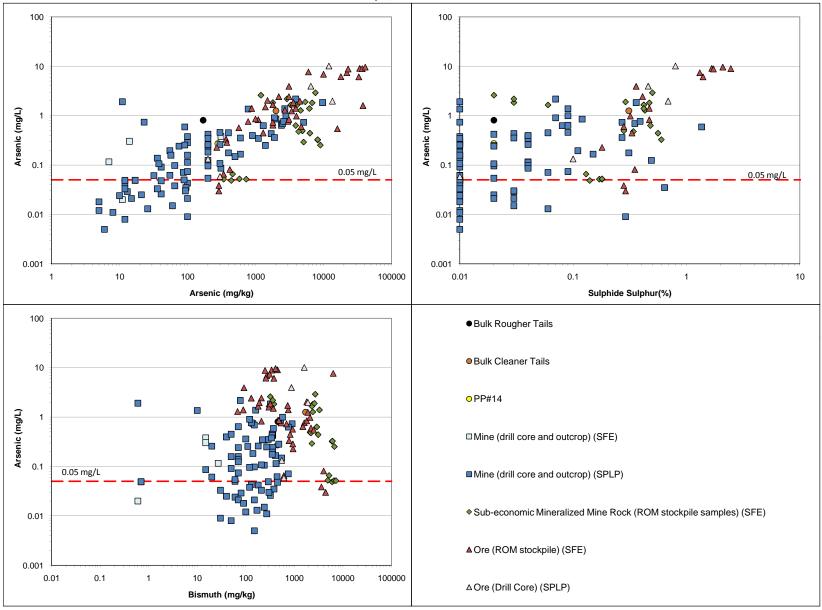
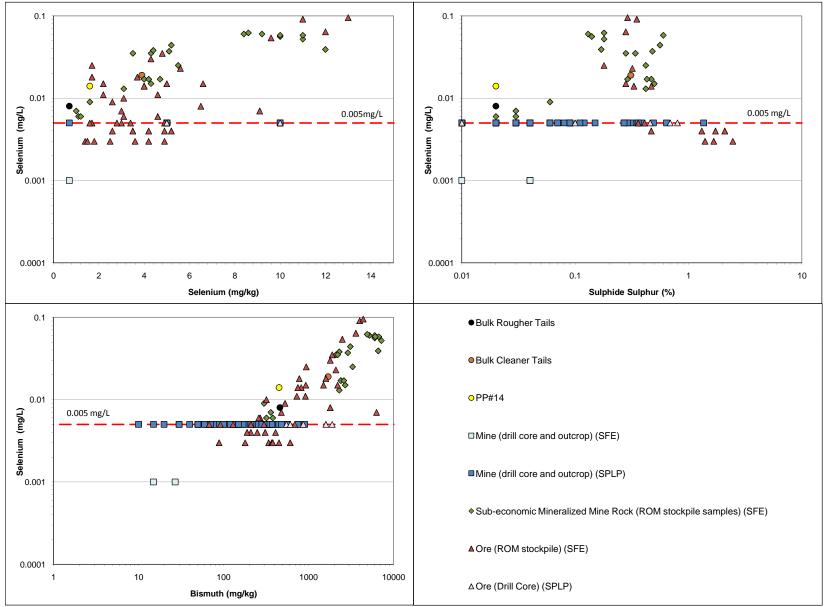



Figure 6-2

Metal Leaching Potential - Short-Term Leach Test Results versus Solid Phase Concentrations (Selenium)

NICO Project, Fortune Minerals Limited

6.3.3 Environmental Behaviour of Arsenic and Selenium

The mobility of arsenic and selenium is strongly dependant on the pH and redox condition of a system. Arsenic mobility is greatest in weakly oxidized to reduced, neutral pH conditions, where the dominant arsenic species is arsenite (As(III)). Selenium mobility is enhanced in oxidized conditions, existing as selenate (Se (VI)). Mobility of these metals is further controlled by the mineral phases in which they occur in mine waste.

The correlation between solid phase and leachate concentrations indicates that selenium and arsenic are soluble in leachates from small-scale laboratory leach tests. Although the results of laboratory leach tests do not directly translate to the expected environmental behaviour of Mine Rock (because of grain size differences, differences in water:rock contact in site conditions, and ambient climatic conditions), the results of laboratory leach tests are a reasonable method of estimating metal leachability in the absence of site specific data. Field cell tests constructed using samples of mineralized, ROM rock also show elevated concentrations of arsenic and selenium leach from ROM in ambient site conditions.

The arsenic and selenium leaching potential of Mine Rock, sub-economic mineralized rock, ore and tailings has been considered with respect to Mine Rock management for the Project. Site management plans, engineering designs and water treatment have accounted for the metal leaching potential of mine wastes.

7.0 SUMMARY OF KEY RESULTS OF GEOCHEMICAL CHARACTERIZATION

This section discusses the key results of the geochemical characterization with respect to the anticipated short and long-term environmental behaviour of Mine Rock, sub-economic mineralized rock, ore, and tailings at the NICO Project.

7.1 Mine Rock, Sub-Economic Mineralized Mine Rock and Ore

- Several trace metals occurred at elevated concentrations in the solid phase, including metals associated with metamorphic alteration and mineralization such as arsenic, bismuth, cobalt, and copper. Arsenic and cobalt are hosted by arsenopyrite and cobaltite, respectively. Bismuth occurs as native bismuth and bismuthinite. Copper is hosted by chalcopyrite. Geological description of the ore body and the results of mineralogical analysis indicate the presence of pyrite and pyrrhotite in site lithologies.
 - Statistical evaluation of the results of solid phase analysis indicated that arsenic and cobalt are strongly associated with sulphide minerals. Solid phase concentrations of selenium correlate strongly with bismuth.
- The results of ABA testing, NAG testing, and kinetic testing all indicate that samples of Mine Rock, sub-economic mineralized rock and ore containing greater than 0.3% sulphide-sulphur have a potential for acid generation:
 - The amount of rock that this represents varies by lithology and degree of mineralization. Overall, approximately 10% of the Mine Rock samples in the geochemical dataset contained greater than 0.3% sulphide-sulphur.
 - Approximately 45% of sub-economic mineralized rock samples contained greater than 0.3% sulphidesulphur.

- Approximately 76% of the ore samples contained greater than 0.3% sulphide-sulphur.
- The results of laboratory scale humidity cell tests and short-term leach tests indicate that metal leaching could occur from Mine Rock, sub-economic mineralized rock and ore in both neutral and acidic conditions:
 - Metals including aluminum, arsenic, cobalt, copper, cadmium, iron, antimony, lead, selenium, uranium, and zinc leached at concentrations in excess of the reference criteria in neutral pH, short-term leachates from Mine Rock, sub-economic mineralized rock and ore.
 - NAG test leachate analysis indicated that several parameters could mobilize from Mine Rock, subeconomic mineralized rock and ore should oxidizing, acid generating conditions be achieved, including sulphate, aluminum, arsenic, cadmium, cobalt, copper, iron, molybdenum, antimony, selenium, uranium, and zinc.
- Field cell tests were constructed using samples of ROM sub-economic mineralized Mine Rock and ROM ore. Leachates collected during the first year of monitoring reported concentrations of arsenic and selenium in excess of the reference criteria, indicating that arsenic and selenium are capable of leaching from sub-economic mineralized rock and ore in site conditions. Field cell monitoring is ongoing.
- Field cell leachates also contained elevated concentrations of nitrate and nitrite, the products of dissolution of blasting residuals present in the ROM rock.

7.2 Tailings

- Solid phase analysis of tailings samples indicated that concentrations of several metals occur at concentrations in excess of average crustal abundances. Elevated concentrations of arsenic, bismuth, antimony and selenium were measured in all tailings samples.
- Bulk rougher, bulk cleaner and blended tailings samples consist primarily of silicate minerals (mainly biotite and actinolite). Magnetite was detected in minor quantities in all bulk tailings samples. Mineralogical analysis of tailings identified no sulphide minerals: sulphur analysis indicated that the sulphide-sulphur content ranged from 0.02 to 0.31 % in tailings samples.
- Tailings samples contained relatively low NP in the form of calcite, which occurred in minor concentrations in all samples. The results of ABA, NAG testing, and kinetic testing indicate that tailings are unlikely to generate acidity.
- The solid phase composition of tailings is consistent with the results of trace metal analysis of samples of ore collected from ROM stockpiles. Although no sulphide minerals were detected in tailings samples, mineralogical analysis identified the measurable concentrations of the mineral claudetite, a water-soluble arsenic oxide mineral.
- The results of short term leach tests, laboratory scale humidity cell tests and field scale testing indicate that several metals may require further evaluation within the context of mine waste management; however, the primary metals with potential for leaching are arsenic and selenium.
- Aluminum, arsenic, cobalt, iron, antimony and selenium concentrations were elevated in weakly short-term leach tests. Aluminum, arsenic, cobalt, and antimony were mobile in oxidizing short-term leach tests.

Long-term humidity cell tests indicate that after the initial flushing of the samples, the primary metals leaching over a longer-term are arsenic and selenium.

Decant water and pilot plant process water from the tailings samples was analyzed in order to provide an indication of the possible composition of water to be discharged to the tailings facility. Dissolved concentrations of arsenic, selenium and uranium were elevated in decant water, and molybdenum and selenium in process water. Nitrate and nitrite were also detected in decant water from the bulk cleaner tailings and from NICO field test blend.

8.0 CONCLUSIONS

The key conclusions of the geochemistry baseline program described in this document are as follows:

Acid Generation Potential

- Based on the samples tested in the geochemical dataset, a relatively small amount of Mine Rock has a potential to generate acidity (10%), a Mine Rock management plan and operational monitoring program has been prepared to minimize the potential for acid generation from the Mine Rock used for the purpose of construction.
- Sub-economic mineralized rock (i.e., sub-economic ore) has a greater potential for acid generation (45% of the samples tested contained greater than 0.3% sulphide-sulphur). Appropriate storage and handling of this material will be required to prevent release of potential acidity that could be produced in the long-term.
- Ore has some potential for acid generation; however, ore will be stored in temporary stockpiles prior to processing. No ore will remain on-site in the long-term. Temporary stockpile areas should be monitored for short-term acid generation.
- The results of static and kinetic testing indicate that tailings samples are unlikely to generate acidity.

Metal Leaching

- The results of geochemical characterization indicate that several metals will require assessment within the context of the tailings and Mine Rock management plan for the NICO Project. Key metals that will require assessment include arsenic and selenium.
 - Based on the results of solid phase analysis, the likely source of elevated arsenic in laboratory leachates is the oxidation of sulphide minerals.
 - Selenium most likely leaches from bismuth minerals associated with ore mineralization.
- Leach testing of all samples show that there is potential for the release of many metals at concentration in excess of the SSWQO.

In addition to metal leaching, possible release of TSS, major ions (such as nitrate and ammonia, chloride, and overall TDS) due to mine development (i.e. mine dewatering, explosives use) will also require evaluation within the context of site discharge. Appropriate mitigation strategies will be required.

Mine planning, project design, and mitigation are required to address the short and long term geochemical stability of Mine Rock, sub-economic mineralized rock ore and tailings at the NICO Project. Mine Rock and

W.

GEOCHEMISTRY REPORT - NICO PROJECT

tailings management strategies will require iterative review and refinement during ongoing operations as operational monitoring data becomes available.

9.0 REFERENCES

- AMIRA, 2002. AMIRA International Ltd. ARD Test handbook prediction and kinetic control of acid mine drainage. Environmental Geochemistry International Pty. Ltd. and Ian Wark Institute, University of South Australia.
- ASTM, 2001a. E1915-01 Test methods for analysis of metal bearing ores and related materials by combustion infrared absorption spectrometry. Volume 03.06.
- Davis. 1986. Statistics and Data Analysis in Geology. Second Edition.
- Fortune (Fortune Minerals Limited). 2009. Update on Processing Changes at the NICO Site for the Fortune Minerals Limited Cobalt-Gold-Bismuth-Copper Project. Submitted to the Mackenzie Valley Environmental Impact Review Board. 2 September 2009.
- Goad, R., A. Mumin, N. Duke, K. Neale, D. Mulligan, and W. Camier. 2000. The NICO and Sue Dianne Proterozoic, Iron-Oxide hosted, Polymetallic Deposits, Northwest Territories: Application of the Olympic Dam Model in Exploration. Exploration and Mining Geology: Volume 9, No. 2: 123 140.
- INAP (The International Network for Acid Prevention). 2009. Global Acid Rock Drainage Guide (GARD Guide).http://www.gardguide.com/
- MEND (Mine Environment Neutral Drainage). 2005. List of potential information requirements in metal leaching/acid rock drainage assessment and mitigation work. MEND Report 5.10E.
- MEND. 2009. Prediction manual for drainage chemistry from sulphidic geologic materials. MEND Report 1.20.1.
- Petrologic Inc. 1999. Mineralogy Report Pl990304. Issued to SNC Lavalin. 8 June 1999.
- Price, W.A. 1997. Draft Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Reclamation Section, Energy and Minerals Division, British Columbia Ministry of Employment and Investment, April 1997

APPENDIX I

Sample Descriptions

Appendix I-1
List of Geochemical Characterization Samples - Exploration Drill Core
NICO Project, Fortune Minerals Limited

1	6 15	Golder Sample		Cross		Depth		Block Mode	
Sample Date ¹	Sample Description	Number	Hole	Section	From		To	Code ²	Waste Rock / Ore ³
Jul-04	Breccia	100855	03257	16+50W	47	-	49	300	WASTE
Jul-04	Breccia	100861	03258	16+50W	17	-	26	300	WASTE
Jul-04	Breccia	100874	03259	16+50W	54	-	61	400	WASTE
Jul-04	Breccia	100902	00249	22+00W	4	-	20		WASTE
Jul-04	Breccia	100916	98151	22+00w	13	-	20	300	WASTE
Jul-04	Breccia	100917	98151	22+00w	20	-	28	300	WASTE
Jul-04	Breccia	100925	00233	23+00w	0	-	9	300	WASTE
Jul-04	Breccia	100934	00252	23+00W	27	-	33	400	WASTE
Jul-04	Breccia	100945	03264	17+50W	46	-	53	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100889	00220	17+50W	25	-	32	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100890	00220	17+50W	32	-	50		
Jul-04	Black Rock Schist + Magnetite	100994	00230	21+50W	68	-	73	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100995	00230	21+50W	150	-	170		ORE
Jul-04	Black Rock Schist ± Magnetite	100802	00231	21+50W	73	-	83	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100803	00231	21+50W	83	-	94	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100927	00233	23+00w	45	-	55	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100928	00233	23+00w	58	-	67	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100930	00233	23+00w	111	-	114	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100938	00234	23+00W	1.5	-	9	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100939	00234	23+00W	61	-	77		
Jul-04	Black Rock Schist ± Magnetite	100805	00236	24+00W	38	-	48	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100806	00236	24+00W	48	-	60	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100998	00241	22+00W	91	-	104	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100905	00249	22+00W	62	-	72	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100907	00249	22+00W	82	-	90	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100935	00252	23+00W	97	-	107	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100936	00252	23+00W	107	-	127		
Jul-04	Black Rock Schist + Magnetite	100937	00252	23+00W	184	-	193	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100866	03258	16+50W	136	-	138	500	WASTE
Jul-04	Black Rock Schist + Magnetite	100875	03259	16+50W	96	-	111	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100812	03265	21+00W	145	-	155	500	WASTE
Jul-04	Black Rock Schist ± Magnetite	100965	03267	25+00W	2	-	10	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100966	03267	25+00W	10	-	18	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100967	03270	25+00W	30	-	39	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100968	03270	25+00W	39	-	47	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100969	03270	25+00W	91	-	100	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100976	96011	24+00W	131	-	145	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100977	96011	24+00W	145	-	160	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100978	96011	24+00W	160	-	170	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100979	96011	24+00W	270	-	290		
Jul-04	Black Rock Schist + Magnetite	100909	96016	22+00W	27	-	42	400	WASTE

Appendix I-1
List of Geochemical Characterization Samples - Exploration Drill Core
NICO Project, Fortune Minerals Limited

. 1	1	Golder Sample	I	Cross	De	pth	Block Mode	el
Sample Date ¹	Sample Description	Number	Hole	Section	From	То	Code ²	Waste Rock / Ore ³
Jul-04	Black Rock Schist + Magnetite	100911	96016	22+00W		- 158		,
Jul-04	Black Rock Schist + Magnetite	100912	96016	22+00W	158	- 190		
Jul-04	Black Rock Schist + Magnetite	100949	96023	24+00W	17	- 30	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100950	96023	24+00W	30	- 46		
Jul-04	Black Rock Schist + Magnetite	100983	97035	21+00W	57	- 68	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100989	97036	21+00W	157	- 165	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100990	97036	21+00W	216	- 225	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100991	97036	21+00W	225	- 230	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100970	97060	25+00W	11	- 30		
Jul-04	Black Rock Schist ± Magnetite	100900	97072	22+00W	20	- 37		
Jul-04	Black Rock Schist ± Magnetite	100901	97072	22+00W	55	- 80		
Jul-04	Black Rock Schist ± Magnetite	100947	97102	24+00W	57	- 77		
Jul-04	Black Rock Schist ± Magnetite	100948	97102	24+00W	67	- 78	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100961	98147	25+00W	3	- 12	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100962	98147	25+00W	12	- 21	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100963	98147	25+00W	46	- 61	15	ORE
Jul-04	Black Rock Schist + Magnetite	100923	98150	22+00w	45	- 55	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100924	98150	22+00w	55	- 65	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100918	98151	22+00w	31	- 41	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100919	98151	22+00w	41	- 57		
Jul-04	Black Rock Schist ± Magnetite	100920	98151	22+00w	74	- 79	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100953	98197	17+50W	45	- 50	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100884	98198	17+50W	20	- 30	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100885	98198	17+50W	30	- 41	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100887	98198	17+50W	95	- 110	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100888	98198	17+50W	110	- 130		
Jul-04	Black Rock Schist ± Magnetite	100815	98208	24+00W	0	- 5	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100817	98208	24+00W	76	- 86	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100818	98208	24+00W	86	- 100	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100958	98209	25+00W	47	- 60	400	WASTE
Jul-04	Black Rock Schist ± Magnetite	100959	98209	25+00W	60	- 70	400	WASTE
Jul-04	Black Rock Schist + Magnetite	100814	98419	25+00W	0	- 6		
Jul-04	Fault Zone	100868	03258	16+50W	77	- 83	400	WASTE
Jul-04	Feldspar Porphyry	100891	00220	17+50W	110	- 113	200	WASTE
Jul-04	Feldspar Porphyry	100931	00233	23+00w	115	- 121	200	WASTE
Jul-04	Feldspar Porphyry	100904	00249	22+00W	31	- 36	200	WASTE
Jul-04	Feldspar Porphyry	100908	00249	22+00W	131	- 136	200	WASTE
Jul-04	Feldspar Porphyry	100856	03257	16+50W	56	- 65	300	WASTE
Jul-04	Feldspar Porphyry	100857	03257	16+50W	65	- 79	100	WASTE
Jul-04	Feldspar Porphyry	100858	03257	16+50W	105	- 109	200	WASTE
Jul-04	Feldspar Porphyry	100859	03257	16+50W	110	- 114	500	WASTE

Appendix I-1
List of Geochemical Characterization Samples - Exploration Drill Core
NICO Project, Fortune Minerals Limited

. 1	1	Golder Sample		Cross		Depth			el
Sample Date ¹	Sample Description	Number	Hole	Section	From	-ср	То	Code ²	Waste Rock / Ore ³
Jul-04	Feldspar Porphyry	100867	03258	16+50W	138	-	141	200	WASTE
Jul-04	Feldspar Porphyry	100869	03259	16+50W	3	-	11	200	WASTE
Jul-04	Feldspar Porphyry	100870	03259	16+50W	11	-	22	200	WASTE
Jul-04	Feldspar Porphyry	100876	03259	16+50W	111	_	113	200	WASTE
Jul-04	Feldspar Porphyry	100810	03265	21+00W	69	-	79	200	WASTE
Jul-04	Feldspar Porphyry	100811	03265	21+00W	79	_	89	200	WASTE
Aug-08	Feldspar Porphyry	NICO-08-013	03282		117.04	-	126.2	100	WASTE
Jul-04	Feldspar Porphyry	100913	96016	22+00W	205	-	209	200	WASTE
Jul-04	Feldspar Porphyry	100988	97036	21+00W	151	-	157	400	WASTE
Jul-04	Feldspar Porphyry	100921	98151	22+00w	92	_	105	200	WASTE
Jul-04	Feldspar Porphyry	100892	98152	22+00W	0	-	15	200	WASTE
Jul-04	Feldspar Porphyry	100893	98152	22+00W	15	-	30	200	WASTE
Jul-04	Feldspar Porphyry	100894	98152	22+00W	30	-	45	200	WASTE
Jul-04	Feldspar Porphyry	100895	98152	22+00W	45	-	60	200	WASTE
Jul-04	Feldspar Porphyry	100896	98152	22+00W	96	-	106	200	WASTE
Jul-04	Feldspar Porphyry	100954	98197	17+50W	50	-	60	200	WASTE
Jul-04	Feldspar Porphyry	100955	98197	17+50W	60	-	70	200	WASTE
Jul-04	Feldspar Porphyry	100956	98197	17+50W	70	-	80	200	WASTE
	Fortune Minerals Preliminary	Quartz Feldspar			86	-	103		
2004	Samples	Porphyry	03-275	20+00W	104	_	114		
2004	Fortune Minerals Preliminary	Feldspar	00.076.400.07						
2004	Samples	Porphyry	03-376 (03-27	720+00W	3	-	106		
Jul-04	Rhyolite	100992	00230	21+50W	1	-	17		
Jul-04	Rhyolite	100932	00252	23+00W	3	-	13	300	WASTE
Jul-04	Rhyolite	100933	00252	23+00W	13	-	26	300	WASTE
Jul-04	Rhyolite	100852	03257	16+50W	13	-	23	300	WASTE
Jul-04	Rhyolite	100853	03257	16+50W	23	-	33	20	ORE
Jul-04	Rhyolite	100854	03257	16+50W	33	-	43	20	ORE
Jul-04	Rhyolite	100860	03258	16+50W	3	-	16	300	WASTE
Jul-04	Rhyolite	100862	03258	16+50W	27	-	35	20	ORE
Jul-04	Rhyolite	100863	03258	16+50W	35	-	50	300	WASTE
Jul-04	Rhyolite	100864	03258	16+50W	50	-	65	300	WASTE
Jul-04	Rhyolite	100865	03258	16+50W	65	-	77	300	WASTE
Jul-04	Rhyolite	100871	03259	16+50W	22	-	33	300	WASTE
Jul-04	Rhyolite	100872	03259	16+50W	33	-	43	300	WASTE
Jul-04	Rhyolite	100873	03259	16+50W	44	-	54	300	WASTE
Jul-04	Rhyolite	100943	03264	17+50W	27	-	37	300	WASTE
Jul-04	Rhyolite	100944	03264	17+50W	37	-	45	300	WASTE
Aug-08	Rhyolite	NICO-08-011	03282		4.3	-	13.4	300	WASTE
Aug-08	Rhyolite	NICO-08-012	03282		31.7	-	41.3	300	WASTE
Jul-04	Rhyolite	100971	96011	24+00W	3	-	15	300	WASTE

Appendix I-1
List of Geochemical Characterization Samples - Exploration Drill Core
NICO Project, Fortune Minerals Limited

1		Golder Sample		Cross		Depth			
Sample Date ¹	Sample Description	Number	Hole	Section	From	Бери	То	Code ²	Waste Rock / Ore
ul-04	Rhyolite	100972	96011	24+00W	15	-	30	300	WASTE
lul-04	Rhyolite	100973	96011	24+00W	30	-	45	300	WASTE
ul-04	Rhyolite	100974	96011	24+00W	45	-	60	300	WASTE
lul-04	Rhyolite	100975	96011	24+00W	60	-	85	300	117.0.2
Jul-04	Rhyolite	100980	97035	21+00W	0	-	10	300	WASTE
Jul-04	Rhyolite	100981	97035	21+00W	10	-	20	35	ORE
Jul-04	Rhyolite	100982	97035	21+00W	20	-	29	30	ORE
Jul-04	Rhyolite	100985	97036	21+00W	0	-	10	300	WASTE
Jul-04	Rhyolite	100986	97036	21+00W	10	-	26		
Jul-04	Rhyolite	100952	98197	17+50W	0	-	15	300	WASTE
Jul-04	Rhyolite	100951	98197	17+50W	15	-	30	300	WASTE
Jul-04	Rhyolite	100878	00246S	17+50W	1	-	10	300	WASTE
Jul-04	Rhyolite	100879	00246S	17+50W	10	-	20	300	WASTE
Jul-04	Rhyolite	100880	00246S	17+50W	20	-	30	300	WASTE
2004	Fortune Minerals Preliminary	Rhyolite	03-272	21+00W	0.6	-	18		
Jul-04	Samples Siltstone	100804	00231	21+50W	235		250	500	WASTE
Jul-04	Siltstone	100804	00231	21+30W 23+00W	105.5		110	400	WASTE
Jul-04	Siltstone	100929	00233	23+00W	132	-	138	500	WASTE
Jul-04	Siltstone	101000	00234	22+00W	249		256	500	WASTE
Jul-04 Jul-04	Siltstone	100877	03259	16+50W	157		165	500	WASTE
Jul-04	Siltstone	100946	03264	17+50W	98		101.6	500	WASTE
Jul-04	Siltstone	100946	96016	22+00W	209		215	500	WASTE
Jul-04	Siltstone	100914	97035	21+00W	267		270	500	WASTE
Jul-04	Siltstone	100964	98147	25+00W	72	-	81	500	WASTE
Jul-04	Siltstone	100904	98151	22+00w	110.5		114	500	WASTE
Jul-04	Siltstone	100922	98152	22+00W	10.5		112	500	WASTE
Jul-04	Siltstone	100897	98197	17+50W	130		140	400	WASTE
Jul-04	Siltstone	100819	98208	24+00W	148	-	152	500	WASTE
Jul-04	Siltstone	100960	98209	25+00W	126		131	500	WASTE
2004	Fortune Minerals Preliminary	Siltstone 1	98-159	18+50W	98	-	173	300	WASIE
2004	Samples Fortune Minerals Preliminary	Siltstone 2	98-170	18+50W	118	-	156		
	Samples				194	-	224	1	
Jul-04	Sub-Arkosic Wacke	100993	00230	21+50W	58	-	68	400	WASTE
Jul-04	Sub-Arkosic Wacke	100801	00231	21+50W	1	-	15	400	WASTE
Jul-04	Sub-Arkosic Wacke	100926	00233	23+00w	9	-	16	300	WASTE
Jul-04	Sub-Arkosic Wacke	100996	00241	22+00W	0	-	10	400	WASTE
Jul-04	Sub-Arkosic Wacke	100997	00241	22+00W	10	-	20	400	WASTE
lul-04	Sub-Arkosic Wacke	100999	00241	22+00W	105	-	115	400	WASTE
Jul-04	Sub-Arkosic Wacke	100903	00249	22+00W	20	-	27	400	WASTE

Appendix I-1
List of Geochemical Characterization Samples - Exploration Drill Core
NICO Project, Fortune Minerals Limited

1	Canada Bassintian	Golder Sample	11-1-	Cross		Depth		Block Model	
Sample Date ¹	Sample Description	Number	Hole	Section	From	·	To	Code ²	Waste Rock / Ore ³
Jul-04	Sub-Arkosic Wacke	100906	00249	22+00W	71	-	82	400	WASTE
Jul-04	Sub-Arkosic Wacke	100851	03257	16+50W	10.9	-	13	300	WASTE
Jul-04	Sub-Arkosic Wacke	100941	03264	17+50W	1	-	11	400	WASTE
Jul-04	Sub-Arkosic Wacke	100942	03264	17+50W	11	-	22	400	WASTE
Jul-04	Sub-Arkosic Wacke	100807	03265	21+00W	1	-	10	400	WASTE
Jul-04	Sub-Arkosic Wacke	100808	03265	21+00W	10	-	20	400	WASTE
Jul-04	Sub-Arkosic Wacke	100809	03265	21+00W	20	-	31	400	WASTE
Jul-04	Sub-Arkosic Wacke	100813	03265	21+00W	157	-	160	500	WASTE
Jul-04	Sub-Arkosic Wacke	100910	96016	22+00W	44	-	59	400	WASTE
Jul-04	Sub-Arkosic Wacke	100987	97036	21+00W	63	-	72	400	WASTE
Jul-04	Sub-Arkosic Wacke	100899	97072	22+00W	0	-	10	300	WASTE
Jul-04	Sub-Arkosic Wacke	100915	98151	22+00w	1	-	10	300	WASTE
Jul-04	Sub-Arkosic Wacke	100898	98152	22+00W	113	-	119	500	WASTE
Jul-04	Sub-Arkosic Wacke	100882	98198	17+50W	4	-	10	400	WASTE
Jul-04	Sub-Arkosic Wacke	100883	98198	17+50W	10	-	20	400	WASTE
Jul-04	Sub-Arkosic Wacke	100886	98198	17+50W	66	-	72	20	ORE
Jul-04	Sub-Arkosic Wacke	100816	98208	24+00W	5	-	15	400	WASTE
Jul-04	Sub-Arkosic Wacke	100881	00246S	17+50W	31	-	37	400	WASTE
2004	Fortune Minerals Preliminary	Upper	03-272	21+00W	21	-	81		
2004	Samples	Ore Zone	03-272	21+0000	83	-	96		
2004	Fortune Minerals Preliminary	Middle	03-275	20+00W	37		74		
2004	Samples	Ore Zone	03-2/3	2U+UUVV	37	-	/4		
2004	Fortune Minerals Preliminary	Lower	03-275	20+00W	120		157		
2004	Samples	Ore Zone	03-2/3	20+0000	120	-	137		

Notes:

- 1. Date of sample collection.
- 2. Block model code according to P&E mine block model.
- 3. Classification of ore according to P&E mine block model.

Appendix I-2
List of Geochemical Characterization Samples - Outcrop Samples from the NICO Project Site
NICO Project, Fortune Minerals Limited

Date Sampled	Location	Number Golder Sample	Lithology	Sampled By
Jul-04	Portal	100821	PORTAL	CMC
Jul-04	Portal	100822	PORTAL	CMC
Jul-04	Portal	100823	PORTAL	CMC
Jul-04	Portal	100824	PORTAL	CMC
Aug-08	Outcrop	NICO-08-001	Rhyolite	MR
Aug-08	Outcrop	NICO-08-002	Rhyolite	MR
Aug-08	Outcrop	NICO-08-003	Rhyolite	MR
Aug-08	Outcrop	NICO-08-004	Rhyolite	MR
Aug-08	Outcrop	NICO-08-005	Rhyolite	MR
Aug-08	Outcrop	NICO-08-006	Rhyolite	MR
Aug-08	Outcrop	NICO-08-007	Feldspar porphyry	MR
Aug-08	Outcrop	NICO-08-008	Siltstone	MR
Aug-08	Outcrop	NICO-08-009	Siltstone	MR
Aug-08	Outcrop	NICO-08-010	Feldspar porphyry	MR

Appendix I-3

Description of Samples Collected from Bulk Stockpiles in 2008 NICO Project, Fortune Minerals Limited

Date Sampled	Sample ID	Pile ID	Depth	Mineralized Waste / Ore	Description	Sampled By
Aug-08	Aug 18 NS-1	Aug 18 NS	0 - 1m	ore	Wet to moist, dark grey to black gravely sand with some boulders up to 30 cm; BRS±mt; visible sulfides include massive arsenopyrite and aggregates of arsenopyrite, pyrite and chalcopyrite in veins and stringers; no visible sulfide alteration.	KAS / MG
Aug-08	Aug 18 NS-2	Aug 18 NS	1 - 2m	ore	k grey green, gravely sand with some cobbles and boulders up to 30 to 60 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	
Aug-08	Aug 18 NS-3	Aug 18 NS	4m	ore	Dark grey, gravely sand with some cobbles and boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Aug 20 NS-1	Aug 20 NS	0 m (Surface)	ore	Dark grey, bouldery, gravely sand; BRS±mt with up to 10% pink FP; visible sulphide include blebby, mg arsenopyrite; aggregates of pyrite, chalcopyrite and arsenopyrite; no visible sulfide alteration; rare visible carbonates	KAS / MG
Aug-08	Aug 20 NS-2	Aug 20 NS	0 - 1m	ore	Dark green grey gravely sand with some boulders up to 40 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Aug 20 NS-3	Aug 20 NS	1 - 2m	ore	Dark green grey, gravely sand with cobbles and boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Aug 20 NS-4	Aug 20 NS	4m	ore	Dark grey green, gravely sand with some boulders; BRS±mt; up to 5 to 10% FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Aug 21 NS-1	Aug 21 NS	0 m (Surface)	ore	Dark grey, sandy gravel with angular cobbles and boulders; BRS±mt; up to 10% FP; sulfides in boulders include massive aggregates of chalcopyrite, pyrite and arsenopyrite; no visible sulfide alteration; no visible carbonates.	KAS / MG
Aug-08	Aug 21 NS-2	Aug 21 NS	0 - 1m	ore	Dark grey, gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates.	KAS / MG
Aug-08	Aug 21 NS-3	Aug 21 NS	2 - 3m	ore	Dark grey, gravely sand with some cobbles and boulders up to 30 cm; BRS±mt; difficult to ascertain visible sulfides	KAS / MG
Aug-08	Aug 21 NS-4	Aug 21 NS	4m	ore	Dark grey, gravely sand with some cobbles and boulders; BRS±mt with rare FP; difficult to ascertain visible sulfides Dark grey, gravely bouldery sand; BRS±mt with up to 20% pink FP (coarse sand); visible sulphides include cg blebby arsenopyrite and chalcopyrite / pyrite /	KAS / MG
Aug-08	Aug 23 DS-1	Aug 23 DS	0 m (Surface)	ore	arsenopyrite aggregates; note sulfides in veins and stringers; no visible sulfide alteration; no visible carbonate	KAS / MG
Aug-08	Aug 23 DS-2	Aug 23 DS	0 - 1m	ore	Dark grey, gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates.	KAS / MG
Aug-08	Aug 23 DS-3	Aug 23 DS	1 - 3m	ore	Dark grey, gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates.	KAS / MG
Aug-08	Aug 23 DS-4	Aug 23 DS	4m	ore	Dark grey, gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates.	KAS / MG
Aug-08	Aug 24 DS-1	Aug 24 DS	0 - 1m	ore	Dark grey, gravely sand with trace boulders up to 30 to 60 cm; BRS±mt; difficult to as visible sulfides, but note presence of arsenopyrite in fines.	KAS / MG
Aug-08	Aug 24 DS-2	Aug 24 DS	1 - 3m	ore	Dark grey, gravely sand with trace boulders and cobbles; BRS±mt; rare visible sulfides in sand size fraction include arsenopyrite and pyrite, chalcopyrite; most fragments difficult to ascertain visible sulfides	KAS / MG
Aug-08	Aug 24 DS-3	Aug 24 DS	4m	ore	Dark grey, gravely sand with trace boulders and cobbles; BRS±mt; rare visible sulfides; difficult to ascertain visible sulfides and carbonates, but note arsenopyrite in fines.	KAS / MG
Aug-08	Aug 27 DS-1	Aug 27 DS	0 m (Surface)	ore	Wet, dark grey boulders with some sand and gravel; boulders up to 30 cm; BRS±mt; visible sulfides include up to 7 to 10% massive aggregates of arsenopyrite, pyrite and chalcopyrite; no visible alteration; note that material is very coarse and very few fines were available to sample	KAS / MG
Aug-08	Aug 27 DS-2	Aug 27 DS	0 - 1m	ore	Moist to dry, dark grey gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates.	KAS / MG
Aug-08	Aug 27 DS-3	Aug 27 DS	2 - 3m	ore	Moist, dark grey gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Aug 27 DS-4	Aug 27 DS	4m	ore	Moist, dark grey gravely sand with some boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	FC-5	Aug 28 DS	N/A	ore	Wet, dark grey green gravelly sand with minor cobbles up to 10 to 20 cm in diameter; BRS±mt dominant rock type noted during sample collection; visible sulphides noted in fines	KAS / MG
Aug-08	Aug 28 DS-1	Aug 28 DS	0 - 1m	ore	Moist to dry, dark grey gravely, bouldery sand; BRS±mt; boulders have abundant chalcopyrite, arsenopyrite and pyrite; arsenopyrite noted in fines; no visible carbonates	KAS / MG
Aug-08	Aug 28 DS-2	Aug 28 DS	1 - 2m	ore	Moist, dark grey gravely sand with some cobbles and boulders; BRS±mt; boulders contain massive aggregates of arsenopyrite, pyrite and chalcopyrite; no visible oxidation of sulfides; abundant arsenopyrite in fines.	KAS / MG
Aug-08	Aug 28 DS-3	Aug 28 DS	2 - 3m	ore	Moist, dark grey to black gravely sand with some boulders; BRSmt; sulfides include arsenopyrite, pyrite and chalcopyrite in boulders; abundant arsenopyrite in fines; no visible carbonates.	KAS / MG
Aug-08	Aug 28 DS-4	Aug 28 DS	4m	ore	Moist, dark grey, gravely sand with cobbles and boulders; BRS±mt; visible sulfides include arsenopyrite, chalcopyrite and pyrite; abundant arsenopyrite in	KAS / MG
Aug-08	FC-3	Mar 10 NS	N/A	waste	fines; no visible carbonate Wet, dark grey green, gravelly sand with minor cobbles up to 10 to 20 cm in diameter; BRS±mt dominant rock type noted during sample collection;	KAS / MG
riag oo		11101 20 110	1.47.1		sulphides noted in fines	
Aug-08	Mar 10 NS-1	Mar 10 NS	0 m (Surface)	waste	Dry, gravely sand with trace cobbles and minor boulders up to 30 cm; BRS±mt; visible sulfides include arsenopyrite, pyrite and chalcopyrite in fractures and in veins; arsenopyrite locally occurs as mg to cg blebs disseminated through rock; chalcopyrite is visibly tarnished; rare visible carbonates	KAS / MG
Aug-08	Mar 10 NS-2	Mar 10 NS	1 - 2m	waste	Moist, dark grey, gravely sand with minor boulders up to 30 cm; BRS±mt; visible sulphides include blebby arsenopyrite in discrete grains and fines; all other fragments difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Mar 10 NS-3	Mar 10 NS	2 - 3m	waste	Moist, dark grey, gravely sand with minor boulders up to 30 cm; BRS±mt; visible sulphides include blebby arsenopyrite and chalcopyrite in discrete grains and fines; all other fragments difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Mar 10 NS-4	Mar 10 NS	4m	waste	Moist, dark grey gravely sand with some boulders up to 30 cm; BRS±mt; visible sulphides include blebby arsenopyrite and pyrite; no visible alteration of sulphide; most fragments difficult to ascertain visible sulphides; note iron staining on rare rock fragments; fines from base of pile rich in FP	KAS / MG
Aug-08	Mar 6 NS-1	Mar 6 NS	0 m (Surface)	waste	Dark grey sandy gravel with cobbles and boulders up to 30 to 60 cm; BRS±mt; sulfides include arsenopyrite (mg to cg, blebby, disseminated through rock), occasional stringers and veins of arsenopyrite, pyrite and chalcopyrite; carbonates noted in fractures / bedding planes; exposed carbonates are friable, highly altered and weathered.	KAS / MG

Appendix I-3

Description of Samples Collected from Bulk Stockpiles in 2008 NICO Project, Fortune Minerals Limited

Date Sampled	Sample ID	Pile ID	Depth	Mineralized Waste / Ore	Description	Sampled By
Aug-08	Mar 6 NS-2	Mar 6 NS	0 - 1m	waste	Dark grey gravely sand with cobbles and boulders up to 60 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Mar 6 NS-3	Mar 6 NS	1 - 2m	waste	Dark grey gravely sand with some cobbles; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Mar 6 NS-4	Mar 6 NS	4m	waste	Dark grey gravely sand with cobbles and boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	FC-4	Mar 8 NS	N/A	waste	Wet, dark grey green, gravelly sand with some cobbles up to 10 to 20 cm; dominant rock type noted during sample collection BRS±mt; visible very fine grained sulphides noted in fines	
Aug-08	Mar 8 NS-1	Mar 8 NS	0 m (Surface)	waste	Dark grey, gravely sand with some boulders and cobbles up to 30 cm; BRS±mt; dominant sulphide is arsenopyrite, which occurs as disseminated mg to cg blebs and rarely in massive stringers (4 to 5%); also note chalcopyrite and pyrite in blebs and aggregates; rare pink FP; no visible carbonates; note abundance of arsenopyrite in fines.	KAS / MG
Aug-08	Mar 8 NS-2	Mar 8 NS	0 - 1m	waste	Dark grey, gravely, bouldery sand; BRS±mt; visible sulphides in boulders include arsenopyrite, pyrite and chalcopyrite (massive and disseminated through rock); sulphides visible in fines; no visible carbonates	KAS / MG
Aug-08	Mar 8 NS-3	Mar 8 NS	1 - 2m	waste	Dark grey gravely sand with some cobbles and rare boulders; BRS±mt; difficult to ascertain visible sulfides and carbonate; note some visible arsenopyrite in fines.	KAS / MG
Aug-08	Mar 8 NS-4	Mar 8 NS	4m	waste	Dark grey gravely sand with trace boulders; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 10 NS-1	Oct 10 NS	0 m (Surface)	ore	Dry, dark grey to pink gravely sand with some boulders up to 30 cm and rare boulders up to 70 cm; dominantly BRS±mt with up to 20 to 30 % pink FP; BRS±mt is massive, dark green to grey, fine grained with blebby pyrite / chalcopyrite /arsenopyrite which occur in bands and stringers; chalcopyrite appears to be fractured and altered; carbonate on fracture surfaces is white and friable, highly weathered	KAS / MG
Aug-08	Oct 10 NS-2	Oct 10 NS	1 - 2m	ore	Moist, dark grey gravely sand with some boulders up to 30 cm to 1 m; BRS±mt with 10% FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 10 NS-3	Oct 10 NS	2 - 3m	ore	Moist, dark grey gravely sand with some boulders up to 20 to 80 cm; BRS±mt with 10 to 20% FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 10 NS-4	Oct 10 NS	3 - 4m	ore	Moist, dark grey gravely sand with some boulders up to 20 to 80 cm; BRS±mt with 10 to 30% FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 11 DS-1	Oct 11 DS	0 m (Surface)	ore	Dry, dark grey sandy gravel with up to 30% boulders 30 cm to 1 m; BRS±mt; visible sulphides include chalcopyrite, pyrite and arsenopyrite; chalcopyrite and pyrite noted to be tarnished and altered; sulphides occur as massive, blebby aggregates and bands; carbonate occurs in fracture coatings and bedding planes; carbonate coatings are highly weathered and friable; reddish brown coatings common on bedding planes and fractures.	KAS / MG
Aug-08	Oct 11 DS-2	Oct 11 DS	0 - 1m	ore	Dry to slightly moist, medium grey gravely sand with boulders up to 20 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 11 DS-3	Oct 11 DS	1 - 2m	ore	Slightly moist, dark grey, gravely sand with cobbles and boulders up to 60 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 11 DS-4	Oct 11 DS	4m	ore	Moist, dark grey, gravely sand with boulders up to 60 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 12 DS-1	Oct 12 DS	0 m (Surface)	ore	Dry, dark green grey, gravely sand with some cobbles and boulders up to 60 cm in diameters; BRS±mt with rare fragments of pink FP; visible sulphides include aggregates of blebby arsenopyrite, pyrite, and chalcopyrite up to 10 cm long; chalcopyrite is visibly altered and tarnished; white carbonate noted in bedding planes; carbonate is friable, visibly weathered	KAS / MG
Aug-08	Oct 12 DS-2	Oct 12 DS	0 - 1m	ore	Dry to moist, dark green grey, gravely sand with trace silt and minor boulders up to 50 cm; note abundance of fines; BRS±mt with rare fragments FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 12 DS-3	Oct 12 DS	1 - 2m	ore	Moist, dark grey gravely sand with minor boulders up to 30 cm; BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 12 DS-4	Oct 12 DS	3 - 4m	ore	Moist, dark grey gravely sand with trace cobbles and some boulders 30 to 60 cm; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	FC-1	Oct 5 DS	N/A	waste	Wet, dark grey, gravelly sand with minor cobbles up to 20 cm diameter; FP dominant rock type observed during sample collection, with up to 30% black BRS±mt	KAS / MG
Aug-08	Oct 5 DS-1	Oct 5 DS	0 m (Surface)	waste	Dry, light grey sandy gravely with some boulder up to 40 to 60 cm; ~ 80% pink to grey FP with ~ 20% BRS±mt; no visible sulphides or visible carbonates in FP; rare visible sulphides in BRS±mt	KAS / MG
Aug-08	Oct 5 DS-2	Oct 5 DS	0 - 2m	waste	Moist, dark purplish grey gravely sand with minor boulders; dominantly FP with minor BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 5 DS-3	Oct 5 DS	2 - 4m	waste	Moist, dark grey gravely sand with some boulders up to 60 cm; localized evidence of patchy iron staining on dried boulders; dominantly FP with rare BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 9 DS-1	Oct 9 DS	0 - 1m	ore	Dry, dark grey, gravely sand with trace boulders up to 50 cm, BRS±mt with grace fragments FP; visible sulphides include chalcopyrite, chalcopyrite and arsenopyrite; chalcopyrite is tarnished and weathered; carbonates identified in bands / on fracture coatings, carbonates are friable and weathered; occasional iron staining noted on fractures	
Aug-08	Oct 9 DS-2	Oct 9 DS	2 - 3m	ore	Moist, dark grey, gravely sand with cobbles and boulders up to 60 cm; BRS±mt with trace FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 9 DS-3	Oct 9 DS	4m	ore	Moist, dark grey, gravely sand with cobbles and rare boulders; BRS±mt with trace FP; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	FC-2	Oct 9 NS	N/A	waste	Wet, dark grey green, gravelly sand with minor cobbles up to 10 to 20 cm diameter; BRS±mt dominant rock type noted during sample collection	KAS / MG
Aug-08	Oct 9 NS-1	Oct 9 NS	0 m (Surface)	waste	Dry, dark grey to green, gravely sand with some boulders up to 30 to 60 cm in diameter; BRS±mt; note iron staining on some fracture surfaces; visible sulphides include pyrite, chalcopyrite and arsenopyrite; sulphides are visibly altered (tarnished); visibly altered white, friable carbonates noted on fracture planes	
Aug-08	Oct 9 NS-2	Oct 9 NS	0 - 1m	waste	Dry to slightly moist; dark grey; gravely sand with some boulders up to 40 cm; dominantly BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG
Aug-08	Oct 9 NS-3	Oct 9 NS	2 - 4m	waste	Dry to slightly moist; dark grey; gravely sand with rare boulders up to 40 cm; dominantly BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG

Appendix I-3

Description of Samples Collected from Bulk Stockpiles in 2008 NICO Project, Fortune Minerals Limited

Date Sample	d Sample ID	Pile ID	Depth	Mineralized Waste / Ore	Description	Sampled By
Aug-08	Oct 9 NS-4	Oct 9 NS	4m	waste	Dry to slightly moist; dark grey; gravely sand with minor boulders up to 40 cm; dominantly BRS±mt; difficult to ascertain visible sulfides and carbonates	KAS / MG

9 of 11

Appendix I-4 Description of ROM Rock Samples used to Construct Field Cells NICO Project, Fortune Minerals Ltd.

Field Cell ID	Sample ID	Sample Description	Sample Mass (kg)	Date of Installation
FC-0	Blank	Silica sand blank	45	24-Aug-08
FC-1	Feldspar Porphyry with some Black Rock Schist (Oct 5 DS)	Wet, dark grey, gravelly sand with minor cobbles up to 20 cm diameter; FP dominant rock type observed during sample collection, with up to 30% black BRS±mt	219	24-Aug-08
FC-2	Black Rock Schist (Oct 9 NS)	Wet, dark grey green, gravelly sand with minor cobbles up to 10 to 20 cm diameter; BRS±mt dominant rock type noted during sample collection	219	24-Aug-08
FC-3	Black Rock Schist (Mar 10 NS)	Wet, dark grey green, gravelly sand with minor cobbles up to 10 to 20 cm in diameter; BRS±mt dominant rock type noted during sample collection; sulphides noted in fines	220	24-Aug-08
FC-4	Black Rock Schist (Mar 8 NS)	Wet, dark grey green, gravelly sand with some cobbles up to 10 to 20 cm; dominant rock type noted during sample collection BRS±mt; visible very fine grained sulphides noted in fines	225	24-Aug-08
FC-5	Black Rock Schist / Low Grade Ore (Aug 28 DS)	Wet, dark grey green gravelly sand with minor cobbles up to 10 to 20 cm in diameter; BRS±mt dominant rock type noted during sample collection; visible sulphides noted in fines	224	24-Aug-08
FC-7,8,9	Bulk Rougher Tailings	Dark green grey, fine grained, saturated tailings.	40, 100 and 60 kg, respectively	29-Apr-10

Created by: KAS Checked: KJD

10 of 11 **Golder Associates**

Appendix I-5

Description of Tailings Samples Submitted for Geochemical Characterization NICO Project, Fortune Minerals Limited

Sample	Stream	Primary Unit Operation	Intermediate Unit Operation					
Tailings								
Bulk Rougher Tailings	Bulk Rougher Tailings	Bulk Rougher Tailings	Cyclone Scavenge					
Bulk Cleaner Tailings	Bulk Cleaner Tailings	Bulk Cleaner Tailings	Generally - cyanidation and cyanide destruction					
Blended Samples	Blended Samples							
PP#14	Represents combined flotatio	n tailings for average ore grade after 2	years of mine life					

Note: Tailings generated at SGS Lakefield under the direction of Fortune.

Created by: KAS

11 of 11 Golder Associates Checked: KJD

APPENDIX II

Detailed Methods of Sample Collection and Sample Analysis

1.0 INTRODUCTION

This appendix provides an overview of the methods of sample selection and analysis that form the basis of the geochemical characterization program at the NICO Project. The geochemical characterization program has progressed iteratively since 2004. Methods of sample collection evolved as new materials (i.e., drill core, ROM rock and tailings) became available for sampling.

2.0 SAMPLE SELECTION AND COLLECTION

Sample selection is discussed according to the 3 main periods of sample collection and evaluation: 2004 Mine rock and ore sample program, 2008 Mine rock and ore sample program, and 2008 tailings sample program.

2.1 2004 Mine rock and Ore Sample Program

Screening Level Drill Core Samples - 2004

Fortune provided 8 samples of exploration drill core of the various Mine rock and ore lithologies present at the NICO Project, which were submitted for screening level analysis. These samples were collected over intervals ranging from 10 to 103 metres (m). Most of these sample intervals were considered too large to sufficiently characterize rock types. Furthermore, these samples were generally collected proximal to mineralized areas of the deposit. A more comprehensive geochemical sampling program was required to characterize the range of characteristics of Mine rock.

Exploration Drill Core Samples - 2004

A comprehensive exploration drill core sampling program was initiated for the purpose of assessing the geochemical variability of the rock types encountered during exploration bulk sample mining at the NICO Project. The first phase of this program was a detailed review of geological drill core logs and cross sections (provided by Fortune). This sample campaign was performed early in the NICO Project (i.e., prior to the completion of the mine plan or the mine block model), therefore the relative proportion of each lithology present in the proposed outline of the Open Pit was determined based on the relative proportion of each rock type in the drill core logs.

Sample intervals were selected using the drill core logs proportions according to the relative proportion of each rock type. In total, 169 drill core sample intervals were selected for geochemical characterization. The sample selection process was designed to achieve a final selection that captured the spatial (lateral and vertical) distribution of each lithology. Drill core logs were assessed to ensure that the sample intervals captured the range of compositional variability of each rock type. Samples were selected over 5 to 10 m intervals (approximately), which was considered representative of a bench height or development width that could be expected to be mixed within a single blast.

Samples were collected after visual observation of each selected interval in the field, in consultation with a Fortune site geologist. This step was performed to ensure that the visual characteristics of the core (i.e., lithology, mineralogical composition and state of weathering) were adequately represented by the drill core log descriptions. Samples were collected only after the visual characteristics of the selected interval were confirmed. Each sample consisted of a composite of several sub-samples collected over the total sample interval: a 10 to 15 centimetres (cm) sample of core was collected for each meter of core in the specified interval. The sub-samples were approximately equal in weight and visually representative of the portion of core they represented. All sub-samples for a specified interval were packed into large plastic bags, resulting in a sample

APPENDIX II

Sample Detailed Methods of Sample Collection and Sample Analysis

weighing between 3 and 5 kilograms (kg). The sample bags were sealed, and labelled with a unique sample identifier, prior to shipment to the lab.

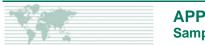
Outcrop Samples - 2004

Four samples of outcrop were collected from the vicinity of the mine portal. These samples were collected for the purpose of assessing the characteristics of rock encountered during the development of the underground ramp.

2.2 2008 Mine rock and Ore Sample Program

The 2008 sample program consisted of two components: collection of Mine Rock and ore samples from the bulk sample stockpiles and collection of outcrop and drill core samples.

Bulk Sample Stockpile Sample Collection- 2008


A 250 tonne (t) bulk sample was extracted from the mine portal in 2006 and 2007. Mine Rock and ore rock that was excavated during mining of the bulk sample was placed in 34 individual rock piles at the ore and Mine Rock storage area. Each rock pile was segregated according to the date which the material was mined. Fifteen piles consisted of material mined in October 2006, 5 of material mined in March 2007, and 14 of material mined in August 2007. Samples collected from each pile by Fortune geologists were submitted for assay of gold, arsenic, bismuth, cobalt, and copper; the assay values were used to designate each pile as sub-economic mineralized Mine Rock or ore. According to Fortune site geologists, black rock schist was the main rock type in 33 of the piles, and one rock pile consisted of (dominantly) feldspar porphyry.

In August 2008, the individual rock piles were centralized into an area immediately south of the Portal. The amalgamated rock pile was subsequently covered by low permeability geotextile to limit runoff and infiltration from the pile.

During the deconstruction of the individual rock piles, a detailed sample collection program was carried out in order to assess the effects of physical and chemical weathering during the short-term storage of mineralized Mine rock and low grade ore. Sixteen piles were selected for sampling, based on lithology (i.e., ore versus waste), arsenic assay values provided by Fortune and the date which the material was mined. The piles were visually observed by excavating a cross section through the middle of each pile using an excavator. The exposed cross section was logged with respect to visible signs of oxidation and alteration of in situ rock, Mine lithology, grain size variation, and presence of visible seepage pathways. Several samples were collected from each pile to assess compositional variation within the piles, with respect to both primary lithology and secondary effects of weathering. Each sample weighed approximately 3 to 5 kg. Samples were collected in large plastic bags, which were sealed and assigned a unique sample number. The individual samples were packed in large rock pails, which were sealed and labelled prior to shipment to the analytical laboratory. These samples were submitted for a number of tests to evaluate the primary (i.e., unaltered rock) and secondary (i.e., reaction products of physical and chemical weathering) composition of the rock.

Five piles were selected for collection of larger samples (i.e., greater than 200 kg) for the purpose of field scale testing. Stockpiles were selected for field cell construction samples in order to capture the range of arsenic concentrations in the piles in the bulk stockpile area. Four samples were collected piles known to consist of Mine Rock, one sample from an ore pile. The field cell samples were collected primarily from the unaltered zone in the interior of each stockpile. The rock in each sample was collected from a similar range in particle size, ranging

APPENDIX II

Sample Detailed Methods of Sample Collection and Sample Analysis

from the fine (sand size) fraction to less than approximately 20 cm. Representative sub-samples of each of these larger samples were submitted for geochemical characterization to confirm solid phase characteristics.

Exploration Drill Core and Outcrop Grab Samples-2008

Three samples of exploration drill core and 10 outcrop samples were collected from potential borrow areas and locations in the vicinity of the starter dams of the TMA. Exploration drill core samples were collected over 10 m intervals, according to the protocols followed during the 2004 drill core sample program.

Outcrop grab samples were collected from surface rock exposures using a rock hammer.

2.3 2008 Tailings Sample Program

Samples of the tailings products were generated during pilot plant testing conducted at SGS Lakefield, under the direction of Fortune. Tailings samples were collected by SGS Lakefield following the completion of pilot plant testing. Samples of the bulk rougher and bulk cleaner tailings, respectively, were submitted for geochemical characterization in order to evaluate the composition of the potential tailings products.

PP#14 is a mixture of multiple tailings products, which were generated by SGS Lakefield under the direction of Fortune. PP#14 consists of combined bulk rougher and bulk cleaner flotation tailings, representative of material that would be produced after the first 2 years of mining

3.0 SAMPLE ANALYSIS

Acid generation potential and metal-leaching rates were evaluated for each Mine Rock, low grade ore and tailings type using standard static and kinetic testing methods, consistent with the recommendations in Price (1997), MEND (2005), and INAP(2009). Field scale evaluation of mine rock, sub-economic mineralized Mine Rock, ore and tailings was initiated at the NICO Project site in 2008.

The subsequent sections provide an overview of the methods used in the NICO Project geochemical characterization program. Price (1997) should be referred to for extensive descriptions of the test methods.

3.1 Static Tests

Static tests are relatively rapid, one-time tests that are typically used to perform an initial assessment of the acid potential and metal leaching potential of a sample. Fortune contracted SGS Lakefield, in Lakefield Ontario to perform the static tests.

3.1.1 Mineralogy

Select samples of Mine Rock, ore and trace metals were submitted for mineralogical analysis by x-ray diffraction (XRD) using Rietveld refinement. This semi-quantitative method determines the relative occurrences of minerals in a sample. The neutron and x-ray diffraction of powder samples resulted in a pattern characterized by peaks in intensity at certain positions. The height, width and position of these peaks were used to determine many aspects of the materials structure. The Rietveld method used a least squares approach to refine a theoretical line profile from a software library until it matched the measured profile.

3.1.2 Major Element and Trace Metals Analysis

Major and trace element analysis was conducted to quantify the elemental composition of the sample. Mine Rock, sub-economic mineralized Mine Rock, ore and tailings samples were submitted for major element and trace metal analysis.

Major and trace metal analyses was conducted according to the methods listed below:

- whole rock analysis for major oxides (Al₂O₃, CaO, Cr₂O₃, Fe₂O₃, K₂O, MgO, MnO, Na₂O, P₂O₅, SiO₂, TiO₂, V₂O₅) by borate fusion / x-ray fluorescence (XRF) (Claisse 1995; Rouseau 1990);
- metals (Ag, Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sb, Sn, Sr, Ti, Tl, U, V, Zn) and metalloids (As and Se) by inductively-coupled plasma mass spectroscopy (ICP-MS), with samples extracted using a concentrated strong acid solution of perchloric, nitric, hydrochloric and hydrofluoric acids (Bock, 1979); and
- mercury by cold vapour atomic absorption spectroscopy (CVAAS), EPA 245.1 methodology (U.S. EPA, 1983).

3.1.3 Modified Acid-Base Accounting (ABA)

Most samples of mine rock, sub-economic mineralized mine rock, ore and tailings were submitted for acid-base accounting (ABA), including the following tests:

- paste pH;
- total sulphur according to ASTM E1915-01 (ASTM, 2001a), and sulphide and sulphate sulphur as outlined in Price (1997), based upon EPA-600 methodology (Sobek et al., 1978);
- total inorganic carbon by LECO (ASTM (2001a); and
- bulk neutralization potential by modified Sobek method as per Lawrence (1990) and UBC (1996) and carbonate neutralization potential (NP).

3.1.4 Net Acid Generation (NAG) Testing

Select samples of mine rock, sub-economic mineralized Mine Rock, ore and tailings were submitted for NAG testing, conducted according to the protocols in AMIRA (2002). The purpose of the NAG test is to ensure complete oxidation of all sulfide minerals.

The results of the NAG test were used to assess the potential of a material to produce acidity after a period of exposure and weathering. During the NAG test, hydrogen peroxide is added to a sample in quantities sufficient to completely oxidize all sulphide minerals. The NAG pH is the pH of the oxidized solution measured at the termination of the test. The NAG pH was a useful indicator of whether a sample contains sufficient internal buffering capacity to neutralize the acidity produced through sulphide oxidation.

NAG testing was performed as described in AMIRA (2002) and Miller et al. (1997). The pH of the oxidized solution was measured after the completion of the reaction, followed by titration of the solution to a pH of 4.5 with sodium hydroxide. Back-titration to a pH of 7 was completed to provide added information on buffering capacity.

APPENDIX II

Sample Detailed Methods of Sample Collection and Sample Analysis

Three methods of short-term leach testing were performed on select samples of Mine Rock, sub-economic mineralized mine rock and tailings: synthetic precipitation leaching procedure (SPLP), shake flask extraction (SFE) and comprehensive analysis of NAG leachates. A brief summary of each method is presented below.

Select samples of exploration drill core, outcrop and tailings were submitted for SPLP. The purpose of SPLP is to evaluate the leachability of rock samples in weakly acidic leachate. SPLP was performed according to USEPA method 1312, modified to a 4:1 leachate to solid ratio using a standard dilute sulphuric/nitric acid solution using a pH 5 solution. Prior to SPLP, samples are crushed and ground to a maximum grain size of 9.5 mm. During SPLP, the sample is agitated over a period of 18 hours on a rotary extractor prior to the decant of the SPLP leachate for analysis. SPLP leachates were analysed for the following:

■ pH, sulphate by ion chromatography, and ICP metal scan (including Al, As, Ag, Ba, Be, B, Bi, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti Tl, U, V, Y. and Zn) and Hg by CVAAS

SFE was conducted on samples of exploration drill core and stockpiled, ROM rock. SFE simulates the dissolution of soluble mineral phases from a sample in de-ionized water (i.e., neutral pH solution). During SFE, a 100 gram sample of rock is leached with 300 mL of de-ionized water over a period of 18 hours. Exploration drill core samples were crushed and ground to a maximum grain size of 9.5 mm prior to SFE. Most ROM rock samples, on the other hand, did not undergo grain size reduction prior to SFE, in order to better represent actual grain sizes observed, and reduce uncertainty that could be introduced in the testing by crushing and grinding. A sub-set of the ROM samples were crushed to a maximum grain size of 9.5 mm prior to leach testing, to evaluate the variation in leachability resulting from grain size reduction. SFE leachates were analysed for the following:

■ pH, sulphate by ion chromatography, and ICP metal scan (including Al, As, Ag, Ba, Be, B, Bi, Ca, Cd, Co, Cr, Cu, Fe, Li, Mg, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti Tl, U, V, Y, and Zn) and Hg by CVAAS

For select samples, the NAG supernatant water quality was analyzed after oxidation by hydrogen peroxide but before sample titration. The purpose of this evaluation was to determine the composition of leachate that could result from the complete oxidation of sulphide minerals and dissolution of non-sulphide minerals that are soluble in the test conditions. The NAG supernatant was tested for the following parameters:

■ pH, alkalinity, acidity, conductivity, sulphate and chloride by ion chromatography, ICP metal scan (including Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se Sn, Sr, Ti, Tl, U, V, W, Y, and Zn) and Hg by CVAAS

3.1.5 Tailings Decant Water and Process Water Evaluation

Two methods of decant water quality analysis were performed:

- Water decanted from samples of bulk rougher tailings, cleaner flotation tailings and the NICO Field Test Blend tailings was submitted for chemical analysis. Analysis of this water provides an indication of the chemical composition of process water in contact with tailings.
 - Water decanted from samples of the bulk rougher tailings and NICO Field Test Blend during the construction of the tailings field cells at the NICO Project site was submitted for analysis at ALS Environmental, including pH, conductivity, alkalinity, Total Dissolved Solids (TDS) and hardness, nitrogen species, and total and dissolved major parameters and metals (Ca, Cl, K, Mg, Na, SO₄, Ag, Al, As. B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, U, V, and Zn).

APPENDIX IISample Detailed Methods of Sample Collection and Sample Analysis

- Water was decanted from cleaner flotation tailings (PP #14) at SGS Lakefield. This water was submitted for analysis including pH, conductivity, alkalinity, TDS, nitrogen species, and total and dissolved major parameters and metals (Ca, Cl, K, Mg, Na, SO₄, Ag, Al, As. B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, U, V, and Zn).
- Aging tests were conducted on NICO Field Test Blend tailings and the Iron-Arsenic Precipitates (copper recovery). The purpose of age testing is to evaluate the composition of the standing column of water (i.e., decant water) that forms as the solid particles settle from the slurry. According to SGS Lakefield (Barbara Bowman, SGS Lakefield, Pers. Comm. June 16, 2009), the aging tests were conducted as follows:
 - The NICO Field Test Blend was generated by recombining pulps and decant solution. The samples were allowed to stand for a period of 56 days. Decant water was collected at Day 0, 1, 14, 21, 28 and 56.
 - Decant water samples were analyzed for by ICP-MS for metals, major ions, pH, acidity, alkalinity, nitrate and ammonia. Samples from the aging test conducted on decant water from NICO Field Test Blend were submitted for cyanide analysis.
- Samples of process water (i.e., water that was recycled through the pilot plant) were collected from the 2010 pilot plant. Samples were submitted for analysis including pH, conductivity, alkalinity, and total and dissolved major parameters and metals (Ca, Cl, K, Mg, Na, SO₄, Ag, Al, As. B, Ba, Be, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, U, V, and Zn).

3.2 Kinetic Testing - Laboratory Humidity Cell Tests

Select samples of Mine Rock and tailings were submitted for humidity cell testing. The analytical protocol adopted for the NICO Project humidity cell tests was ASTM D5744-96 (Standard Test Method for Accelerated Weathering of Solid Materials Using a Modified Humidity Cell). Method ASTMD 5744-96 is a widely used standard technique for accelerated weathering. The ASTM method assesses the rate of weathering and release of mass from a solid material sample (ASTM 2001b). The tests are performed in a cylindrical cell measuring 10.2 cm in diameter. Within the cell, a 1 kg rock sample is leached with 1 liter (L) of de-ionize water. The test procedure consists of weekly cycles: for 3 days the cell is provided a steady flow of dry air (less than 10% oxygen), and for 3 days the cell is supplied with a steady flow of water saturated air (95% relative humidity). The cell is leached with a fixed volume of water on the seventh day. The de-ionized water was added as a single batch, with minimal disturbance of the rock. After 1 hour, the cell gravity-drains and the leachate were collected and submitted for chemical analysis. Leachate is analyzed for standard and comprehensive parameters according to the schedule below:

- pH, conductivity, acidity, alkalinity and sulphate, every week;
- for the first 5 cycles (including the initial flush), filtered leachate samples were submitted for dissolved metals analysis by ICP MS, mercury (CVAAS), and chloride;
- after the fifth week, leachate analysis was performed at 5-week intervals (i.e., weeks 10, 15, 20, etc.); and
- all intermediate weekly samples (i.e., weeks in which metals analyses are not completed) were retained and preserved as required, for possible future analyses.

APPENDIX II Sample Detailed Methods of Sample Collection and Sample Analysis

3.3 Field Cells

Several large scale (i.e., > 200 kg) mine rock and ore field cells and tailings field cells (50 to were installed at the NICO Project in 2008 and 2010 to evaluate the long-term stability of rock in site-specific conditions. The principal objective of the field cell program at the NICO Project is to evaluate the potential for acid rock drainage and metal leaching of Mine Rock, low-grade ore and tailings in the site-specific, sub-arctic conditions.

The field cells consist of a 205 L (55 gallon) drum, fitted with a PVC sample outlet and a basal drainage layer of silica sand overlain by geotextile material. During the construction of each field cell, the rock / tailings sample was placed in the drum, which remains open to the atmosphere. Ambient precipitation drains through the sample, exiting through the basal outlet and collecting in a sample container.

Leachate samples are to be collected from the field cells regularly during the wet season. Fortune contracts ALS Environmental (ALS) in Yellowknife, NWT to perform the analysis of the field cell leachate. Field cell leachate samples are analyzed for the following parameters:

- pH, conductivity, alkalinity, acidity, hardness, total suspended solids (TSS) and total dissolved solids (TDS), Cl and SO₄;
- ICP scan, including Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Ti, Tl, U, V, and Zn; and
- Arsenic Speciation.

Field measurements recorded at the time of sample collection include the following:

■ pH, conductivity, temperature and visual observations (e.g., discoloration, mineral precipitate, algal growth, etc).

Field cell tests are ongoing, as it is anticipated that several years of additional data collection will be required to achieve meaningful weathering rates.

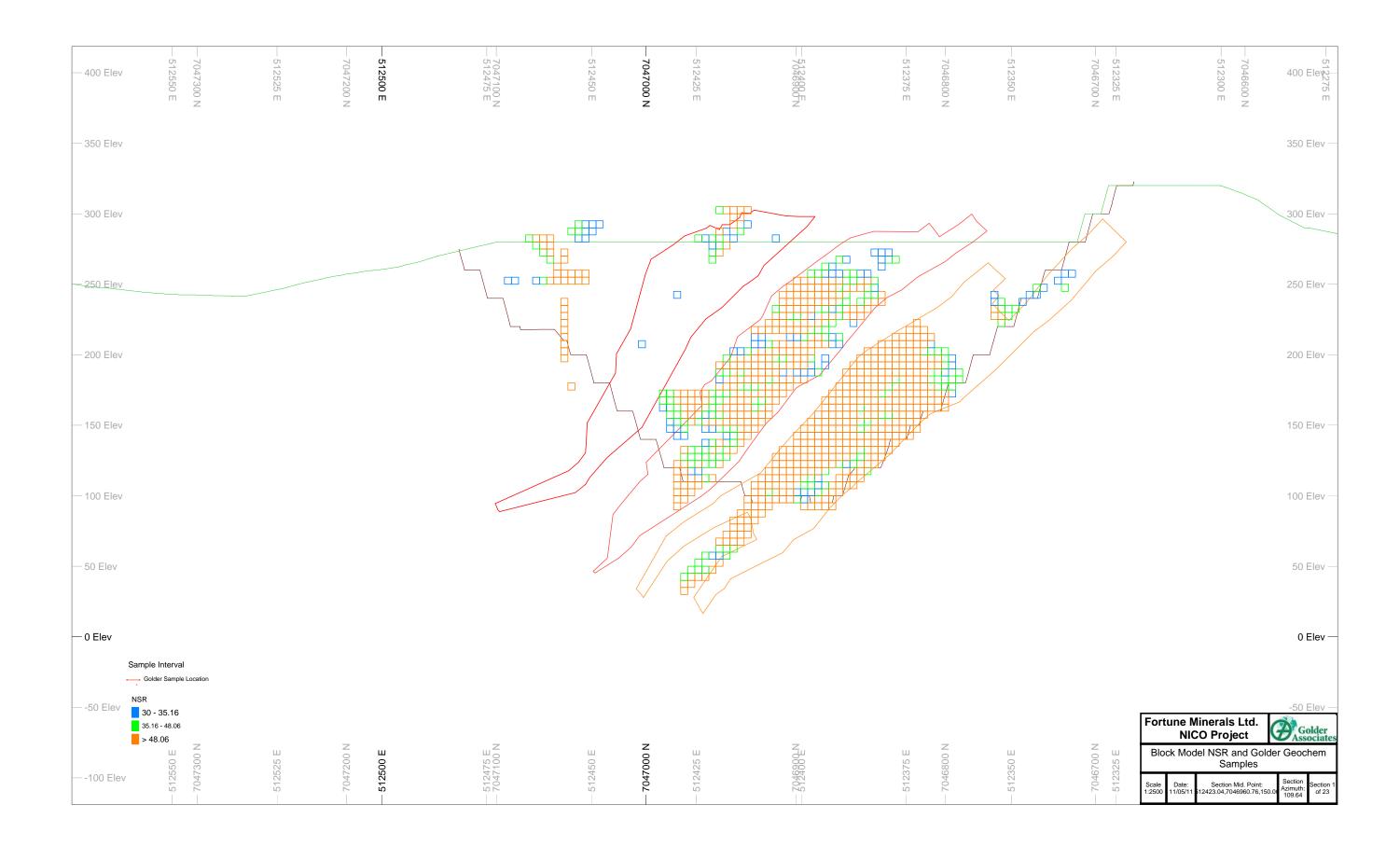
4.0 REFERENCES

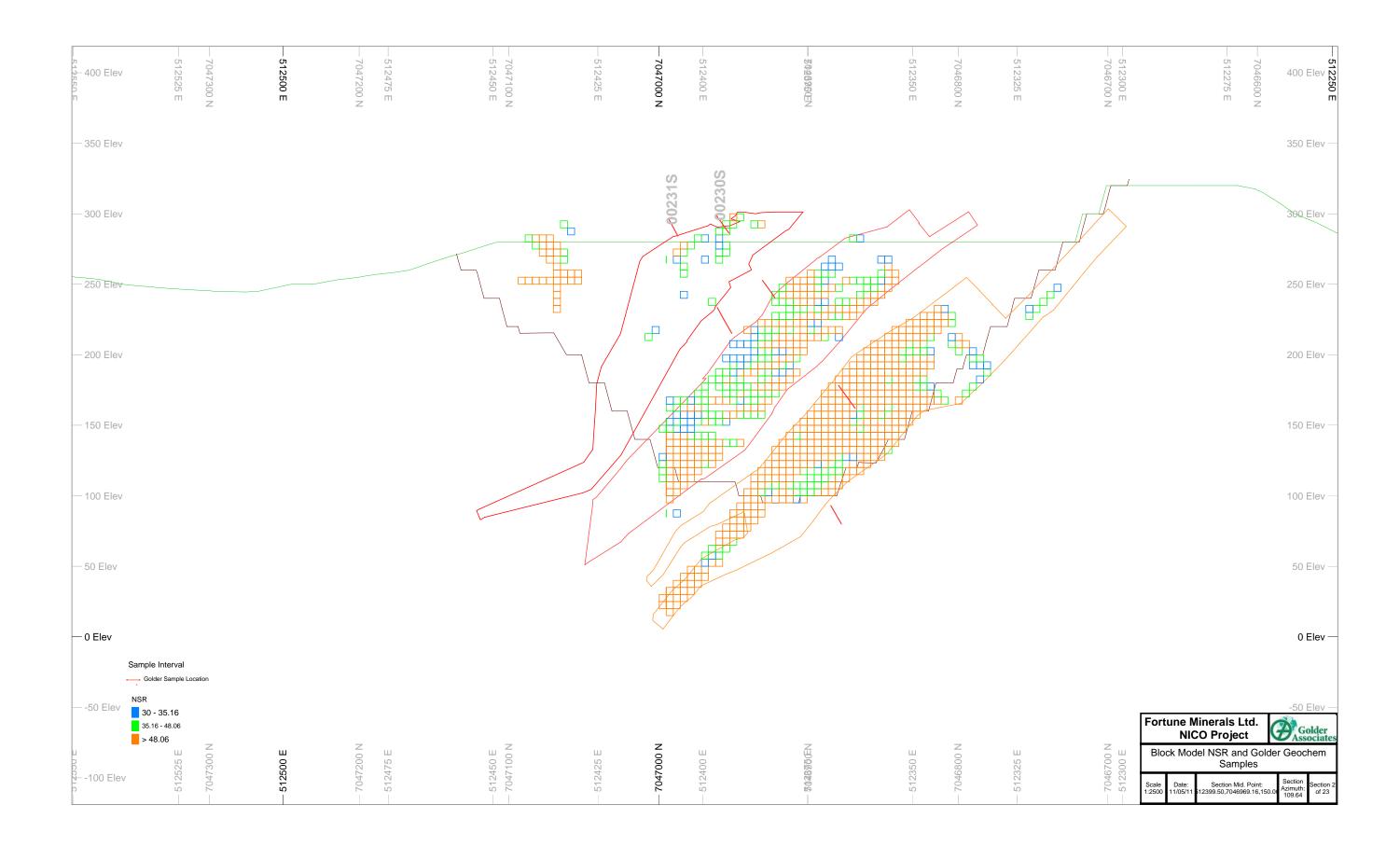
- AMIRA (AMIRA International Ltd.). 2002. ARD Test Handbook Prediction and Kinetic Control of Acid Mine Drainage. Environmental Geochemistry International Pty. Ltd. and Ian Wark Institute, University of South Australia.
- ASTM. 2001a. E1915-01 Test Methods for Analysis of Metal Bearing Ores and Related Materials by Combustion Infrared Absorption Spectrometry. Volume 03.06.
- Bock, R. 1979. In: A Handbook of Decomposition Methods in Analytical Chemistry. Ed.; Halsted Press, Div. Wiley & Sons: New York, 1979.
- Claisse, F. 1995. Glass disks and solutions by borate fusion for users of Claisse fluxers. Corporation Scientifique Claisse Inc., Saint Foy, Quebec, 48 p.
- Lawrence, R.W. 1990. Prediction of the behaviour of mining and processing wastes in the environment. In: Doyle FM (Ed). Western regional symposium on mining and mineral processing wastes, Littleton, CO:AIME/SME Publication, 115-121 p.

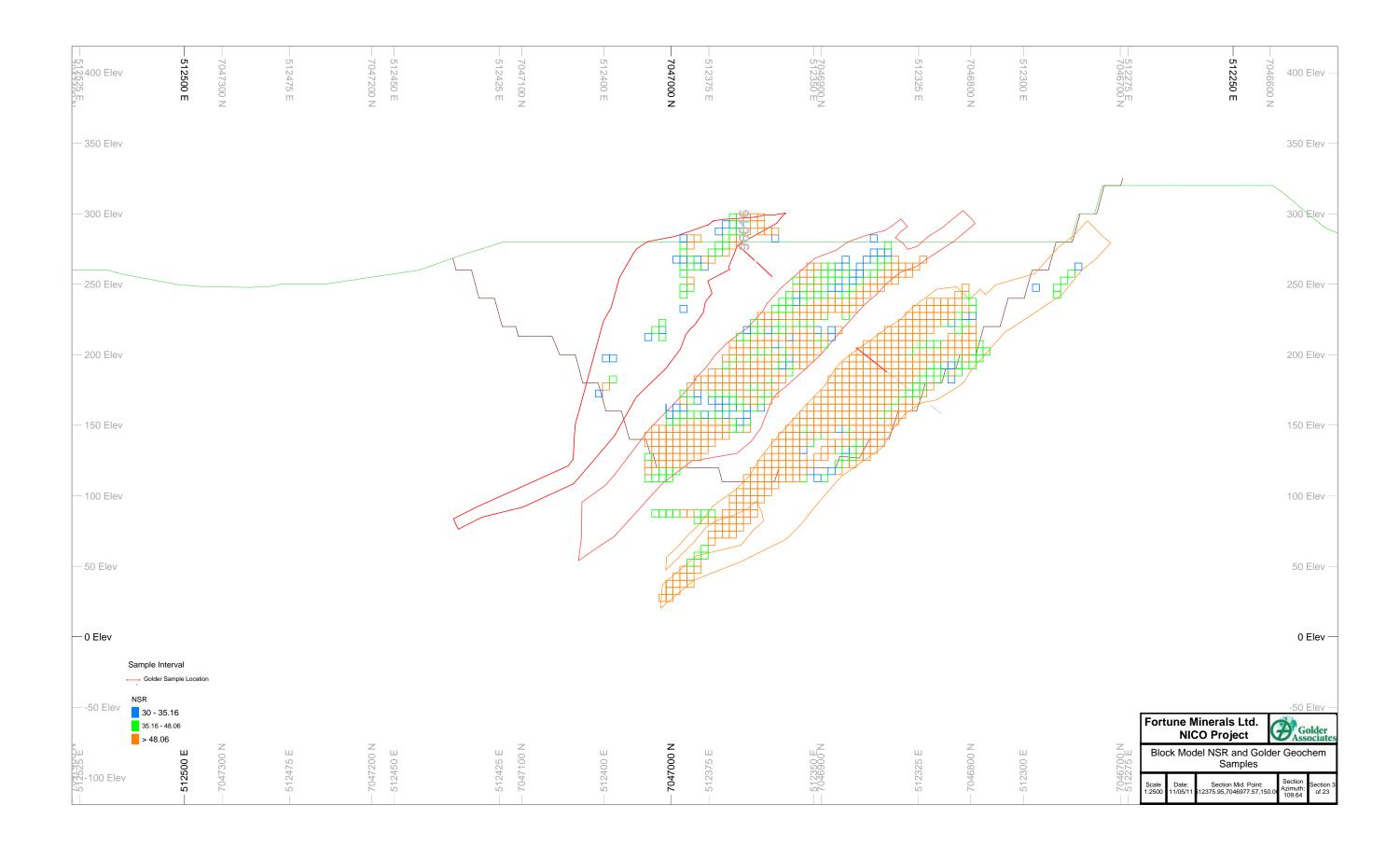
APPENDIX II

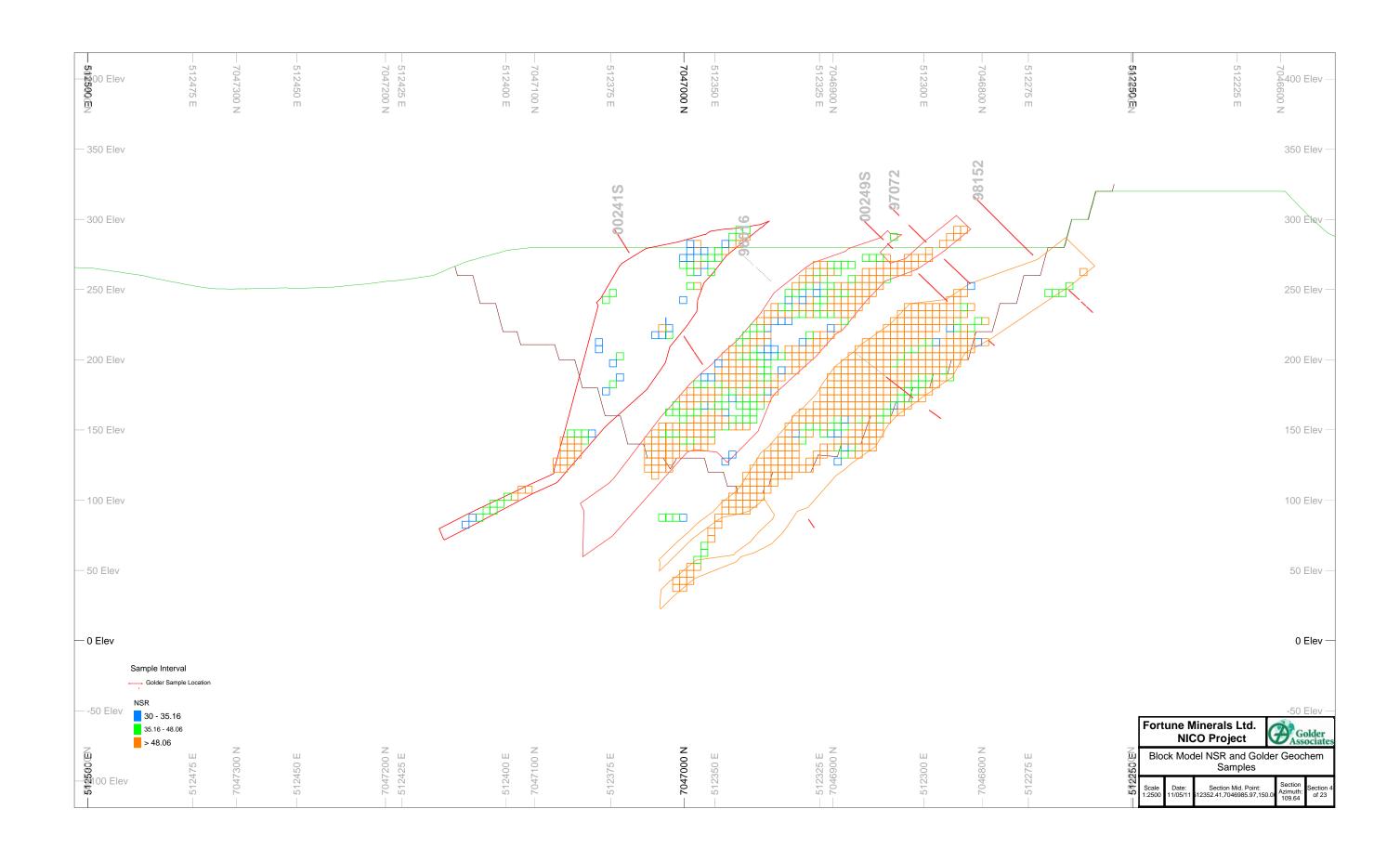
Sample Detailed Methods of Sample Collection and Sample Analysis

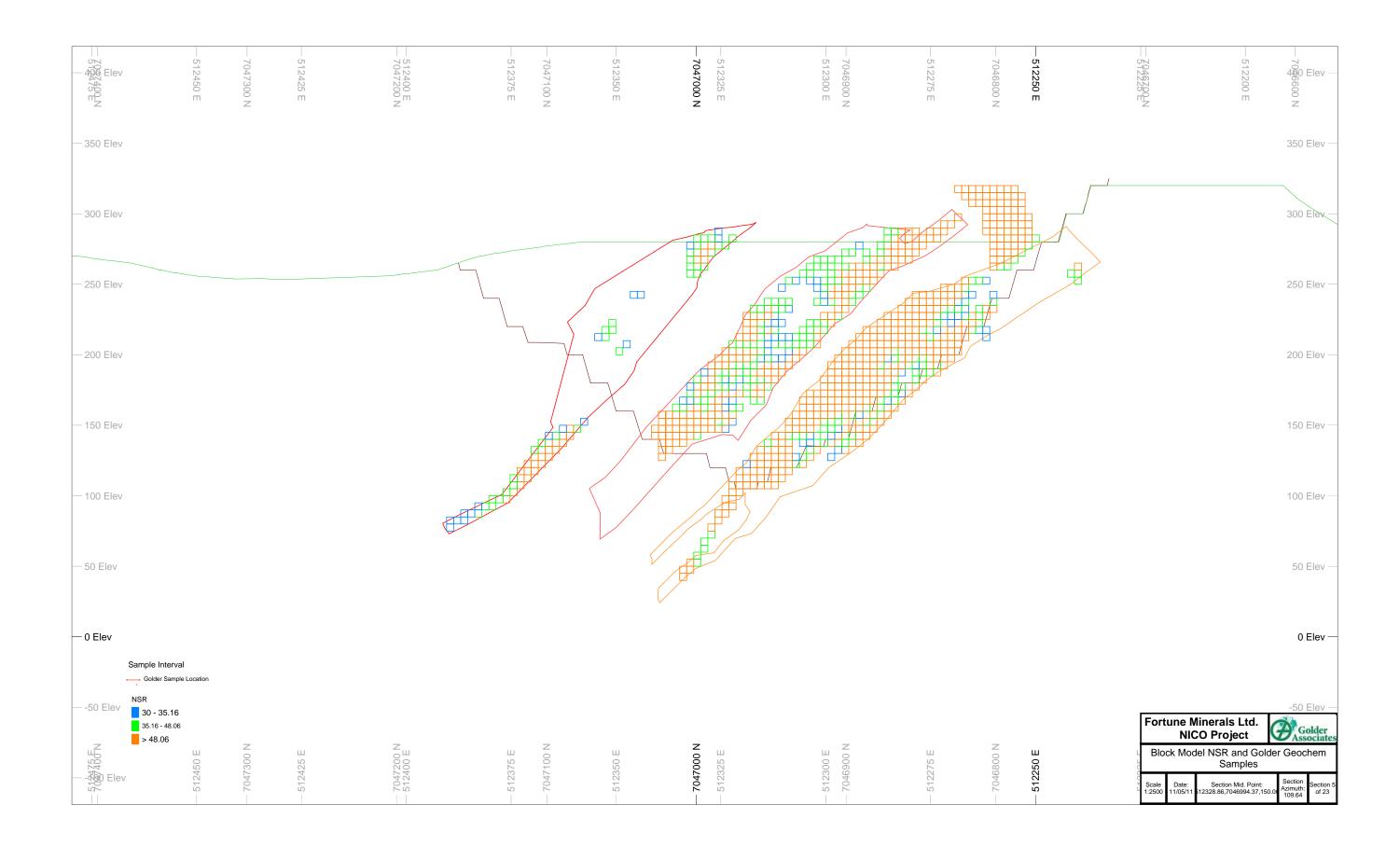
- MEND. 2009. Prediction Manual for Drainage Chemistry from Sulphidic Geologic Materials. MEND Report 1,20.1. December 2009.
- Miller, S., A. Robertson, and T. Donahue, 1997. Advances in acid drainage prediction using the net acid generating (NAG) test. Proceedings of the 4th Int. Conference on Acid Rock Drainage, Vancouver, B.C. May 31-June 6, 1997. 533 to 549 p.
- Price, W.A. 1997. Draft Guidelines and Recommended Methods for the Prediction of Metal Leaching and Acid Rock Drainage at Minesites in British Columbia. Reclamation Section, Energy and Minerals Division, British Columbia Ministry of Employment and Investment, April 1997.
- Rousseau, R. M. 1990. CiLT. Software for chemical composition calculations using the Lachance-Traill algorithm in X-ray fluorescence analysis, Version 4.1. Les Logiciels R. Rousseau Inc., Cantley, Quebec.
- Sobek, A.A., W.A. Schuller, J.R. Freeman, and R.M. Smith, 1978. Field and Laboratory Methods Applicable to Overburdens and Minesoils. Report EPA-600/2-78-054, US National Technical Information Report PB-280 495.
- UBC (University of British Columbia). 1996. Determination of Neutralization Potential for Acid Rock Drainage Prediction. MEND Project 1.16.3
- U.S. EPA (United States Environmental Protection Agency). 1983. Office of Research and Development, Cincinnati, Ohio 45268, EPA-600/4-79-020.
- U.S. EPA. 1991. Methods for the Determination of Metals in Environmental Samples. Environmental Monitoring Systems Laboratory Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, EPA-600/4-91-010, June 1991.

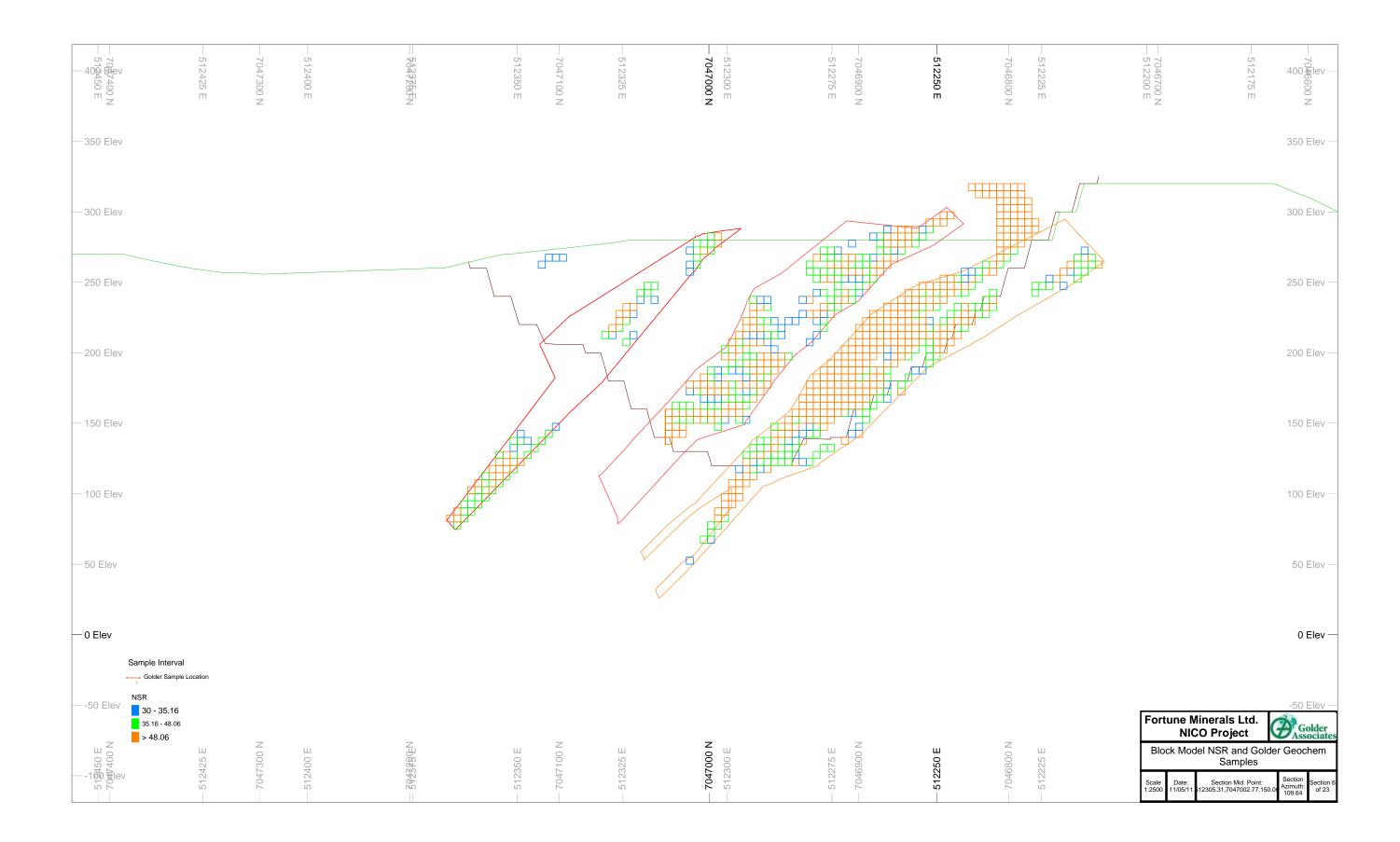




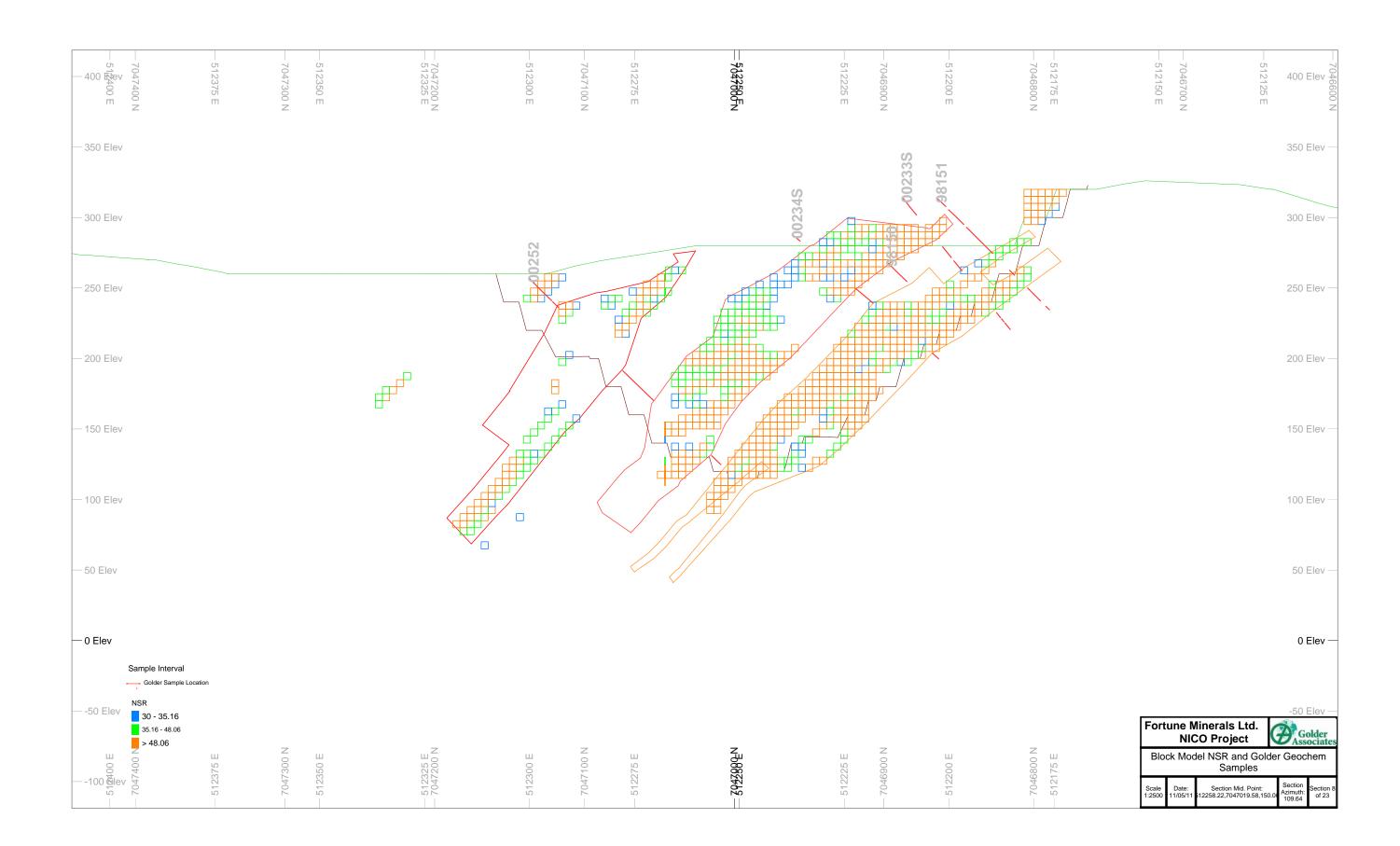

APPENDIX III

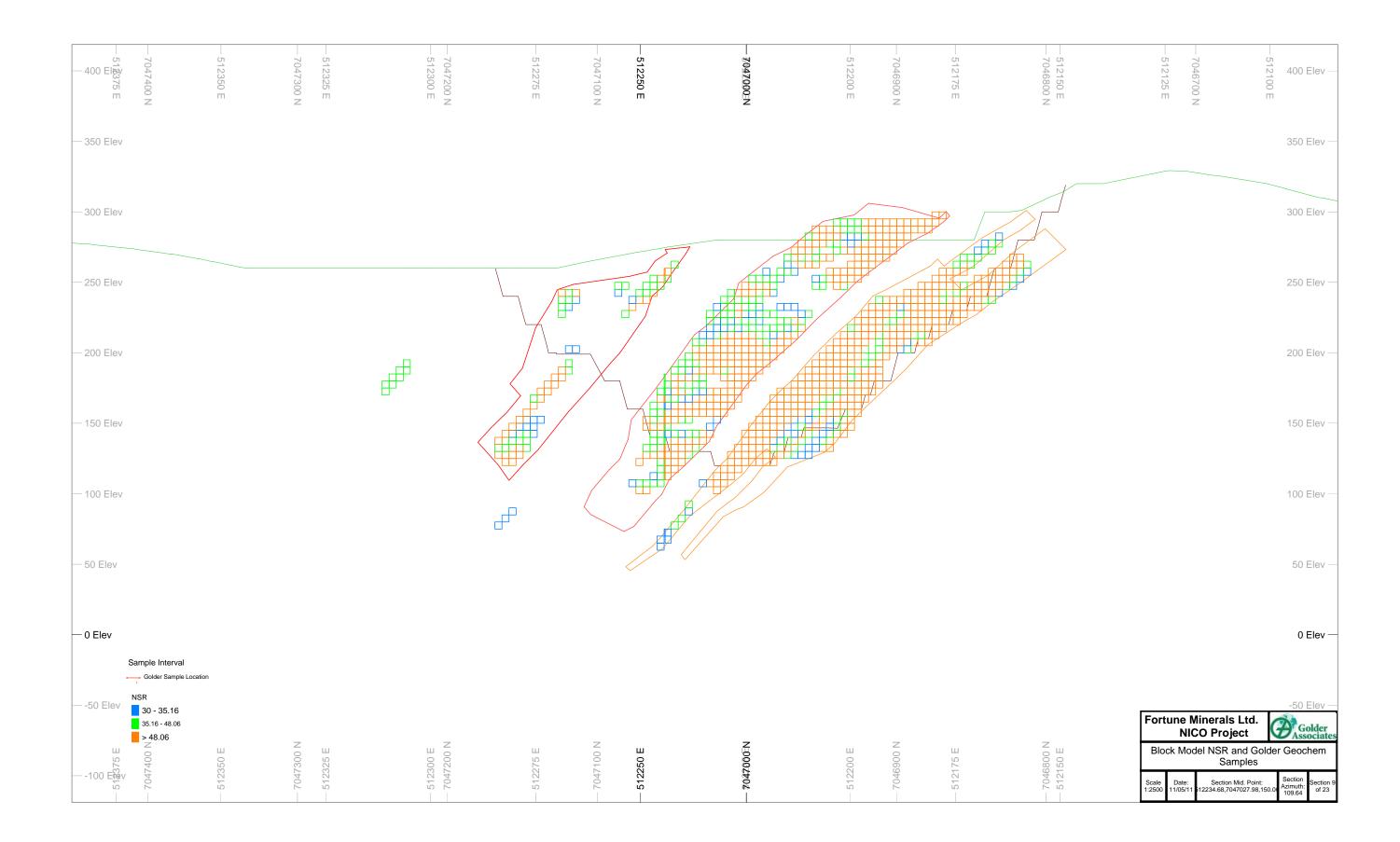

Cross Sections

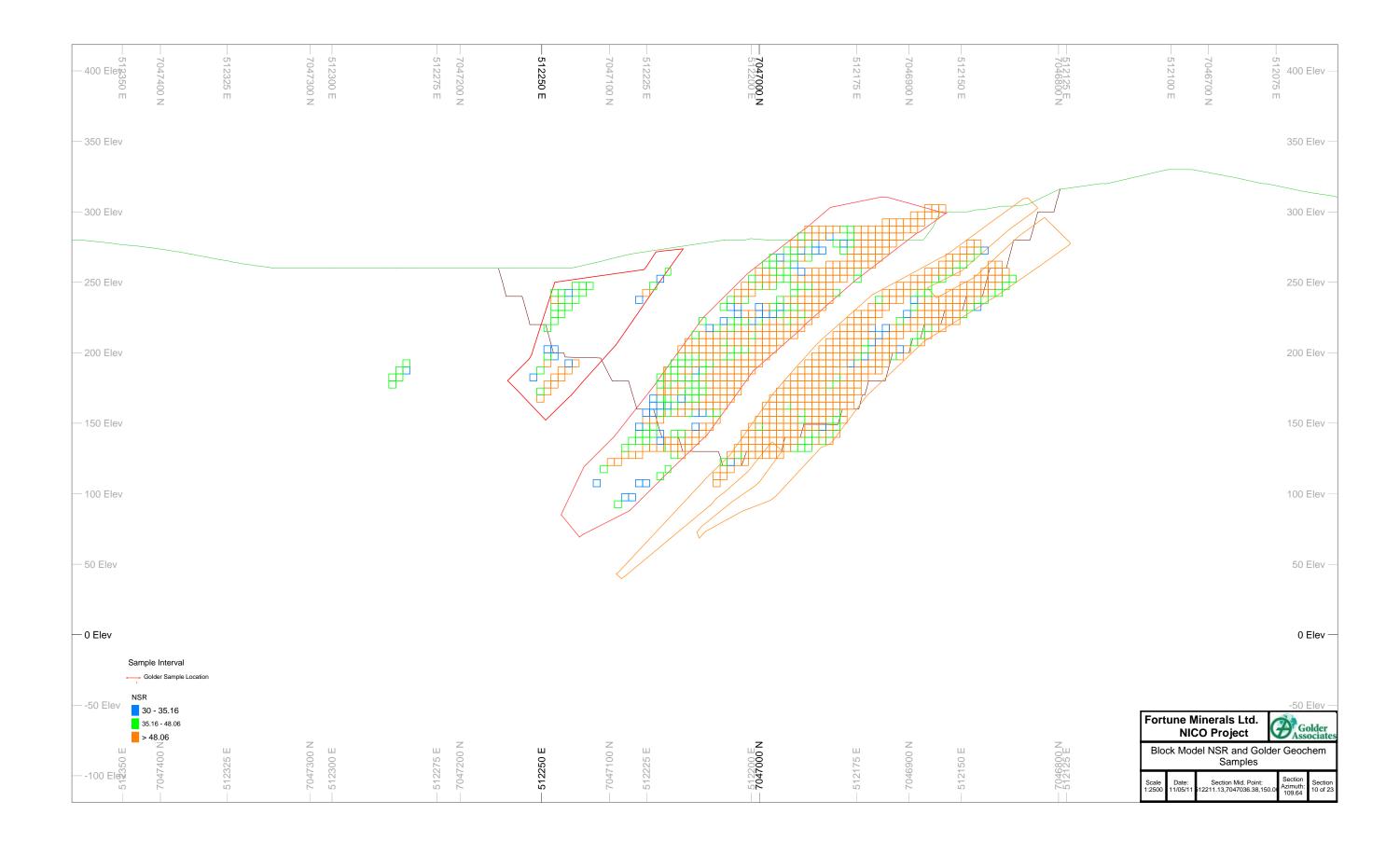


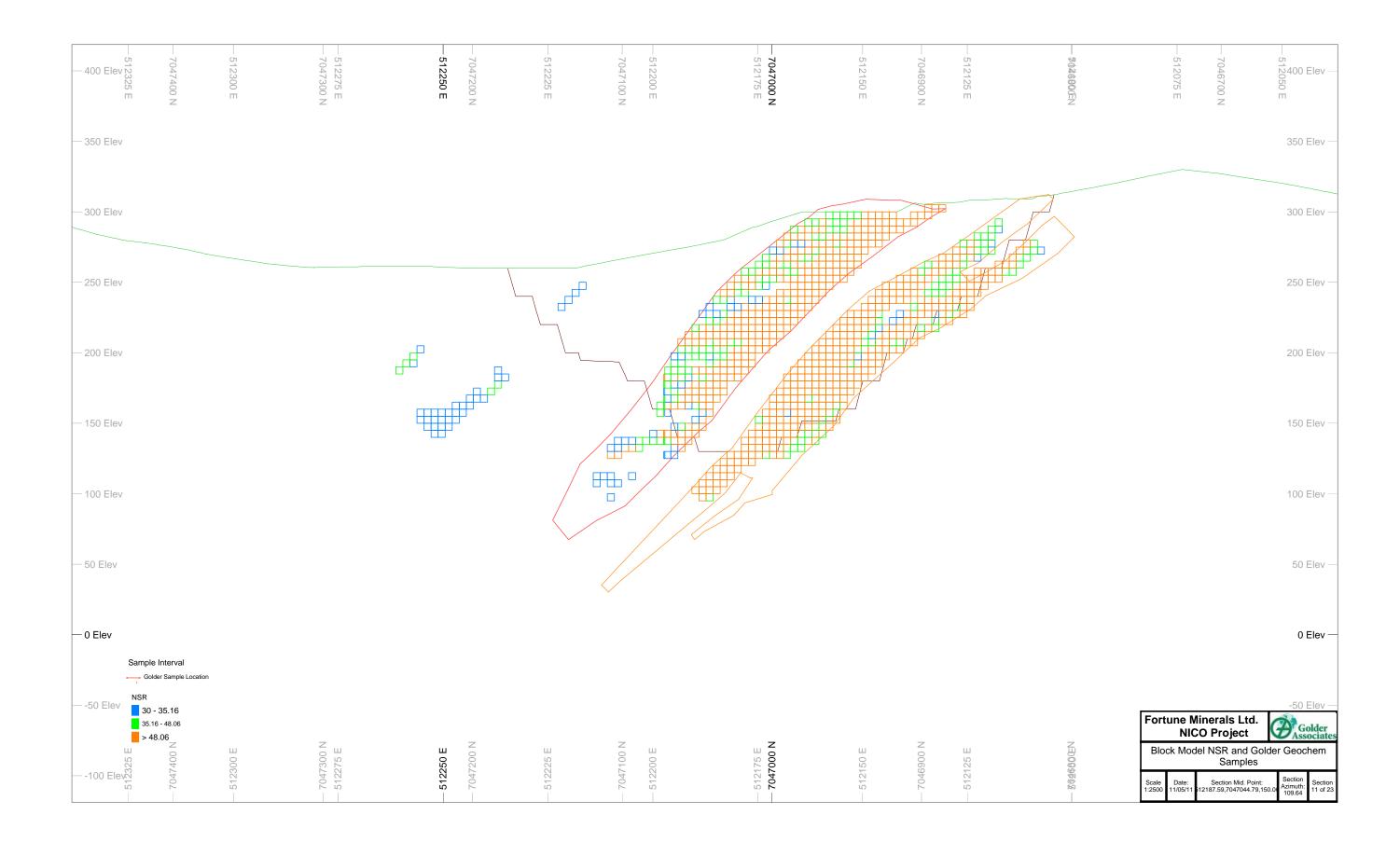


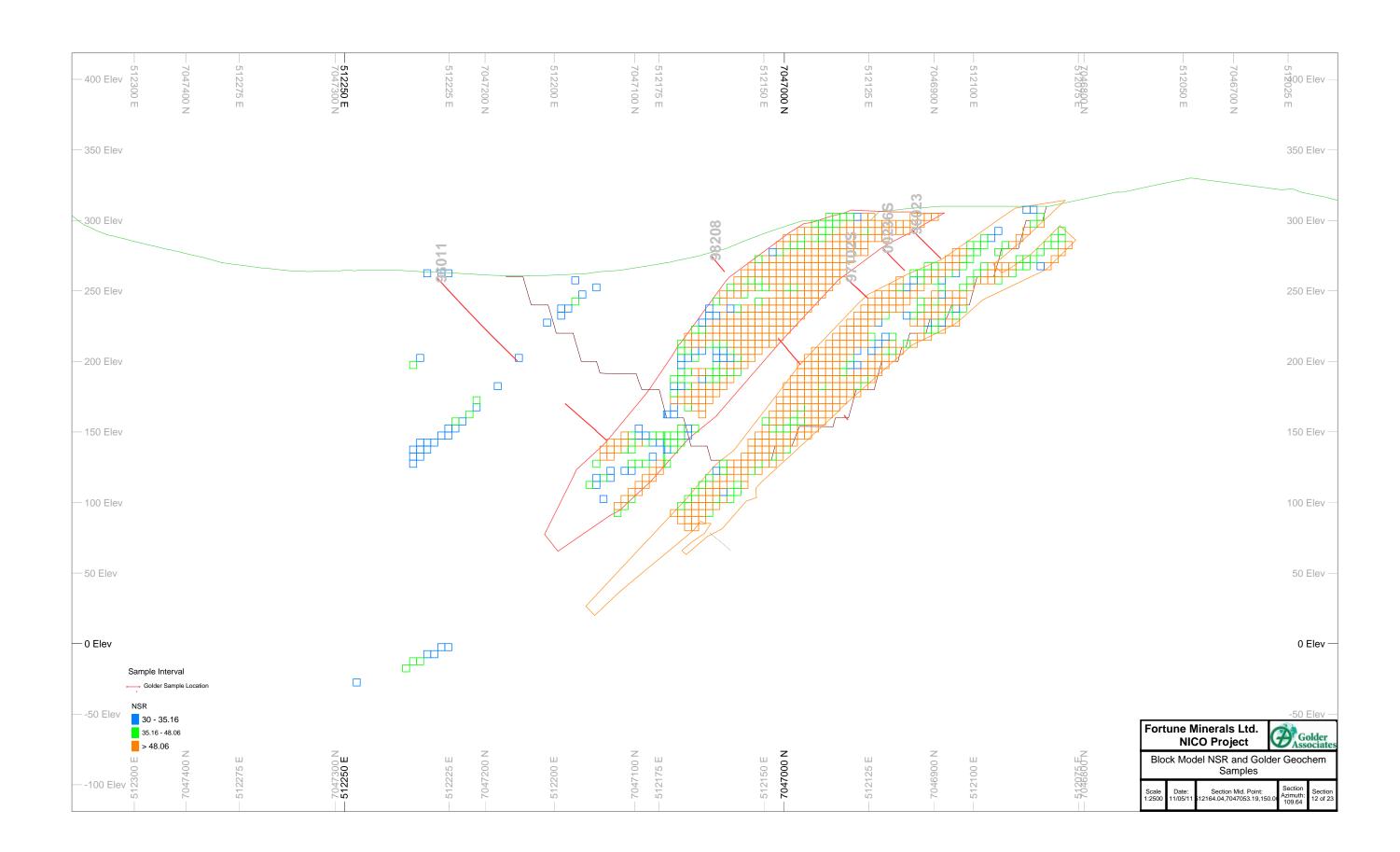


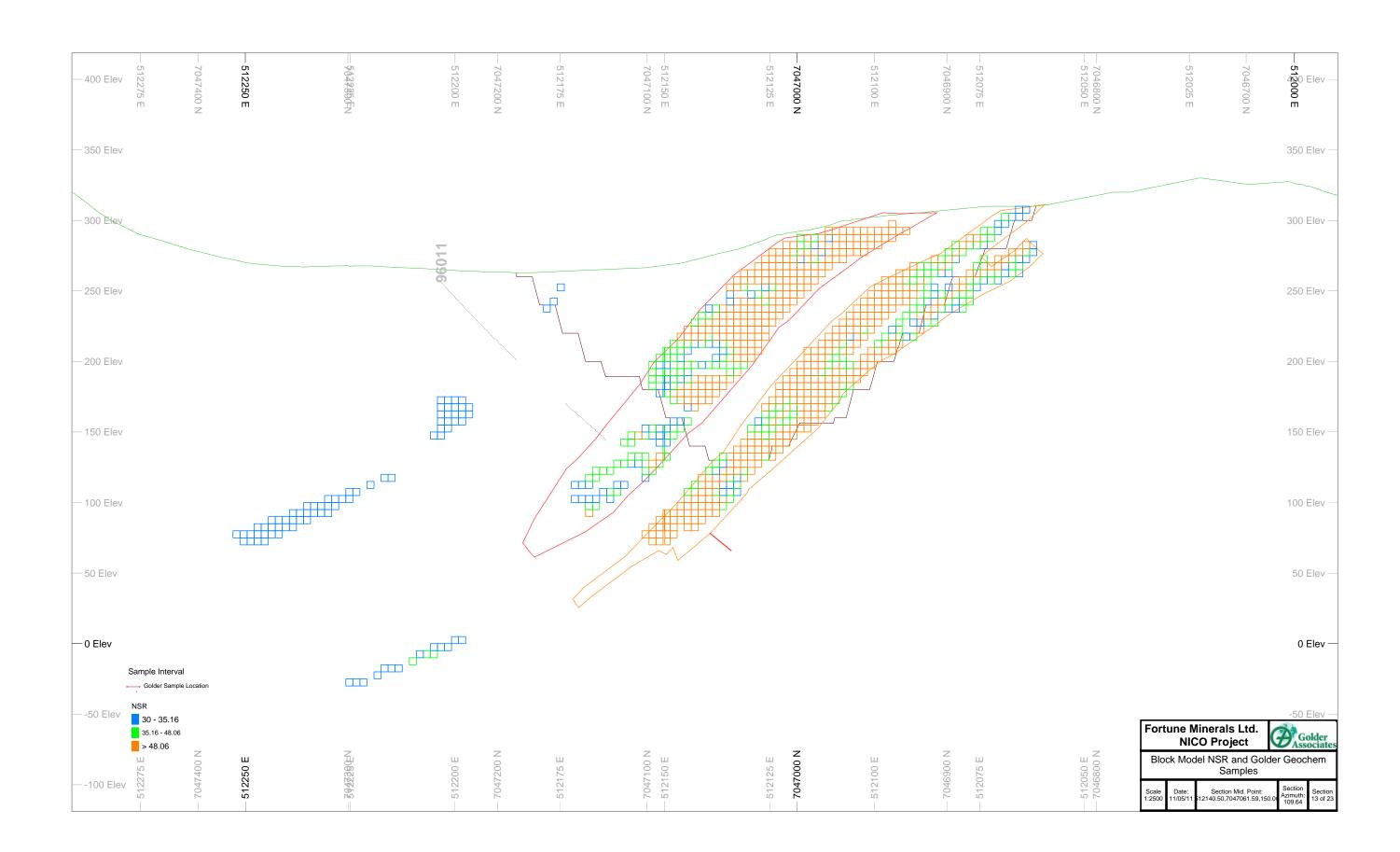


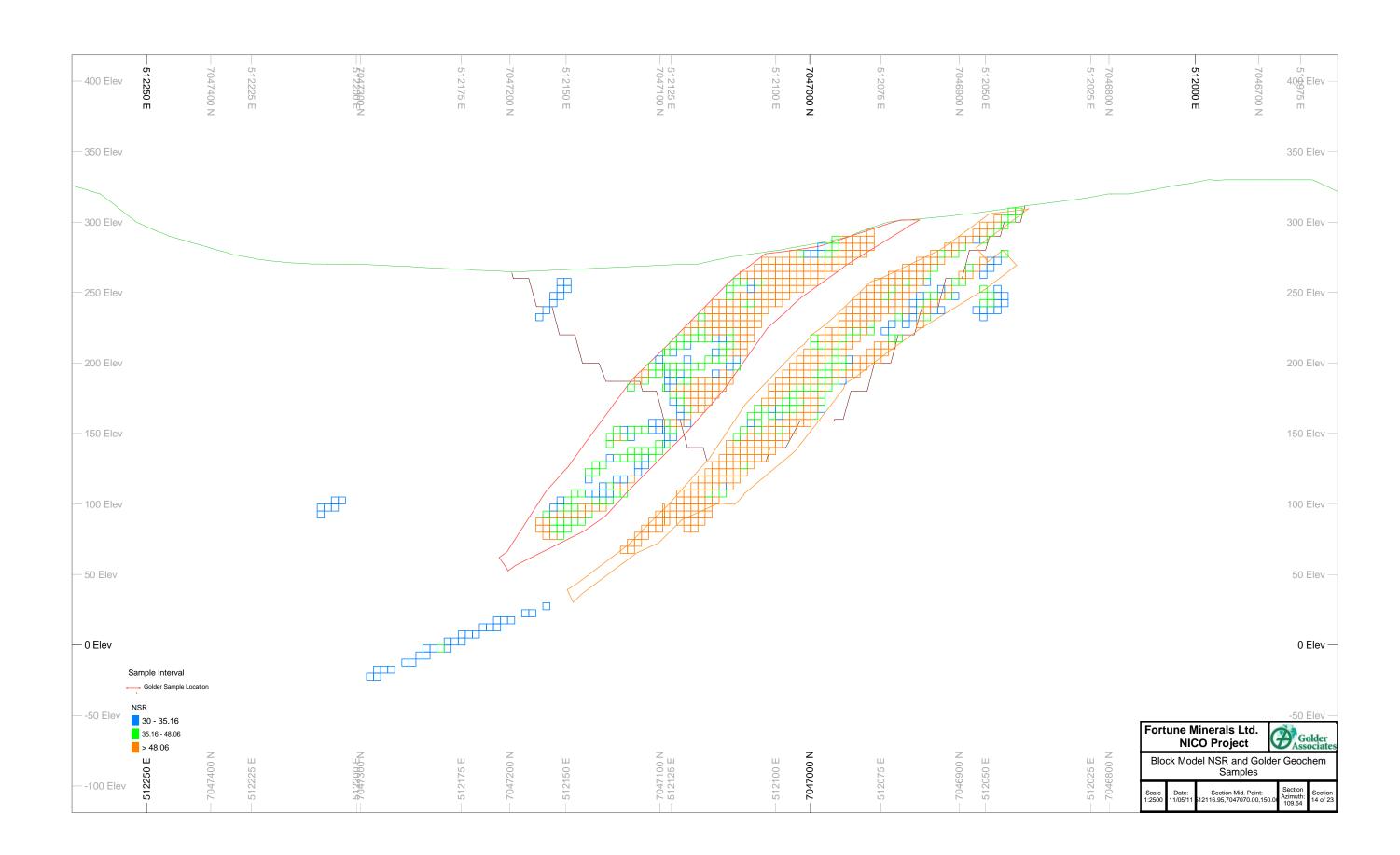


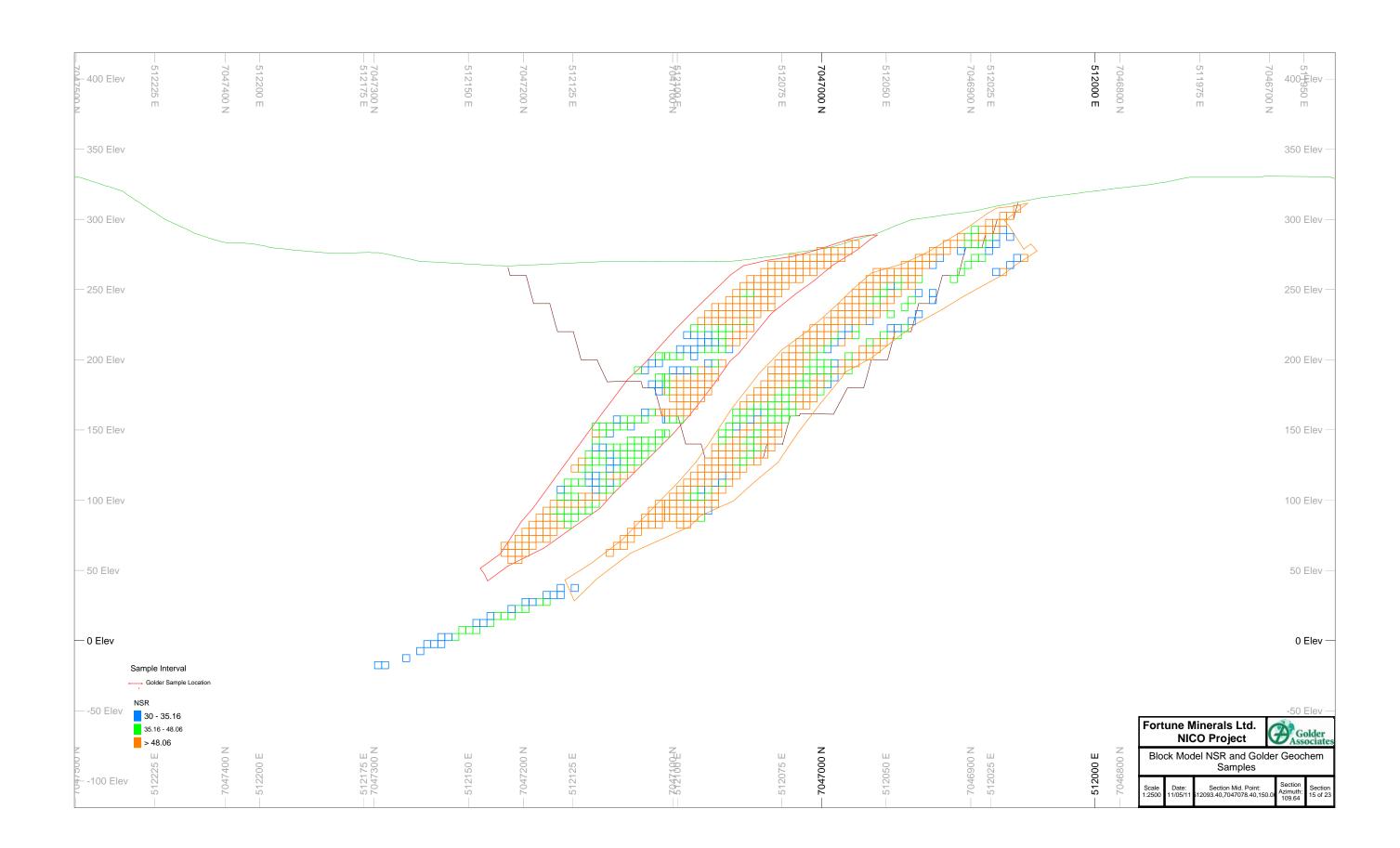


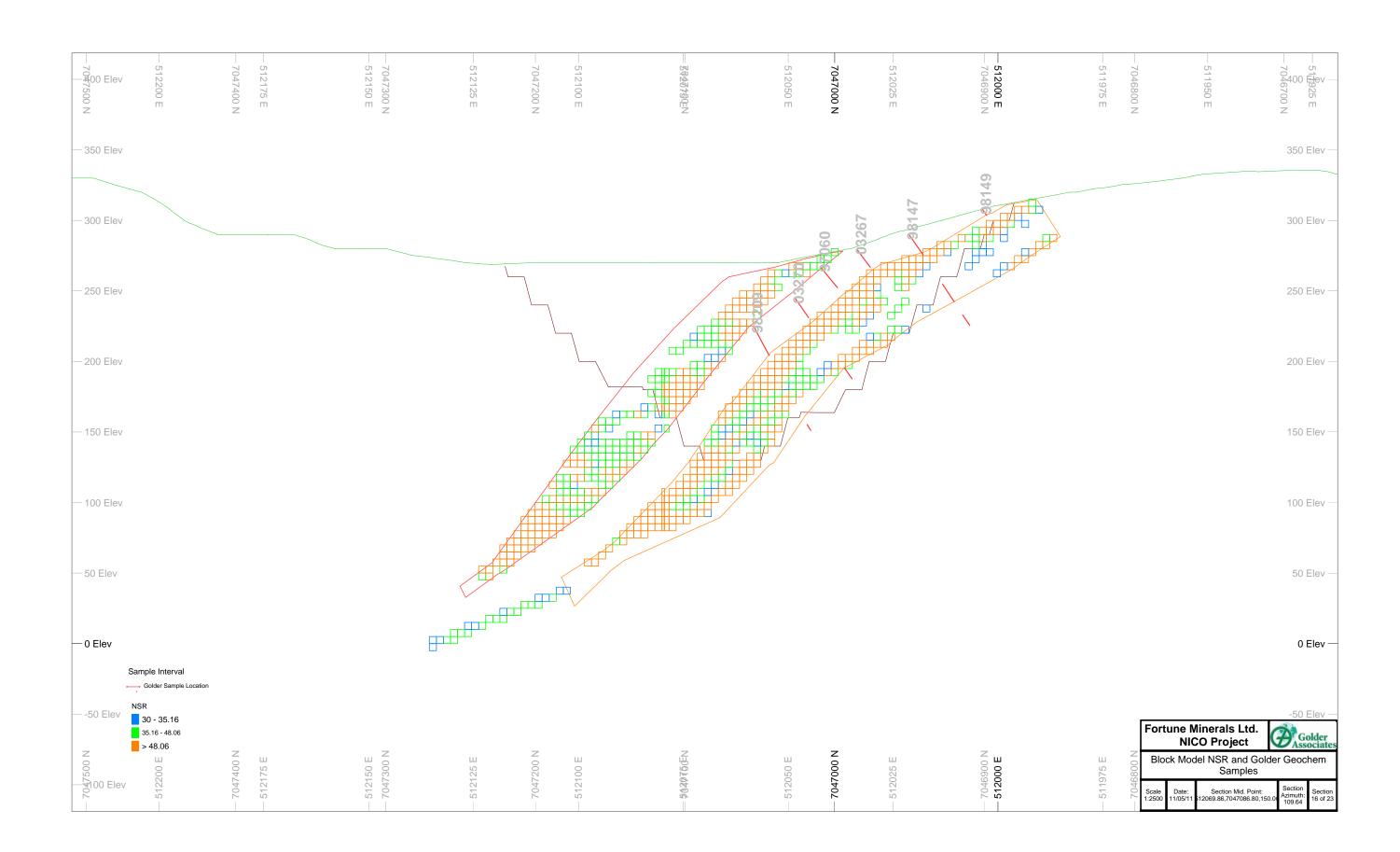


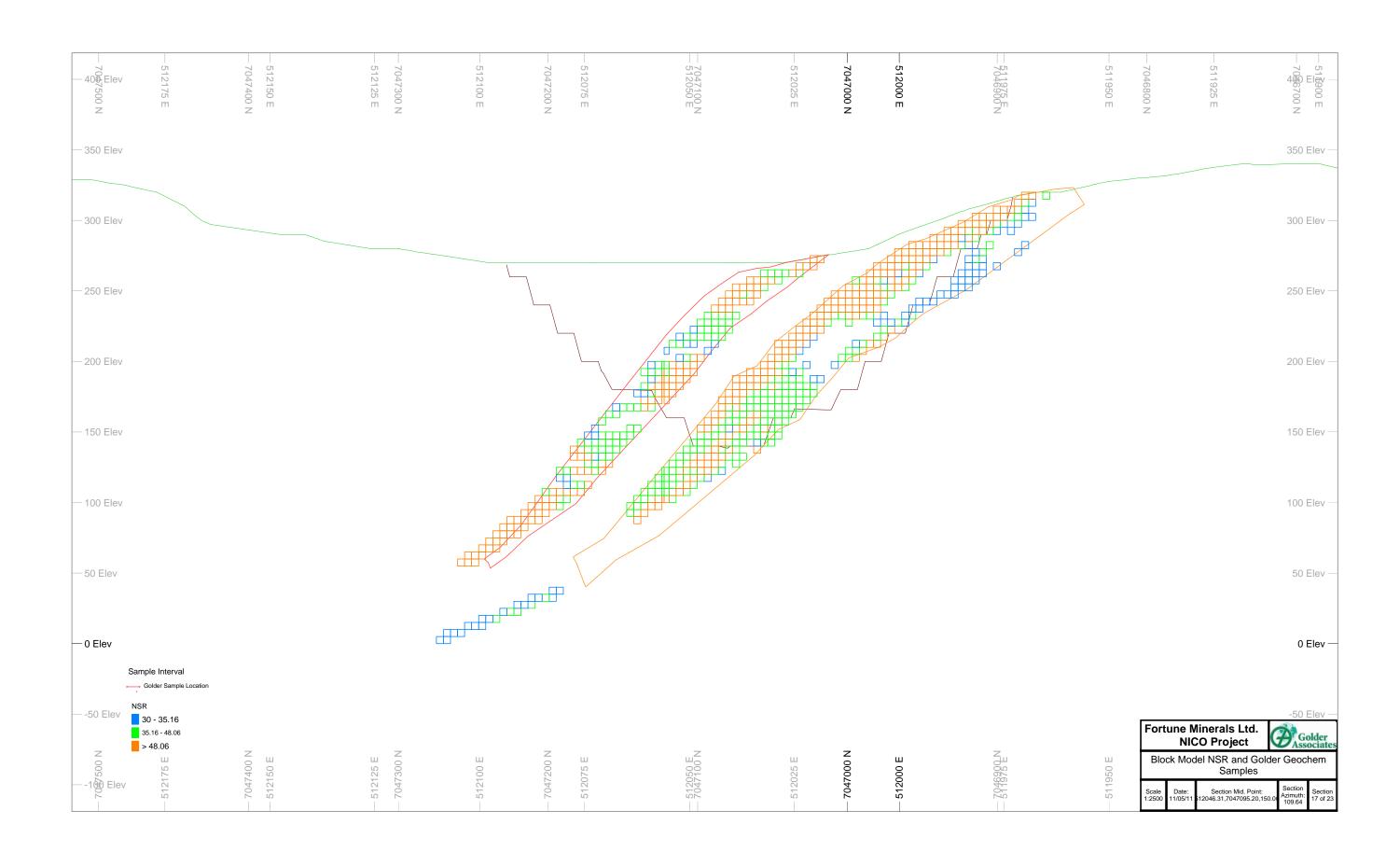


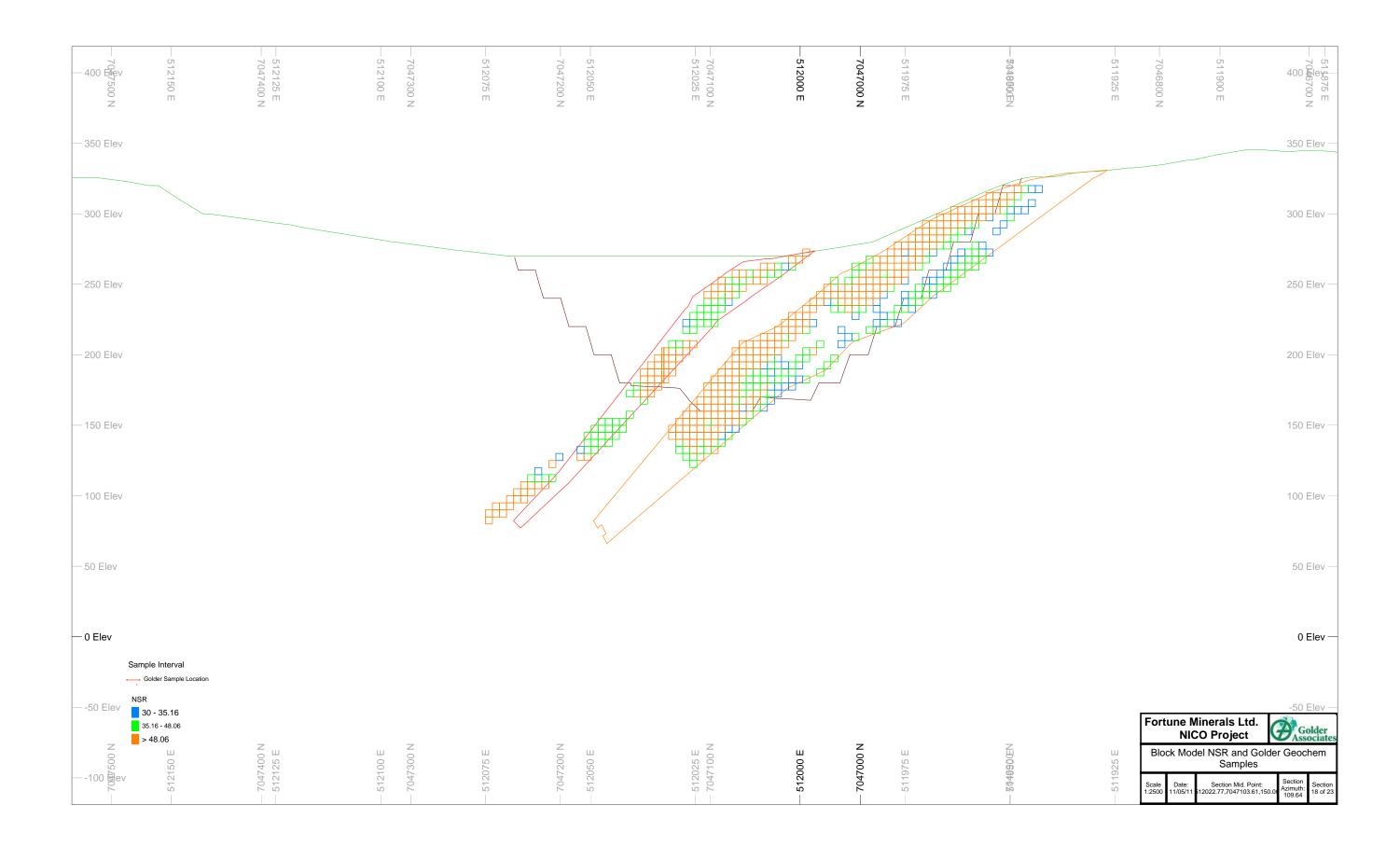


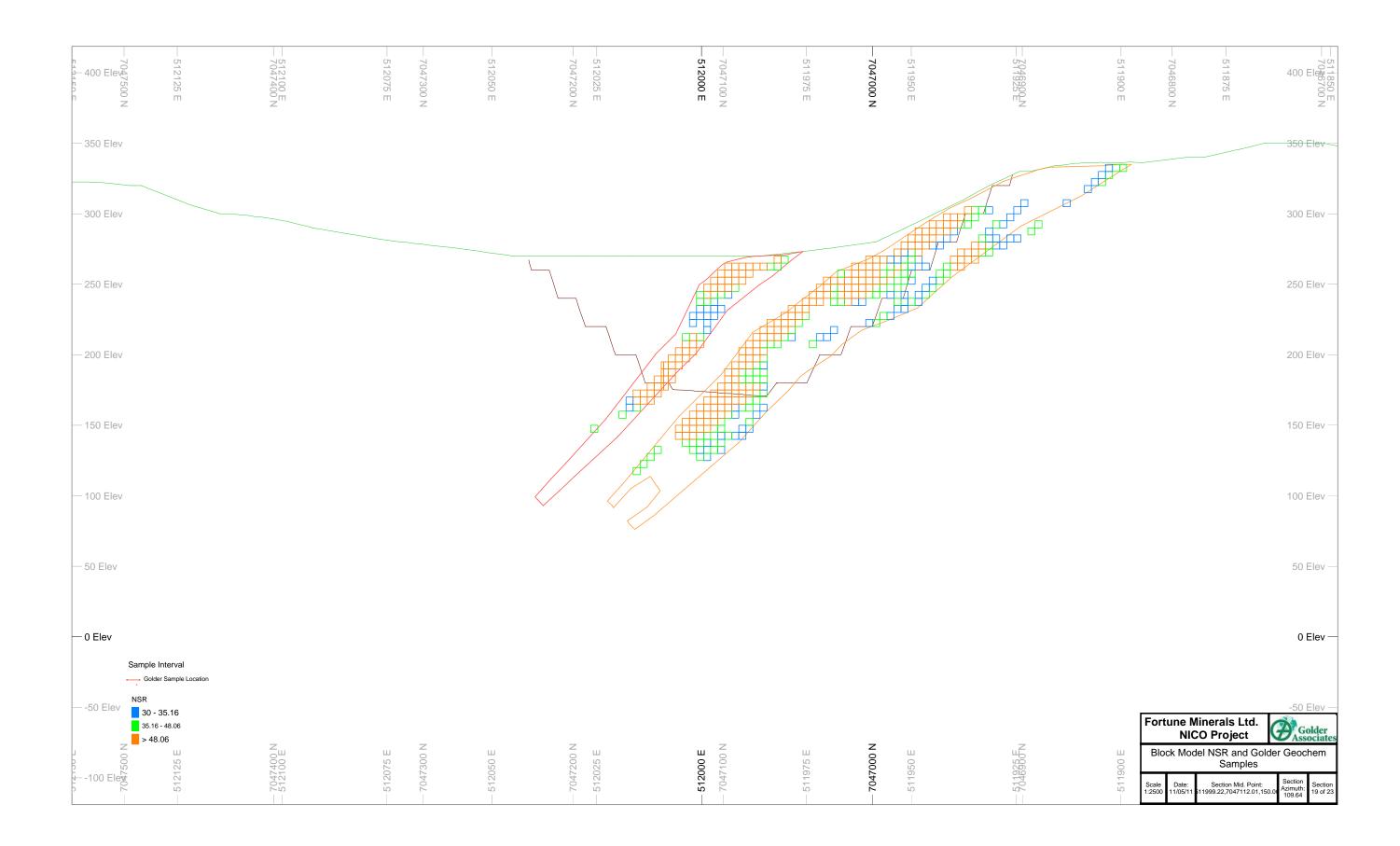


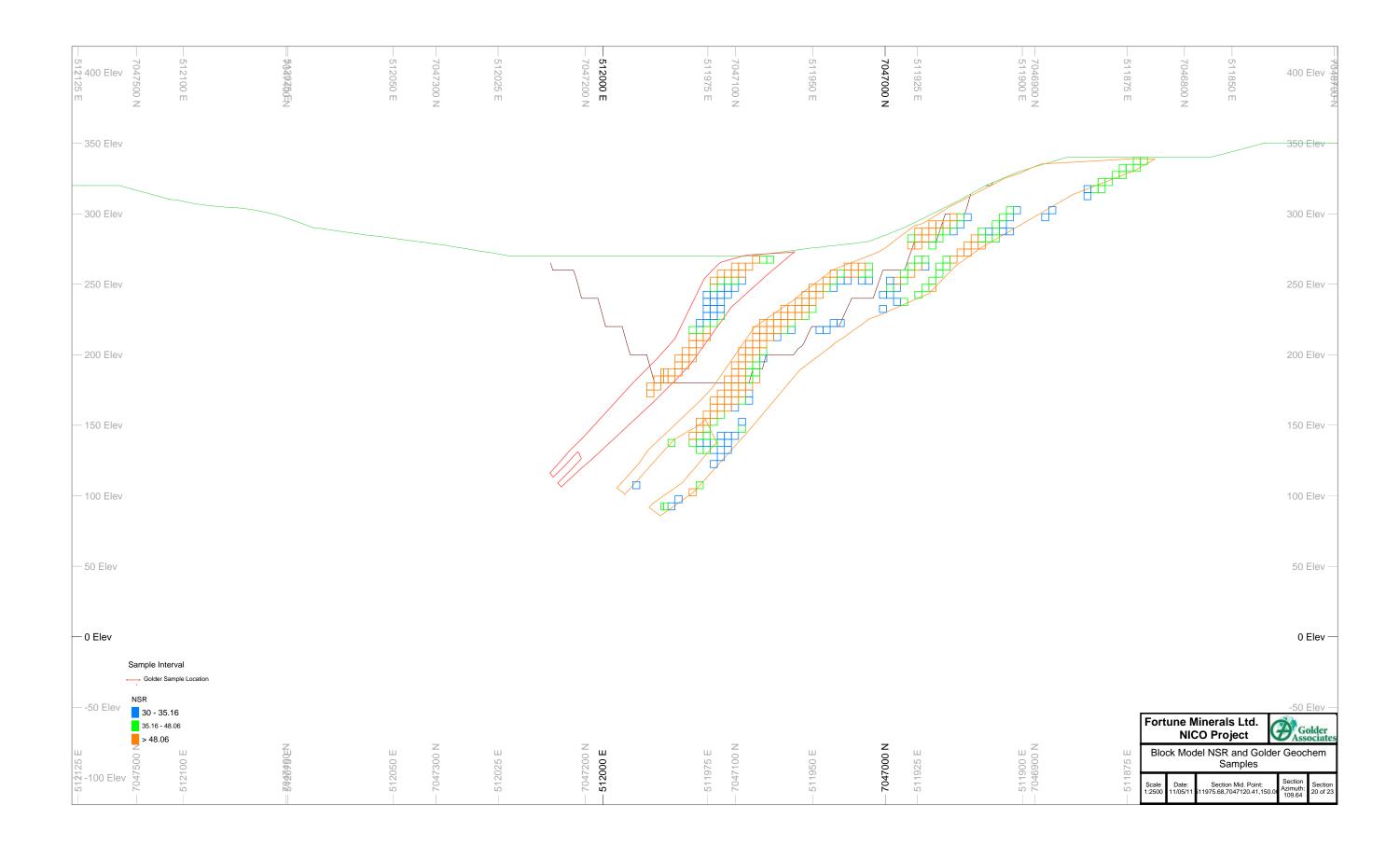


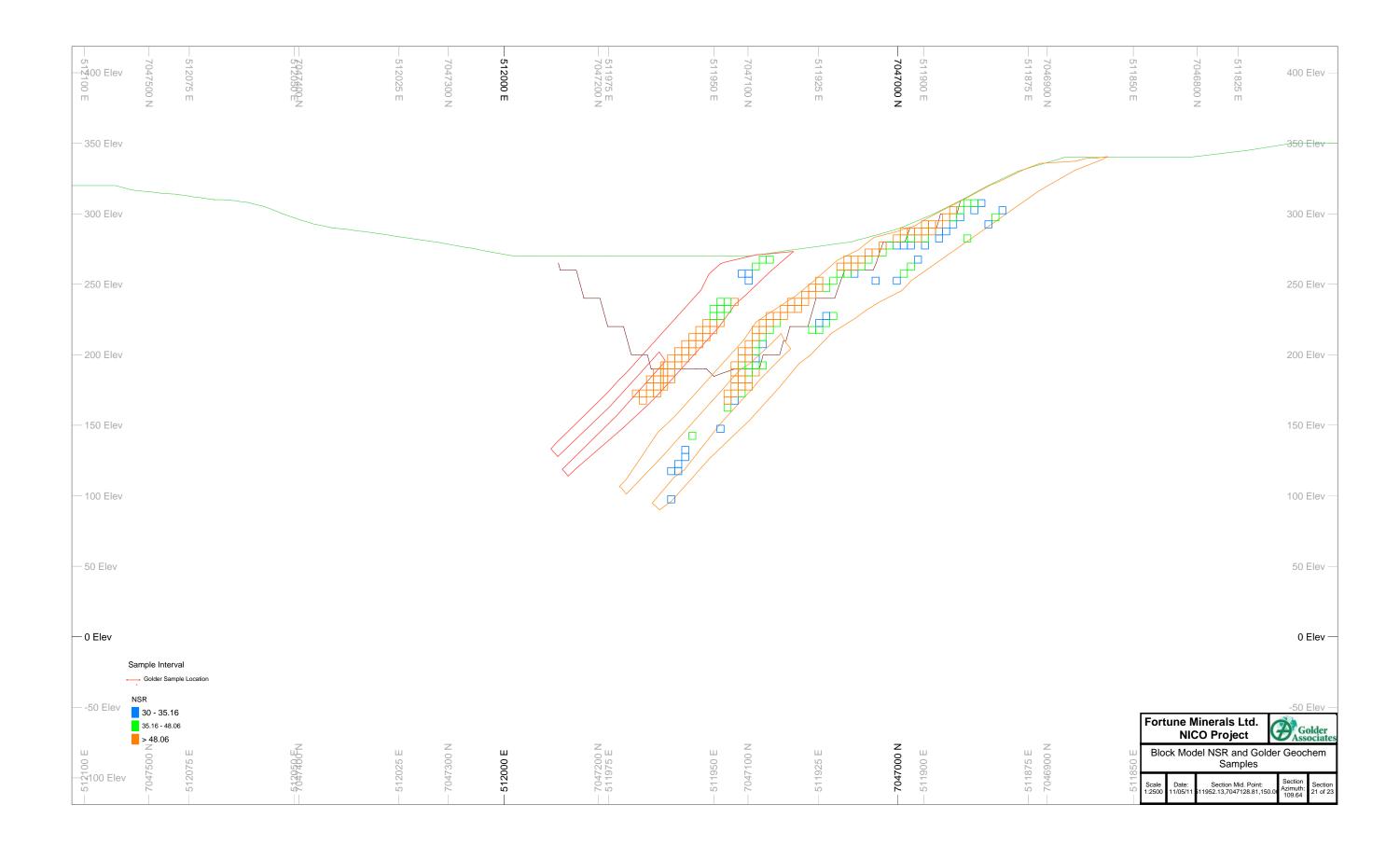


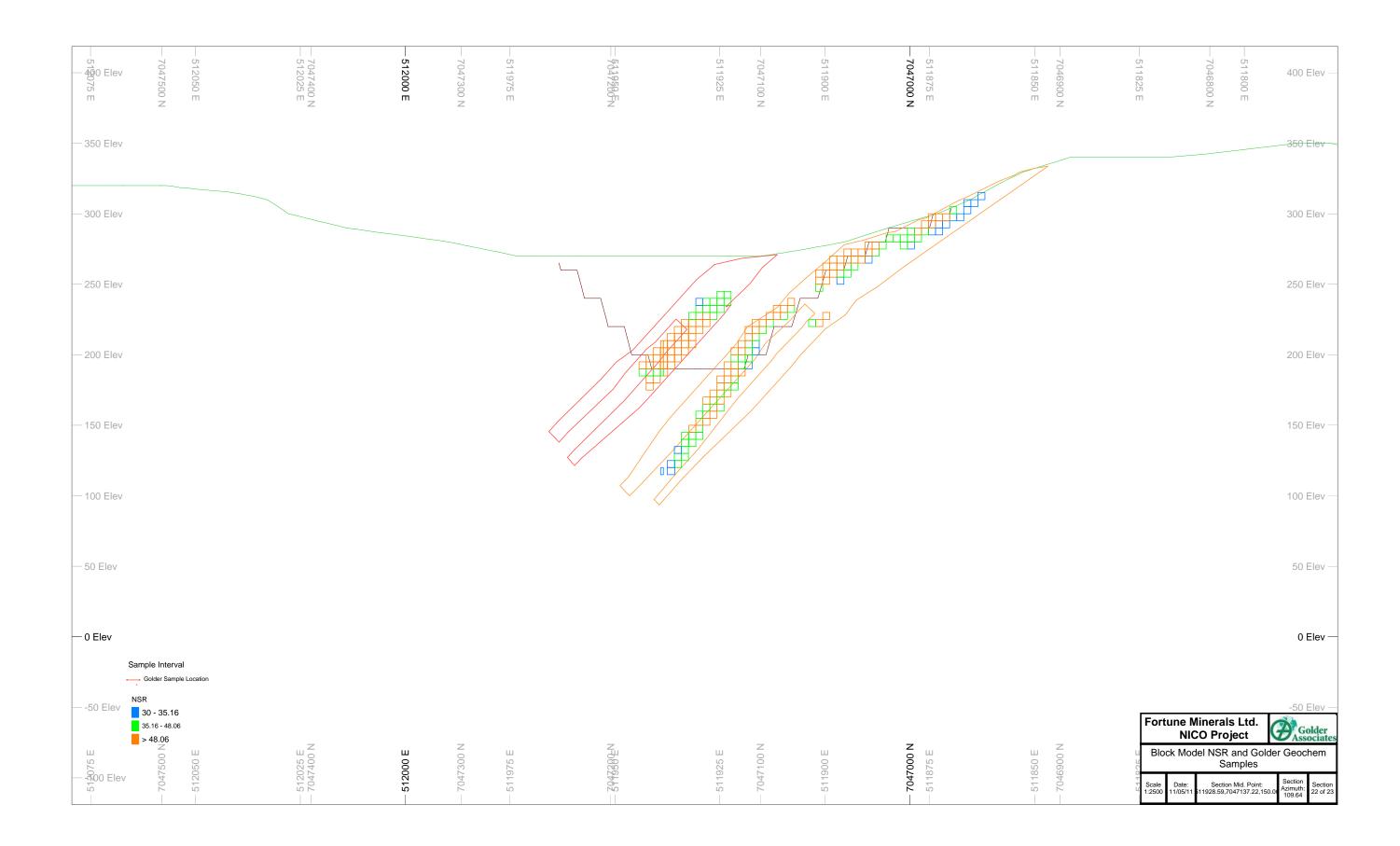


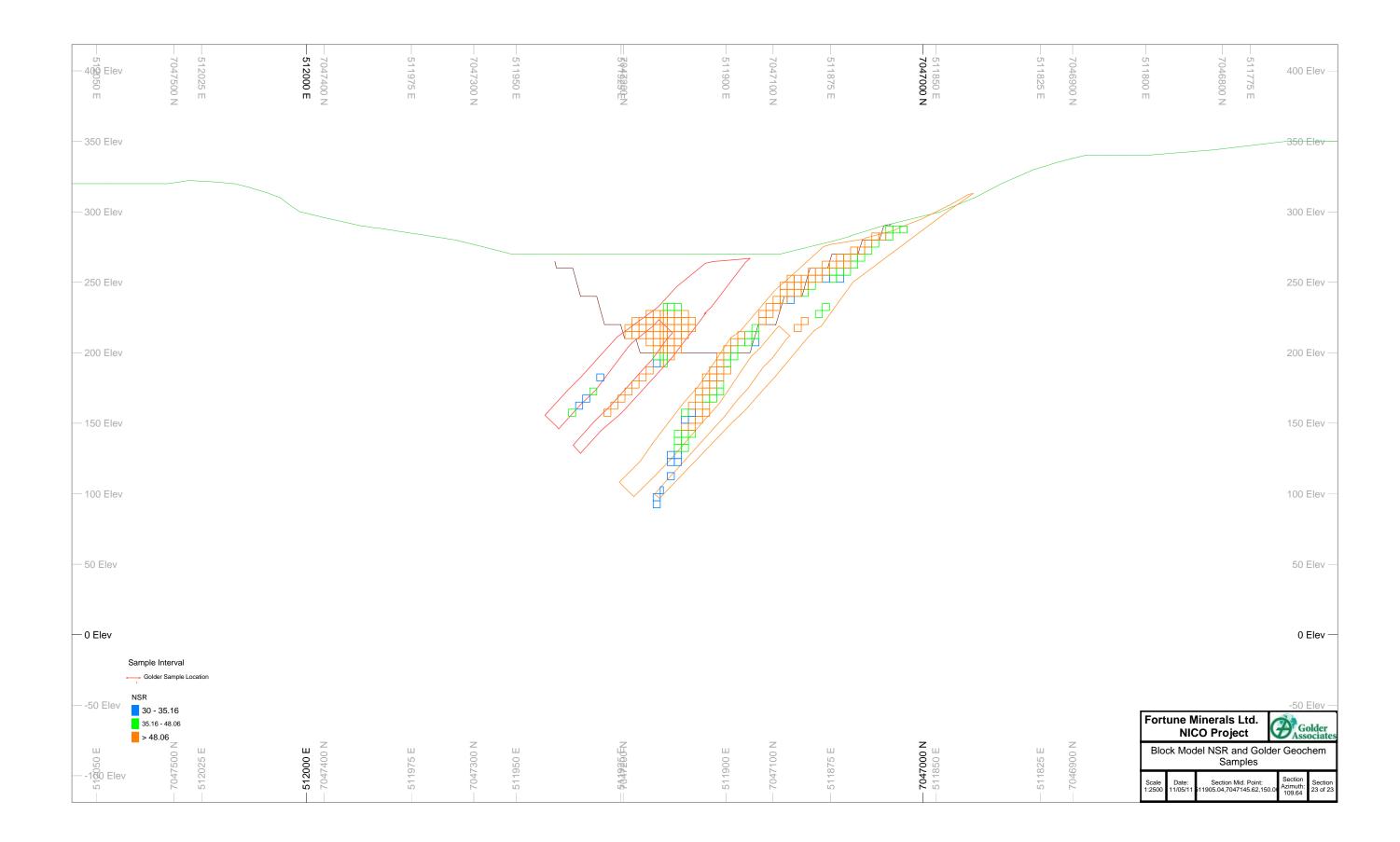












APPENDIX IV

Results of Laboratory Static Testing of Mine Rock, Ore, and Tailings Samples

May 2011 08-1118-0043

Appendix IV-1a

Results of Mineralogical Analysis - Mineralized Waste Rock and Ore

NICO Project, Fortune Minerals Limited

		FC-1	FC-2	FC-3	FC-4	FC-5
		Mineralized Waste Rock	Mineralized Waste Rock	Mineralized Waste Rock	Mineralized Waste Rock	Ore
		Oct 5 DS	Oct 9 NS	Mar 10 NS	Mar 8 NS	Aug 28 DS
		Feldspar Porphyry and Black Rock Schist (±magnetite)	Black Rock Schist (±magnetite)	Black Rock Schist (±magnetite)	Black Rock Schist (±magnetite)	Black Rock Schist (±magnetite)
Mineral	Ideal Formula			Composition (%)		
Ferrohornblende	$[(Ca,Na)_{2-3}(Fe,Mg,Al)_5Si_8O_{22}(OH,F)_2]$	4.3	24.6	29.5	59.6	12.9
Ferrohornblende, sodian	[(Na,K)Ca2(Fe,Mg)5(Al,Si)8O22(OH,F)2]	-	-	-	18.4	-
Tremolite	[Ca2Mg5Si8O22(OH)2]	-	4	12	=	-
Actinolite	[Ca2(Mg,Fe)5Si8O22(OH)2]	-	-	-	-	54.4
Omphacite	[(Ca,Na)(Mg,Fe ²⁺ ,Al)Si ₂ O ₆]	9	14.4	2.8	2.1	-
Clinochlore	$[(Mg,Fe^{+2})_5Al(Si_3Al)O_{10}(OH)_8]$	1.6	-	-	-	-
Kaolinite	[Al ₂ Si ₂ O ₅ (OH) ₄]	-	-	1.9	-	-
Diopside	[MgCaSi ₂ O ₈]	2.2	13.2	4.4	-	-
Microcline	[KAlSi ₃ O ₈]	34.9	18.1	7.3	-	2.2
Orthoclase	[KAlSi ₃ O ₈]	-	-	-	8.2	-
Albite	[NaAlSi ₃ O ₈]	12.2	3.4	2.8	-	2.3
Quartz	[SiO ₂]	12	7.7	3	3.4	2.5
Biotite	$[K(Mg,Fe)_3AlSi_3O_{10}(OH,F)_2]$	9.8	4.8	8.4	3	6.5
Siderophyllite	$[KFe^{2+}AI(AI2Si2)O10(F,OH)2]$	10.7	5.2	13.9	2.2	6.9
Forsterite	[Mg ₂ SiO ₄]	-	-	6.7	-	-
Ilmenite	[FeTiO ₃]	1.1	1.4	0.7	0.9	0.8
Magnetite	[Fe ₃ O ₄]	2.2	3.3	6.5	2.1	2.9
Aresenopyrite	[FeAsS]	-	-	-	-	6.5
Pyrite	[FeS ₂]	-	-	-	-	2

[&]quot;-" indicates that the mineral is not present in the sample.

Notes:

- XRD cannot identify amorphous phases, and therefore semi-crystalline precipitate minerals may not be fully represented by the results of XRD.
- Diffraction peak overlap between minerals can cause peaks to be exaggerated, obscured or misidentified.
- Trace concentrations of minerals are difficult to identify due to the limitations of the analytical method: as a rule-of-thumb, the minimum detection limit for XRD is approximately 1%.

May 2011 08-1118-0043

Appendix IV-1b

Results of Mineralogical Analysis - Tailings

NICO Project, Fortune Minerals Limited

		Tailings										
		Bulk Rougher Tails	Bulk Cleaner Tails	PP#14								
Mineral	Ideal Formula		Composition (%)									
Quartz	SiO ₂	4.3	3.3	4.0								
Biotite	K(Mg,Fe2+) ₃ AlSi ₃ O ₁₀ (OH) ₂	14.8	22.0	14.1								
Clinochlore	$(Mg,Fe^{2+})_5Al(Si_3Al)O_{10}(OH)_8$	2.6	5.6	2.7								
K-feldspar	KAlSi ₃ O ₈	-	-	-								
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	-	-	-								
Gypsum	CaSO₄·2H₂O	-	-	-								
Calcite	CaCO ₃	1.6	2.2	1.7								
Magnetite	Fe ₃ O ₄	8.1	4.3	8.5								
Actinolite	$Ca_2(Mg,Fe^{2+})_5Si_8O_{22}(OH)_2$	59.0	54.2	60.6								
Diopside	CaMgSi ₂ O ₆	8.2	5.7	6.5								
Claudetite	As ₂ O ₃	1.4	1.3	1.9								
Barite	BaSO ₄	-	1.5	-								
TOTAL		100.0	100.0	100.0								

[&]quot;-" indicates that the mineral is not present in the sample.

Notes:

- XRD cannot identify amorphous phases, and therefore semi-crystalline precipitate minerals may not be fully represented by the results of XRD.
- Diffraction peak overlap between minerals can cause peaks to be exaggerated, obscured or misidentified.
- Trace concentrations of minerals are difficult to identify due to the limitations of the analytical method: as a rule-of-thumb, the minimum detection limit for XRD is approximately 1%.

Checked: KJD

Appendix IV-2b

Solid Phase Analysis - Bulk Sample Stockpile Samples
NICO Project, Fortune Minerals Ltd.

											INIC	O Project,	, Fortune	viinerais	Lta.																			
Sample ID	Pile ID	Depth	Waste / Ore ¹	Dominant	Ag	Al	As	Ва	Ве	Bi	Са	Cd	Со	Cr	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	v	Υ	Zn
		•	·	Lithology ²	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			mg/kg	U. U			g/kg
Aug 18 NS-1		0 - 1m	ore	BRS±mt	0.15	43000		220	2.80	68	68000	0.15	960	49	160	180000		10	24000	2300	16	4800	30	10	12	3	11	13	2400	0.50	15	47		37
Aug 18 NS-2 Aug 18 NS-3	Aug 18 NS Aug 18 NS	1 - 2m 4m	ore	BRS±mt BRS±mt	0.16 0.16	45000 46000	3100 4500	250 290	2.60	92 190	64000 60000	0.10	1400 1800	52 53	230 270	180000 180000	34000 31000	11 11	22000 22000	2200 2000	11 13	5200 6000	34 51	11 15	12 15	4	11 11	15 17	2500 2500	0.56 0.57	12 14	48 49		29 26
Aug 20 NS-1	Aug 20 NS	0 m (Surface)	ore	BRS±mt	0.20	57000		500	2.60	89	39000	0.09	330	60	98	130000		7	20000	1200	11	12000	22	8	8	2	7	30	2500	0.44	13	51		15
Aug 20 NS-2	Aug 20 NS	0 - 1m	ore	BRS±mt	0.28	46000	1400	250	2.60	370	53000	0.10	500	55	130	160000	33000	7	22000	1600	24	7500	24	10	17	2	10	13	2500	0.53	12	46		16
Aug 20 NS-3	Aug 20 NS	1 - 2m	ore	BRS±mt	0.29	45000	3100	270	2.40	210	60000	0.12	1200	55	120	160000	30000	8	24000	1900	27	6600	36	10	13	3	10	14	2400	0.52	17	43		19
Aug 20 NS-4 Aug 21 NS-1	Aug 20 NS Aug 21 NS	0 m (Surface)	ore	BRS±mt BRS±mt	0.20	42000 36000	2200 38000	240 120	2.40	130 300	56000 61000	0.07	680 2300	52 49	110 210	150000 210000	26000	5	24000 26000	1700 1800	12 7	7100 5900	30 26	9	14 35	<u>2</u> 5	10 q	12 11	2300 2100	0.50 0.35	22 15	42 37		25 17
Aug 21 NS-2	Aug 21 NS	0 - 1m	ore	BRS±mt	0.26	38000	1800	95	2.40	690	59000	0.10	730	53	160	190000	19000	6	24000	1800	9	9700	29	11	30	3	9	13	2100	0.36	8	35		17
Aug 21 NS-3	Aug 21 NS	2 - 3m	ore	BRS±mt	0.23	39000		130	2.40	210	56000	0.10	460	97	120	170000		6	23000	1700	13	10000	23	6	16	3	9	12	2100	0.29	8	36		18
Aug 21 NS-4	Aug 21 NS	4m	ore	BRS±mt	0.21	39000	1800	160	2.40	180	56000	0.12	570	53	62	170000	23000	6	23000	1700	13	9100	32	11	16	3	9	12	2200	0.35	8	39		19
Aug 23 DS-1	Aug 23 DS	0 m (Surface)	ore	BRS±mt	0.26	49000	780	450	2.40	530	40000	0.14	260	51	58	140000	33000	6	18000	1200	6	12000	19	13	18	3	7	23	1700	0.38	7	32		24
Aug 23 DS-2 Aug 23 DS-3	Aug 23 DS Aug 23 DS	<u>0 - 1m</u> 1 - 3m	ore	BRS±mt BRS±mt	0.20	41000 36000	1000 1300	300 240	2.60	480 820	47000 50000	0.06	340 570	50 51	73 95	150000 180000	27000 26000	7	20000	1400 1500	5	9400 6400	23 33	9 7	19 24	3 4	8	16 14	1700 1800	0.34	10 8	30 34		17 17
Aug 23 DS-4	Aug 23 DS	4m	ore	BRS±mt	0.38	37000	1500	190	2.60	1800	50000	0.08	550	48	76	180000	25000	8	22000	1500	4	6600	33	8	35	7	8	13	1800	0.47	8	33		15
Aug 24 DS-1	Aug 24 DS	0 - 1m	ore	BRS±mt	0.21	39000		210	2.80	320	50000	0.05	1300	50	82	190000		7	21000	1400	9	6800	39	7	22	3	9	15	1900	0.48	12	37		26
Aug 24 DS-2	Aug 24 DS	1 - 3m	ore	BRS±mt	0.29	37000	3900	160	3.60	750	50000	0.07	1800	45	96	220000	27000	8	23000	1600	22	5500	56	12	26	4	9	12	2000	0.63	21	35		17
Aug 24 DS-3	Aug 24 DS	4m	ore	BRS±mt	0.34	38000	3500	170	3.60	730	48000	0.06	1600	45	160	210000	28000	8	23000	1500	13	6500	48	11	24	5	9	14	2000	0.62	18	35		20
Aug 27 DS-1 Aug 27 DS-2	Aug 27 DS Aug 27 DS	<u>0 m (Surface)</u> 0 - 1m	ore	BRS±mt BRS±mt	0.63 0.27	33000 35000	6000 22000	83 100	3.80 2.40	6300 310	53000 64000	0.09	450 1600	32 35	390 210	230000 210000		8	22000 23000	1600 1700	20 7	3800 6300	12 21	6 5	70 29	9 5	11 12	7	2100 2000	0.65	8	35 36		20 15
Aug 27 DS-3	Aug 27 DS	2 - 3m	ore	BRS±mt	0.27	39000	10000	130	2.40	270	68000	0.04	1200	38	180	210000	22000	5	27000	1800	10	7300	28	7	20	3	12	14	2200	0.20	10	41		18
Aug 27 DS-4	Aug 27 DS	4m	ore	BRS±mt	0.29	35000		86	2.20	260	67000	0.11	2400	33	260	210000	19000	5	25000	1800	5	5800	46	10	29	5	11	9	2100	0.29	13	37		18
Aug 28 DS-1	Aug 28 DS	0 - 1m	ore	BRS±mt	0.28	34000		95	2.20	250	64000	0.09	2300	33	260	210000		5	24000	1800	10	5600	33	7	33	5	10	8	2100	0.29	8	36		19
Aug 28 DS-2	Aug 28 DS	1 - 2m	ore	BRS±mt	0.33	31000	34000	95	2.20	450	58000	0.13	1900	32	180	210000	19000	6	24000	1700	7	5000	23	9	35	4	10	7	2000	0.34	13	33		16
Aug 28 DS-3 Aug 28 DS-4	Aug 28 DS Aug 28 DS	2 - 3m 4m	ore	BRS±mt BRS±mt	0.30	30000 34000		77 100	2.00	340 410	60000 60000	0.09	2200 2600	31 36	210 220	200000 210000	18000 20000	- 6 - 7	25000 26000	1800 1800	9 15	4800 5500	27 28	10 10	39 42	5 4	9 0	7	2000 2100	0.35	15 17	34 35		17 19
FC-5	Aug 28 DS	-	ore	BRS±mt	0.31	32000	33000	110	2.60	380	53000	0.09	1900	39	200	210000	22000	6	26000	1700	7	4700	24	9	33	4	8	8	1900	0.39	11	33		15
Oct 10 NS-1	Oct 10 NS	0 m (Surface)	ore	BRS±mt	0.24	58000		620	2.20	920	38000	0.19	100	33	60	110000	45000	10	17000	1200	16	14000	16	9	13	2	7	25	2000	0.51	13	31		12
Oct 10 NS-2	Oct 10 NS	1 - 2m	ore	BRS±mt	0.29	47000	4700	370	2.20	2200	54000	0.18	1000	35	220	160000	36000	14	22000	1700	24	7400	49	12	29	7	11	19	2200	0.52	17	38	23	33
Oct 10 NS-3	Oct 10 NS	2 - 3m	ore	BRS±mt	0.21	45000	3000	330	2.40	1600	61000	0.13	1100	41	190	170000	35000	14	24000	2000	14	6800	45	11	20	4	10	17	2300	0.56	14	38		22
Oct 10 NS-4 Oct 11 DS-1	Oct 10 NS	3 - 4m	ore	BRS±mt	0.21	47000		360	2.40	1500	59000	0.11	660	35	210	160000		12	23000	1900	11	7600	35	9	22	5	10	20	2200	0.50	13	39		18
Oct 11 DS-1	Oct 11 DS Oct 11 DS	0 m (Surface) 0 - 1m	ore	BRS±mt BRS±mt	0.18	60000 52000	340 380	680 490	2.40	930	36000 54000	0.16 0.13	72 72	43 35	67 130	120000 150000	49000 43000	10 13	20000	1200 1900	14 19	13000 8100	22 16	11	11 15	2	11	33 24	2500 2100	0.59 0.62	11 23	50 38		11 23
Oct 11 DS-3	Oct 11 DS	1 - 2m	ore	BRS±mt	0.19	47000		360	2.20	940	58000	0.11	69	39	230	170000		12	27000	2000	11	7100	17	12	16	2	12	20	2200	0.65	21	42		23
Oct 11 DS-4	Oct 11 DS	4m	ore	BRS±mt	0.23	54000	370	510	2.20	780	48000	0.16	77	34	220	150000	42000	13	25000	1700	24	9900	17	12	15	2	10	31	2300	0.70	20	44		36
Oct 12 DS-1	Oct 12 DS	0 m (Surface)	ore	BRS±mt	0.36	34000	16000	140	3.30	2500	64000	0.14	1500	34	420	220000	27000	12	31000	2800	12	3700	38	13	47	10	10	11	2200	0.68	17	37		27
Oct 12 DS-2	Oct 12 DS	0 - 1m	ore	BRS±mt	0.33	40000	4000	250	3.20	2100	65000	0.12	400	38	380	200000	32000	13	29000	2600	5 9	5300	20	13	29	6	10	15	2200	0.59	17	39		26
Oct 12 DS-3 Oct 12 DS-4	Oct 12 DS Oct 12 DS	1 - 2m 3 - 4m	ore	BRS±mt BRS±mt	0.27 0.28	39000 42000	3400 3100	210 260	3.20 2.80	1900 1800	59000 57000	0.12	350 330	37 39	360 320	200000 180000	31000 34000	12 13	28000 26000	2500 2300	8	5200 6200	21 26	14	25 26	5 4	11 11	15 17	2300 2200	0.73 0.68	19 14	42 42		26 22
Oct 9 DS-1	Oct 9 DS	0 - 1m	ore	BRS±mt	0.38	41000	290	300	2.00	3600	46000	0.19	67	40	100	150000	35000	8	20000	1400	16	6200	31	14	37	12	9	13	2200	0.58	8	32		31
Oct 9 DS-2	Oct 9 DS	2 - 3m	ore	BRS±mt	0.41	41000		300	2.40	4000	50000	0.22	100	41	160	160000		8	22000	1500	14	6300	35	21	44	11	10	14	2100	0.46	10	37		45
Oct 9 DS-3	Oct 9 DS	4m	ore	BRS±mt	0.66	37000	290	190	2.40	4400	52000	0.27	50	32	110	170000	25000	7	22000	1600	14	5800	31	14	51	13	11	11	2000	0.57	9	33		33
Minimum Maximum					0.15 0.66	30000 60000	270 41000	77 680	2.00 3.80	68 6300	36000 68000	0.04	50 2600	31 97	58 420	110000 230000	18000 49000	5 14	17000 31000	1200 2800	<u>4</u> 27	3700 14000	12 56	5 21	8 70	13	12	33	1700 2500	0.20	23	30 51		11 45
Average					0.00	41429	8074	250	2.56	1112	55119	0.12	949	44	181	179048		9	23500	1762	12	7107	30	10	26	4	10	15	2143	0.73	13	38		22
Standard Deviation					0.10	7302	12007		0.43	1346	8073	0.05	775	12	95	29118	8005	3	2796	363	6	2398	10	3	13	3	1	6	210	0.14	5	5		7
	•																																	
FC-2	Oct 9 NS	-	sub-economic mineralized mine rock	BRS±mt	0.49	36000			2.20		49000	0.14	99	75	170		29000	7	19000	1500	13	5800	40	9	41	9	8	16	1700	0.34	8	30		23
FC-3 FC-4	Mar 10 NS	_	sub-economic mineralized mine rock sub-economic mineralized mine rock	BRS±mt BRS±mt	0.34	33000	5400 4300	130	2.80	2600 2200	42000	0.09	1300	46	140 840	190000 210000	26000 19000	14	42000	1300 1600	7 4	3000 4300	28	7	47	4	12	10	2000 2100	0.59	6	35		16
Mar 10 NS-1	Mar 8 NS Mar 10 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	0.42	32000 31000		56 71	3.40 2.40	2300	59000 45000	0.06	560 1400	46 34	210	220000		20	24000 53000	1300	9	2300	14 24	12 9	35 41	3	13	5 7	2200	0.38	7	36 36		20 23
Mar 10 NS-2	Mar 10 NS	1 - 2m	sub-economic mineralized mine rock	BRS±mt	0.52	31000				2700	46000		2100	32	250	220000		16	44000	1400	10	3400	34	8	49	4	8	9	2200	0.69	7	37		21
Mar 10 NS-3	Mar 10 NS	2 - 3m	sub-economic mineralized mine rock	BRS±mt	0.46	21000	6800	110	2.40	2400	44000	0.13	1800	33	230	210000	27000	17	38000	1300	12	3200	32	7	46	5	8	9	2200	0.65	6	36	15	20
Mar 10 NS-4	Mar 10 NS	4m	sub-economic mineralized mine rock	BRS±mt	0.54	28000			2.20	2400	46000	0.17	1000	36	370	200000		15	37000	1300	8	3500	23	7	42	4	9	9	2100	0.64	7	36		20
Mar 6 NS-1	Mar 6 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	0.55	33000			3.20	2300	60000	0.09	640	35	880	210000		7	24000	1700	5	4600	14	6	40	4	13	6	2200	0.42	6	36		22
Mar 6 NS-2 Mar 6 NS-3	Mar 6 NS Mar 6 NS	0 - 1m 1 - 2m	sub-economic mineralized mine rock sub-economic mineralized mine rock	BRS±mt BRS±mt	0.78 0.65	31000 33000		61 72	3.60 4.00	6100 6000	57000 52000	0.08	830 670	33 30	1000 340	230000 240000		8 8	22000 23000	1600 1500	18 23	4400 4000	18 14	7 5	74 74	10 9	13 12	6	2100 2100	0.40 0.54	10 6	36 36		23 18
Mar 6 NS-4	Mar 6 NS	4m	sub-economic mineralized mine rock	BRS±mt	0.67	34000		81	4.00	6700	55000	0.10	640	35	250	240000		8	24000	1700	19	4100	12	6	78	11	12	7	2100	0.55	8	36		18
Mar 8 NS-1	Mar 8 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	0.46	34000			2.40	2100	43000	0.12	1200	31	190	210000		16	42000	1300	8	4300	24	7	39	4	8	12	2300	0.63	7	41		18
Mar 8 NS-2	Mar 8 NS	0 - 1m	sub-economic mineralized mine rock	BRS±mt	0.59	35000			3.20	3300	62000	0.08	650	36	870	220000		7	25000	1700	8	4700	13	6	47	6	13	6	2300	0.47	7	38		24
Mar 8 NS-3	Mar 8 NS	1 - 2m	sub-economic mineralized mine rock	BRS±mt	0.65	33000			3.20	2900	63000	0.10	520	37	1200	220000		7	25000	1700	3	4700	14	5	43	5	13	6	2300	0.41	7	38		26
Mar 8 NS-4 Oct 9 NS-1	Mar 8 NS Oct 9 NS	4m 0 m (Surface)	sub-economic mineralized mine rock sub-economic mineralized mine rock	BRS±mt BRS±mt	0.61 0.62	34000 33000			3.40 2.00	3100 6600	63000 58000	0.11	850 250	32 28	1100 380	230000 150000		6	25000 23000	1700 1800	7 17	4700 4600	16 36	6 5	47 52	5 12	13	6 10	2300 1700	0.40	7	38		26 20
Oct 9 NS-2	Oct 9 NS	0 - 1m	sub-economic mineralized mine rock	BRS±mt	0.62	32000			1.80	7200	60000	0.12	100	38	150	140000		7	23000	1800	16	4200	40	8	49	11	9	10	1700	0.42	7	29		15
Oct 9 NS-3	Oct 9 NS	2 - 4m	sub-economic mineralized mine rock	BRS±mt	0.53	40000			1.80	5200	55000	0.16	80	30	170	140000		8	22000	1600	16	6500	34	7	43	8	8	17	1900	0.45	7	34		17
Oct 9 NS-4		4m	sub-economic mineralized mine rock	BRS±mt	0.57	37000	440	270	2.00	6000	57000	0.11	97	37	270	140000	31000	7	22000	1700	16	5700	33	8	47	10	9	15	1900	0.41	9	32	21	16
Minimum					0.34	21000	340	56	1.80	2100	42000	0.06	80	28	140	130000		6	19000	1300	3	2300	12	5	35	3	7	5	1700	0.34	6	29		15
Maximum Average					0.78 0.56	40000 32684			4.00 2.76	7200	63000 53474	0.23	2100 778	75 37	1200 474	240000 197368	35000 25526	20 10	53000 29316	1800 1553	23 12	6500 4316	40 24	12 7	78 49	12 7	13 10	17 9	2300 2074	0.82 0.51	10 7	41 35		26
Standard Deviation					0.30	3816	2888			1868	7291	0.11	578	10	368	37393	4937	5	9889	184	6	1006	10	2	12	3	2	4	2074	0.31	1	3		3
					J.10	3010		. 32	J., L	1000		0.04	5.0		200	,	,,,,,,		, ,,,,,,	207										0.10		_ <u>~</u>		
FC-1	Oct 5 DS	_	sub-economic mineralized mine rock	FP	0.16	67000						0.22	69	71	17		64000		12000		7	13000	16	8	6	1	7	41	2600	0.51	8	53		14
Oct 5 DS-1	Oct 5 DS	0 m (Surface)	sub-economic mineralized mine rock	FP	0.18	65000			2.40	380	28000	0.16	85	42	13	120000		13	15000	700	12	11000	14	7	8	1	9	40	2700	0.57	10	56		11
Oct 5 DS-2	Oct 5 DS	0 - 2m	sub-economic mineralized mine rock	FP FP	0.18	72000			2.20	360	19000	0.19	120	35	41	90000	51000	15	13000	510	7	13000	15	10	7	1	7	47	3000	0.59	9	61		12
Oct 5 DS-3 Minimum	Oct 5 DS	2 - 4m	sub-economic mineralized mine rock	JFP	0.16 0.16	63000 63000		810 810	2.40			0.18 0.16	120 69	40 35	22 13	100000 87000	49000 49000		13000 12000	540 420	6	11000 11000	14 14	10 7	7 6	2	9 7	36 36	2700 2600	0.55 0.51	8	57 53		12 11
Maximum					0.18	72000			2.40	380	28000	0.16	120	71	41	120000		15	15000	700	12	13000	16	10	8	2	9	47	3000	0.51	10	61		14
Average					0.17	66750	2300	858	2.35	340	21250	0.19	99	47	23	99250			13250	543	8	12000	15	9	7	1	8	41	2750	0.56	9	57		12
Standard Deviation			-		0.01	3862	970	53					26	16	12		6898	1		117	3	1155	1	1	1	0	1	5	173		1	3		1
			average assay grades of each pile (as provide					on.																										
 LILLIOIDBY DASED ON O 	uominant visibl	e iitiiology in fie	 Rock may be diluted with minor proportion 	טווא טו otner litholo	ogies of v	vaste roc	.K.																											

3of28

Appendix IV-2a Solid Phase Analysis - Drill Core and Outcrop Samples NICO Project, Fortune Minerals Ltd.

See											Mico i roject, i	ortune Minerals Ltd.										
Second S		Hole		Lithology																		
Second	100855			0																		
See	100861								500													
Column	100861-Follow Up	03258	17	6 Breccia	300	WASTE											13			9		310
80 American Service					400												5					
Series					0		0.1					3					/ 9					
Services 10	100916		13	0 Breccia			0.1					70					39					
STATE OF THE PARTY	100917		20	8 Breccia			0.1									18	6					
See Brief Control of the Control of	100917-Follow Up	98151	20 2	8 Breccia																		
THE COLOR OF THE C	100925		27 3	3 Breccia																		
Series	100945		46	3 Breccia											7		3			7		
Series	Minimum						0.1		32			3	600		7		3		50000			110
Secretary Secret	Maximum																					
March Marc							0.1		791					0.1						7		290 158
Heat Market Mark						-					4.4			ļ.								
Second Column Second Colum	100814		0	5 BRS+mt																30		
See																						
STATE OF THE PARTY							0.1															
180 Ann. 190 150	100875	03259	96 1	11 BRS+mt			0.2	24000	100				32000					180000	23000	9	28000	
Second Column	100875-Follow Up		96 1	11 BRS+mt	400	WASTE								0.2								
Second			32 5	0 BRS+mt	400	WAS TO																
Column C																	18					
Column C							0.2							0.2			820					360
The color of the	100930		111 1	14 BRS+mt				54000						0.1	110	39		400000		17	40000	
Column C	100937		184 1	93 BRS+mt													150					
Section Sect	100949						0.1					590 520					1 190					710
March Marc	100961		3	2 BRS+mt													6					
Second Content	100962	98147	12 2	1 BRS+mt				46000	2300	230	3.3	580	9400	0.1	180	36	12	230000	67000	9	24000	320
Second	100962-Follow Up	98147	12	1 BRS+mt	400			31000	1000	36	3.1	290						228000	40000		55000	440
Second S	100963 100963-Follow Up		46 (1 BRS+mt			0.1								8		2					
March Marc							0.1															
See 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100976										0.9											620
Series of the se	100978	96011	160 1	70 BRS+mt			0.4		500		1.2	400		0.1			230		31000	8		1200
Control Cont	100979		270 2	90 BRS+mt			0.3				2.1			0.1								
See							U.1															
Methods	100983-Follow op						0.1										3					
March 154 19 19 19 19 19 19 19 1	100994-Follow Up									320										11		1400
Second S	100995						0.5													6		
Mary							0.1													3		
Martine Mart																				24		
Properties *********************************										90	3.4			0.2	1700	64	850				21000	
Control Cont	Fortune Minerals	03-275		Middle			0.4	32000	12000	110	3.5	1600	36000	0.2	1900	31	780	240000	26000	12	28000	960
The second The Part The Par	Preliminary Samples	03 273	3,	Ore Zone				32000	12000	110	3.3	1000		V-2	1500	31		240000	20000		20000	300
Section Sect		03-275	120 1				0.5	35000	6500	220	4.0	870	38000	0.2	850	32	77	270000	25000	14	18000	920
Arter of Art	100994	00230	68	3 BRS+mt	400	WASTE	0.1	32000	200	150	1.4	360	35000	0.1	40	29	11	150000	35000	26	31000	1100
Series Se	Minimum																1					
Seed Seed Seed Seed Seed Seed Seed Seed	Maximum						0.5									110						1500
Second Control Contr																						
Seminary of the control of the contr								•						•								•
Seed of the control o			73 8	3 BRS±mt			0.1															
1965 1965	100803-F0110W 0p						0.2															
Column C	100805						0.1		5		1.4				9		3					
March Marc	100806															16	3	160000				
Second Column Second Colum				55 BRS+mt															34000	15		
Control Cont		30200			500	WASTE	0.2	55000	5	650	1.1	160	6200	0.1	10	54		66000	34000 35000	15 31	14000	290
March Marc	100866-Follow Up	03258	0	5 BRS±mt	500 400	WASTE WASTE	0.2	55000 42000	5 12	650 580	1.1 1.5	160 180	6200 15000	0.1 0.1	10 5	54 9	25	66000 95000	34000 35000 41000	15 31 11	14000 63000	290 430
Second S		03258	0 136 1 136 1	5 BRS±mt 38 BRS±mt 38 BRS±mt	500 400 500 500	WASTE WASTE WASTE WASTE	0.2 0.2 0.1	55000 42000 28000 35000	5 12 87 290	650 580 170 180	1.1 1.5 4.5 4.2	160 180 750 5	6200 15000 9200 11000	0.1 0.1 0.1 0.2	10 5 40 30	54 9 39 70	25 12 9	95000 260000 301000	34000 35000 41000 28000 35000	15 31 11 21 13	14000 63000 17000 19000	290 430 340 360
March Marc	100884	03258 98198	0 136 1 136 1 20	5 BRS±mt 38 BRS±mt 38 BRS±mt 0 BRS±mt	500 400 500 500 400	WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1	55000 42000 28000 35000 27000	5 12 87 290 41	650 580 170 180 290	1.1 1.5 4.5 4.2 2.5	160 180 750 5 320	6200 15000 9200 11000 22000	0.1 0.1 0.1 0.2 0.1	10 5 40 30 40	54 9 39 70 36	25 12 9 12	66000 95000 260000 301000 109000	34000 35000 41000 28000 35000 23000	15 31 11 21 13 27	14000 63000 17000 19000 31000	290 430 340 360 1020
Second 1985	100885	03258 98198 98198	0 136 1 136 1 20 3	5 BRS±mt 88 BRS±mt 88 BRS±mt 0 BRS±mt 1 BRS±mt	500 400 500 500 400 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1 0.1 0.2	55000 42000 28000 35000 27000 37000	5 12 87 290 41 600	650 580 170 180 290 130	1.1 1.5 4.5 4.2 2.5 2.0	160 180 750 5 320 410	6200 15000 9200 11000 22000 53000	0.1 0.1 0.1 0.2 0.1 0.1	10 5 40 30 40 160	54 9 39 70 36 26	25 12 9 12 24	66000 95000 260000 301000 109000 190000	34000 35000 41000 28000 35000 23000 21000	15 31 11 21 13 27 31	14000 63000 17000 19000 31000 28700	290 430 340 360 1020 1400
1995 1997 1998 1998 1998 1998 1999		03258 98198 98198 98198	0 136 1 136 1 20 3 30 4 95 1	5 BRS±mt 88 BRS±mt 88 BRS±mt 0 BRS±mt 1 BRS±mt 10 BRS±mt	500 400 500 500 400 400 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1 0.1 0.2 0.1	55000 42000 28000 35000 27000 37000 30000	5 12 87 290 41 600 29	650 580 170 180 290 130	1.1 1.5 4.5 4.2 2.5 2.0 1.3	160 180 750 5 320 410 290	6200 15000 9200 11000 22000 53000 31000	0.1 0.1 0.1 0.2 0.1 0.1 0.1	10 5 40 30 40 160 20	54 9 39 70 36 26	25 12 9 12 24 4	66000 95000 260000 301000 109000 190000 150000	34000 35000 41000 28000 35000 23000 21000 25000	15 31 11 21 13 27 31	14000 63000 17000 19000 31000 28700 47700	290 430 340 360 1020 1400 680
1907 1907	100885 100887 100887-Follow Up 100889	03258 98198 98198 98198 98198 00220	0 136 1 136 1 20 3 30 4 95 1 95 1 25 3	5 BRS±mt 88 BRS±mt 90 BRS±mt 1 BRS±mt 1 BRS±mt 10 BRS±mt 10 BRS±mt 2 BRS±mt 2 BRS±mt	500 400 500 500 400 400 400 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1 0.1 0.2 0.1	55000 42000 28000 35000 27000 37000 30000 32000 49000	5 12 87 290 41 600 29 62 800	650 580 170 180 290 130 160 160 93	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1	160 180 750 5 320 410 290 39 280	6200 15000 9200 11000 22000 53000 31000 38000 15000	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2	10 5 40 30 40 160 20 30 940	54 9 39 70 36 26 17 73 9	25 12 9 12 24 4 8 32	66000 95000 260000 301000 109000 190000 150000 146000 120000	34000 35000 41000 28000 35000 23000 21000 25000 29000 24000	15 31 11 21 13 27 31 12 8	14000 63000 17000 19000 31000 28700 47700 53000 25000	290 430 340 360 1020 1400 680 860
10000 100000 100000 100000 100000 100000 100000 100000 10000	100885 100887 100887-Follow Up 100889 100900	03258 98198 98198 98198 98198 98198 00220 97072	0 136 1 136 1 20 3 30 4 95 1 95 1 25 2	5 BRS±mt 88 BRS±mt 98 BRS±mt 10 BRS±mt 10 BRS±mt 10 BRS±mt 10 BRS±mt 20 BRS±mt 7 BRS±mt 9 BRS±mt 9 BRS±mt	500 400 500 500 400 400 400 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2	55000 42000 28000 35000 27000 37000 30000 32000 49000 62000	5 12 87 290 41 600 29 62 800 100	650 580 170 180 290 130 160 160 93 1100	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1	160 180 750 5 320 410 290 39 280 130	6200 15000 9200 11000 22000 53000 31000 38000 15000 5600	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2	10 5 40 30 40 160 20 30 940 20	54 9 39 70 36 26 17 73 9	25 12 9 12 24 4 8 32 110	66000 95000 260000 301000 109000 190000 150000 146000 120000 59000	34000 35000 41000 28000 35000 23000 21000 25000 29000 24000 69000	15 31 11 21 13 27 31 12 8 35 23	14000 63000 17000 19000 31000 28700 47700 53000 25000 8400	290 430 340 360 1020 1400 680 860 860
1000000000000000000000000000000000000	100885 100887 100887-Follow Up 100889	03258 98198 98198 98198 98198 00220 97072 97072	0 136 1 136 1 20 30 4 95 1 25 20 55 8	5 BRS±mt 38 BRS±mt 38 BRS±mt 0 BRS±mt 1 BRS±mt 1 BRS±mt 10 BRS±mt 10 BRS±mt 2 BRS±mt 7 BRS±mt 0 BRS±mt 0 BRS±mt	500 400 500 500 400 400 400 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2	55000 42000 28000 35000 27000 37000 37000 32000 49000 62000 25000	5 12 87 290 41 600 29 62 800 100 600	650 580 170 180 290 130 160 160 93 1100 120	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2	160 180 750 5 320 410 290 39 280 130	6200 15000 9200 11000 22000 53000 31000 38000 15000 5600 18000	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.2	10 5 40 30 40 160 20 30 940 20	54 9 39 70 36 26 17 73 9 24 22	25 12 9 12 24 4 8 32 110	66000 95000 260000 301000 109000 190000 150000 146000 120000 59000 110000	34000 35000 41000 28000 35000 23000 21000 25000 29000 24000 69000 20000	15 31 11 21 13 27 31 12 8 8 35 23 28	14000 63000 17000 19000 31000 28700 47700 53000 25000 2400 32000	290 430 340 360 1020 1400 680 860 860 390 530
1995 9815 41 57 9814m	100885 100887 100887-Follow Up 100889 100900 100901	03258 98198 98198 98198 98198 98198 00220 97072 97072	0 136 1 136 1 20 3 30 4 95 1 95 1 25 20 5 55 8	5 BRS±mt 38 BRS±mt 38 BRS±mt 0 BRS±mt 1 BRS±mt 10 BRS±mt 10 BRS±mt 17 BRS±mt 7 BRS±mt 0 BRS±mt 0 BRS±mt 0 BRS±mt 0 BRS±mt 0 BRS±mt 0 BRS±mt	500 400 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1	55000 42000 28000 35000 27000 37000 30000 49000 62000 25000 32000	5 12 87 290 41 600 29 62 800 100 600 500	650 580 170 180 290 130 160 160 160 120 150	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9	160 180 750 5 320 410 290 39 280 130 290 7	6200 15000 9200 11000 22000 31000 38000 38000 15000 5600 18000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37	54 9 39 70 36 26 17 73 9 24 22 61	25 12 9 12 24 4 8 32 110 160 140	66000 95000 260000 301000 109000 150000 146000 120000 59000 110000 147000	34000 35000 41000 28000 23000 21000 25000 25000 24000 24000 69000 20000 37000	15 31 11 21 13 27 31 12 8 35 23 28 24	14000 63000 17000 19000 31000 28700 47700 53000 25000 8400 32000 49000	290 430 340 360 1020 1400 680 860 860 390 530 790
1993 1993 1995	100885 100887 100887-Follow Up 100889 100900 100901 100901-Follow Up 100905 100907	03258 98198 98198 98198 98198 00220 97072 97072 97072 00249 00249	0 136 1 136 1 20 30 4 95 1 25 20 55 8 62 82 82 8	5 BRS±mt 88 BRS±mt 90 BRS±mt 1 BRS±mt 1 BRS±mt 10 BRS±mt 2 BRS±mt 7 BRS±mt 0 BRS±mt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1	55000 42000 28000 35000 37000 37000 32000 49000 62000 32000 32000 32000 49000 62000 49000 62000 49000 62000 49000	5 12 87 290 41 600 29 62 800 100 600 500 500 5100	550 580 170 180 290 130 160 160 150 120 120 150 81 94	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4	160 180 750 5 320 410 290 280 130 280 7 7 520 900	6200 15000 12000 11000 22000 53000 31000 15000 5600 18000 30000 21000 25000	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 37 340 300	54 9 39 70 36 26 17 73 9 24 22 61 16 28	25 12 9 12 24 4 8 32 110 160 140 53 200	66000 95000 260000 301000 109000 190000 150000 120000 146000 110000 110000 147000 190000 190000	34000 35000 41000 28000 23000 23000 25000 25000 24000 65000 20000 37000 32000 35000	15 31 11 21 13 27 31 12 8 35 23 24 35 24 35	14000 63000 17000 19000 31000 32700 47700 25000 8400 32000 49000 56000 36000	290 430 340 360 1020 1400 680 860 860 390 530 790 640 900
1992 1993 1895	100885 100887 100887-Follow Up 100889 100900 100901 100901-Follow Up 100905 100907 100918	03258 98198 98198 98198 98198 00220 97072 97072 97072 97072 97072 97072 97072 97072	0 136 1 136 1 20 30 4 95 1 95 1 25 20 55 8 55 8 62 82 9	5 BRSEmt 38 BRSEmt 38 BRSEmt 0 BRSEmt 10 BRSEmt 10 BRSEmt 2 BRSEmt 0 BRSEmt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1	55000 42000 28000 35000 37000 37000 32000 49000 25000 25000 25000 32000 32000 33000 37000 37000	5 12 87 290 41 600 29 62 800 100 600 500 5600 5100 2000	650 \$80 170 180 290 130 160 160 93 1100 120 120 81 94	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.2 2.2 2.2 2.2 2.4 2.2 3.1	160 180 750 5 320 410 290 39 280 290 290 7 7 520 900	6200 15000 9200 11000 22000 53000 31000 38000 15000 18000 21000 25000 22000	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 40 40 30 30 30 30 30 30 30 30 30 3	54 9 39 70 36 26 17 73 9 24 22 61 16 28	25 12 9 12 24 4 8 32 110 160 140 53 200	66000 95000 260000 301000 109000 1190000 150000 146000 120000 150000 147000 1190000 147000 1190000 150000 1190000 1190000 1190000 1190000	34000 35000 41000 28000 23000 23000 21000 25000 29000 24000 20000 37000 32000 35000 34000	15 31 11 21 21 13 27 31 12 8 35 23 24 24 35 32	14000 63000 17000 19000 19000 31000 28700 47700 53000 25000 25000 3400 32000 36000 36000 37000	290 430 340 360 1020 1400 680 860 860 390 530 790 640 900
100928 February 100323 58 7	100885 100887 100887-Follow Up 100889 100900 100901 100901-Follow Up 100905 100907 100918	03258 98198 98198 98198 98198 00220 97072 97072 97072 00249 98151 98151	0 136 1 136 1 20 30 4 95 1 95 1 25 2 20 55 8 62 82 31 41	5 BRS/ent 30 BRS/ent 38 BRS/ent 0 BRS/ent 1 DRS/ent 10 BRS/ent 10 BRS/ent 10 BRS/ent 0 BRS/ent 0 BRS/ent 0 BRS/ent 1 BRS/ent 1 BRS/ent 1 BRS/ent	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1	55000 42000 28000 35000 37000 37000 30000 32000 62000 62000 32000 32000 33000 40000 37000 37000	5 12 87 290 41 600 29 62 800 100 600 500 5100 2000 1300	550 580 170 180 290 130 160 160 160 1100 120 150 81 94 84 74	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1	160 180 750 5 320 410 290 39 280 130 290 7 7 520 900 510	6200 15000 9200 11000 22000 53000 31000 38000 15000 5600 38000 21000 25000 22000 20000	0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50	54 9 9 70 36 26 17 73 9 24 22 61 16 28 14 31	25 12 9 12 24 4 8 32 110 160 140 53 200 140	66000 95000 260000 301000 109000 1190000 146000 120000 147000 1477000 190000 170000 170000 170000	34000 35000 41000 28000 28000 23000 21000 25000 29000 24000 69000 37000 37000 35000 34000 36000	15 31 11 21 13 27 31 12 8 35 23 24 24 35 32 31 34	14000 17000 17000 19000 19000 28700 47700 53000 8400 42000 49000 56000 37000 37000	290 430 340 360 1020 1400 680 860 860 850 790 640 900 530 610
100935 00325 97 107 858/met 400 WASTE 0.1 33000 300 55 2.1 330 35000 6.1 20 22 22 17000 38000 11 68000 190000 190000 19000 190000 190000 190000 190000 190000 190000 190000 190000	100885 100887 - 100887-Follow Up 100887-Follow Up 100900 100901 - 100901 100905 100907 100919 100919 100920	03258 98198 98198 98198 98198 00220 97072 97072 97072 00249 98151 98151 98151 00233	0 136 1 136 1 20 20 30 4 95 1 25 20 55 4 62 82 93 11 4 45 5 5 1	5 BRSEMT 30 BRSEMT 38 BRSEMT 38 BRSEMT 1 BRSEMT 10 BRSEMT 2 BRSEMT 3 BRSEMT 4 BRSEMT 5 BRSEMT 6 BRSEMT 7 BRSEMT 9 BRSEMT 9 BRSEMT 9 BRSEMT 9 BRSEMT 9 BRSEMT	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1	55000 42000 28000 35000 37000 37000 37000 32000 49000 62000 25000 32000 32000 37000 37000 37000 34000 37000 37000 37000 37000 37000 37000 37000 37000	5 12 87 290 41 600 29 62 800 100 600 500 500 500 500 500 300 300 70	550 580 170 180 290 130 160 160 160 93 1100 120 150 81 94 84 74 250 110	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6	160 180 750 5 5 320 410 290 39 130 130 290 7 7 520 900 510 430 350	6200 15000 9200 11000 22000 33000 38000 15000 5600 30000 22000 22000 20000 56000 30000 22000 20000 56000 30000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170	54 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22	25 12 9 12 24 4 8 8 32 110 160 140 200 111 410 5	66000 95000 260000 109000 109000 1190000 150000 146000 120000 110000 110000 147000 1250000 170000 170000 140000 140000	34000 35000 41000 28000 28000 23000 21000 25000 24000 69000 24000 37000 37000 35000 34000 36000 53000 40000	15 31 11 21 13 27 31 12 8 35 23 24 24 35 35 32 34 34 20 24	14000 63000 17000 19000 19000 31000 28700 47700 53000 25000 8400 32000 49000 56000 36000 37000 57000 30000 65000	290 430 340 340 1020 11400 680 860 390 790 640 900 530 610 1300 690
100938 00252 17 17 1875mmt 400 WASTE 0.1 4.000 100 200 17 7 355mmt 4.00 4.000 15 4.000	100885 100887 - 100887 - 100887 - 100887 - 100889 - 100990 - 100990 - 1009901 - 1009905 - 100990	03258 98198 98198 98198 98198 00220 97072 97072 97072 00249 98151 98151 98151 90233 00233	0 136 1 136 1 20 30 4 95 1 95 1 25 55 4 55 4 62 82 9 31 41 9 41 9 5 8 6 62	5 BRSEmt 30 BRSEmt 38 BRSEmt 30 BRSEmt 1 BRSEmt 10 BRSEmt 2 BRSEmt 0 BRSEmt 0 BRSEmt 0 BRSEmt 0 BRSEmt 0 BRSEmt 1 BRSEmt 2 BRSEmt 3 BRSEmt 4 BRSEmt 5 BRSEmt 9 BRSEmt 9 BRSEmt	500 400 500 500 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 32000 49000 62000 25000 32000 43000 43000 43000 43000 43000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	5 12 87 290 41 600 29 62 800 100 600 500 500 500 2000 2000 300 70	550 580 170 180 290 130 160 160 1100 120 150 81 94 84 74 250 110 23	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.3 1.3 1.6 2.1	160 180 750 5 5 220 410 290 39 280 130 290 7 520 900 510 430 350 94	6200 15000 9200 11000 9200 11000 22000 53000 38000 15000 15000 21000 21000 22000 22000 20000 50000 39000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62	54 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38	25 12 9 12 24 4 8 8 32 110 160 140 5 3 200 140 140 5 7 7 9	66000 95000 260000 301000 109000 1190000 150000 146000 120000 147000 147000 147000 170000 170000 170000 170000 170000	34000 35000 41000 28000 28000 23000 21000 25000 29000 24000 20000 20000 37000 32000 34000 34000 34000 34000 34000	15 31 11 21 13 27 31 12 8 35 23 28 24 35 23 24 35 20 24	14000 63000 17000 19000 19000 28700 47700 53000 25000 8400 32000 49000 56000 37000 37000 55000 65000 65000	290 430 340 360 1020 1400 680 860 860 390 530 640 900 530 650 1300 690 340
100938 0224 15 9 885mt 400 WASTE 0.1 42000 100 200 1.7 350 13000 0.1 10 21 5 5 5 50000 5900 19 35000 540	100885 100887 f-ollow Up 100887-Follow Up 100889 100900 100901 100901 100905 100907 100918 100919 100920 100927 100928 f-ollow Up 100928	03258 98198 98198 98198 98198 00220 97072 97072 97072 97072 97872 00249 00249 98151 00233 00233	0 136 1 136 1 1 20 30 4 95 1 1 95 1 1 25 5 6 2 6 2 8 2 1 1 4 1 1 4 5 5 8 6 8 5 8 6 5 8 6 6 1 1 3 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1	5 BRSEMT 38 BRSEMT 38 BRSEMT 0 BRSEMT 10 BRSEMT 10 BRSEMT 2 BRSEMT 3 BRSEMT 0 BRSEMT	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 37000 32000 49000 62000 25000 32000 40000 37000 33000 40000 37000 31000	5 12 87 290 41 600 29 62 800 100 600 500 500 500 2000 1300 300 70 4700 3200	550 580 170 180 290 130 160 160 93 1100 120 150 81 94 84 74 250 110 23 23	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 1.9 2.2	160 180 750 5 5 320 410 290 39 130 280 130 7 7 520 900 510 750 430 350 94	6200 15000 9200 11000 9200 11000 22000 53000 31000 38000 15000 5600 18000 22000 22000 22000 50000 50000 39000 8900 7100	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130	54 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29	25 12 9 12 24 4 8 8 32 110 160 140 153 200 140 111 410 5 7 9	66000 95000 260000 109000 109000 1190000 150000 146000 120000 59000 147000 147000 150000 170000 170000 170000 1200000 2000000 200000 200000 200000	34000 35000 41000 28000 23000 23000 21000 25000 24000 69000 37000 32000 32000 34000 34000 34000 34000 34000 34000	15 31 11 21 13 27 31 12 8 8 35 23 24 24 35 35 24 24 35 24 24 35 35 28	14000 52000 17000 19000 19000 19000 28700 47700 53000 25000 8400 32000 49000 55000 36000 37000 37000 57000 30000 68000 95000	290 430 340 340 1020 1400 680 860 390 790 640 900 1300 690 340 280
100939 1	100885 100887 - 100887 - 100887 - 100887 - 100889 - 100990 - 100990 - 1009901 - 1009905 - 100990	03258 98198 98198 98198 98198 98198 97072 97072 97072 00249 00249 98151 98151 98151 00233 00233	0 136 1 136 1 20 30 4 95 1 95 1 1 25 55 4 55 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 37000 32000 49000 62000 25000 33000 40000 37000 37000 34000 31000 34000 31000 34000 33000 33000 33000 33000 33000	5 12 87 290 41 600 29 62 800 100 600 500 500 500 2000 2000 2000 300 70 4700 3200 300	550 580 170 180 290 130 160 160 1100 120 150 81 94 84 74 250 110 23 23 23 55	1.1 1.5 4.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.1 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 1.9 2.2 2.1	160 180 750 5 5 320 410 290 39 280 130 290 7 50 5 5 5 320 410 39 40 410 350 90 510 450 450 4740 3330	6200 15000 9200 11000 11000 11000 11000 11000 13000 15000 15000 15000 21000 22000 22000 22000 20000 50000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20	54 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 22 38 29 22	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 400 5 7 9 130 140 150 140 150 140 150 160 170 170 170 170 170 170 170 170 170 17	66000 95000 260000 301000 109000 199000 149000 146000 120000 147000 147000 147000 170000 170000 170000 250000 170000 250000 170000	34000 35000 41000 28000 23000 21000 25000 29000 24000 29000 24000 20000 37000 32000 35000 35000 34000 36000 34000 34000 34000 38000 38000	15 31 11 21 13 27 31 12 8 35 23 28 24 35 24 35 24 35 24 24 35 24 35 26 27 28 20 20 21 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20	14000 63000 17000 19000 19000 19000 28700 47700 53000 28700 4700 53000 55000 56000 37000 57000 30000 65000 65000 65000 65000	290 430 340 340 1020 1400 680 860 860 960 530 530 530 530 640 900 610 1300 690 340 280
100948 97102 67 78 855mt 400 WASTE 0.1 42000 100 150 1.8 340 34000 0.1 110 22 91 140000 50000 16 65000 540	100885 100887 - 100887 - 100887 - 100887 - 100889 - 100900 - 100900 - 100900 - 100900 - 100900 - 100900 - 100900 - 100900 - 100918 - 100919 - 100920 - 100928 - 100928 - 100928 - 10093	03258 98198 98198 98198 98198 98198 900220 97072 97072 00249 98151 98151 00233 00233 00233 00233 00252 00252	0 136 1 136 1 1 20 30 4 95 1 1 5 5 4 1 5 5 8 6 6 2 97 1 1.5	5	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 37000 32000 49000 62000 25000 32000	5 12 87 290 41 600 29 62 800 100 500 500 500 500 2000 1300 300 70 4700 3200 400	550 580 170 180 290 130 160 160 160 120 120 150 81 94 84 74 250 110 23 23 23 140 20 20 20 20 20 20 20 20 20 2	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 2.6 1.9 2.2 2.1 1.8 1.7	160 180 750 5 5 320 410 290 39 110 290 7 520 500 510 7 520 500 510 750 430 350 94 740 330 350	6200 15000 9200 11000 11000 11000 11000 11000 13000 15000 15000 15000 21000 22000 20000 20000 50000 39000 17100 36000 39000 39000 39000 130000	0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20 31 32 340 35 36 37 36 37 36 30 30 30 30 30 30 30 30 30 30	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 400 5 7 9 130 140 150 140 150 140 150 160 170 170 170 170 170 170 170 170 170 17	66000 95000 260000 301000 109000 1190000 150000 146000 146000 110000 147000 147000 190000 170000 170000 140000 250000 170000 180000 180000	34000 35000 41000 28000 23000 23000 21000 25000 24000 29000 24000 20000 37000 32000 35000 34000 36000 34000 45000 45000 48000 48000 48000 48000 48000 48000 48000 48000 48000 48000 58000 58000	15 31 11 21 13 27 31 12 8 8 35 23 28 24 24 35 32 24 35 32 20 24 35 32 28 24 35 32 28 24 35 35 36 37 31 31 31 31 31 31 31 31 31 32 33 34 35 36 36 37 37 38 38 38 39 30 30 30 30 30 30 30 30 30 30	14000 63000 17000 19000 19000 28700 47700 53000 25000 8400 32000 49000 56000 37000 37000 68000 95000 68000 47000 39000	290 430 340 340 360 1020 1400 680 860 860 990 640 900 530 530 1300 610 1300 280 910 1200
Mart	100885 100887 100887-Follow Up 100889-Follow Up 100900 100901 100901 100901 100905 100907 100918 100919 100928 100928 100928 100928 100938 100938 100938	03258 98198 98198 98198 98198 98198 98198 00220 97072 97072 97072 90249 98151 98151 00233 00233 00233 00252 00252	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	3 BRSEmt 38 BRSImt 38 BRSImt 38 BRSImt 38 BRSImt 38Simt BRSImt 7 BRSImt 7 BRSImt 7 BRSimt 98Simt BRSImt 98Simt BRSImt 98Simt BRSImt 98Simt BRSImt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 35000 27000 37000 37000 32000 49000 62000 25000 32000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 34000 40000 33000 40000 33000 40000 33000 33000 40000 33000 33000 33000 33000	5 12 87 299 411 600 600 600 600 500 500 5100 300 70 4700 3200 300 100 200 200 600 600 600 600 600 600 600 6	550 580 170 180 290 130 160 160 160 93 1100 120 150 81 94 84 74 250 110 23 55 140 200 190	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.9 2.4 2.2 2.1 3.1 3.1 2.6 1.9 2.2 2.1 1.8 1.7 2.0	160 180 750 750 5 320 410 290 39 280 130 290 7 7 520 900 510 750 430 330 350 350	6200 15000 9200 9200 11000 22000 53000 38000 15000 38000 15000 22000 22000 22000 20000 5000 39000 39000 39000 39000 39000 39000 39000 39000 39000 39000 39000 39000 39000 39000	0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 50 170 10 62 130 20 31 30 30 30 30 30 30 30 30 30 30	54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 22 38 38 39 29 22 21 31 23 31 23	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 400 5 7 9 130 140 150 140 150 140 150 160 170 170 170 170 170 170 170 170 170 17	66000 95000 260000 109000 1190000 1190000 1460000 1460000 1400000 1470000 1470000 2500000 1400000 2000000 1700000 1400000 1700000 1800000 1800000 1800000	34000 34000 41000 28000 28000 23000 23000 25000 25000 24000 25000 37000 35000 34000 36000 34000 45000 38000 45000 38000 44000 58000	15 31 11 12 13 27 31 12 8 35 23 28 24 25 35 32 20 24 20 24 16 28 11 15 19 20	14000 63000 17000 19000 19000 19000 31000 28700 47700 53000 8400 32000 49000 56000 36000 37000 57000 68000 68000 68000 69000 39000 57000 39000 57000	290 430 340 340 1020 1400 1400 680 860 390 790 640 990 1300 640 900 340 1200 540 910 1200 540
98299 47 60 8RS:mt 400 WASTE 0.1 30000 87 41 1.3 370 34000 0.1 8 21 49 190000 37000 4 79000 570 100959 98299 60 70 8RS:mt 400 WASTE 0.1 40000 95 88 71 1.6 330 44000 0.1 10 19 65 52000 50 4 32800 720 100956 03267 10 18 8RS:mt 400 WASTE 0.1 38000 48 62 1.9 450 18000 0.1 30 27 43 22000 42000 35 78000 670 100959 10 18 8RS:mt 400 WASTE 0.1 5500 100 180 1.6 480 9700 0.2 20 32 12 20000 42000 35 78000 760 100954	100885 100887 - 100887 - 100887 - 100887 - 100889 100900 - 100901 - 100900 - 100901 - 100901 - 100901 - 100901 - 100901 - 100918 - 100919 - 100927 - 100928 - 1009028 - 1009038 - 1009038 - 1009038 - 1009038 - 1009038 - 1009038 - 1009038 - 1009038 - 1009039 - 100900000000000000000000000000000000	03258 98198 98198 98198 98198 00220 97072 97072 97072 97072 98151 98151 98151 98152 00233 00233 00233 00252 00252 00254 97002	0 136 1 136 1 120 136 14 14 1 15 15 15 15 15 15 15 15 15 15 15 15 1	5 BRS/mrt 38 BRS/mrt 38 BRS/mrt 10 BRS/mrt 11 BRS/mrt 12 BRS/mrt 2 BRS/mrt 3 BRS/mrt 4 BRS/mrt 5 BRS/mrt 6 BRS/mrt 1 BRS/mrt 1 BRS/mrt 9 BRS/mrt 9 BRS/mrt 7 BRS/mrt 9 BRS/mrt 9 BRS/mrt	500 400 500 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 35000 37000 37000 37000 32000 49000 62000 525000 32000 40000 37000 37000 38000 37000 40000 37000 41000 41000 37000 41000	5 12 290 41 600 500 500 400 500 500 500 500 500 500 5	550 580 170 180 290 130 160 160 160 1100 120 120 150 81 94 84 74 250 110 23 23 55 140 200 190 190	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 2.6 6 1.9 2.2 2.1 1.8 1.7 2.0 1.4	160 180 750 5 5 320 4410 290 39 180 180 190 190 190 190 190 190 190 190 190 19	6200 15000 9200 11000 9200 11000 32000 11000 38000 38000 15000 21000 22000 22000 22000 20000 39000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 20 30 31 30 30 30 30 30 30 30 30 30 30	54 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 31 29 22 31 32 33	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 5 7 9 130 22 22 23 4 8 32 130 140 140 150 150 150 150 150 150 150 15	66000 95000 260000 301000 109000 1190000 140000 146000 120000 147000 147000 120000 170000 170000 170000 170000 170000 170000 170000 180000 180000 150000 150000	34000 35000 41000 28000 23000 23000 21000 25000 24000 29000 24000 37000 35000 34000 34000 34000 45000 44000 45000 46000 46000	15 31 11 21 13 13 27 31 12 28 8 35 23 28 24 35 32 31 34 20 24 16 28 11 15 28 21 23 24 35 35 35 36 37 37 38 39 30 30 31 31 32 33 34 35 36 37 38 38 39 30 30 30 30 30 30 30 30 30 30	14000 63000 17000 19000 19000 28700 47700 53000 25000 8400 49000 56000 37000 57000 68000 68000 68000 68000 68000 57000 68000	290 430 340 340 1020 11400 680 860 860 390 790 530 610 1300 690 340 1200 1200 540 490 620
100959 98,299 60 70 85smt 400 WASTE 0.1 40000 95 87 1.6 380 44000 0.1 10 19 65 22000 50 4 32800 72	100885 100887 100887-Follow Up 100889 100900 100901 100901 100901 100901 100901 100901 100901 100902 100907 100902 100927 100928 100928 100936 100938 100939 100938 100938 100938	03258 98198 98198 98198 98198 98198 00220 97072 97072 90249 00249 98151 98151 98151 00233 00233 00252 00252 00252 00234 97102	0 136 1 136 1 120 130 140 140 140 140 140 140 140 140 140 14	3 BRS/smt 38 BRS/smt 38 BRS/smt 38 BRS/smt 38 BRS/smt 38S/smt BRS/smt 38S/smt BRS/smt 4 BRS/smt 5 BRS/smt 6 BRS/smt 7 BRS/smt 88S/smt BRS/smt 98S/smt BRS/smt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 35000 27000 37000 37000 32000 49000 62000 25000 32000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 35000 40000 36000 40000 36000 42000	5 12 87 299 411 600 600 600 600 500 600 1300 70 4700 3200 300 100 600 500 500 600 600 600 600 600 600 6	550 580 170 180 290 130 160 160 160 93 1100 120 150 81 94 84 74 250 110 23 35 55 140 200 190 140	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.9 2.4 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	160 180 750 750 5 320 4410 290 39 880 130 290 7 7 520 900 510 750 430 350 94 94 94 94 930 350 350 350 350 350 350 350 350	6200 15000 9200 9200 11000 22000 53000 38000 15000 38000 15000 22000 20000 22000 20000 20000 39000 39000 39000 39000 13000 13000 13000 17000 39000 13000 13000 13000 39000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 37 340 300 300 130 50 170 10 62 20 30 30 30 30 30 30 30 30 30 3	54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 23 32 22 22 2	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 11 11 15 5 79 130 222 22 22 22 23 3 5 11 9	66000 95000 260000 109000 1190000 1190000 140000 140000 140000 150000 1470000 170000 170000 170000 170000 170000 180000 180000 180000 1500000 1800000 1500000 1100000	34000 35000 41000 28000 28000 23000 23000 25000 24000 24000 37000 37000 35000 34000 36000 34000 34000 45000 45000 44000 58000 57000	15 31 11 21 13 27 31 12 8 8 35 23 28 24 35 32 24 35 32 24 35 32 24 35 32 24 35 31 11 11 11 12 13 14 15 16 16 16 16 16 16 16 16 16 16	14000 63000 17000 19000 19000 31000 28700 47700 53000 8400 32000 49000 56000 36000 37000 65000 68000 68000 47000 39000 65000 68000 47000 39000 65000 66000 66000 66000 66000 66000 66000 66000 66000 66000 66000 66000	290 430 340 340 1400 1400 1400 680 860 390 530 790 640 990 610 1300 690 910 1200 540 490 620
100965 03267 2 1 0 10 8 185±mt 400 WASTE 0.1 3800 48 62 19 450 1800 0.1 30 27 43 220000 25000 36 89000 670	100885 100887 Follow Up 100887 Follow Up 100889 100900 1009001 100901 Follow Up 100901 Follow Up 100901 100918 100919 100919 100920 100928 Follow Up 100928 100939 100939 100939 100939 100939	03258 98198 98198 98198 98198 90220 97072 97072 97072 97072 97072 98151 98151 00233 00233 00233 00252 00252 00252 00252 97072	0 136 1 136 1 120 130 136 1 125 125 125 125 125 120 125 125 125 120 125 125 125 125 125 125 125 125 125 125	5 BRS:mnt 38 BRS:mnt 38 BRS:mnt 0 BRS:mnt 1 BRS:mnt 1 BRS:mnt 2 BRS:mnt 3 BRS:mnt 0 BRS:mnt 0 BRS:mnt 0 BRS:mnt 1 BRS:mnt 0 BRS:mnt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 35000 37000 37000 37000 32000 49000 62000 25000 32000 32000 33000 37000 37000 37000 37000 37000 37000 37000 40000 37000 41000 37000 42000 42000 42000 42000 42000	5 12 290 41 600 500 500 100 200 100 100 600 100 600 100 100 100 100 1	550 580 170 180 290 130 160 160 160 1100 120 150 81 194 84 74 250 1110 23 23 55 140 200 190 190 190 110 110 110 110 1	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2	160 180 750 5 5 320 410 290 39 130 280 130 290 7 7 520 900 510 330 330 330 330 330 330 330 330 330 3	6200 15000 9200 11000 9200 11000 32000 31000 38000 15000 38000 20000 20000 20000 20000 39000 39000 39000 39000 39000 39000 39000 34000 34000 34000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 20 30 31 30 30 30 30 30 30 30 30 30 30	54 9 39 70 36 26 17 73 9 24 22 61 15 6 28 14 31 29 22 38 29 22 21 31 29 22 23 38 29 20 21 22 23 24 25 27 28 29 20 20 20 20 20 20 20 20 20 20	25 12 9 12 24 4 8 32 110 160 140 53 200 140 141 410 5 7 9 130 22 22 22 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 301000 109000 1190000 146000 146000 147000 147000 147000 170000 170000 170000 170000 170000 180000 160000 160000 1300000 1300000 1300000 1300000 1300000 1300000	34000 35000 41000 28000 23000 23000 21000 25000 24000 24000 20000 37000 35000 34000 34000 45000 45000 45000 46000 46000 46000 57000 57000 50000 57000	15 31 11 21 13 13 12 27 31 12 8 35 23 28 24 35 32 31 34 20 24 16 16 19 26 11 19 26 11 11	14000 63000 17000 19000 19000 28700 47700 53000 25000 8400 49000 56000 37000 30000 65000 68000 68000 47000 57000 68000 68000 57000 68000	290 430 340 340 1020 11400 680 860 860 390 900 530 610 1300 690 340 910 1200 540 490 620 540 1100
100967 03270 30 39 BRSmt 400 WASTE 0.1 41000 79 150 1.5 410 24200 0.1 8 24 5 180000 36000 26 78000 760	100885 100887 100887 7-0100817 100889 100900 100901 100901 100901 100901 100910 100910 100910 100910 100910 100910 100920 100928 10100940 100928 10100940 100938 100938 100938 100938 100938 100947 100948 100959	03258 98198 98198 98198 98198 98198 00220 97072 97072 00249 00249 98151 98151 00233 00252 00252 00252 00252 00254 98197 98197	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	5 BRS:mnt 38 BRS:mnt 38 BRS:mnt 0 BRS:mnt 1 BRS:mnt 1 BRS:mnt 2 BRS:mnt 3 BRS:mnt 0 BRS:mnt 0 BRS:mnt 1 BRS:mnt 1 BRS:mnt 9 BRS:mnt 9 BRS:mnt 9 BRS:mnt 9 BRS:mnt 10 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt	500 400 500 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 37000 32000 49000 62000 25000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 42000 32000 32000 42000 32000 42000 32000 32000 42000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000 32000	5 12 290 41 600 600 600 87 5500 600 87 5500 600 87 5500 600 600 600 600 600 600 600 600 60	550 580 170 180 170 180 290 130 160 160 160 1100 120 120 150 23 23 55 55 140 200 190 140 150 150 140 150 150 140 150 150 150 150 150 150 150 150 150 15	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2 1.3 1.6 1.9 1.6 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	160 180 750 750 5 5 220 410 290 39 180 130 290 7 7 520 900 510 510 350 94 430 350 94 740 330 350 350 340 350 340 350 380	6200 15000 9200 11000 9200 11000 32000 11000 38000 15000 38000 15000 22000 22000 22000 22000 20000 50000 39000 11000 39000 13000 13000 13000 13000 13000 34000 44000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 20 20 37 340 300 130 130 10 10 10 10 10 10 10 10 10 1	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 32 22 21 31 23 32 22 2	25 12 9 112 24 4 8 32 110 160 140 53 200 140 111 410 5 7 9 130 22 22 22 23 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 109000 1190000 150000 146000 1200000 110000 147000 147000 1250000 170000 170000 140000 250000 170000 150000 150000 150000 150000 150000 150000 150000 130000 1400000 150000 150000 1400000 12000000 1500000 1400000 120000000 150000000000000000000000	34000 35000 41000 28000 28000 23000 21000 25000 24000 24000 29000 37000 35000 34000 35000 34000 34000 34000 44000 38000 45000 45000 46000 45000 38000 57000 50000 57000 50000 32000	15 31 11 11 12 13 13 12 27 31 12 8 35 23 23 24 35 32 32 31 34 20 24 16 28 11 11 15 16 17 18 18 18 18 18 18 18 18 18 18	14/000 53000 17000 19000 19000 28700 47700 53000 25000 8400 32000 49000 56000 37000 57000 68000 68000 99000 68000 99000 68000 99000 68000 97000 5000 68000 97000 97000 97000	290 430 430 340 340 1020 1400 680 860 390 790 530 610 1300 690 340 280 910 1200 540 540 540 550 540 570 570
100968 03270 39 47 885smt 400 WASTE 3500 190 200 1.6 18 2000 0.2 15 71 94 140000 36000 9 48000 560 560 100968 03270 39 47 885smt 400 WASTE 0.1 73000 7 250 5.7 470 4900 0.1 20 64 69 240000 74000 44 62000 430 100970 74000 48000 740000 74000 740000 740000 74000 74000 74000 740000 740000 740000 740000 7	100885 100887 100887-Follow Up 100889 100900 100901 100901 100901 100901 100901 100901 100902 100902 100922 100927 100928 100939 100938 100939 100938 100939 100947 100948 100948 100959 100959	03258 98198 98198 98198 98198 98198 00220 97072 97072 00249 98151 00233 00233 00233 00252	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5 BRSEMT 30 BRSEMT 38 BRSEMT 30 BRSEMT 1 BRSEMT 1 BRSEMT 2 BRSEMT 3 BRSEMT 0 BRSEMT 0 BRSEMT 0 BRSEMT 1 BRSEMT 1 BRSEMT 2 BRSEMT 3 BRSEMT 4 BRSEMT 7 BRSEMT 9 BRSEMT 9 BRSEMT 9 BRSEMT 1 BRSEMT 1 BRSEMT 0 BRSEMT 0 BRSEMT 0 BRSEMT	500 400 500 400 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 35000 37000 30000 32000 49000 62000 32000	5 12 87 2990 411 2990 411 2990 411 2990 411 2990 411 2990 410 2990 410 2990 410 2990 410 2990 410 2990 410 2990 410 2990 410 2990 410 2990 410 600 600 600 600 600 600 600 600 600 6	550 580 170 180 290 130 160 160 160 93 1100 120 150 81 94 84 74 250 1110 23 23 23 23 23 20 140 20 150 110 110 110 110 110 110 11	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.9 2.4 2.1 1.8 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.2 1.3 1.6 1.9 1.9 1.6 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	160 180 750 750 5 320 4410 290 39 280 130 290 7 7 520 900 510 750 430 350 94 740 350 350 350 350 350 350 350 350 350 35	6200 15000 9200 9200 11000 22000 22000 53000 38000 15000 38000 15000 22000 20000 20000 20000 39000 39000 39000 17000 39000 13000 17000 39000 40000 40000 44000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20 20 31 320 340 30 30 30 30 30 30 30 30 30 3	54 9 9 39 39 70 36 26 17 73 9 9 24 22 61 16 28 14 31 29 22 21 31 31 23 32 22 20 21 19 27	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 5 5 79 130 220 220 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 150000 109000 1109000 1109000 1200000 140000 140000 140000 147000 190000 170000 170000 170000 180000 180000 150000 150000 110000 160000 150000 150000 150000 160000 150000 150000 150000 150000 150000 150000 150000 150000 150000	34000 35000 41000 28000 21000 25000 21000 25000 24000 24000 37000 35000 35000 34000 36000 40000 45000 45000 45000 46000 57000 50000 37000 50000 37000	15 31 11 21 13 27 31 12 8 8 35 28 24 35 22 24 35 32 24 35 32 24 35 32 31 34 30 20 20 21 31 35 36 37 38 39 30 30 31 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30	14/000 63/000 17/000 19/000 19/000 31/000 28/000 47/000 53/000 84/000 32/000 49/000 36/000 36/000 37/000 30/000 65/000	290 430 340 340 1020 1020 680 860 390 530 790 640 900 610 1300 690 440 280 540 11200 540 11200 540 1170 570 720 670
100998 03270 39 47 815kmt 400 WASTE 0.1 36000 91 120 1.5 370 8000 0.1 9 2.8 83 150000 30000 22 43000 470	100885 100887 100887 100887 100887 100887 100887 100890 100900 100900 100900 100900 100900 100900 100900 100900 100900 100900 100918 100920 100928 100938 100938 100938 100939 100938 100939 100938 100939 100939 100960 100960 100950 100950 100960 100950 100966 100999 100966 100999 100966 100999 100966 100999 100966 100999 100966 100960 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100989 100966 100960 10	02258 98198 98198 98198 98198 98198 00220 97072 97072 00249 98151 98151 98151 00233 00233 00233 00252 00252 00252 00252 00252 00252 00252 00252 00252	0 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5 BRS:mnt 38 BRS:mnt 38 BRS:mnt 0 BRS:mnt 1 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 11 BRS:mnt 12 BRS:mnt 13 BRS:mnt 14 BRS:mnt 15 BRS:mnt 16 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt	500 400 500 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 55000 22000 28000 27000 37000 37000 32000 49000 52000 32000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 30000 40000 30000 40000 30000 40000 30000 40000 30000 40000 30000 30000 40000 30000 30000 30000 30000 30000 30000 30000 30000	5 12 290 411 6600 600 600 500 100 600 87 48 100 600 87 48 100 600 87 48 100 600 87 48 100 600 600 600 600 600 600 600 600 600	550 580 170 180 180 190 130 160 160 160 93 1100 120 150 181 94 84 74 250 110 23 55 140 200 199 140 150 150 150 140 150 150 150 160 170 180 180	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2 2.1 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.6 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	160 180 780 780 5 5 320 410 290 39 280 130 290 7 7 520 990 510 750 430 330 350 94 740 330 350 350 350 350 350 350 350 350 35	6200 15000 9200 11000 9200 11000 9200 11000 93000 15000 38000 15000 93000 22000 22000 22000 20000 93000 93000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 13000 14000 14000 14000 14000 14000 14000 15000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20 20 31 320 340 30 30 30 30 30 30 30 30 30 3	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 23 32 22 21 31 23 32 22 2	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 5 5 79 130 220 220 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 109000 1190000 146000 1200000 140000 147000 147000 1200000 170000 170000 170000 170000 180000 180000 180000 110000 150000 1200000 170000 170000 170000 170000 170000 170000 170000 180000 180000 180000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000 1200000	34000 35000 41000 28000 28000 23000 21000 25000 24000 24000 24000 37000 35000 34000 34000 34000 34000 34000 34000 34000 35000 34000 35000 34000 35000 34000 35000	15 31 11 21 13 13 12 27 31 12 8 35 23 23 24 35 32 34 20 24 16 28 11 15 19 26 11 11 4 4 4 4 35 35	14/000 52000 17000 19000 19000 19000 19000 28700 47700 53000 25000 8400 32000 49000 55000 36000 37000 36000 37000 36000 37000 36000 37000 36000 37000 36000 37000 36000 37000	290 430 340 340 1020 1400 1400 680 860 390 790 640 900 340 640 900 340 1200 540 910 1200 540 1200 540 1100 570 720 670
100970 97060 11 30 885smt 400 WASTE 19000 490 53 1.6 150 27000 0.2 31 56 23 15000 31000 10 49000 660	100885 100887 100887-Follow Up 100889 100900 100901 100901 100901 100901 10091 10091 10091 10091 10091 10091 10091 10091 100920 100928-Follow Up 100928 100935 100936 100938 100937 100947 100947 100948 100959 100959 100959	02258 98198 98198 98198 98198 98198 90220 97072 97072 00249 98151 98151 98151 00233 00233 00233 00234 97102 97102 97102 00252	0 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5	500 400 500 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 22000 37000 37000 37000 32000 49000 62000 25000 32000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 35000 40000 35000 40000 35000 40000 35000	5 12 290 411 6600 620 620 620 620 620 620 620 620 62	550 580 170 180 180 190 130 160 160 160 93 1100 120 150 110 23 23 55 140 200 140 150 150 140 150 150 140 150 150 150 150 150 162 181 175	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 2.9 2.4 2.2 2.1 3.1 3.1 2.6 2.6 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2 1.3 1.6 1.9 1.9 1.6 1.5	160 180 750 750 5 5 220 410 290 39 280 130 290 7 7 520 900 900 430 350 94 430 350 94 430 350 95 550 94 350 95 95 96 97 97 97 97 97 97 97 97 97 97 97 97 97	6200 15000 9200 11000 9200 11000 9200 11000 93000 15000 95000 15000 95000 25000 22000 22000 20000 95000 95000 13000 95000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 30 40 20 30 30 20 40 37 340 300 130 50 170 10 62 21 30 30 10 10 10 10 10 10 10 10 20 10 10 10 20 10 10 20 10 10 20 8 8	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 29 22 21 31 29 22 21 31 29 22 21 31 32 24 27 38 39 30 31 32 32 34 37 37 38 39 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 38 39 30 31 32 33 34 35 36 37 38 38 39 30 31 32 33 34 35 36 37 38 38 39 30 31 32 34 35 36 37 38 38 39 30 30 31 31 32 32 34 37 37 38 38 39 30 30 30 30 30 30 30	25 12 9 112 24 4 8 8 32 110 160 140 53 200 140 111 410 5 5 7 9 130 22 22 22 22 3 3 5 1 8 8 8 8 8 8 8 8 8 8 8 8 8	66000 95000 260000 109000 1109000 1109000 150000 146000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000 1100000	34000 35000 28000 28000 23000 25000 25000 25000 24000 37000 35000 36000 36000 37000 35000 36000 37000	15 31 11 21 13 27 31 12 27 31 12 8 35 23 24 35 32 34 20 24 16 28 21 31 32 31 34 20 24 35 31 34 36 37 38 39 30 31 31 31 32 33 34 35 36 37 38 39 30 31 31 31 32 33 34 35 36 37 38 39 30 30 31 31 31 32 33 34 36 36 37 38 38 39 30 30 31 31 34 36 36 37 38 38 39 30 30 30 30 30 30 30 30 30 30	14/000 52000 17000 19000 19000 19000 19000 19000 28700 47700 53000 28700 49000 55000 32000 32000 35000 35000 36000 37000 55000 68000 68000 47000 39000 68000 47000 39000 57000 3000 68000 79000 32000 79000 32000 79000 78000 78000	290 430 340 340 1020 1400 1400 680 860 390 790 640 990 1300 690 340 280 910 1200 540 490 620 570 670 480 760
100970 9706 11 30 875smt 400 WASTE 0.2 43000 12 190 0.6 290 24000 0.1 10 18 4 140000 43000 28 72000 530	100885 100887-Follow Up 100887-Follow Up 100889 100900-1009001 100901-Follow Up 100901-Follow Up 100901-100918 100919-100918 100927 100928 100928 100928 100938 100939 100938 100939 100947 100948 100959 100958 100966 100966	02258 98198 98198 98198 98198 98198 900220 97072 97072 97072 00249 98151 98151 98151 00233 00252 00252 00252 00252 00252 00254 00252	0 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5 BRSEMT 30 BRSEMT 38 BRSEMT 30 BRSEMT 1 BRSEMT 1 BRSEMT 2 BRSEMT 3 BRSEMT 0 BRSEMT 0 BRSEMT 0 BRSEMT 1 BRSEMT 0 BRSEMT 1 98SEMT 1 98SEMT 2 BRSEMT 3 BRSEMT 3 BRSEMT 4 BRSEMT 5 BRSEMT 6 BRSEMT 7 BRSEMT 8 BRSEMT 0 BRSEMT	500 400 500 400 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 55000 28000 28000 27000 37000 37000 30000 32000 49000 52000 32000 40000 33000 40000 33000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000	5 12 290 411 6600 620 620 620 620 620 620 620 620 62	550 580 170 180 170 180 290 130 160 160 160 120 120 150 81 1100 223 23 23 55 140 200 190 140 150 150 187 62 180 150 200 120	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 2.9 3.1 3.1 2.6 2.6 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.8 1.7 2.0 1.4 1.8 1.7 1.7 1.7 1.7 1.9 1.6 1.6 1.9 1.6 1.5 1.6 1.9 1.6 1.5 1.6 1.5	160 180 750 750 320 4410 290 39 39 280 130 290 7 7 520 900 510 750 430 350 94 740 330 350 350 390 550 340 5220 370 380 480 4410 18	6200 15000 9200 11000 9200 11000 22000 31000 38000 15000 30000 20000 30000 20000 30000 20000 30000 17000 39000 39000 39000 39000 39000 39000 39000 40000 40000 40000 40000 9700 422000 20000 9700 24200 20000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 40 37 340 300 130 50 170 10 62 20 30 10 10 10 10 10 10 10 10 10 1	54 9 9 39 39 70 36 26 51 77 73 3 9 24 22 61 16 28 14 31 29 22 21 31 31 22 22 20 21 19 27 22 22 20 21 19 27 22 24 71 28	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 1109000 1150000 146000 140000 140000 147000 147000 120000 170000 170000 170000 170000 180000 150000 150000 150000 180000 180000 190000 190000 180000 190000 190000 180000 190000 190000 190000 190000 190000 190000 190000 190000 190000 190000 190000 190000 190000 190000	34000 35000 41000 28000 23000 21000 25000 24000 29000 24000 37000 33000 35000 34000 35000 40000 45000 45000 46000 57000 50000 50000 32000 32000 46000 36000 36000 36000 36000	15 31 11 21 13 27 31 12 8 8 35 28 24 35 24 35 32 34 30 24 36 37 39 31 31 31 31 34 36 36 37 38 39 30 31 31 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30	14000 63000 17000 19000 19000 28700 47700 53000 28700 47700 53000 25000 8400 32000 32000 37000 57000 36000 68000 95000 68000 47000 57000 68000 68000 97000 57000 68000 97000 68000 97000 57000 68000 97000 68000 97000 68000 97000	290 430 430 340 340 1020 1020 680 860 860 390 790 640 900 610 1300 690 1200 1200 540 490 1100 540 1100 570 720 670 480 560
100999 97036 17 165 885kmt 400 400 4200 28 72000 530 5	100885 100887 100887 100887 100887 100889 100800 100801 100800 100801 100901 100907 100918 100919 100928 100928 100936 100936 100938 100940 100940 100940 100940 100940 100940 100940 100940 100940 100950 100950 100960 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966 100966	02258 98198 98198 98198 98198 98198 90220 97072 97072 00249 98151 98151 98151 90233 00233 00233 00233 00252	0 136 1 136 1 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	5 BRS:mnt 3 BRS:mnt 38 BRS:mnt 38 BRS:mnt 1 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 10 BRS:mnt 11 BRS:mnt 12 BRS:mnt 13 BRS:mnt 14 BRS:mnt 15 BRS:mnt 16 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 22000 33000 37000 32000 42000 62000	5 12 290 411 600 600 600 600 600 600 600 600 600 6	550 580 170 180 180 190 130 160 160 160 93 1100 120 150 1110 23 23 55 140 200 140 150 150 150 150 150 150 150 150 150 15	1.1 1.5 4.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.1 3.1 2.6 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.8 1.7 2.0 1.8 1.8 1.7 2.0 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	160 180 750 750 750 320 410 290 39 280 130 290 7 7 520 990 901 750 430 350 94 740 330 350 350 350 350 350 350 350 350 35	6200 15000 9200 11000 9200 11000 9200 11000 93000 93000 93000 15000 93000 22000 22000 22000 22000 20000 93000 93000 17000 93000 17000 93000 17000 93000 17000 93000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20 10 10 10 10 20 110 10 20 8 8 115 9 20	54 9 39 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 23 32 22 20 21 19 27 32 24 71 28 64	25 12 9 112 24 4 8 8 32 110 160 140 53 200 140 111 410 5 5 7 9 130 22 22 22 22 22 3 3 5 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	66000 95000 260000 109000 1190000 1190000 146000 146000 140000 140000 1470000 1470000 170000 170000 170000 140000 170000 180000 150000 180000 180000 120000 150000 140000 150000 140000 150000 150000 150000 140000 150000 150000 140000 150000	34000 35000 28000 28000 23000 25000 25000 25000 26000 37000 35000 36000 36000 37000 36000 37000 36000 37000 36000 37000	15 31 11 21 13 27 31 12 18 35 23 28 24 35 32 31 34 20 24 16 28 11 15 19 26 13 13 4 4 4 4 36 35 26 17 27 37 38 39 30 31 32 32 32 32 32 32 32 31 34 35 36 37 38 39 30 30 31 31 32 32 33 34 35 36 36 37 38 38 39 30 30 30 30 30 30 30 30 30 30	14/000 52000 17000 19000 19000 19000 28700 47700 53000 28700 44700 53000 55000 68000 55000 68000 68000 68000 67000 68000 68000 68000 78000 32000 49000 68000	290 430 340 340 1020 1400 1400 680 860 390 530 790 640 990 650 340 690 340 1200 540 690 690 690 690 690 690 690 690 690 69
100991 97036 225 230 818Smt 400 WASTE 0.3 24000 300 110 3.8 8.30 26000 0.2 70 3.5 64 220000 24000 27 16000 980 100998-follow Up 0024 91 104 885smt 400 WASTE 0.2 28000 200 72 3.2 550 32000 0.1 170 2.6 2.7 18000 1900 2.9 29000 100	100885 100887-Follow Up 100887-Follow Up 100889 100900 100901 100901 100901 100901 100910 100910 100910 100910 100910 100910 100910 100910 100928 100927 100928-Follow Up 100928 100936 100938 100939 100947 100948 100940 100950 100966 100966 100966 100966 100966	02258 98198 98198 98198 98198 98198 98198 98198 900229 97072 97072 00249 98151	0 136 1 136 1 136 1 136 1 1 136 1 1 1 1 1	885-mt 885-mt 885-mt 885-mt 885-mt 1	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 35000 27000 37000 30000 32000 49000 49000 40000 32000 40000 40000 33000 40000 40000 34000 40000 35000 40000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000	5 12 87 299 41 12 87 299 119 19 19 1 7 7 499 149 1	550 580 170 180 170 180 290 130 160 160 160 150 81 170 120 150 81 1100 23 23 23 55 140 200 190 140 150 2120 41 87 62 180 150 200 200 210 250 250	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 2.9 3.1 3.1 2.6 2.6 2.9 2.1 1.8 1.7 2.0 1.8 1.7 2.0 1.4 1.8 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.1 1.7 2.0 1.4 1.8 2.0 1.4 1.8 2.0 1.4 1.8 2.0 1.6 1.6 1.5 1.6 1.5 5.7 1.6	160 180 750 750 320 410 290 39 39 280 130 290 7 520 900 510 750 430 350 94 740 330 350 350 390 550 390 550 390 550 390 550 480 480 410 18 370 470 470	6200 15000 9200 11000 22000 31000 31000 31000 31000 31000 30000 21000 22000 20000 30000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 130 10 62 20 30 10 10 10 10 10 10 10 10 10 10 10 10 10	54 9 9 39 39 70 36 26 56 317 73 3 9 24 22 56 116 28 14 31 29 22 21 19 19 27 22 22 23 32 22 22 21 19 27 27 32 24 71 28 64 56 6	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 22 22 23 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 1109000 1450000 1450000 1450000 140000 147000 190000 170000 170000 170000 170000 170000 180000 150000 140000 150000 150000 140000 150000 150000 140000 150000	34000 28000 21000 22000 22000 22000 22000 24000 29000 24000 37000 35000 35000 34000 35000 40000 45000 45000 46000 57000 57000 58000 46000 57000 50000 37000 37000 37000 38000 47000	15 31 11 21 13 27 31 12 8 35 28 24 35 24 35 32 34 20 24 16 28 11 15 19 26 11 11 4 4 4 4 4 4 4 4 4 4 4 4 4	14000 63000 17000 19000 19000 28700 47700 53000 28700 47700 53000 25000 8400 32000 30000 65000 68000 68000 68000 68000 68000 57000 68000 68000 68000 79000 68000 79000 68000 79000 68000 68000 79000 68000	290 430 430 340 340 1020 1020 680 860 860 390 790 640 900 610 1300 690 1200 1200 1200 540 490 550 670 480 560 560
100998-Follow Up 00241 91 104 BRS:mt 400 WASTE 33000 180 130 2.1 77 40000 0.2 23 56 130 129000 37000 10 69000 850	100885 100887 - 100887-Follow Up 100889 1009807 - 1009807 1009001 - 1009001 100901 - 1009007 100918 100919 - 100919 100920 - 100928 100936 - 1009000000000000000000000000000000000	02258 981198 98198 98198 98198 98198 90220 97072 97072 90249 98151 98151 98151 90233 00233 00233 00233 00252 00252 00252 00254 00267 00267 0027 0027 0027 0027 0027 00	0 136 1 136 1 136 1 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5 BRS:mnt 8 BRS:mnt 88 BRS:mnt 10 BRS:mnt 11 BRS:mnt 12 BRS:mnt 13 BRS:mnt 14 BRS:mnt 15 BRS:mnt 16 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt <td>500 400 500 500 500 400 400 400 400 400</td> <td>WASTE WASTE WASTE</td> <td>0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>55000 \$2000 28000 28000 37000 37000 32000 49000 62000 25000 33000 40000 33000 40000 33000 40000 34000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 36000 40000 36000 40000 36000 40000 36000 40000 36000 40000 37000 37000</td> <td>5 12 87 299 41 12 87 299 11 29 12 800 12 9 12 800 100 100 100 100 100 100 100 100 100</td> <td>550 580 170 180 170 180 290 130 160 160 160 150 120 150 81 1100 23 23 23 55 140 200 190 120 41 180 150 200 120 250 250 250 250 250 250 250 250 250 2</td> <td>1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.3 3.1 2.6 6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2 2.1 1.6 1.9 1.6 1.5 1.6 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6</td> <td>160 180 750 750 320 410 290 39 39 39 39 5280 130 280 7 520 900 510 750 430 350 94 740 330 350 350 390 550 550 380 380 380 380 380 380 380 380 380 38</td> <td>6200 15000 9200 9200 9200 11000 22000 31000 38000 15000 38000 15000 22000 20000 20000 20000 39000 39000 17000 39000 17000 39000 17000 40000 40000 40000 9700 24200 20000 8000 9700 9700 24200 9700 24200 9700 8000 9700 9700 9700 9700 9700 97</td> <td>0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>10 5 40 30 40 166 20 30 940 20 40 37 340 300 130 50 170 10 62 20 30 30 10 10 10 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10</td> <td>54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 29 22 21 31 23 32 22 20 21 19 27 32 24 71 28 44 56 56 23</td> <td>25 12 9 12 24 4 8 32 110 160 140 53 200 140 141 15 5 79 130 22 22 22 23 5 9 14 9 15 16 17 18 18 18 18 18 18 18 18 18 18</td> <td>66000 95000 260000 109000 1190000 1190000 146000 146000 140000 150000 1470000 250000 1470000 250000 170000 140000 150000 160000 180000 150000 180000 140000 150000 150000 140000 150000 150000 150000 140000 150000 150000 140000 150000</td> <td>34000 28000 21000 22000 21000 25000 24000 29000 24000 29000 37000 35000 35000 35000 34000 36000 36000 40000 45000 57000 50000 32000 32000 38000 40000 38000 40000 38000 40000 38000 40000 38000 38000 40000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000</td> <td>15 31 11 11 21 13 27 31 12 8 35 28 24 35 24 35 32 34 20 24 35 31 31 31 31 31 31 31 31 31 31</td> <td>14000 53000 17000 19000 19000 28700 47700 53000 25000 8400 49000 56000 37000 30000 65000 68000 47000 57000 6000 6000 6000 70000 70000 70000 70000 70000 70000 70000</td> <td>290 430 430 340 340 1020 1020 680 860 860 860 390 900 640 900 640 900 1300 690 1300 690 1400 540 490 550 600 570 720 670 480 560 670 430 660 670</td>	500 400 500 500 500 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 \$2000 28000 28000 37000 37000 32000 49000 62000 25000 33000 40000 33000 40000 33000 40000 34000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 35000 40000 36000 40000 36000 40000 36000 40000 36000 40000 36000 40000 37000 37000	5 12 87 299 41 12 87 299 11 29 12 800 12 9 12 800 100 100 100 100 100 100 100 100 100	550 580 170 180 170 180 290 130 160 160 160 150 120 150 81 1100 23 23 23 55 140 200 190 120 41 180 150 200 120 250 250 250 250 250 250 250 250 250 2	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.3 3.1 2.6 6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 2.2 2.1 1.6 1.9 1.6 1.5 1.6 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	160 180 750 750 320 410 290 39 39 39 39 5280 130 280 7 520 900 510 750 430 350 94 740 330 350 350 390 550 550 380 380 380 380 380 380 380 380 380 38	6200 15000 9200 9200 9200 11000 22000 31000 38000 15000 38000 15000 22000 20000 20000 20000 39000 39000 17000 39000 17000 39000 17000 40000 40000 40000 9700 24200 20000 8000 9700 9700 24200 9700 24200 9700 8000 9700 9700 9700 9700 9700 97	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 166 20 30 940 20 40 37 340 300 130 50 170 10 62 20 30 30 10 10 10 10 10 10 20 10 10 10 10 10 10 10 10 10 10 10 10 10	54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 29 22 21 31 23 32 22 20 21 19 27 32 24 71 28 44 56 56 23	25 12 9 12 24 4 8 32 110 160 140 53 200 140 141 15 5 79 130 22 22 22 23 5 9 14 9 15 16 17 18 18 18 18 18 18 18 18 18 18	66000 95000 260000 109000 1190000 1190000 146000 146000 140000 150000 1470000 250000 1470000 250000 170000 140000 150000 160000 180000 150000 180000 140000 150000 150000 140000 150000 150000 150000 140000 150000 150000 140000 150000	34000 28000 21000 22000 21000 25000 24000 29000 24000 29000 37000 35000 35000 35000 34000 36000 36000 40000 45000 57000 50000 32000 32000 38000 40000 38000 40000 38000 40000 38000 40000 38000 38000 40000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000	15 31 11 11 21 13 27 31 12 8 35 28 24 35 24 35 32 34 20 24 35 31 31 31 31 31 31 31 31 31 31	14000 53000 17000 19000 19000 28700 47700 53000 25000 8400 49000 56000 37000 30000 65000 68000 47000 57000 6000 6000 6000 70000 70000 70000 70000 70000 70000 70000	290 430 430 340 340 1020 1020 680 860 860 860 390 900 640 900 640 900 1300 690 1300 690 1400 540 490 550 600 570 720 670 480 560 670 430 660 670
Fortune Minerals Perliminary Samples 03-272 21 81 Upper 9 0.6 2600 780 220 1.5 10 6400 1.0 38 23 110 7200 2600 5 1900 250 1900 250 1900 250 1900 1900 1900 1900 1900 1900 1900 19	100885 100887 100887 100887-Follow Up 100889 100980 100901 100901 100901 100910 100910 100919 100919 100920 100919 100928 100927 100918 100928 100927 100948 100947 100948 100959 100959 100966 100966 100966 100969 100969 100969 100970 100968	03258 98198 98198 98198 98198 98198 98198 98198 00220 97072 97072 97072 00249 98151 98151 00233 00233 00233 00252	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	5 BRS:mnt 8 BRS:mnt 88 BRS:mnt 10 BRS:mnt 11 BRS:mnt 12 BRS:mnt 13 BRS:mnt 14 BRS:mnt 15 BRS:mnt 16 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt <td>500 400 500 500 400 400 400 400 400 400</td> <td>WASTE WASTE WASTE</td> <td>0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>55000 \$2000 28000 28000 35000 27000 37000 32000 49000 62000 25000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 35000 40000 36000 40000 36000 40000 36000 40000 36000 40000 36000 40000 37000 40000</td> <td>5 12 290 411 600 600 600 600 600 600 600 600 600 6</td> <td>650 580 170 180 180 290 130 160 160 160 170 180 181 190 1100 120 150 181 194 281 281 294 110 223 55 140 200 190 140 150 150 120 140 187 62 1887 62 180 1200 1200 1200 1200 1200 1200 1200</td> <td>1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.1 3.1 3.1 2.6 2.6 2.6 2.9 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3</td> <td>160 180 180 750 5 320 4410 290 39 880 130 77 520 900 520 900 520 900 750 750 430 3350 94 440 3350 95 550 350 350 350 350 350 350 350 350 35</td> <td>6200 15000 9200 9200 9200 9200 11000 22000 53000 38000 15000 5600 18000 20000 20000 20000 20000 39000 9900 17000 17000 26000 40000 9900 40000 9900 9900 9900 990</td> <td>0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>10 5 40 30 40 160 20 30 940 20 37 340 300 130 50 170 10 62 20 30 10 10 10 20 8 8 11 10 20 8 8 15 9 20 31 20 8 8 15 9 20 31 20 31 20 30 30 30 30 30 30 30 30 30 30 30 30 30</td> <td>54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 32 22 20 21 19 27 32 24 47 71 28 64 56 23 18</td> <td>25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 110 5 79 130 222 220 3 5 1 1 1 8 8 8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>66000 95000 260000 109000 1190000 1190000 140000 140000 140000 150000 140000 140000 147000 250000 170000 170000 170000 180000 180000 180000 180000 140000 150000 140000 150000 150000 150000 140000 150000</td> <td>34000 35000 28000 21000 22000 22000 22000 24000 24000 37000 35000 36000 34000 45000 38000 36000 37000 37000 36000 37000 38000 36000 36000 37000 37000 37000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000</td> <td>15 31 11 21 13 27 31 12 18 8 35 28 24 35 32 24 35 32 20 24 31 31 34 20 24 16 28 11 15 19 26 13 16 11 4 4 4 4 4 36 35 35 26 9 9 22 44 10 29 28 24</td> <td>14000 53000 17000 19000 19000 31000 28700 47700 53000 8400 32000 49000 36000 36000 37000 57000 68000 68000 68000 68000 68000 68000 39000 57000 39000 57000 40000 32000 40000 32000 40000 32000 40000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000</td> <td>290 430 430 340 340 1400 1400 1400 680 860 390 900 640 990 650 340 490 650 540 1100 550 670 480 470 430 660 670 530 680</td>	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 \$2000 28000 28000 35000 27000 37000 32000 49000 62000 25000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 33000 40000 35000 40000 36000 40000 36000 40000 36000 40000 36000 40000 36000 40000 37000 40000	5 12 290 411 600 600 600 600 600 600 600 600 600 6	650 580 170 180 180 290 130 160 160 160 170 180 181 190 1100 120 150 181 194 281 281 294 110 223 55 140 200 190 140 150 150 120 140 187 62 1887 62 180 1200 1200 1200 1200 1200 1200 1200	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.1 3.1 3.1 2.6 2.6 2.6 2.9 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	160 180 180 750 5 320 4410 290 39 880 130 77 520 900 520 900 520 900 750 750 430 3350 94 440 3350 95 550 350 350 350 350 350 350 350 350 35	6200 15000 9200 9200 9200 9200 11000 22000 53000 38000 15000 5600 18000 20000 20000 20000 20000 39000 9900 17000 17000 26000 40000 9900 40000 9900 9900 9900 990	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 37 340 300 130 50 170 10 62 20 30 10 10 10 20 8 8 11 10 20 8 8 15 9 20 31 20 8 8 15 9 20 31 20 31 20 30 30 30 30 30 30 30 30 30 30 30 30 30	54 9 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 32 22 20 21 19 27 32 24 47 71 28 64 56 23 18	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 111 110 5 79 130 222 220 3 5 1 1 1 8 8 8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 1190000 1190000 140000 140000 140000 150000 140000 140000 147000 250000 170000 170000 170000 180000 180000 180000 180000 140000 150000 140000 150000 150000 150000 140000 150000	34000 35000 28000 21000 22000 22000 22000 24000 24000 37000 35000 36000 34000 45000 38000 36000 37000 37000 36000 37000 38000 36000 36000 37000 37000 37000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000	15 31 11 21 13 27 31 12 18 8 35 28 24 35 32 24 35 32 20 24 31 31 34 20 24 16 28 11 15 19 26 13 16 11 4 4 4 4 4 36 35 35 26 9 9 22 44 10 29 28 24	14000 53000 17000 19000 19000 31000 28700 47700 53000 8400 32000 49000 36000 36000 37000 57000 68000 68000 68000 68000 68000 68000 39000 57000 39000 57000 40000 32000 40000 32000 40000 32000 40000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000 32000 75000	290 430 430 340 340 1400 1400 1400 680 860 390 900 640 990 650 340 490 650 540 1100 550 670 480 470 430 660 670 530 680
Preliminary Samples 09-27 83 96 Ore 20ne 09-200 760 220 1.5 83 96 Ore 20ne 2000 3 100 23 100	100885 100887-Follow Up 100887-Follow Up 100889 100890-Follow Up 100801-Follow Up 100901-Follow Up 100907 100918-Follow Up 100918-Follow Up 100928-Follow Up 100928-Follow Up 100928-Follow Up 100939-Follow Up 100939-Follow Up 100968-Follow Up 100968-Follow Up 100969-Follow Up 100969-Follow Up 100969-Follow Up 100970-Follow Up 100970-Follow Up 100970-Follow Up 100970-Follow Up 100999-Follow Up	02258 98198 98198 98198 98198 98198 98198 98198 98198 97072 97072 97072 00249 98151 98151 98151 00233 00233 00232 00252	0 136 1 136 1 136 1 136 1 1 136 1 1 136 1 1 1 1	5 BRS-mrt 80 BRS-mrt 81 BRS-mrt 10 BRS-mrt 11 BRS-mrt 12 BRS-mrt 2 BRS-mrt 3 BRS-mrt 4 BRS-mrt 5 BRS-mrt 6 BRS-mrt 9 BRS-mrt 1 BRS-mrt 1 BRS-mrt 9 BRS-mrt 9 BRS-mrt 1 BRS-mrt 1 BRS-mrt 1 BRS-mrt 1 BRS-mrt 1 BRS-mrt 1 BRS-mrt 2 BRS-mrt 3 BRS-mrt 3<	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 35000 37000 37000 32000 49000 62000 25000 32000 40000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 40000 37000 40000 37000 40000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	5 12 290 410 410 410 410 410 410 410 410 410 41	550 580 170 180 180 190 130 160 160 160 160 120 120 150 1100 23 23 23 55 140 200 120 41 87 62 180 150 200 120 250 53 50 190 110	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 2.3 3.1 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.6 1.5 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 1.5 5.7 1.6 5.8 3.8 2.1	160 180 180 750 5 5 5 220 410 290 39 180 130 290 7 7 520 900 510 750 430 350 94 740 330 350 350 340 350 340 450 440 18 370 4470 150 480 490 830 77	6200 15000 9200 11000 9200 11000 9200 11000 93000 15000 93000 15000 93000 22000 22000 22000 93000 93000 1700 93000 1700 93000 18000 93000 18000 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 1900 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000 19000 93000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 150 10 62 20 10 10 10 20 10 10 20 10 10 20 10 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 20 30 8 8 11 10 20 20 8 8 10 20 30 20 30 20 30 20 30 20 30 20 30 30 20 30 30 30 30 30 30 40 30 40 30 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40	54 9 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 29 22 21 31 29 22 21 31 29 22 21 31 29 22 21 31 23 24 27 38 29 29 20 21 31 23 32 24 71 28 64 56 23 38 35 56	25 12 9 12 24 4 8 32 110 160 140 53 200 140 141 410 5 5 79 130 22 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 190000 109000 1109000 1109000 1109000 1109000 1109000 1100000	34000 35000 41000 28000 23000 21000 25000 25000 24000 26000 37000 35000 35000 35000 34000 35000 40000 45000 45000 57000 50000 32000 36000 37000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 40000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000 38000	15 31 11 11 13 13 12 27 31 12 8 35 23 24 35 32 31 34 20 24 16 28 21 15 19 26 11 11 4 4 4 36 37 38 39 39 30 30 31 31 31 31 32 32 33 34 35 36 37 38 39 30 30 31 31 31 31 32 33 34 36 37 38 39 30 30 30 31 31 31 31 31 31 32 33 34 36 37 38 39 30 30 30 30 30 30 30 30 30 30	14000 17000 19000	290 430 340 340 340 1020 1400 680 860 390 530 790 530 640 900 340 280 910 1200 540 540 900 550 670 670 480 660 670 530 980
100998 00241 91 104 BRS±mt 400 WASTE 0.2 24000 85 110 1.5 350 25000 0.1 20 17 85 99000 31000 27 48000 690 Minimum 0.6 73000 5500 1100 5.7 900 53000 1.0 940 73 410 301000 7400 44 95000 1400 Average 0.2 35479 649 168 2.1 360 2338 0.1 72 32 68 165938 35522 22 48492 669	100885 100887-follow Up 100887-follow Up 100889 100900 100901 100901 100901 100901 100901 100910 100901 100910 100902 100910 100918 100920 100928 100928 100938 100938 100938 100938 100939 100940 100940 100950 100960 100966 100966 100966 100966 100969 100969 100970 100970 100970 100988	03258 98198 98198 98198 98198 98198 98198 98198 98198 98198 98198 00220 97072 97072 00249 98151 98151 98151 00233 00233 00233 00252	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	5 BRS:mnt 8 BRS:mnt 88 BRS:mnt 10 BRS:mnt 11 BRS:mnt 12 BRS:mnt 13 BRS:mnt 14 BRS:mnt 15 BRS:mnt 16 BRS:mnt 17 BRS:mnt 18 BRS:mnt 19 BRS:mnt 10 BRS:mnt <td>500 400 500 500 400 400 400 400 400 400</td> <td>WASTE WASTE WASTE</td> <td>0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>55000 42000 28000 28000 28000 27000 37000 30000 32000 49000 62000 25000 32000 32000 33000 40000 32000 33000 40000 34000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000</td> <td>5 12 87 2990 411 2990</td> <td>650 580 170 180 180 190 130 160 160 160 160 120 120 150 81 140 250 1110 23 23 23 23 23 23 140 200 190 140 140 150 150 120 120 120 120 120 120 120 120 120 12</td> <td>1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.9 2.4 2.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1</td> <td>160 180 180 750 5 320 4410 290 39 280 130 290 7 7 520 900 5310 750 430 330 350 340 740 330 350 350 350 350 350 350 350 350 35</td> <td>6200 15000 9200 11000 9200 11000 22000 53000 31000 15000 5600 18000 30000 22000 20000 50000 39000 1700 39000 17000 17000 18000 40000 40000 18000 40000 17000 18000 18000 18000 17000 18000 17000 18000 17000 18000 17000 18000</td> <td>0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1</td> <td>10 5 40 30 40 160 20 30 30 40 20 30 30 40 20 30 37 340 300 130 50 170 10 62 21 130 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 20 11 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20</td> <td>54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 31 22 22 20 21 31 19 27 32 24 71 19 27 32 24 71 28 64 64 556 23 18 35 556</td> <td>25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1</td> <td>66000 95000 260000 109000 1109000 1109000 1150000 146000 11000000</td> <td>34000 28000 21000 22000 22000 22000 22000 24000 29000 24000 37000 35000 35000 35000 34000 36000 36000 38000 45000 37000 32000 32000 38000 45000 38000 45000 36000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000</td> <td>15 31 11 11 21 13 27 31 12 8 8 35 28 24 35 28 24 35 20 24 31 11 15 19 26 11 15 19 26 13 16 28 11 15 26 27 20 24 44 40 29 22 44 10 29 28 27 10 29</td> <td>14/000 53000 17000 19000 31000 28700 47700 53000 28700 49000 36000 36000 36000 37000 57000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000</td> <td>290 430 430 430 340 1020 680 860 860 390 640 900 610 1300 690 440 280 1200 620 540 170 770 770 480 760 560 670 430 660 670 530 980</td>	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 28000 27000 37000 30000 32000 49000 62000 25000 32000 32000 33000 40000 32000 33000 40000 34000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000	5 12 87 2990 411 2990	650 580 170 180 180 190 130 160 160 160 160 120 120 150 81 140 250 1110 23 23 23 23 23 23 140 200 190 140 140 150 150 120 120 120 120 120 120 120 120 120 12	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.9 2.4 2.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	160 180 180 750 5 320 4410 290 39 280 130 290 7 7 520 900 5310 750 430 330 350 340 740 330 350 350 350 350 350 350 350 350 35	6200 15000 9200 11000 9200 11000 22000 53000 31000 15000 5600 18000 30000 22000 20000 50000 39000 1700 39000 17000 17000 18000 40000 40000 18000 40000 17000 18000 18000 18000 17000 18000 17000 18000 17000 18000 17000 18000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 30 40 20 30 30 40 20 30 37 340 300 130 50 170 10 62 21 130 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 20 11 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 31 22 22 20 21 31 19 27 32 24 71 19 27 32 24 71 28 64 64 556 23 18 35 556	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 1109000 1109000 1150000 146000 11000000	34000 28000 21000 22000 22000 22000 22000 24000 29000 24000 37000 35000 35000 35000 34000 36000 36000 38000 45000 37000 32000 32000 38000 45000 38000 45000 36000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	15 31 11 11 21 13 27 31 12 8 8 35 28 24 35 28 24 35 20 24 31 11 15 19 26 11 15 19 26 13 16 28 11 15 26 27 20 24 44 40 29 22 44 10 29 28 27 10 29	14/000 53000 17000 19000 31000 28700 47700 53000 28700 49000 36000 36000 36000 37000 57000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000	290 430 430 430 340 1020 680 860 860 390 640 900 610 1300 690 440 280 1200 620 540 170 770 770 480 760 560 670 430 660 670 530 980
Maximum 0.6 7300 5600 1100 5.7 900 53000 1.0 940 73 410 30100 74000 44 95000 1400 Average 0.2 35479 649 168 2.1 360 23338 0.1 72 32 68 165938 35522 22 48492 669	100885 100887-follow Up 100887-follow Up 100889 100900-follow Up 100901-follow Up 100901-follow Up 100901-follow Up 100901-follow Up 100918 100919 100920 100928-follow Up 100928 100938 100939 100939 100940 100950-follow Up 100960-follow Up 100960-follow Up 100970-follow Up 1009911 100998-follow Up 1009991 1009991 1009991 1009991	03258 98198 98198 98198 98198 98198 98198 98198 98198 98198 98198 00220 97072 97072 00249 98151 98151 98151 00233 00233 00233 00252	0 136 1 136 1 136 1 136 1 136 1 1 136 1 1 126 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sesemt	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 28000 28000 28000 27000 37000 30000 32000 49000 62000 25000 32000 32000 33000 40000 32000 33000 40000 34000 40000 34000 40000 35000 40000 35000 40000 35000 40000 35000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000 37000 40000	5 12 87 2990 411 2990	650 580 170 180 180 190 130 160 160 160 160 120 120 150 81 140 250 1110 23 23 23 23 23 23 140 200 190 140 140 150 150 120 120 120 120 120 120 120 120 120 12	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 2.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.9 2.4 2.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	160 180 180 750 5 320 4410 290 39 280 130 290 7 7 520 900 5310 750 430 330 350 340 740 330 350 350 350 350 350 350 350 350 35	6200 15000 9200 11000 9200 11000 22000 53000 31000 15000 5600 18000 30000 22000 20000 50000 39000 1700 39000 17000 17000 18000 40000 40000 18000 40000 17000 18000 18000 18000 17000 18000 17000 18000 17000 18000 17000 18000	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 30 40 20 30 30 40 20 30 37 340 300 130 50 170 10 62 21 130 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 20 11 10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 31 22 22 20 21 31 19 27 32 24 71 19 27 32 24 71 28 64 64 556 23 18 35 556	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 220 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 260000 109000 1109000 1109000 1150000 146000 11000000	34000 28000 21000 22000 22000 22000 22000 24000 29000 24000 37000 35000 35000 35000 34000 36000 36000 38000 45000 37000 32000 32000 38000 45000 38000 45000 36000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	15 31 11 11 21 13 27 31 12 8 8 35 28 24 35 28 24 35 20 24 31 11 15 19 26 11 15 19 26 13 16 28 11 15 26 27 20 24 44 40 29 22 44 10 29 28 27 10 29	14/000 53000 17000 19000 31000 28700 47700 53000 28700 49000 36000 36000 36000 37000 57000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000 39000 47000	290 430 430 430 340 1020 680 860 860 390 640 900 610 1300 690 440 280 1200 620 540 170 770 770 480 760 560 670 430 660 670 530 980
Average 0.2 35479 649 168 2.1 360 23338 0.1 72 32 68 165938 35522 22 48492 669	100885 100887 100887 100887 100889 100900 100901 100901 100905 100901 100910 10	03258 98198 98198 98198 98198 98198 900220 97072 97072 00249 98151 98151 98151 00233 00252 00252 00252 00252 00252 00252 00254 00252	0 136 1 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	3	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 32000 32000 32000 32000 32000 32000 49000 52000 32000	5 12 290 411 600 600 600 600 600 600 600 600 600 6	650 580 170 180 180 190 130 160 160 160 93 1100 120 150 81 81 94 84 74 250 110 23 55 140 200 120 150 140 150 150 120 110 120 150 150 170 180 170 180 170 180 170 180 170 180 180 180 180 180 180 180 180 180 18	1.1 1.5 4.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.6 1.5 1.6 1.6 1.5 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	160 180 180 750 5 5 220 410 290 39 928 130 290 900 520 900 900 900 900 900 900 900 900 900 9	6200 15000 9200 11000 9200 11000 9200 11000 9200 11000 93000 15000 93000 15000 22000 22000 22000 20000 93000 17000 36000 17000 26000 34000 40000 40000 18000 22000 8000 22000 17000 26000 9700 26000 9700 26000 9700 26000 9700 26000 9700 26000 9700 26000 9700 26000 9700 9700 9700 9700 9700 9700 9700	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 37 3440 37 340 300 130 50 170 10 62 21 30 30 10 10 20 10 10 20 10 180 8 8 10 20 30 30 20 30 30 30 30 30 30 30 30 30 30 30 30 30	54 9 9 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 29 22 21 31 29 22 21 31 29 22 21 31 32 24 71 28 64 56 23 18 35 56 26 26 27 28 28 29 20 21 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 35 36 37 38 39 39 30 31 31 32 33 34 35 36 37 38 39 39 30 31 32 33 34 35 36 37 38 39 30 30 31 31 32 33 34 35 36 37 38 39 30 30 31 31 32 32 33 34 35 36 36 37 38 38 39 39 30 30 30 30 30 30	25 12 9 12 24 4 8 8 32 110 160 140 53 200 140 11 11 5 79 130 22 220 3 5 5 1 1 1 8 8 8 8 8 8 8 8 8 8 8 8 8	66000 95000 195000 105000 105000 1105000	34000 35000 41000 28000 23000 23000 21000 25000 24000 29000 24000 37000 35000 34000 35000 34000 45000 45000 45000 36000 36000 37000 38000 38000 46000 37000 38000 38000 38000 46000 37000 38000	15 31 11 11 12 11 13 13 12 27 31 11 12 8 8 35 28 24 35 24 35 32 31 34 20 24 16 16 28 111 11 15 19 26 13 16 11 14 4 36 35 26 9 22 41 10 10 29 28 28 27 10 29 5	14/000 52000 17000 19000	290 430 430 340 340 1020 1400 1400 860 860 390 9790 640 990 340 1300 690 340 1200 540 540 910 1700 570 670 480 760 660 670 530 980 980 980
	100885 100887-follow Up 100887 100887-follow Up 100890 100901 100901 100901 100901 100910 100910 100910 100910 100910 100918 100912 100912 100927 100928 100938 100939 100938 100939 100940 100958 100966 100966 100966 100966 100966 100966 100969 100970-follow Up 100970 100998-follow Up 100998 100999 100991 100998 1009991 100998 100998 100998 100998 1009991 100998 100998 1009998 1009991 1009988 1009988 1009998 1009991 1009988 1009998 1009991 1009988 1009998 1009991 1009988 1009998 1009998 1009991 1009988 1009998	03258 98198 98198 98198 98198 98198 900220 97072 97072 00249 98151 98151 98151 00233 00252 00252 00252 00252 00252 00252 00254 00252	0 136 1 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	3	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 \$2000	5 12 87 2990 411 6000 600 6000 5000 5100 6000 5000 5100 6000 6000	650 580 170 180 180 290 130 160 160 160 170 180 180 193 1100 120 150 181 94 84 74 74 250 1110 120 150 150 160 160 110 110 110 150 120 120 120 120 120 120 120 120 120 12	1.1 1.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 2.6 2.9 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	160 180 180 750 5 320 4410 290 39 280 130 290 7 7 520 900 510 750 430 350 350 350 350 350 350 350 350 350 3	6200 6200 6200 6200 6200 6200 6200 6200	0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 30 30 40 20 37 3440 300 130 50 170 10 62 130 20 30 10 10 10 20 10 10 20 10 20 30 30 10 10 20 10 20 10 20 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	54 9 39 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 21 31 32 22 20 21 19 27 32 22 20 21 19 27 32 28 64 56 64 56 64 56 23 17 9	25 12 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 22 22 22 23 3 5 1 1 1 8 8 8 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	66000 95000 250000 109000 1109000 1109000 1150000 1150000 1150000 1150000 1100000 1100000	34000 35000 41000 28000 28000 23000 21000 25000 24000 24000 37000 35000 34000 36000 45000 45000 45000 45000 38000 46000 38000 46000 37000 500 5000 31000 36000	15 31 11 21 13 27 31 12 31 12 31 12 31 32 31 32 28 24 35 28 24 35 32 24 31 31 34 20 24 16 28 11 15 19 26 16 28 11 15 19 26 27 10 29 28 27 10 29 5 5	14000 53000 17000 19000 31000 28700 47700 53000 28700 47700 53000 8400 32000 49000 55000 68000 36000 37000 57000 39000 57000 39000 57000 39000 49000 36000 36000 37000 39000 57000 39000 57000 48000 48000 48000 48000 48000 48000	290 430 430 340 340 1020 1400 680 860 390 530 790 640 900 610 1300 690 1200 540 1100 540 1100 670 670 480 660 670 670 680 880
	100885 100887 100887 100887-Follow Up 100889 100900 100901 100901 100901 100901 100910 100910 100910 100910 100910 100910 100920 100928 100938 100938 100938 100939 100940 100940 100950 100960	03258 98198 98198 98198 98198 98198 900220 97072 97072 00249 98151 98151 98151 00233 00252 00252 00252 00252 00252 00252 00254 00252	0 136 1 136 1 136 1 136 1 136 1 136 1 1 136 1 1 1 1	3	500 400 500 500 400 400 400 400 400 400	WASTE	0.2 0.2 0.2 0.1 0.1 0.2 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	55000 42000 22000 33000 32000	5 12 290 411 600 600 600 600 600 600 600 600 600 6	650 580 170 180 180 190 130 160 160 160 93 1100 120 150 181 94 84 84 74 250 110 23 55 140 200 120 150 150 120 150 150 150 150 150 150 170 180 170 180 170 180 180 170 180 180 180 170 180 180 180 180 180 180 180 180 180 18	1.1 1.5 4.5 4.5 4.2 2.5 2.0 1.3 1.6 2.1 0.4 2.2 2.9 2.4 2.2 3.1 3.1 2.6 2.6 1.9 2.2 2.1 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.4 1.8 1.7 2.0 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	160 180 180 750 5 5 220 410 290 39 280 130 290 7 7 550 430 350 94 430 350 350 350 350 350 350 350 350 350 3	6200 15000 9200 11000 9200 11000 9200 11000 93000 15000 93000 15000 93000 25000 22000 22000 93000	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	10 5 40 30 40 160 20 30 940 20 40 37 340 300 130 50 170 10 62 130 20 10 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 10 10 20 30 10 20 30 10 20 30 10 20 30 30 10 20 30 30 30 30 30 30 30 30 30 30 30 30 30	54 9 39 39 70 36 26 17 73 9 24 22 61 16 28 14 31 29 22 38 29 22 21 31 23 32 20 21 31 29 22 21 31 32 24 71 28 64 56 23 18 35 56 26 26 27 17 9 73	25 12 9 112 9 12 24 4 8 32 110 160 140 53 200 140 111 410 5 79 130 22 22 23 3 5 1 91 1 91 91 91 94 94 94 95 94 95 96 96 97 97 97 97 97 97 97 97 97 97	66000 95000 190000 109000 1190000 1190000 1460000 1460000 1400000 1400000 1470000 1470000 1200000 1700000 1700000 1400000 1700000 1800000 1800000 1500000 1800000 1500000 1100000 1500000 1500000 1500000 1400000 1500000 1400000 1500000 1400000 1500000 1400000 1500000 1400000 1500000 1400000 1500000000	34000 35000 41000 28000 23000 23000 21000 25000 24000 24000 37000 35000 34000 35000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 34000 35000 36000 37000 36000 36000 36000 36000 36000 37000 36000 37000 36000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	15 31 11 11 12 13 13 14 12 27 31 11 12 8 8 35 28 24 35 24 35 32 31 34 20 24 16 28 111 15 19 26 13 16 11 4 4 36 35 26 9 22 44 10 29 28 24 44 10 29 28 27 10 29 27 4 44 44	14000 52000 17000 19000	290 430 430 340 340 1020 1400 1400 680 860 390 690 900 1300 640 900 340 1200 540 910 1200 540 1100 670 670 670 670 640 480 660 660 670 530 850 1000

Appendix IV-2a Solid Phase Analysis - Drill Core and Outcrop Samples NICO Project, Fortune Minerals Ltd.

Sample Number ¹																	
Sample Number*	Depth			Mo	Na	Ni	P	Pb	Sb	Se	Sn Sr	ті	TI	U	V	Υ	Zn
	Hole From To Lithology	Block Model Code ² W	Waste Rock / Ore ³	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg		mg/kg mg/		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
100855	03257 47 49 Breccia	300	WASTE	4.3	1100	8.0	170	15.0	3.1	5	2 23		0.30	6.8	19	10	240
100861	03258 17 26 Breccia	300	WASTE	3.9	3000	6.0	330	2.3	2.3	5	4 19		0.60	3.3	55	7	23
100861-Follow Up	03258 17 26 Breccia	300	WASTE	1.4	3100	10.0		3.9	3.9	0.7	5 18		0.66	4.1	57	8	21
100874	03259 54 61 Breccia	400	WASTE	2.8	2800	13.0	270	2.4	2.6	5	7 15		0.70	3.9	50	10	13
100902 100902-Follow Up	00249 4 20 Breccia 00249 4 20 Breccia	0	WASTE WASTE	2.5	2200 4100	12.0 16.0	780	2.4	2.2 3.6	5 0.7	6 17		0.90	2.7	64	10 10	22 10
100916	98151 13 20 Breccia	300	WASTE	2.9	14000	7.0	210	5.0	4.7	5	1 24		0.20	8.2	8	20	44
100917	98151 20 28 Breccia	300	WASTE	3.4	10000	6.0	190	4.6	2.8	5	3 23	800	0.20	6.4	18	8	14
100917-Follow Up	98151 20 28 Breccia	300	WASTE	1.3	10000	7.8		5.6	3.6	0.7	4 23		0.36	7.8	18	10	7
100925	00233 0 9 Breccia	300	WASTE	3.9	6000	10.0	220	2.8	2.5	5	3 14		0.30	5.2	23	20	66
100934 100945	00252 27 33 Breccia 03264 46 53 Breccia	400 400	WASTE	16.0 0.8	900 8300	10.0 22.0	140 400	2.2	3.5 1.6	5	8 11		0.50	9.9	12 79	6	16 20
Minimum	03264 46 53 Breccia	400	WASTE	0.8	900	6.0	140	2.0	1.6	0.7	1 11		0.20	2.7	8	6	7
Maximum				16.0	14000	22.0	780	15.0	4.7	5.0	8 33		0.96	9.9	79	20	240
Average				3.7	5458	10.7	301	4.3	3.0	3.9	4 21	1475	0.53	5.4	39	11	41
Standard Deviation				4.0	4194	4.6	197	3.6	0.9	1.9	2 6	1099	0.26	2.4	25	5	65
100814	98419 0 6 BRS+mt	1	1	1.2	700	7.0	200	10.0	4.4	5.0	7 0	2200	1.10	2.7	34	20	16
100817	98419 0 6 BRS+mt 98208 76 86 BRS+mt	400	WASTE	1.3 3.0	1300	7.0 7.0	260 190	1.5	11.0	5.0	5 5	1400	0.70	1.4	23	10	16 15
100818	98208 86 100 BRS+mt	400	WASTE	1.0	600	11.0	220	10.0	15.0	5.0	4 5	1600	0.80	1.6	28	6	15
100818-Follow Up	98208 86 100 BRS+mt	400	WASTE	1.0	780	22.0		3.8	13.0	0.7	5 2	2000	0.90	2.4	35	10	12
100875	03259 96 111 BRS+mt	400	WASTE		1500	19.0	170	10.0	12.0	5.0	9 10		0.90	8.7	29	10	23
100875-Follow Up	03259 96 111 BRS+mt	400	WASTE	26.0 2.2	2100	29.0 50.0	450	5.3	9.6	0.7	7 15		0.83	12.0	35 49	17 10	15 23
100890 100909	00220 32 50 BRS+mt 96016 27 42 BRS+mt	400	WASTE	1.1	5300 1000	10.0	450 290	2.8 1.9	4.5 7.5	5.0 5.0	7 15	5 1800 1700	0.80	2.3	31	10	20
100923	98150 45 55 BRS+mt	400	WASTE	1.5	2200	8.0	240	1.4	12.0	5.0	6 8	1800	0.80	2.1	33	9	19
100924	98150 55 65 BRS+mt	400	WASTE	0.7	1000	7.0	340	1.7	56.0	5.0	6 14		0.80	2.5	29	10	41
100930	00233 111 114 BRS+mt	400	WASTE	0.4	2400	14.0	200	13.0	17.0	5.0	11 5	2300	0.90	2.9	48	30	16
100937	00252 184 193 BRS+mt	400	WASTE	0.8	3300	9.0	320	2.5	4.6	5.0	8 12		0.50	2.1	28	10	24
100949	96023 17 30 BRS+mt 96023 30 46 BRS+mt	400	WASTE	1.5 0.9	1100 1300	9.0	230 270	1.1	12.0 19.0	5.0	7 5	1900 2100	0.80 0.70	1.7	31	9	24 35
100950 100961	96023 30 46 BRS+mt 98147 3 12 BRS+mt	400	WASTE	3.1	1400	6.0	250	1.5	3.3	5.0	9 6	1800	0.70	2.8	24	10	13
100962	98147 12 21 BRS+mt	400	WASTE	5.0	1400	8.0	250	14.0	15.0	5.0	14 8	2600	1.00	3.2	45	10	26
100962-Follow Up	98147 12 21 BRS+mt	400	WASTE	0.4	570	11.0		7.0	7.7	0.7	7 3	2100	1.20	3.2	37	12	10
100963	98147 46 61 BRS+mt	15	ORE	0.9	12000	26.0	420	4.1	2.7	5.0	7 29		0.50	2.9	88	20	37
100963-Follow Up	98147 46 61 BRS+mt	15	ORE	5.8	1600	23.0	100	6.8	9.0	0.7	17 5	2600	1.30	4.7	55	16	15
100976 100977	96011 131 145 BRS+mt 96011 145 160 BRS+mt	400 400	WASTE WASTE	2.6	500 900	9.0 26.0	180 230	2.1	10.0 4.2	5.0 5.0	3 6 5 7	900 1200	0.60	1.4	23	7 8	16 69
100977	96011 143 160 BRS+mt	400	WASTE	2.4	1600	13.0	250	2.2	14.0	5.0	6 6	1400	0.60	1.8	33	10	42
100979	96011 270 290 BRS+mt			2.7	5900	54.0	270	21.0	19.0	5.0	11 5	1700	0.30	7.8	41	20	300
100983	97035 57 68 BRS+mt	400	WASTE	8.7	1200	13.0	250	3.6	12.0	5.0	4 8	1300	0.50	2.2	33	10	47
100983-Follow Up	97035 57 68 BRS+mt	400	WASTE	9.1	1300 5600	11.0	200	9.4	12.0	0.7	5 7 17 7	1400	0.55	2.7	27	11	12
100990 100994-Follow Up	97036 216 225 BRS+mt 00230 68 73 BRS+mt	400 400	WASTE WASTE	21.0 0.5	5600 2400	11.0 16.0	300	3.9	6.9 7.2	5.0 0.7	17 7	2200 2500	0.50 0.79	2.4	51 46	20	13 15
100995	00230 08 73 BR3+IIIt	400	WASIE	1.6	2800	9.0	220	1.2 4.0	22.0	5.0	11 3	1300	0.40	6.6	25	12 10	15
100995-Follow Up	00230 150 170 BRS+mt			1.5	4100	16.0		138.0	27.0	6.0	11 4		0.47	8.6	35	15	15
100911	96016 138 158 BRS+mt			0.4	4200	7.0	200	1.5	10.0	5.0	16 4		0.30	2.7	42	20	25
100912	96016 158 190 BRS+mt			4.4	4300	24.0	250	14.0	37.0	5.0	13 8	2100	0.40	3.1	45	20	37
100912-Follow Up Fortune Minerals	96016 158 190 BRS+mt			6.4	3500	31.0		26.0	25.0	3.7	13 5	1800	0.61	4.8	39	14	15
Preliminary Samples	03-275 37 74 Middle Ore Zone			8.4	1800	19.0	270	6.1	34.0	10.0	10 7	1800	1.00	3.7	34	16	28
Fortune Minerals	Lower																
Preliminary Samples	03-275 120 157 Ore Zone			2.4	3700	19.0	220	3.2	23.0	10.0	13 7		0.80	7.5	34	16	4
100994	00230 68 73 BRS+mt	400	WASTE	1.1	2100	12.0	420	0.6	4.4	5.0	9 5	2500	0.70	1.7	43	9	38
Minimum Maximum				0.4	500	6.0	170								23	6	4
								0.6	2.7	0.7	3 2	900	0.30	1.4		20	200
				26.0	12000	54.0	450	138.0	56.0	10.0	17 29 9 8	2700	1.30	12.0	88	30 13	300 31
Average Standard Deviation												2700				30 13 5	300 31 49
Average Standard Deviation				26.0 3.9 5.6	12000 2499 2234	54.0 16.3 11.4	450 265 72	138.0 10.0 23.1	56.0 14.4 11.1	10.0 4.5 2.1	9 8 4 5	9 2700 1863 433	1.30 0.73 0.24	12.0 3.8 2.8	88 37 12		31 49
Average Standard Deviation 100802	00231 73 83 BRS±mt	400	WASTE	26.0 3.9 5.6	12000 2499 2234 600	54.0 16.3 11.4	450 265	138.0 10.0 23.1	56.0 14.4 11.1 11.0	10.0 4.5 2.1 5.0	9 8	2700 1863 433	1.30 0.73 0.24	12.0 3.8 2.8	88 37 12	13 5	31 49
Average Standard Deviation 100802 100803-Follow Up	00231 83 94 BRS±mt	400	WASTE	26.0 3.9 5.6 1.1 0.2	12000 2499 2234 600 1200	54.0 16.3 11.4 6.0 12.0	450 265 72 240	138.0 10.0 23.1 1.7 4.9	56.0 14.4 11.1 11.0 20.0	10.0 4.5 2.1 5.0 0.7	9 8 4 5 3 11 5 6	2700 1863 433 1 1900 1800	1.30 0.73 0.24 0.70 0.69	12.0 3.8 2.8 1.5 2.2	88 37 12 34 33	13 5 9 15	31 49 16 15
Average Standard Deviation 100802 100803-Follow Up 100803	00231 83 94 BRS±mt 00231 83 94 BRS±mt	400 400	WASTE WASTE	26.0 3.9 5.6 1.1 0.2 1.2	12000 2499 2234 600 1200 900	54.0 16.3 11.4 6.0 12.0 6.0	450 265 72 240	138.0 10.0 23.1 1.7 4.9 2.8	56.0 14.4 11.1 11.0 20.0 18.0	10.0 4.5 2.1 5.0 0.7 5.0	9 8 4 5	2700 1863 433 1 1900 1800	1.30 0.73 0.24 0.70 0.69 0.60	12.0 3.8 2.8 1.5 2.2 1.6	88 37 12 34 33 24	13 5	31 49 16 15 14
Average Standard Deviation 100802 100803-Follow Up	00231 83 94 BRS±mt 00231 83 94 BRS±mt	400	WASTE	26.0 3.9 5.6 1.1 0.2	12000 2499 2234 600 1200 900 900 700	54.0 16.3 11.4 6.0 12.0	450 265 72 240	138.0 10.0 23.1 1.7 4.9	56.0 14.4 11.1 11.0 20.0	10.0 4.5 2.1 5.0 0.7	9 8 4 5 3 11 5 6	9 2700 1863 433 1 1900 1800 1500	1.30 0.73 0.24 0.70 0.69	12.0 3.8 2.8 1.5 2.2	88 37 12 34 33	13 5 9 15	31 49 16 15
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100812	00231 83 94 BRS±mt 00231 83 94 BRS±mt 00236 38 48 BRS±mt 00236 48 60 BRS±mt 03265 145 155 BRS±mt	400 400 400 400 500	WASTE WASTE WASTE WASTE WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6	12000 2499 2234 600 1200 900 900 700 12000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0	450 265 72 240 180 200 220 540	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0	9 8 4 5 3 11 5 6 4 6 5 6 5 8 4 55	2700 1863 433 1900 1800 1500 1400 1500 2300	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9	88 37 12 34 33 24 25 25 77	9 15 10 9	31 49 16 15 14 15 13 20
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100812 100815	00231 83 94 BRS±mt 00231 83 94 BRS±mt 00236 38 48 BRS±mt 00236 48 60 BRS±mt 03265 145 155 BRS±mt 98208 0 5 BRS±mt	400 400 400 400 500 400	WASTE WASTE WASTE WASTE WASTE WASTE WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 	12000 2499 2234 600 1200 900 900 700 12000 400	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 7.0	450 265 72 240 180 200 220 540 200	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0	9 8 4 5 3 11 5 6 4 6 5 6 5 8	2700 1863 433 1 1900 1800 1500 1400 1500 2300 1 1400	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0	88 37 12 34 33 24 25 25 27 77 20	9 15 10 9 10 8	31 49 16 15 14 15 13 20
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100812 100815 100866	00231 83 94 BRS.mt	400 400 400 400 500 400 500	WASTE WASTE WASTE WASTE WASTE WASTE WASTE WASTE	26.0 3.9 5.6 1.1 0.2 1.2 0.6 0.7 2.8	12000 2499 2234 600 1200 900 700 12000 400 2900	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 7.0 17.0	450 265 72 240 180 200 220 540	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 8 4 5 5 8 8 4 5 5 9 9 9 9 9 9	2700 1863 433 1900 1800 1500 1400 1400 1 2300 1 4400 1 3800	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70	12.0 3.8 2.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5	88 37 12 34 33 24 25 25 27 77 20 54	9 15 10 9 10 8 9	31 49 16 15 14 15 13 20 10
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100812 100815	00231 83 94 BRS±mt 00231 83 94 BRS±mt 00236 38 48 BRS±mt 00236 48 60 BRS±mt 03265 145 155 BRS±mt 98208 0 5 BRS±mt 03258 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 138 136 136 138 136 138 136 136 138 136	400 400 400 400 500 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 	12000 2499 2234 600 1200 900 900 700 12000 400	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 7.0	450 265 72 240 180 200 220 540 200	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0	9 8 4 5 3 11 5 6 4 6 5 6 5 8 4 55	2700 1863 433 1 1900 1800 1500 1400 1500 2300 1 1400	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0	88 37 12 34 33 24 25 25 27 77 20	9 15 10 9 10 8	31 49 16 15 14 15 13 20
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100805 100812 100815 100866-Follow Up 100866-Follow Up 100868	00231 83 94 BRS±mt 00231 83 94 BRS±mt 00236 38 48 BRS±mt 00236 48 60 BRS±mt 03265 145 155 BRS±mt 03258 136 138 BRS±mt 03258 136 138 BRS±mt 03258 136 138 BRS±mt 03258 136 138 BRS±mt 03258 30 41 BRS±mt 0325	400 400 400 500 400 500 400 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6	12000 2499 2234 600 1200 900 900 700 12000 400 2900 2700 2400 4300	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 7.0 7.0 17.0 18.0 7.0 11.0	450 265 72 240 180 200 220 540 200 210	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 8 4 5 5 8 8 4 5 5 9 9 9 9 9 9	9 2700 1863 433 1 1900 1500 1500 1400 2300 1 1400 2200 2100 2100	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9	88 37 12 34 33 24 25 25 27 77 20 54 50 42 37	13 5 9 15 10 9 10 8 9 10	31 49 16 15 14 15 13 20 10 28 8 8 20 25
Average Standard Deviation 100802 100803-follow Up 100803 100805 100805 100802 100812 100815 100866-follow Up 100868 100866-Follow Up 100887	00231 83 94 BRS.mt	400 400 400 500 400 500 400 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4	12000 2499 2234 600 1200 900 900 1200 12000 2900 2700 2700 2400 4300 3200	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 11.0	450 265 72 240 180 200 220 540 200 210	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 6 6 7 6 7 9 9 9 9 11 8 8 5 7 7	2700 1863 433 1900 1800 1500 1400 1500 1400 1500 2300 1400 2000 2000 2100 1700	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1	88 37 12 34 33 24 25 25 77 20 54 54 42 37 22	13 5 9 15 10 9 10 8 9 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25
Average Standard Deviation 100802 100803 100803 100806 100806 100806 100806 100806 100806 100808 100807 100807 100807 100807 100807 100807 100807 100807	00231 83 94 BRS.mt	400 400 400 500 500 500 500 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4	12000 2499 2234 600 1200 900 900 700 12000 400 2900 2700 2400 4300 3200 4700	54.0 16.3 11.4 6.0 12.0 6.0 8.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0	450 265 72 240 180 200 220 220 240 200 210 200 210 200 210 200 210 200 20	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8	56.0 14.4 11.1 11.0 200 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 8 4 5 9 9 9 9 10 5 5 7 9 11 8 5 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 2700 1863 433 1900 1500 1500 1400 1500 1400 1400 2300 1400 2200 2100 1700 1200 1600	1.30 0.73 0.24 0.70 0.69 0.69 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6	88 37 12 34 33 24 25 25 25 27 20 50 42 37 22 27	13 5 15 10 9 10 8 8 9 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10
Average Standard Deviation 100802 100803-follow Up 100803 100805 100805 100815 100815 100866 100866-follow Up 100884 100887 100887-follow Up 100887	00231 83 94 BRS.mt	400 400 400 500 400 500 400 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9	12000 2499 2234 6600 1200 900 900 700 12000 400 2900 2900 2400 4300 4300 4700 4400 4000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0	450 265 72 240 180 200 220 540 210 210 290 320 266	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 6 6 7 6 7 9 9 9 9 11 8 8 5 7 7	2700 1863 433 1900 1800 1500 1400 1500 1400 1500 1400 1200 1700 1700 1200 1600 1600	1.30 0.73 0.24 0.24 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.50 0.50	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6	88 37 12 34 33 24 25 25 77 20 54 54 42 37 22	13 5 9 15 10 9 10 8 9 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25
Average Standard Deviation 100802 100803-follow Up 100803 100805 100805 100815 100815 100816 100866-follow Up 1008887 100887 100887 100887 100887 100887	00231 83 94 BRS.mt	400 400 400 500 500 500 500 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7	12000 2499 2234 6600 1200 900 900 900 12000 12000 2900 2700 2400 2400 4700 4300 3200 4700 2400 2400 2400 0	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 6.0 6.0 6.0 6.0 7.0 17.0 17.0 18.0 6.0 19	450 265 72 240 180 200 220 220 240 200 210 200 210 200 210 200 210 200 20	138.0 10.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 1.9 3.8	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 5 4 5 5 6 6 5 6 6 5 8 8 4 5 5 7 7 16 6 7 5 6 6 7 5 6 6 6 6 7 5 6 6 6 6 6 6	2700 2700 1863 433 1900 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1600 12300 1300	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.60 0.50	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5	88 37 12 34 33 24 25 25 77 20 50 42 42 37 22 27 100 71 25	13 5 9 15 10 9 10 10 8 9 10 10 10 10 10 10 10 9	31 49 16 15 14 15 13 20 20 28 8 20 25 10 15 35 19 22 22
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100808 100808 100808 100887 100887 100887 100889 100900 100901	00231 83 94 BRS.mt	400 400 400 400 500 500 500 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 1.7 1.6 1.3	12000 2499 2234 600 1200 900 900 900 12000 400 2700 2700 4300 4300 4300 4700 4000 2400 15500	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 13.0	450 265 72 240 180 200 220 540 200 210 210 290 320 266 680 890 300	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 8 4 5 9 9 9 9 10 5 7 7 9 9 111 8 5 7 7 16 6 6 2 22	2700 2700 1863 433 1900 1800 1800 1500 1400 1400 1500 1400 1200 1400 1200 1700 1700 1600 1600 1300 1300	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1	88 37 12 34 33 24 25 25 77 20 54 50 42 37 22 27 100 71 25 32	13 5 9 15 10 9 10 8 9 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 33 20 20 28 19 25 19 19
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100808 100885 100887 100887 100887 100887 100887 100890 100901 100901	00231 83 94 BRSEMT	400 400 400 500 400 500 400 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.7 1.6 1.3 0.8	12000 2499 2234 6600 12000 9000 9000 12000 4000 2700 2400 4300 3200 4700 14000 2400 1500 1500 1500	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 11.0 6.0 6.0 11.0 11.0 12.0 10	450 265 72 240 180 200 200 540 200 210 540 290 210 680 890 300 290	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 1.4	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 8 4 5 9 9 9 9 10 5 7 7 9 9 111 8 5 7 7 16 6 6 2 22	2700 2700 1863 433 1900 1800 1800 1500 1500 1400 1500 1500 1400 1200 1800 2100 1700 1200 1200 1200 1200 1200 12	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 2.3	88 37 12 34 33 24 25 77 20 50 42 27 100 71 25 32 24	13 5 15 10 9 10 10 8 8 10 10 10 10 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 13 20 20 25 10 15 15 15 17 19 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100808 100808 100808 100887 100887 100887 100889 100900 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 00236 145 155 BRS.mt 00236 145 155 BRS.mt 00236 145 155 BRS.mt 00236 136 138 BRS.mt 002358 136 138 BRS.mt 98198 20 30 BRS.mt 98198 30 41 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 20 37 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 00249 62 72 BRS.mt 00249 62 72 BRS.mt 00249 82 90 BRS.mt	400 400 400 400 500 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 1.7 1.6 1.3 0.8 0.7	12000 2499 2234 600 1200 900 900 900 12000 400 2700 2700 4300 4300 4300 4700 4000 2400 15500	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 13.0	450 265 72 240 180 200 220 540 200 210 210 290 320 266 680 890 300	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 4 6 6 5 8 8 4 5 9 9 9 9 10 5 7 7 9 9 111 8 8 7 7 5 6 6 22 6 8 7 7 7 7 5 8 8 7 7 7 7 5 8 8 7 7 7 7 5 8 8 7 7 7 7	2700 2700 1863 433 1900 1800 1800 1500 1400 1500 1400 1500 1600 1700 1700 1600 1300 1300 1400 1400 12100 1400 12200 1400 1400	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1	88 37 12 34 33 24 25 25 77 20 54 50 42 37 22 27 100 71 25 32	13 5 9 15 10 9 10 8 9 10 10 10 10 10 10 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 35 20 21 28 10 28 28 20 21 25 10 15 15 16 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100808 100807 100807 100807 100807 100807 100807 100807 100807 100807 100907 100907 100907	00231 83 94 BRS.mt	400 400 400 500 400 500 400 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.7 1.6 1.3 0.8	12000 2499 2234 6000 1200 900 900 12000 2700 2700 2700 4300 4300 4700 41000 2400 1000 1500 11000 11000 11000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 11.0 6.0 11.0 1	450 265 72 240 180 200 220 540 200 210 290 320 266 680 890 300 290 370	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 1.4 1.4	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 4 6 6 5 8 8 4 5 5 7 111 8 8 7 7 7 5 8 8 7 7 7 5 8 8 7 7 7 5 8 8 7 7 7 5 8 8 7 7 7 7	2700 2700 1863 433 1900 1800 1800 1500 1500 1400 1500 1400 1200 1800 2100 1700 1200 1200 1200 1200 1600 1300 1600 1400 1400 1400	1.30 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 3.0 2.5 3.1 2.3	88 37 12 34 33 24 25 25 77 20 54 50 42 37 22 27 100 71 25 32 24 44	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 13 20 20 25 10 15 15 15 17 19 22 25 10 10 10 10 25 11 15 15 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100806 100806 100806 100806 100806 100806 100807 100889 100887 100889 100887 100901 100901 100901 100901 100901 100901 100901 100901 100901 100901	00231 83 94 BRS.mt	400 400 400 500 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8	12000 2499 2234 6600 1200 900 900 900 12000 400 2700 2400 4300 3200 4700 14000 1500 1500 1500 1700 1700 1600 900 3660	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 11.0 9.0 12.0 6.0 8.0 11.0 9.0 11.0 8.0 11.0 8.0 11.0 8.0 11.0 8.0 8.0 11.0 8.0 11.0 8.0 8.0 8.0 8.0 11.0 8.0 8.0 8.0 8.0 11.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	450 265 72 240 180 200 200 540 200 210 540 290 320 680 890 300 290 370 290 290 290 290 290 290 290 290 290 29	138.0 100.0	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 1.7 1.7 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 1 1 1 5 6 6 4 6 5 5 6 6 5 8 8 4 5 9 9 9 10 5 7 7 9 9 11 8 5 7 7 16 6 8 8 7 7 7 7 5 8 8 10 5 7 7 5 8 8 10 5 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 2700 1863 433 1900 1800 1800 1500 1500 1400 1500 1400 12000 1800 2100 1200 1200 1200 1200 1	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.88 0.70 0.88 0.50 0.40 0.55 0.70 0.66 0.90 0.88 0.90 0.90 0.90 0.90 0.84 0.80 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	88 37 12 34 33 24 25 77 20 54 50 42 27 100 101 27 125 32 24 44 44	13 5 15 10 9 10 10 8 8 10 10 10 10 8 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 8 20 25 10 15 35 19 22 25 10 15 35 19 22 15 35 19 26 19 26 19 27 19 28 19 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100803 100805 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100900 100809 100900 100901 100901 100901 100901 100901 100901	00231 83 94 BRS.mt	400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8	12000 2499 2234 6600 1200 900 900 900 12000 2590 2400 4300 3200 4700 14000 2400 1500 1500 1700 6400 900 3600 3300	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 8.0 10.0	450 265 72 240 180 200 220 540 220 210 210 290 320 680 890 300 290 370 290	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 2.8 1.4 1.4 3.4 2.7 12.0 3.1	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 18.0 19.	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 6 5 8 6 6 5 8 8 8 7 7 11 6 6 2 21 11 15 5 7 7 12 11 11 8 8 11 2 111 8 8 11 2 111 8 8 11 2 111 8 8 11 2 111 8 8 11 2 111 8 8 11 2 111 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2	2700 2700 1863 433 1900 1800 1800 1500 1400 1400 1500 1600 1700 1600 2100 1700 1600 1600 1600 1600 1600 1600 1	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.50 0.50 0.50 0.50 0.55 0.70 0.60 0.84 0.89 0.89 0.89 0.80 0.70 0.60 0.70 0.60 0.70 0.80 0.80 0.80 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 1.9 3.0 2.5 1.9 3.0 2.1 2.6 1.9 3.0 3.0 2.1 2.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 25 77 20 54 50 42 37 22 27 100 71 25 32 24 44 44 44 44 44 44	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 15 12 20 22 28 10 22 25 10 11 10 22 25 10 25 10 25 10 26 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100806 100806 100806 100806 100806 100808 100807 100809 100809 100901	00231 83 94 BRS.mt	400 400 400 400 500 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 0.8 0.7 0.8 0.7 0.8 1.1 0.8 0.8	12000 2499 2234 600 1200 900 900 900 12000 400 2900 2700 2400 4300 3200 4700 11000 11000 11000 900 3600 3300 310	54.0 16.3 11.4 6.0 12.0 6.0 8.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 10.0 13.0 12.0 6.0 13.0 15.0 8.0 15.0 8.0 16.0 17.0 18.0 19.	450 265 72 240 180 200 220 540 220 210 220 210 290 320 266 680 890 300 290 370 290 290 290 270	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.8 3.0 4.3 2.3 1.4 4.4 3.4 2.7 12.0 3.1 1.3 6.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 11.0 19.0 19.0 19.0 19.0 19.0 19.0 19	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 1 1 1 5 6 6 4 6 5 5 6 6 5 8 8 4 5 9 9 9 10 5 7 7 9 9 11 8 5 7 7 16 6 8 8 7 7 7 7 5 8 8 10 5 7 7 5 8 8 10 5 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 1863 1863 1990 11800 11800 1500 1400 1500 1400 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 1.9 3.0 2.5 3.1 1.9 3.0 2.5 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 24 24 25 77 20 54 42 42 42 42 44 43 44 44 44 44 35 34 34 34 34 34 35 36 47 48 48 48 48 48 48 48 48 48 48	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 11 13 20 10 28 8 20 25 10 15 35 19 22 21 15 35 19 22 15 13 22 23 15 15 16 17 18 18 18 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100803 100805 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100900 100809 100900 100901 100901 100901 100901 100901 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 64 BRS.mt 00236 38 64 BRS.mt 00236 145 155 BRS.mt 00235 136 138 BRS.mt 00235 136 138 BRS.mt 00236 20 30 BRS.mt 00237 87 87 87 00230 98 95 110 BRS.mt 00240 95 110 BRS.mt 00240 95 120 BRS.mt 00240 82 90 BRS.mt 00249 83 94 BRS.mt 00233 54 55 BRS.mt 00233 55 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt	400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8	12000 2499 2234 6600 1200 900 900 900 12000 2590 2400 4300 3200 4700 14000 2400 1500 1500 1700 6400 900 3600 3300	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 7.0 11.0 9.0 12.0 6.0 8.0 8.0 10.0	450 265 72 240 180 200 200 540 200 210 540 290 320 680 890 300 290 370 290 290 290 290 290 290 290 290 290 29	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 2.8 1.4 1.4 3.4 2.7 12.0 3.1	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 18.0 19.	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 6 5 8 6 6 5 8 8 8 7 7 11 6 6 2 21 11 15 5 7 7 12 11 11 8 8 11 2 111 8 8 11 2 111 8 8 11 2 111 8 8 11 8 8 11 2 11 18 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 8 8 11 2 11 11 11 11 11 11 11 11 11 11 11 1	2700 2700 1863 433 1900 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1600 1200 1600 16	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.50 0.50 0.50 0.50 0.55 0.70 0.60 0.84 0.89 0.89 0.89 0.80 0.70 0.60 0.70 0.60 0.70 0.80 0.80 0.80 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 1.9 3.0 2.5 1.9 3.0 2.1 2.6 1.9 3.0 3.0 2.1 2.6 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 25 77 20 54 50 42 37 22 27 100 71 25 32 24 44 44 44 44 44 44	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 15 12 20 22 28 10 22 25 10 11 10 22 25 10 25 10 25 10 26 27 28 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100806 100806 100806 100806-Follow Up 100808 100808 100808 100808 100900 100807 100807 100907 100919 100919 100919 100919 100928 100920	00231 83 94 BRS.mt	400 400 400 400 500 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.8	12000 2499 2234 6600 1200 900 900 900 1200 2900 2900 2900	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 11.0 9.0 11.0 6.0 6.0 6.0 6.0 10.0 13.0 12.0 6.0 6.0 6.0 6.0 10.0 11.0 11.0 12.0 6.0 6.0 6.0 10.0	450 265 72 240 180 200 220 540 220 540 210 210 290 320 680 890 390 290 290 290 290 290 270	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 3.1 1.3	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 18.0 18.0 19.1 19.0 3.8 6.2 9.4 18.0 19.1 19.0 19.0 19.0 19.0 19.0 19.0 19	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 6 7 7 16 6 8 7 7 7 7 7 7 12 111 2 111 2 111 8 112 112 11 18 8 112 4 4 2 2 3 3 5 5	9 2700 1863 433 1990 1800 1500 1400 1500 1400 2300 1400 2200 2100 1200 1200 1200 1600 1300 1400 2100 2200 1200	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.50 0.55 0.70 0.60 0.90 0.84 0.84 0.80 0.80 0.80 0.80 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 5.6 1.9 3.0 2.1 2.6 2.0 4.5 3.0 2.1 2.6 2.0 4.7 2.5 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 25 77 20 50 42 37 22 27 1000 71 25 32 24 44 44 44 44 44 44 44 44 4	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 13 20 10 28 8 20 25 10 15 35 19 22 22 15 35 19 22 15 15 13 20 20 21 15 10 28 20 20 21 21 20 21 20 21 21 20 20 20 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100806 100808 100807 100807 100807 100807 100807 100807 100807 100807 100807 100901 100901 100901 100901 100901 100901 100901 100902 100928 100928 100928 100928 100928 100928 100928 100936	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 98208 0 5 BRS.mt 98208 0 5 BRS.mt 98228 136 138 BRS.mt 98138 20 30 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 100 BRS.mt 98198 95 100 BRS.mt 98198 95 100 BRS.mt 98198 95 100 BRS.mt 98191 95 100 BRS.mt 98191 100 100 100 98191 100 100 100 98191 100 98191 100 100 98191 100 100 98191 100 98191 100 100 98191 100	400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.8 1.8 0.9 0.9	12000 2499 2234 600 1200 900 900 12000 12000 2900 2900 2400 4300 3200 4700 14000 1500 1500 1700 6400 900 3300 3300 3300 3300 310 400 1200 1700	54.0 16.3 11.4 6.0 12.0 6.0 8.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 10.0 10.0 13.0 12.0 6.0 10.0 15.0 8.0 15.0 6.0 16.0 17.0 18.0 19.0 10.	450 265 72 240 180 200 200 220 540 210 290 210 290 320 680 890 300 290 290 270 280	138.0 100.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.8 3.0 4.3 2.3 1.4 1.4 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 5.6	56.0 14.4 11.1 11.0 200 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 12.0 18.0 15.0 32.0 16.0 6.0 2.7	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 6 6 7 7 16 6 8 8 7 7 7 5 8 8 10 5 7 7 12 12 11 1 5 7 7 12 12 11 1 8 8 12 3 3 5 6 6 8 8 17 7 7 7 12 12 11 1 1 1 1 1 1 1 1 1 1 1	9 2700 1863 1863 1900 11800 1500 1500 1400 1500 1400 1500 1400 1500 1400 1200 1200 1200 1200 1200 1200 1400 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.1 1.5 2.2 2.1 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.1 2.5 3.1 1.8 1.9 1.5 1.6 1.9 1.7 2.9 1.9	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 37 22 27 44 44 44 44 35 34 39 33 33 34 35 45 46 47 48 48 48 48 48 48 48 48 48 48	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 15 14 15 13 20 10 28 8 20 25 10 115 35 35 19 22 15 13 23 15 18 26 24 15 21 21
Average Standard Deviation 100802 100803-follow Up 100803-follow Up 100805 100805 100805 100805 100805 100806 100866-follow Up 100888 100900 100888 100900 100901 100901 100901 100901 100901 100901 100901 100901 100901 100901 100902 100928 100938 100930	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 68 BRS.mt 03255 145 155 BRS.mt 03256 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97073 31 41 BRS.mt 98151 34 55 BRS.mt 98151 34 55 BRS.mt 98151 34 55 BRS.mt 98153 45 55 BRS.mt 98154 41 57 BRS.mt 98155 70 70 BRS.mt 00234 55 97 107 BRS.mt 00234 15 9 BRS.mt 00234 15 9 BRS.mt 00234 15 9 BRS.mt 00234 15 9 BRS.mt	400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 1.7 1.6 1.3 0.8 0.7 2.9 0.8 0.8 0.7 0.9 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9	12000 2499 2234 6600 1200 9000 9000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 13000 1500 11000 17000 1800 17000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 6.0 10.0 13.0 12.0 10.0 15.0 8.0 16.0 16.0 16.0 16.0 5.0 6.0 5.0 6.0 5.0 6.0	450 265 72 240 180 200 200 540 200 210 290 290 320 680 890 300 290 370 290 290 270 180 220 280	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.3 2.3 1.4 1.4 3.4 2.7 12.0 1.0 6.0 6.0 6.0 5.6 1.1	56.0 14.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 10.0 15.0 16.0 2.7 13.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 6 8 8 112 112 111 8 8 112 4 4 2 2 3 3 5 5 6 6 8 8 17 7 7 7 7	2700 2700 1863 433 1900 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.66 0.90 0.80 0.70 0.66 0.70 0.66 0.70 0.84 0.88 1.00 0.66 0.70 0.84 0.88 0.80 0.70 0.80 0.83 0.88	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 2.9 3.0 2.1 2.1 2.6 2.9 3.0 3.0 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 25 77 20 50 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 44 44 35 34 39 39 31 31 31 31 31 31 31 31 31 31	13 5 9 15 10 9 10 10 8 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 32 20 20 28 8 20 25 10 10 15 35 19 22 21 15 13 23 24 15 24 24
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100909 100901 100901 100901 100901 100901 100902 100903 100902 100903	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 03258 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 30 41 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97073 55 80 BRS.mt 97074 41 41 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 74 79 BRS.mt 98151 74 79 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 55 BRS.mt 00235 107 127 BRS.mt 00234 55 T7 BRS.mt 00234 55 T7 BRS.mt	400 400 400 400 500 500 500 400 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 1.8 1.9 0.9 1.9 0.9 2.2 2.4	12000 2499 2234 600 1200 900 900 900 12000 2900 2900 2400 2700 2400 400 1000 1500 1100 1500 1100 1700 6400 3300 3300 3300 3300 310 400 1200 1200 1200	54.0 16.3 11.4 6.0 12.0 6.0 8.0 27.0 17.0 18.0 7.0 11.0 9.0 11.0 6.0 10.0	450 265 72 240 180 200 200 210 220 540 210 290 320 266 680 890 300 290 290 270 290 280 270 280 280 280 280	138.0 100.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.8 3.0 4.3 2.3 1.4 1.4 1.4 1.4 3.4 2.7 1.7 1.2 1.6 6.0 5.6 1.1 1.6 1.5	56.0 14.4 11.1 11.0 120.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 12.0 13.0 15.0 16.0 16.0 17.0 18.0 18.0 19.1 19.0 19.0 19.0 19.0 19.0 19.0 19	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 7 5.0 7 5.0 5.0 7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 6 6 8 8 17 7 7 112 11 1 8 8 12 2 4 4 2 2 3 5 6 6 8 8 17 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 110 7 7 7 110 7 1 8 1 110 7 7 7 110 7 7 1 110 7 7 1 110 7 7 7 110 7 1 110 7 7 1 110 7 7 1 110 7 7 1 110 7 7 1 110 7 7 1 110 7 1 1 1 1	9 2700 1863 1863 1900 11860 1500 1500 1500 1400 1500 1400 1500 1400 1600 1600 1200 1200 1200 1200 1200 1400 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.50 0.70 0.50 0.70 0.60 0.90 0.90 0.94 0.84 0.80 0.70 0.60 0.70 0.80 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 2.5 3.1 2.3 1.8 1.9 1.5 1.6 2.5 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	88 37 12 34 33 24 25 27 77 20 54 50 42 27 100 71 25 27 100 21 22 24 44 44 35 34 39 39 39 39 39 30 40 41 41 41 41 41 41 41 41 41 41	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 15 12 13 20 10 28 8 20 25 10 15 35 35 19 22 21 15 13 23 15 13 24 24 15 15 10 20 28 28 20 20 28 28 20 20 21 20 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21
Average Standard Deviation 100802 100803-follow Up 100803-follow Up 100805 100805 100805 100805 100805 100806 100866-follow Up 100887 100887 100887 100887 100887 100807 100807 100807 100901	00231 83 94 BRSEMT	400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	12000 2499 2234 6600 1200 9000 9000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 13000 1500 11000 17000 1800 17000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 13.0 12.0 10.0 15.0 8.0 15.0 6.0 15.0 8.0 15.0 6.0 15.0 8.0 15.0 6.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 540 200 210 290 210 290 320 260 680 890 300 290 270 270 180 220 280 280 290 290 290 290 290 290 290 290 290 29	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.3 2.3 1.4 1.4 3.4 2.7 12.0 1.0 6.0 6.0 6.0 5.6 1.1	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 1.9 3.8 6.2 1.9 3.8 6.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 8 6 6 7 7 16 6 8 8 7 7 7 5 8 8 10 5 7 7 12 12 11 1 5 7 7 12 12 11 1 8 8 12 3 3 5 6 6 8 8 17 7 7 7 12 12 11 1 1 1 1 1 1 1 1 1 1 1	2700 2700 1863 433 1900 1800 1800 1500 1400 1500 1400 1500 1400 1800 1800 1800 1800 1800 1800 18	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.66 0.90 0.80 0.70 0.66 0.70 0.66 0.70 0.84 0.88 1.00 0.66 0.70 0.84 0.88 0.80 0.70 0.80 0.83 0.88	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 2.9 3.0 2.1 2.1 2.6 2.9 3.0 3.0 2.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	88 37 12 34 33 24 25 25 77 20 50 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 44 44 35 34 39 39 31 31 31 31 31 31 31 31 31 31	13 5 9 15 10 9 10 10 8 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 14 15 32 20 20 28 8 20 25 10 10 15 35 19 22 21 15 13 23 24 15 24 24
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100909 100901 100901 100901 100901 100901 100902 100903 100902 100903	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 98208 0 5 BRS.mt 98208 0 5 BRS.mt 98208 0 5 BRS.mt 98208 0 5 BRS.mt 98208 0 30 BRS.mt 98198 20 30 BRS.mt 98198 30 41 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 100 BRS.mt 98198 95 100 BRS.mt 90220 25 32 BRS.mt 97072 25 30 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97073 55 80 BRS.mt 98151 31 41 BRS.mt 98151 74 79 BRS.mt 98151 74 79 BRS.mt 98151 74 79 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 55 BRS.mt 00235 57 77 BRS.mt 00234 61 77 BRS.mt 97102 67 78 BRS.mt 97102 67 78 BRS.mt 98197 45 50 BRS.mt 98197 45 50 BRS.mt	400 400 400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 1.8 1.9 0.9 1.9 0.9 2.2 2.4	12000 2499 2234 6600 1200 9000 9000 9000 12000 12000 2900 2700 2400 4300 3200 4700 11000 1500 1100 1700 6400 900 3300 3300 3300 1200 1200 800 1100 800	54.0 16.3 11.4 6.0 12.0 6.0 8.0 27.0 17.0 18.0 7.0 11.0 9.0 11.0 6.0 10.0	450 265 72 240 180 200 200 210 220 540 210 290 320 266 680 890 300 290 290 270 290 280 270 280 280 280 280	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 6.6 6.3 13.0 6.6 1.1 1.6 1.5 2.4	56.0 14.4 11.1 11.0 120.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 12.0 13.0 15.0 16.0 16.0 17.0 18.0 18.0 19.1 19.0 19.0 19.0 19.0 19.0 19.0 19	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 7 5.0 7 5.0 5.0 7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 111 5 6 6 8 8 17 7 9 9 7 7 16 6 8 14 5 5 6 6 8 8 17 7 9 9 7 7 9 9 7 7 16 6 8 8 17 7 9 9 7 7 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 17 7 7 7 16 16 8 17 7 7 8 16 6 1 14 15 5 1 15 1 15 1 15 1 15 1 15	2700 2700 1863 433 1900 1800 1800 1800 1500 1400 1500 1400 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 1.5 2.2 2.3 1.8 1.9 1.5 2.1 2.3 1.8 1.9 1.5 2.5 1.6 2.0 1.7 2.2 2.9 1.9 1.9 2.9 1.9 2.9 2.9 2.1 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 77 20 50 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 45 54 41 44 35 44 45 50 60 60 60 60 60 60 60 60 60 6	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 16 15 15 15 15 15 15 15 15 16 16 16 17 16 17 17 18 17 17 17 17 17 17 17 17 17 17 17 17 17
Average Standard Deviation 100802 100803 100803 100805 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100900 100808 100900 100901 100901 100901 100901 100902 100902 100928 100903	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 00220 25 32 BRS.mt 97072 25 32 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97073 41 BRS.mt 97074 57 78 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 34 55 BRS.mt 98151 35 67 BRS.mt 00233 58 67 BRS.mt 00234 55 BRS.mt 00235 97 107 BRS.mt 00234 15 9 BRS.mt 00234 15 9 BRS.mt 00234 15 9 BRS.mt 00234 57 77 BRS.mt 00235 57 77 BRS.mt 97102 57 77 BRS.mt 98197 45 50 BRS.mt 98209 47 60 BRS.mt 98209 47 60 BRS.mt 98209 882.mt 00825 60 70 BRS.mt	400 400 400 400 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.2 1.2	12000 2499 2234 6600 1200 900 900 900 1200 2900 2900 2900	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 11.0 10.0 10.0 11.0 10.0 11.0 15.0 15	450 265 72 240 180 200 200 210 210 290 320 680 890 300 290 290 270 280 280 280 280 280 280 280 280 280 28	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 2.8 3.0 4.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 3.1 6.3 13.0 6.0 5.6 1.1 1.1 1.5 2.4 18.0 2.6 2.3	56.0 114.4 11.1 11.0 20.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 15.0 16.0 17.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 111 5 6 6 8 8 17 7 9 9 7 7 16 6 8 14 5 5 6 6 8 8 17 7 9 9 7 7 9 9 7 7 16 6 8 8 17 7 9 9 7 7 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 8 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 8 17 7 7 7 16 6 8 17 7 7 7 16 16 8 17 7 7 8 16 6 1 14 15 5 1 15 1 15 1 15 1 15 1 15) 2700 1863 433 1900 1800 1500 1400 1400 1500 1400 1200 1700 1700 1200	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.50 0.50 0.55 0.70 0.60 0.80 0.80 0.80 0.80 0.70 0.80 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 2.6 1.9 3.0 2.1 2.6 2.9 2.1 2.3 2.3 2.3 2.3 2.3 2.5 2.3 2.3 2.3 2.6 2.0 2.1 2.2 2.0 2.1 2.2 2.0 2.1 2.3 2.3 2.3 2.6 2.0 2.1 2.6 2.0 2.1 2.3 2.3 2.7 2.6 3.2 2.9 3.2 2.1 2.3 2.3 2.7 2.6 1.6 2.0 1.7 2.2 2.9 1.9 2.1 2.3 2.7 2.6 1.6 3.2	88 37 12 34 33 24 25 25 77 20 54 50 42 27 100 71 22 27 100 71 25 32 27 14 44 44 44 45 54 41 44 44 45 54 41 44 46 47 48 48 59 50 50 50 50 50 50 50 60 60 60 60 60 60 60 60 60 6	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 16 16 16 16 16 16 16 16 16 16 16 16
Average Standard Deviation 100802 100803 100803 100803 100805 100806 100805 100806 100806 100806 100806 100806 100808 100807 100808 100807 100808 100807 100808 100807 100807 100901	00231 83 94 BRS.mt	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	12000 2499 2234 600 1200 900 900 900 12000 400 2700 2400 4300 3200 4700 14000 1500 1500 1500 1500 1700 1700 1700 1	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 10.0 10.0 11.0 15.0 8.0 6.0 15.0 6.0 15.0 6.0 16.0 17.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 540 200 210 290 320 260 680 890 300 290 370 290 270 270 280 220 280 220 280 280 280 280 280 28	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 5.6 1.1 1.5 1.5 2.4 18.0 2.4 18.0 2.6 2.3 1.5	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 1.7 2.1 1.9 3.8 6.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 6 6 5 6 6 8 8 12 11 2 11 8 8 12 12 11 8 8 12 12 11 7 7 7 10 6 6 14 7 7 7 7 5 5 6 6 14 7 7 7 7 7 7 15 16 6 14 7 7 7 7 7 7 7 15 16 6 16 14 7 7 7 7 7 7 7 7 7 15 16 6 16 16 16 16 16 16 16 16 16 16 16 1	2700 1863 1863 1863 1900 1800 1800 1500 1500 1400 1500 1400 1500 1800 1800 1800 1800 1800 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.50 0.50 0.50 0.50 0.70 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 2.5 2.5 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 27 100 27 14 44 44 35 44 44 35 34 39 39 39 30 30 31 31 31 31 31 31 31 31 31 31	13 5 9 115 10 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15
Average Standard Deviation 100802 100803 100803 100803 100805 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100900 100808 100900 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 00226 145 155 BRS.mt 00228 136 138 BRS.mt 00238 136 138 BRS.mt 00238 130 138 BRS.mt 00239 100 BRS.mt 00249 05 110 BRS.mt 00249 05 27 BRS.mt 00249 05 100 BRS.mt 00240 05 100 BRS.mt 00241 05 100 BRS.mt 00233 05 07 BRS.mt 00234 05 07 BRS.mt 00235 07 107 BRS.mt 00234 15 9 BRS.mt 00236 100 100 BRS.mt 00237 100 100 100 100 00237 100 100 100 00238 100 100 100 00239 100 100 00230 100 100 100 00231 100 100 00232 100 100 00234 15 9 BRS.mt 00236 100 100 00236 100 100 00237 100 100 00238 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00230	400 400 400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 1.9 0.9 2.2 2.4 2.4 2.9 2.0 1.2 5.2 1.3	12000 2499 2234 6600 1200 900 900 900 12000 12000 2900 2700 2400 4300 2400 4700 1500 1500 1500 1700 3600 3300 310 400 1200 800 1200 800 1100 1700 800 1100 1700 800 1200 600 600 600 1200 600 1200 600 1200	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 11.0 10.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 10.0 11.0 15.0 8.0 15.0 6.0 16.0 16.0 15.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 220 540 200 2110 290 320 680 890 300 290 270 280 270 280 280 290 280 290 280 290 280 290 260 280 290 260 260 260	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 2.8 3.0 4.3 1.4 1.4 3.4 2.7 12.0 16.0 3.1 1.3 6.3 13.0 6.0 6.0 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5	56.0 114.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 10.0 15.0 12.0 16.0 2.7 13.0 6.0 2.7 13.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 14.0 15.0 12.0 15.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 6 6 8 8 17 7 7 111 7 7 8 6 6 114 4 4 4 4 7 7 5 6 6 9 9 7 7 7 5 5 6 6 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 7 111 7 7 7 7	2700 2700 1863 433 433 1900 1800 1800 1500 1400 1400 1500 1500 1400 1200 1700 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.50 0.50 0.40 0.50 0.50 0.70 0.60 0.80 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.60 0.80 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.80 0.70 0.70 0.60 0.80 0.80 0.55	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 2.3 1.8 1.9 2.5 3.1 2.3 2.3 1.8 1.9 2.5 2.5 3.1 3.1 3.1 3.2 3.3 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	88 37 12 34 33 24 25 25 77 20 50 42 27 27 100 71 22 27 20 50 42 42 37 22 27 20 50 42 43 37 32 44 44 44 44 44 44 45 46 47 47	13 5 9 15 10 10 10 10 10 10 10 10 10 10	31 49 49 16 16 17 18 18 18 18 26 18 18 26 19 19 12 21 11 14 12 11 17 32 3 40 34 16 31 16 16 31 18 18 18 18 18 18 18 18 18 18 18 18 18
Average Standard Deviation 100802 100803 100803-Follow Up 100803 100806 100806 100806 100806 100806 100806 100808 100808 100887 100887 100887 100887 100887 100887 100887 100887 100887 100887 100887 100900 100901 100901 100901 100901 100901 100902 100902 100902 100903 100901 100901 100903 100901 100903	00231 83 94 BRSEMT	400 400 400 400 500 500 500 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.8 2.9 0.9 1.9 0.9 1.9 0.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1	12000 2499 2234 600 1200 900 900 900 12000 400 2700 2400 4300 3200 4700 14000 1500 1500 1500 1500 1700 1700 1700 1	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 10.0 10.0 11.0 15.0 8.0 6.0 15.0 6.0 15.0 6.0 16.0 17.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 540 200 210 290 320 260 680 890 300 290 370 290 270 270 280 220 280 220 280 280 280 280 280 28	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 6.0 5.6 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5	\$56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 7.7 1.10	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 6 6 8 8 17 7 7 111 7 7 8 6 6 114 4 4 4 4 7 7 5 6 6 9 9 7 7 7 5 5 6 6 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 7 111 7 7 7 7	2700 2700 1863 433 1900 1800 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.50 0.50 0.50 0.50 0.70 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.1 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.3 1.8 1.9 2.5 3.1 1.7 2.2 2.9 1.9 2.1 2.3 2.3 1.8 1.9 2.5 2.6 2.0 2.6 2.6 2.6 2.7 2.7 2.6 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 27 100 27 14 44 44 35 44 44 35 34 39 39 39 30 30 31 31 31 31 31 31 31 31 31 31	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 16 15 13 10 20 10 28 8 20 25 21 15 35 19 22 15 13 23 15 18 26 24 21 25 21 14 24 24 24 24 24 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100803 100803 100805 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100900 100808 100900 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 00226 145 155 BRS.mt 00228 136 138 BRS.mt 00238 136 138 BRS.mt 00238 130 138 BRS.mt 00239 100 BRS.mt 00249 05 110 BRS.mt 00249 05 27 BRS.mt 00249 05 100 BRS.mt 00240 05 100 BRS.mt 00241 05 100 BRS.mt 00233 05 07 BRS.mt 00234 05 07 BRS.mt 00235 07 107 BRS.mt 00234 15 9 BRS.mt 00236 100 100 BRS.mt 00237 100 100 100 100 00237 100 100 100 00238 100 100 100 00239 100 100 00230 100 100 100 00231 100 100 00232 100 100 00234 15 9 BRS.mt 00236 100 100 00236 100 100 00237 100 100 00238 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00239 100 00230	400 400 400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 1.9 0.9 2.2 2.4 2.4 2.9 2.0 1.2 5.2 1.3	12000 2499 2234 600 1200 900 900 900 12000 400 2700 2400 4300 3200 14000 1500 1500 1500 1500 1700 1700 1700 1	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 18.0 7.0 11.0 9.0 12.0 6.0 6.0 13.0 10.0 13.0 15.0 8.0 15.0 6.0 16.0 15.0 8.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 220 540 200 2110 290 320 680 890 300 290 270 280 270 280 280 290 280 290 280 290 280 290 260 280 290 260 260 260	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 2.8 3.0 4.3 1.4 1.4 3.4 2.7 12.0 16.0 3.1 1.3 6.3 13.0 6.0 6.0 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5	56.0 114.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 10.0 15.0 12.0 16.0 2.7 13.0 6.0 2.7 13.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 14.0 15.0 12.0 15.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 6 6 8 8 17 7 7 111 7 7 8 6 6 114 4 4 4 4 7 7 5 6 6 9 9 7 7 7 5 5 6 6 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 8 8 7 7 7 7 7 7 111 7 7 7 7	2700 2700 1863 433 1900 1800 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.55 0.70 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 2.3 1.8 1.9 2.5 3.1 2.3 2.3 1.8 1.9 2.5 2.5 3.1 3.1 3.1 3.2 3.3 3.1 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	88 37 12 34 33 24 25 77 20 54 42 27 100 71 25 37 22 27 100 71 25 32 24 44 44 35 34 39 39 39 39 30 30 31 32 32 33 34 35 36 37 37 37 38 39 30 30 30 30 30 30 30 30 30 30	13 5 9 15 10 10 10 10 10 10 10 10 10 10	31 49 16 15 13 10 20 10 28 8 20 25 10 15 35 19 22 23 15 13 23 15 23 15 23 15 23 23 15 24 15 27 28 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100805 100805 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100900 100808 100900 100901 100901 100911 100901 100901 100902 100908	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 68 BRS.mt 00236 145 155 BRS.mt 00236 136 138 BRS.mt 00235 136 138 BRS.mt 00236 139 BRS.mt 00239 100 BRS.mt 00249 100 BRS.mt 00233 14 BRS.mt 00234 15 9 BRS.mt 00236 100 BRS.mt 00237 100 BRS.mt 00238 100 BRS.mt 00238 100 BRS.mt 00239 100 BRS.mt 00231 100 BRS.mt 00233 100 BRS.mt 00234 15 9 BRS.mt 00235 100 BRS.mt 00236 100 BRS.mt 00237 100 BRS.mt 00238 100 BRS.mt 00239 100 BRS.mt 00230 100 BRS.mt 00231 15 9 BRS.mt 00232 17 BRS.mt 00234 15 9 BRS.mt 00236 17 BRS.mt 00237 100 BRS.mt 00237 100 BRS.mt 00237 100 BRS.mt 003270 30 39 BRS.mt 002370 30 47 BRS.mt 002370 30 47 BRS.mt 002370 30 70 BRS.mt 002370 100 BRS.mt 00238 100 100 BRS.mt 002370 100 100 BRS.mt 00238 100 100 BRS.mt 00238 100 100 BRS.mt 00238 100 100 BRS.mt 00239 100 BRS.mt	400 400 400 400 400 400 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 1.1 0.8 0.9 1.9 0.9 2.2 2.4 2.1 2.9 2.0 1.2 2.0 1.2 2.0 1.2 0.7 1.7	12000 2499 2234 6600 1200 9000 9000 9000 12000	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 12.0 10.0 6.0 6.0 10.0 11.0 10.0 15.0 8.0 16.0 16.0 16.0 17.0 18.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 265 72 240 180 200 200 210 290 320 680 890 300 290 270 280 270 280 290 200 200 200 200 200 200 200 200 20	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.3 2.3 3.0 4.3 3.0 4.3 3.1 1.4 3.4 2.7 12.0 6.0 6.0 6.0 6.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.9 1.5 1.9 1.5 1.0 17.0 17.0 13.0	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 11.0 12.0 13.0 6.0 17 19 10.0 15.0 15.0 11.0 12.0 14.0 14.0 14.0 15.0 15.0 15.0 4.5 4.6	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 6 5 8 8 7 7 9 9 111 8 8 112 111 5 7 7 12 111 8 8 117 7 7 8 8 10 7 7 7 8 8 10 7 7 7 8 8 10 7 7 8 8 10 7 7 8 8 10 7 7 8 8 10 7 7 7 8 8 10 7 7 7 8 8 10 7 7 7 8 8 10 7 7 7 8 10 10 10 10 10 10 10 10 10 10 10 10 10	2700 2700 1863 433 1900 1800 1800 1800 1500 1400 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 2.5 3.1 2.3 1.8 1.9 2.5 3.1 2.3 2.3 1.8 2.7 2.6 2.9 1.9 2.1 2.1 2.2 2.9 1.9 2.1 2.3 2.7 2.6 3.2 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 25 77 20 50 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 45 50 42 27 30 31 32 33 34 35 36 37 37 32 32 32 34 44 44 44 45 56 56 56 56 57 57 50 50 50 50 50 50 50 50 50 50	13 5 9 15 15 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 13 20 10 28 8 20 25 10 15 35 19 22 23 15 35 19 22 23 15 23 23 15 24 15 26 27 28 20 20 21 22 23 23 23 23 24 25 26 27 28 29 29 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100803 100803 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100808 100808 100905 100901 100901 100901 100901 100901 100901 100901 100901 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100903 100908	00231 83 94 BRS.mt	400 400 400 400 500 500 500 500 400 400	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 1.0 0.8 1.1 0.8 1.1 0.8 0.7 0.9 1.1 0.8 1.1 0.8 0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	12000 2499 2234 600 1200 900 900 900 12000 400 2900 2700 2400 4300 3200 4700 14000 1500 1700 900 3310 400 1700 900 3310 400 1200 1700 800 1200 1200 1200 1200 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1000 10	54.0 16.3 11.4 11.4 12.0 6.0 8.0 12.0 6.0 8.0 7.0 17.0 17.0 18.0 7.0 11.0 9.0 10.0 13.0 12.0 6.0 13.0 15.0 8.0 15.0 6.0 14.0 15.0 8.0 16.0 11.0 15.0 8.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 265 72 240 180 200 200 210 220 540 200 210 290 320 680 890 300 290 370 290 270 270 280 280 280 280 280 280 280 280 280 290 410 400	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 2.8 3.0 4.3 2.3 1.4 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 6.0 5.6 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.0 11.0 13.0 13.0 4.9	56.0 114.4 11.1 11.0 20.0 18.0 6.1 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 15.0 32.0 16.0 6.0 2.7 13.0 6.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 15.0 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 4 4 6 6 5 5 8 8 6 7 7 16 6 8 8 7 7 7 7 12 111 11 11 11 11 11 11 11 11 11 11 11	2700 1863 1863 1863 1990 1800 1800 1500 1400 1500 1400 1500 1400 1200 1200 1200 1200 1400 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.1 2.5 3.1 1.9 1.5 2.5 1.6 2.0 1.7 2.2 2.9 1.9 2.1 2.1 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 24 44 44 35 34 39 39 30 30 29 29 29 40 41 41 42 43 44 45 46 47 48 48 49 49 40 40 40 40 40 40 40 40 40 40	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 49 16 16 17 17 32 11 14 24 17 17 32 12 12 24 16 33 3 12 27 23 3 13 13 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100806 100806 100806 100806 100806 100806 100807 100807 100807 100807 100807 100807 100909	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 68 BRS.mt 00236 145 155 BRS.mt 00236 136 138 BRS.mt 00235 136 138 BRS.mt 00235 136 138 BRS.mt 00236 95 110 BRS.mt 00249 95 110 BRS.mt 00249 82 90 BRS.mt 00233 58 67 BRS.mt 00231 58 58 58 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 00236 107 127 BRS.mt 00237 97 107 BRS.mt 00236 107 127 BRS.mt 00237 107 BRS.mt 00238 107 127 BRS.mt 00239 109 BRS.mt 00230 109 100 BRS.mt 00231 15 9 BRS.mt 00232 17 18 BRS.mt 00232 17 18 BRS.mt 00234 15 9 BRS.mt 00236 17 BRS.mt 00237 19 BRS.mt 00238 109 100 BRS.mt 00237 10 18 BRS.mt 00237 10 18 BRS.mt 002370 30 39 BRS.mt 002370 30 47 BRS.mt 003270 30 47 BRS.mt 003270 30 48 BRS.mt 003270 30 47 BRS.mt 003270 30 47 BRS.mt 003270 30 47 BRS.mt 003270 30 100 BRS.mt 003270 100 BRS.mt 00328 100 100 BRS.mt 00329 100 BRS.mt 00320 100 100 BRS.mt 00320 100 BRS.mt 00320 100	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	12000 2499 2234 6600 1200 9000 9000 9000 12000 2900 2700 2400 4300 3200 4700 1500 1500 1500 1500 1700 800 1200 1200 800 1200 1200 1200 1200	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 10.0 10.0 11.0 10.0 13.0 15.0 8.0 6.0 15.0 8.0 11.0 11.0 15.0 8.0 15.0 16.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 290 210 290 320 260 680 890 300 290 270 270 180 220 280 280 290 400 300	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 3.0 4.3 1.4 1.4 3.4 2.7 12.0 6.0 6.0 6.0 6.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.9 1.5 1.10 17.0 13.0 4.9	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 18.0 10.0 15.0 10.0 15.0 11.0 12.0 15.0 12.0 11.0 12.0 15.0 12.0 14.0 11.0 12.0 15.0 12.0 14.0 15.0 15.0 15.0 15.0 16.0 17.0 18.0 18.0 18.0 19.4 19.4 19.5 19.4 19.5 19.6 19.6 19.6 19.6 19.6 19.6 19.6 19.6	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 3 111 5 6 6 6 8 8 112 112 111 11 11 11 11 11 11 11 11 11	2700 1863 1863 1863 1863 1860 1800 1800 1800 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.88 0.70 0.50 0.55 0.70 0.66 0.80 0.70 0.88 0.70 0.88 0.70 0.88 0.70 0.88 0.70 0.88 0.70 0.88 0.80 0.70 0.80 0.66 0.70 0.80 0.80 0.66 0.70 0.80 0.80 0.80 0.80 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 2.2 2.3 1.8 2.3 1.8 1.9 1.5 2.5 1.6 1.6 2.9 2.9 1.7 2.2 2.9 1.9 1.1 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 25 77 20 54 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 45 44 41 35 34 49 39 30 30 32 29 30 31 32 34 45 46 47 48 48 49 49 49 49 49 49 49 49 49 49	13 5 9 115 10 9 110 10 10 10 10 10 10 10 10 10 10 10 10	311 49 49 16 116 115 115 113 20 110 28 8 20 25 110 115 115 123 25 121 121 122 115 123 123 124 127 140 166 183 131 122 27 23 113 1466 133 121 27 23 113 140 140
Average Standard Deviation 100802 100803 Follow Up 100803 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100808 100808 100809 100905 100907 100918 100907 100918 100907 100938 100907 100938 100909	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 03265 145 155 BRS.mt 03265 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 35 80 BRS.mt 97072 41 41 41 41 97073 41 41 41 97074 41 57 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 34 55 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 55 57 BRS.mt 00235 97 107 BRS.mt 00236 57 77 BRS.mt 00237 41 57 BRS.mt 00238 45 50 BRS.mt 00239 47 60 BRS.mt 98100 47 60 BRS.mt 98209 47 60 BRS.mt 03267 2 0 BRS.mt 03270 39 47 BRS.mt 03270 30 39 BRS.mt 03270 30 39 BRS.mt 03270 30 30 BRS.mt 03270 30 30 BRS.mt 03270 30 30 BRS.mt	400 400 400 400 400 400 500 500 500 400 4	WASTE	26.0 3.9 5.6 1.1 1.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 1.1 0.8 1.2 0.9 1.9 0.9 2.2 2.4 2.1 2.9 2.0 1.1 2.0 2.0 1.1 2.0 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	12000 2499 2234 600 1200 900 900 900 12000 400 2900 2700 2400 4300 3200 4700 14000 1500 1700 900 3310 400 1700 900 3310 400 1200 1700 800 1200 1200 1200 1200 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1100 1700 800 1000 10	54.0 16.3 11.4 11.4 12.0 6.0 8.0 12.0 6.0 8.0 7.0 17.0 17.0 18.0 7.0 11.0 9.0 10.0 13.0 12.0 6.0 13.0 15.0 8.0 15.0 6.0 14.0 15.0 8.0 16.0 11.0 15.0 8.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 265 72 240 180 200 200 210 220 540 200 210 290 320 680 890 300 290 370 290 270 270 280 280 280 280 280 280 280 280 280 290 410 400	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 2.8 3.0 4.3 2.3 1.4 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 6.0 5.6 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.0 11.0 13.0 13.0 4.9	56.0 114.4 11.1 11.0 20.0 18.0 6.1 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 15.0 32.0 16.0 6.0 2.7 13.0 6.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 15.0 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 4 6 6 5 5 8 8 6 7 6 6 22 6 6 8 7 7 7 7 7 7 7 7 7 10 10 7 7 7 7 7 10 10 7 7 7 7	9 2700 1863 1863 1900 11863 1500 1500 1500 1400 1500 1400 1500 1400 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.1 2.5 3.1 1.9 1.5 2.5 1.6 2.0 1.7 2.2 2.9 1.9 2.1 2.1 2.3 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 24 44 44 35 34 39 39 30 30 29 29 29 40 41 41 42 43 44 45 46 47 48 48 49 49 40 40 40 40 40 40 40 40 40 40	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	31 49 49 116 115 127 128 121 121 121 121 121 121 121 121 121
Average Standard Deviation 100802 100803-Follow Up 100803 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100905 100905 100907 100918 100907 100918 100907 100938 100908 100908 100908 100908 1009098 100908	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 03265 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 55 80 BRS.mt 97072 41 41 41 97073 51 41 41 97074 41 57 BRS.mt 97075 58 67 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 31 41 BRS.mt 98151 35 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 55 BRS.mt 00235 97 107 BRS.mt 00236 77 77 BRS.mt 00237 41 57 BRS.mt 00238 45 50 BRS.mt 00239 47 60 BRS.mt 98197 47 67 78 98197 47 67 78 98197 47 67 78 98209 47 60 BRS.mt 03267 2 0 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03271 39 47 BRS.mt 03271 39 47 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.8 0.9 0.9 1.9 0.9 2.2 2.4 2.1 2.1 2.0 2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	12000 2499 2234 600 1200 900 900 12000 900 12000 2900 2400 4300 3200 4700 14000 1500 1500 1700 6400 900 3300 3300 310 400 1200 1700 6400 900 1200 1200 1200 1200 1200 1200 120	54.0 16.3 11.4 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 11.0 9.0 6.0 10.0 12.0 6.0 13.0 15.0 6.0 14.0 15.0 6.0 14.0 15.0 16.0 14.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 220 540 200 210 290 320 680 890 300 290 370 290 280 270 280 280 220 280 280 280 290 410 400 420 300	138.0 100.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 3.0 4.3 2.3 1.4 1.4 1.4 3.4 2.7 12.0 13.0 6.0 6.0 5.6 1.1 1.5 2.4 18.0 2.6 2.3 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.1 1.5 2.4 1.6 1.5 2.4 1.1 1.5 2.4 1.6 2.3 1.1 1.5 2.4 1.6 2.6 2.3 1.5 1.5 1.1 2.6 2.6 2.3 2.6 2.3 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	56.0 14.4 11.1 11.0 200 18.0 6.1 1.7 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 15.0 32.0 16.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 6.0 2.7 16.0 6.0 17 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 1863 1863 1863 1863 1860 1800 1800 1800 1800 1400 1500 1400 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.8 2.15 2.2 2.6 1.6 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 37 12 34 33 24 25 77 20 54 42 27 100 71 25 37 22 27 100 71 25 32 24 44 44 35 34 39 39 33 33 35 45 46 47 35 36 37 37 38 39 30 31 32 33 34 35 36 37 37 37 37 37 37 37 37 37 37	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	311 49 49 116 115 115 113 20 110 128 8 20 215 110 115 115 113 120 110 115 115 117 117 118 118 118 118 118 118 118 118
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100805 100805 100805 100806 100806-Follow Up 100808 100808 100808 100808 100808 100900 100808 100901 100901 100901 100901 100901 100901 100901 100901 100901 100901 100903	00231 83 94 BRSEMT	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	12000 2499 2234 6600 1200 9000 9000 9000 12000 2900 2400 4300 22700 2400 4300 1500 11000 1500 11000 1700 800 1200 1200 1200 1200 1200 1200 120	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 19.0 6.0 6.0 6.0 10.0 11.0 10.0 13.0 12.0 10.0 15.0 8.0 6.0 11.0 15.0 8.0 15.0 6.0 11.0 15.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 265 72 240 180 200 200 210 220 540 200 210 290 320 680 890 300 290 370 290 270 270 270 270 270 270 270 270 270 27	138.0 100 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 6.6 3 13.0 6.6 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.9 1.5 1.10 17.0 17.0 13.0 4.9 1.3 0.6 2.3 1.3 0.6 2.3 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 1.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 12.0 18.0 12.0 18.0 12.0 18.0 12.0 18.0 12.0 18.0 19.4 10.0 10.0 15.0 10.0 11.0 10.0 15.0 10.0 11.0 11	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 11 11 5 6 6 8 8 11 12 11 11 11 11 11 11 11 11 11 11 11	2700 1863 1863 1863 1863 1860 1800 1800 1800 1500 1400 1500 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.88 0.70 0.55 0.55 0.70 0.84 0.80 0.70 0.88 0.80 0.70 0.88 0.80 0.70 0.80 0.70 0.84 0.85 0.70 0.66 0.70 0.66 0.70 0.66 0.70 0.70	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 2.2 2.3 1.8 1.9 1.5 2.3 1.8 1.9 1.5 2.5 1.6 2.0 1.7 2.2 2.9 1.9 1.1 2.1 2.3 2.7 2.6 1.6 3.2 2.1 2.3 1.8 1.9 1.9 1.1 2.1 2.3 2.7 2.6 1.6 3.2 2.1 2.3 1.8 1.9 1.9 1.9 1.1 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.7 2.6 1.6 3.2 2.7 2.7 2.8 2.8 2.8 2.9 2.9 2.9 2.1 2.1 2.1 2.1 2.3 2.7 2.6 2.0 2.0 2.1 2.1 2.3 2.7 2.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	88 37 12 34 33 24 25 77 20 50 42 27 100 71 25 32 27 100 71 25 32 24 44 44 44 45 44 41 35 34 49 39 30 32 29 30 31 32 33 34 45 46 47 48 48 49 49 49 49 49 49 49 40 40 40 40 40 40 40 40 40 40	13 5 9 115 10 9 110 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 17 18 19 20 20 28 8 20 25 10 10 15 35 19 22 15 15 35 19 22 21 15 22 21 23 34 46 33 37
Average Standard Deviation 100802 100803 100803 100803 100806 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100809 100809 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 00225 145 155 BRS.mt 00225 136 138 BRS.mt 00236 138 BRS.mt 00237 98198 30 41 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 57 8RS.mt 98151 31 41 BRS.mt 98151 34 55 BRS.mt 98151 74 79 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 00234 15 9 BRS.mt 97020 67 77 BRS.mt 98197 45 50 BRS.mt 98109 47 60 BRS.mt 98129 100 B	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.8 0.9 0.9 1.9 0.9 2.2 2.4 2.1 2.1 2.0 2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	12000 2499 2234 600 1200 900 900 12000 900 12000 2900 2400 4300 3200 4700 14000 1500 1500 1700 6400 900 3300 3300 310 400 1200 1700 6400 900 1200 1200 1200 1200 1200 1200 120	54.0 16.3 11.4 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 11.0 9.0 6.0 10.0 12.0 6.0 13.0 15.0 6.0 14.0 15.0 6.0 14.0 15.0 16.0 14.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 72 240 180 200 200 210 220 540 200 210 290 320 680 890 300 290 370 290 280 270 280 280 220 280 280 280 290 410 400 420 300	138.0 100.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 3.0 4.3 2.3 1.4 1.4 1.4 3.4 2.7 12.0 13.0 6.0 6.0 5.6 1.1 1.5 2.4 18.0 2.6 2.3 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.5 1.5 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.6 1.5 2.4 1.1 1.5 2.4 1.6 1.5 2.4 1.1 1.5 2.4 1.6 2.3 1.1 1.5 2.4 1.6 2.6 2.3 1.5 1.5 1.1 2.6 2.6 2.3 2.6 2.3 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	56.0 14.4 11.1 11.0 200 18.0 6.1 1.7 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 15.0 32.0 16.0 6.0 2.7 13.0 6.0 11.0 12.0 15.0 12.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 16.0 6.0 2.7 16.0 6.0 17 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2700 1863 1863 1990 1800 11800 1500 1400 1500 1400 1500 1400 1500 1400 1800 1800 1800 1800 1800 1800 18	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.8 2.1 1.5 2.2 2.6 1.6 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 2.3 1.8 1.9 1.5 1.6 2.0 1.7 2.2 2.9 1.9 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.8 3.8 2.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 24 44 44 43 35 34 39 33 33 35 45 30 22 27 100 28 37 29 20 20 21 20 21 21 22 24 25 27 20 20 21 22 27 20 20 21 22 24 24 25 26 27 27 20 20 20 21 22 24 44 44 45 46 47 48 48 49 40 40 40 40 40 40 40 40 40 40	13 5 9 15 10 9 10 8 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 13 10 20 10 28 8 20 25 10 15 35 39 22 25 15 13 23 15 18 26 24 15 23 15 23 15 23 23 15 24 25 21 27 28 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 Follow Up 100803 100805 100805 100805 100805 100806 100806 100806 100806 100806 100806 100808 100808 100900 100807 100807 100807 100907 100907 100907 100907 100909	00231 83 94 BRS.mt 00236 38 48 BRS.mt 03255 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 57 80 BRS.mt 98151 31 41 BRS.mt 98151 41 57 BRS.mt 98151 41 57 BRS.mt 90233 45 55 BRS.mt 00233 45 55 BRS.mt 00233 45 55 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 97036 61 77 BRS.mt 97102 67 78 BRS.mt 981397 45 50 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 03267 10 18 BRS.mt 03267 20 10 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 18 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt 03279 39 47 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 10 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt	400 400 400 400 400 400 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.2 1.6 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.8 1.8 0.9 0.9 1.9 0.9 1.9 0.9 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 0.9 1.0 1.0 0.9 1.0 0.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	12000 2499 2234 600 1200 900 900 900 12000 12000 2900 2400 4300 3200 14000 1500 1500 1500 1500 1500 1500 1	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 19.0 10.0 10.0 13.0 10.0 15.0 8.0 6.0 11.0 15.0 8.0 11.0 15.0 8.0 11.0 15.0 8.0 11.0 15.0 8.0 11.0 11.0 15.0 8.0 11.0 15.0 8.0 11.0 15.0 8.0 16.0 17.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	450 265 265 72 240 180 200 200 210 540 200 210 290 320 680 890 300 290 370 290 270 270 270 270 270 280 280 290 200 260 400 400 410 400 280 420 320 480	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 5.6 1.1 1.6 1.5 2.4 18.0 2.3 1.5 1.5 1.1 1.6 1.5 1.5 1.9 1.5 1.10 11.0 12.0 13.0 4.9 4.9 1.3 0.6 23.0 3.7 17.0 1.5	56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 1863 1863 1863 1900 1800 1800 1500 1400 1500 1400 1500 1400 1200 1200 1200 1200 1200 1200 12	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.50 0.50 0.50 0.50 0.50 0.60 0.80 0.80 0.70 0.60 0.70 0.60 0.70 0.60 0.70 0.80 0.80 0.80 0.70 0.80 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 2.5 2.5 1.6 3.0 2.7 2.6 1.9 2.1 2.3 1.8 1.9 1.5 2.5 1.6 2.0 1.7 2.6 2.0 1.7 2.6 3.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	88 88 37 12 2 1 12 12 12 12 12 12 12 12 12 12 12	13 5 9 115 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 17 18 19 20 20 21 28 8 20 25 10 10 15 35 19 22 15 13 23 15 18 26 24 15 21 22 21 22 21 23 24 25 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803 100803 100803 100806 100806 100806 100806 100806 100806 100806 100806 100808 100808 100808 100809 100809 100901	00231 83 94 BRS.mt 00236 38 48 BRS.mt 00236 145 155 BRS.mt 00225 145 155 BRS.mt 00225 136 138 BRS.mt 00236 138 BRS.mt 00237 98198 30 41 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 57 8RS.mt 98151 31 41 BRS.mt 98151 34 55 BRS.mt 98151 74 79 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00233 58 67 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 00234 15 9 BRS.mt 97020 67 77 BRS.mt 98197 45 50 BRS.mt 98109 47 60 BRS.mt 98129 100 B	400 400 400 400 400 400 400 400 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 1.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 0.8 1.1 0.8 1.1 0.8 0.7 0.9 0.9 1.1 0.8 1.1 0.8 0.9 1.1 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	12000 2499 2234 600 1200 900 900 900 12000 2900 2700 2400 4300 3200 14000 1500 1500 1500 1500 1500 1500 1	54.0 16.3 11.4 16.3 11.4 11.4 11.6 6.0 8.0 12.0 6.0 8.0 7.0 17.0 17.0 17.0 18.0 7.0 11.0 9.0 6.0 10.0 13.0 11.0 15.0 8.0 6.0 14.0 15.0 6.0 16.0 11.0 15.0 8.0 11.0 11.0 12.0 13.0 14.0 15.0 6.0 14.0 15.0 6.0 16.0 17.0 18.0 19.0 19.0 19.0 10.0 10.0 10.0 10.0 10	450 265 265 72 240 180 200 200 210 220 540 200 210 290 320 260 680 890 300 290 370 290 270 270 270 280 220 260 410 400 280 420 300 420 300	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 5.6 1.1 1.6 1.5 2.4 18.0 2.6 2.3 1.5 1.9 1.5 1.10 13.0 4.9 1.3 0.6 23.0 13.0 0.6 23.0 23.0 23.0 24.0 25.0 26.0 27 27 27 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	56.0 114.4 11.1 11.0 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 2.1 2.1 1.9 3.8 6.2 2.1 1.10 3.8 6.2 2.7 13.0 10.0 11.0 12.0 13.0 15.0 12.0 15.0 15.0 15.0 15.0 16.0 6.0 17 18.0 18.0 18.0 19.1 19.0 19.0 10.0 10.0 10.0 10.0 10	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 4 4 6 6 5 5 8 8 6 7 7 7 7 12 12 11 1 5 5 7 7 12 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 1863 1863 1863 1900 1500 1500 1400 1500 1400 1500 1400 1500 1400 1600 1600 1600 1600 1600 1600 1700 1600 1700 1800 1200 1600 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 17	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.55 0.50 0.70 0.60 0.80 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.70 0.80 0.8	12.0 3.8 2.8 2.8 2.8 2.1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.1 2.1 2.1 2.5 3.1 1.8 1.9 1.5 2.5 3.1 2.3 1.8 1.9 1.5 2.5 1.6 2.0 1.7 2.2 2.9 2.9 2.1 2.1 2.3 2.7 2.6 3.2 2.1 3.3 2.5 1.4 2.3 1.5 1.5 2.5 1.6 3.2 2.7 2.6 2.0 1.7 2.0 1.7 2.1 2.1 2.1 2.3 2.7 2.1 2.1 2.1 2.3 2.7 2.1 2.1 2.3 2.7 2.6 3.2 2.1 3.3 2.5 1.4 2.3 1.5 1.5 1.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 2.7 2.6 3.2 3.1 3.1 3.2 3.2 3.1 3.2 3.2 3.1 3.2 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	88 37 12 34 33 24 25 77 20 54 50 42 27 100 71 25 32 24 44 44 35 34 39 39 30 30 30 32 22 24 44 41 35 42 43 44 45 46 47 48 49 49 40 40 40 40 40 40 40 40 40 40	13 5 9 15 10 9 10 10 10 10 10 10 10 10 10 10	311 49 49 116 115 113 20 110 120 120 131 14 15 131 15 131 15 131 15 131 15 131 15 131 16 17 17 17 18 24 17 17 17 18 24 19 19 19 19 19 19 19 19 19 19 19 19 19
Average Standard Deviation 100802 100803 100803 100803 100805 100806 100806 100806 100806 100806 100806 100808 100808 100808 100808 100808 100808 100900 100808 100900 100901 100901 100901 100902 100903 100908 100908 100909 10	00231 83 94 BRS.mt 00236 38 48 BRS.mt 03255 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 57 80 BRS.mt 98151 31 41 BRS.mt 98151 41 57 BRS.mt 98151 41 57 BRS.mt 90233 45 55 BRS.mt 00233 45 55 BRS.mt 00233 45 55 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 97036 61 77 BRS.mt 97102 67 78 BRS.mt 981397 45 50 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 03267 10 18 BRS.mt 03267 20 10 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 18 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt 03279 39 47 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 10 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt	400 400 400 400 400 400 400 500 500 500	WASTE	26.0 3.9 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 1.8 1.9 0.9 1.9 0.9 2.2 2.4 2.1 2.9 2.0 1.1 2.0 1.1 1.1 1.0 0.9 0.9 2.2 4.1 2.1 2.0 0.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	12000 2499 2234 600 1200 900 900 900 12000 2900 2900 2400 400 2700 2400 4300 3200 4700 1100 1500 1100 1700 6400 900 3600 3300 1700 6400 900 3600 1200 1700 1700 6400 1700 1700 1700 1700 1700 1700 1700 1	54.0 16.3 11.4 16.3 11.4 11.6 6.0 12.0 6.0 8.0 8.0 27.0 17.0 17.0 11.0 9.0 11.0 12.0 6.0 10.0 11.0 10.0 15.0 6.0 14.0 15.0 6.0 14.0 15.0 6.0 11.0 7.0 11.0 7.0 11.0 11.0 11.0 7.0 11.0 11	450 265 265 72 240 180 200 200 210 220 540 220 210 230 266 680 890 300 290 290 290 290 290 290 290 290 290 2	138.0 100.0	\$56.0 14.4 11.1 11.0 200 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 9.4 18.0 12.0 18.0 12.0 18.0 6.0 17.0 18.0 18.0 19.1 19.0 19.0 10.0	10.0 4.5 2.1 5.0 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 7 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 4 5 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2700 1863 1863 1863 1863 1860 1500 1500 1500 1400 1500 1400 1500 1400 1600 1600 1600 1600 1600 1700 1600 1700 1800 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1600 1700 1800 1700 1800 1700 1800 1800 18	1.30 0.73 0.73 0.24 0.70 0.69 0.69 0.60 0.80 1.00 0.80 0.70 0.80 0.70 0.80 0.50 0.70 0.60 0.90 0.90 0.90 0.90 0.90 0.90 0.9	12.0 3.8 2.8 2.8 2.8 2.1 1.5 2.2 2.1 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.6 1.9 3.0 2.1 2.6 1.9 3.0 2.5 3.1 2.3 2.7 2.6 1.6 3.2 2.9 1.9 2.1 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.1 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.7 2.8 1.9 2.1 2.1 2.1 2.1 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.8 3.2 2.7 2.8 3.2 2.7 2.9 1.9 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.3 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.7 2.6 1.6 3.2 2.9 1.9 2.1 2.1 2.1 2.3 2.5 1.4 2.3 2.5 1.5 1.5 1.5 1.6 1.6 1.9 2.0 1.1 2.0 2.0 1.1 2.0 2.0 2.0 1.4 1.2 4.8 0.0	88 37 12 34 33 24 25 25 27 77 20 54 50 42 27 100 71 25 27 100 71 25 24 44 44 35 34 33 33 33 33 35 27 27 27 27 28 29 20 21 21 22 24 25 27 27 20 20 21 22 24 44 44 45 46 47 48 49 49 49 49 49 49 49 49 49 49	13 5 9 15 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 13 10 10 28 8 20 25 10 15 35 19 22 23 15 18 26 24 15 23 15 23 15 23 15 24 15 21 22 23 15 23 23 15 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20
Average Standard Deviation 100802 100803-Follow Up 100803 100805 100805 100805 100805 100805 100805 100806 100806 100806 100806 100806 100806 100806 100806 100806 100806 100806 100806 100806 100808 100900 100901 100901 100901 100901 100901 100901 100901 100901 100901 100908	00231 83 94 BRS.mt 00236 38 48 BRS.mt 03255 145 155 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 03258 136 138 BRS.mt 98198 20 30 BRS.mt 98198 95 110 BRS.mt 97072 25 32 BRS.mt 97072 55 80 BRS.mt 97072 57 80 BRS.mt 98151 31 41 BRS.mt 98151 41 57 BRS.mt 98151 41 57 BRS.mt 90233 45 55 BRS.mt 00233 45 55 BRS.mt 00233 45 55 BRS.mt 00234 15 9 BRS.mt 00235 97 107 BRS.mt 97036 61 77 BRS.mt 97102 67 78 BRS.mt 981397 45 50 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 98209 60 70 BRS.mt 03267 10 18 BRS.mt 03267 20 10 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 18 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt 03279 39 47 BRS.mt 03270 39 47 BRS.mt 03271 39 47 BRS.mt 03272 39 47 BRS.mt 03273 39 47 BRS.mt 03274 39 47 BRS.mt 03275 30 47 BRS.mt 03276 10 10 BRS.mt 03277 39 47 BRS.mt 03278 39 47 BRS.mt	400 400 400 400 400 400 400 500 500 500	WASTE	26.0 3.9 5.6 1.1 0.2 1.2 1.2 1.2 0.6 0.7 2.8 3.8 4.9 9.6 2.4 1.4 5.9 1.7 1.6 1.3 0.8 0.7 2.9 0.8 1.1 0.8 0.7 2.9 0.8 1.1 1.0 0.9 1.0 1.0 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	12000 2499 2234 600 1200 900 900 900 12000 12000 400 2700 2400 4300 3200 14000 1500 1500 1500 1500 1700 1700 1700 1	54.0 16.3 11.4 6.0 12.0 6.0 8.0 7.0 27.0 17.0 17.0 18.0 7.0 11.0 9.0 6.0 6.0 13.0 11.0 15.0 8.0 15.0 6.0 11.0 15.0 8.0 11.0 15.0 16.0 11.0 17.0 18.0 19.0 19.0 19.0 10.0 10.0 10.0 11.0 11	450 265 265 72 240 180 200 200 210 540 200 210 290 320 266 680 890 300 290 370 290 270 270 270 280 220 280 290 200 200 210 280 290 300 290 370 290 370 290 370 290 370 290 370 290 370 290 370 270 280 280 290 300 400 280 420 300 400 410 400 280 420 300 320 180 330	138.0 100.0 23.1 1.7 4.9 2.8 1.1 1.7 1.5 1.2 16.0 2.5 1.3 3.3 2.8 3.0 4.3 2.3 1.4 1.4 3.4 2.7 12.0 3.1 1.3 6.3 13.0 6.0 5.6 1.1 1.1 1.5 1.2 1.6 2.4 18.0 2.3 1.5 1.5 1.1 1.5 1.5 1.5 1.1 1.5 1.5 1.5	\$56.0 14.4 11.1 11.0 20.0 18.0 18.0 6.1 4.8 1.7 5.1 6.1 6.2 3.0 6.3 6.4 9.1 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 2.1 1.9 3.8 6.2 3.0 6.3 6.4 9.1 1.0 12.0 15.0 14.0 11.0 12.0 15.0 15.0 12.0 15.0 14.0 11.0 12.0 15.0 15.0 12.0 15.0 14.0 11.0 12.0 15.0 15.0 15.0 14.0 11.0 12.0 15.0	10.0 4.5 2.1 5.0 0.7 5.0 5.0 5.0 5.0 5.0 5.0	9 8 8 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2700 1863 1863 1900 1800 1800 1500 1400 1500 1400 1500 1400 1500 1400 1800 1800 1800 1800 1800 1800 18	1.30 0.73 0.73 0.24 0.70 0.69 0.60 0.80 0.80 0.70 0.88 0.70 0.88 0.50 0.98 0.50 0.98 0.50 0.98 0.80 0.70 0.80 0.80 0.70 0.80 0.80 0.70 0.80 0.8	12.0 3.8 2.8 1.5 2.2 1.6 1.8 2.4 1.9 2.0 4.5 5.6 1.9 3.0 2.1 2.1 2.6 1.9 3.0 2.5 3.1 1.8 1.9 2.5 3.1 1.8 1.9 2.5 2.6 1.9 2.7 2.6 2.0 1.7 2.8 2.9 2.1 2.1 2.3 2.7 2.6 3.2 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.3 2.7 2.6 3.2 2.9 2.1 2.1 2.1 2.1 2.1 2.1 2.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	88 88 37 12 28 12 24 24 25 25 77 20 20 54 22 20 50 27 12 25 32 24 44 35 25 32 24 44 35 35 35 25 29 30 30 32 28 28 28 31 47 47 35 56 56 50 33 34 4 21 33 34 34 34 35 56 56 50 33 34 22 1 33 34 22 1 33 34 22 20 20	13 5 9 15 15 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	31 49 16 15 17 18 19 20 20 28 8 20 25 10 10 15 35 19 22 15 18 23 25 15 21 22 21 23 24 15 24 17 32 40 33 40 33 40 40 40 40 40 40 40 40 40 40

Golder Associates

Appendix IV-2a
Solid Phase Analysis - Drill Core and Outcrop Samples
NICO Project, Fortune Minerals Ltd.

										NICO Project,	Fortune Minerals Ltd.										
Sample Number ¹	Hole	Depth From To	Lithology	Block Model Code ²	Waste Rock / Ore ³	Ag mg/kg	Al mg/kg	As mg/kg	Ba mg/kg	Be mg/kg	Bi mg/kg	Ca mg/kg	Cd mg/kg	Co mg/kg	Cr mg/kg	Cu mg/kg	Fe mg/kg	K mg/kg	Li mg/kg	Mg mg/kg	Mn mg/kg
100868	03258		Fault Zone	400	WASTE WASTE	0.2	46000	80	830	1.2	110	58200	0.1	10	11	29	42000	51000	10	13000	750
100810	03265	69 79	Feldspar Porphyry	200	WASTE	0.2	57000	13	630	1.4	80	3900	0.1	10	15	600	29000	51000	16	5800	240
100810-Follow Up	03265	69 79	Feldspar Porphyry	200	WASTE		72000	19	920	1.4	30	4300	0.2	7	98	280	33000	71000	7	6600	220
100811 100856	03257	79 89 56 65	Feldspar Porphyry	200 300	WASTE WASTE	0.2	52000 67000	100 100	670 970	1.3 0.4	70 20	7100 2500	0.1	70 70	10 11	47 6	22000 6000	53000 80000	20 4	6700 1700	300 100
100856-Follow Up 100857	03257 03257	56 65 65 79		300 100	WASTE WASTE	0.2	64000 65000	170 89	1100 1200	0.4 1.6	3 60	3000 1300	0.2 0.1	120 20	160 11	7	8000 20000	82000 62000	2 7	1800 3900	120 140
100858 100859	03257	105 109 110 114	Feldspar Porphyry	200 500	WASTE WASTE	0.3	84000 70000	100 21	1200 860	1.4	70 40	6500 5300	0.1	9	13 10	70	27000 15000	59000 64000	15	6200 4100	240 150
100859	03257	138 141		200	WASTE	0.2	37000	10	690	1.4	60	2000	0.1	3	16	10	21000	35000	15	4400	140
100869 100869-Follow Up	03259 03259	3 11 3 11	Feldspar Porphyry	200 200	WASTE WASTE	0.1	33000 78000	9	660 1000	1.8 1.9	90	4400 6100	0.1 0.2	20 12	15 150	26 19	23000 44000	28000 62000	26 16	12000 13000	300 290
100870	03259	11 22	Feldspar Porphyry	200	WASTE	0.2	50000	12	820	1.8	100	3000	0.1	20	14	45	31000	51000	21	11000	240
100876 100891	03259 00220	111 113 110 113	Feldspar Porphyry	200 200	WASTE WASTE	0.3	66000 39000	20 36	600 350	3.4 2.0	70 70	12000 7100	0.1	20	57 59	13	29000 28000	44000 21000	19 26	10000 9600	300 270
100892 100892-Follow Up	98152 98152	0 15 0 15		200 200	WASTE WASTE	0.2	57000 67000	12 19	710 830	1.7	50	1800 1900	0.1 0.2	6	11 150	45 27	20000 27000	47000 68000	21 8	4500 5000	160 180
100893	98152	15 30	Feldspar Porphyry	200	WASTE	0.2	53000 54000	10 15	670 720	2.1	80 70	3300 7900	0.1	5	11 15	34 78	31000 26000	37000 54000	22	6900 7200	200 330
100894 100894-Follow Up	98152 98152	30 45 30 45	Feldspar Porphyry	200 200	WASTE WASTE		71000	24	1200	1.4	33	8100	0.1	10	96	78	33000	80000	12	8900	350
100895 100896	98152 98152	45 60 96 106		200	WASTE WASTE	0.4	16000 58000	94	150 660	0.7	60	2900 5100	0.1 0.1	4 8	19 10	72 39	25000 25000	12000 47000	22	6100 5000	260 220
100904	00249	31 36	Feldspar Porphyry	200	WASTE	0.3	44000	23	450	1.3	120	2500	0.1	4	23	4	50000	32000	25	10500	160
100904-Follow Up 100908	00249 00249	31 36 131 136	Feldspar Porphyry	200 200	WASTE WASTE	0.2	79000 63000	14 28	1000 690	1.8	60	3600 4300	0.2 0.1	7	98 12	5 55	52000 31000	67000 61000	11 12	12000 7000	160 210
100913 100921	96016 98151	205 209 92 105	Feldspar Porphyry	200 200	WASTE WASTE	0.2	91000 78000	65 37	650 960	1.7 1.5	150 70	39000 12000	0.1 0.1	30 10	29 14	51 71	63000 31000	43000 107000	31 17	23000 7600	770 380
100921-Follow Up	98151	92 105	Feldspar Porphyry	200	WASTE		69000	36	1000	1.2	2	12000	0.2	7	120	54	31000	74000	6	7600	340
100931 100954	98197	115 121 50 60		200 200	WASTE WASTE	0.2 0.1	66000 61000	59 10	720 900	1.0 2.0	50 120	9800 6400	0.1 0.1	10 10	11 24	49 91	26000 36000	90000 75000	19	6300 11000	390 250
100955 100955-Follow Up	98197 98197	60 70 60 70	Feldspar Porphyry	200 200	WASTE WASTE	0.1	66000 78000	10 15	940 1200	2.2	110	3800 3600	0.1 0.3	10 10	37 120	110 62	43000 49000	85000 70000	23 19	11000 14000	230 240
100956	98197	70 80	Feldspar Porphyry	200	WASTE	0.1	60000	5	740	1.9	100	5600	0.1	7	21	16	43000	77000	10	10000	210
100988 100988-Follow Up	97036 97036	151 157 151 157		400 400	WASTE WASTE	0.2	94000 89000	200 240	320 600	1.4	140 8	25000 33000	0.1	20 27	10 23	19 16	89000 66000	32000 35000	17 23	27000 20000	460 530
NICO-08-013 Fortune Minerals	03282	117.04 126.	2 Feldspar Porphyry Quartz Feldspar	100	WASTE	0.2	68000	310	1100	1.0	15	2600	0.2	24	120	150	30000	68000	9	4600	280
Preliminary Samples	03-275	104 114	Porphyry	1/2	Middle / Lower	0.6	57000	3900	880	1.2	77	4200	1.0	130	9	240	30000	57000	5	5100	230
Fortune Minerals Preliminary Samples	03-376	3 106	Foldenar	1	Waste / Middle	0.6	56000	25	790	1.4	21	5600	1.0	9	27	220	30000	52000	10	7400	260
100821	Outcrop		Portal			0.20	70000	5	520	1.9	110.00	3000	0.10	7.10	59	2	44000	46000	31	12000	90
100822 100823	Outcrop		Portal Portal			0.40	44000 57000	5	570 350	1.0 1.5	60.00 110.00	2500 2600	2.40 0.10	3.40 6.30	13 42	29 4	26000 47000	43000 34000	16	5300 12000	120 360
100824 NICO-08-007	Outcrop		Portal Feldspar porphyry			0.20 0.30	67000 72000	5	610 1300	1.7	90.00	2400 1900	0.10 0.26	5.00 1.50	46 76	2	45000 27000	61000 72000	27 8	11000 6600	230 150
NICO-08-010	Outcrop Outcrop		Feldspar porphyry Feldspar porphyry			0.21	71000	0	860	2.2	0.51	4000	0.19	7.60	94	1	43000	53000	14	11000	200
Minimum Maximum						0.1	16000 94000	3900	150 1300	0.4 3.4	1 150	1300 39000	0.1 2.4	130	9 160	600	6000 89000	12000 107000	2 31	1700 27000	90 770
Average Standard Deviation						0.2 0.1	63023 15513	138 591	785 263	1.5 0.5	59 42	6719 7768	0.2	18 28	46 46	64 105	33837 15244	56791 19798	16	8893 5089	256 124
	, ,			•															0	•	
100852 100852-Follow Up	03257 03257	13 23 13 23	Rhyolite Rhyolite	300 300	WASTE WASTE	0.2	50000 64000	200 190	720 1000	0.6 0.7	60 20	2600 3000	0.1 0.2	120 140	12 270	39 41	8000 11000	57000 76000	2	2200 2400	120 140
100853	03257	23 33	Rhyolite	20	ORE	0.3	66000	100	980	0.6	80	1800	0.1	30	9	42 21	8000	74000 74000	10	2300	90 94
100854 100860	03258	33 43 3 16	Rhyolite	20 300	ORE WASTE	0.2	64000 65000	900 100	920 890	0.5	40 30	1100 600	0.1	70 40	11	22	8000 11000	71000	8	2000 2800	120
100860-Follow Up 100862	03258 03258		Rhyolite Rhyolite	300 20	WASTE ORE	0.2	64000 61000	80 1100	990 870	0.6	30	610 3000	0.1 0.1	31 420	220 13	17	13000 9000	77000 69000	3 4	2900 2700	120 140
100863 100864	03258 03258	35 50		300 300	WASTE WASTE	0.2	58000 48000	200 94	900 820	0.4	20 30	2400 3200	0.1 0.1	160 70	13	13 16	7000 9000	65000 66000	4 10	2000 2500	140 200
100865	03258	65 77	Rhyolite	300	WASTE	0.2	39000	32	840	0.4	20	2400	0.1	20	12	8	8000	45000	5	2300	110
100865-Follow Up 100871	03258 03259	65 77 22 33	Rhyolite Rhyolite	300 300	WASTE WASTE	0.2	64000 51000	50 41	1100 860	0.4	9 50	2800 2100	0.2 0.1	23 30	170 9	63	10000 17000	80000 68000	2 15	2600 4900	120 150
100871-Follow Up	03259	22 33	Rhyolite	300	WASTE		62000	35 36	1000	0.8	5	2200	0.1	28 10	170	48 36	21000	76000	7	5000	160
100872 100873	03259 03259	44 54	Rhyolite Rhyolite	300 300	WASTE WASTE	0.2	44000 43000	38	920 850	0.5 0.5	30 40	3800 4000	0.1	20	13 5	36	11000 10000	57000 58000	11	3000 3000	160 160
100878 100878-Follow Up	00246S 00246S		Rhyolite Rhyolite	300 300	WASTE WASTE	0.2	50000 63000	20 26	800 1100	0.4	30 4	800 350	0.1 0.2	10	7 180	19 15	11000 10000	46000 82000	7 2	2500 1900	98 79
100879	00246S	10 20	Rhyolite	300	WASTE	0.2	39000	91 700	660 850	0.4	110 40	1900 1100	0.1 0.1	30 590	9	120	9000 8000	51000 71000	44	2400 2000	95 79
100880 100932	00252	3 13		300 300	WASTE WASTE	0.1	53000 68000	200	1000	0.8	70	500	0.1	30	14	81 400	18000	108000	4	2000	61
100933 100933-Follow Up	00252 00252		Rhyolite Rhyolite	300 300	WASTE WASTE	0.2	59000 58000	3300 4100	830 1200	0.3	70 50	2100 2800	0.1	200 190	6 170	2340 2600	21000 22000	89000 75000	<u>4</u> 3	2700 3500	61 89
100943 100944	03264 03264	27 37	Rhyolite	300 300	WASTE WASTE	0.1	59000 63000	700	780 850	0.4	200	2200 2300	0.1	90	11	58 65	11000 19000	103000 116000	4	1900 3200	110
100951	98197	15 30	Rhyolite Rhyolite	300	WASTE	0.1	95000	2600 400	900	0.8	130 50	44000	0.1 0.1	120 70	13 15	300	210000	150000	4	66000	150 85
100952 100952-Follow Up	98197 98197	0 15 0 15	Rhyolite	300 300	WASTE WASTE	0.1	130000 66000	300 290	720 1100	0.4 0.5	90 100	3400 4600	0.1 0.2	60 59	8 210	180 230	78000 9300	176000 80000	4	2800 3500	77 98
100971	96011	3 15	Rhyolite	300 300	WASTE	0.1	48000	700	940	1.3	240	5700	0.1	80	20	430	18000	52000	12	4200	220
100971-Follow Up 100972	96011	3 15 15 30	Rhyolite	300	WASTE WASTE	0.1	62000 50000	430 100	1300 1100	1.1 2.6	130 30	5900 2000	0.2	35 400	130 15	280 200	14000 30000	78000 66000	23	3000 5000	170 120
100973 100974	96011	30 45 45 60	Rhyolite	300 300	WASTE WASTE	0.1	53000 61000	200	1070 1010	1.8 0.9	60 60	900 500	0.1 0.1	20	13 14	140 160	23000 19000	48000 56000	18 7	4900 2900	230 140
100975	96011	60 85	Rhyolite			0.1	43000	1600	880	0.5	90	1200	0.2	80	11	560	15000	49000	14	2500	70
100980 100980-Follow Up	97035	0 10 0 10	Rhyolite	300 300	WASTE WASTE	0.3	72000 63000	900 680	970 1100	0.4	680 560	300 420	0.1	130 110	12 110	130 89	12000 13000	83000 80000	2	2000 1900	98 100
100981 100981-Follow Up		10 20 10 20		35 35	ORE ORE	0.2	62000 59000	8000 11000	850 1000	0.5 0.5	3060 3400	500 640	0.1 0.1	940 910	8 190	53 39	28000 27000	68000 75000	6 3	4500 4300	110 110
100982	97035	20 29	Rhyolite	30	ORE	0.2	61000	9700	910	0.5	320	1400	0.1	1700	23	99	29000	68000	6	5200	130
100985 100985-Follow Up	97036 97036	0 10	Rhyolite	300 300	WASTE WASTE	0.1	40000 63000	2700 2100	800 1200	0.4	160 140	400 270	0.1 0.1	70 48	13 250	68 47	20000 13000	46000 82000	12 3	2200 1700	90 72
100986 100992		10 26 1 17	Rhyolite			0.1 0.2	65000 37000	7000 1000	970 750	0.4	320 190	800 1000	0.1 0.1	200 50	11 10	60 320	21000 12000	73000 55000	8 11	3400 1500	120 66
NICO-08-011	03282	4.3 13.4	1 Rhyolite	300	WASTE	0.1	60000	14	1100	0.4	15	670	0.1	19	150	130	12000	81000	4	2100	92
NICO-08-012 Fortune Minerals		31.7 41.3	Phyolita	300	WASTE	0.2	71000	1900	1300	0.4	27	1100	0.2	19 46	110	440	14000	94000	3 5	2100	110
Preliminary Samples NICO-08-001	03-272 Outcrop	0.6 18	Rhyolite Rhyolite		Waste	0.6	58000 60000	1900	960 1300	0.5	40 22.00	1200 470	1.0 0.10	46 25.00	18 79	180 24	13000 9300	61000 67000	2	2900 1500	110 130
NICO-08-002	Outcrop		Rhyolite			0.28	79000	13	1200	1.0	3.70	1100	0.21	11.00	74	38	37000	64000	7	6100	240
NICO-08-003 NICO-08-004	Outcrop Outcrop		Rhyolite Rhyolite			0.21	28000 65000	30 60	67 1200	4.6 0.2	2.50 43.00	42000 310	0.12 0.15	32.00 4.90	50 91	2 34	160000 11000	26000 82000	55 4	53000 2000	1000 84
NICO-08-005	Outcrop		Rhyolite			0.16	63000 65000	24	1100	0.4	5.60	2000	0.11	14.00	130	260	22000	70000 82000	6	4200 2000	230
NICO-08-006 Minimum	Outcrop		Rhyolite	1		0.13 0.1	28000	23 7	1200 67	0.0	3.80	830 270	0.13 0.1	9.20 5	140 5	22	7000	26000	2	1500	88 61
Maximum Average						0.6 0.2	130000 59490	11000 1261	1300 955	4.6 0.7	3400 216	44000 3397	1.0 0.1	1700 150	270 64	2600 208	210000 22922	176000 73843	55 7	66000 5139	1000 138
Standard Deviation						0.1	15198	2473	203	0.7	630	8197	0.1	298	78	480	35246	24631	8	11221	131

Appendix IV-2a Solid Phase Analysis - Drill Core and Outcrop Samples NICO Project, Fortune Minerals Ltd.

									NICO	Project, Fortune Minera	ils Ltd.									
Sample Number ¹	Hole	Depth	Lithology			Мо	Na	Ni	P	Pb	Sb	Se	Sn	Sr	Ti	TI	U	V	Y	Zn
-		From To		Block Model Code ²	Waste Rock / Ore ³	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
100868	03258	77 83	Fault Zone	400	WASTE	5.7	700	5.0	390	10.0	10.0	5.0	3	25	200	0.60	10.0	22	10	24
100810	03265			200	WASTE	3.3	8000	7.0	300	3.9	3.3	5	4	18	1200	0.30	9.1	33	10	19
100810-Follow Up 100811	03265 03265			200 200	WASTE WASTE	3.0 1.2	13000 5300	12.0 6.0	300	4.9 4.3	4.8 3.6	0.7 5	3	20 22	2000 900	0.37 0.20	9.6 9.2	36 30	14 10	8 12
100856	03257	56 65	Feldspar Porphyry	300	WASTE	4.0	2400	4.0	60	5.3	1.4	5	1	17	55	0.30	8.6	2	7	9
100856-Follow Up 100857	03257	56 65 65 79		300 100	WASTE WASTE	4.0 3.6	2400 9700	5.7 4.0	200	4.4 5.3	2.1 1.6	0.7 5	2	17 25	330 400	0.36 0.20	9.3 9.1	9	8 10	8 16
100858	03257	105 109	Feldspar Porphyry	200	WASTE		23000	15.0	280	16.0	3.2	5	3	27	800	0.20	26.0	14	20	260
100859 100867		110 114 138 141		500 200	WASTE WASTE	4.9 11.0	11000 11000	8.0 6.0	210 260	6.3 4.1	1.8 2.4	5	2	19 17	400 600	0.20 0.20	12.0 12.0	10 7	20 10	6
100869	03259	3 11	Feldspar Porphyry	200	WASTE	2.6	8700	10.0	460	2.9	1.1	5	4	60	2100	0.40	4.6	69	20	20
100869-Follow Up 100870	03259 03259	3 11 11 22	Feldspar Porphyry Feldspar Porphyry	200	WASTE WASTE	0.8 2.6	15000 6300	18.0 8.0	390	3.7 2.8	1.9 1.6	0.7 5	4	89 46	3200 1400	0.55 0.40	5.8 6.3	64 58	16 20	18 20
100876	03259	111 113	Feldspar Porphyry	200	WASTE	5.7	16000	23.0	460	6.8	5.9	5	5	160	2400	0.20	9.4	53	20	15
100891 100892	98152		Feldspar Porphyry Feldspar Porphyry	200 200	WASTE WASTE	3.4 3.4	8800 9200	15.0 6.0	650 360	10.0 5.6	3.1 2.1	5	4	99 20	2100 800	0.20 0.30	8.8 12.0	51 26	20 10	15 6
100892-Follow Up	98152	0 15	Feldspar Porphyry	200	WASTE	1.9	9800	11.0		5.6	2.5	0.7	4	22	1500	0.36	12.0	28	14	7
100893 100894		15 30 30 45		200	WASTE WASTE	3.0 2.0	8600 3200	9.0 10.0	460 430	5.2 6.2	3.6	5	5	25 20	1600 700	0.40	9.8 9.4	43	10 20	27 10
100894-Follow Up	98152	30 45	Feldspar Porphyry	200	WASTE	2.9	3400	13.0		7.7	5.1	0.7	4	25	2100	0.51	10.0	38	19	13
100895 100896	98152	45 60 96 106		200	WASTE WASTE	2.6 4.5	1000 14000	9.0 4.0	400 300	32.0 13.0	4.2	5	3	6 16	800 600	0.20 0.20	8.9 11.0	33	10 20	14 20
100904	00249			200	WASTE	3.0	6500	10.0	590	2.9	1.7	5	4	21	2800	0.60	5.5	73	20	19
100904-Follow Up 100908	00249		Feldspar Porphyry	200	WASTE WASTE	1.2 3.7	17000 5000	18.0 7.0	330	2.5 4.5	2.7 4.1	0.7	4	35	3200 600	0.61 0.30	6.4 10.0	70 28	18 10	8
100908	96016	205 209		200	WASTE	1.8	23000	6.0	750	11.0	10.0	5	4	20 220	5800	0.30	2.4	170	20	8 38
100921	98151	92 105	Feldspar Porphyry	200	WASTE	4.5	8400	7.0	310	13.0	2.7	5	4	30	1500	0.40	11.0	37	20	18
100921-Follow Up 100931	98151 00233	92 105 115 121		200 200	WASTE WASTE	3.7	7400 5500	11.0 8.0	220	11.0 8.9	2.8 3.6	0.7 5	6	27 24	1700 1100	0.53 0.20	13.0 10.0	31 25	17 20	11 19
100954	98197	50 60	Feldspar Porphyry	200	WASTE	3.1	12000	8.0	470	6.8	1.8	5	4	79	2800	0.60	6.9	60	20	37
100955 100955-Follow Up	98197 98197	60 70 60 70		200	WASTE WASTE	2.8 0.7	7800 7900	9.0 35.0	440	3.4 4.0	2.1	5 0.7	4 4	53 54	1900 3400	0.60 0.63	6.0	58 66	10 15	28 19
100956	98197	70 80	Feldspar Porphyry	200	WASTE	2.8	8400	8.0	430	3.7	1.4	5	4	57	2500	0.50	6.8	61	20	28
100988 100988-Follow Up	97036	151 157 151 157		400	WASTE WASTE	0.9	30000 27000	7.0 16.0	560	3.8 4.1	10.0 14.0	5 0.7	4	140 210	3500 5200	0.50 0.51	2.3	130 150	20	22 15
NICO-08-013			Peldspar Porphyry Peldspar Porphyry	100	WASTE	4.3	15000	2.3		8.3	3.0	0.7	2	26	900	0.34	12.0	7	14	20
Fortune Minerals	03-275		Quartz Feldspar	4./2		4.2	6600	10.0	230	6.1	4.5	10.0	2	17	610	0.40	11.0	7	15	11
Preliminary Samples Fortune Minerals		104 114	Foldenar	1/2	Middle / Lower								_							
Preliminary Samples	03-376	3 106	Porphyry	1	Waste / Middle	2.8	6000	12.0	350	7.3	2.1	10.0	3	43	1400	0.50	9.5	37	17	14
100821 100822	Outcrop		Portal Portal			0.7 3.6	10500 9300	22.0 11.0	530 400	2.7 8.4	0.9	5.0 5.0	15.0 4.0	26 28	3700 1000	0.5 0.3	3.5 6.4	92.0 26.0	20.0 10.0	5.2 330.0
100823	Outcrop		Portal			0.9	13000	18.0	440	1.3	0.6	5.0	7.0	38	2100	0.6	3.3	69.0	20.0	25.0
100824 NICO-08-007	Outcrop		Portal Feldspar porphyry			1.6	9000 14000	21.0 6.2	510	2.5 2.8	1.3 2.5	5.0 0.7	11.0	34 27	3500 1000	0.7	2.9 9.3	85.0 7.7	10.0 11.0	42.0 1.8
NICO-08-010	Outcrop		Feldspar porphyry			1.6	17000	16.0		5.7	2.1	0.7	4.5	64	2900	0.5	6.9	64.0	17.0	12.0
Minimum Maximum						0.7 11.0	1000 30000	2.3 35.0	60 750	1.3 32.0	0.6 14.0	0.7 10.0	1 15	6 220	55 5800	0.20 0.70	2.3 26.0	2 170	7 22	330
Average						2.9	10607	11.0	390	6.5	3.2	4.0	4	48	1839	0.39	8.5	47	16	29
Standard Deviation						1.8	6345	6.3	145	5.1	2.6	2.3	2	49	1302	0.15	4.0	38	5	61
100852	03257	13 23	Rhyolite	300	WASTE	4.0	3100	6.0	55	5.1	6.8	5	1	13	79	0.40	9.4	1	6	9
100852-Follow Up 100853	03257	13 23	Rhyolite	300 20	WASTE ORE	2.4	4700 3700	6.3 5.0	45	6.1 13.0	4.9 3.8	0.7	2	16 20	320 53	0.31 0.40	11.0 12.0	1 2	7	5 64
100854	03257	23 33 33 43	Rhyolite	20	ORE		2600	6.0	58	6.3	2.3	5	1	16	37	0.30	10.0	2	8 7	92
100860	03258	3 16	Rhyolite	300	WASTE	4.0	3700	5.0	51	4.7	2.1	5	1	13	88	0.20	7.9	1	5	53
100860-Follow Up 100862	03258 03258		Rhyolite Rhyolite	300 20	WASTE ORE	4.7	3600 2800	4.5 6.0	83	4.8 4.0	3.1 2.6	0.7 5	1	12 13	260 200	0.23 0.30	8.6 7.2	6	7	27 14
100863	03258	35 50	Rhyolite	300	WASTE	4.5	2900	4.0	58	8.0	1.2	5	1	13	86	0.30	8.5	2	7	36
100864 100865	03258		Rhyolite Rhyolite	300 300	WASTE WASTE	8.8 3.6	1800 1700	6.0 4.0	93 67	7.5 4.3	2.9 1.7	5	1	12 14	53 71	0.30	9.5 8.8	3	8	50 31
100865-Follow Up		65 77		300	WASTE	5.5	2200	4.7		4.6	2.5	0.7	1	16	350	0.37	10.0	2	7	10
100871 100871-Follow Up	03259 03259	22 33 22 33	Rhyolite Rhyolite	300 300	WASTE WASTE	3.2 6.2	1500 1500	12.0 14.0	89	5.0 5.0	2.5 3.1	5 0.7	1 2	18 18	200 400	0.20 0.31	12.0 13.0	6	10 11	170 147
100871-1 0110W OP	03259	33 43	Rhyolite	300	WASTE	2.8	2700	5.0	72	7.6	3.3	5	2	17	300	0.20	9.0	3	7	12
100873 100878	03259	44 54 1 10	Rhyolite Rhyolite	300 300	WASTE	4.0	1700	5.0	79 74	11.0	3.0 0.8	5	1	13	86	0.20	11.0	5	5	41 37
100878-Follow Up	00246S 00246S		Rhyolite	300	WASTE WASTE	2.8	800 1000	2.0 6.2	74	2.6	1.2	0.7	1	13 15	79 340	0.20 0.33	6.3 7.2	1	9	23
100879	00246S	10 20	Rhyolite	300	WASTE	2.7	700	6.0	54	5.4	4.2	5	1	10	36	0.20	7.0	3	5	42
100880 100932	00246S 00252	20 30 3 13	Rhyolite Rhyolite	300 300	WASTE WASTE	4.2 3.9	1700 3300	8.0 4.0	64 110	4.0 5.7	2.2 1.3	5	3	11 19	27 79	0.20 0.20	8.2 4.5	3	7	16 14
100933	00252	13 26	Rhyolite	300	WASTE	7.6	1000	7.0	34	4.7	7.1	5	2	15	35	0.20	13.0		3	25
100933-Follow Up 100943	00252		Rhyolite Rhyolite	300 300	WASTE WASTE	6.7 5.4	1200 2900	7.5 6.0	68	5.7 10.0	7.1 4.5	0.7 5	2	20 12	130 200	0.36 0.20	14.0 8.9	1	6	6 16
100944	03264	37 45	Rhyolite	300	WASTE	5.6	2200	7.0	75	11.0	4.3	5	12	14	100	0.20	10.0	4	9	30
100951 100952	98197 98197	15 30 0 15	Rhyolite Rhyolite	300 300	WASTE WASTE	6.4 4.1	1700 3300	9.0	330 64	5.7 4.8	2.7	5	1 2	7	84 100	0.20 0.20	11.0 8.2	3	6	25
100952-Follow Up	98197	0 15	Rhyolite	300	WASTE	1.1	4900	3.5		8.6	4.1	0.7	1	10	360	0.23	8.9	1	6	6
100971 100971-Follow Up	96011	3 15 3 15	Rhyolite	300 300	WASTE WASTE	6.8 4.2	2000 2400	10.0 3.9	240	6.4 9.0	3.5 3.9	5 0.7	2	16 17	200 300	0.20 0.43	5.9 6.6	1	20 17	46 5
100971-Follow Up		15 30		300	WASTE	5.2	7300	10.0	400	4.1	2.4	5	2	23	400	0.43	8.5	6	10	74
100973	96011	30 45	Rhyolite	300	WASTE	2.8	5900	7.0	310	4.3	1.3	5	2	22	300	0.20	9.3	9	20	92
100974 100975		45 60 60 85		300	WASTE	5.1 6.9	3300 800	8.0 5.0	240 220	3.9 3.5	2.5	5	2	21 17	200 73	0.20 0.20	7.2 6.8	09 1	20	35 75
100980	97035	0 10	Rhyolite	300	WASTE	2.5	1500	14.0	79	11.0	12.0	5	1	18	100	0.20	8.5	1	7	100
100980-Follow Up 100981	97035 97035	0 10 10 20	Rhyolite Rhyolite	300 35	WASTE ORE	2.3 7.9	1400 1000	3.4 16.0	81	16.0 22.0	8.4 17.0	7	2	18 16	350 100	0.39 0.20	9.4 9.7	2	7	7 61
100981-Follow Up	97035	10 20	Rhyolite	35	ORE	9.2	890	14.0		90.0	26.0	3.6	1	16	320	0.33	12.0	1	8	6
100982 100985	97035 97036	20 29	Rhyolite Rhyolite	30 300	ORE WASTE	13.0 4.1	1300 1000	24.0 6.0	85 88	4.2 2.6	9.1 3.5	5	2	16 15	100 100	0.20 0.20	12.0 8.4	1	9	61 28
100985-Follow Up	97036	0 10	Rhyolite	300	WASTE	1.2	1300	4.0		5.2	5.2	0.7	1	19	340	0.28	8.8	1	9	10
100986	97036	10 26	Rhyolite			4.5	1400	6.0	84	4.1	7.2	5	1	17	100	0.20	8.5	1	6 7	34
100992 NICO-08-011	03282	1 17 4.3 13.4	Rhyolite	300	WASTE	5.9 2.3	600 1000	7.0 2.3	93	2.1 2.3	7.3 4.7	5 0.7	2	12 15	69 320	0.20 0.32	8.0 9.6	2	8	10 5
NICO-08-012	03282	31.7 41.3	Rhyolite	300	WASTE	13.0	1500	2.8		6.4	4.4	0.7	2	15	390	0.34	19.0	1	13	12
Fortune Minerals Preliminary Samples	03-272	0.6 18	Rhyolite		Waste	3.8	860	8.0	78	2.9	3.2	10.0	2	15	100	0.40	9.8	3	8	8
NICO-08-001	Outcrop		Rhyolite			1.3	1000	1.6		5.1	1.0	0.7	1.2	33	330	0.5	5.8	2.3	6.8	61.0
NICO-08-002 NICO-08-003	Outcrop Outcrop		Rhyolite			1.0 0.5	15000 100	9.1 11.0		3.9 1.7	6.2	0.7	2.6	29 18	2200 2700	0.7 0.8	7.1 3.4	44.0 46.0	12.0 28.0	8.9 11.0
NICO-08-004	Outcrop		Rhyolite Rhyolite			1.0	1200	0.8		2.8	6.2 3.5	0.9	9.2 1.5	18 14	320	0.4	7.7	0.8	7.5	1.2
NICO-08-005	Outcrop		Rhyolite			1.2 3.0	1400	2.8 3.3		2.6	3.2	0.7	2.4	16	310	0.4	6.9 9.3	0.6 0.6	6.5 4.7	11.0
NICO-08-006 Minimum	Outcrop		Rhyolite			3.0 0.5	1200 100	3.3 0.8	34	1.7	1.6 0.8	0.7	1.1 1	19 7	280 27	0.3	9.3 3.4	0.6	3	11.0 1
Maximum						13.0	15000	24.0	400	90.0	26.0	10.0	12	33	2700	0.83	19.0	46	28	170
Average Standard Deviation						4.5 2.9	2358 2296	6.7 4.2	113 92	7.6 12.3	4.4	3.6 2.3	2 2	16 5	278 462	0.29 0.12	9.1 2.6	9	9	35 36
Z.E. AGIG DEFIGUOTI						£J	2230			44.7	2		•	-	-02	U.12	2.0	1	1 ,	50

Golder Associates

Appendix IV-2a Solid Phase Analysis - Drill Core and Outcrop Samples NICO Project, Fortune Minerals Ltd.

**************************************											NICO Project, F	ortune Minerals Ltd.										
1. 1. 1. 1. 1. 1. 1. 1.	Sample Number ¹	Hole		Lithology	Block Model Code ²	Waste Rock / Ore ³																Mn mg/kg
170	100804	00231	235 25	0 Siltstone	500	WASTE	0.2	44000	5	630	1.6	110	8700	0.1	30	69	68	42000	29000	24	10000	330
19	100819																2					
32	100877																					
March Marc	100897								93						30		24					
19	100914								200						40		75					
Second Column Second Colum	100922																,,,					
Second S	100940														20	59	4					
19	100946					WASTE							4900		30	16	10	160000	101000	4	12000	260
18 March 1969 12 15 15 March 1969 15	100957								24						8		5					
March Marc	100960						0.1		6								2					
180									39								6					
Second Content	100984								,								15					
March Marc	101000																					
April 1965 1975	Fortune Minerals		243 23		300	WASTE																
Marging Marg	Preliminary Samples	98-159		5			0.6	31000	11	410	1.5	1	3700	1.0	16	68	98	65000	20000	9	13000	420
The standard of the standard o	Fortune Minerals	09-170																				
The content of the	Preliminary Samples	36-170					0.6	65000	17	790	1.5	1	5600	1.0	23	48	190	96000	49000	10	13000	330
1.50 1.50	Fortune Minerals	98-196		3								-	****									
Color Colo			250 25				0.24	0.4000	47	600	1.0	7.20	2000	0.30	11.00	F2	26	44000	C1000	7	C000	100
mem																						
March Marc	Minimum	Outcrop		Sittatorie	1				5													120
Seed Description	Maximum								900			370					190			32		560
Color Colo	Average															62				15		273
March Marc	Standard Deviation						0.1	14960	210	195	0.5	107	2198	0.3	15	23	47	33698	24573	8	2728	108
March Marc																	1			_		т
998 1 10 9988 1 10 9984-Anter, Wards 60 WART 0.1 2300 60 230 65 10 20 20 20 20 20 20 20	100801						0.3					100								7		
Sign 1930 1930 1930 20 20 A-Andrew Weeks 400 WATT 6.1 25000 65 190 120 1970 6.2 77 12 180 51000 23000 14 10000 330 330 330 340 3	100801-Follow Up 100807						0.1			370	1.9	100		0.1				39000	35000	b		100
99	100807										0.0				7							
Second S	100809										0.7				20		5					
131 0.325 17 16 0.344 17 16 0.344 18 17 16 0.344 18 18 18 18 18 18 18	100809-Follow Up														28	310	7					450
881 002465 31 73 Sub-Annick Wards 600 WASTE 0.1 45000 38 410 1.0 240 4400 6.1 30 50 16 101000 2,1000 4 2,1000 50 50 50 50 50 50 50	100813		157 16	0 Sub-Arkosic Wacke																31		290
881 9819 1 20 Sub-Annox Waste 400 WASTE 0.2 20000 400 190 1.8 700 20000 6.1 110 22 4.4 76000 12000 29 25000 660 881-966 Waste 400 WASTE 0.1 2500 12 240 1.5 210 17000 6.1 10 2.0 1.9 71000 21000 21 24000 660 881-966 Waste 400 WASTE 0.1 25000 1.1 2000 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	100851																					
881 9819 10 20 Sub-Annex Water 600 WASTE 0.1 25000 12 240 15 10 1000 0.2 10 19 77,000 21 24000 640 See 150 100 100 12 88,000 13 10 100 13 10 100 12 10 10 100 12 10 10 10 10 10 10 10 10 10 10 10 10 10	100881																					
88 February 19 10 20 Sub-Anspies Warks 400 WASTE 31000 31 270 13 1 17000 6.2 10 190 12 83000 33000 11 27000 6.6 6 8 19 10 19 1	100882 100883																					
888							0.1															
988 9819 9819 133 149 504-Arises Warke	100886						0.2															
100 100	100898																					
985 9855 1 10 Sub-Antonic Wacke 300 WASTE 0.1 71000 200 980 1.5 60 1800 0.1 20 34 19 22000 75000 8 6500 580	100903						0.2	60000	200	750	0.7	200	3400	0.1	160	21	14	91000	66000	26	11000	310
226 00233 9 16 Sub-Articic Wacke 300 WASTE 0.2 75000 57 1100 1.5 50 2100 6.1 22 1150 29 25000 77000 7 7100 220 220 230 20 25000 77000 7 7100 220 23000 23000 12 14000 3300	100906						0.2								8		5			31		
226-Fellow Up	100915																19			8		
887 9706 63 72 \$100 63 72 \$100 \$400 \$10 \$200 \$10 \$200 \$10 \$200 \$30 \$20 \$600 \$200 \$12 \$14000 \$300 \$	100926						0.2										33					
887-Follow Up 97036 63 72 sub-Arkosis Waske 400 WASTE 28000 33 270 0.6 1 5200 0.2 7 260 8 55000 34000 6 6 14000 270 986-Follow Up 00241 0 10 sub-Arkosis Waske 400 WASTE 0.2 24000 300 110 0.8 210 2500 0.1 30 115 68 88 8500 27000 16 22000 210 986-Follow Up 00241 0 10 sub-Arkosis Waske 400 WASTE 0.2 24000 100 280 0.4 180 2200 0.1 2 0 10 46 47000 25000 15 0 22000 15 0 280 0.4 180 2200 0.1 10 46 47000 25000 15 0 25000 1	100926-Follow Up 100987						0.1													<u>.</u>		
996 00241 0 10 Sub-Arkosic Wacke 400 WASTE 0.2 24000 300 110 0.8 210 2600 0.1 30 15 68 85000 27000 16 22000 22000 2900 29000 15 22000 2900 29000 200							0.1										20 8					
996-Follow Up	100996						0.2								30		68					
997 0024 10 20 Sub-Arkosic Warke 400 WASTE 0.1 20000 100 280 0.4 180 2100 0.1 20 110 46 47000 26000 17 14000 150 150 150 150 150 150 150 150 150	100996-Follow Up		0 10	Sub-Arkosic Wacke		WASTE		29000		160	1.4	14	1900	0.2				92000	29000		22000	240
889 97072 0 10 Sub-Arkosic Wacke 300 WASTE 0.2 \$7000 200 710 2.4 60 1200 0.1 40 11 130 25000 49000 10 5200 180 899-follow Up 97072 0 10 Sub-Arkosic Wacke 300 WASTE 70000 330 1000 3.6 3 1700 0.1 59 130 98 32000 65000 6 6 6300 30 50 50 50 50 50 50 50 50 50 50 50 50 50	100997																46					150
899-Fillow Up 97072 0 10 Sub-Arkosic Wacke 300 WASTE 70000 330 1000 3.6 3 1700 0.1 59 130 98 32000 65000 6 6 6300 220 816 Follow Up 9808 5 15 Sub-Arkosic Wacke 400 WASTE 0.2 33000 500 40 1.3 280 9000 0.1 10 10 16 57 260000 34000 16 48000 320 816 Follow Up 9808 5 15 Sub-Arkosic Wacke 400 WASTE 0.2 33000 500 40 1.3 280 9000 0.1 10 10 16 57 260000 34000 16 48000 320 816 Follow Up 9808 5 15 Sub-Arkosic Wacke 400 WASTE 0.2 31000 800 250 1.0 220 9900 0.1 20 13 16 92000 2900 2900 18 25000 310 10 10 10 10 10 10 10 10 10 10 10 10 1	100999																,					
816 98.08 5 15 Sub-Arkosic Wacke 400 WASTE 0.2 33000 500 40 1.3 280 9000 0.1 10 16 57 250000 34000 16 48000 390 816-follow Up 98.08 5 15 Sub-Arkosic Wacke 400 WASTE 0.2 31000 800 250 1.0 220 9900 0.1 20 11 140 69 110000 28000 99 42000 18 2500 1.0 10 10 10 10 10 10 10 10 10 10 10 10 10	100899						0.2					60								10		
818-Follow Up 98208 5 15 Sub-Arkosic Wacke 400 WASTE 22000 530 66 1.1 47 10000 0.2 11 140 69 110000 28000 9 4200 320 320 320 320 320 320 320 320 320	100899-Follow Up											3								6		
910 96016 44 59 Sub-Arkosic Wacke 400 WASTE 0.2 31000 800 250 1.0 220 9900 0.1 20 13 16 92000 29000 18 25000 370 370 370 370 370 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100816 100816-Follow Up						0.2													1b		
910F-Follow Up 96016 44 59 Sub-Arkosic Wacke 400 WASTE 30000 830 230 1.1 27000 460 460 470 2300 1.1 27000 460 470 2300 1.1 27000 470 240 53 1.1 30 22 96000 43000 1.1 27000 460 470 2300 1.1 27000 5600 300 0.5 170 2300 0.1 240 53 94 5900 4300 1.0 7900 220 470 2300 1.1 270 2300 1.1 170 180 130 130 130 130 130 130 130 130 130 13	100816-Follow Up						0.2													18		
941 - 03264 1 11 Sub-Arkosic Wacke 400 WASTE 0.1 27000 5600 300 0.5 170 2300 0.1 240 53 94 59000 43000 10 7900 220 414-follow Up 03264 1 11 Sub-Arkosic Wacke 400 WASTE 28000 3600 300 0.6 11 3600 0.1 170 180 130 64000 32000 6 8300 250 42 20 42 20 3264 1 22 Sub-Arkosic Wacke 400 WASTE 0.1 35000 1100 890 1.1 210 1100 0.1 90 24 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 5900 250 42 43 6 72000 5600 7 590	100910-Follow Up						0.2							0.2		130						460
941-Follow Up 03264 1 11 Sub-Arkosic Wacke 400 WASTE 2000 3600 300 0.6 11 3600 0.1 170 180 130 64000 3200 6 8300 250 422 03264 11 22 Sub-Arkosic Wacke 400 WASTE 0.1 35000 1100 890 1.1 1210 1100 0.1 90 2.4 6 72000 56000 7 5900 250 1100 1100 0.1 10	100941						0.1								240		94					
942 03264 11 22 Sub-Arkosic Wacke 400 WASTE 0.1 35000 1100 890 1.1 2100 1100 0.1 90 24 6 72000 56000 7 5900 250 933 0020 58 68 Sub-Arkosic Wacke 400 WASTE 0.2 26000 2000 130 1.3 360 18000 0.1 150 31 260 98000 32000 34 35000 890 9800 9800 9800 9800 9800 9800 9	100941-Follow Up																130					
imum 0.1 20000 12 40 0.1 1 600 0.1 7 7 7 5 1900 1200 4 5200 140 imum 5 0.3 79000 5600 1300 3.6 360 28000 0.2 550 310 260 26000 9500 38 48000 890 890 1300 40 140 140 140 140 140 140 140 140 14	100942	03264	11 22	Sub-Arkosic Wacke	400	WASTE		35000	1100	890	1.1	210	1100	0.1	90	24	6	72000	56000	7	5900	250
imum 0.3 7900 560 130 3.6 360 2800 0.2 550 310 260 26000 9500 38 48000 890 rage dard Deviation 0.1 18164 1197 322 0.7 97 6970 0.0 129 85 63 4328 18538 9 1055 1956 1956	100993	00230	58 68	Sub-Arkosic Wacke	400	WASTE																890
rage 0.2 37657 806 390 1.2 127 7266 0.1 82 72 57 70771 36857 15 17589 361 dard Deviation 0.1 18164 1197 322 0.7 97 6970 0.0 129 85 63 42328 18538 9 10956 192	Minimum														· · · · · · · · · · · · · · · · · · ·							
dard Deviation 0.1 18164 1197 322 0.7 97 6970 0.0 129 85 63 42328 18538 9 10956 192	Maximum																					
	Average Standard Doviation																					
	NOTES:						0.1	10104	117/	344	0.7	7/	0370	0.0	123	0.3	US	42320	10330	7	10530	134

| Standard Deviation | 0.1 | 18164 | 1197 | 322 | 0.7 |
NOTES:
| bold Italic | Indicates values is less than the analytical detection limit.
| 1. Samples labelled as "Fortune Minerals Preliminary Samples" collected by Fortune in 2004. All other samples collected by Golder in 2004.
| 2. Block model code according to PRE mine block model.
| 3. Classification of ore according to PRE mine block model.

Appendix IV-2a Solid Phase Analysis - Drill Core and Outcrop Samples NICO Project, Fortune Minerals Ltd.

Mage 10 15 15 Mage 10 15 Mage 10 10 10 10 10 10 10 1											INIV	CO Project, Fortune Min	ierais Ltu.									
Mage 10 15 15 Mage 10 15 Mage 10 10 10 10 10 10 10 1	Sample Number ¹	Hole			Lithology	Block Model Code ²	Waste Rock / Ore ³															
See 1. 1	100804	00231	235	250 5	Siltstone	500	WASTE	1.4	11000	32.0	380	4.9	5.0	5.0	8	32	3500	0.50	2.7	65	20	15
Seed with a set of the seed with a seed wi	100819						WASTE				330		2.2		6	32		0.50	3.3			
The control of the co	100877							0.7			370				7					80	20	11
Seed of the control o	100897														7							25
Color	100914																					8
986 1969 196	100922	98151	110.5	114 5	Siltstone																	
Reference 154 16 16 16 16 16 16 16 1	100929														10							
See															7							
Second S																						
See																						
Seed 150 72 A 1900											380											
Seed Seed Seed Seed Seed Seed Seed Seed											E20					31						
Mart	100984																					
Free Free Free Free Free Free Free Free																						
Selection of the content of the cont			243			300	WASIE													+		
The series of th		98-159	98	173	Siltstone			2.5	3300	30.0	430	4.1	1.2	10.0	7	26	1600	0.60	3.8	68	22	50
Stitions finales 18-10 18-	Fortune Minerals	+																				
The Market Series of Series 10 10 10 10 10 10 10 1		98-170		224											_							
Control Cont	Fortune Minerals	00.405			iltstone			2.2	12000	26.0	480	3.8	1.9	10.0	6	39	3000	0.90	3.7	82	17	39
Company Missage Miss	Preliminary Samples	98-196									1										1	
Hamman Herman He	NICO-08-008																					
13 15 15 15 15 15 15 15	NICO-08-009	Outcrop		9	Siltstone																	1.4
The property of the property o	Minimum																					
Seed Defendence	Maximum																					
March Marc	Average														· · · · · · · · · · · · · · · · · · ·							
1	Standard Deviation							0.9	5972	7.4	58	2.1	1.9	2.4	2	8	673	0.17	1.1	11	5	18
1															_						_	
Second Column Col											170				3	10						
1988 10 10 10 10 10 10 10											150				3	9					16	
1989 1985 20 31 50 50 50 50 50 50 50 5															3						5	
Second Column Second Colum															4	7					6	
Design Control Contr											120				3	5						10
1895 0329 109 13 bit-Arison: Waste											500				3	70						12
1885																				09	20	
Seed																				5	6	
Separation Sep																					7	
18883 10 20 20 20 20 20 20 20	100883														5						10	
1988 9819 66 72 50h Antonic Wacke 20 ORE 11000 16.0 540 2.6 3.4 5.0 9 12 2500 0.40 2.3 59 20 15	100883-Follow Up										250				5	9						
9815 9815 13 119 Sub-Ancole Wacke 500 WASTE 1.2 13000 8.0 780 4.0 6.2 5.0 4 110 4200 0.40 2.5 130 20 29 190 190 190 190 190 190 190 190 190 19	100886										540				9	12				50	20	15
1993 0248 20 27 50 Antonic Wacke 400 WASTE 1500 6.0 750 2.2 1.8 5.0 6 1.3 2200 1.0 3.2 84 7 26	100898							1.2	13000		780			5.0	4		4200	0.40	2.5	130	20	
1995 1995	100903								1600						6	13	2200	1.00		84	7	
9815 9815 1 10 Sub-Artonic Waste 300 WASTE 3.6 16000 5.0 260 3.6 1.5 5.0 2 2 20 5.0 3.0 0.2 3.5 28 10 10 38 100 9265 (100 100 100 100 100 100 100 100 100 10	100906														4						10	
10926 10923 9 16 100-Artocic Wacke 300 WASTE 3.7 13000 7.0 230 2.6 2.0 5.0 2 20 500 0.30 5.2 20 10 38	100915									5.0					1							
90987 9708 63 72 Sub-Ariosic Wacke 400 WASTE 6.3 600 9.0 240 2.0 1.7 5.0 3 7 1100 0.50 1.8 2.3 6 72 5009967-follow 197086 63 72 Sub-Ariosic Wacke 400 WASTE 2.5 600 8.9 1.6 3.5 0.7 3 7 1100 0.50 1.8 2.3 6 7 6 6 1009967-follow 19708 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	100926	00233	9			300	WASTE				230				2	20			5.2	20		38
90987 9708 63 72 Sub-Ariosic Wacke 400 WASTE 6.3 600 9.0 240 2.0 1.7 5.0 3 7 1100 0.50 1.8 2.3 6 72 5009967-follow 197086 63 72 Sub-Ariosic Wacke 400 WASTE 2.5 600 8.9 1.6 3.5 0.7 3 7 1100 0.50 1.8 2.3 6 7 6 6 1009967-follow 19708 6 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	100926-Follow Up					300	WASTE	0.7	14000	7.3		2.7	2.0	0.7	2	20	1000	0.31	5.3	21	16	18
0.0996 0.024 0 10 0.004 0 10 0.004 0 10 0.004 0 10 0.004 0 10 0.004 0 10 0.005 0.004 0 10 0.005 0.	100987										240				3	7						72
1999F-follow Up	100987-Follow Up																					
1.000 1.00	100996										300					6						
00099 00241 105 115 515 515 544 545 516 500 6.0 240 1.5 1.5 5.3 5.0 3 6 1000 0.40 1.4 1.9 7 6 6 1000 6.0 6	100996-Follow Up														4	7						
1000 10000 10000 10000 10000 10000 10000 10000 10000	100997														3							<u> </u>
10099-Follow Up 97072 0 10 50-4-Krosic Wacke 300 WASTE 4.7 14000 12.0 12.0 12.0 12.0 13.0 14.0 1	100999														3							
10016 98208 5 15 Sub-Arkosic Wacke 400 WASTE 1.7 300 6.0 190 3.1 7.5 5.0 3 7 1400 0.90 1.3 2.4 9 1.4	100899										280				3							
MASTE 12 320 12.0 12															3	22						
10910 96016 44 59 Sub-Arkosic Wacke 400 WASTE 1.1 700 10.0 270 2.1 6.7 5.0 5 7 1200 0.80 1.7 2.2 7 8	100816			15 5	Sub-Arkosic Wacke						190				3	7						
109016-follow Up 96016 44 59 Sub-Arkosic Wacke 400 WASTE 4.2 650 9.0 2.1 9.7 0.7 4 6 1600 0.70 2.0 2.7 9 10											270				3	5						
00941 03264 1 11 Sub-Arkosic Wacke 400 WASTE 6.1 700 14.0 230 2.1 12.0 5.0 5 9 1600 0.40 1.4 30 7 18 00941-0100 Up 03264 1 11 Sub-Arkosic Wacke 400 WASTE 6.2 650 18.0 250 2.1 13.3 5.0 4 18 1500 0.50 1.6 27 9 5 5 00942 2 50 5 1 12 2 5 7 1 100 0.50 0.50 1.6 27 9 5 5 0 5 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	100910										270			5.0	5							
10941-Follow 03264 1 1 504-Arkosic Wacke 400 WASTE 6.2 650 18.0 2.6 10.0 1.2 5 7 1300 0.50 1.6 2.7 9 5 1.0											220										<u> </u>	
10942 03264 11 22 Sub-Arkosic Wacke 400 WASTE 4.2 1200 10.0 250 2.1 3.3 5.0 4 18 1500 0.30 1.2 31 5 26 10993 0023 5 68 Sub-Arkosic Wacke 400 WASTE 2.1 1100 10.0 390 1.1 20.0 5.0 5 6 200 0.70 1.9 34 9 16 16 16 16 16 16 16 16 16 16 16 16 16											230											
10093 0023 58 68 Sub-Arkosic Wacke 400 WASTE 2.1 1100 10.0 390 1.1 20.0 5.0 5 6 2000 0.70 1.9 34 9 1.6 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.6 1.2 1.8 1.2 1.2 1.6 1.2 1.2 1.6 1.2 1.2 1.6 1.2 1											250										9	
Inimum 0.6 190 5.0 120 0.9 1.5 0.7 1 4 300 0.20 1.2 9 3 4 aximum 6.3 16000 27.0 780 6.2 20.0 5.0 9 110 4200 1.00 5.8 130 29 100 errage 2.8 3706 10.1 310 2.5 4.8 3.8 4 15 1360 0.53 2.3 31 10 21 andard Deviation 1.8 5404 4.7 176 1.2 3.8 1.9 1 21 692 0.20 1.2 23 6 19																					5	
aximum 6.3 16000 27.0 780 6.2 20.0 5.0 9 110 4200 1.00 5.8 130 29 100 erage 2.8 3706 10.1 310 2.5 4.8 3.8 4 15 1366 0.53 2.3 31 10 21 andard Deviation 1.8 5404 4.7 176 1.2 3.8 1.9 1 21 1362 0.20 1.2 23 6 19		00230	58	68 5	oub-Arkosic Wacke	400	WASTE								-	-				34	9	
verage 2.8 3706 10.1 310 2.5 4.8 3.8 4 15 1386 0.53 2.3 31 10 2.1 andard Deviation 1.8 5404 4.7 176 1.2 3.8 1.9 1 21 692 0.20 1.2 23 6 19																				120	3	
andard Deviation 1.8 5404 4.7 176 1.2 3.8 1.9 1 21 692 0.20 1.2 23 6 19																						
															1						10	
	NOTES:							1.0	3404	4.7	1/0	1.2	3.0	1.7	1	21	032	0.20	1.2	43	U	13

Standard Deviation 1.8 5404 4.7 176 1.2

NOTES:

bold italic Indicates values is less than the analytical detection limit.

1. Samples labelled as "Fortune Minerals Preliminary Samples" collected by Fortune in 2004. All other samples collected by Golder in 2004.

2. Block model code according to P&E mine block model.

3. Classification of ore according to P&E mine block model.

Appendix IV-2c

Solid Phase Analysis - Tailings NICO Project, Fortune Minerals Limited

Sample ID	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Со	Cr	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	٧	W	Υ	Zn	Hg
Sample 15	mg/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kgr	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg									
Bulk Rougher	0.20	38000	170	30	140	2 90	460	62000	0 12	10	90	2	200000	26000	0	21000	1500	2 60	4500	15	6.1	0.4	0.7	11.00	12	2200	0.51	10.00	20 00	240.00	21.00	50.00	0.10
Tails	0.23	38000	170	30	140	2.00	400	02000	0.13	40	80	3	200000	20000	0	31000	1300	2.00	4300	13	0.4	3.4	0.7	11.00	12	2200	0.51	10.00	38.00	240.00	21.00	30.00	0.10
Bulk Cleaner	0.35	32000	2000	21	1/10	2 30	1700	54000	0.18	610	70	120	180000	29000	11	35000	1300	6 10	3800	20	10	21	3 0	8 50	11	2500	0.64	12.00	32 00	170.00	16.00	98 00	0.10
Tails	0.55	32000	2000	21	140	2.30	1700	3400	0.10	010	70	120	180000	23000	11	33000	1300	0.10	3000	23	10	21	3.5	0.50	11	2300	0.04	12.00	32.00	170.00	10.00	36.00	0.10
PP#14	0.27	40000	280	12	140.0	2.80	450	57000	1.80	87	58	24	200000	24000	3	24000	1600	6	5100	13	7	11	2	13.00	11	1800	0.55	9.90	45.00	280.00	22.00	21.00	0.10

NOTES:

bold italic Indicates values is less than the analytical detection limit.

Appendix IV-3a

Acid Base Accounting and Net Acid Generation Testing - Drill Core

NICO Project, Fortune Minerals Ltd.

							NICO Proje	ct, Fortune Minera	ils Ltd.								
Committee North and	Hole	De	pth	Lithology	a at t pt 2	W B / G 3	Paste	Sulphur	Sulphide	Sulphate	Carbon	Carbonate	(tonnor	Potentia	ils 100 tonnes)	NP/AP	NAG Test (Typical Preparation)
Sample Number ¹	нове	From		Lithology	Mining Phase ²	Waste Rock / Ore ³	Paste	Sulphur (%S)	Sulphide (%S)	Sulphate (%S)	(%C)	(%C)	NP	AP*	CaNP	NP/AP	NAG Test (Typical Preparation)
100855	03257	47		Breccia	300	WASTE	9.61	0.02	0.01	0.06	0.05	0.03	8.8	0.31	4.2	28.4	
100861-Follow Up	03258		26	Breccia	300	WASTE		0.02	1				T	T	<u> </u>		
100861	03258	17	26	Breccia	300	WASTE	9.89	0.04	0.01	0.10	0.04	0.02	12.2	0.31	3.3	39.4	
100874	03259		61	Breccia	400	WASTE	9.69	0.01	0.01	0.04	0.10	0.02	25.4	0.31	8.3	81.9	
100902-Follow Up	00249	4		Breccia		WASTE		0.05									
100902	00249	4		Breccia		WASTE	10.15	0.06	0.04	0.04	0.03	0.02	10.4	1.20	2.5	8.7	
100916	98151	13		Breccia	300	WASTE	10.02	0.11	0.09	0.05	0.05	0.05	7.2	2.80	4.2	2.6	
100917-Follow Up 100917	98151 98151		28 28	Breccia	300 300	WASTE WASTE	9.85	0.09	0.02	0.08	0.05	0.04	6.7	0.62	4.2	10.8	
100917	00233	0		Breccia Breccia	300	WASTE	9.16	0.03	0.02	0.03	0.03	0.02	8.7	0.82	2.5	28.1	
100934	00252		33	Breccia	400	WASTE	9.47	0.49	0.35	0.42	0.02	0.01	8.7	11.00	1.7	0.8	
100945	03264		53	Breccia	400	WASTE	10.18	0.01	0.01	0.03	0.01	0.01	8.2	0.31	0.8	26.5	
Minimum	•						9.16	0.01	0.01	0.03	0.01	0.01	6.70	0.31	0.83	0.8	
Maximum							10.18	0.49	0.35	0.42	0.10	0.05	25.40	11.00	8.33	81.9	
Average							9.78	0.08	0.06	0.09	0.04	0.02	10.70	1.91	3.52	25.2	
Standard Deviation							0.33	0.13	0.11	0.12	0.03	0.01	5.75	3.51	2.16	25.1	
400044	00440			District Deads Calabase Adams at the		1	0.03	0.07	0.05	0.00	0.02	0.02	4.2		4.7	7.3	I
100814 100817	98419 98208	76	6 86	Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	WASTE	9.92 10.23	0.07	0.05 0.01	0.06 0.07	0.02 0.01	0.02 0.01	12 18	2	1.7 0.8	7.3 56.5	
100817 100818-Follow up	98208	86		Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	WASTE	10.23	0.03	0.01	0.07	0.01	0.01	18	0	0.8	50.5	
100818 100818	98208	86		Black Rock Schist + Magnetite	400	WASTE	10.21	0.38	0.35	0.10	0.01	0.01	16	11	0.8	1.5	
100875-Follow up	03259	96		Black Rock Schist + Magnetite	400	WASTE	10.21	0.17	0.55	0.20	5.02	0.02	1	<u> </u>	0.0	1.3	
100875	03259	96		Black Rock Schist + Magnetite	400	WASTE	9.91	0.22	0.04	0.56	0.26	0.08	49	1	21.7	40.7	
100890	00220	32	50	Black Rock Schist + Magnetite			10.15	0.05	0.03	0.06	0.02	0.01	10	1	1.7	10.9	
100909	96016		42	Black Rock Schist + Magnetite	400	WASTE	9.98	0.27	0.21	0.19	0.03	0.01	21	6	2.5	3.2	
100923	98150		55	Black Rock Schist + Magnetite	400	WASTE	10.23	0.01	0.01	0.03	0.02	0.02	14	0	1.7	45.2	
100924	98150	55		Black Rock Schist + Magnetite	400	WASTE	9.73	0.12	0.09	0.10	0.03	0.01	12	3	2.5	4.4	
100930	00233		114	Black Rock Schist + Magnetite	400	WASTE	9.95	0.11	0.08	0.08	0.02	0.01	10	3	1.7	4.0	
100937 100949	96023	184	193 30	Black Rock Schist + Magnetite	400 400	WASTE WASTE	10.08 10.15	0.15 0.01	0.11	0.13 0.03	0.02	0.01 0.01	18 22	3	1.7 0.8	5.4 71.0	
100949	96023	30		Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	WASIE	10.12	0.17	0.01 0.12	0.16	0.01	0.03	17	0	2.5	4.4	
100961	98147	3	12	Black Rock Schist + Magnetite	400	WASTE	10.05	0.04	0.02	0.06	0.03	0.02	17	1	2.5	27.9	
100962-Follow up	98147	12		Black Rock Schist + Magnetite	400	WASTE		0.03						<u> </u>			
100962	98147	12		Black Rock Schist + Magnetite	400	WASTE	10.08	0.21	0.17	0.12	0.04	0.02	9	5	3.3	1.6	
100963-Follow up	98147	46		Black Rock Schist + Magnetite	15	ORE		0.15									
100963	98147	46		Black Rock Schist + Magnetite	15	ORE	10.28	0.01	0.01	0.03	0.02	0.01	7	0	1.7	22.3	
100976	96011		145	Black Rock Schist + Magnetite	400	WASTE	9.97	0.40	0.33	0.19	0.02	0.01	17	10	1.7	1.7	
100977	96011		160	Black Rock Schist + Magnetite	400	WASTE	10.18	0.07	0.04	0.09	0.02	0.01	14	1	1.7	11.5	
100978	96011		170	Black Rock Schist + Magnetite	400	WASTE	10.12	0.34	0.20	0.40	0.02	0.01	18	6	1.7	2.7	
100979 100983-Follow up	96011 97035	57	290 68	Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	WASTE	9.89	0.23	0.17	0.18	0.03	0.02	12	5	2.5	2.2	
100983-Follow up 100983	97035	57		Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	WASTE	9.87	0.13	0.09	0.08	0.02	0.03	13	3	1.7	4.7	
100983	97036		225	Black Rock Schist + Magnetite	400	WASTE	9.78	0.01	0.01	0.03	0.02	0.13	20	0	10.8	65.8	
100911	96016		158	Black Rock Schist + Magnetite	-100	WASIE	9.88	0.03	0.01	0.06	0.01	0.01	13	0	0.8	41.6	
100912	96016		190	Black Rock Schist + Magnetite			9.75	0.80	0.69	0.33	0.01	0.01	12	22	0.8	0.6	
100912-Follow up	96016	158	190	Black Rock Schist + Magnetite				0.84									
100995	00230		170	Black Rock Schist + Magnetite		ORE	9.61	0.53	0.39	0.43	0.02	0.02	9	12	1.7	0.7	
100995-Follow up	00230		170	Black Rock Schist + Magnetite		ORE		0.56									
100994-Follow up	00230	68		Black Rock Schist + Magnetite	400	WASTE	10.00	0.01					L .	<u> </u>			
100994	00230	68	73	Black Rock Schist + Magnetite	400	WASTE	10.08	0.01	0.01	0.03	0.01	0.01	1 1 20	0	0.8	4.2	
Minimum Maximum							9.61 10.28	0.01 0.84	0.01	0.03 0.56	0.01 0.26	0.01 0.13	1.30	0.31 21.60	0.83 21.67	0.6 71.0	
Maximum Average							10.28	0.84	0.69	0.56	0.26	0.13	48.80 15.22	4.06	21.67	17.7	
Standard Deviation							0.18	0.22	0.16	0.14	0.05	0.03	8.45	5.08	4.37	22.3	
													,				
100802	00231	73	83	Black Rock Schist ± Magnetite	400	WASTE	9.87	0.02	0.01	0.07	0.05	0.04	28	0.31	4.2	91.0	
100803-Follow up	00231	83	94	Black Rock Schist ± Magnetite	400	WASTE		0.08									
100803	00231	83		Black Rock Schist ± Magnetite	400	WASTE	10.24	0.17	0.11	0.16	0.01	0.01	13	3.60	0.8	3.7	
100805	00236	38		Black Rock Schist ± Magnetite	400	WASTE	10.18	0.01	0.01	0.03	0.07	0.07	16	0.31	5.8	50.3	
100806	00236	48		Black Rock Schist ± Magnetite	400	WASTE	10.24	0.04	0.02	0.06	0.04	0.01	19	0.62	3.3	30.6	
100812	03265		155	Black Rock Schist ± Magnetite	500	WASTE	10.25	0.01	0.01	0.03	0.02	0.01	11	0.31	1.7	36.8	
100815 100866-Follow up	98208 03258	126	5 138	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400 500	WASTE WASTE	9.90	0.01 0.11	0.01	0.03	0.11	0.05	31	0.31	9.2	99.0	
100866-Follow up 100866	03258		138	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	500	WASTE	10.01	0.11	0.06	0.21	0.07	0.05	16	1.90	5.8	8.3	
100884	98198	20		Black Rock Schist ± Magnetite	400	WASTE	10.01	0.02	0.01	0.21	0.07	0.03	20	0.31	1.7	64.8	
100885	98198	30		Black Rock Schist ± Magnetite	400	WASTE	9.89	0.25	0.15	0.29	0.02	0.01	15	4.80	2.5	3.1	
100887-Follow up	98198	95		Black Rock Schist ± Magnetite	400	WASTE		0.09					1				
100887	98198		110	Black Rock Schist ± Magnetite	400	WASTE	10.28	0.08	0.04	0.13	0.03	0.01	15	1.20	2.5	12.4	
100889	00220	25	32	Black Rock Schist ± Magnetite	400	WASTE	9.91	0.10	0.06	0.14	0.11	0.01	16	1.80	9.2	9.1	
100900	97072	20	37	Black Rock Schist ± Magnetite			10.26	0.02	0.01	0.03	0.11	0.05	16	0.31	9.2	51.0	
100901-Follow up	97072	55		Black Rock Schist ± Magnetite				0.04									
100901	97072	55	80	Black Rock Schist ± Magnetite			9.49	0.05	0.03	0.07	0.05	0.03	13	0.94	4.2	14.0	
100905	00249	62		Black Rock Schist ± Magnetite	400	WASTE	10.02	0.35	0.32	0.08	0.06	0.01	18	10.00	5.0	1.8	
100907 100918	00249	82	90	Black Rock Schist ± Magnetite	400	WASTE	10.07	0.31	0.27	0.13	0.02	0.01	10	8.30	1.7	1.2	
	98151	31	41	Black Rock Schist ± Magnetite	400	WASTE	8.17	0.30	0.27	0.09	0.09	0.10	16	8.40	7.5	1.9	İ

Appendix IV-3a Acid Base Accounting and Net Acid Generation Testing - Drill Core NICO Project, Fortune Minerals Ltd.

	1	1		1		WICO I TOJO	ect, Fortune Miner	113 Etu.		1			Potentia	de .	1	1
Sample Number ¹	Hole	Depth	Lithology	Mining Phase ²	Waste Rock / Ore ³	Paste	Sulphur	Sulphide	Sulphate	Carbon	Carbonate	(tonnes		000 tonnes)	NP/AP	NAG Test (Typical Preparation)
Sample Number	Hole	From To	Littlology	willing Phase	waste Rock / Ore	pH	(%S)	(%S)	(%S)	(%C)	(%C)	NP	AP*	CaNP	141 / 21	TAG Test (Typical Treparation)
100919	98151	41 57	Black Rock Schist ± Magnetite	1		9.88	0.10	0.08	0.05	0.01	0.02	16	2.50	0.8	6.3	
100920	98151	74 79	Black Rock Schist ± Magnetite	400	WASTE	9.33	0.20	0.15	0.16	0.11	0.11	14	4.70	9.2	2.9	
100927	00233	45 55	Black Rock Schist ± Magnetite	400	WASTE	9.87	0.01	0.01	0.03	0.79	0.99	78	0.31	65.8	250.0	
100928-Follow up	00233	58 67	Black Rock Schist ± Magnetite	400	WASTE		0.17									
100928	00233	58 67	Black Rock Schist ± Magnetite	400	WASTE	9.98	0.42	0.39	0.09	0.02	0.02	43	12.10	1.7	3.6	
100935	00252	97 107	Black Rock Schist ± Magnetite	400	WASTE	9.76	0.38	0.29	0.27	0.01	0.01	22	9.10	0.8	2.4	
100936	00252	107 127	Black Rock Schist ± Magnetite			9.63	0.36	0.31	0.15	0.04	0.04	6	9.70	3.3	0.6	
100938	00234	1.5 9	Black Rock Schist ± Magnetite	400	WASTE	9.96	0.01	0.01	0.03	0.03	0.01	16	0.31	2.5	51.0	
100939	00234	61 77	Black Rock Schist ± Magnetite			10.17	0.01	0.01	0.03	0.02	0.01	-14	0.31	1.7	-43.9	
100947 100948	97102 97102	57 77 67 78	Black Rock Schist ± Magnetite	400	WASTE	10.22	0.02	0.01	0.04	0.03	0.01	9	0.31	2.5	27.4	
100948	98197	45 50	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400 400	WASTE	10.11 9.84	0.05	0.01	0.12 0.11	0.82	0.94	99 11	0.31 1.60	68.3 4.2	317.7 7.0	
100958	98209	47 60	Black Rock Schist ± Magnetite	400	WASTE	10.17	0.54	0.41	0.40	0.06	0.03	30	12.80	5.0	2.3	
100959	98209	60 70	Black Rock Schist ± Magnetite	400	WASTE	10.07	0.78	0.64	0.44	0.02	0.01	25	20.00	1.7	1.2	
100965	03267	2 10	Black Rock Schist ± Magnetite	400	WASTE	9.47	0.06	0.02	0.14	0.08	0.04	33	0.62	6.7	53.5	
100966	03267	10 18	Black Rock Schist ± Magnetite	400	WASTE	9.65	0.01	0.01	0.04	0.01	0.01	29	0.31	0.8	94.5	
100967	03270	30 39	Black Rock Schist ± Magnetite	400	WASTE	10.07	0.03	0.02	0.04	0.01	0.01	13	0.62	0.8	20.5	
100968-Follow up	03270	39 47	Black Rock Schist ± Magnetite	400	WASTE		1.54									
100968	03270	39 47	Black Rock Schist ± Magnetite	400	WASTE	9.78	1.57	1.36	0.63	0.01	0.01	20	42.60	0.8	0.5	
100969	03270	91 100	Black Rock Schist ± Magnetite	400	WASTE	10.20	0.01	0.01	0.03	0.07	0.03	4	0.31	5.8	12.9	
100970-Follow up	97060	11 30	Black Rock Schist ± Magnetite				0.02									
100970	97060	11 30	Black Rock Schist ± Magnetite			10.06	0.01	0.01	0.03	0.01	0.01	13	0.31	0.8	41.6	
100989	97036	157 165	Black Rock Schist ± Magnetite	400	WASTE	10.22	0.01	0.01	0.03	0.07	0.07	23	0.31	5.8	74.8	
100991	97036	225 230	Black Rock Schist ± Magnetite	400	WASTE	10.00	0.28	0.11	0.49	0.53	0.61	17	3.50	44.2	4.9	
100998-Follow up	00241	91 104	Black Rock Schist ± Magnetite	400	WASTE		0.10	2.12								
100888	98198	110 130	Black Rock Schist ± Magnetite	4	A ALALAILA	9.96	0.19	0.10	0.26	0.05	0.03	20	3.1	4.2	6.3	
Fortune Minerals Preliminary Samples	03-275	37 74	Middle	1	Middle	9.70	0.91	0.80	0.11	0.11	0.01	12.6	25	9.2	0.5	
rortune willerais Freiiniliary Samples		1	Ore Zone Lower	2	Lower									3.2		
Fortune Minerals Preliminary Samples	03-275	120 157	Ore Zone	2	Lower	9.74	0.53	0.46	0.07	0.03	0.01	9.5	14	2.5	0.7	
Tortaine winierais Freiminiary Samples		21 81	Upper	1										2.3		
Fortune Minerals Preliminary Samples	03-272	83 96	Ore Zone			9.93	0.04	0.01	0.03	0.08	0.10	16.0	0.31	6.7	51.2	
100998	00241	91 104	Black Rock Schist ± Magnetite	400	WASTE	10.03	0.03	0.01	0.08	0.58	0.73	54	0.31	48.3	173.9	
Minimum						8.17	0.01	0.01	0.03	0.01	0.01	-13.60	0.31	0.83	-43.9	
Maximum						10.28	1.57	1.36	0.63	0.82	0.99	98.50	42.60	68.34	317.7	
Average						9.92	0.21	0.16	0.13	0.11	0.11	21.18	4.98	9.01	39.1	
Standard Deviation						0.36	0.34	0.27	0.14	0.19	0.24	18.63	8.31	16.21	67.6	
																1
100868	03258	77 83	Fault Zone	400	WASTE	9.02	0.92	0.61	0.90	2.21	2.65	190	19	184.2	9.9	
100810	03265	69 79	Feldspar Porphyry	200	WASTE	9.89	0.11	0.03	0.23	0.09	0.04	14.1	0.94	7.5	15.0	T
100810 100810-Follow up	03265	69 79	Feldspar Porphyry	200	WASTE	5.05	0.07	0.03	0.23	0.03	0.04	14.1	0.54	7.3	13.0	
100811	03265	79 89	Feldspar Porphyry	200	WASTE	9.79	0.02	0.01	0.04	0.17	0.20	18.8	0.31	14.2	60.6	
100856-Follow up	03257	56 65	Feldspar Porphyry	300	WASTE	3.73	0.01	0.02	0.01	0.17	0.20	10.0	0.51	1-1.2	00.0	
100856	03257	56 65	Feldspar Porphyry	300	WASTE	10.04	0.02	0.01	0.04	0.08	0.09	9.2	0.31	6.7	29.7	
100857	03257	65 79	Feldspar Porphyry	100	WASTE	10.04	0.01	0.01	0.03	0.03	0.01	6.5	0.31	2.5	21.0	
100858	03257	105 109	Feldspar Porphyry	200	WASTE	9.98	0.17	0.09	0.24	0.13	0.05	13.2	2.80	10.8	4.7	
100859	03257	110 114	Feldspar Porphyry	500	WASTE	9.90	0.05	0.02	0.09	0.13	0.07	12.2	0.62	10.8	19.7	
100867	03258	138 141	Feldspar Porphyry	200	WASTE	10.13	0.02	0.01	0.05	0.06	0.05	8.8	0.31	5.0	28.4	
100869-Follow up	03259	3 11	Feldspar Porphyry	200	WASTE		< 0.005									
100869	03259	3 11	Feldspar Porphyry	200	WASTE	9.84	0.01	0.01	0.03	0.06	0.06	13.5	0.31	5.0	43.5	
100870	03259	11 22	Feldspar Porphyry	200	WASTE	9.89	0.01	0.01	0.03	0.05	0.01	13.6	0.31	4.2	43.9	
100876	03259	111 113	Feldspar Porphyry	200	WASTE	10.07	0.01	0.01	0.03	0.04	0.01	13.6	0.31	3.3	43.9	
100891 100892-Follow up	00220 98152	110 113 0 15	Feldspar Porphyry	200 200	WASTE WASTE	10.00	0.01 0.02	0.01	0.03	0.10	0.03	15.8	0.31	8.3	51.0	
100892-Follow up 100892	98152	0 15	Feldspar Porphyry Feldspar Porphyry	200	WASTE	9.89	0.02	0.01	0.03	0.02	0.01	5.7	0.31	1.7	18.4	
100892	98152	15 30	Feldspar Porphyry	200	WASTE	10.13	0.02	0.01	0.08	0.02	0.01	9.2	0.31	5.0	29.7	
100894-Follow up	98152	30 45	Feldspar Porphyry	200	WASTE	10.13	0.04	5.01	5.00	5.00	0.01	J.2	5.51	5.0	23.7	1
100894 100894	98152	30 45	Feldspar Porphyry	200	WASTE	9.52	0.07	0.03	0.12	0.24	0.18	10.9	0.94	20.0	11.6	
100895	98152	45 60	Feldspar Porphyry	200	WASTE	9.84	0.02	0.01	0.03	0.07	0.04	9.0	0.31	5.8	29.0	
100896	98152	96 106	Feldspar Porphyry	200	WASTE	10.05	0.03	0.01	0.07	0.14	0.04	15.2	0.31	11.7	49.0	
100904-Follow up	00249	31 36	Feldspar Porphyry	200	WASTE		< 0.005									
100904	00249	31 36	Feldspar Porphyry	200	WASTE	10.19	0.01	0.01	0.03	0.01	0.01	5.2	0.31	0.8	16.8	
100908	00249	131 136	Feldspar Porphyry	200	WASTE	9.97	0.03	0.01	0.07	0.16	0.04	17.5	0.31	13.3	56.5	
100913	96016	205 209	Feldspar Porphyry	200	WASTE	9.98	0.07	0.04	0.10	0.12	0.14	16.1	1.20	10.0	13.4	
100921-Follow up	98151	92 105	Feldspar Porphyry	200	WASTE		0.01					<u> </u>				
100921	98151	92 105	Feldspar Porphyry	200	WASTE	9.59	0.02	0.01	0.04	0.29	0.35	33.8	0.31	24.2	109.0	
100931	00233	115 121	Feldspar Porphyry	200	WASTE	9.73	0.03	0.01	0.04	0.16	0.18	23.3	0.31	13.3	75.2	
100954	98197	50 60	Feldspar Porphyry	200	WASTE	10.04	0.03	0.01	0.06	0.08	0.06	15.0	0.31	6.7	48.4	
100955-Follow up	98197	60 70	Feldspar Porphyry	200	WASTE	0.00	0.11	0.00	0.30	0.05	0.00	11.7	2.50	4.3	47	
100955 100956	98197 98197	60 70 70 80	Feldspar Porphyry	200	WASTE WASTE	9.68	0.14	0.08 0.01	0.20 0.03	0.05 0.11	0.02	11.7 10.9	2.50 0.31	4.2 9.2	4.7 35.2	
100956 100988-Follow up	98197		Feldspar Porphyry	400	WASTE	9.65	< 0.005	0.01	0.03	0.11	0.08	10.9	0.31	9.2	35.2	
100988-Follow up 100988		151 157	Feldspar Porphyry	400		10.13		0.01	0.03	0.09	0.11	38.5	0.31	7.5	124.2	
100200	97036	151 157	Feldspar Porphyry	400	WASTE	10.13	0.01	0.01	U.U3	0.09	0.11	38.5	0.31	7.5	124.2	1

Appendix IV-3a Acid Base Accounting and Net Acid Generation Testing - Drill Core

							NICO Proje	ect, Fortune Minera	s Ltd.								
Sample Number ¹	Hole	Depth From To		Lithology	Mining Phase ²	Waste Rock / Ore ³	Paste pH	Sulphur (%S)	Sulphide (%S)	Sulphate (%S)	Carbon (%C)	Carbonate (%C)	(tonnes	Potentia CaCO ₃ /10 AP*	000 tonnes)	NP/AP	NAG Test (Typical Preparation)
Fortune Minerals Preliminary Samples	03-275	86 10 104 11	3	Quartz Feldspar Porphyry			10.12	0.11	0.07	0.04	0.01	0.01	6.5	2.2	0.8	3.0	
Fortune Minerals Preliminary Samples	03-376	3 10		Feldspar Porphyry			10.00	0.30	0.23	0.07	0.07	0.08	13.9	7.2	5.8	1.9	
NICO-08-013	03282	117 12	6	Feldspar Porphyry	100	WASTE	9.17	0.077	0.04	0.04	0.071	0.084	8.5	1.2	5.9	7.2	7.31
100821				Portal			9.91	0.01	0.01	0.01	0.02	0.01	7.70	0.31	1.7	25	
100822				Portal			9.49	0.059999999	0.01	0.05	0.07	0.01	8.10	0.31	5.8	26	
100823				Portal			9.29	0.01	0.01	0.01	0.029999999	0.01	6.20	0.31	2.5	20	
100824				Portal			9.89	0.01	0.01	0.01	0.01	0.01	7.70	0.31	0.8	25	
NICO-08-007				Feldspar porphyry			8.00	0.005	0.01	0.01	0.05	0.023	5.4	0.31	4.2	17	
NICO-08-010				Feldspar porphyry			8.82	0.005	0.01	0.01	0.053	0.027	11	0.31	4.4	35	
Minimum							8.00	0.01	0.01 0.23	0.01	0.01	0.01	5.20	0.31	0.83	1.9	
Maximum							10.19 9.78	0.30 0.05	0.23	0.24 0.06	0.29	0.35	38.50 12.83	7.19 0.80	24.17 7.17	124.2 33.6	
Average Standard Deviation							0.43	0.06	0.04	0.06	0.06	0.07	7.29	1.30	5.32	27.6	
100852	03257	13 23		Rhyolite	300	WASTE	9.57	0.08	0.04	0.12	0.09	0.05	7.7	1.2	7.5	6.4	
100852-Follow up	03257	13 23		Rhyolite	300	WASTE	0.60	0.038	0.00	0.05	0.06	0.05		4.0	5.0	4.3	
100853 100854	03257 03257	23 33 33 43		Rhyolite	20	ORE ORE	9.69 10.04	0.07	0.06	0.05	0.06 0.04	0.06	2.2	1.8	5.0	1.2	
100854 100860-Follow up	03257	33 43 3 16		Rhyolite	20 20	ORE	10.04	0.06	0.04	0.05	0.04	0.03	2.2	1.2	3.3	1.8	
100860-F0110W UP	03258	3 16		Rhyolite Rhyolite	300	WASTE	10.11	0.008	0.01	0.03	0.03	0.01	4.8	0.31	2.5	15.5	
100862	03258	27 35		Rhyolite	20	ORE	9.95	0.07	0.03	0.12	0.08	0.09	7.7	0.51	6.7	8.2	
100863	03258	35 50		Rhyolite	300	WASTE	10.25	0.03	0.01	0.09	0.10	0.07	11.2	0.31	8.3	36.1	
100864	03258	50 65		Rhyolite	300	WASTE	10.25	0.03	0.01	0.07	0.10	0.07	11.8	0.31	9.2	38.1	
100865-Follow up	03258	65 77		Rhyolite	300	WASTE	10.00	< 0.005	0.01	5.07	0.11	5.07	11.0	0.51	3.2	55.1	
100865	03258	65 77		Rhyolite	300	WASTE	10.24	0.01	0.01	0.03	0.09	0.08	12	0.31	7.5	38.7	
100871-Follow up	03259	22 33		Rhyolite	300	WASTE		0.013									
100871	03259	22 33		Rhyolite	300	WASTE	10.08	0.03	0.01	0.07	0.07	0.01	10.4	0.31	5.8	33.5	
100872	03259	33 43	3	Rhyolite	300	WASTE	10.27	0.05	0.01	0.12	0.09	0.01	12.4	0.31	7.5	40.0	
100873	03259	44 54		Rhyolite	300	WASTE	9.98	0.02	0.01	0.06	0.13	0.08	12.5	0.31	10.8	40.3	
100878-Follow up	00246S	1 10		Rhyolite	300	WASTE		< 0.005									
100878	00246S	1 10		Rhyolite	300	WASTE	10.29	0.01	0.01	0.03	0.01	0.01	4	0.31	0.8	12.9	
100879	00246S	10 20		Rhyolite	300	WASTE	9.89	0.02	0.01	0.06	0.08	0.04	9	0.31	6.7	29.0	
100880	00246S	20 30		Rhyolite	300	WASTE	10.22	0.08	0.02	0.16	0.03	0.02	6.2	0.62	2.5	10.0	
100932	00252	3 13		Rhyolite	300	WASTE	9.45	0.59	0.49	0.30	0.01	0.01	-2.7	15	0.8	-0.2	
100933-Follow up	00252	13 26		Rhyolite	300	WASTE		1.07					—				
100933	00252	13 26		Rhyolite	300	WASTE	8.84	1.6 0.17	1.4 0.13	0.75 0.13	0.08	0.06	9 13.2	42	6.7	0.2	
100943 100944	03264 03264	27 37 37 45		Rhyolite Rhyolite	300 300	WASTE WASTE	9.52 9.28	0.17	0.13	0.13	0.08	0.07	7	4.0 12	6.7 5.8	3.3 0.6	
100944	98197	15 30		Rhyolite	300	WASTE	9.28	0.44	0.39	0.14	0.07	0.06	17.2	1.9	14.2	9.1	
100951 100952-Follow up	98197	0 15		Rhyolite	300	WASTE	5.90	0.12	0.00	0.20	0.17	0.00	17.2	1.9	14.2	5.1	
100952 100952	98197	0 15		Rhyolite	300	WASTE	9.95	0.170	0.12	0.20	0.13	0.11	13	3.7	10.8	3.5	
100971-Follow up	96011	3 15		Rhyolite	300	WASTE	55	0.182					1				
100971	96011	3 15		Rhyolite	300	WASTE	9.90	0.22	0.13	0.27	0.14	0.13	17.2	4.1	11.7	4.2	
100972	96011	15 30		Rhyolite	300	WASTE	9.45	0.37	0.29	0.23	0.05	0.03	3.4	9.1	4.2	0.4	
100973	96011	30 45		Rhyolite	300	WASTE	9.66	0.05	0.02	0.07	0.01	0.01	3.7	0.62	0.8	6.0	
100974	96011	45 60)	Rhyolite	300	WASTE	9.62	0.08	0.06	0.04	0.01	0.01	4.9	1.9	0.8	2.6	
100975	96011	60 85		Rhyolite			9.97	0.20	0.14	0.19	0.03	0.02	6.5	4.4	2.5	1.5	
100980-Follow up	97035	0 10		Rhyolite	300	WASTE		0.050									
100980	97035	0 10		Rhyolite	300	WASTE	9.04	0.07	0.05	0.05	0.01	0.01	1.2	1.6	0.8	0.8	
100981-Follow up	97035	10 20		Rhyolite	35	ORE		0.567					1				
100981	97035	10 20		Rhyolite	35	ORE	9.81	0.38	0.33	0.15	0.02	0.01	6.7	10	1.7	0.7	
100982	97035	20 29		Rhyolite	30	ORE	9.92	0.43	0.36	0.21	0.06	0.07	10.1	11	5.0	0.9	
100985-Follow up	97036	0 10		Rhyolite	300	WASTE	0.74	0.091	0.00		0.04		2.2	2.0	0.0	0.0	
100985	97036	0 10		Rhyolite	300	WASTE	9.74	0.10	0.09	0.03	0.01	0.01	2.2	2.8	0.8	0.8	
100986	97036 00230	10 26		Rhyolite	1		9.83 9.73	0.30	0.29	0.04 0.11	0.04	0.04	6.6 -8.4	8.9 2.2	3.3	-3.8	
Fortune Minerals Preliminary Samples	00230	0.6 18		Rhyolite Rhyolite	1	+	10.09	0.10	0.07	0.11	0.06	0.04	14.3	1.25	5.0 0.8	-3.8 11.4	
NICO-08-011	03-272	4.3 13		Rhyolite	300	WASTE	9.09	0.10	0.04	0.06	0.01	0.01	11.2	0.31	4.8	10.9	7.54
NICO-08-011 NICO-08-012	03282	31.7 41		Rhyolite	300	WASTE	9.09	0.003	0.04	0.04	0.038	0.063	12.8	1.2	3.4	11.6	7.08
NICO-08-012 NICO-08-001	55252	J2.7 4.	- 1	Rhyolite	, 500	*******	8.40	0.005	0.01	0.04	0.025	0.005	6.1	0.31	2.1	20	7.00
NICO-08-002	1			Rhyolite		-	8.40	0.005	0.01	0.01	0.026	0.005	14	0.31	2.2	45	
NICO-08-003]			Rhyolite			8.40	0.005	0.01	0.01	2.62	11.3	11.6	0.31	218.3	37	
NICO-08-004]			Rhyolite			8.30	0.005	0.01	0.01	0.035	0.007	9.6	0.31	2.9	31	
NICO-08-005				Rhyolite	-		8.30	0.014	0.01	0.01	0.116	0.062	10.3	0.31	9.7	33	
NICO-08-006				Rhyolite			8.20	0.007	0.01	0.01	0.038	0.067	11.5	0.31	3.2	37	
Minimum							8.20	0.01	0.01	0.01	0.01	0.01	-8.40	0.31	0.83	-3.8	
Maximum							10.29	1.60	1.35	0.75	2.62	11.30	17.20	42.20	218.35	44.8	
Average							9.56	0.17	0.12	0.11	0.12	0.32	8.16	3.75	10.33	14.5	
Standard Deviation							0.63	0.29	0.23	0.13	0.41	1.78	5.25	7.34	33.91	15.5	I
100004	00224	225	0	Siltstone	F00	MACTE	10.34	0.45	0.13	0.00	0.04	0.04	_ ^	2 =	2.2	2.2	1
100804 100819	00231 98208	235 25 148 15		Siltstone Siltstone	500 500	WASTE WASTE	10.21 10.29	0.15 0.01	0.12 0.01	0.09 0.03	0.04	0.04 0.01	8 10	3.7 0.3	3.3 2.5	32.3	
100819	98208 03259	148 15 157 16		Siltstone					0.01	0.03		0.01	10				
10001/	U3259	15/ 16	J	SIIISTOIJE	500	WASTE	10.29	0.01	0.01	0.03	0.02	U.U2	12.8	0.31	1.7	41.3	1

Appendix IV-3a Acid Base Accounting and Net Acid Generation Testing - Drill Core NICO Project, Fortune Minerals Ltd.

		D	epth		,									Potentia			
Sample Number ¹	Hole		m To	Lithology	Mining Phase ²	Waste Rock / Ore ³	Paste pH	Sulphur (%S)	Sulphide (%S)	Sulphate (%S)	Carbon (%C)	Carbonate (%C)	(tonnes	CaCO ₃ /10 AP*	000 tonnes) CaNP	NP/AP	NAG Test (Typical Preparation)
100897	98152	108		Siltstone	500	WASTE	9.96	0.05	0.03	0.06	0.03	0.03	11.4	0.94	2.5	12.1	
100914	96016	209		Siltstone	500	WASTE	10.24	0.01	0.01	0.03	0.01	0.01	9.5	0.31	0.8	30.6	
100922	98151		1 114	Siltstone	500	WASTE	10.00	0.05	0.02	0.10	0.02	0.02	10	0.62	1.7	16.1	
100929	00233	106	6 110	Siltstone	400	WASTE	10.12	0.07	0.04	0.09	0.03	0.03	11.2	1.20	2.5	9.3	
100940	00234	132	2 138	Siltstone	500	WASTE	10.14	0.01	0.01	0.03	0.01	0.01	8.5	0.31	0.8	27.4	
100946	03264	98		Siltstone	500	WASTE	9.75	0.09	0.07	0.08	0.28	0.33	26.7	2.2	23.3	12.1	
100957	98197		0 140	Siltstone	400	WASTE	10.14	0.01	0.01	0.03	0.05	0.01	11.7	0.31	4.2	37.7	
100960 - Follow up	98209	126		Siltstone	500	WASTE		< 0.005									
100960	98209	126		Siltstone	500	WASTE	10.24	0.01	0.01	0.03	0.02	0.01	11.6	0.31	1.7	37.4	
100964	98147	72		Siltstone	500	WASTE	10.15	0.01	0.01	0.03	0.01	0.01	6.2	0.31	0.8	20.0	
100984	97035	267		Siltstone	500	WASTE	10.29	0.01	0.01	0.03	0.01	0.01	10	0.31	0.8	32.3	
101000	00241	249 98		Siltstone	500	WASTE	10.20 9.87	0.01 0.06	0.01	0.03 0.05	0.05 0.04	0.05 0.02	13.7	0.31	4.2	44.2 47.4	
Fortune Minerals Preliminary Samples	98-159	118		Siltstone			9.67	0.06	0.01	0.05	0.04	0.02	14.8	0.31	3.3	47.4	
Fortune Minerals Preliminary Samples	98-170	194															
Tortaile Willierais Freiminary Samples		160		Siltstone			10.10	0.06	0.01	0.05	0.01	0.01	12.3	0.31	0.83	47.4	
Fortune Minerals Preliminary Samples	98-196	250															
NICO-08-008				Siltstone			8.90	0.005	0.01	0.01	0.036	0.022	9.5	0.31	3.0	30	
NICO-08-009		1		Siltstone			8.63	0.008	0.01	0.01	0.058	0.005	9.7	0.31	4.8	31	
Minimum							8.63	0.01	0.01	0.01	0.01	0.01	6.20	0.31	0.00	2.2	
Maximum							10.29	0.15	0.12	0.10	0.28	0.33	26.70	3.70	23.33	47.4	
Average							9.97	0.04	0.02	0.05	0.04	0.04	11.53	0.68	3.31	28.4	
Standard Deviation							0.47	0.04	0.03	0.03	0.06	0.07	4.32	0.87	5.04	13.6	
							•				•						
100801	00231	1		Sub-Arkosic Wacke	400	WASTE	9.31	0.32	0.27	0.14	0.01	0.01	8.5	8.4	0.8	1.0	
100801-Follow up	00231	1		Sub-Arkosic Wacke	400	WASTE		0.370									
100807	03265	1		Sub-Arkosic Wacke	400 400	WASTE	9.81	0.02	0.01	0.03	0.03	0.02	5.7	0.31	2.5	18.4	
100808	03265	10		Sub-Arkosic Wacke	400	WASTE	10.10	0.02	0.01	0.04	0.02	0.01	11	0.31	1.7	35.5	
100809-Follow up 100809	03265 03265	20		Sub-Arkosic Wacke Sub-Arkosic Wacke	400	WASTE WASTE	10.16	0.091	0.07	0.03	0.01	0.01	10.9	2.2	0.8	5.0	
100809	03265	157		Sub-Arkosic Wacke	500	WASTE	10.16	0.10	0.06	0.03	0.01	0.01	11.8	2.0	0.8	5.9	
100815 100816-Follow up	98208	5		Sub-Arkosic Wacke	400	WASTE	10.24	0.169	0.00	0.11	0.01	0.01	11.0	2.0	0.8	3.5	+
100816	98208	5		Sub-Arkosic Wacke	400	WASTE	10.00	0.14	0.09	0.14	0.04	0.01	28	2.8	3.3	10.0	
100851	03257	10.		Sub-Arkosic Wacke	300	WASTE	9,43	0.12	0.08	0.14	0.04	0.02	9.7	2.4	3.3	4.0	
100881	00246S	31		Sub-Arkosic Wacke	400	WASTE	9.99	0.03	0.02	0.04	0.10	0.07	16.8	0.62	8.3	27.1	
100882	98198	4		Sub-Arkosic Wacke	400	WASTE	9.56	0.06	0.01	0.17	0.15	0.04	25.8	0.31	12.5	83.2	
100883-Follow up	98198	10	20	Sub-Arkosic Wacke	400	WASTE		0.005									
100883	98198	10		Sub-Arkosic Wacke	400	WASTE	9.99	0.01	0.01	0.04	0.06	0.05	16.8	0.31	5.0	54.2	
100886	98198	66		Sub-Arkosic Wacke	20	ORE	10.15	0.04	0.03	0.03	0.04	0.02	9.7	0.94	3.3	10.3	
100898	98152	113		Sub-Arkosic Wacke	500	WASTE	10.11	0.08	0.05	0.09	0.07	0.02	11.7	1.6	5.8	7.3	
100899-Follow up	97072	0		Sub-Arkosic Wacke	300	WASTE		0.029									
100899	97072	0		Sub-Arkosic Wacke	300	WASTE	9.97	0.03	0.02	0.05	0.01	0.01	6.5	0.62	0.8	10.5	
100903	00249 00249	20 71		Sub-Arkosic Wacke	400	WASTE	10.18	0.01	0.01	0.03	0.03	0.01 0.01	13	0.31	2.5	41.9	
100906		44		Sub-Arkosic Wacke	400 400	WASTE	10.17	0.01 0.114	0.01	0.03	0.01	0.01	12.6	0.31	8.0	40.6	
100910-Follow up 100910	96016 96016	44		Sub-Arkosic Wacke Sub-Arkosic Wacke	400	WASTE WASTE	10.16	0.114	0.08	0.07	0.02	0.02	17.4	2.5	1.7	7.0	+
100910	98151	1		Sub-Arkosic Wacke	300	WASTE	9.90	0.10	0.01	0.06	0.02	0.02	8.7	0.31	3.3	28.1	
100926-Follow up	00233	9		Sub-Arkosic Wacke	300	WASTE	3.30	0.016	0.02	0.00	0.0-1	0.05	- ···	0.51	3.5	20.1	
100926	00233	9		Sub-Arkosic Wacke	300	WASTE	9.49	0.03	0.01	0.06	0.06	0.04	10.6	0.31	5.0	34.2	
100941-Follow up	03264	1		Sub-Arkosic Wacke	400	WASTE		0.499					1	l		J	
100941	03264	1		Sub-Arkosic Wacke	400	WASTE	9.29	0.33	0.30	0.09	0.01	0.01	5.9	9.4	0.8	0.6	
100942	03264	11	22	Sub-Arkosic Wacke	400	WASTE	9.31	0.04	0.03	0.05	0.01	0.01	6.7	0.94	0.8	7.1	
100987-Follow up	97036	63		Sub-Arkosic Wacke	400	WASTE		0.012									
100987	97036	63		Sub-Arkosic Wacke	400	WASTE	10.08	0.03	0.02	0.03	0.01	0.01	11.9	0.51	0.8	23.3	
100993	00230	58		Sub-Arkosic Wacke	400	WASTE	9.95	0.11	0.08	0.09	0.01	0.01	15.7	2.5	0.8	6.3	
100996-Follow up	00241	0		Sub-Arkosic Wacke	400	WASTE		0.025									
100996	00241	0		Sub-Arkosic Wacke	400	WASTE	9.58	0.02	0.01	0.04	0.03	0.01	14.8	0.31	2.5	47.7	
100997	00241	10		Sub-Arkosic Wacke	400	WASTE	9.34	0.02	0.01	0.03	0.01	0.02	8.3	0.31	0.8	26.8	
100999	00241	105	5 115	Sub-Arkosic Wacke	400	WASTE	9.95	0.05	0.04	0.04	0.02	0.02	11.8	1.2	1.7	9.8	
Minimum							9.29	0.01	0.01	0.03	0.01	0.01	5.70	0.31	0.83	0.6	ļ
Maximum							10.24 9.85	0.50	0.30	0.17	0.15	0.07 0.02	28.00 12.41	9.40 1.67	12.50 2.83	83.2 21.8	
Average Standard Deviation							9.85	0.09	0.05	0.07	0.03	0.02	5.51	2.34	2.83	20.3	
Standard Deviation							0.33	0.12	0.07	0.04	0.03	0.02	3.31	2.34	2.60	20.3	

bold italic Samples application Bold Italic formatting indicates a value that is less than the analytical detection limit.

1. Samples labelled as "follow up" indicate samples that were submitted for repeat analysis in 2009. Samples labelled as "Fortune Minerals Preliminary Samples" collected by Fortune in 2004. All other samples collected by Golder in 2004.

2. Block model code according to P&E mine block model.

3. Classification of ore according to P&E mine block model.

May 2011

Appendix IV-3b

Acid Base Accounting and Net Acid Generation Testing - Bulk Stockpile Samples NICO Project, Fortune Minerals Ltd.

Sample ID	Pile ID	Depth	Waste / Ore ¹	Dominant Lithology ²	Paste pH	Sulphur	Sulphide	Sulphate	Carbon	Carbonate	(toni	Potentials nes CaCO ₃ /1000 to	nnes)	NP/AP	NAG Test (Typical Preparation	NAG Test (No Preparation)
				Litilology	(s.u.)	(%S)	(%S)	(%S)	(%C)	(%C)	NP	AP	CaNP		NAG pH	NAG pH
Aug 18 NS-2	Aug 18 NS	1 - 2m	ore	BRS±mt	8.20	0.495	0.36	0.14	0.077	0.100	8.3	11.2	6.4	0.7	5.0	
Aug 20 NS-3	Aug 20 NS	1 - 2m	ore	BRS±mt	8.30	0.450	0.41	0.04	0.073	0.058	10.0	12.9	6.1	0.8	4.3	3.4
Aug 21 NS-3	Aug 21 NS	2 - 3m	ore	BRS±mt	8.70	0.475	0.47	0.01	0.044	0.053	9.4	14.8	3.7	0.6	3.6	
Aug 23 DS-3	Aug 23 DS	1 - 3m	ore	BRS±mt	8.20	0.436	0.33	0.11	0.115	0.109	9.4	10.3	9.6	0.9	4.9	
Aug 24 DS-2	Aug 24 DS	1 - 3m	ore	BRS±mt	8.30	0.559	0.47	0.09	0.045	0.021	2.8	14.8	3.8	0.2	3.7	
Aug 27 DS-2	Aug 27 DS	0 - 1m	ore	BRS±mt	8.40	1.440	1.31	0.13	0.043	0.144	6.5	40.9	3.6	0.2	2.4	
Aug 28 DS-1	Aug 28 DS	0 - 1m	ore	BRS±mt	8.10	1.740	1.73	0.01	0.044	0.127	4.5	54.1	3.7	0.1	2.4	
Aug 28 DS-2	Aug 28 DS	1 - 2m	ore	BRS±mt	8.00	1.780	1.67	0.11	0.037	0.097	10.1	52.1	3.1	0.2	2.3	
Aug 28 DS-3	Aug 28 DS	2 - 3m	ore	BRS±mt	8.20	2.470	2.46	0.01	0.044	0.128	9.9	76.9	3.7	0.1	2.2	2.5
Aug 28 DS-4	Aug 28 DS	4m	ore	BRS±mt	8.20	2.240	2.09	0.16	0.054	0.127	7.2	65.2	4.5	0.1	2.2	
FC-5	Aug 28 DS	-	ore	BRS±mt	9.38	1.590	1.40	0.19	0.052	0.040	11.6	43.9	4.3	0.3	2.4	
Oct 10 NS-2	Oct 10 NS	1 - 2m	ore	BRS±mt	8.50	0.372	0.28	0.10	0.069	0.243	15.2	8.7	5.8	1.8	4.7	
Oct 11 DS-3	Oct 11 DS	1 - 2m	ore	BRS±mt	8.70	0.270	0.18	0.09	0.116	0.324	16.4	5.5	9.7	3.0	8.1	
Oct 12 DS-2	Oct 12 DS	0 - 1m	ore	BRS±mt	8.40	0.538	0.32	0.22	0.134	0.470	20.1	9.9	11.2	2.0	7.7	
Oct 9 DS-1	Oct 9 DS	0 - 1m	ore	BRS±mt	8.40	0.298	0.28	0.02	0.078	0.199	12.9	8.8	6.5	1.5	4.5	4.3
Oct 9 DS-2 Oct 9 DS-3	Oct 9 DS	2 - 3m	ore	BRS±mt BRS±mt	8.30 8.20	0.386	0.35 0.29	0.04 0.02	0.079 0.059	0.209 0.131	13.8 9.3	10.9 9.2	6.6	1.3	4.0 3.8	4.3
Minimum	Oct 9 DS	4m	ore	BRZIIII	8.20	0.311 0.27	0.29	0.02	0.059	0.131	2.80	5.50	4.9 3.08	0.1	2.23	
Maximum					9.38	2.47	2.46	0.01	0.13	0.02	20.10	76.90	11.17	3.0	8.13	
Average					8.38	0.93	0.85	0.09	0.13	0.47	10.44	26.48	5.70	0.9	4.01	+
Standard Deviatio	nn .				0.32	0.76	0.75	0.03	0.03	0.13	4.32	23.46	2.43	0.8	1.77	+
Staridard Deviatio	JII				0.32	0.70	0.73	0.07	0.03	0.11	4.32	23.40	2.43	0.8	1.77	
FC-2	Oct 9 NS	-	sub-economic mineralized mine rock	BRS±mt	9.56	0.266	0.18	0.09	0.107	0.156	12.8	5.5	8.9	2.3	7.4	
FC-3	Mar 10 NS	-	sub-economic mineralized mine rock	BRS±mt	9.49	0.381	0.29	0.09	0.066	0.087	13.9	9.1	5.5	1.5	5.5	
FC-4	Mar 8 NS	-	sub-economic mineralized mine rock	BRS±mt	9.37	0.434	0.34	0.09	0.035	0.089	14.5	10.6	2.9	1.4	4.0	
Mar 10 NS-1	Mar 10 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	8.50	0.428	0.42	0.01	0.074	0.301	17.6	13.1	6.2	1.3	4.4	
Mar 10 NS-2	Mar 10 NS	1 - 2m	sub-economic mineralized mine rock	BRS±mt	8.60	0.531	0.50	0.03	0.056	0.154	13.9	15.6	4.7	0.9	3.8	
Mar 10 NS-3	Mar 10 NS	2 - 3m	sub-economic mineralized mine rock	BRS±mt	8.60	0.524	0.47	0.05	0.055	0.166	11.7	14.8	4.6	0.8	3.9	5.2
Mar 10 NS-4	Mar 10 NS	4m	sub-economic mineralized mine rock	BRS±mt	8.50	0.472	0.43	0.04	0.064	0.137	12.8	13.4	5.3	1.0	3.8	
Mar 6 NS-2	Mar 6 NS	0 - 1m	sub-economic mineralized mine rock	BRS±mt	8.30	0.628	0.60	0.02	0.021	0.039	8.5	18.9	1.8	0.4	3.3	
Mar 8 NS-1	Mar 8 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	8.60	0.316	0.28	0.03	0.075	0.189	7.9	8.8	6.3	0.9	5.4	
Mar 8 NS-2	Mar 8 NS	0 - 1m	sub-economic mineralized mine rock	BRS±mt	8.30	0.544	0.42	0.12	0.033	0.043	10.5	13.1	2.8	0.8	3.2	
Mar 8 NS-3	Mar 8 NS	1 - 2m	sub-economic mineralized mine rock	BRS±mt	8.30	0.497	0.48	0.02	0.032	0.026	9.2	15.1	2.7	0.6	3.3	3.3
Mar 8 NS-4	Mar 8 NS	4m	sub-economic mineralized mine rock	BRS±mt	8.30	0.583	0.56	0.03	0.029	0.052	8.8	17.4	2.4	0.5	3.3	
Oct 9 NS-1	Oct 9 NS	0 m (Surface)	sub-economic mineralized mine rock	BRS±mt	8.40	0.377	0.17	0.21	0.073	0.188	14.0	5.2	6.1	2.7	4.6	
Oct 9 NS-2	Oct 9 NS	0 - 1m	sub-economic mineralized mine rock	BRS±mt	8.40	0.290	0.18	0.11	0.100	0.278	18.1	5.5	8.3	3.3	8.7	
Oct 9 NS-3	Oct 9 NS	2 - 4m	sub-economic mineralized mine rock	BRS±mt	8.40	0.268	0.13	0.14	0.140	0.400	16.8	4.1	11.7	4.1	8.8	7.2
Oct 9 NS-4	Oct 9 NS	4m	sub-economic mineralized mine rock	BRS±mt	8.30	0.307	0.14	0.16	0.099	0.240	17.0	4.5	8.3	3.8	6.7	
Minimum					8.30	0.27	0.13	0.01	0.02	0.03	7.90	4.10	1.75	0.4	3.24	
Maximum					9.56	0.63	0.60	0.21	0.14	0.40	18.10	18.90	11.67	4.1	8.84	
Average					8.62	0.43	0.35	0.08	0.07	0.16	13.00	10.92	5.52	1.6	5.00	
Standard Deviatio	ווע				0.44	0.12	0.16	0.06	0.03	0.11	3.35	4.92	2.76	1.2	1.93	
FC-1	Oct 5 DS	<u> </u>	sub-economic mineralized mine rock	FD	9.31	0.059	0.02	0.03	0.099	0.154	12.7	0.6	8.3	20.5	7.9	
Oct 5 DS-1	Oct 5 DS	0 m (Surface)	sub-economic mineralized mine rock	FP	8.70	0.059	0.02	0.03	0.099	0.154	13.8	0.6	6.6	14.7	7.9	
Oct 5 DS-2	Oct 5 DS	0 - 2m	sub-economic mineralized mine rock	FP	8.60	0.109	0.03	0.07	0.079	0.212	15.0	0.9	7.8	16.0	7.2	5.1
Oct 5 DS-3	Oct 5 DS	2 - 4m	sub-economic mineralized mine rock	FP	8.60	0.121	0.03	0.09	0.094	0.286	12.0	1.9	7.5	6.3	7.2	3.1
Minimum	loct 2 D3	<u> </u> = 4111	pad cconomic mineralized mine rock	11.1	8.60	0.131	0.02	0.03	0.090	0.291	12.00	0.62	6.58	6.3	7.01	+
Maximum					9.31	0.00	0.02	0.09	0.10	0.13	15.00	1.90	8.25	20.5	7.87	+
Average					8.80	0.13	0.04	0.07	0.09	0.24	13.38	1.10	7.54	14.4	7.32	+
					0.34	0.04	0.02	0.03	0.01	0.07	1.31	1.10	7.54	5.9	,.32	1

bld italic Bold italic formatting indicates a value that is less than the analytical detection limit.

^{*} AP calculated using sulphide-sulphur.

^{1.} Sample classified as "waste" or "ore" according to average assay grades of each pile (as provided by Fortune) and August 2008 cut-off criterion.

^{2.} Lithology based on dominant visible lithology in field. Rock may be diluted with minor proportions of other lithologies of waste rock.

Appendix IV-3c Acid Base Accounting and Net Acid Generation Testing - Tailings NICO Project, Fortune Minerals Ltd.

Sample ID	Paste pH	Sulphur	Sulphide	Sulphate	Carbon	Carbonate		Potentials		NP/AP	NAG-pH
Sample 1D	(s.u.)	(%S)	(%S)	(%S)	(%C)	(%C)	NP	AP	CaNP	NF/AF	NAG-рп
Bulk Rougher Tails	8.54	0.08	0.02	0.06	0.19	0.66	24.80	0.54	15.5	46.10	9.49
Bulk Cleaner Tails	8.68	0.43	0.31	0.11	0.23	0.60	25.80	9.83	18.8	2.62	9.13
PP#14	9.14	0.08	0.02	0.06	0.13	0.41	22.50	0.62	10.8	15.90	10.23

Appendix IV-4a

Short-Term Leach Test Results - Synthethic Precipitation Leaching Procedure - Waste Rock and Ore (Drill Core)

															Fortune Minera	Procedure - Waste als Ltd.		- (
Sample Number ¹	Hole	Depth	Lithology	Mining Phase ²	Waste Rock / Ore ³	Sample Ext.Flu		Initial pH	Final pH	SO4	Hg	Al /	As Ag		Be	B Bi	Ca	Cd	Co	Cr	Cu Fe	Li	Mg Mo	Ni	Pb	Sb Se	Sn	Sr Ti	TI	U	v w	Y Zn
100916	98151	From To 13 20	Breccia	300	WASTE	weight(g) #1 or 100 2	#2 ml 400	units 8.90	units 9.46	mg/L 7.90	mg/L 0.0001	mg/L m 0.99 0.0	g/L mg/ 638 0.00 0	L mg/L 0.452	mg/L 0.005	mg/L mg/L 0.10 0.0034	mg/L 5.37	mg/L 0.0005	mg/L 0.0048	mg/L n	mg/L mg/L .0050 0.30	0.02 C	ng/L mg/L 0.0015	mg/L 0.001	mg/L 0.0015	mg/L mg/ 0.0044 0.00	L mg/L 5 0.001	mg/L mg/L 0.009 0.008	mg/L 0.0002	mg/L 0.0010	mg/L mg/L 0.0011 0.0008	mg/L mg/L 0.0009 0.012
100917	98151	20 28	Breccia	300	WASTE	100 2	400	9.46	9.34	21.00	0.0001	0.52 0.	241 0.000			0.09 0.0011		0.0005	0.0008	0.001 0.	.0008 0.05		0.0101	0.001 0.001	0.0004	0.0044 0.00 0.0090 0.00	5 0.001		0.0002	0.0009	0.0014 0.0013	0.0002 0.006
100925 100934	00233 00252	27 33	Breccia Breccia	300 400	WASTE WASTE	100 2 100 2	400 400	8.60 9.15	9.29 9.68	7.10	0.0001 0.0001		183 0.00 0			0.06 0.0030 0.08 0.0013	1.56 2.72	0.0005 0.0005	0.0110 0.0124		.0167 1.03 .0085 1.04		.20 0.0009	0.001 0.001	0.0004	0.0029 0.00 0.0036 0.00		0.009 0.017 0.024 0.023	0.0002 0.0002	0.0003	0.0019 0.0086 0.0017 0.1190	
Minimum									9.29	2.60	0.0001					0.06 0.0011		0.0005	0.0008	0.001 0.	0.05	0.02	0.0009	0.001	0.0004	0.0029 0.00	0.001	0.009 0.007	0.0002	0.0003	0.0011 0.0008	0.0002 0.006
Maximum Average								9.46 9.03	9.68 9.44	9.65	0.0001 0.0001	0.99 0.4		0.466	0.005	0.10 0.0034 0.08 0.0022	4.72	0.0005 0.0005	0.0124 0.0073	0.001 0.	.0167 1.04 .0077 0.60	0.02 1 0.02 0	0.0038	0.001	0.0015 0.0007	0.0050 0.00	5 0.001	0.024 0.023 0.014 0.014	0.0002 0.0002	0.0010 0.0007	0.0019 0.1190 0.0015 0.0324	0.0007 0.010
Standard Deviation								0.37	0.17	7.92	0.0000	0.35 0.3	263 0.00	0.102	0.000	0.02 0.0012	3.41	0.0000	0.0054	0.000 0.	.0067 0.51	0.00	0.0043	0.000	0.0006	0.0028 0.00	0.000	0.007 0.008	0.0000	0.0003	0.0004 0.0578	0.0005 0.003
100817		76 86		400	400	100 2	400	9.75	10.17		0.0001	0.90 0.3	243 0.000	0.429	0.005	0.08 0.0013	1.41	0.0005	0.0007	0.001 0.	.0009 1.35	0.02 1	.36 0.0021	0.001	0.0008	0.0422 0.00	5 0.001	0.014 0.049				0.0002 0.007
100875 100890	03259 00220	96 111 32 50	Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	400	100 2 100 2	400	9.81 9.47	9.97 10.14	8.00 6.20	0.0001 0.0001	1.71 0.	114 0.00 0	0.495	0.005	0.09 0.0014 0.10 0.0015	2.66 0.96	0.0005 0.0005	0.0013	0.001 0. 0.003 0.	.0008 1.84 .0008 2.02		78 0.0021	0.001	0.0008	0.0081 0.00 0.0042 0.00	5 0.001 5 0.001	0.029 0.067 0.011 0.095	0.0002 0.0002	0.0007 0.0002	0.0038 0.0013 0.0055 0.0007	0.0004 0.016 0.0003 0.023
100923	98150	32 50 45 55	Black Rock Schist + Magnetite	400	400	100 2	400	9.42	10.23	5.70	0.0001	1.72 0.0	062 0.000	0.532	0.005	0.10 0.0006	1.09	0.0005	0.0007	0.001 0.	.0008 1.81	0.02 2	.72 0.0003	0.001	0.0003	0.0198 0.00	0.001	0.008 0.089	0.0002	0.0002	0.0035 0.0050	0.0005 0.022
100924 100950	98150 96023	55 65 30 46	Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	400	100 2 100 2	400 400	9.64	10.25	6.90 5.80	0.0001	2.29 0.4 1.83 0.5	851 0.00	0.689		0.12 0.0027 0.13 0.0049		0.0005	0.0009	0.001 0. 0.001 0.	.0352 1.72 .0039 1.82		3.47 0.0003 3.67 0.0009	0.001 0.001	0.0005	0.0543 0.00 0.0262 0.00	5 0.001 5 0.001	0.008 0.094 0.015 0.114	0.0002	0.0002	0.0046 0.0015 0.0037 0.0010	0.0009 0.021 0.0005 0.018
100961 100963	98147 98147	3 12	Black Rock Schist + Magnetite	400	400	100 2	400	9.57	9.99 9.90	5.90 6.00	0.0001 0.0001		249 0.00 0 737 0.00 0		0.005 0.005	0.10 0.0009 0.13 0.0064	2.00	0.0005 0.0005	0.0015 0.0039		.0008 2.01 .0011 2.79	0.02 1	.97 0.0003	0.001	0.0003	0.0042 0.00 0.0075 0.00		0.007 0.080 0.010 0.187	0.0002 0.0002	0.0002 0.0006	0.0040 0.0007	0.0009 0.016 0.0009 0.022
100977	96011	46 61 145 160	Black Rock Schist + Magnetite Black Rock Schist + Magnetite	400	400	100 2 100 2	400 400	9.68 9.47	10.06	4.60	0.0001		345 0.00 0	0.638		0.11 0.0003		0.0005	0.0039	0.001 0.	.0008 1.67		.66 0.0003	0.001	0.0006	0.0073 0.00	0.001	0.010 0.078	0.0002	0.0002	0.0038 0.0056	
100911 100912	96016 96016	138 158 158 190	Black Rock Schist + Magnetite Black Rock Schist + Magnetite			100 2	400 400	8.69 9.70	9.87 9.76	5.00	0.0001	2.00 1.5			0.005	0.09 0.0040 0.13 0.1120	1.94 2.99	0.0005	0.0018		.0024 2.26 .0366 2.44		0.88 0.0003 0.98 0.0010		0.0007	0.0048 0.00 0.0169 0.00			0.0002	0.0003	0.0028 0.0004 0.0025 0.2560	0.0005 0.018 0.0004 0.016
100983	97035	57 68	Black Rock Schist + Magnetite	400	400	100 2	400	9.65	9.95	7.00	0.0001	1.03 0.5	994 0.000	0.597	0.005	0.12 0.0101	3.07	0.0005	0.0061	0.001 0.	.0023 2.58	0.02 1	.89 0.0032	0.001	0.0007	0.0102 0.00	0.001	0.026 0.075	0.0002	0.0003	0.0053 0.0013	0.0006 0.016
Minimum Maximum								8.69 9.81	9.76 10.25	4.10 8.60	0.0001 0.0001	0.89 0.0 3.33 1.5	059 0.00 0 970 0.00	0.429		0.08 0.0003 0.13 0.1120	0.96 3.07	0.0005 0.0005	0.0007	0.001 0. 0.003 0.	.0008 1.35 .0366 2.79	0.02 C 0.02 3	0.88 0.0003 0.47 0.0073	0.001 0.002		0.0042 0.00 0.0543 0.00	5 0.001	0.007 0.049 0.029 0.187	0.0002 0.0002	0.0002 0.0008	0.0025 0.0004 0.0055 0.2560	0.0002 0.007 0.0009 0.023
Average Standard Deviation								9.55	10.03		0.0001	1.68 0.	543 0.00	0.569	0.005	0.11 0.0122	2.00	0.0005	0.0035	0.002 0.	.0072 2.03	0.02 1	.90 0.0016	0.001	0.0006	0.0172 0.00	0.001	0.013 0.095	0.0002	0.0004	0.0041 0.0231	0.0006 0.018
Standard Deviation								0.30	0.15	1.32	0.0000	0.68 0.	544 0.00	0.096	0.000	0.02 0.0316	0.74	0.0000	0.0050	0.001 0.	.0134 0.42	0.00	1.76 0.0020	0.000	0.0002	0.0162 0.00	0.000	0.007 0.034	0.0000	0.0002	0.0010 0.0734	0.0002 0.004
100802 100803	00231 00231	73 83 83 94	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400	WASTE WASTE	100 2 100 2	400 400	9.70 9.68	10.20 10.18	5.00 9.40	0.0001 0.0001	2.03 0.0	0.000 195 0.00 0		0.005	0.10 0.0008 0.13 0.0072	1.58	0.0005 0.0005	0.0003		.0008 1.99 .0073 5.99	0.02 2 0.02 2	1.37 0.0003 1.79 0.0003	0.001	0.0004	0.0082 0.00 0.1990 0.00	5 0.001 5 0.001		0.0002 0.0002	0.0002 0.0002	0.0070 0.0012 0.0067 0.0005	
100806	00236	48 60	Black Rock Schist ± Magnetite	400	WASTE	100 2	400	9.66	10.23	5.90	0.0001		420 0.000	0.618	0.005	0.10 0.0015	1.18	0.0005	0.0020	0.002 0.	.0008 6.96	0.02 4	.34 0.0004		0.0130	0.0098 0.00	0.001	0.009 0.175	0.0002	0.0003	0.0042 0.0017	0.0010 0.034
100815 100866	98208 03258	136 138	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400 500	WASTE WASTE	100 2 100 2	400 400	9.59 9.78	9.93	6.80	0.0001 0.0001		042 0.00 0	0.743	0.005 0.005	0.09 0.0006 0.08 0.0004	1.32 2.31	0.0005 0.0005	0.0005 0.0015	0.003 0.	.0043 2.85 .0013 7.00	0.02 2 0.02 1	.93 0.0003 .98 0.0013	0.002	0.0008	0.0061 0.00 0.0064 0.00	0.001	0.014 0.181	0.0002 0.0002	0.0002 0.0008	0.0051 0.0007 0.0039 0.0013	0.0009 0.012
100884 100885	98198 98198	20 30 30 41	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400 400	WASTE WASTE	100 2 100 2	400 400	9.55 9.71	10.07 9.98	3.80 9.20	0.0001 0.0001	0.71 0.0	026 0.00 0	0.526		0.04 0.0003 0.10 0.0008	2.15 3.21	0.0005 0.0005	0.0003 0.0033	0.001 0.	.0008 2.40 .0011 6.00	0.02 1	.12 0.0012 .40 0.0031	0.001	0.0002 0.0006	0.0036 0.00 0.0054 0.00	0.001	0.018 0.046	0.0002 0.0002	0.0002 0.0004	0.0052 0.0019 0.0044 0.0408	0.0002 0.004
100900	97072	20 37	Black Rock Schist ± Magnetite	-00	WASIL	100 2	400	9.80	9.92	8.00	0.0001		0.000	0.446	0.005	0.07 0.0007	2.94	0.0005	0.0007	0.001 0.	.0036 2.06	0.02	0.0008	0.001	0.0012	0.0044 0.00	0.001	0.011 0.103	0.0002	0.0006	0.0082 0.0019	0.0003 0.008
100901 100907	97072 00249	55 80 82 90	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400	WASTE	100 2 100 2	400 400	9.81 9.34	10.04 9.96	4.70 8.60	0.0001 0.0001	0.56 0.1 1.25 0	353 0.00 0 733 0.00 0		0.005	0.06 0.0003 0.09 0.0138	1.98	0.0005	0.0007		.0063 1.77 .0039 4.44		.03 0.0003		0.0003	0.0057 0.00 0.0177 0.00			0.0002 0.0002	0.0002 0.0002	0.0047 0.0013 0.0038 0.0102	0.0003 0.007 0.0003 0.011
100919 100936	98151 00252	41 57 107 127	Black Rock Schist ± Magnetite			100 2	400	9.59	10.26	9.00	0.0001	1.53 0.0	626 0.00	0.428	0.005	0.10 0.0249	0.81	0.0005	0.0009	0.001 0.	.0010 4.24	0.02 2	67 0.0003	0.001	0.0006	0.0085 0.00	0.001	0.009 0.108	0.0002	0.0003	0.0039 0.0027	0.0005 0.014
100947	97102	57 77	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite			100 2 100 2	400 400	9.72 9.77	9.97 10.20	12.00 7.70	0.0001 0.0001		148 0.000	0.500	0.005	0.11 0.0011 0.12 0.0472	1.69	0.0005 0.0005	0.0008 0.0007	0.002 0.	.0045 3.53 .0008 5.49	0.02 2	.07 0.0010	0.001	0.0006	0.0074 0.00 0.0307 0.00	0.001	0.013 0.105	0.0002 0.0002	0.0002 0.0002	0.0045 0.0036 0.0053 0.0369	0.0003 0.012
100948 100959	97102 98209	67 78 60 70	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	400 400	WASTE WASTE	100 2 100 2	400 400	9.96 9.64	10.17 10.15	8.30 7.80	0.0001 0.0001	0.15 0. 0.72 0.			0.005 0.005	0.10 0.0003 0.08 0.0003	1.97 1.39	0.0005 0.0005	0.0003 0.0003	0.001 0.	.0013 0.48 .0016 2.08		.02 0.0007	0.001	0.0002 0.0002	0.0332 0.00 0.0088 0.00	0.001	0.016 0.010	0.0002 0.0002	0.0002 0.0002	0.0032 0.0023	
100966	03267	10 18	Black Rock Schist ± Magnetite	400	WASTE	100 2	400	9.22	9.98	12.00	0.0001	0.87 0.3	283 0.000	0.454	0.005	0.16 0.0008	1.41	0.0005	0.0004	0.001 0.	.0008 2.65	0.02 1	.73 0.0007	0.001	0.0004	0.0251 0.00	0.001	0.010 0.050	0.0002	0.0002	0.0053 0.0014	0.0003 0.016
100888 Middle Ore Zone*	98198 03-275	110 130 37 74	Black Rock Schist ± Magnetite Middle Ore Zone	1		100 2 200 2	400 800	9.80 7.87	10.10 9.51	7.10 5.00	0.0001 0.0001	0.78 0.: 0.44 10.				0.07 0.0019 0.14 0.0087	2.07	0.0005 0.0005	0.0016		.0008 2.50 .0017 1.80		0.0047		0.0008 0.0002	0.0103 0.00 0.0342 0.00			0.0002 0.0002	0.0008	0.0041 0.0008 0.0037 0.0194	
Lower Ore Zone* 100968	03-275	120 157	Lower Ore Zone	400	WASTE	200 2	800	8.08	9.75	5.00	0.0001	1.03 3.5	950 0.000	0.423	0.005	0.15 0.0281	1.57	0.0005	0.0072	0.002 0.	.0024 3.36	0.00	0.0096	0.002	0.0003	0.0284 0.00	5 0.001	0.009 0.052	0.0002	0.0029	0.0039 0.5005	0.0003 0.007
100407*	03270 03-272	39 47 2183 81	Upper Ore Zone	400		100 2 200 2	400 800	9.19 9.68	9.81 9.82	20.00 5.00	0.0001 0.0001		360 0.00 0	0.478		0.10 0.0003 0.14 0.0009	1.57	0.0005 0.0005	0.0003 0.0015	0.001 0.	.0019 2.93 .0035 2.89		54 0.0019 0.0014	0.001	0.0009	0.0307 0.00 0.0109 0.00	0.001	0.013 0.066	0.0002 0.0002	0.0002 0.0008	0.0030 0.0012 0.0071 0.0062	0.0009 0.006
100989 Minimum	97036	157 165	Black Rock Schist ± Magnetite	400	WASTE	100 2	400	9.97 7.87	10.29 9.51	8.40 3.80	0.0001 0.0001	1.72 0.0 0.15 0.0	049 0.00 0		0.005 0.005	0.13 0.0003 0.04 0.0003	1.90 0.81	0.0005 0.0005	0.0006 0.0003	0.001 0.	.0013 3.77 .0008 0.48	0.02 3	0.0133 0.48 0.0003	0.001	0.0008 0.0002	0.0117 0.00 0.0036 0.00		0.010 0.111	0.0002 0.0002	0.0002 0.0002	0.0175 0.0016 0.0030 0.0005	0.0003 0.015 0.0001 0.004
Maximum								9.97	10.29	20.00	0.0001	2.91 10.		0.743	0.005	0.16 0.0472	3.21	0.0005	0.0098	0.003 0.	.0073 7.00	0.02 4	.34 0.0133	0.002	0.0130	0.1990 0.00	0.001	0.029 0.181	0.0002	0.0029	0.0175 0.5005	0.0010 0.034
Average Standard Deviation								9.51 0.53	10.03 0.19	7.95 3.49	0.0001	2.91 10. 1.23 0.5 0.67 2.5	906 0.00 0 219 0.00	0.475	0.005	0.10 0.0064 0.03 0.0121	1.80 0.59	0.0005	0.0017	0.001 0. 0.001 0.	.0024 3.51 .0019 1.79	0.02 1 0.01 1	.81 0.0023 .01 0.0034	0.001	0.0012	0.0230 0.00 0.0407 0.00	0.001	0.013 0.080 0.005 0.047	0.0002	0.0005	0.0053 0.0292 0.0031 0.1059	0.0004 0.012 0.0002 0.007
100810	03265	69 79	Foldenar Bornburg	200	WASTE	100 2	400	9.78	9.81	0.40	0.0001	0.72 0.0				0.09 0.0008	4.09	0.0005	0.0004		.0054 0.82	0.02	0.0031			0.0044 0.00		0.013 0.037	0.0002	0.0006	0.0069 0.0030	0.0004 0.009
100811	03265	79 89		200	WASTE	100 2	400	9.76	9.79	5.60	0.0001	0.24 0.	158 0.000	0.474	0.005	0.06 0.0003		0.0005	0.0003	0.001 0.	0.07	0.02	0.0021	0.001	0.0002	0.0058 0.00	5 0.001	0.030 0.003	0.0002	0.0003	0.0094 0.0041	0.0001 0.004
100858 100867	03257 03258	105 109 138 141	Feldspar Porphyry Feldspar Porphyry	200	WASTE WASTE	100 2 100 2	400 400	9.76 9.87	9.85 9.92	6.20 4.40	0.0001 0.0001		074 0.00 0	0.417	0.005	0.08 0.0003 0.06 0.0003	2.78	0.0005 0.0005	0.0003	0.001 0. 0.001 0.	.0014 0.56 .0008 0.82	0.02	0.55 0.0091 0.40 0.0081	0.001	0.0018	0.0083 0.00 0.0040 0.00	0.001 0.001	0.021 0.015 0.014 0.026	0.0002 0.0002	0.0015 0.0013	0.0022 0.0015 0.0016 0.0049	0.0003 0.007 0.0004 0.006
100891 100892	00220 98152	110 113 0 15	Feldspar Porphyry	200	WASTE WASTE	100 2 100 2	400 400	9.88 8.44	9.95 9.62	6.50 6.40	0.0001 0.0001	0.69 0.	138 0.00 0		0.005	0.06 0.0003 0.06 0.0003		0.0005 0.0005	0.0013 0.0004	0.002 0.	.0009 0.69 .0062 0.87	0.02	0.50 0.0173	0.001	0.0012 0.0008	0.0104 0.00 0.0026 0.00	0.001	0.023 0.035	0.0002 0.0002	0.0005	0.0134 0.0012 0.0039 0.0011	
100894	98152	30 45	Feldspar Porphyry	200	WASTE	100 2	400	9.60	9.49	30.00	0.0001	0.62 0.0	0.000	0.315	0.005	0.20 0.0005	9.10	0.0005	0.0004	0.006 0.	.0036 0.60	0.02 1	57 0.0041	0.001	0.0005	0.0044 0.00	5 0.001	0.017 0.014	0.0002	0.0004	0.0049 0.0017	0.0003 0.076
100913 100956	96016 98197	205 209 70 80	Feldspar Porphyry Feldspar Porphyry	200	WASTE WASTE	100 2 100 2	400 400	9.76	9.94 9.87	15.00 16.00	0.0001 0.0001		0.000 012 0.000		0.005	0.24 0.0018 0.28 0.0003	6.39 3.81	0.0005 0.0005	0.0024		.0064 6.82 .0014 5.48		.93 0.0003	0.001	0.0024	0.0038 0.00 0.0037 0.00	5 0.001 5 0.001		0.0002 0.0002	0.0002 0.0009	0.0233 0.0039 0.0182 0.0024	0.0012 0.135 0.0014 0.141
100857 100859	03257 03257	70 80 65 79 110 114	Feldspar Porphyry	100	WASTE WASTE	100 2 100 2	400 400	9.36 9.69	9.67 9.79	18.00 15.00	0.0001 0.0001	5.52 0.0 1.59 0.0	050 0.000			0.31 0.0087 0.23 0.0003	4.48	0.0005 0.0005	0.0065 0.0006	0.001 0.	.0012 7.60 .0013 1.71	0.02 1	97 0.0026	0.001	0.0035 0.0016	0.0033 0.00		0.023 0.133	0.0002 0.0002	0.0033 0.0022	0.0046 0.0006 0.0031 0.0076	
100409*	03-275	86 103	Quartz Feldspar Porphyry	300	WASIL	200 2		9.80	9.65		0.0001		0.000 170 0.000			0.13 0.0063		0.0005	0.0038		.0058 1.99		0.0092			0.0050 0.00 0.0148 0.00			0.0002	0.0058	0.0031 0.0070	
100410*	03-376	104 114 3 106				200 2	800	9.71	9.78	5.00	0.0001	1.37 0.0			0.005	0.13 0.0003	-	0.0005	0.0005		.0056 1.53	0.00	0.0050		0.0010	0.0084 0.00			0.0002	0.0034	0.0174 0.0051	
Minimum Maximum								8.44 9.88	9.49 9.95	4.40	0.0001 0.0001		0.00	0.315	0.005 0.005	0.06 0.0003 0.31 0.0087		0.0005 0.0005	0.0003 0.0065	0.001 0.	.0008 0.07 .0064 7.60		0.40 0.0003 0.93 0.0279	0.001	0.0002	0.0026 0.00 0.0148 0.00	0.001	0.007 0.003	0.0002 0.0002	0.0002 0.0058	0.0016 0.0006 0.0233 0.0283	0.0001 0.002 0.0023 0.141
Average								9.62	9.78	10.96	0.0001	1.81 0.	223 0.000	0.558	0.005	0.15 0.0016	4.58	0.0005	0.0014	0.002 0.	.0031 2.27	0.02 2 0.02 1	.12 0.0074	0.001	0.0035 0.0013	0.0061 0.00	5 0.001	0.020 0.091	0.0002	0.0016	0.0087 0.0050	0.0007 0.045
Standard Deviation 100854	03257	33 43	Rhyolite	20	ORE	100 2	400	0.38 8.70	0.14 9.44	7.52 20.00	0.0000 0.0001	1.83 0.5 5.57 0.5	587 0.00 396 0.00			0.09 0.0027 0.32 0.0111	1.90 6.66	0.0000 0.0005	0.0019		.0024 2.58 .0104 3.61	0.01 0 0.02 1	.91 0.0118	0.000	0.0009	0.0035 0.00 0.0042 0.00			0.0000 0.0002	0.0016	0.0071 0.0073 0.0016 0.0559	0.0006 0.054 0.0019 0.191
100863 100865	03258	33 43 35 50	Rhyolite	300	WASTE	100 2	400	9.75	9.70	16.00	0.0001	7.37 0.3	258 0.00 0	0.967	0.005	0.29 0.0055	6.98	0.0005	0.0573	0.001 0.	.0054 4.80	0.02 2	.55 0.0123	0.002	0.0083	0.0097 0.00	0.001	0.035 0.030	0.0002	0.0054	0.0026 0.0030	0.0026 0.153
100865	03258 03259	65 77 22 33	Rhyolite Rhyolite	300 300	WASTE WASTE	100 2 100 2	400 400	9.66 9.53	9.75 9.63	15.00 16.00	0.0001 0.0001	2.42 0.0	061 0.00 0		0.005	0.22 0.0012 0.22 0.0012	4.68 4.63	0.0005 0.0005	0.0053		.0015 2.17 .0099 2.89	0.02 1	11 0.0032	0.001	0.0018 0.0011	0.0031 0.00 0.0035 0.00	5 0.001	0.025 0.013 0.015 0.018	0.0002 0.0002	0.0030	0.0024 0.0017 0.0017 0.0009	0.0008 0.116 0.0009 0.130
100872 100879	03259 00246S	33 43	Rhyolite	300 300	WASTE WASTE	100 2 100 2	400 400	9.38 9.69	9.75 9.65	11.00 15.00	0.0001 0.0001	3.61 0.0	0.000 254 0.000		0.005 0.005	0.21 0.0005 0.21 0.2650	4.88 5.20	0.0005 0.0005	0.0036 0.0137		.0085 2.66 .0369 2.51	0.02 1 0.02 1	27 0.0010 33 0.0025		0.0043 0.0051	0.0087 0.00 0.0091 0.00			0.0002 0.0002	0.0018 0.0026	0.0011 0.0024 0.0015 0.0012	0.0009 0.099 0.0012 0.146
100932	00252	10 20 3 13	Knyolite	300	WASTE	100 2	400	6.80	7.95	22.00	0.0001	5.92 0.	124 0.000	0.506	0.005	0.42 0.0319	1.24	0.0005	0.0478	0.001 0.	.2080 6.76	0.02 2	.79 0.0011	0.004	0.0027	0.0022 0.00	0.001	0.013 0.026	0.0002	0.0060	0.0009 0.0147	0.0062 0.158
100944 100951	03264 98197	37 45 15 30	Rhyolite Rhyolite	300 300	WASTE WASTE	100 2 100 2	400 400	9.53 9.72	9.51 9.68	15.00	0.0001 0.0001	3.08 0.	765 0.00 0		0.005	0.23 0.0246 0.28 0.0815		0.0005	0.0131	0.001 0. 0.001 0.	.0070 2.79 .0717 2.57	0.02 1 0.02 1			0.0020	0.0054 0.00 0.0088 0.00			0.0002	0.0027	0.0027 0.0020 0.0036 0.0074	0.0013 0.139 0.0013 0.116
100972	96011	15 30	Rhyolite	300	WASTE	100 2	400	9.02	8.89	47.00	0.0001		009 0.000	0.203	0.005	0.27 0.0006	12.00	0.0005	0.0004	0.001 0.	.0029 0.22	0.02 2	.72 0.0008	0.001	0.0002	0.0024 0.00	0.001	0.022 0.003	0.0002	0.0007	0.0009 0.0072	0.0001 0.063
100973 100982	96011 97035	30 45 20 29	Rhyolite Rhyolite	300 30	WASTE ORE	100 2 100 2	400 400	7.61 8.92	8.76 9.48	26.00 14.00	0.0001 0.0001	3.07 1.3	054 0.00 840 0.00		0.005 0.005	0.38 0.0024 0.26 0.0844		0.0005 0.0005	0.0104		.0278 4.00 .0137 4.79		.83 0.0064 .28 0.0025		0.0019 0.0017	0.0024 0.00 0.0068 0.00	0.001 0.001		0.0002 0.0002	0.0041	0.0022 0.0058 0.0021 0.0842	0.0044 0.167 0.0016 0.097
100985 100408*	97036 03-272	0 10 0.6 18	Rhyolite Rhyolite	300	WASTE	100 2 200 2	400 800	7.48 9.51	8.35 9.45	15.00 5.00	0.0001		380 0.00 910 0.00		0.005	0.37 0.2440	0.78	0.0005	0.0666	0.001 0. 0.001 0.	.1590 7.08 .0484 1.64	0.02 1	.66 0.0012	0.001	0.0031	0.0091 0.00 0.0082 0.00			0.0002	0.0062	0.0019 0.0028 0.0018 0.0128	
Minimum	33 2.72	18	yonte				800	6.80	7.95	5.00	0.0001	0.34 0.0	009 0.00	0.203	0.005	0.13 0.0005	0.78	0.0005	0.0004	0.001 0.	.0015 0.22	0.00 1	.11 0.0008	0.001	0.0002	0.0022 0.00	0.001	0.010 0.003	0.0002	0.0007	0.0009 0.0009	0.0001 0.004
Maximum Average								9.75 8.95	9.75 9.28		0.0001 0.0001	7.37 1.5 3.62 0.5	910 0.00 545 0.00	0.988		0.42 0.2650 0.27 0.0561	12.00 4.90	0.0005 0.0005	0.1050 0.0287	0.001 0. 0.001 0.	.2080 7.08 .0436 3.46	0.02 2 0.02 1	.79 0.0123 .83 0.0046	0.006	0.0083	0.0097 0.00 0.0060 0.00	0.001 0.001	0.036 0.079 0.020 0.024	0.0002 0.0002	0.0072	0.0036 0.0842 0.0019 0.0144	0.0062 0.191 0.0020 0.123
Standard Deviation								0.96	0.57		0.0000	1.95 0.0				0.08 0.0887		0.0000	0.0309		.0633 1.89	0.00	0.0038			0.0029 0.00		0.009 0.021	0.0000	0.0019		0.0016 0.047
100897	98152	108 112	Siltstone	500	WASTE	100 2	400	9.58	9.91	19.00	0.0001	14.80 0.0	030 0.000	0.969	0.005	0.30 0.0006	3.35	0.0005	0.0043	0.023 0. 0.012 0.	.0056 45.00	0.02 7	.90 0.0007	0.009	0.0018	0.0047 0.00	0.002	0.016 0.998	0.0004	0.0013		0.0055 0.161
100914 100922	96016 98151	209 215 110.5 114	Siltstone Siltstone	500 500	WASTE WASTE	100 2 100 2	400 400	9.39 9.63	9.85 9.83		0.0001 0.0001	7.32 O.	018 0.00 0	1.040 01 0.987	0.005 0.005	0.27 0.0003 0.27 0.0005	3.44	0.0005 0.0005	0.0011 0.0025	0.012 0. 0.012 0.	.0012 9.94 .0074 12.60	0.02 2	97 0.0005 0.43 0.0025	0.006	0.0015 0.0026	0.0072 0.00 0.0050 0.00	5 0.001 5 0.001	0.016 0.599 0.021 0.605	0.0002 0.0002	0.0007	0.0217 0.0111 0.0215 0.0045	0.0026 0.137 0.0044 0.124
100929	00233	105.5 110	Siltstone	400	WASTE	100 2	400	9.74	9.87	15.00	0.0001	4.77 0.3	260 0.00 0	0.911	0.005	0.27 0.0068	3.49	0.0005	0.0049	0.012 0.	.0051 9.55	0.02 2	.56 0.0014	0.003	0.0017	0.0065 0.00	0.001	0.015 0.320	0.0002	0.0005	0.0174 0.0164	0.0017 0.094
100960 100984	98209 97035	126 131 267 270	Siltstone	500 500	WASTE WASTE	100 2 100 2		9.75 8.88	9.90 9.72	15.00	0.0001	10.70 0.0	0.000	1.630	0.005	0.31 0.0004 0.35 0.0006	1.30	0.0005	0.0007	0.011 0. 0.016 0.	.0011 14.10 .0017 21.60	0.02 3	3.87 0.0008 3.54 0.0004	0.005	0.0024 0.0019	0.0066 0.00	0.002	0.017 0.439 0.012 0.864	0.0002	0.0009	0.0191 0.0036	0.0023 0.125 0.0038 0.148
100401	98-159	98 173 118 160	Siltstone	-		200 2	800	9.72	9.79	5.00	0.0001	0.98 0.0	0.00	0.247	0.005	0.16 0.0003		0.0005	0.0003	0.016 0. 0.002 0.	.0011 1.32	0.00	0.0021	0.001	0.0002	0.0042 0.00	0.001	0.017 0.022	0.0002	0.0010	0.0245 0.0057	0.0007 0.002
100402	98-170	194 250	Siltstone			200 2	800	9.82	9.88	5.00	0.0001	1.88 0.0	0.00	0.215	0.005	0.13 0.0003		0.0005	0.0005	0.002 0.	.0017 2.31	0.00	0.0012	0.001	0.0003	0.0073 0.00	5 0.001	0.006 0.100	0.0002	0.0017	0.0181 0.0040	0.0004 0.002
	98-196	156 223 224 256																														
Minimum Maximum								8.88 9.82	9.72	5.00	0.0001	0.98 0.0	260 0.000	0.215	0.005	0.13 0.0003	1.30	0.0005	0.0003	0.002 0.	0011 1.32	0.00 2	90 0.0004	0.001	0.0002	0.0042 0.00	5 0.001	0.006 0.022	0.0002	0.0005	0.0174 0.0013	0.0004 0.002 0.0055 0.161 0.0027 0.099 0.0018 0.063
Average								9.56	9.84	13.38	0.0001	6.62 0.0	061 0.000	0.875	0.005	0.26 0.0012	3.10	0.0005	0.0022	0.011 0.	.0031 14.55	0.02 4	.21 0.0012	0.005	0.0016	0.0065 0.00	5 0.001	0.015 0.493	0.0002	0.0017	0.0215 0.0098	0.0027 0.099
Standard Deviation																																
100801 100808	00231 03265	1 15 10 20	Sub-Arkosic Wacke Sub-Arkosic Wacke	400 400	WASTE WASTE	100 2 100 2	400	8.78	9.04	24.00	0.0001	3.97 0.	361 0.000	0.496	0.005	0.45 0.0018	3.55	0.0005	0.0077	0.003 0.	.0405 9.84	0.02 4	0.0003	0.001	0.0024	0.0044 0.00	0.001	0.009 0.179 0.014 0.203	0.0002	0.0004	0.0044 0.0009	0.0019 0.094 0.0011 0.094
100809	03265	20 31	Sub-Arkosic Wacke	400	WASTE	100 2	400	8.08	9.81	14.00	0.0001	4.86 0.9	904 0.00	1.080	0.005	0.35 0.0029	2.77	0.0005	0.0031	0.003 0.	.0008 12.90	0.02 6	i.84 0.0004	0.001	0.0030	0.0029 0.00	5 0.001	0.011 0.204	0.0002	0.0007	0.0051 0.0008	0.0013 0.117
100813 100881	00246S	157 160 31 37	Sub-Arkosic Wacke Sub-Arkosic Wacke	500 400	WASTE WASTE	100 2 100 2	400 400	9.27 9.73	9.85 9.90	17.00 19.00	0.0001 0.0001	9.21 0.0 12.70 0.0	0.000 106 0.000	01 1.320 01 1.220	0.005 0.005	0.31 0.0004 0.70 0.0060	2.09 4.45	0.0005 0.0005	0.0021 0.0092	0.014 0. 0.022 0.	.0175 18.50 .0040 34.00	0.02 3	1.78 0.0010 1.10 0.0017	0.006	0.0023 0.0013	0.0056 0.00 0.0024 0.00	5 0.001 5 0.002	0.019 0.512 0.024 0.398	0.0002 0.0003	0.0005	0.0196 0.0005 0.0270 0.0003	0.0027 0.151 0.0020 0.258
100883	98198	31 37 10 20 66 72	Sub-Arkosic Wacke	400	WASTE	100 2	400	9.80	9.93	15.00	0.0001	6.61 0.0	0.00	1.160	0.005	0.66 0.0011	5.32	0.0005	0.0029	0.005 0.	.0040 19.90	0.02	i.23 0.0005	0.002	0.0011	0.0032 0.00	5 0.001	0.031 0.334	0.0002	0.0007	0.0081 0.0044	0.0025 0.192
100886 100906	98198 00249	71 82	Sub-Arkosic Wacke	20 400	ORE WASTE	100 2 100 2	400 400	9.66 9.40	9.99 10.08	18.00	0.0001 0.0001	4.63 0.0 15.90 0.0	348 0.000	2.070	0.005	0.57 0.0367	2.81	0.0005 0.0005	0.0021 0.0034	0.009 0.	.0013 43.80	0.02 2	5.30 0.0019	0.004	0.0036	0.0034 0.00 0.0384 0.00	0.001	0.016 0.723	0.0002 0.0004	0.0006 0.0019	0.0116 0.0074 0.0125 0.1140	0.0062 0.225
100926 100987	00233 97036	9 16 63 72	Sub-Arkosic Wacke Sub-Arkosic Wacke	300 400	WASTE WASTE	100 2		9.66	9.68 9.75	16.00	0.0001 0.0001	6.65 0. 7.22 0.	158 0.000	0.839	0.005	0.30 0.0032	5.79	0.0005 0.0005	0.0196 0.0025	0.004 0.	.0201 9.14	0.02 3	.62 0.0022	0.002	0.0013	0.0052 0.00	0.001 0.001	0.014 0.097	0.0002 0.0002	0.0015 0.0011	0.0100 0.0018	0.0039 0.118 0.0026 0.109
100996	00241	0 10	Sub-Arkosic Wacke	400	WASTE	100 2 100 2	400 400	8.98 9.02	9.60	16.00	0.0001	10.00 0.3	108 0.00	1.330	0.005	0.29 0.0010 0.64 0.0155	2.41	0.0005	0.0121	0.007 0.	.0416 26.90	0.02 1	0.30 0.0003	0.003	0.0014	0.0027 0.00	5 0.001	0.012 0.448	0.0002	0.0009	0.0102 0.0010	0.0038 0.239
Minimum Maximum								8.08 9.80	9.04	13.00 24.00	0.0001 0.0001	3.57 0.0 15.90 0.0	013 0.000 904 0.000	0.496	0.005	0.26 0.0004 0.70 0.0367	1.17 5.79	0.0005	0.0006 0.0196	0.002 0.	.0008 9.14 .0416 43.80	0.02 2	0.0003 5.30 0.0022	0.001	0.0011 0.0214	0.0024 0.00 0.0384 0.00	5 0.001 5 0.002	0.009 0.097 0.031 0.723	0.0002 0.0004	0.0004	0.0044 0.0003 0.0270 0.1140	0.0011 0.094 0.0062 0.258
Average								9.25	9.77	16.55	0.0001	7.76 0.	191 0.000	1.178	0.005	0.44 0.0063	3.61	0.0005	0.0059	0.007 0.	.0129 19.90	0.02	.45 0.0009	0.003	0.0038	0.0071 0.00	0.001	0.016 0.359	0.0002	0.0009	0.0111 0.0147	0.0027 0.154 0.0015 0.063
Standard Deviation bold italic	Bold italic form	matting indicate	s a value that is less than the analytical detection	n limit.				10.01	U.28	5.01	0.0000	J.00 0.	400 U.UU	JU.405	0.000	0.0110	1.4/	0.0000	0.0058	u.uun 0.	.0103 [11.0]	. 0.00 4	0.0007	0.003	0.0059	0.0103 0.00	nu U.UUU	0.00/ 0.181	0.0001	0.0005	v.uuoo U.U341	0.0015 0.063

parantar Deviation

bold Rails

Bold Italic formatting indicates a value that is less than the analytical detection limit.

Golder sample ID.

Block model code according to P&E mine block model

Classification of ore according to P&E mine block model.

Appendix IV-4b

Short-Term Leach Test Results - Synthethic Precipitation Leaching Procedure - Tailings NICO Project, Fortune Minerals Ltd.

Sample ID	Sample weight g	Initial pH units	Final pH units	CN(T) mg/L	CNWAD mg/L	CNS mg/L	CNO mg/L	Hg mg/L	Al mg/L	As mg/L	Ag mg/L	Ba mg/L	Be mg/L	B mg/L	Bi mg/L	Ca mg/L	Cd mg/L	Co mg/L	Cr mg/L	Cu mg/L	Fe mg/L	K mg/L	Li mg/L
Bulk Rougher Tails	200	9.61	9.19					< 0.0001	0.808	0.807	< 0.00001	0.426	0.00006	0.0918	0.0766	10.1	< 0.000003	0.00790	0.0041	0.0038	3.75	12.0	0.005
Bulk Cleaner Tails	200	9.53	9.00					< 0.0001	1.24	1.25	< 0.00001	0.497	0.00009	0.250	0.152	12.5	0.000010	0.0164	0.0034	0.0051	5.92	18.2	0.007
PP#14	200	8.94	8.66					< 0.0001	0.0292	0.271	< 0.00001	0.170	< 0.00002	0.179	0.00181	37.5	< 0.000003	0.000996	< 0.0005	0.0070	0.02	19.9	0.004

Sampl	e ID	Sample weight	Initial pH	Final pH	CN(T)	CNWAD	CNS	CNO	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	v	w	Υ	Zn
		g	units	units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Bu	ılk Rougher Tails	200	9.61	9.19					3.54	0.0382	0.00517	8.00	0.0065	0.00120	0.0180	0.008	0.00024	0.0315	0.0469	< 0.00002	0.0113	0.00180	0.0164	0.000603	0.026
В	ulk Cleaner Tails	200	9.53	9.00					5.70	0.0525	0.00743	13.9	0.0034	0.00176	0.0330	0.019	0.00031	0.0524	0.0765	0.00002	0.0145	0.00199	0.0302	0.000750	0.047
	PP#14	200	8.94	8.66					7.29	0.0200	0.00712	9.50	0.0014	0.00018	0.0217	0.014	0.00002	0.0646	0.0010	< 0.00002	0.0130	0.00036	0.00464	0.000019	0.021

Appendix IV-5a

Short-Term Leach Test Results - Shake Flask Extraction - Drill Core Samples (Typical Sample Preparation)

NICO Project, Fortune Minerals Ltd.

Sample	Lithology	Hala	D	epth	Sample	Volume mL	InitialpH	Final pH	Acidity	pН	Alkalinity	Conductivity	SO4	Cl	Al	As	Ag	Ba	Be	В	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li
Number	Lithology	поте	From	To	weight(g)	D.I. H2O	units	units	mg/L as CaCO3	units	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NICO-08-011	Rhyolite	03282	4.3	- 13.4	300	900	9.7	9.49	2	9.00	39	86	2.1	3.4	0.264	0.303	0.00001	0.491	0.00002	0.0557	0.00128	2.98	0.000005	0.00146	0.0005	0.0072	0.30	16.0	0.002
NICO-08-012	Rhyolite	03282	31.7	- 41.3	300	900	9.6	9.46	2	8.95	28	84	4.8	1.6	0.372	0.116	0.00001	0.425	0.00002	0.0460	0.00245	4.13	0.000013	0.000355	0.0005	0.0050	0.29	14.7	0.002
NICO-08-013	Feldspar Porphyry	03282	117.04	- 126.2	300	900	9.8	9.42	2	8.85	36	121	4.0	6.4	0.358	0.379	0.00001	0.468	0.00002	0.0583	0.00003	3.55	0.000008	0.000250	0.0005	0.0005	0.42	17.3	0.222

Sample	Lithology	Holo		Depth	Sam	le	Volume mL	InitialpH	Final pH	Acidity	Mg	pН	Alkalinity	Conductivity	Mn	Mo	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	V	W	Y	Zn
Number	Lithology	ноге	From	То	weigh	t(g)	D.I. H2O	units	units	mg/L as CaCO3	mg/L	units	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NICO-08-011	Rhyolite	03282	4.3	- 13.4	30)	900	9.7	9.49	2	0.660	9.00	39	86	0.00236	0.0108	4.14	0.0017	0.00013	0.0187	0.001	0.00001	0.0183	0.0014	0.000002	0.00290	0.00143	0.00924	0.000131	0.003
NICO-08-012	Rhyolite	03282	31.7	- 41.3	30)	900	9.6	9.46	2	0.545	8.95	28	84	0.00224	0.0358	3.89	0.0016	0.00039	0.0148	0.001	0.00001	0.0239	0.0029	0.000002	0.00590	0.00108	0.0620	0.000148	0.002
NICO-08-013	Feldspar Porphyry	03282	117.04	- 126.2	30)	900	9.8	9.42	2	0.738	8.85	36	121	0.00370	0.0264	8.98	0.0014	0.00014	0.0778	0.001	0.00003	0.0282	0.0063	0.000002	0.00187	0.00280	0.124	0.000156	0.003
hold italic	Indicator values is less t	an the ana	Jutical dat	action limit														•				•			•					

Golder Associates Created by: KAS 19of28

Appendix IV-5b

Short-Term Leach Test Results - Shake Flask Extraction - Mineralized Waste and Ore - Bulk Sample Stockpile Samples (No Sample Modification)

NICO Project, Fortune Minerals Ltd.

					Sample	Volume mL	InitialpH	Final pH	Acidity pH	Alkalinity	Conductivity	SO4	CI	Al As	Ag	Ва	Be	В	Bi Ca	Cd	Co Cr	Cu	Fe K	Li Mg	g Mn	Mo Na	Ni	Pb	Sb Se	Sn	Sr Ti	Tİ	U V	W Y	Zn
Sample ID	Pile ID	Depth	Waste / Ore ¹	Dominant Lithology ²	weight(g)	D.I. H2O	units	units	mg/L as units	mg/L as	uS/cm	mg/L	mg/L	mg/L mg/L	mg/L	mg/L	mg/L	mg/L n	mg/L mg/L	mg/L	mg/L mg/L	mg/L	mg/L mg/	L mg/L mg/	/L mg/L	mg/L mg/L	mg/L	mg/L m	ng/L mg/L	mg/L	mg/L mg/L	mg/L	mg/L mg/L	mg/L mg/L	/L mg/L
Oct 5 DS-1	Oct 5 DS	0 m (Surface)	Sub-economic mineralized mine rock	FP	300	900	9.49	9.60	2 9.33	30	86	2.1	1.9	0.523 1.83	0.00001	0.446	0.00002		0.0064 3.71	0.000003	0.000474 0.0005	0.0005	0.41 12.	5 0.003 0.43	32 0.0021	0.005 5.43	0.0001	0.00042 0.0	0162 0.006	0.00001	0.0173 0.0087	0.000002	0.003 0.0071	0.0023 0.0000	J69 0.002
Oct 5 DS-2	Oct 5 DS	0 - 2m	Sub-economic mineralized mine rock	FP	300	900	9.49 9.59	9.50	2 9.34		126	5.7		0.419 2.18	0.00001		0.00002	0.0526 0.	0.0047 3.73	0.000003	0.000467 0.0005 0.000525 0.0005	0.0005 0.0005	0.19 18.	5 0.005 0.53 4 0.004 0.59	38 0.0012	0.005 7.46	0.0001	0.00030 0.0	0235 0.007	0.00001		0.000004	0.005 0.0093		
Oct 5 DS-3 FC-1	Oct 5 DS Oct 5 DS	2 - 4m	Sub-economic mineralized mine rock	EP EP	300 300	900	9.58	9.61	2 9.25 2 9.59		110	5.9	3.3	0.447 1.64	0.00001 0.00024		0.00002		0.0035 4.35 0.0021 3.73	0.000003 0.000174	0.000525 0.0005 0.000735 0.0005	0.0005	0.27 13.	9 0.004 0.55	74 0.0015	0.008 7.20	0.0002	0.00046 0.0 0.00069 0.0	0164 0.009 0205 0.006	0.00001	0.0248 0.0076	0.000002	0.004 0.0078	0.0045 0.0000	065 0.002
Minimum	000000		Sub-continue mineralized minerock		300	300	9.60 9.49	9.66 9.50 9.66	2 9.25	30	86	2.1	1.9	0.338 1.64	1.E-05	0.271	0.0002 2.E-05 2.E-04	0.0355 0.	0.0021 3.71	3.E-06	0.000735	0.0005 5.E-04 5.E-04	0.19 12.5	9 0.004 0.57 50 0.003 0.43 50 0.005 0.59	32 0.0012	0.005 5.43	0.0003	0.00030 0.0	0162 0.006	1 F-05	0.0173 0.0054	0.000196 2.E-06 2.E-04	0.003 0.0071	0.0023 4.E-0	JS 0.001
Maximum							9.60 9.57	9.66 9.59	2 9.59 2 9.38		126 108	6.9 5.0	3.8	0.523 2.58 0.432 2.06		0.446 0.379	2.E-04 7.E-05	0.0526 0. 0.0435 0.	0.0064 4.35 0.0042 3.88	2.E-04	7.E-04 5.E-04 6.E-04 5.E-04	5.E-04 5.E-04	0.41 18.5	0.005 0.59	98 0.0021	0.008 7.85	0.0003	0.00069 0.0 0.00047 0.0	0235 0.009 0192 0.007	1.E-05	0.0248 0.0099 0.0204 0.0079	2.E-04 5.E-05	0.008 0.0093 0.005 0.0081	0.0166 2.E-0 0.0074 1.E-0	
Average Standard Deviation							0.05	0.07	2 9.38 0 0.15		108	2.0	0.8	0.432 2.06	1.E-04		7.E-05 9.E-05	0.0435 0.	0.0042 3.88	5.E-05 9.E-05	1.E-04		0.10 2.7	08 0.004 0.53 0 0.001 0.07	73 0.0004	0.006 6.99	0.0002	0.00047 0.0	0035 0.007	1.E-05 0.E+00	0.0204 0.0079	1.E-04	0.005 0.0081	0.0074 1.E-0 0.0063 9.E-0	0.002
						1						-								1															
Oct 9 NS-1 Oct 9 NS-2	Oct 9 NS Oct 9 NS	0 m (Surface) 0 - 1m	Sub-economic mineralized mine rock Sub-economic mineralized mine rock	BRS±mt BRS+mt	300	900	9.59	10.12 9.92	2 10.00 2 9.90		97	4.7	3.3	0.263 0.05	0.00032		0.00002	0.0561 0.	0.0579 5.14	0.000006	0.000214 0.0005	0.0007	0.50 13.	4 0.002 0.41	2 0.0034	0.007 6.17	0.0003	0.00020 0.0	0573 0.039 0745 0.052		0.0152 0.0042 0.0190 0.0028	0.000017 0.000012	0.000 0.0006	0.0014 0.0000	0.001
Oct 9 NS-3	Oct 9 NS	2 - 4m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.64	9.82	2 9.71		109	7.7	3.8	0.127 0.07	0.00003			0.0595 0.			0.000171 0.0005	0.0006	0.14 12.	5 0.002 0.64	18 0.0013	0.017 6.70	0.0007	0.00023 0.0			0.0211 0.0021		0.000 0.0003	0.0024 0.0000	0.002
Oct 9 NS-4	Oct 9 NS	4m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.57 9.30	9.82 9.72	2 9.73	33	118	11.0	4.0	0.166 0.05	0.00001	0.355	n nnnn2	0.0673 0.	0.0428 5.43	0.000004	0.000254 0.0005	0.0005	0.33 12.	0.002 0.45 0.002 0.64 0.002 0.64 0.003 0.69 0.002 0.86 1 0.003 1.30	0.0024	0.011 7.29	0.0002	0.00023 0.0	0.056	0.00001	0.0196 0.0038	0.000002 0.000034	0.000 0.0004	0.0104 0.0000	J44 0.001
Mar 10 NS-1 Mar 10 NS-2	Mar 10 NS Mar 10 NS	0 m (Surface) 1 - 2m	Sub-economic mineralized mine rock Sub-economic mineralized mine rock	BRS+mt	300 300	900	9.30	9.72	2 9.46 2 9.41		175	12.0	4.6	0.058 1.65	0.00007	0.386	0.00002 0.00002	0.0788 0.	0.0100 4.09 0.0063 5.08	0.000027	0.000743	0.0005	0.22 31.	1 0.002 0.86	0.0016	0.012 7.47	0.0001	0.00018 0.3	1540 0.013 1360 0.015	0.00001	0.0265 0.0027 0.0232 0.0027	0.000034	0.001 0.0028	0.1760 0.0000)47 0.001 104 0.005
Mar 10 NS-3	Mar 10 NS	2 - 3m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.24	9.74	2 9.50	51	178	18.0	4.4	0.076 1.81	0.00003	0.321	0.00002	0.0814 0.	0.0097 4.17	0.000015 0.000011	1 0.000795 1 0.0005	0.0008						0.00016 0.3	1310 0.017	0.00001	0.0230 0.0031	0.000034 0.000016 0.000016	0.000 0.0025	0.0939 0.0000	038 0.005
Mar 10 NS-4	Mar 10 NS	4m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.10 8.62	9.75	2 9.48		166	12.0		0.048 1.27	0.00002		0.00002 0.00002	0.0695 0. 0.0582 0.	0.0095 4.06		0.000703	0.0005	0.19 23	0.003 1.24 4 0.004 1.18 9 0.003 1.04	0.0014	0.005 9.24	0.0001	0.00008 0.: 0.00023 0.:	1460 0.017 1110 0.035	0.00001	0.0249 0.0018 0.0128 0.0032	0.00001 0.000003	0.001 0.0038 0.000 0.0007	0.0974 0.0000 0.2870 0.0000	
Mar 8 NS-1 Mar 8 NS-2	Mar 8 NS Mar 8 NS	0 m (Surface) 0 - 1m	Sub-economic mineralized mine rock Sub-economic mineralized mine rock	BRS±mt	300 300	900	9.23	9.72 9.71	2 9.12 2 9.08	24	103	24.0 9.6	3.7	0.176 0.49 0.220 1.39	0.00002	0.250	0.00002	0.0582 0.	0.0235 8.58 0.0214 6.46	0.000003	0.000645 0.0005	0.0014 0.0014	0.52 11.	9 0.003 1.04	10 0.0025	0.009 5.30	0.0003	0.00023 0.0	0960 0.025	0.00001	0.0124 0.0049	0.000003	0.000 0.0007	0.2870 0.0000	048 0.001
Mar 8 NS-3	Mar 8 NS	1 - 2m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.16	9.77	2 9.12		105		3.7	0.272 0.63	0.00001		0.00002	0.0562 0.	0.0424 6.23	0.000003	0.0011 0.0005	0.0022	0.55 12	0.003 0.97	72 0.0037	0.003 4.43	0.0002	0.00045 0.:	1000 0.037	0.00001	0.0123 0.0057	0.000002	0.000 0.0007	0.1540 0.0000	J48 0.002
Mar 8 NS-4	Mar 8 NS	4m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.16	9.13	2 9.12		128	19.0		0.195 0.44 0.200 0.29					0.0253 8.37		0.000762 0.0005 0.000941 0.0005	0.0013	0.32 13.	5 0.004 1.40	0.0023	0.004 4.55	0.0001	0.00018 0.:			0.0125 0.0033		0.000 0.0006	0.2370 0.0000	J32 0.001
Mar 6 NS-1 Mar 6 NS-2	Mar 6 NS Mar 6 NS	0 m (Surface) 0 - 1m	Sub-economic mineralized mine rock Sub-economic mineralized mine rock	BRS±mt	300 300	900	8.48 9.34 9.47	9.74 9.85	2 9.06 2 9.44		104	7.1	3.8	0.200 0.29 0.319 0.33	0.00001	0.379	0.00002 0.00002	0.0505 0.	0.0537 4.49	0.000003	0.000941 0.0005 0.000693 0.0005	0.0012	0.46 12.	1 0.003 0.79	34 0.0023	0.008 4.39	0.0002	0.00033 0.0	1180 0.038 0935 0.058	0.00001 0.00001	0.0119 0.0049 0.0127 0.0042	0.000002 0.000002	0.000 0.0003	0.1530 0.0000	0.001
Mar 6 NS-3	Mar 6 NS	0 - 1m 1 - 2m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.47	9.85 9.82	2 9.35	34	126	10.0		0.249 0.32	0.00001	0.373	0.00002	0.0732 0.	0.0613 4.24	0.000004	0.000696 0.0005	0.0005 0.0005 0.0008	0.36 21.	5 0.004 1.40 5 0.003 0.75 1 0.003 0.55 5 0.003 0.48 9 0.003 0.55 2 0.004 0.81 8 0.002 1.42 5 0.003 1.20	30 0.0025	0.014 5.57	0.0001	0.00018 0.:	1170 0.060	0.00001	0.0127 0.0042 0.0137 0.0046 0.0145 0.0043	0.000002 0.000002	0.000 0.0002	0.1680 0.0000	04 0.001
Mar 6 NS-4	Mar 6 NS Oct 9 NS	4m	Sub-economic mineralized mine rock	BRS±mt BRS+mt	300 300	900 900	9.40 9.59	9.71 9.86	2 9.30 2 9.86	34	128 101	12.0		0.241 0.25 0.165 0.05	0.00001 0.00017		0.00002 0.00011	0.0741 0. 0.0496 0.	0.0612 4.84 0.0600 5.32		0.000614	0.0005	0.35 20.	9 0.003 0.59	0.0023	0.012 5.35	0.0002	0.00019 0.:	1170 0.058 0720 0.062	0.00002 0.00001	0.0145 0.0043 0.0189 0.0065	0.000002 0.000099	0.000 0.0002 0.001 0.0004	0.2390 0.0000 0.0155 0.0001	035 0.002 169 0.001
FC-3	Mar 10 NS	-	Sub-economic mineralized mine rock	BRS±mt	300	900	9.22	9.81 9.77	2 9.79		154	14.0	3.5				0.00001	0.0566 0.	0.0255 4.14		0.00126 0.0005 0.00132 0.0005	0.0011 0.0032	0.62 24.	8 0.002 1.42	20 0.0044	0.006 8.18	0.0003	0.00050 0.:	1250 0.017	0.00001 0.00001	0.0194 0.0081	0.000033	0.001 0.0036	0.2300 0.0001	162 0.002
FC-4	Mar 8 NS	-	Sub-economic mineralized mine rock	BRS±mt	300	900	9.22		2 9.49		101	14.0		0.249 0.48		0.243	0.00004	0.0408 0.	0.0623 7.67	0.000017	0.00132 0.0005	0.0032	1.16 10.	5 0.003 1.20	0 0.0071	0.003 4.08	0.0002	0.00052 0.:	1060 0.035	0.00001	0.0101 0.0108	0.00002	0.000 0.0008	0.0917 0.0001	116 0.002
Minimum Maximum							8.48 9.75	9.13 10.12	2 9.06 2 10.0		178	3.8 24.0	2.5 4.6		1.E-05 3.E-04	0.243	2.E-05 1.E-04	0.0408 0.	0.0063 4.06 0.0623 8.58	3.E-06 1.E-04	2.E-04 5.E-04 1.E-03 5.E-04	5.E-04 3.E-03							0573 0.013 1540 0.062	1.E-05 2.E-05	0.0101 0.0018	2.E-06 1.F-04	0.000 0.0002	0.0014 3.E-0 0.2870 2.E-0	5 0.001 04 0.005
Average Standard Deviation							9.27	9.76	2 9.47	34	126	11.5	3.6	0.177 0.76	3.E-04 6.E-05	0.465 0.342	3.E-05	0.0610 0.	0.0382 5.45	1.E-04 2.E-05	7.E-04 5.E-04	3.E-03 1.E-03	0.40 17.	80 0.004 1.42 84 0.003 0.91	11 0.0028	0.008 6.03	0.0002	0.00063 0. 0.00027 0.	1540 0.062 1062 0.039	2.E-05 1.E-05	0.0265 0.0108 0.0170 0.0044	1.E-04 2.E-05	0.000 0.0012	0.1258 6.E-0	
Standard Deviation							0.32	0.19	0 0.30	10	29	4.9	0.5	0.080 0.82	8.E-05	0.058	2.E-05	0.0115 0.	0.0206 1.41	3.E-05	3.E-04 2.E-19	7.E-04	0.23 6.4	4 0.001 0.34	10 0.0014	0.004 1.65	0.0001	0.00015 0.0	0266 0.018	2.E-06	0.0050 0.0022	3.E-05	0.000 0.0012	0.0913 4.E-0	/5 0.001
Oct 10 NS-1	Oct 10 NS	0 m (Surface) ore	2	BRS±mt	300	900	9.58	9.77	2 9.61	. 31	104	8.2	2.6	0.232 0.57	0.00001	0.357	0.00002	0.0493 0.	0.0090 5.05	0.000003	0.000463 0.0005	0.0007	0.22 12.	1 0.002 0.53	30 0.0023	0.012 6.77	0.0002	0.00030 0.0	0336 0.011	0.00001	0.0229 0.0041	0.000002	0.005 0.0029	0.0060 0.0000	048 0.002
Oct 10 NS-2	Oct 10 NS	1 - 2m ore		BRS±mt	300	900	9.61	9.64	2 9.52	. 30	99	5.9		0.219 0.60			0.00002	0.0485 0.	0.0090 5.05 0.0150 5.93	0.000003	0.000463	0.0005	0.38 10.	1 0.002 0.53 6 0.003 0.77 1 0.003 0.73	77 0.0040	0.007 5.25	0.0002	0.00029 0.0	0462 0.015 0557 0.018	0.00001		0.000002	0.003 0.0022	0.0135 0.0000	
Oct 10 NS-3 Oct 10 NS-4	Oct 10 NS Oct 10 NS	2 - 3m ore 3 - 4m ore		BRS±mt	300 300	900	9.54 9.60	9.73 9.76	2 9.78 2 9.79		112	6.5	3.6 2.5	0.187 0.77 0.303 0.64	0.00001	0.395	0.00002 0.00002	0.0517 0.	0.0125 5.42 0.0097 4.20	0.000003	0.0004 0.0005 0.000433 0.0005	0.0005	0.26 13.	1 0.003 0.73	38 0.0027	0.008 6.34	0.0001	0.00026 0.0	0557 0.018 0397 0.015	0.00001	0.0242 0.0035 0.0213 0.0048	0.000002	0.003 0.0020	0.0224 0.0000	039 0.001
Oct 12 DS-1		0 m (Surface) or	2	BRS±mt BRS±mt	300	900	9.32	9.31	2 9.16		395	86.0		0.143 0.54	0.00001	0.012	0.00002		0.0097 4.20	0.000003	0.000433	0.0008	0.01 42	8 0.003 0.52 0.006 3.05 6 0.003 0.70 6 0.003 0.73	0.0028	0.010 20.40	0.0004	0.00023 0.0 0.00002	0590 0.054	0.00001	0.0648 0.0005	0.000002	0.003 0.0023	0.0749 0.0000	0.002
Oct 12 DS-2	Oct 12 DS	0 - 1m ore	2	BRS±mt BRS±mt	300	900	9.72	9.63	2 9.58		111	6.2	2.9		0.00001	0.383	0.00002	0.0565 0.	0.0086 5.26	0.000003	0.000328 0.0005	0.0005	0.20 15.	6 0.003 0.70	0.0027	0.004 5.30	0.0001	0.00023 0.0	0489 0.023	0.00001	0.0210 0.0027	0.000002	0.003 0.0011	0.0556 0.0000	J36 0.001
Oct 12 DS-3 Oct 12 DS-4	Oct 12 DS Oct 12 DS	1 - 2m ore 3 - 4m ore	2	BRS±mt BRS±mt	300 300	900	9.61 9.64	9.70 9.77	2 9.55 2 9.57	36	145	12.0		0.178 1.25 0.192 0.84	0.00001 0.00001		0.00002 0.00002	0.0772 0. 0.0707 0.	0.0132 4.81 0.0144 4.96	0.000003 0.000003	0.000328 0.0005 0.000498 0.0005 0.000109 0.0005 0.000109 0.0005 0.000216 0.0005 0.000234 0.0005 0.000249 0.0005 0.0003 0.0005	0.0006	0.25 23.	6 0.003 0.73	11 0.0031	0.007 7.58	0.0002	0.00021 0.0 0.00022 0.0	0789 0.035 0609 0.030	0.00001 0.00001	0.0222 0.0040 0.0224 0.0041	0.000002 0.000002	0.003 0.0013 0.003 0.0013	0.1480 0.0000	
Oct 11 DS-1	Oct 11 DS	0 m (Surface) ore	2	BRS±mt	300	900	8.68	9.97	2 9.78	30	86	2.3		0.485 0.07	0.00001	0.433	0.00002	0.0400 0.	0.0018 3.77	0.000003	0.000109 0.0005	0.0005 0.0005 0.0006	0.28 17. 0.29 12.	4 0.003 0.74 7 0.002 0.26 4 0.002 0.53 1 0.002 0.57	55 0.0020	0.002 5.39	0.0002	0.00010 0.0	0128 0.003	0.00001	0.0141 0.0080	0.000002 0.000002 0.000002	0.002 0.0057	0.0124 0.0000	044 0.001 047 0.003
Oct 11 DS-2	Oct 11 DS	0 - 1m ore	2	BRS±mt	300	900	9.64	9.78	2 9.50		121	7.2	3.3	0.222 0.29	0.00002		0.00002 0.00002		0.0071 4.17	0.000003	0.000216 0.0005 0.000234 0.0005	0.0005	0.24 15.	4 0.002 0.53	0.0031	0.014 8.87	0.0001		0456 0.015	0.00001 0.00001	0.0248 0.0036	0.000002	0.005 0.0029	0.0163 0.0000	J39 0.001
Oct 11 DS-3 Oct 11 DS-4	Oct 11 DS Oct 11 DS	1 - 2m ore 4m ore		BRS±mt BRS±mt	300 300	900 900	9.66 9.65	9.76 9.69	2 9.51 2 9.41		136	9.7	2.9	0.199 0.23	0.00001 0.00001		0.00002		0.0124 4.13 0.0074 3.59		0.000234 0.0005	0.0006	0.25 19.	7 0.003 0.50	0.0032	0.016 9.29	0.0001	0.00032 0.0	0598 0.025 0466 0.018	0.00001	0.0248 0.0038 0.0236 0.0047	0.000002	0.005 0.0019 0.008 0.0038	0.0238 0.0000	041 0.002
Oct 9 DS-1	Oct 9 DS	0 - 1m ore	2	BRS±mt	300	900	9.55	9.65	2 9.49	30	89	5.4	2.8	0.204 0.04	0.00086	0.415	0.00012	0.0486 0.	0.0339 6.15	0.000124	0.0003 0.0005	0.0006 0.0005 0.0005	0.37 7.4	7 0.003 0.50 2 0.002 0.68 1 0.003 1.21	35 0.0025	0.007 4.57	0.0004	0.00054 0.0	0.064		0.0200 0.0039	0.000002 0.000134	0.001 0.0005	0.0033 0.0001	159 0.002
Oct 9 DS-2 Oct 9 DS-3	Oct 9 DS Oct 9 DS	2 - 3m ore 4m ore	<u> </u>	BRS±mt BRS±mt BRS±mt	300	900	9.45 9.35	9.51 9.71	2 9.30 2 9.32		138	17.0	3.5	0.145 0.08	0.00025		0.00011		0.0173 8.13	0.000116 0.000029	0.000407 0.0005 0.000226 0.0005	0.0005	0.24 12.	1 0.003 1.21 9 0.003 1.11 1 0.003 1.51 1 0.003 1.52 2 0.005 2.81 1 0.005 2.75 8 0.005 2.95 1 0.003 3.23 2 0.004 2.75	10 0.0022	0.017 6.63	0.0006	0.00071 0.0	0882 0.091		0.0243 0.0030 0.0194 0.0028	0.000123	0.001 0.0007	0.0052 0.0001	42 0.002
Aug 27 DS-1		0 m (Surface) or			300 300	900	9.38	9.71	2 9.32 2 8.10		117	6.4	3.0	0.139 7.69	0.0005	0.387		0.0490 0.	0.0197 8.27 0.0022 8.94	0.000023	0.00402 0.0005 0.00281 0.0005 0.00365 0.0005 0.0031 0.0005 0.00224 0.0005	0.0005 0.0005 0.0005 0.0005	0.38 9.7	1 0.003 1.59	0.0020	0.005 5.25	0.0002	0.00032 0.0	1010 0.095 0372 0.007	0.00001	0.0145 0.0032	0.000002	0.000 0.0024	0.0032 0.0000	041 0.002
Aug 27 DS-2	Aug 27 DS	0 - 1m ore		BRS±mt	300	900	9.52	9.18	2 8.31		151	11.0	3.2	0.114 7.43	0.0005	0.368	0.00002	0.0709 0.	0.0022 8.94 0.0055 9.14 0.0031 14.20	0.000003 0.000003 0.000003	0.00281 0.0005	0.0005	0.21 17.	4 0.006 1.70	0.0023	0.005 6.55	0.0002	0.00015 0.0	0372 0.007 0538 0.004 0511 0.006	0.00001 0.00001 0.00001 0.00001	0.0181 0.0025 0.0234 0.0008	0.000002 0.000002	0.000 0.0024 0.002 0.0024 0.001 0.0016	0.0178 0.0000)25 0.002
Aug 27 DS-3 Aug 27 DS-4	Aug 27 DS Aug 27 DS	2 - 3m ore 4m ore	2	BRS±mt BRS+mt	300 300	900	9.34 9.34	9.08 9.09	2 8.22 2 8.44		172	23.0	3.5	0.046 6.90 0.046 6.17		0.279 0.260	0.00002 0.00002	0.0804 0.	0.0031 14.20 14.40	0.000003 0.000003	0.00365 0.0005 0.0031 0.0005	0.0005	0.07 8.7	2 0.005 2.81	0.0020	0.004 6.51	0.0003	0.00004 0.0	0511 0.006 0518 0.006	0.00001	0.0234 0.0008 0.0213 0.0007	0.000002	0.001 0.0016 0.001 0.0015	0.0203 0.0000	0.002
Aug 28 DS-1	Aug 28 DS	0 - 1m ore	2	BRS±mt	300	900	9.52	9.11	2 8.44	31	177	19.0		0.073 8.84	0.0005	0.295	0.00002	0.0758 0.	0.0012 12.20	0.000003	0.00224 0.0005	0.0005 0.0005	0.23 12.3	8 0.005 2.95	0.0021	0.009 9.22	0.0002	0.00009 0.0	0.004	0.00001	0.0276 0.0018	0.000002	0.003 0.0016	0.0578 0.0000	023 0.002
Aug 28 DS-2	Aug 28 DS	1 - 2m ore	2	BRS±mt	300	900	9.39	9.17	2 9.03		177	20.0	4.2	0.059 9.08		0.273	0.00016	0.0735 0.			0.002 0.0005 0.00173 0.0005	0.0005 0.0005	0.26 10.	1 0.003 3.23	30 0.0035	0.004 9.02	0.0003	0.00023 0.0	0582 0.003 0598 0.003	0.00001 0.00001	0.0253 0.0019	0.000175 0.000164	0.003 0.0015	0.0561 0.0001	182 0.001
Aug 28 DS-3 Aug 28 DS-4	Aug 28 DS Aug 28 DS	2 - 3m ore 4m ore	2	BRS±mt BRS±mt	300 300	900 900	9.41	9.14 9.00	2 8.49 2 8.14		1/9	15.0	3.8	0.089 9.67	0.0002	0.291	0.00015	0.0743 0. 0.0647 0.	0.0010 13.10	0.000171 0.000042	0.001/3 0.0005 0.00246 0.0005	0.0005	0.22 11.	3 0.004 3.17 3 0.004 2.75	0.003/	0.006 7.52	0.0004	0.00021 0.0	0598 0.003 0520 0.004	0.00001	0.0268 0.0017 0.0239 0.0019	0.000164	0.002 0.0013 0.001 0.0017	0.0217 0.0002 0.0655 0.0000	068 0,002
Aug 21 NS-1	Aug 21 NS	0 m (Surface) ore	2	BRS±mt BRS±mt BRS±mt	300	900	9.39	9.63	2 8.91	. 27	125	13.0	3.4	0.194 1.60	0.0005	0.299	0.00002	0.0581 0.	0.0016 5.78	0.000014	0.0017 0.0005	0.0006	0.36 12.	2 0.003 0.84	15 0.0030	0.012 8.84	0.0003	0.00036 0.0	0409 0.005	0.00001	0.0170 0.0054	0.000015	0.002 0.0042	0.0204 0.0000	J68 0.002
Aug 21 NS-2 Aug 21 NS-3	Aug 21 NS	0 - 1m Ore	2	BRS±mt BRS+mt	300 300	900 900	9.52 9.53	9.47 9.65	2 8.78 2 8.90	28	145	19.0	3.4 2.9	0.143 0.73 0.127 0.83	0.00003		0.00002	0.0544 0. 0.0644 0.	0.0033 6.87		0.000913 0.0005 0.000875 0.0005	0.0005	0.49 9.7	0.004 2.73 2 0.003 0.84 3 0.004 1.34 8 0.002 1.24 5 0.003 1.33 3 0.002 0.54	10 0.0042	0.009 11.20	0.0003	0.00029 0.0	0474 0.005 0575 0.004	0.00001 0.00001	0.0208 0.0047 0.0204 0.0041	0.000013	0.001 0.0025 0.001 0.0025	0.0188 0.0000 0.0152 0.0000	0.002
Aug 21 NS-4	Aug 21 NS Aug 21 NS	2 - 3m ore 4m ore	<u> </u>	BRS±mt	300	900	9.53	9.61	2 8.76	30	146	19.0	3.8	0.127 0.83	0.00001	0.276	0.00002	0.0598 0.	0.0027 7.13	0.000008	0.000875 0.0005	0.0005	0.49 9.3	5 0.002 1.24	30 0.0043	0.015 12.30	0.0003	0.00040 0.0	0596 0.003	0.00001	0.0215 0.0047	0.000005	0.002 0.0027	0.0152 0.0000	
Aug 20 NS-1	Aug 20 NS	0 m (Surface) ore		BRS±mt	300	900	9.50	9.76	2 8.87	28	100	5.8	3.3	0.271 1.40		0.368	0.00002	0.0489 0.	0.0010 4.07	0.000003	0.00123 0.0005	0.0005 0.0007 0.0005 0.0007	0.32 13.	3 0.002 0.54 4 0.003 0.71	14 0.0025	0.006 6.67	0.0003	0.00041 0.0	0250 0.003	0.00001	0.0150 0.0062	0.000004	0.005 0.0065	0.0167 0.0000	J53 0.002
Aug 20 NS-2 Aug 20 NS-3	Aug 20 NS Aug 20 NS	0 - 1m ore 1 - 2m ore	2	BRS±mt BRS±mt BRS±mt BRS±mt BRS±mt	300 300	900 900	9.47 9.48	9.77 9.74	2 8.95 2 9.01		117 154	5.5 18.0	4.8	0.202 1.50 0.132 2.44		0.410	0.00002 0.00002		0.0013 4.98 0.0007 6.51	0.000003 0.000003	0.000997 0.0005 0.00106 0.0005	0.0005						0.00037 0.0	0324 0.003 0373 0.005	0.00001 0.00001	0.0168 0.0049 0.0218 0.0024	0.000002 0.000002	0.003 0.0042 0.005 0.0052	0.0258 0.0000	047 0.001 025 0.001
Aug 20 NS-4	Aug 20 NS	4m ore	2	BRS±mt	300	900	9.44	9.40	2 8.89	32	154	18.0	5.2	0.168 2.42	0.0005	0.293	0.00002	0.0869 0.	0.0013 6.51	0.000003	0.00159 0.0005	0.0009	0.27 16.	1 0.003 0.99 9 0.003 1.07	70 0.0027	0.011 10.10	0.0003	0.00040 0.0	0365 0.005	0.00001	0.0226 0.0044	0.000002	0.007 0.0052	0.0434 0.0000	J43 0.002
Aug 18 NS-1	Aug 18 NS	0 - 1m ore	2	BRS±mt	300	900	9.68	9.43	2 8.52		137	11.0			0.00001		0.00002		0.0007 6.89	0.000003	0.000826 0.0005	0.0005						0.00021 0.0	0320 0.005	0.00001 0.00001	0.0245 0.0037	0.000002	0.003 0.0030	0.0061 0.0000	J45 0.002
Aug 18 NS-2 Aug 18 NS-3	Aug 18 NS Aug 18 NS	1 - 2m ore	2	BRS±mt	300 300	900	9.63 9.57	9.54 9.49	2 8.75 2 8.68		150	15.0 15.0		0.191 3.94 0.228 1.96		0.320	0.00002 0.00002		0.0008 6.90 0.0011 6.38	0.000003	0.00199 0.0005 0.00183 0.0005 0.00108 0.0005	0.0005 0.0011 0.0007	0.40 15.	9 0.003 1.05 4 0.003 0.96 0.003 0.58	0.0043 55 0.0050	0.007 9.44	0.0004	0.00028 0.0 0.00043 0.0	0426 0.005 0309 0.004 0534 0.009	0.00001	0.0253 0.0049 0.0278 0.0056	0.000002 0.000002	0.005 0.0039 0.003 0.0034	0.0101 0.0000 0.0068 0.0000	
Aug 23 DS-1		0 m (Surface) ore	2	BRS±mt	300	900	9.54	9.68	2 8.86	29	103	6.9		0.259 0.76	0.0005	0.373	0.00002	0.0515 0.	0.0051 4.64	0.000003	0.00108 0.0005	0.0007	0.40 13	0.003 0.58	32 0.0027	0.006 7.34	0.0003	0.00070 0.0	0534 0.009	0.00001 0.00001	0.0159 0.0059	0.000002	0.004 0.0043	0.0133 0.0000	
Aug 23 DS-2	Aug 23 DS	0 - 1m ore	2	BRS±mt	300	900	9.12 9.33	9.48	2 8.57	26	114 132	7.8	3.4	0.243 0.86 0.127 0.45	0.00002	0.359 0.277	0.00002	0.0455 0.	0.0062 7.19	0.000003 0.000003	0.00114 0.0005	0.0005	0.56 10.	6 0.003 1.02	0.0046	0.006 6.73	0.0003	0.00074 0.0	0672 0.007 0826 0.014	0.00001	0.0233 0.0065	0.000002	0.003 0.0025 0.002 0.0012	0.0205 0.0000	J85 0.002
Aug 23 DS-3 Aug 23 DS-4	Aug 23 DS Aug 23 DS	1 - 3m ore	ź	BRS±mt BRS±mt	300	900	9.33	9.48 9.44 9.63	2 8.53 2 9.60	39	132	17.0 13.0		0.127 0.45 0.186 2.04	0.0005 0.0005		0.00002 0.00002	0.0560 0. 0.0584 0.	0.0075 9.26 0.0054 6.94	0.000003	0.00114	0.0005	0.40 10.	6 0.003 1.02 8 0.004 1.39 5 0.004 1.12 6 0.005 1.21	20 0.0041	0.004 5.57	0.0004	0.00084 0.0	0826 0.014 0774 0.008	0.00001	0.0175 0.0042 0.0151 0.0055	0.000002 0.000002	0.002 0.0012 0.002 0.0027	0.1330 0.0000	x46 U.UUZ x06 0.003
Aug 24 DS-1	Aug 24 DŞ	0 - 1m Ore	2	BRS±mt	300	900	9.33	9.57	2 9.30	27	126	16.0	3.0	0.293 1.86	0.0005		0.00002	0.0487 0.	0.0075 6.99	0.000004	0.00417 0.0005	0.0007	1.06 16.	6 0.005 1.21	10 0.0073	0.009 5.90	0.0004	0.00105 0.0	0786 0.010	0.00001	0.0146 0.0122	0.000002	0.004 0.0023	0.0175 0.0001	118 0.004
Aug 24 DS-2	Aug 24 DS	1 - 3m ore	2	BRS±mt	300	900	9.32	9.37	2 9.29		178	37.0	3.4	0.167 1.41	0.0005	0.156	0.00002		0.0063 9.69	0.000004	0.00263 0.0005	0.0006	0.56 23	0.007 1.77	0 0 0044	0.018 6.41	0.0003	0.00055 0.0	0898 0.014	0.00001	0.0184 0.0064	0.000002	0.006 0.0015	0.0290 0.0000	J65 0.003
Aug 24 DS-3 FC-5	Aug 24 DS Aug 28 DS	4m ore	2	BRS±mt	300 300	900	9.41 9.41	9.53 9.31	2 9.25 2 8.70	24	143 94	7.4	1.5	0.170 6.11	0.00098	0.296	0.00031	0.0349 0.	0.0072 7.27 0.0047 7.69		0.00291 0.0005 0.00415 0.0005	0.0008 0.0005	0.76 19.	0.005 1.20	30 0.0054	0.002 4.42	0.0005	0.00027 0.0	0860 0.011 0278 0.003	0.00001	0.0150 0.0079 0.0158 0.0064	0.000313	0.004 0.0019	0.0186 0.0003	
Minimum							8.68	9.00	2 8.10	16	86	2.3	1.5	0.046 0.03	1.E-05	0.012	2.E-05	0.0349 0	0.0007 3.59	3.E-06	1.E-04 5.E-04	0.0005 5.E-04	0.01 7.4	4 0.005 1.20 5 0.002 1.48 2 0.002 0.26 00 0.007 3.23	55 0.0014	0.002 4.42	0.0001	0.00002 0.0	0128 0.003	1.E-05	0.0141 0.0005	2.E-06	0.000 0.0003	0.0032 1.E-0	0.001
Maximum							9.72 9.47	9.97	2 9.79 2 9.03		395	86.0		0.485 9.62 0.180 2.55		0.433 0.318	3.E-04 4.E-05	0.0926 0. 0.0621 0.	0.0339 27.50	3.E-04 3.E-05	4.E-03 5.E-04 1.E-03 5.E-04	1.E-03 6.E-04	1.06 42.0	00 0.007 3.23 28 0.003 1.30	0.0073	0.018 20.40	0.0006	0.00105 0.: 0.00035 0.:	1010 0.095 0543 0.016	1.E-05 1.E-05	0.0648 0.0122 0.0221 0.0043	3.E-04 3.E-05	0.008 0.0065 0.003 0.0025		
Average Standard Deviation							0.18	9.52 0.24	0 0.49	5	48	13.2	0.9	0.079 2.97	3.E-04	0.081	6.E-05	0.0138 0.	0.0066 4.21	6.E-05	1.E-03 3.E-19	1.E-04	0.33 14.2	1 0.001 0.8	30 0.0012	0.004 2.85	0.0001	0.00024 0.0	0196 0.022	1.E-20	0.0078 0.0022	6.E-05	0.002 0.0014	0.0400 7.E-0	0.002
							•			•	•																	1							

bold italic Indicates values is less than the analytical detection limit.

1. Sample classified as "waste" or "ore" according to average assay grades of each pile (as provided by Fortune) and August 2008 cut-off criterion.

2. Lithology based on dominant visible lithology in field. Rock may be diluted with minor proportions of other lithologies of waste rock.

Appendix IV-5c Short-Term Leach Test Results - Shake Flask Extraction - Sub-economic mineralized mine rock and Ore - Bulk Sample Stockpile Samples (Typical Sample Preparation) NICO Project, Fortune Minerals Ltd.

											NICO PIOJECL, FO	rtune Minerais Ltd.																	
Sample ID	Pile ID	Depth	Waste / Ore ¹	Dominant	Sample	Volume mL	InitialpH	Final pH	Acidity	pН	Alkalinity	Conductivity	SO4	Cl	Al	As	Ag	Ва	Be	В	Bi	Ca	Cd	Со	Cr	Cu	Fe	К	Li
Jampie 15		эсри.	waste / ore	Lithology ²	weight(g)	D.I. H2O	units	units	mg/L as CaCO3	units	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Oct 9 NS-1	Oct 9 NS	0 m (Surface)	Sub-economic mineralized mine rock	BRS±mt	300	900	9.8	9.80	2	9.59	29	102	6.1	3.3	0.150	0.0369	0.00013	0.369	0.00003	0.0573	0.0182	5.46	0.000026	0.000215	0.0005	0.0005	0.33	13.2	0.003
Oct 9 NS-2	Oct 9 NS	0 - 1m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.6	9.59	46	9.34	2	1	13	3.6	0.107	0.0223	0.00002	0.315	0.00002	0.0683	0.0160	6.05	0.000022	0.000124	0.0005	0.0005	0.22	14.3	0.003
Mar 10 NS-1	Mar 10 NS	0 m (Surface)	Sub-economic mineralized mine rock	BRS±mt	300	900	9.5	9.48	2	9.25	43	178	20	2.3	0.122	0.490	0.00001	0.295	0.00002	0.0920	0.0150	4.07	0.000006	0.000839	0.0005	0.0006	0.43	29.8	0.002
Mar 10 NS-2	Mar 10 NS	1 - 2m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.4	9.56	2	9.38	50	183	20	2.7	0.112	0.607	0.00001	0.289	0.00002	0.0715	0.0151	4.16	0.000005	0.000831	0.0005	0.0008	0.40	25.9	0.002
Aug 27 DS-1	Aug 27 DS	0 m (Surface)	ore	BRS±mt	300	900	9.5	8.95	4	7.79	27	166	17	4.0	0.0719	3.33	0.00002	0.322	0.00004	0.0839	0.0100	12.3	0.000023	0.00185	0.0005	0.0006	0.36	9.20	0.006
Aug 27 DS-2	Aug 27 DS	0 - 1m	ore	BRS±mt	300	900	9.5	9.19	2	8.08	25	153	19	3.0	0.0999	2.90	0.00001	0.301	0.00002	0.0935	0.00348	10.8	0.000005	0.00179	0.0005	0.0006	0.47	12.0	0.004
Oct 10 NS-1	Oct 10 NS	0 m (Surface)	ore	BRS±mt	300	900	9.6	9.46	2	9.22	34	138	12	4.9	0.267	0.343	0.00001	0.342	0.00002	0.0681	0.00806	4.98	0.000014	0.000502	0.0005	0.0008	0.51	17.0	0.004
Oct 10 NS-2	Oct 10 NS	1 - 2m	ore	BRS±mt	300	900	9.5	9.39	2	9.18	36	137	14	3.4	0.230	0.340	0.00001	0.334	0.00002	0.0702	0.0127	5.78	0.000015	0.000708	0.0005	0.0008	0.47	18.4	0.004

			1	Dominant	Sample	Volume mL	InitialpH	Final pH	Acidity	pН	Alkalinity	Conductivity	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	Ti	U	V	W	Y	Zn
Sample ID	Pile ID	Depth	Waste / Ore ¹	Lithology ²	weight(g)	D.I. H2O	units	units	mg/L as CaCO3	units	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Oct 9 NS-1	Oct 9 NS	0 m (Surface)	Sub-economic mineralized mine rock	BRS±mt	300	900	9.8	9.80	2	9.59	29	102	0.666	0.00878	0.0118	6.27	0.0012	0.00022 0	.0562	0.056	0.00001	0.0181	0.0038	0.000049	0.000262	0.00027	0.00298	0.000077	0.001
Oct 9 NS-2	Oct 9 NS	0 - 1m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.6	9.59	46	9.34	2	1	1.04	0.00471	0.0118	5.63	0.0009	0.00015 0	.0557	0.068	0.00001	0.0246	0.0026	0.000016	0.000364	0.00013	0.00195	0.000057	0.001
Mar 10 NS-1	Mar 10 NS	0 m (Surface)	Sub-economic mineralized mine rock	BRS±mt	300	900	9.5	9.48	2	9.25	43	178	1.25	0.00485	0.0118	8.04	0.0018	0.00024 0	.102	0.016	0.00001	0.0271	0.0058	0.000006	0.000468	0.00165	0.111	0.000045	0.001
Mar 10 NS-2	Mar 10 NS	1 - 2m	Sub-economic mineralized mine rock	BRS±mt	300	900	9.4	9.56	2	9.38	50	183	1.34	0.00410	0.0107	8.92	0.0022	0.00016 0	.107	0.020	0.00001	0.0223	0.0053	0.000006	0.000785	0.00139	0.170	0.000048	0.001
Aug 27 DS-1	Aug 27 DS	0 m (Surface)	ore	BRS±mt	300	900	9.5	8.95	4	7.79	27	166	2.53	0.00553	0.00465	11.8	0.0025	0.00009 0	.0365	0.009	0.00001	0.0246	0.0028	0.000019	0.00150	0.00122	0.0189	0.000067	0.002
Aug 27 DS-2	Aug 27 DS		ore	BRS±mt	300	900	9.5	9.19	2	8.08	25	153	2.26	0.00414	0.00399	7.19	0.0022	0.00019 0	.0283	0.008	0.00001	0.0199	0.0040	0.000002	0.00140	0.00226	0.0197	0.000051	0.003
Oct 10 NS-1	Oct 10 NS	0 m (Surface)	ore	BRS±mt	300	900	9.6	9.46	2	9.22	34	138	0.824	0.00597	0.0142	9.48	0.0011	0.00041 0	.0329	0.016	0.00001	0.0261	0.0095	0.000002	0.00430	0.00398	0.00435	0.000106	0.002
Oct 10 NS-2	Oct 10 NS	1 - 2m	ore	RRS+mt	300	900	9.5	9.39	2	9.18	36	137	1.19	0.00545	0.0143	7.81	0.0014	0.00036 0	.0444	0.022	0.00003	0.0327	0.0071	0.000012	0.00401	0.00183	0.112	0.000076	0.002

Oct 10 NS-2 Oct 10 NS 1 - 2m Ore BRS±mt 300 900

bold Italic Indicates values is less than the analytical detection limit.

1. Sample classified as "waste" or "ore" according to average assay grades of each pile (as provided by Fortune) and August 2008 cut-off criterion.

2. Lithology based on dominant visible lithology in field. Rock may be diluted with minor proportions of other lithologies of waste rock.

Golder Associates Created by: KAS 21of28 Checked: KJD

Appendix IV-5d

Comparison of Results of Shake Flask Extraction Testing Conducted on Unmodified and Crushed/Ground Samples

Nico Project, Fortune Minerals Ltd.

Sample Prepar	ation ¹	Typical Preparation	No Preparation										
Sample ID		Oct 9 NS-1	Oct 9 NS-1		Oct 9 NS-2	Oct 9 NS-2		Mar 10 NS-1	Mar 10 NS-1		Mar 10 NS-2	Mar 10 NS-2	
Depth		0 m (Surface)	0 m (Surface)	Relative Percent	0 - 1m	0 - 1m	Relative Percent	0 m (Surface)	0 m (Surface)	Relative Percent	1 - 2m	1 - 2m	Relative Percent
		Sub-economic	Sub-economic	Difference									
Sub-economic	mineralized mine rock / Ore2	mineralized mine	mineralized mine		mineralized mine	mineralized mine		mineralized mine	mineralized mine		mineralized mine	mineralized mine	
		rock	rock		rock	rock		rock	rock		rock	rock	
Dominant Lith	ology ³	BRS±mt	BRS±mt										
Acidity	mg/L as CaCO3	2	2	0%	46	2	183%	2	2	0%	2	2	0%
рН	units	9.59	10	4%	9.34	9.9	6%	9.25	9.46	2%	9.38	9.41	0%
Alkalinity	mg/L as CaCO3	29	32	10%	2	30	175%	43	46	7%	50	46	8%
Conductivity	uS/cm	102	97	5%	1	92	196%	178	175	2%	183	170	7%
SO4	mg/L	6.1	4.7	26%	13	3.8	110%	20	11	58%	20	12	50%
Cl	mg/L	3.3	3.3	0%	3.6	3.5	3%	2.3	3.9	52%	2.7	4.6	52%
Al	mg/L	0.15	0.263	55%	0.107	0.141	27%	0.122	0.0582	71%	0.112	0.0557	67%
As	mg/L	0.0369	0.0516	33%	0.0223	0.0515	79%	0.49	1.65	108%	0.607	2.9	131%
Ag	mg/L	0.00013	0.00032	84%	0.00002	0.00004	67%	0.00001	0.00007	150%	0.00001	0.00003	100%
Ва	mg/L	0.369	0.336	9%	0.315	0.465	38%	0.295	0.386	27%	0.289	0.38	27%
Ве	mg/L	0.00003	0.00002	40%	0.00002	0.00002	0%	0.00002	0.00002	0%	0.00002	0.00002	0%
В	mg/L	0.0573	0.0561	2%	0.0683	0.0533	25%	0.092	0.0788	15%	0.0715	0.0745	4%
Bi	mg/L	0.0182	0.0579	104%	0.016	0.0548	110%	0.015	0.01	40%	0.0151	0.00626	83%
Ca	mg/L	5.46	5.14	6%	6.05	5	19%	4.07	4.09	0%	4.16	5.08	20%
Cd	mg/L	0.000026	0.000006	125%	0.000022	0.000009	84%	0.000006	0.000027	127%	0.000005	0.000015	100%
Со	mg/L	0.000215	0.000214	0%	0.000124	0.000171	32%	0.000839	0.000743	12%	0.000831	0.000717	15%
Cr	mg/L	0.0005	0.0005	0%	0.0005	0.0005	0%	0.0005	0.0005	0%	0.0005	0.0005	0%
Cu	mg/L	0.0005	0.0007	33%	0.0005	0.0005	0%	0.0006	0.0005	18%	0.0008	0.0005	46%
Fe	mg/L	0.33	0.5	41%	0.22	0.24	9%	0.43	0.22	65%	0.4	0.22	58%
К	mg/L	13.2	13.4	2%	14.3	12	17%	29.8	31.8	6%	25.9	25.1	3%
Li	mg/L	0.003	0.002	40%	0.003	0.002	40%	0.002	0.002	0%	0.002	0.003	40%
Mg	mg/L	0.666	0.414	47%	1.04	0.453	79%	1.25	0.865	36%	1.34	1.3	3%
Mn	mg/L	0.00878	0.00336	89%	0.00471	0.00209	77%	0.00485	0.00156	103%	0.0041	0.00185	76%
Мо	mg/L	0.0118	0.00743	45%	0.0118	0.0112	5%	0.0118	0.0116	2%	0.0107	0.0127	17%
Na	mg/L	6.27	6.17	2%	5.63	5.24	7%	8.04	7.47	7%	8.92	7.75	14%
Ni	mg/L	0.0012	0.0003	120%	0.0009	0.0002	127%	0.0018	0.0001	179%	0.0022	0.0002	167%
Pb	mg/L	0.00022	0.0002	10%	0.00015	0.0002	29%	0.00024	0.00018	29%	0.00016	0.00013	21%
Sb	mg/L	0.0562	0.0573	2%	0.0557	0.0745	29%	0.102	0.154	41%	0.107	0.136	24%
Se		0.056	0.039	36%	0.068	0.052	27%		0.013	21%	0.02	0.015	29%
Sn	mg/L	0.00001	0.00001	0%	0.00001	0.00001	0%	0.00001	0.00001	0%	0.00001	0.00001	0%
Sr	mg/L	0.0181	0.0152	17%	0.0246	0.019	26%	0.0271	0.0265	2%	0.0223	0.0232	4%
Ti	mg/L	0.0038	0.0042	10%	0.0026	0.0028	7%	0.0058	0.0027	73%	0.0053	0.0027	65%
TI	mg/L	0.000049	0.000017	97%	0.000016	0.000012	29%	0.000006	0.000034	140%	0.000006	0.000016	91%
U	mg/L	0.000262	0.00021	22%	0.000364	0.000175	70%	0.000468	0.000529	12%	0.000785	0.00063	22%
v	mg/L	0.00027	0.0006	76%	0.00013	0.00032	84%	0.00165	0.00276	50%	0.00139	0.00303	74%
w	mg/L	0.00298	0.00143	70%	0.00195	0.00239	20%		0.176	45%	0.17	0.0809	71%
Υ	mg/L	0.000077	0.000064	18%	0.000057	0.000039	38%		0.000047	4%	0.000048	0.00004	18%
Zn	mg/L	0.001	0.001	0%	0.001	0.001	0%	0.001	0.001	0%	0.001	0.005	133%

Golder Associates

Created by: KAS Checked: KJD

Sample Prepa	1	Typical	No Preparation		Typical	No Preparation		Typical	No Preparation		Typical	No Preparation	
Sample ID	ration	Aug 27 DS-1	Aug 27 DS-1	-	Aug 27 DS-2	Aug 27 DS-2	-	Oct 10 NS-1	Oct 10 NS-1	-	Oct 10 NS-2	Oct 10 NS-2	
Depth		0 m (Surface)	0 m (Surface)	Relative Percent	0 - 1m	0 - 1m	Relative Percent	0 m (Surface)	0 m (Surface)	Relative Percent	1 - 2m	1 - 2m	Relative Percent
	mineralized mine rock / Ore2	<u> </u>	ore	Difference	ore	ore	Difference	ore	ore	Difference	ore	ore	Difference
Dominant Lith		BRS±mt	BRS±mt		BRS±mt	BRS±mt		BRS±mt	BRS±mt		BRS±mt	BRS±mt	
Acidity	mg/L as CaCO3	4	2	#REF!	2	2	#REF!	2	2	#REF!	2	2	#REF!
pH	units	7.79	8.1	#REF!	8.08	8.31	#REF!	9.22	9.61	#REF!	9.18	9.52	#REF!
Alkalinity	mg/L as CaCO3	27	24	#REF!	25	30	#REF!	34	31	#REF!	36	30	#REF!
Conductivity	uS/cm	166	117	#REF!	153	151	#REF!	138	104	#REF!	137	99	#REF!
SO4	mg/L	17	6.4	#REF!	19	11	#REF!	12	8.2	#REF!	14	5.9	#REF!
CI	mg/L	1	3	#REF!	3	3.2	#REF!	4.9	2.6	#REF!	3.4	3.2	#REF!
Al	mg/L	0.0719	0.139	#REF!	0.0999	0.114	#REF!	0.267	0.232	#REF!	0.23	0.219	#REF!
As	mg/L	3.33	7.69	#REF!	2.9	7.43	#REF!	0.343	0.568	#REF!	0.34	0.602	#REF!
Ag	mg/L	0.00002	0.0005	#REF!	0.00001	0.0005	#REF!	0.00001	0.00001	#REF!	0.00001	0.00001	#REF!
<u>гв</u> Ва	mg/L	0.322	0.387	#REF!	0.301	0.368	#REF!	0.342	0.357	#REF!	0.334	0.409	#REF!
Be	mg/L	0.00004	0.00002	#REF!	0.00002	0.00002	#REF!	0.00002	0.00002	#REF!	0.00002	0.00002	#REF!
B	mg/L	0.0839	0.049	#REF!	0.0935	0.0709	#REF!	0.0681	0.0493	#REF!	0.0702	0.0485	#REF!
Ri	mg/L	0.01	0.00215	#REF!	0.00348	0.00553	#REF!	0.0081	0.00899	#REF!	0.0127	0.015	#REF!
Са	mg/L	12.3	8.94	#REF!	10.8	9.14	#REF!	4.98	5.05	#REF!	5.78	5.93	#REF!
Cd	mg/L	0.000023	0.000003	#REF!	0.000005	0.000003	#REF!	0.000014	0.000003	#REF!	0.000015	0.000003	#REF!
Co	mg/L	0.000023	0.000003	#REF!	0.000003	0.00281	#REF!	0.000502	0.000463	#REF!	0.000708	0.00003	#REF!
Cr	mg/L	0.00183	0.00402	#REF!	0.00179	0.00281	#REF!	0.0005	0.000403	#REF!	0.000708	0.000430	#REF!
Cu	mg/L	0.0003	0.0005	#REF!	0.0003	0.0005	#REF!	0.0003	0.0003	#REF!	0.0008	0.0005	#REF!
Fe	mg/L	0.36	0.38	#REF!	0.47	0.0003	#REF!	0.51	0.22	#REF!	0.47	0.38	#REF!
re v		9.2	9.71	#REF!	12	17.4	#REF!	17	12.1	#REF!	18.4	10.6	#REF!
I :	mg/L	0.006	0.003	#REF!	0.004	0.006	#REF!	0.004	0.002	#REF!	0.004	0.003	#REF!
Mg	mg/L mg/L	2.53	1.59	#REF!	2.26	1.7	#REF!	0.824	0.53	#REF!	1.19	0.777	#REF!
Mn	mg/L	0.00553	0.00295	#REF!	0.00414	0.00229	#REF!	0.00597	0.0023	#REF!	0.00545	0.00395	#REF!
Mo	mg/L	0.00333	0.00293	#REF!	0.00399	0.00229	#REF!	0.00397	0.0023	#REF!	0.0143	0.00333	#REF!
Na	mg/L	11.8	5.25	#REF!	7.19	6.55	#REF!	9.48	6.77	#REF!	7.81	5.25	#REF!
Ni	mg/L	0.0025	0.0002	#REF!	0.0022	0.0002	#REF!	0.0011	0.0002	#REF!	0.0014	0.0002	#REF!
Pb	mg/L	0.0023	0.0002	#REF!	0.0022	0.0002	#REF!	0.00011	0.0002	#REF!	0.00036	0.0002	#REF!
Sb	mg/L	0.0365	0.00011	#REF!	0.00019	0.0538	#REF!	0.0329	0.0336	#REF!	0.00036	0.0462	#REF!
Se	mg/L	0.009	0.007	#REF!	0.0283	0.004	#REF!	0.0329	0.0330	#REF!	0.022	0.0462	#REF!
Sn Sn	mg/L	0.00001	0.0007	#REF!	0.00001	0.0001	#REF!	0.00001	0.00001	#REF!	0.00003	0.0001	#REF!
	mg/L	0.0246	0.0145	#REF!	0.0199	0.00001	#REF!	0.0001	0.00001	#REF!	0.0327	0.0001	#REF!
Sr Ti	mg/L	0.0028	0.0145	#REF!	0.0199	0.0181	#REF!	0.0095	0.0229	#REF!	0.0327	0.027	#REF!
TI	mg/L	0.0028	0.0032	#REF!	0.000002	0.0023	#REF!	0.000002	0.000002	#REF!	0.00012	0.000002	#REF!
<u>''</u>	mg/L	0.00019	0.000002		0.00002	0.000002		0.00002	0.00525		0.000012	0.00261	
V		0.0013	0.000452	#REF!	0.0014	0.00174	#REF!	0.0043	0.00323	#REF!		0.00281	#REF!
W	mg/L	0.00122	0.00236	#REF!	0.00226	0.00237	#REF!	0.00398	0.00286	#REF!	0.00183 0.112	0.00221	#REF!
v	mg/L			#REF!			#REF!			#REF!			#REF!
7	mg/L	0.000067	0.000041	#REF!	0.000051	0.000025	#REF!	0.000106	0.000048	#REF!	0.000076	0.000056	#REF!
Zn	mg/L	0.002	0.002	#REF!	0.003	0.002	#REF!	0.002	0.002	#REF!	0.002	0.002	#REF!

1.0 Indicates the highest concentration measured in the prepared / unmodified samples, respectively.

1.0 Indicates an RPD greater than 20%.

Golder Associates

Created by: KAS

Checked: KJD

^{1. &}quot;Typical preparation" indicates that the sample was crushed and ground, according to standard procedures prior to short-term leach testing. "No preparation" indicates that the sample was not modified prior to testing.

^{2.} Sample classified as "waste" or "ore" according to average assay grades of each pile (as provided by Fortune) and August 2008 cut-off criterion.

^{3.} Lithology based on dominant visible lithology in field. Rock may be diluted with minor proportions of other lithologies of waste rock.

May 2011

Appendix IV-6a

Results of Short Term Leach Testing - Comprehensive Analysis of Net Acid Generation Leachates - Waste - Exploration Drill Core Samples - Typical Sample Preparation NICO Project, Fortune Minerals Ltd.

Sample ID	Lithology	Hole ID	De	pth	pH	Alkalinity mg/L as CaCO3	Acidity mg/L as CaCO3	Conductivity uS/cm	Cl ma/l	SO4	Ag	Al ma/l	As ma/l	Ba ma/l	Be	B ma/l	Bi	Ca ma/l	Cd	Co ma/l	Cr ma/l	Cu ma/l	Fe	K ma/l	Li ma/l
			From	10	units	mg/L as CaCO3	mg/L as CaCO3	us/cm	mg/L	mg/L	<u> </u>	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NICO-08-011	Rhyolite	03282	4.3	13.4	7.42	36	2	117	2	15	0.00004	0.17	0.139	0.382	0.00002	0.444	0.00044	3.73	0.000006	0.11	0.029	0.0073	0.03	6.82	0.002
NICO-08-012	Rhyolite	03282	31.7	41.3	6.85	8	2	152	2	51	0.00001	0.07	0.0278	0.223	0.00002	0.383	0.00041	5.83	0.000042	0.0137	0.0199	0.0031	0.02	9.94	0.002
Minimum					6.85	8	2	117	2	15	0.00001	0.07	0.0278	0.223	0.00002	0.383	0.00041	3.73	0.000006	0.0137	0.0199	0.0031	0.02	6.82	0.002
Maximum					7.42	36	2	152	2	51	0.00004	0.17	0.139	0.382	0.00002	0.444	0.00044	5.83	0.000042	0.11	0.029	0.0073	0.03	9.94	0.002
Average					7.05	22	2	135	2	33	0.00003	0.12	0.08	0.303	0.00002	0.414	0.00043	4.8	0.00002	0.1	0.0245	0.005	0.03	8.4	0.002
Standard					0.40	20	0	25	0	25	0.00002	0.07	0.08	0.112	0.00000	0.043	0.00002	15	0.00003	0.1	0.0064	0.003	0.01	2.2	0.000
Deviation					0.40	20	3	23	"	23	0.00002	0.07	0.08	0.112	0.00000	0.043	0.00002	1.5	0.00003	0.1	0.0004	0.003	0.01	2.2	0.000

Sample ID	Lithology	Hole ID	De	pth	pН	Alkalinity	Acidity	Conductivity	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	٧	W	Υ	Zn
Sample 1D	Litilology	Hole ID	From	То	units	mg/L as CaCO3	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
NICO-08-011	Rhyolite	03282	4.3	13.4	7.42	36	2	117	1.75	0.005	0.00942	15.2	0.0037	5E-05	0.0194	0.001	0.00015	0.0221	0.0041	0.000009	0.00562	0.00268	0.0121	0.000092	0.038
NICO-08-012	Rhyolite	03282	31.7	41.3	6.85	8	2	152	2.23	0.01	0.125	13.6	0.0022	5E-05	0.00717	0.002	0.0001	0.0205	0.0003	2E-06				0.000031	
Minimum					6.85	8	2	117	1.75	0.005	0.00942	13.6	0.0022	5E-05	0.00717	0.001	0.0001	0.0205	0.0003	2E-06	0.000193	0.00028	0.0121	0.000031	0.006
Maximum					7.42	36	2	152	2.23	0.01	0.125	15.2	0.0037	5E-05	0.0194	0.002	0.00015	0.0221	0.0041	0.000009	0.00562	0.00268	0.0953	0.000092	0.038
Average					7.05	22	2	135	1.99	0.007	0.067	14.40	0.0030	0.0001	0.013	0.002	0.00013	0.0213	0.0022	0.00001	0.002907	0.0015	0.0537	0.00006	0.022
Standard					0.40	20	0	25	0.34	0.003	0.082	1.13	0.0011	0.0000	0.009	0.001	0.00004	0.0011	0.0027	0.00000	0.003837	0.0017	0.0500	0.00004	0.022
Deviation					0.40	20	U	25	0.34	0.003	0.082	1.15	0.0011	0.0000	0.009	0.001	0.00004	0.0011	0.0027	0.00000	0.003637	0.0017	0.0588	0.00004	0.023

Note: "Typical Sample Preparation" indicates that samples were crushed and ground prior to Net Acid Generation testing.

bold italic Bold italic formatting indicates a value that is less than the analytical detection limit.

Golder Associates Created by: KAS
Checked: KJD

Appendix IV-6b

Results of Short Term Leach Testing - Comprehensive Analysis of Net Acid Generation Leachates - Sub-economic mineralized mine rock and Ore - Bulk Sample Stockpile Samples - Typical Sample Preparation NICO Project, Fortune Minerals Ltd.

Samuel ID III 4 1	2	pН	Alkalinity	Acidity	Conductivity	Cl	SO4	Ag	Al	As	Ва	Be	В	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li
Sample ID Waste / Ore ¹	Dominant Lithology ²	units	mg/L as CaCO3	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Oct 5 DS-1 Sub-economic mineralized mine rock	FP	7.05	15	2	153	2	41	0.00003	0.03	4.51	0.269	0.00002	0.258	0.00569	13.5	0.00008	0.00427	0.0092	0.0007	0.02	10.6	0.002
Oct 5 DS-2 Sub-economic mineralized mine rock	FP	7.07	16	2	171	2	47	0.00003	0.03	6.07	0.268	0.00002	0.273	0.00399	16.3	0.000054	0.000837	0.0074	0.0005	0.02	11.1	0.002
FC-1 Sub-economic mineralized mine rock	FP	7.36	27	2	150	2	30	0.00001	0.58	2.82	0.248	0.00002	0.256	0.00104	10.2	0.000035	0.0168	0.0212	0.002	0.08	14.2	0.002
Minimum		7.05	15	2	150	2	30	0.00001	0.03	2.82	0.248	0.00002	0.256	0.00104	10.2	0.00004	0.00084	0.0074	0.0005	0.02	10.6	0.002
Maximum		7.36	27	2	171	2	47	0.00003	0.58	6.07	0.269	0.00002	0.273	0.00569	16.3	0.00008	0.01680	0.0212	0.002	0.08	14.2	0.002
Average		7.16	19	2	158	2	39	2.33333E-05	0.21	4.47	0.262	0.00002	0.262	0.00357	13.3	0.00006	0.00730	0.0126	0.001066667	0.04	12.0	0.002
Standard Deviation		0.17	7	0	11	0	9	1.1547E-05	0.32	1.63	0.012	0	0.009	0.00235	3.1	0.00002	0.00840	0.007502	0.000814453	0.03	2.0	0.000
Oct 9 NS-1 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	6.19	2	8	281	2	120	0.00013	0.43	0.0056	0.165	0.00008	0.507	0.00012	26.8	0.000125	1.24	0.0008	0.456	0.01	14.6	0.002
Oct 9 NS-3 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	7.73	41	2	201	2	52	0.00005	1.09	0.27	0.209	0.00002	0.232	0.064	26.8	0.000059	0.00855	0.0011	0.0039	0.02	11	0.002
Mar 10 NS-1 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	5.95	2	11	403	2	170	0.00004	0.11	1.91	0.145	0.00005	0.551	0.00089	16.4	0.000175	9.92	0.0038	0.277	0.01	47.9	0.002
Mar 10 NS-3 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	4.35	2	24	412	2	170	0.00005	0.25	4.85	0.153	0.00015	0.744	0.00058	12.2	0.000125	13.6	0.0012	0.585	0.01	49.1	0.002
Mar 8 NS-1 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	4.62	2	21	328	2	120	0.00009	0.44	6.93	0.0224	0.00005	0.0521	0.0006	10.5	0.000062	7.4	0.0014	0.135	0.01	47.5	0.002
FC-2 Sub-economic mineralized mine rock	Black Rock Schist (±magnetite)	6.53	5	2	294	2	110	0.00001	0.01	0.0747	0.144	0.00002	0.243	0.00048	33.3	0.000043	0.0928	0.0027	0.0017	0.01	16.3	0.002
FC-3 Sub-economic mineralized mine rock	Black Rock Schist (±magnetite)	6.46	4	2	378	2	150	0.00001	0.01	2.33	0.143	0.00002	0.347	0.0001	11.8	0.000064	6.32	0.0061	0.0161	0.01	46.3	0.002
FC-4 Sub-economic mineralized mine rock	Black Rock Schist (±magnetite)	4.48	2	2	353	2	160	0.00003	1.12	0.872	0.138	0.00034	0.523	0.00013	18.2	0.000128	3.29	0.0005	0.0005	7.24	19.4	0.002
Mar 8 NS-3 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite	3.19	2	94	564	2	200	0.00017	1.54	0.59	0.0402	0.00054	0.146	0.00321	11.1	0.000174	2.3	0.0005	9.47	16.7	13.3	0.002
Minimum		3.19	2	2	201	2	52	0.0000	0.01	0.01	0.022	0.00002	0.052	0.0001	10.50	0.0000	0.01	0.0005	0.001	0.01	11.00	0.002
Maximum		7.73	41	94	564	2	200	0.0002	1.54	6.93	0.209	0.00054	0.744	0.0640	33.30	0.0002	13.60	0.0061	9.470	16.70	49.10	0.002
Average		5.50	7	18 30	357	0	139	0.0001	0.56	1.98	0.129	0.00014	0.372	0.0078	18.57	0.0001	4.91	0.0020	1.216	2.67	29.49	0.002
Standard Deviation		1.42	13	30	102	I U	44	0.0001	0.56	2.41	0.059	0.00018	0.224	0.0211	8.40	0.0001	4.73	0.0019	3.103	5.78	17.44	0.000
Oct 9 DS-1 ore	Black Rock Schist ± Magnetite	4.12	2	15	258	2	100	0.00043	1.05	0.0523	0.0403	0.00009	0.124	0.00189	22.5	0.00077	0.403	0.0031	0.143	0.01	19.6	0.002
Oct 9 DS-2 ore	Black Rock Schist ± Magnetite	5.69	2	11	295	2	130	0.0001	0.72	0.0102	0.162	0.00017	0.757	0.00163	24.9	0.001145	0.643	0.0026	0.226	0.01	13.5	0.002
Aug 28 DS-1 ore	Black Rock Schist ± Magnetite	2.32	2	436	2560	2	520	0.0001	6.39	6.49	0.0541	0.00074	0.0879	0.00118	17.4	0.000063	19.6	0.0064	2.5	39.4	14	0.002
Aug 28 DS-3 ore	Black Rock Schist ± Magnetite	2.17	2	542	3430	2	630	0.0001	7.76	18.7	0.0489	0.0007	0.118	0.00081	16.4	0.000081	21.1	0.0055	1.92	28.5	14	0.002
Aug 21 NS-1 ore	Black Rock Schist ± Magnetite	2.28	2	473	2790	3.1	590	0.0001	11.2	26.5	0.0812	0.00123	0.0938	0.00044	20.6	0.000085	27.7	0.0115	1.7	16.1	22.6	0.002
Aug 20 NS-1 ore	Black Rock Schist ± Magnetite	6.46	4	2	228	2	75	0.00002	0.01	0.623	0.163	0.00002	0.231	0.00016	13.6	0.000056	0.295	0.016	0.0177	0.01	15.5	0.002
Aug 18 NS-1 ore	Black Rock Schist ± Magnetite	4.04	2	33	374	2.1	160	0.00002	2.59	0.359	0.0629	0.00014	0.0367	0.00008	22.8	0.000632	10.2	0.0089	0.281	0.01	27.7	0.002
Aug 23 DS-1 ore	Black Rock Schist ± Magnetite	6.7	7	2	205	2	69	0.00001	0.01	0.346	0.187	0.00002	0.171	0.00079	17	0.000033	0.0791	0.0131	0.0033	0.02	14.2	0.002
FC-5 Ore	Black Rock Schist (±magnetite)	2.35	2	411	2450	2	590	0.00006	12.3	16.6	0.1	0.00133	0.761	0.00024	23.9	0.000106	25.3	0.0066	1.64	0.01	36.2	0.002
Aug 24 DS-1 ore	Black Rock Schist ± Magnetite	3.61	2	52	502	2.5	210	0.00002	3.6	0.399	0.073	0.00043	0.0927	0.00017	22.2	0.000081	16.6	0.0064	0.231	0.01	36.5	0.002
Minimum Maximum		2.17 6.70	7	2 542	205 3430	3	69 630	0.00001 0.00043	0.01 12.30	0.0102 26.5000	0.0403 0.1870	0.00002 0.00133	0.0367 0.7610	0.00008	13.6 24.9	0.00003	0.1 27.7	0.0026 0.0160	0.003 2.500	0.01 39.40	13.5 36.5	0.002 0.002
Average		3.97	3	198	1309	2	307	0.00043	4.56	7.0080	0.1870	0.00133	0.7010	0.00189	20.1	0.000113	12.2	0.0080	0.866	8.41	21.4	0.002
Standard Deviation		1.77	2	233	1317	0	242	0.00012	4.61	9.8844	0.0538	0.00049	0.2747	0.00065	3.8	0.00040	11.2	0.0043	0.956	14.59	9.1	0.000
		,																				
Sample ID Waste / Ore ¹	Dominant Lithology ²	pН	Alkalinity	Acidity	Conductivity	Mg	Mn	Mo	Na	Ni ,	Pb	Sb	Se	Sn	Sr ,	Ti ,	TI	U ,	V	W	Y	Zn ,,
	ű,	units	mg/L as CaCO3	mg/L as CaCO3	uS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	Y mg/L	mg/L
Oct 5 DS-1 Sub-economic mineralized mine rock	FP FP	units 7.05	mg/L as CaCO3	mg/L as CaCO3	uS/cm 153	mg/L 0.112	mg/L 0.0014	mg/L 0.167	mg/L 8.52	mg/L 0.001	mg/L 0.00005	mg/L 0.0302	mg/L 0.023	mg/L 0.00007	mg/L 0.0172	mg/L 0.0008	mg/L 0.000003	mg/L 0.000157	mg/L 0.0204	mg/L 0.00256	0.000019	mg/L 0.031
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock	FP FP	7.05 7.07	mg/L as CaCO3 15 16	mg/L as CaCO3 2 2	uS/cm 153 171	mg/L 0.112 0.148	mg/L 0.0014 0.00083	mg/L 0.167 0.0717	mg/L 8.52 9.24	mg/L 0.001 0.0009	mg/L 0.00005 0.00006	mg/L 0.0302 0.0265	mg/L 0.023 0.021	mg/L 0.00007 0.00008	mg/L 0.0172 0.0197	mg/L 0.0008 0.0008	mg/L 0.000003 0.000016	mg/L 0.000157 0.000077	mg/L 0.0204 0.0236	mg/L 0.00256 0.00355	0.000019 0.000034	mg/L 0.031 0.048
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock	FP FP	7.05 7.07 7.36	mg/L as CaCO3 15 16 27	mg/L as CaCO3	uS/cm 153 171 150	mg/L 0.112 0.148 0.092	mg/L 0.0014 0.00083 0.00118	mg/L 0.167 0.0717 0.0882	mg/L 8.52 9.24 12	mg/L 0.001 0.0009 0.0021	mg/L 0.00005 0.00006 0.00005	mg/L 0.0302 0.0265 0.0273	mg/L 0.023 0.021 0.02	mg/L 0.00007 0.00008 0.00013	mg/L 0.0172 0.0197 0.016	mg/L 0.0008 0.0008 0.0047	mg/L 0.000003 0.000016 0.000003	mg/L 0.000157 0.000077 0.000436	mg/L 0.0204 0.0236 0.0341	mg/L 0.00256 0.00355 0.00941	0.000019 0.000034 0.000039	mg/L 0.031 0.048 0.006
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum	FP FP	7.05 7.07 7.36 7.05	mg/L as CaCO3 15 16 27 15	mg/L as CaCO3 2 2 2	uS/cm 153 171 150 150	mg/L 0.112 0.148 0.092 0.092	mg/L 0.0014 0.00083 0.00118 0.00083	mg/L 0.167 0.0717 0.0882 0.0717	mg/L 8.52 9.24 12 8.52	mg/L 0.001 0.0009 0.0021 0.0009	mg/L 0.00005 0.00006 0.00005 0.00005	mg/L 0.0302 0.0265 0.0273 0.0265	mg/L 0.023 0.021 0.02 0.020	mg/L 0.00007 0.00008 0.00013 0.00007	mg/L 0.0172 0.0197 0.016 0.016	mg/L 0.0008 0.0008 0.0047 0.0008	mg/L 0.000003 0.000016 0.000003 0.0000	mg/L 0.000157 0.000077 0.000436 0.0001	mg/L 0.0204 0.0236 0.0341 0.0204	mg/L 0.00256 0.00355 0.00941 0.0026	0.000019 0.000034 0.000039 0.0000	mg/L 0.031 0.048 0.006 0.006
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum	FP FP	7.05 7.07 7.36	mg/L as CaCO3 15 16 27	mg/L as CaCO3 2 2 2 2 2	uS/cm 153 171 150	mg/L 0.112 0.148 0.092	mg/L 0.0014 0.00083 0.00118	mg/L 0.167 0.0717 0.0882 0.0717 0.1670	mg/L 8.52 9.24 12	mg/L 0.001 0.0009 0.0021 0.0009 0.0021	mg/L 0.00005 0.00006 0.00005 0.00005 0.00006	mg/L 0.0302 0.0265 0.0273	mg/L 0.023 0.021 0.02 0.020 0.020	mg/L 0.00007 0.00008 0.00013	mg/L 0.0172 0.0197 0.016	mg/L 0.0008 0.0008 0.0047	mg/L 0.000003 0.000016 0.000003	mg/L 0.000157 0.000077 0.000436	mg/L 0.0204 0.0236 0.0341	mg/L 0.00256 0.00355 0.00941	0.000019 0.000034 0.000039	mg/L 0.031 0.048 0.006 0.006 0.048
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum	FP FP	7.05 7.07 7.36 7.05 7.36	mg/L as CaCO3 15 16 27 15 27	mg/L as CaCO3 2 2 2 2 2 2	uS/cm 153 171 150 150 171	mg/L 0.112 0.148 0.092 0.092 0.148	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140	mg/L 0.167 0.0717 0.0882 0.0717	mg/L 8.52 9.24 12 8.52 12.00	mg/L 0.001 0.0009 0.0021 0.0009	mg/L 0.00005 0.00006 0.00005 0.00005	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302	mg/L 0.023 0.021 0.02 0.020	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013	mg/L 0.0172 0.0197 0.016 0.016 0.020	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047	mg/L 0.000003 0.000016 0.000003 0.0000 0.0000	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094	0.000019 0.000034 0.000039 0.0000 0.0000	mg/L 0.031 0.048 0.006 0.006
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation	FP FP FP	units 7.05 7.07 7.36 7.05 7.36 7.16	mg/L as CaCO3 15 16 27 15 27 19	mg/L as CaCO3 2 2 2 2 2 2 2 2 2	uS/cm 153 171 150 150 171 158	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509	mg/L 8.52 9.24 12 8.52 12.00 9.92	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0003 0.0013 0.0007	mg/L 0.00005 0.00006 0.00005 0.00005 0.00006 0.00006 0.00005	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0302 0.0280 0.0019	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666	mg/L 0.000003 0.000016 0.000003 0.0000 0.0000 0.0000 0.0000	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock	FP FP FP Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17	mg/L as CaCO3 15 16 27 15 27 19 7	mg/L as CaCO3 2 2 2 2 2 2 0 8	uS/cm 153 171 150 150 171 151 158 11	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007	mg/L 0.00005 0.00006 0.00005 0.00005 0.00006 0.00005 0.00001	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.021 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666	mg/L 0.000003 0.000016 0.000003 0.00000 0.0000 0.0000 0.0000 0.0000	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.00002	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock	FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.05 7.36 7.16 0.17	mg/L as CaCO3 15 16 27 15 27 19 7	mg/L as CaCO3 2 2 2 2 2 2 2 0 8 8 2	uS/cm 153 171 150 150 171 158 11 281 201	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029 0.406 0.00322	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007	mg/L 0.00005 0.00006 0.00005 0.00005 0.00006 0.00005 0.00001	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019	mg/L 0.023 0.021 0.02 0.020 0.023 0.023 0.021 0.002 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005	mg/L 0.000003 0.000016 0.000003 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000178 0.000009	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.00018	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000622 0.000028	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock	FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.05 7.36 7.16 0.17	mg/L as CaCO3 15 16 27 15 27 19 7	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11	uS/cm 153 171 150 150 171 158 11 281 201 403	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029 0.406 0.00322 0.268	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007	mg/L 0.00005 0.00006 0.00005 0.00005 0.00006 0.00005 0.00001	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187	mg/L 0.023 0.021 0.02 0.020 0.023 0.021 0.002 0.023 0.021 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.002 0.025 0.0152 0.0234	mg/L 0.0008 0.0008 0.0047 0.0004 0.0021 0.002251666 0.0004 0.0005 0.0006	mg/L 0.000003 0.000016 0.000003 0.00000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00003	mg/L 0.000157 0.000077 0.000436 0.0001 0.0002 0.0002 0.0002 0.00621 0.00018 0.000833	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000622 0.000028 0.000213	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock	FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35	mg/L as CaCO3 15 16 27 15 27 19 7	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24	uS/cm 153 171 150 150 171 158 11 281 201 403 412	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.124 0.171	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221	mg/L 0.023 0.021 0.02 0.020 0.023 0.021 0.002 0.023 0.021 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.000013 0.00009 0.00003 0.00006 0.00006 0.00005 0.00003	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006	mg/L 0.000003 0.000016 0.000003 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00003 0.0000334 0.00037	mg/L 0.000157 0.000077 0.000436 0.0001 0.0002 0.0002 0.0002 0.00621 0.00018 0.000833 0.00234	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000622 0.000028 0.000213 0.00049	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock	FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.05 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62	mg/L as CaCO3 15 16 27 15 27 19 7	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11	uS/cm 153 171 150 150 151 171 158 11 281 201 403 412 328	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0003 0.0007 0.155 0.0015 0.124 0.171 0.0976	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05	mg/L 0.00007 0.00008 0.000013 0.00007 0.00013 0.00009 0.00003 0.00006 0.00005 0.00003 0.00001 0.00005	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0005	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00007 0.0000334 0.00037 0.00024	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.00083 0.000833 0.00234 0.000728	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000022 0.000028 0.0000213 0.00049 0.000069	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock	FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24	uS/cm 153 171 150 150 151 171 158 11 281 201 403 412 328 294	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.1976 0.0045	mg/L 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.0001 0.00028	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221	mg/L 0.023 0.021 0.02 0.020 0.023 0.021 0.002 0.023 0.021 0.002	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003 0.00006 0.00005 0.00003 0.00001 0.00005 0.00005 0.00005	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.00019 0.0004	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000334 0.00037 0.000024 0.000023	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.000833 0.00234 0.000728 0.0000728	mg/L 0.0204 0.0236 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565	0.000019 0.000034 0.00003 0.0000 0.0000 0.0000 0.0000 0.0000 0.000622 0.0000213 0.00049 0.000069 0.000007	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock	FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.05 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 5	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24	uS/cm 153 171 150 150 151 171 158 11 281 201 403 412 328	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39	mg/L 0.0014 0.00083 0.00118 0.000140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0003 0.0007 0.155 0.0015 0.124 0.171 0.0976	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221	mg/L 0.023 0.021 0.020 0.020 0.020 0.021 0.002 0.002 0.002 0.005 0.129 0.107 0.051 0.052 0.052 0.055 0.165	mg/L 0.00007 0.00008 0.000013 0.00007 0.00013 0.00009 0.00003 0.00006 0.00005 0.00003 0.00001 0.00005	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106	mg/L 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0005	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00007 0.0000334 0.00037 0.00024	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.00083 0.000833 0.00234 0.000728	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000022 0.000028 0.0000213 0.00049 0.000069	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.07 7.36 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 41	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24 21 2 2	uS/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9	mg/L 0.0014 0.00083 0.00118 0.00018 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81	mg/L 0.001 0.0009 0.0021 0.0003 0.0021 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808	mg/L 0.023 0.021 0.02 0.020 0.023 0.021 0.002 0.002 0.005 0.129 0.107 0.051 0.052 0.05 0.165 0.074	mg/L 0.00007 0.00008 0.00013 0.00007 0.00003 0.00009 0.00006 0.00005 0.00003 0.00001 0.00001 0.00005 0.00004	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0004 0.0015	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000334 0.00037 0.00024 0.000023 0.000067	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.000833 0.00234 0.000728 0.000035 0.000238	mg/L 0.0204 0.0236 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.00002 0.000622 0.000213 0.00049 0.000069 0.000007 0.000035	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock	FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite)	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 41 2 41 2 41 2 41 2 41 2 41 2 41 41	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24 21 2 2 2	us/cm 153 171 150 150 171 158 11 281 201 403 412 328 294 378 353	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84	mg/L 0.0014 0.00083 0.00118 0.00083 0.00140 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45	mg/L 0.001 0.0009 0.0021 0.0003 0.0007 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0045 0.0583	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00028 0.00017 0.00028 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272	mg/L 0.023 0.021 0.02 0.020 0.023 0.021 0.002 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003 0.00006 0.00005 0.00003 0.00001 0.00005 0.00004 0.00004	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148	mg/L 0.0008 0.0008 0.00047 0.00021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0004 0.0005 0.0005	mg/L 0.000003 0.000016 0.000003 0.00000 0.0000 0.0000 0.0000 0.00000 0.00003 0.0000334 0.000334 0.00037 0.00024 0.000023 0.0000023 0.0000029	mg/L 0.000157 0.000077 0.000436 0.0001 0.0002 0.0002 0.0002 0.00033 0.00034 0.000728 0.000035 0.000238 0.000038	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.00113 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229 0.00231	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000 0.000021 0.0000213 0.000049 0.000069 0.000007 0.000007 0.00007 0.000079	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock	FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite)	units 7.05 7.07 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 5 4 2 2 41	mg/L as CaCO3 2 2 2 2 2 2 2 0 8 8 2 11 24 21 2 2 2 94 2 94	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 353 564 201 564	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90	mg/L 0.0014 0.00083 0.00118 0.00018 0.00140 0.00140 0.00140 0.00129 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.403	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0582 0.0562 0.002 0.171	mg/L 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170	mg/L 0.023 0.021 0.020 0.020 0.023 0.021 0.002 0.002 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.165	mg/L 0.00007 0.00008 0.00013 0.00007 0.00003 0.00006 0.00005 0.00003 0.00001 0.00004 0.00002 0.00002 0.00000 0.00001	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.00019 0.0004 0.0005 0.0004 0.0005	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000334 0.00037 0.000024 0.000023 0.000062 0.0000628 0.00006	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.0002 0.00033 0.00234 0.000728 0.000238 0.000238 0.00238 0.00238 0.00238 0.00238 0.00239 0.00239	mg/L 0.0204 0.0236 0.0341 0.0260 0.00341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00555 0.229 0.00231 0.00126 0.00126 0.0000 0.229	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.00002 0.0000213 0.00049 0.000069 0.00007 0.000035 0.00684 0.00000 0.00008	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793
Oct 5 DS-1 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Marimum Maximum Average	FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite)	units 7.05 7.07 7.07 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 7.73 5.50	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 41 2 2 5 4 2 2 41 7	mg/L as CaCO3 2 2 2 2 2 2 0 8 2 11 24 21 2 2 2 2 94 18	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 294 378 353 564 201 564 357	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30	mg/L 0.0014 0.00083 0.00118 0.00014 0.00083 0.00140 0.0014 0.00012 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0906 0.0583 0.0562 0.002 0.171 0.084	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.0908 0.00272 0.00483 0.00172 0.0014 0.1170 0.0378	mg/L 0.023 0.021 0.020 0.020 0.023 0.021 0.002 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.165 0.078	mg/L 0.00007 0.00008 0.00013 0.00009 0.00003 0.00006 0.00005 0.00003 0.00001 0.00004 0.00004 0.00002 0.00005 0.00001 0.00005	mg/L 0.0172 0.0197 0.016 0.006 0.016 0.002 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250 0.0174	mg/L 0.0008 0.0008 0.0004 0.0004 0.002251666 0.0004 0.0005 0.0005 0.0019 0.0005 0.0008 0.0008 0.0008	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.000034 0.00034 0.00037 0.00024 0.000067 0.00029 0.000628 0.00006 0.0006	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.0002 0.00033 0.00234 0.000728 0.000035 0.000238 0.000666 0.0289 0.00000 0.0289 0.00051	mg/L 0.0204 0.0236 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.000113 0.0001 0.00015 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229 0.00231 0.00126 0.0000 0.229 0.041	0.000019 0.000034 0.00003 0.0000 0.0000 0.0000 0.0000 0.0000 0.00002 0.0000213 0.00049 0.000069 0.000035 0.00679 0.00684 0.0000 0.00068 0.00017	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.019
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Maximum	FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite)	units 7.05 7.07 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 5 4 2 2 41	mg/L as CaCO3 2 2 2 2 2 2 2 0 8 8 2 11 24 21 2 2 2 94 2 94	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 353 564 201 564	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90	mg/L 0.0014 0.00083 0.00118 0.00018 0.00140 0.00140 0.00140 0.00129 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.403	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0582 0.0562 0.002 0.171	mg/L 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170	mg/L 0.023 0.021 0.020 0.020 0.023 0.021 0.002 0.002 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.165	mg/L 0.00007 0.00008 0.00013 0.00007 0.00003 0.00006 0.00005 0.00003 0.00001 0.00004 0.00002 0.00002 0.00000 0.00001	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.00019 0.0004 0.0005 0.0004 0.0005	mg/L 0.000003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000334 0.00037 0.000024 0.000023 0.000062 0.0000628 0.00006	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.0002 0.00033 0.00234 0.000728 0.000238 0.000238 0.00238 0.00238 0.00238 0.00238 0.00239 0.00239	mg/L 0.0204 0.0236 0.0341 0.0260 0.00341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00555 0.229 0.00231 0.00126 0.00126 0.0000 0.229	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.00002 0.0000213 0.00049 0.000069 0.00007 0.000035 0.00684 0.00000 0.00008	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Sub-economic mineralized mine rock Sub-economic mineralized mine rock Sub-economic mineralized mine rock Sub-economic mineralized mine rock Sub-economic mineralized mine rock	FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (± magnetite) Black Rock Schist (± magnetite) Black Rock Schist ± Magnetite) Black Rock Schist ± Magnetite) Black Rock Schist ± Magnetite)	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 0 0 8 2 111 24 21 2 2 2 2 94 18 30	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504	mg/L 8.52 9.24 12.8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 0.77 0.64 11.80 7.55 4.10	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.0002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.0021 0.0021 0.00221 0.00483 0.0014 0.1170 0.0378 0.00414	mg/L 0.023 0.021 0.020 0.020 0.023 0.021 0.002 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.165 0.078 0.078 0.078	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000003 0.00006 0.00005 0.00005 0.00005 0.00004 0.00005 0.00004 0.00005 0.00005 0.00000 0.00005 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250 0.0174 0.0056	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0005 0.0008 0.0008 0.0009 0.0009	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000024 0.000023 0.0000628 0.0000628 0.00006 0.0002 0.00062	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.00018 0.00033 0.000234 0.000728 0.000035 0.000238 0.00666 0.0289 0.0000 0.0289 0.00051 0.00093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001 0.0013 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.00565 0.229 0.00231 0.000231 0.00026 0.229 0.041 0.082	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000028 0.000028 0.00009 0.00009 0.00007 0.000035 0.00679 0.00684 0.0000 0.0068 0.0017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.007 0.006 0.793 0.297 0.282
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Maximum Maximum Average Standard Deviation	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (± magnetite) Black Rock Schist (± magnetite) Black Rock Schist (± magnetite) Black Rock Schist (± magnetite) Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 2 5 4 2 2 13 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 2 11 24 21 2 2 2 2 94 38 30	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14	mg/L 0.0014 0.00083 0.00118 0.00114 0.00083 0.00140 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060	mg/L 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.0001 0.00002 0.00002 0.00002 0.00002 0.0004 0.00002 0.0004 0.00002 0.0004	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414	mg/L 0.023 0.021 0.020 0.020 0.020 0.021 0.002 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.032 0.046	mg/L 0.00007 0.00008 0.00013 0.00007 0.00013 0.00009 0.00003 0.00005 0.00005 0.00004 0.00005 0.00004 0.00005 0.00000 0.00001 0.00000 0.00001 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.0152 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0148 0.0089 0.0089 0.0089 0.0056	mg/L 0.0008 0.0008 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0005 0.0008 0.0008 0.0008 0.0009 0.0008 0.0008	mg/L 0.00003 0.000016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.000833 0.00234 0.000728 0.000238 0.000238 0.000238 0.00666 0.0289 0.0000 0.0289 0.00051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001 0.0013 0.00041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.00565 0.229 0.00231 0.00021 0.0000 0.229 0.041 0.082	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.0000213 0.000213 0.00009 0.000007 0.000035 0.00679 0.00684 0.0000684 0.00007 0.00068 0.0017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.006 0.793 0.297 0.282
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Marimum Maximum Average Standard Deviation	FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (± magnetite) Black Rock Schist (± magnetite) Black Rock Schist ± Magnetite) Black Rock Schist ± Magnetite) Black Rock Schist ± Magnetite)	units 7.05 7.07 7.36 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 8 2 11 24 21 2 2 2 2 94 21 30 94 18 30	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14	mg/L 0.0014 0.00083 0.00118 0.00018 0.00140 0.00014 0.00014 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0038 0.242 0.564 0.409 0.003 0.564 0.408	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.0002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.0021 0.0021 0.00221 0.00483 0.0014 0.1170 0.0378 0.00414	mg/L 0.023 0.021 0.020 0.020 0.023 0.021 0.002 0.029 0.107 0.051 0.052 0.165 0.074 0.042 0.032 0.165 0.078 0.046	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000003 0.00006 0.00005 0.00005 0.00005 0.00004 0.00005 0.00004 0.00005 0.00005 0.00000 0.00005 0.00000	mg/L 0.0172 0.0197 0.016 0.0016 0.0020 0.018 0.0025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250 0.0174 0.0056	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0005 0.0008 0.0008 0.0009 0.0009	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000024 0.000023 0.0000628 0.0000628 0.00006 0.0002 0.00062	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.0002 0.00033 0.00234 0.000728 0.00035 0.000238 0.00666 0.0289 0.0000 0.0289 0.00051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0260 0.00341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001 0.0015 0.0001 0.0013 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.00565 0.229 0.00231 0.000231 0.00026 0.229 0.041 0.082	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000028 0.000028 0.00009 0.00009 0.00007 0.000035 0.00679 0.00684 0.0000 0.0068 0.0017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.282 0.121 0.633
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-2 ore	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 5 4 2 2 2 13 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 2 11 24 21 2 2 2 2 94 38 30	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14	mg/L 0.0014 0.00083 0.00118 0.00114 0.00083 0.00140 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060	mg/L 0.00005 0.00006 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00049 0.0082 0.0004 0.0082 0.00011 0.0027	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414	mg/L 0.023 0.021 0.020 0.020 0.020 0.021 0.002 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.032 0.046	mg/L 0.00007 0.00008 0.00013 0.00007 0.00003 0.00006 0.00005 0.00005 0.00004 0.00004 0.00002 0.00005 0.00001 0.00000 0.00001 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.0152 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0148 0.0089 0.0089 0.0089 0.0056	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0005 0.0008 0.0005 0.0008 0.0008 0.0005 0.0008 0.0005	mg/L 0.00003 0.000016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00002 0.00002 0.00062 0.0002 0.00062 0.0002 0.0002 0.0002	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.000833 0.00234 0.000728 0.000238 0.000238 0.000238 0.00666 0.0289 0.0000 0.0289 0.00051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001 0.0013 0.00041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00555 0.229 0.00231 0.00126 0.00126 0.0028 0.0028 0.00126 0.0008 0.00126 0.0008	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.000028 0.000213 0.00049 0.000069 0.00007 0.000684 0.00068 0.00017 0.00029 0.00029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.006 0.793 0.297 0.282
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-1 Sub-economic mineralized mine rock Mar 9 NS-2 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3 Sub-economic mineralized mine rock Mar 9 NS-3	FP FP FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 6.19 7.73 4.35 4.62 6.53 4.62 6.53 4.62 6.53 1.19 3.19 3.19 3.19 3.19 3.19 3.19 3.1	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 5 4 2 2 2 13 3 4 2 2 2 2 2 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 8 2 11 24 21 2 2 2 2 94 18 30	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.181	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1177 0.06612 0.0504	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060	mg/L 0.00005 0.00005 0.00005 0.00005 0.00005 0.00001 0.00028 0.00009 0.00028 0.00017 0.00002 0.00002 0.00002 0.00001 0.0002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.1170 0.0378 0.00296	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.042 0.032 0.032 0.165 0.074 0.042 0.032 0.165 0.078 0.046	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000003 0.000005	mg/L 0.0172 0.0197 0.016 0.0016 0.0020 0.018 0.0025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.00289 0.0089 0.0089 0.0050 0.0174 0.0056	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0008 0.0005 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	mg/L 0.00003 0.000016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00002 0.00002 0.00002 0.00002 0.0000575 0.000198 0.000013	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.000234 0.000751 0.00289 0.0003	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00113 0.0035 0.0041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00529 0.00231 0.00126 0.000 0.229 0.00231 0.00126 0.000 0.229 0.00231 0.00126 0.000	0.000019 0.000034 0.000039 0.0000 0.0000 0.0000 0.0000 0.0000213 0.00049 0.000069 0.000035 0.00679 0.00684 0.0000 0.00068 0.0017 0.0029 0.00015 0.00276 0.00882	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.282
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-2 ore Aug 28 DS-3 ore	FP FP FP FP FP FP FP FP FP FP FP FP Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 2 111 24 21 2 2 2 94 18 30 15 11 436 542	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 201 564 201 564 201 564 201 564 357 102	mg/L 0.112 0.148 0.092 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.31 2.98 3.74	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.594	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 0.93 10.9	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060 0.128 0.171 0.218	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00004 0.0002 0.0004 0.0004 0.0004 0.00044	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.00296 0.00299 0.00563 0.00656	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.032 0.032 0.165 0.074 0.042 0.032 0.165 0.078 0.078 0.0123 0.123 0.134 0.056 0.049	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0221 0.0168 0.0089 0.0089 0.0250 0.0174 0.0056 0.0163 0.0252 0.01164 0.0014	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009 0.0009	mg/L 0.00003 0.00016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00002 0.00002 0.000575 0.000018 0.000018 0.000018	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.00018 0.00038 0.000234 0.000728 0.000038 0.000238 0.000238 0.000238 0.000038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00038 0.00051 0.00093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.0001 0.0001 0.00113 0.0001 0.00143 0.00014 0.00143 0.00007 0.00211 0.000389	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229 0.00126 0.00023 0.0023 0.0023 0.00033 0.00033 0.00033	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000028 0.000028 0.00009 0.00009 0.00007 0.000684 0.00068 0.0017 0.0068 0.0017 0.0029 0.0015 0.00276 0.00882 0.00102	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297 0.297
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Maximum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-1 ore Aug 28 DS-3 ore Aug 21 NS-1 ore	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 8 2 11 24 21 2 2 2 2 2 94 18 30 15 11 436 542	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102 258 295 2560 3430 2790	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6	mg/L 0.0014 0.00083 0.00118 0.00118 0.00018 0.00140 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.00612 0.0504 0.0168 0.00118 0.00128 0.0018	mg/L 8.52 9.24 12.8.52 12.00 9.92 1.84 11.1 8.51 10.3 1.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10 0.93 10.3 10.3 10.9 2.86	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060 0.128 0.172	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.100296 0.00209 0.00563 0.00656	mg/L 0.023 0.021 0.020 0.020 0.020 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.165 0.078 0.046 0.123 0.134 0.134 0.134 0.046 0.123 0.134 0.056 0.056 0.056 0.056	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.00009 0.00003 0.00006 0.00005 0.00001 0.000004 0.00002 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.0152 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0148 0.0089 0.0250 0.0174 0.0056	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.00019 0.0004 0.0015 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008 0.0006 0.0005	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00002 0.00002 0.00006 0.0002 0.0000575 0.000198 0.000614 0.0000611	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.000234 0.000234 0.000238 0.000238 0.000238 0.00621 0.00093 0.0051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00058 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00015 0.0001 0.0015 0.0001 0.00143 0.00041 0.00041 0.00041 0.00041 0.00041 0.00041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00186 0.0006 0.126 0.00565 0.229 0.00231 0.00023 0.00023 0.00033 0.00033 0.00033 0.00033	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000028 0.000213 0.00049 0.00009 0.00007 0.000035 0.00679 0.00684 0.00017 0.0029 0.0015 0.00276 0.00286 0.0017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.006 0.793 0.297 0.282 0.121 0.633 0.022 0.024 0.033
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-2 ore Aug 28 DS-3 ore Aug 21 NS-1 ore Aug 20 NS-1 ore Aug 21 NS-1 ore Aug 23 DS-1 ore	FP FP FP FP FP FP FP FP FP FP FP FP FP F	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 6.49 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 41 7 13 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 0 0 8 2 111 24 21 2 2 2 94 21 30 15 11 436 542 473 2 33 2	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 201 564 357 102 258 295 2560 3430 2790 228 374 205	mg/L 0.112 0.148 0.092 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 4.54 7.29 2.76	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.0459	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0061 0.0168 0.00168 0.00168 0.00207 0.0153 0.136 0.00573 0.0571	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 0.93 1.03 0.93 1.09 2.86 8.09 1.666 7.1	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060 0.128 0.128 0.121 0.129 0.189 0.005 0.187 0.005	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00002 0.00001 0.0002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.00296 0.00296 0.00563 0.00656 0.00627 0.00414 0.0139	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.165 0.078 0.046 0.123 0.123 0.123 0.134 0.056 0.049 0.05 0.051 0.051 0.078 0.049 0.05 0.011 0.023 0.036	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	mg/L 0.0172 0.0197 0.016 0.0016 0.0020 0.018 0.0025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0221 0.0168 0.0148 0.0089 0.0089 0.0056 0.0174 0.0056 0.0163 0.0250 0.0116 0.014 0.0175 0.0181 0.018	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0008 0.0005 0.0008 0.0009 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0006 0.0005 0.0008 0.0006 0.0005 0.0006 0.0005 0.0006	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00002 0.00002 0.000575 0.000618 0.000614 0.000611 0.00002571 0.0000575	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.00018 0.00038 0.000234 0.000234 0.000238 0.000238 0.000238 0.000038 0.00238 0.00000 0.0289 0.0000 0.0289 0.0000 0.0289 0.0001 0.0051	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.0001 0.00113 0.0001 0.00113 0.0001 0.00113 0.0001 0.00113 0.0001 0.00113 0.0001 0.00113 0.0001	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229 0.00231 0.00126 0.000 0.229 0.0041 0.082 0.00033 0.00033 0.00033 0.00033 0.00039 0.051	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000028 0.000028 0.00009 0.00009 0.00009 0.00007 0.000684 0.00069 0.00684 0.00015 0.0027 0.0029 0.0029 0.0015 0.00276 0.00882 0.0102 0.015 0.00276 0.00882 0.0102 0.015	mg/L 0.031 0.048 0.006 0.006 0.048 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.292 0.282 0.121 0.633 0.022 0.024 0.033 0.111 0.116 0.07
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-1 ore Aug 28 DS-3 ore Aug 21 NS-1 ore Aug 21 NS-1 ore Aug 23 DS-1 ore FC-5 Ore	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7 2.35	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 41 7 13 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 2 11 24 21 2 2 2 2 94 18 30 15 11 436 542 473 2 33 2 411	us/cm 153 171 150 150 151 171 158 11 281 201 403 412 328 294 378 294 378 353 564 201 564 357 102 258 295 2560 3430 2790 228 374 205 2450	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 4.54 7.29 2.76	mg/L 0.0014 0.00083 0.00118 0.00118 0.00183 0.00114 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.0459 0.571 0.00624 0.924	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0504 0.0168 0.00118 0.00926 0.0207 0.0153 0.136 0.0573 0.0751 0.0186	mg/L 8.52 9.24 12.8.52 12.00 9.92 1.84 11.1 8.51 10.3 10.3 10.3 7.81 1.8.45 0.77 0.64 11.80 7.55 4.10 0.93 10.3 10.3 10.3 10.3 10.9 2.86 8.09 1.66 7.1	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060 0.128 0.171 0.218 0.212 0.189 0.005 0.187 0.004	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.0002 0.00002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0043 0.0042 0.0042 0.00443 0.0042 0.00349 0.00349 0.0003 0.00035 0.00035 0.00005 0.00005	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.00296 0.00296 0.00296 0.00296 0.00263 0.00656 0.00657 0.0139 0.00414 0.0565	mg/L 0.023 0.021 0.020 0.020 0.020 0.021 0.002 0.002 0.129 0.107 0.051 0.055 0.055 0.074 0.042 0.032 0.046 0.123 0.134 0.134 0.134 0.134 0.056 0.049 0.05 0.011 0.023 0.036 0.053	mg/L 0.00007 0.00008 0.00013 0.00009 0.00003 0.00006 0.00005 0.00005 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.0152 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0250 0.0174 0.0056 0.0163 0.0252 0.01163 0.0252 0.01163 0.0163 0.0252 0.01163 0.0163 0.0252 0.0116 0.014 0.0175 0.0181 0.018 0.018	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.00019 0.0004 0.0015 0.0008 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00009 0.00034 0.00024 0.00029 0.000628 0.0000 0.0006 0.0002 0.000575 0.000198 0.000614 0.000051 0.000051 0.000058	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.00621 0.00018 0.00033 0.00234 0.000728 0.000035 0.000238 0.00666 0.0289 0.0000 0.0289 0.0051 0.0051 0.0051 0.0051 0.0051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.0113 0.0001 0.0113 0.0001 0.0015 0.00143 0.0007 0.00211 0.00389 0.00572 0.0185 0.00793 0.0134 0.00549	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00186 0.0006 0.126 0.00565 0.229 0.00231 0.00126 0.0003 0.0023 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000023 0.00049 0.00009 0.00007 0.000684 0.0007 0.00684 0.0007 0.0029 0.0015 0.00276 0.00882 0.0017 0.0029 0.0015 0.00276 0.0035 0.00680 0.0017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.007 0.006 0.793 0.297 0.027 0.006 0.793 0.297 0.282
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Maximum Maximum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-2 ore Aug 28 DS-3 ore Aug 21 NS-1 ore Aug 20 NS-1 ore Aug 20 NS-1 ore Aug 23 DS-1 ore FC-5 Ore Aug 24 DS-1 ore	FP FP FP FP FP FP FP FP FP FP FP FP FP F	units 7.05 7.07 7.36 7.36 7.36 7.16 0.17 6.19 7.73 5.95 4.35 4.62 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7 2.35 3.61	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 2 41 7 13 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 2 0 0 8 8 2 11 24 21 2 2 2 2 94 18 30 15 11 436 542 473 2 33 2 411 52	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102 258 295 2560 3430 2790 228 374 205 2450 502	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 4.54 7.29 2.76 4.887	mg/L 0.0014 0.00083 0.00118 0.000118 0.00014 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.0459 0.571 0.00624 0.924 0.536	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504 0.0168 0.00118 0.0092 0.0153 0.136 0.0573 0.0573 0.0186 0.0129	mg/L 8.52 9.24 12.8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10 0.93 10.3 0.83 1.09 2.86 8.09 1.66 8.09 1.66 8.85 2.38	mg/L 0.001 0.0009 0.0021 0.0007 0.0007 0.155 0.0015 0.124 0.171 0.0906 0.0583 0.0562 0.002 0.171 0.084 0.060 0.128 0.171 0.218 0.171 0.218 0.212 0.189 0.005 0.187 0.004 0.203 0.295	mg/L 0.00005 0.00005 0.00005 0.00005 0.00006 0.00005 0.00001 0.00028 0.00004 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00001 0.0002 0.00001 0.0002 0.00001 0.0002 0.00001 0.0003 0.0004 0.0042 0.0042 0.00349 0.00131 0.00003 0.00083 0.00005 0.00115	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.0921 0.0021 0.00380 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.00296 0.00209 0.00563 0.00627 0.0139 0.00414 0.0565 0.00578	mg/L 0.023 0.021 0.020 0.020 0.020 0.021 0.002 0.021 0.002 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.165 0.078 0.046	mg/L 0.00007 0.00008 0.00013 0.00007 0.00003 0.00006 0.00005 0.00005 0.00004 0.00005 0.00000 0.00001 0.00006	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.0152 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0148 0.0089 0.0089 0.0250 0.0174 0.0056 0.0163 0.0252 0.0116 0.0148 0.0181 0.0181 0.0181 0.0185	mg/L 0.0008 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0019 0.0008 0.0008 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005 0.0006 0.0005	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000057 0.000614 0.000028 0.000057 0.000057 0.000057 0.000057 0.000057 0.000057 0.000057 0.000057 0.000057	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.000234 0.00034 0.000234 0.000728 0.00066 0.0238 0.00666 0.0239 0.0001 0.0093 0.0051 0.0093 0.0051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.0008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00113 0.0001 0.0113 0.0001 0.00143 0.00041 0.00015 0.0001 0.00143 0.0007 0.00211 0.00389 0.00572 0.0185 0.00793 0.0134 0.000793 0.0134 0.000549 0.00549	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.0006 0.126 0.0023 0.00231 0.00023 0.00031 0.00023 0.00031 0.00033 0.00023 0.00031 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033	0.000019 0.000034 0.000034 0.000039 0.0000 0.0000 0.0000 0.00002 0.0000213 0.000213 0.00009 0.00007 0.000035 0.00679 0.000684 0.00017 0.0029 0.0015 0.00276 0.00882 0.0017 0.0029 0.015 0.00276 0.00882 0.017 0.0029	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.006 0.793 0.297 0.282 0.121 0.633 0.022 0.024 0.033 0.111 0.116 0.07 0.915 0.024
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-1 ore Aug 28 DS-1 ore Aug 28 DS-1 ore Aug 21 NS-1 ore Aug 23 NS-1 ore Aug 23 NS-1 ore Aug 23 DS-1 ore Aug 24 DS-1 ore Aug 24 DS-1 ore Minimum	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 4.35 4.62 6.53 4.62 6.53 4.62 6.53 1.9 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7 2.35 3.61 2.17	mg/L as CaCO3 15 16 27 15 27 19 7 41 2 41 2 2 2 2 41 7 13 2 2 41 7 13 2 2 2 2 41 7 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L as CaCO3 2 2 2 2 2 2 2 2 0 0 8 8 2 111 24 21 2 2 2 2 94 18 30 15 11 436 542 473 2 33 2 411 52 2	us/cm 153 171 150 150 171 158 11 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102 258 295 2560 3430 2790 228 374 205 2450 502 205	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 6.83 11.6 4.54 7.29 2.76	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.0032 0.268 0.259 0.204 0.0238 0.242 0.264 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.00624 0.924 0.924 0.924 0.936 0.006	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504 0.0118 0.00926 0.0207 0.0153 0.0136 0.0573 0.0751 0.0186 0.0129 0.0012	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10 0.93 10.3 0.83 1.09 2.86 8.09 1.66 7.1 8.85 2.38 0.83	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.0124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.218 0.212 0.189 0.005 0.187 0.004 0.203 0.295 0.001	mg/L 0.00005 0.00005 0.00006 0.00005 0.00006 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00003 0.00003 0.00003 0.00003	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.071 0.0221 0.071 0.0221 0.00483 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.0565 0.00656 0.00656 0.00656 0.00656 0.00656 0.00657 0.0139 0.00414 0.0565 0.00578 0.00588 0.00578	mg/L 0.023 0.021 0.020 0.020 0.020 0.023 0.021 0.002 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.034 0.056 0.049 0.056 0.049 0.05 0.051 0.056 0.049 0.050 0.051 0.051 0.051 0.051 0.052 0.051 0.052 0.051 0.052 0.055 0.055 0.055 0.046 0.051	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000005	mg/L 0.0172 0.0197 0.016 0.0016 0.0020 0.018 0.0025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0168 0.0148 0.0089 0.0250 0.0174 0.0056 0.0163 0.0252 0.0116 0.014 0.0175 0.0181 0.0185 0.0148 0.0189 0.0145 0.0145 0.0145 0.0145	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.00021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005	mg/L 0.00003 0.000016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000034 0.000034 0.00002 0.00062 0.0000 0.00062 0.0000 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.00023 0.00033 0.00234 0.000728 0.00035 0.00238 0.00238 0.0000 0.0289 0.0000 0.0289 0.0001 0.0093 0.0005 0.0003	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00113 0.0001 0.00113 0.0035 0.0041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.0006 0.126 0.00023 0.0013 0.00039 0.00031 0.00039 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.00039 0.0013 0.0013 0.0013 0.0013 0.0013	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.00002 0.000028 0.000213 0.00029 0.000069 0.000069 0.00007 0.00068 0.0017 0.0029 0.0015 0.00276 0.00882 0.0015 0.00276 0.00882 0.0102 0.015 0.0015 0.00276 0.00882 0.0102 0.015 0.0015 0.00276 0.00882 0.0102 0.015 0.00276 0.00882 0.0102 0.015 0.00276 0.00882 0.0102 0.015 0.000135 0.00264 0.000027 0.0141 0.0095 0.00000	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.282 0.121 0.633 0.022 0.024 0.033 0.111 0.116 0.07 0.915 0.024
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 8 NS-1 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-2 ore Aug 28 DS-3 ore Aug 21 NS-1 ore Aug 20 NS-1 ore Aug 20 NS-1 ore Aug 23 DS-1 ore Aug 23 DS-1 ore Aug 23 DS-1 ore Aug 24 DS-1 ore Aug 24 DS-1 ore Minimum Maximum Maximum Maximum Maximum Maximum Maximum Maximum	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 6.19 7.73 6.46 6.53 6.46 4.48 3.19 3.19 7.73 5.50 1.42 4.12 4.12 4.12 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7 2.35 3.61 2.17 6.70	mg/L as CaCO3 15 16 27 15 27 19 7 2 41 2 2 2 42 2 41 7 13 2 2 2 41 7 13	mg/L as CaCO3 2 2 2 2 2 2 2 0 0 8 2 111 24 21 2 2 2 2 94 18 30 15 11 436 542 473 2 33 2 411 52 2 2 542	us/cm 153 171 150 150 150 171 158 11 281 201 403 412 328 294 378 353 564 201 564 201 564 357 102 258 295 2560 3430 2790 228 374 205 2450 502 205 3430	mg/L 0.112 0.148 0.092 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 4.54 4.7 7.29 2.76 15.4	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.00322 0.268 0.259 0.204 0.0238 0.242 0.564 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.0459 0.071 0.00624 0.924 0.924	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.00612 0.0504 0.0168 0.00168 0.0026 0.0207 0.0153 0.136 0.0573 0.0751 0.0186 0.0129 0.0012	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 10.3 0.83 1.09 2.86 8.09 1.66 7.1 8.85 2.38 0.83 10.30	mg/L 0.001 0.0009 0.0021 0.0007 0.0013 0.0007 0.155 0.0015 0.124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.128 0.128 0.128 0.1295 0.004 0.203 0.295	mg/L 0.00005 0.00005 0.00006 0.00005 0.00006 0.00001 0.00001 0.00028 0.00004 0.00009 0.00028 0.00017 0.00002 0.00001 0.00002 0.00001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00003 0.00003 0.00003 0.00003 0.00003 0.00003	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.0808 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.00296 0.00563 0.00656 0.00657 0.00578 0.00578 0.00588 0.0021 0.0565	mg/L 0.023 0.021 0.02 0.020 0.020 0.023 0.021 0.002 0.129 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.165 0.078 0.046 0.013 0.056 0.049 0.05 0.053 0.049 0.05 0.053 0.049 0.053 0.036 0.053 0.046 0.053	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.000000	mg/L 0.0172 0.0197 0.016 0.016 0.020 0.018 0.002 0.025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0221 0.0168 0.0148 0.0089 0.0089 0.0089 0.0056 0.0174 0.0056 0.0116 0.014 0.0175 0.0181 0.0145 0.0181 0.0145 0.0218 0.0156 0.0116 0.0145 0.0252	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.0021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0008 0.0005 0.0008 0.0008 0.0006 0.0008 0.0008 0.0006 0.0008	mg/L 0.00003 0.000016 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.00000 0.0001 0.00000 0.0001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.000621 0.00018 0.00033 0.00234 0.000728 0.000038 0.000238 0.000238 0.000238 0.000051 0.0093 0.0051 0.0051 0.0093 0.0051 0.0093	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00113 0.0001 0.00113 0.0001 0.00113 0.0001 0.0015 0.0001 0.0015 0.0001 0.0015 0.0001 0.0015	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.00076 0.0006 0.126 0.00565 0.229 0.00231 0.00126 0.0002 0.0003 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00039 0.051 0.0013 0.0017 0.00104 0.00039 0.00013	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.000022 0.000022 0.000023 0.00009 0.00009 0.00007 0.000684 0.00069 0.00684 0.00015 0.0029 0.0015 0.0029 0.0015 0.0029 0.0015 0.0029 0.0015 0.0029 0.0015 0.0029 0.0015	mg/L 0.031 0.048 0.006 0.006 0.048 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.024 0.033 0.111 0.116 0.07 0.915 0.024 0.022 0.915
Oct 5 DS-1 Sub-economic mineralized mine rock Oct 5 DS-2 Sub-economic mineralized mine rock FC-1 Sub-economic mineralized mine rock Minimum Maximum Average Standard Deviation Oct 9 NS-1 Sub-economic mineralized mine rock Oct 9 NS-3 Sub-economic mineralized mine rock Mar 10 NS-1 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock Mar 10 NS-3 Sub-economic mineralized mine rock FC-2 Sub-economic mineralized mine rock FC-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock FC-4 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Mar 8 NS-3 Sub-economic mineralized mine rock Minimum Average Standard Deviation Oct 9 DS-1 ore Oct 9 DS-1 ore Aug 28 DS-1 ore Aug 28 DS-1 ore Aug 21 NS-1 ore Aug 23 NS-1 ore Aug 23 NS-1 ore Aug 23 DS-1 ore Aug 24 DS-1 ore Aug 24 DS-1 ore Minimum	Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist (±magnetite) Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite Black Rock Schist ± Magnetite	units 7.05 7.07 7.36 7.05 7.36 7.16 0.17 6.19 7.73 4.35 4.62 6.53 4.62 6.53 4.62 6.53 1.9 3.19 7.73 5.50 1.42 4.12 5.69 2.32 2.17 2.28 6.46 4.04 6.7 2.35 3.61 2.17	mg/L as CaCO3 15 16 27 15 27 19 7 41 2 41 2 2 2 2 41 7 13 2 2 41 7 13 2 2 2 2 41 7 13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mg/L as CaCO3 2 2 2 2 2 2 2 2 0 0 8 8 2 111 24 21 2 2 2 2 94 18 30 15 11 436 542 473 2 33 2 411 52 2	us/cm 153 171 150 150 171 158 11 158 11 281 201 403 412 328 294 378 353 564 201 564 357 102 258 295 2560 3430 2790 228 374 205 2450 502 205	mg/L 0.112 0.148 0.092 0.092 0.148 0.117 0.028 3.65 0.04 5.71 6.06 3.92 4.39 10.9 8.84 4.17 0.04 10.90 5.30 3.14 2.98 3.74 5.11 6.83 11.6 6.83 11.6 4.54 7.29 2.76	mg/L 0.0014 0.00083 0.00118 0.00018 0.00118 0.00029 0.406 0.0032 0.268 0.259 0.204 0.0238 0.242 0.264 0.409 0.003 0.564 0.264 0.181 0.291 0.335 0.502 0.554 0.787 0.00624 0.924 0.924 0.924 0.936 0.006	mg/L 0.167 0.0717 0.0882 0.0717 0.1670 0.1090 0.0509 0.00077 0.117 0.0584 0.0546 0.112 0.0891 0.116 0.00135 0.00143 0.0008 0.1170 0.0612 0.0504 0.0118 0.00926 0.0207 0.0153 0.0136 0.0573 0.0751 0.0186 0.0129 0.0012	mg/L 8.52 9.24 12 8.52 12.00 9.92 1.84 11.1 8.51 10.3 11.8 0.64 8.53 7.81 8.45 0.77 0.64 11.80 7.55 4.10 0.93 10.3 0.83 1.09 2.86 8.09 1.66 7.1 8.85 2.38 0.83	mg/L 0.001 0.0009 0.0021 0.0009 0.0021 0.0013 0.0007 0.155 0.0015 0.015 0.0124 0.171 0.0976 0.0045 0.0906 0.0583 0.0562 0.002 0.171 0.218 0.212 0.189 0.005 0.187 0.004 0.203 0.295 0.004	mg/L 0.00005 0.00005 0.00006 0.00005 0.00006 0.00001 0.00001 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002 0.00003 0.00003 0.00003 0.0003 0.0003 0.0003 0.0003 0.0003 0.00003 0.00003 0.00003 0.00003	mg/L 0.0302 0.0265 0.0273 0.0265 0.0302 0.0280 0.0019 0.00137 0.117 0.0187 0.0221 0.071 0.0221 0.071 0.0221 0.071 0.0221 0.00483 0.00272 0.00483 0.0014 0.1170 0.0378 0.0414 0.0565 0.00656 0.00656 0.00656 0.00656 0.00656 0.00657 0.0139 0.00414 0.0565 0.00578 0.00588 0.00578	mg/L 0.023 0.021 0.020 0.020 0.020 0.023 0.021 0.002 0.107 0.051 0.052 0.05 0.165 0.074 0.042 0.032 0.032 0.032 0.034 0.056 0.049 0.056 0.049 0.05 0.051 0.056 0.049 0.050 0.051 0.051 0.051 0.051 0.052 0.051 0.052 0.051 0.052 0.055 0.055 0.055 0.046 0.051	mg/L 0.00007 0.00008 0.000013 0.00007 0.00003 0.000005	mg/L 0.0172 0.0197 0.016 0.0016 0.0020 0.018 0.0025 0.0152 0.0234 0.0194 0.0106 0.0221 0.0168 0.0168 0.0148 0.0089 0.0250 0.0174 0.0056 0.0163 0.0252 0.0116 0.014 0.0175 0.0181 0.0185 0.0148 0.0189 0.0145 0.0145 0.0145 0.0145	mg/L 0.0008 0.0008 0.00047 0.0008 0.0047 0.00021 0.002251666 0.0004 0.0005 0.0006 0.0005 0.0006 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005 0.0008 0.0005	mg/L 0.00003 0.000016 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000034 0.000034 0.00002 0.00062 0.0000 0.00062 0.0000 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061 0.00061	mg/L 0.000157 0.000077 0.000436 0.0001 0.0004 0.0002 0.0002 0.0002 0.00023 0.00033 0.00234 0.000728 0.00035 0.00238 0.00238 0.0000 0.0289 0.0000 0.0289 0.0001 0.0093 0.0005 0.0003	mg/L 0.0204 0.0236 0.0341 0.0204 0.0341 0.0204 0.0341 0.0260 0.0072 0.00008 0.00274 0.00658 0.0025 0.00783 0.00054 0.0113 0.0001 0.00113 0.0001 0.00113 0.0035 0.0041	mg/L 0.00256 0.00355 0.00941 0.0026 0.0094 0.0052 0.0037 0.00046 0.00186 0.0006 0.126 0.0006 0.126 0.00023 0.0013 0.00039 0.00031 0.00039 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.00039 0.0013 0.0013 0.0013 0.0013 0.0013	0.000019 0.000034 0.000034 0.00000 0.0000 0.0000 0.0000 0.00002 0.000028 0.000213 0.00029 0.000069 0.000069 0.00007 0.00068 0.0017 0.0029 0.0015 0.00276 0.00882 0.0015 0.00276 0.00882 0.0102 0.015 0.0015 0.00276 0.00882 0.0102 0.015 0.0015 0.00276 0.00882 0.0102 0.015 0.00276 0.00882 0.0102 0.015 0.00276 0.00882 0.0102 0.015 0.000135 0.00264 0.000027 0.0141 0.0095 0.00000	mg/L 0.031 0.048 0.006 0.006 0.048 0.028 0.021 0.401 0.006 0.488 0.793 0.013 0.074 0.343 0.527 0.027 0.006 0.793 0.297 0.282 0.121 0.633 0.022 0.024 0.033 0.111 0.116 0.07 0.915 0.024

bold italic Bold italic formatting indicates a value that is less than the analytical detection limit

1. Sample classified as "waste" or "ore" according to average assay grades of each pile (as provided by Fortune) and August 2008 cut-off criterion

2. Lithology based on dominant visible lithology in field. Rock may be diluted with minor proportions of other lithologies of waste rock

Appendix IV-6c

Results of Short Term Leach Testing - Comprehensive Analysis of Net Acid Generation Leachates - Tailings NICO Project, Fortune Minerals Ltd.

	Sample weight	Vol H ₂ O ₂	Hg	Ag	Al	As	Ва	Be	В	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg
	g	mL	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Bulk Rougher Tails	2.52	250	< 0.1	0.00003	1.25	0.180	0.00253	0.00003	0.417	0.00262	19.3	0.000034	0.0225	0.0650	0.0183	0.06	37.8	< 0.002	0.014
Bulk Cleaner Tails	2.53	250	< 0.1	0.00002	0.97	1.84	0.00157	< 0.00002	0.168	0.00227	29.9	0.000036	0.00997	0.0452	0.0074	0.02	38.5	< 0.002	0.013
PP#14	2.54	250	< 0.1	0.00003	1.31	0.824	0.00107	0.00002	0.155	0.00126	20.1	< 0.000003	0.00726	0.0329	0.0093	0.05	29.2	< 0.002	0.010

	Sample weight	Vol H ₂ O ₂	Hg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	٧	w	Υ	Zn
	g	mL	μg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
Bulk Rougher Tails	2.52	250	< 0.1	0.00172	0.0204	0.96	0.0020	0.00015	0.0277	0.013	0.00017	0.0059	0.0014	0.000097	0.00110	0.00855	0.0336	0.000098	< 0.001
Bulk Cleaner Tails	2.53	250	< 0.1	0.00063	0.0530	0.87	0.0012	0.00007	0.0858	0.048	0.00005	0.0127	0.0006	0.000046	0.00151	0.00680	0.0198	0.000044	< 0.001
PP#14	2.54	250	< 0.1	0.00082	0.0197	0.54	0.0017	0.00020	0.0338	0.014	0.00177	0.0060	0.0007	0.000030	0.00120	0.00692	0.0262	0.000033	0.001

Appendix IV-7
Results of Decant Water Quality Analysis
NICO Project, Fortune Minerals Limited

	Unit	Project, Fortune Minera Bulk Rougher Tails	PP#14	NICO Field Test Blend
		(FC-6)		(FC-7)
pH Conductivity (EC)	units uS/cm	8.2 666	8.18 547	7.7 36800
Bicarbonate (HCO3)	mg/L	104	347	136
Carbonate (CO3)	mg/L	<5	<2	<5
Hydroxide (OH)	mg/L	<5		<5
Alkalinity, Total (as CaCO3)	mg/L	85	113	112
a	I /1	63	20	12500
Chloride (CI) Calcium (Ca)	mg/L mg/L	62 18.6	38 15.7	13500 922
Potassium (K)	mg/L	80.0	81.3	236
Magnesium (Mg)	mg/L	13.4	5.78	80.5
Sodium (Na)	mg/L	43	34.5	7330
Sulfate (SO4)	mg/L	132	60	2120
Ion Balance	%	95.9	204	88.4
TDS (Calculated) Hardness (as CaCO3)	mg/L mg/L	400 102	394	24300 2630
riaruness (as cacos)	1116/ -	102		2030
Nitrate+Nitrite-N	mg/L	<0.1		0.4
Nitrate-N	mg/L	<0.1	1.89	0.4
Nitrite-N	mg/L	<0.05	0.8	0.07
Dissolved Metals				
Silver (Ag)	mg/L	<0.0002	<0.00001	<0.0002
Aluminum (AI)	mg/L	0.09	0.08	<0.01
Arsenic (As)	mg/L	0.220	0.625	0.0986
Boron (B)	mg/L	0.126	0.147	0.099
Barium (Ba)	mg/L mg/L	0.0092 <0.0005	0.00937 <0.00002	0.229 <0.0005
Beryllium (Be) Bismuth (Bi)	mg/L	0.00427	0.00136	0.00016
Cadmium (Cd)	mg/L	0.0004	0.000055	0.0003
Cobalt (Co)	mg/L	0.0045	0.00141	1.63
Chromium (Cr)	mg/L	<0.002	<0.0005	0.003
Copper (Cu)	mg/L	0.0021 0.235	0.002 0.11	0.0127 <0.1
Iron (Fe) Manganese (Mn)	mg/L mg/L	0.235	0.00681	0.63
Molybdenum (Mo)	mg/L	0.0603	0.0534	0.0059
Nickel (Ni)	mg/L	0.0011	0.0019	0.0320
Lead (Pb)	mg/L	<0.0001	0.00004	<0.0001
Antimony (Sb)	mg/L	0.0569	0.0623	0.0261
Tin (Sn)	mg/L mg/L	<0.0002 0.0710	0.00076 0.0577	<0.0002 2.17
Strontium (Sr) Titanium (Ti)	mg/L	0.0043	0.002	0.0045
Thallium (TI)	mg/L	<0.00005	0.000048	0.00021
Uranium (U)	mg/L	0.0952	0.0363	0.0964
Vanadium (V)	mg/L	0.0040	0.00138	<0.0005
Zinc (Zn)	mg/L	0.003	<0.001	0.015
Total Major Metals				
Calcium (Ca)	mg/L	67	26.2	948
Potassium (K)	mg/L	110	91.7	241
Magnesium (Mg)	mg/L	59	13.5	80
Sodium (Na)	mg/L	50	37.8 41.2	7700 8.74
Iron (Fe) Manganese (Mn)	mg/L mg/L	227 1.99	0.343	0.68
Total Trace Metals	6/ -	1.55	0.5 15	0.00
Silver (Ag)	mg/L	<0.0004	0.00007	<0.0004
Aluminum (Al)	mg/L	53.2	9.3	1.70
Arsenic (As)	mg/L	1.45	0.625	0.281
Boron (B) Barium (Ba)	mg/L mg/L	0.13 0.174	0.143 0.0484	0.09 0.213
Beryllium (Be)	mg/L	0.003	0.00071	<0.001
Bismuth (Bi)	mg/L	1.76	0.245	0.0858
Cadmium (Cd)	mg/L	<0.0002	0.000068	0.0004
Cobalt (Co)	mg/L	0.239	0.0607	1.56
Chromium (Cr)	mg/L mg/L	0.0840 0.079	0.0126 0.0129	0.037 0.025
Copper (Cu) Molybdenum (Mo)	mg/L	0.079	0.0129	0.025
Nickel (Ni)	mg/L	0.0284	0.0058	0.0274
Lead (Pb)	mg/L	0.0280	0.00416	0.0029
Antimony (Sb)	mg/L	0.0218	0.0609	0.0264
Tin (Sn)	mg/L	0.0061	0.00361	0.0006
Strontium (Sr) Titanium (Ti)	mg/L mg/L	0.0835 4.06	0.0668 0.461	1.99 0.138
Thallium (TI)	mg/L	0.0016	0.000132	0.0003
Uranium (U)	mg/L	0.134	0.0571	0.0944
Vanadium (V)	mg/L	0.0569	0.0097	<0.0002
Zinc (Zn)	mg/L	0.437	0.009	0.027
Moroupy (Ha) Dissolved	mg/l	<0.00010	<0.1	<0.00010
Mercury (Hg)-Dissolved Mercury (Hg)-Total	mg/L mg/L	<0.00010	<0.1	<0.00010
···cicary (rig/-rotar	b/ L			~0.00010
Selenium (Se)-Dissolved	mg/L	0.0142	0.012	0.428

Appendix IV-8 NICO Project, Fortune Minerals Limited

Sample ID		PP-01 Thickener O/F 16:00	PP-02 Thickener O/F 16:00	PP-03 Thickener O/F 11:00	PP-03 Thickener O/F 16:00	PP-05 Thickener O/F 14:30	PP-7A Thickener O/F 13:00
Date		Oct-10	Oct-10	Oct-10	Oct-10	Oct-10	Oct-10
Parameter	Unit						
pН	units	8.72	8.56	8.43	8.57	8.51	8.02
Conductivity	μS/cm	503	520	540	596	623	701
Cl	mg/L	28	30	31	37	45	41
SO ₄	mg/L	95	83	77	100	110	140
As ⁺³	mg/L						0.018
As ⁺⁵	mg/L						0.008
Se ⁴	mg/L						< 0.005
Se ⁶							< 0.005
	mg/L						
Hg	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
As	mg/L	0.035 0.065	0.045 < 0.005	0.033 0.019	0.038 0.008	0.028 < 0.005	0.025 < 0.005
Se	mg/L				< 0.00001		< 0.0001
Ag	mg/L	0.00002 0.06	0.00001 0.07	< 0.00001	0.007	< 0.00001	
Al .	mg/L			0.04		0.09	0.05
Ba	mg/L	0.01212	0.00851	0.0110	0.0115	0.0158 < 0.00002	0.01393
Be	mg/L	< 0.00002	< 0.00002	< 0.00002	< 0.00002		< 0.00002
B	mg/L	0.0690	0.0776	0.0848 0.00013	0.101 0.00009	0.0988	0.105
Bi	mg/L	0.00013 22.6	0.00025		22.4	0.00011	0.00015
Ca	mg/L		17.1	22.0		26.1	24.7
Cd	mg/L	0.000026	0.000056	0.000040	0.000048	0.000054	0.000088
Co	mg/L	0.001092	0.00103	0.00235	0.00229	0.00215	0.001850
Cr	mg/L	< 0.0005	0.0006	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Cu	mg/L	0.0009	0.0019	0.0016	0.0012	0.0006	0.0015
Fe	mg/L	0.014	0.011	< 0.002	0.003	0.005	0.008
K	mg/L	69.8	80.8	60.9	70.9	88.0	98.9
Li	mg/L	0.016	0.017	0.019	0.021	0.035	0.025
Mg	mg/L	6.27	4.69	6.55	6.61	8.11	8.80
Mn	mg/L	0.01648	0.0108	0.0187	0.0155	0.0198	0.01901
Мо	mg/L	0.03553	0.0357	0.0466	0.0460	0.0517	0.07904
Na	mg/L	23.9	23.4	24.3	30.6	31.7	35.1
Ni	mg/L	0.0002	0.0011	0.0016	0.0013	0.0016	0.0027
Р	mg/L	0.033	< 0.009	< 0.009	0.034	0.019	0.010
Pb	mg/L	0.00053	0.00010	0.00088	0.00005	0.00006	0.00016
Sb	mg/L	0.0093	0.0098	0.0107	0.0084	0.0171	0.0214
Si	mg/L	2.03	2.14	2.32	2.41	2.42	3.09
Sn	mg/L	0.00040	0.00030	0.00044	0.00023	0.00009	0.00019
Sr	mg/L	0.0690	0.0469	0.0722	0.0638	0.0742	0.0673
Ti	mg/L	0.0009	0.0004	0.0004	0.0022	0.0008	0.0009
Th	mg/L	< 0.000004	0.000084	0.000013	0.000052	< 0.000004	< 0.000004
TI	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002
U	mg/L	0.007833	0.00803	0.0101	0.00928	0.0119	0.017088
V	mg/L	0.00017	0.00041	0.00019	0.00016	0.00010	0.00031
Υ	mg/L	0.000017	0.000006	0.000008	0.000005	0.000006	0.000009
W	mg/L	0.00668	0.0101	0.00905	0.0109	0.0105	0.01494
Zn	mg/L	< 0.002	< 0.002	0.004	< 0.002	< 0.002	0.007

Golder Associates Created by: KAS

Checked: KJD

APPENDIX V

Results of Regression Analysis – Correlation Coefficients

08-1118-0043

Correlation Coefficients - Solid Phase Analysis - Ore Samples - Drill Core and Run of Mine

Breccia - Drill Core																																				
		otal Sulphur Sulp	hate-Sulphur	Sulphide-Sulphur	Total Carbon /	Ag A	I A	As E	Ba Bi	e B	3 1	Bi Ca	, с	d C	o (r Cı	u F	e k	Li	i M	g N	Mn M	o N	a N	i P	b SE) Se	. Sr	n S	ir Ti	7	I U		<i>V</i> 1	W Y	/ Zn
NP	1.00																																			
Total Sulphur	-0.25 -0.23	1.00 0.97	1.00																																	
Sulphate-Sulphur	0.09	1.00	0.97																																	
Total Carbon	0.80	-0.48	-0.54																																	
Aa	0.27	0.02	0.1			1.00																														
Al	-0.80	0.08	0.0		-0.38		1.00																													
As	-0.29	0.66	0.5		-0.47	-0.28	0.29	1.00																												
Ва	-0.64	-0.17	-0.3	1 -0.34	-0.22	-0.22	0.82	0.11	1.00																											
Ве	0.06	-0.38	-0.50	0 -0.47	0.21	-0.05	-0.09	-0.50	-0.33	1.00																										
В	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00																									
Bi	0.48	0.14	0.13		-0.07	0.43	-0.80	-0.03	-0.80	0.27	N/A	1.00																								
Са	0.94	-0.40	-0.4		0.91	0.06	-0.40	-0.30	-0.25	0.03	N/A	0.09	1.00																							
Cd	N/A	-0.73	N/A	N/A	N/A	N/A	-0.77	-0.62	-0.91	0.87	N/A	1.00	-0.94	1.00																						
Co	-0.18	0.98	0.97		-0.48	0.08	-0.03	0.68	-0.29	-0.32	N/A	0.21	-0.37	0.15	1.00	4.00																				
Cr	-0.16	-0.18	-0.20 0.98		-0.24 -0.47	-0.55 0.09	0.06 -0.05	-0.28 0.57	0.40	-0.26	N/A	-0.49 0.23	-0.02	-0.27	-0.24	1.00 -0.22																				
Cu Fe	-0.16 0.55	0.97 0.07	0.98		0.07	0.09	-0.05	0.57	-0.34 -0.27	-0.23 0.05	N/A	0.23	-0.36 0.34	0.93 -0.09	0.99 0.18	-0.22	1.00 0.20	1.00																		
K	-0.59	0.31	0.3		-0.25	-0.53	0.80	0.07	0.61	0.05	N/A	-0.52	-0.39	-0.84	0.18	-0.11	0.20	-0.31	1.00																	
Li	-0.26	-0.10	0.0		-0.54	0.36	-0.28	0.09	-0.44	0.09	N/A	0.44	-0.24	0.85	0.30	-0.56	0.30	0.00	-0.48	1.00																
Ma	0.59	-0.02	0.2		0.14	0.33	-0.55	-0.17	-0.56		N/A	0.59	0.31	0.31	0.13	-0.15	0.18	0.82	-0.40	-0.03	1.00															
Mn	0.15	-0.37	-0.6		-0.02	-0.27	-0.17	-0.11	-0.43	0.61	N/A	0.20	0.07	0.18	-0.18	-0.17	-0.15	0.19	-0.25	0.15	0.52	1.00														
Мо	-0.13	0.92	0.99	0.96	-0.46	0.19	-0.16	0.52	-0.47	-0.19	N/A	0.35	-0.33	0.87	0.96	-0.38	0.97	0.17	0.03	0.78	0.20	-0.10	1.00													
Na	-0.39	-0.16	-0.3	3 -0.47	0.09	-0.62	0.56	0.01	0.44	0.12	N/A	-0.48	-0.15	-0.67	-0.31	0.06	-0.32	-0.80	0.61	-0.35	-0.71	-0.07	-0.38	1.00												
Ni	0.16	-0.02	0.0		0.26	-0.18	0.13	-0.04	0.29	0.17	N/A	0.07	0.18	-0.60	-0.10	0.14	-0.08	0.57	0.34	-0.50	0.37	-0.18	-0.23	-0.11	1.00											
Pb	-0.23	-0.21	-0.2		0.09	0.43	0.09	-0.28	0.03	0.25	N/A	-0.13	-0.17	0.87	-0.17	-0.08	-0.16	-0.26	-0.14	0.58	-0.27	-0.14	-0.06	-0.05	-0.33	1.00										
Sb	-0.21	0.26	0.20		-0.02	-0.17	0.45	0.49	0.32	-0.35	N/A	-0.65	-0.13	-0.57	0.27	0.24	0.19	-0.41	0.21	-0.13	-0.47	-0.03	0.13	0.30	-0.44	0.20	1.00									
Se	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00								
Sn	0.52	0.48 -0.46	0.5		0.04	0.10	-0.38 0.57	0.25	-0.31	-0.41	N/A	0.30	0.36	-0.77	0.50	0.04	0.52	0.74	-0.24	-0.30	0.53	-0.16	0.46	-0.64	0.36	-0.55	-0.22	N/A	-0.50	4 00						
Sr	-0.35 0.17	-0.46 -0.30	-0.6° -0.2		0.19 0.15	0.02	-0.06	-0.21 -0.18	0.79 0.38	0.05 -0.16	N/A N/A	-0.43 0.04	0.14	-0.42	-0.51	0.16	-0.53	-0.33 0.41	0.56	-0.32	-0.48	-0.48	-0.60	0.52	0.44	0.22	-0.08	N/A	0.35	1.00 0.45	1.00					
71	0.33	-0.30	-0.3		0.19	-0.29	0.05	0.42	0.37	-0.16	N/A	-0.06	0.15	-0.62	-0.51	0.44	-0.31	0.41	0.08	-0.30	0.24	-0.25	-0.43	-0.13	0.55	-0.47	-0.46	N/A	0.54	0.43	0.74	1.00				
 !!	-0.38	0.68	0.6		-0.28	-0.25	0.03	0.42	-0.09	-0.09	N/A	-0.06	-0.38	0.02	0.13	-0.15	0.63	-0.48	0.30	0.29	-0.03	-0.27	0.28	0.17	-0.53	0.30	0.62	N/A	-0.16	-0.23	-0.77	-0.66	1.00			
v	0.33	-0.42	-0.3		0.21	0.17	-0.23	-0.19	0.23	-0.12	N/A	0.20	0.30	-0.44	-0.38	0.29	-0.39	0.56	-0.15	-0.35	0.40	-0.13	-0.47	-0.32	0.72	-0.42	-0.55	N/A	0.37	0.31	0.94	0.82	-0.91	1.00		
w	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00	
Y	-0.19	-0.29	-0.4	,	-0.01	-0.51	0.28	0.11	-0.03	0.62	N/A	-0.08	-0.11	0.05	-0.24	-0.22	-0.26	-0.28	0.21	0.07	-0.05	0.68	-0.27	0.54	-0.08	0.05	0.23	N/A	-0.60	0.05	-0.34	-0.36	0.11	-0.31	N/A	1.00
Zn	-0.20	-0.20	-0.20		-0.01	0.47	-0.04	-0.21	-0.16		N/A	0.13	-0.21	0.88	-0.09	-0.28	-0.08	0.01	-0.21	0.70	0.06	0.13	0.04	-0.26	-0.22	0.91		N/A	-0.46	0.07	-0.44	-0.53	0.19		N/A	0.17 1.00
											_																									

Feldspar Porphyry	- Drill Core	e																																			
	NP	Total Sul	ohur Sulphate-Sulphur	Sulphide-Sulp	phur Total (Carbon Ag	Al	As	Ва	Ве	В	Bi	Са	Cd	Со	Cr	Cu	Fe	K	Li	Mg	Mn	Мо	Na	Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	V	W	Υ	Zn
NP		1.00																																			
Total Sulphur		-0.10	1.00																																		
Sulphate-Sulphur		-0.18	0.84	1.00																																	
Sulphide-Sulphur		0.11	0.96	0.62	1.00																																
Total Carbon		0.63	-0.10	-0.18	-0.11	1.00																															
Ag		-0.21	0.11	0.24	-0.01	-0.12	1.00																														
Al		0.41	0.06	0.03	0.11	0.20	-0.26	1.00																													
As		-0.18	0.14	0.01	0.10	-0.25	0.02	-0.03	1.00																												
Ва		-0.14	0.13	0.03	0.21	0.10	-0.06	0.45	0.05 1.	.00																											
Ве		0.05	0.12	0.11	0.08	-0.15	-0.21	0.15	-0.15 -0	.09 1	.00																										

0.63	-0.10	-0.18	-0.11	1.00																																
-0.21	0.11	0.24	-0.01	-0.12	1.00																															
0.41	0.06	0.03	0.11	0.20	-0.26	1.00																														
-0.18	0.14	0.01	0.10	-0.25	0.02	-0.03	1.00																													
-0.14	0.13	0.03	0.21	0.10	-0.06	0.45	0.05	1.00																												
0.05	0.12	0.11	0.08	-0.15	-0.21	0.15	-0.15	-0.09	1.00																											
0.76	-0.60	-0.60	-0.60	-0.48	-0.31	0.39	N/A	-0.83	0.99	1.00																										
0.25	0.03	0.23	-0.02	-0.07	-0.19	-0.16	0.07	-0.54	0.23	-0.61	1.00																									
0.59	-0.01	-0.03	0.04	0.33	-0.11	0.53	-0.03	-0.21	0.10	0.90	0.24	1.00																								
-0.07	0.18	0.67	-0.35	0.52	0.89	-0.77	-0.43	-0.52	-0.25	-0.29	0.79	-0.16	1.00																							
-0.01			0.17	-0.06		0.01	0.66	0.16	-0.39	-0.36	-0.07	0.05	-0.15	1.00																						
-0.25						0.29	-0.12	0.44	0.04	-0.22	-0.62	-0.13	-0.59	0.06	1.00																					
0.04			0.30				0.24	0.04	-0.11	-0.60	0.03	-0.07	-0.12	0.09	-0.08	1.00																				
							-0.01	-0.29	0.31	0.96		0.60	-0.21	-0.24	0.04	-0.08	1.00																			
						0.47	-0.01	0.74	-0.13	-0.95	-0.33	-0.14	-0.46	0.13	0.31	0.08	-0.22	1.00																		
						-0.16	-0.06	-0.52	0.31	0.96	0.59	0.30	-0.16	0.23	-0.32	-0.15		-0.46	1.00																	
						0.46	-0.10	-0.32	0.36	0.98		0.73	-0.22	-0.18	-0.02	-0.17		-0.30	0.46	1.00																
						0.38	-0.02	-0.22	0.12	-0.24	0.29	0.88	-0.33	-0.02	-0.10	0.04	0.55	-0.12	0.33	0.68	1.00															
								0.00	-0.11	-0.52	0.04	-0.21	0.34	0.08	-0.29	0.07	-0.50	0.01	-0.16	-0.49	-0.27	1.00														
							-0.05	-0.05	0.30	0.90	0.11	0.62	-0.15	-0.20	0.02	-0.13		-0.23	0.02	0.66	0.46	-0.20	1.00													
							-0.04	-0.02	0.49	0.99	-0.16	-0.01	-0.07	-0.23	0.37	-0.14		-0.10	0.22	0.35	0.01	-0.39	0.15		4.00											
							-0.01	-0.19	-0.21	-0.08	-0.02		0.31	-0.09	-0.14	0.04		-0.16	0.03	-0.18	0.19	0.12	-0.10	-0.16	1.00	4 00										
							0.11	-0.17	0.07	-0.89	0.08	0.88	-0.27	0.12	-0.10	0.06		-0.20	0.18	0.60	0.73	-0.12	0.63	-0.03	0.07	1.00										
							N/A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00								
							0.20	0.34					0.17	0.22	0.01	0.10		0.05			0.01	0.34	0.02	0.30	0.20	0.12	0.00	0.04	1.00							
							-0.06	0.23	0.45	1.00	0.24	0.63	0.15	0.02	0.01	0.17		0.20		0.75	0.72	0.21	0.00	0.23	0.07	0.74	0.00	0.04		1.00						
							-0.14	0.22	0.44	0.00	0.24	-0.04	-0.20	-0.22	0.19	-0.10	0.56	0.15		0.07	-0.57	-0.51	0.36	0.52	-0.21	-0.30	0.00	0.44			1.00					
						-0.04	0.13	0.03	-0.12	-0.90	-0.03	-0.04	-0.42	0.27	0.20	0.11	-0.58	0.10		-0.43	-0.02	0.53	-0.13	-0.30	0.40	-0.13	0.00	-0.32	-0.46			1.00				
						0.04	-0.15	-0.40	0.10	1.00		0.30	-0.21	-0.02	-0.00	-0.17	0.36	-0.23		0.03	0.26	-0.53	0.12	0.22	-0.40	0.13	0.00	0.41	0.40				1 00			
						-0.97	N/A	0.05	-0.50	-0.59	1.00	-0.18	-0.60	0.97	0.92	1.00	-0.34	0.31	-0.35	-0.74	0.93	1.00	-0.18	-0.72	0.85	0.89	0.00	-0.43	-0.52	-0.53	-0.71		-0.51	1.00		
						0.26	-0.03	-0.16	0.41	0.80	0.26		-0.39		-0.07		0.45	-0.10	0.20	0.52	0.48	-0.21	0.42	0.27	0.02	0.32	0.00	0.21	0.45	0.47	0.18		0.47		1.00	
-0.07	0.24	0.42	0.02	0.04	0.49	-0.01	-0.04	0.02	-0.11	-0.05	0.11	-0.03	1.00	-0.12	-0.20	-0.04	-0.06	-0.08	-0.13	-0.08	-0.09	0.04	0.19	0.07	0.22	-0.11	0.00	-0.03	-0.04	-0.10	-0.07	0.30	-0.09			1.00
	-0.21 -0.41 -0.18 -0.14 -0.18 -0.17 -0.05 -0.76 -0.25 -0.07 -0.01 -0.25 -0.04 -0.39 -0.22 -0.03 -0.47 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.05	-0.21 0.11 0.06 -0.18 0.14 -0.18 0.14 -0.18 0.14 -0.18 0.12 -0.76 0.60 -0.25 0.03 -0.59 -0.01 -0.07 0.18 -0.01 -0.02 -0.25 0.09 -0.01 -0.02 -0.25 0.09 -0.04 0.49 -0.39 0.07 -0.22 -0.04 -0.03 0.05 -0.47 0.03 -0.54 0.08 -0.04 0.05 -0.34 0.01 -0.17 0.33 -0.13 0.02 -0.57 -0.02 -0.00 0.00 -0.11 0.05 -0.36 0.03 -0.11 0.05 -0.36 0.03 -0.19 0.04 -0.14 0.27 -0.05 0.22 -0.30 0.03 -0.07 1.00 -0.36 0.14	-0.21 0.11 0.24 0.41 0.06 0.03 -0.18 0.14 0.01 -0.18 0.14 0.01 -0.18 0.14 0.01 -0.18 0.05 0.12 0.11 0.05 0.12 0.11 0.05 0.12 0.11 0.05 0.12 0.11 0.03 0.05 0.12 0.11 0.03 0.05 0.12 0.11 0.03 0.05 0.05 0.07 0.18 0.67 -0.01 0.02 0.12 0.12 0.04 0.49 0.62 0.10 0.04 0.49 0.62 0.10 0.04 0.49 0.62 0.10 0.04 0.49 0.62 0.10 0.05 0.00 0.05 0.00 0.01 0.13 0.03 0.03 0.05 0.00 0.01 0.13 0.03 0.03 0.05 0.00 0.01 0.13 0.03 0.03 0.05 0.00 0.01 0.13 0.03 0.03 0.05 0.00 0.00 0.00 0.00 0.0	-0.21 0.11 0.24 -0.01 0.41 0.06 0.03 0.11 -0.18 0.14 0.06 0.03 0.11 -0.18 0.14 0.01 0.10 0.10 -0.18 0.14 0.01 0.10 0.10 -0.19 0.12 0.11 0.08 -0.50 0.50 0.12 0.11 0.08 -0.60 0.60 0.60 0.60 -0.60 0.59 0.01 0.03 0.04 -0.07 0.18 0.67 0.35 -0.01 0.02 0.12 0.17 -0.25 0.09 0.10 0.03 0.04 -0.07 0.18 0.67 0.35 -0.01 0.02 0.12 0.17 -0.25 0.09 0.10 0.10 0.04 -0.49 0.62 0.30 -0.39 0.07 0.16 0.11 -0.10 0.09 0.10 0.09 -0.10 0.03 0.05 0.00 0.11 -0.11 0.09 0.09 0.10 0.09 -0.11 0.09 0.01 0.09 0.11 -0.11 0.09 0.09 0.11 -0.11 0.09 0.09 0.01 0.00 0.01 -0.11 0.01 0.01 0.01 0 -0.11 0.01 0.01 0.01 0 -0.11 0.01 0.01 0.01 0 -0.11 0.01 0.01 0.01 0 -0.11 0.03 0.03 0.03 0.07 -0.04 0.05 0.10 0.13 0.01 0.01 0 -0.11 0.13 0.02 0.18 0.03 -0.15 0.02 0.08 0.02 0.00 0 -0.00 0.00 0.00 0.00 0.00 0.00	-0.21 0.11 0.24 -0.01 -0.12 0.41 0.62 0.33 0.11 0.20 0.18 0.14 0.01 0.10 0.20 0.18 0.14 0.13 0.03 0.21 0.10 0.25 0.12 0.11 0.06 0.03 0.21 0.10 0.05 0.12 0.11 0.08 0.05 0.12 0.11 0.08 0.05 0.12 0.11 0.08 0.05 0.12 0.11 0.08 0.15 0.09 0.10 0.06 0.11 0.06 0.15 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.06 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.08 0.07 0.09 0.09 0.09 0.09 0.09 0.09 0.09	-0.21 0.11 0.24 -0.01 -0.12 1.00 0.41 0.06 0.03 0.11 0.20 -0.26 -0.18 0.14 0.01 0.10 -0.25 0.02 -0.18 0.14 0.13 0.03 0.21 0.10 -0.05 -0.12 0.11 0.08 -0.15 0.21 -0.76 -0.60 -0.60 -0.60 -0.60 -0.48 -0.31 -0.25 0.03 0.23 -0.02 -0.07 -0.19 -0.59 -0.01 -0.03 0.04 0.33 -0.11 -0.07 0.18 0.67 -0.35 0.52 0.89 -0.01 -0.02 -0.12 0.17 -0.06 -0.27 -0.01 -0.02 -0.12 0.17 -0.06 -0.27 -0.25 -0.09 -0.10 -0.04 -0.29 -0.01 -0.04 0.49 0.62 0.30 0.04 -0.33 -0.12 -0.25 -0.09 -0.10 -0.04 -0.29 -0.01 -0.04 0.49 0.62 0.30 0.04 -0.05 -0.39 0.07 0.16 0.11 -0.13 -0.12 -0.22 -0.04 -0.19 0.09 0.40 -0.18 -0.03 0.05 0.00 -0.11 -0.10 -0.20 -0.47 0.03 0.03 0.07 -0.06 -0.23 -0.47 0.03 0.03 0.07 -0.06 -0.23 -0.47 0.03 0.03 0.07 -0.06 -0.23 -0.47 0.03 0.03 0.03 0.07 -0.06 0.28 -0.04 -0.05 0.10 -0.01 0.00 0.01 -0.11 0.05 0.01 0.01 0.00 0.08 -0.31 0.05 0.00 0.00 0.01 0.00 0.00 -0.11 0.05 0.01 0.00 0.01 -0.17 0.33 0.36 0.31 0.31 0.31 0.41 -0.17 0.33 0.36 0.31 0.31 0.31 0.41 -0.17 0.33 0.36 0.31 0.31 0.31 0.41 -0.17 0.33 0.06 0.09 0.00 0.00 0.00 0.00 -0.11 0.05 0.01 0.00 0.00 0.00 0.00 -0.11 0.05 0.01 0.00 0.00 0.00 0.00 -0.11 0.05 0.01 0.01 0.04 0.22 -0.04 0.05 0.05 0.00 0.00 0.00 0.00 0.00 -0.11 0.05 0.01 0.01 0.03 0.29 0.51 -0.14 0.27 0.23 0.50 0.02 0.18 -0.36 0.33 0.03 0.05 0.02 0.12 0.23 -0.36 0.34 0.01 0.03 0.05 0.02 0.18 -0.36 0.37 0.09 0.09 0.08 -0.27 0.02 0.09 0.00 0.00 0.00 -0.00 0.00 0.00 0.00 0.0	-0.21	-0.21 0.11 0.24 -0.01 -0.12 1.00 -0.04 1 0.06 0.03 0.11 0.20 -0.26 1.00 -0.18 0.14 0.06 0.03 0.11 0.20 -0.26 1.00 -0.18 0.14 0.01 0.10 0.10 -0.25 0.02 -0.03 1.00 -0.18 0.14 0.13 0.03 0.21 0.10 -0.06 0.45 0.05 0.05 0.12 0.11 0.08 0.15 -0.21 0.15 -0.15 0.15 0.05 0.12 0.11 0.08 0.15 -0.21 0.15 -0.15 0.07 0.06 0.60 -0.60 0.48 0.31 0.39 N/A 0.05 0.05 0.03 0.23 -0.02 -0.07 -0.19 -0.16 0.07 0.59 -0.01 -0.03 0.04 0.33 -0.11 0.53 -0.03 0.04 0.33 -0.11 0.53 -0.03 0.04 0.05 0.05 0.05 0.07 0.07 0.09 0.06 0.06 0.04 0.07 0.09 0.01 0.07 0.06 0.07 0.07 0.06 0.02 0.07 0.01 0.02 0.07 0.01 0.00 0.07 0.06 0.02 0.07 0.01 0.09 0.01 0.00 0.00 0.00 0.00 0.05 0.05 0.24 0.03 0.04 0.05 0.05 0.24 0.03 0.04 0.05 0.05 0.24 0.03 0.04 0.05 0.05 0.24 0.03 0.04 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05	-0.21 0.11 0.24 -0.01 -0.12 1.00 -0.04 1.00 -0.18 0.14 0.06 0.03 0.11 0.20 -0.26 1.00 -0.18 0.14 0.01 0.10 -0.25 0.02 -0.03 1.00 -0.18 0.14 0.13 0.03 0.21 0.10 -0.06 0.45 0.05 1.00 -0.05 0.12 0.11 0.08 0.15 -0.21 0.15 -0.15 -0.09 -0.06 0.76 -0.60 -0.60 -0.60 -0.60 -0.48 -0.31 0.39 N/A -0.83 0.25 0.03 0.23 -0.02 -0.07 -0.19 -0.16 0.07 -0.54 0.59 -0.01 -0.03 0.04 0.33 -0.11 0.53 -0.03 -0.21 0.10 -0.06 0.05 0.59 -0.01 -0.03 0.04 0.33 -0.11 0.53 -0.03 -0.21 -0.07 0.54 0.07 0.54 0.07 0.54 0.07 0.54 0.07 0.54 0.07 0.55 0.09 -0.01 -0.02 -0.12 0.17 -0.06 -0.27 0.01 0.66 0.16 0.16 0.05 0.05 0.00 0.04 0.39 0.07 0.06 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 -0.05 0.04 0.04 0.09 0.07 0.16 0.11 0.13 -0.12 0.59 0.01 0.29 0.12 0.44 0.04 0.05 -0.05 0.04 0.04 0.04 0.05 0.05 0.04 0.04	-0.21 0.11 0.24 -0.01 -0.12 1.00 -0.04 0.13 0.04 0.05 0.05 1.00 -0.18 0.14 0.06 0.03 0.11 0.20 -0.26 1.00 -0.06 0.05 0.05 1.00 -0.05 0.12 0.11 0.08 0.15 0.21 0.15 -0.15 0.09 1.00 -0.06 0.05 0.12 0.11 0.08 0.15 0.21 0.15 -0.15 0.09 1.00 -0.06 0.05 0.05 1.00 -0.06 0.05 0.05 0.05 0.05 0.05 0.05 0.05	-0.21 0.11 0.64 0.03 0.11 0.20 -0.26 1.00 -0.18 0.14 0.01 0.10 -0.25 0.02 -0.03 1.00 -0.18 0.14 0.03 0.21 0.10 -0.06 0.45 0.05 1.00 -0.05 0.12 0.11 0.08 0.15 -0.21 0.15 -0.15 -0.09 1.00 -0.76 0.60 -0.60 -0.60 -0.48 -0.31 0.39 N/A -0.88 0.99 1.00 -0.75 0.03 0.23 -0.02 -0.07 -0.19 -0.16 0.07 -0.54 0.23 -0.61 -0.59 -0.01 -0.03 0.04 0.33 -0.11 0.53 -0.03 -0.21 0.10 0.59 -0.07 0.18 0.67 -0.35 0.52 0.89 -0.77 -0.43 -0.52 -0.25 -0.29 -0.01 -0.02 -0.12 0.17 -0.06 -0.27 0.01 0.66 0.16 -0.39 -0.36 -0.25 -0.09 -0.10 -0.04 -0.29 -0.01 0.66 0.16 -0.39 -0.36 -0.25 -0.09 -0.10 -0.04 -0.29 -0.01 0.05 -0.05 0.24 0.04 -0.11 -0.60 -0.39 0.07 0.16 0.11 0.13 -0.12 0.50 0.01 0.29 0.31 0.96 -0.22 -0.04 -0.19 0.09 -0.10 0.09 -0.10 0.09 0.40 -0.18 0.47 -0.01 0.22 0.30 0.24 0.40 -0.11 -0.60 -0.39 0.07 0.16 0.11 0.13 -0.12 0.50 0.01 0.29 0.31 0.96 -0.22 -0.04 -0.19 0.09 0.40 -0.18 0.47 -0.01 0.74 0.13 0.96 -0.34 0.05 0.00 0.11 0.10 0.20 0.16 0.06 0.52 0.31 0.96 -0.34 0.05 0.00 0.01 0.01 0.00 0.00 0.00 0.00	-0.21 0.11 0.24 -0.01 -0.12 1.00 -0.25 1.00 -0.13 1.00 -0.18 0.14 0.06 0.03 0.11 0.20 -0.26 1.00 -0.03 1.00 -0.18 0.14 0.01 0.10 -0.25 0.02 -0.03 1.00 -0.05 0.12 0.11 0.08 0.15 -0.12 0.10 -0.06 0.45 0.05 1.00 -0.05 0.12 0.11 0.08 0.15 -0.21 0.15 -0.15 -0.09 1.00 -0.06 0.76 0.60 -0.60 -0.60 -0.60 -0.48 -0.31 0.39 N/A -0.83 0.99 1.00 -0.05 0.12 0.11 0.03 0.04 0.33 -0.11 0.53 -0.03 -0.21 0.10 0.59 -0.01 -0.03 0.04 0.33 -0.11 0.53 -0.03 -0.21 0.10 0.09 0.25 -0.07 -0.01 -0.02 -0.12 0.17 -0.06 -0.27 0.01 0.66 0.16 -0.39 -0.36 -0.07 -0.25 -0.09 -0.10 -0.04 -0.29 -0.01 0.66 0.16 -0.39 -0.36 -0.07 -0.25 -0.09 -0.10 0.04 -0.29 -0.01 0.29 -0.12 0.44 0.04 -0.22 -0.62 0.04 0.49 0.62 0.30 0.04 -0.13 -0.15 -0.05 0.24 0.04 -0.11 -0.60 0.30 0.39 0.07 0.16 0.11 -0.13 -0.12 0.50 -0.01 -0.29 0.31 0.56 0.34 0.32 0.32 0.32 0.33 0.39 0.07 0.16 0.11 -0.13 -0.12 0.50 -0.01 -0.29 0.31 0.56 0.34 0.34 0.32 0.32 0.34 0.35 0.33 0.35 0.35 0.35 0.33 0.35 0.35	-0.21	-0.21	-0.21	-0.21	0.21	0.21	0.21	0.21 0.11 0.24 0.00 0.01 0.12 0.00 0.01 0.20 0.25 1.00 0.01 0.01 0.02 0.25 1.00 0.05 0.01 0.00 0.05 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.00 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.01 0.05 0.02 0.03 0.02 0.02 0.07 0.05 0.01 0.05 0.02 0.05 0.03 0.02 0.02 0.07 0.01 0.05 0.03 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05		0.21 0.11 0.16 0.06 0.03 0.11 0.20 0.26 1.00 1.00 1.00 1.00 0.25 0.02 0.02 1.00 1.00 1.00 1.00 0.05 0.12 0.11 0.08 0.15 0.21 0.15 0.05 0.08 0.05 1.00 1.00 1.00 0.06 0.48 0.05 0.12 0.11 0.08 0.05 0.12 0.11 0.08 0.05 0.15 0.21 0.15 0.09 0.04 0.15 0.21 0.15 0.09 0.04 0.15 0.21 0.15 0.09 0.24 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0.11 0.16 0.08 0.01 0.10 0.20 0.10 0.10 0.20 0.10 0.10					-0.21 0.11 0.24 0.01 0.12 1.00		0-21	0-21	0-21 011 0.24 0.01 0.02 0.05 1.00	0-21 011 0.24 0.06 0.03 0.01 0.02 0.05 1.00 1.00 0.05 0.05 1.00 1.00 1.00	0-21	0-11	0.11

Shading indicates a correlation coefficient greater than 0.75, or less than -0.75.

'N/A' indicates that the solid phase concentration was less than the analytical detection limit.

May 2011

08-1118-0043

2of6

	NP		Sulphate-Sulphur	Sulphide-Sulphur	Total Carbon	n Ag	Al	As	Ва	Be	В	Bi	C	a C	d Co) Cı	r Ci	ı Fe	: К	ı	Li ∧	Иg N	VIn I	Λο Λ	la N	i P	b Si) Se	Sn	Sr	• т	i TI	U	V	W	Y Zn
NP	1.0																																			
Total Sulphur	-0.1																																			
Sulphate-Sulphur Sulphide-Sulphur	0.0			.00 0.88 1.0	10																															
	-0.1					00																														
Total Carbon	0.1			0.13 -0.:		.09 1.0	20																													
Ag	-0.0 0.2			0.09 -0.0		.09 1.0																														
AI				0.09 0.0 0.25 0.4		.29 0.1 .10 -0.1		1.00 0.01	1.00																											
AS	-0.0								1.00 -0.03	4.00																										
Ba	0.0			0.11 -0.:		.69 -0.1		0.32		-0.44	4 00																									
Ве	-0.0			0.07 -0.0 0.07 -0.0				0.32			1.00	1.00																								
В	0.5									-0.88	0.93	1.00																								
Ві	-0.1			0.04 0.:				0.03		-0.03	-0.07	-0.43	1.00																							
ca	0.3			0.01 -0.:				0.03		-0.47	0.53	0.89	-0.09	1.00 -0.07	4 00																					
Ca	0.2			0.45 0.3				0.16	-0.19	0.29	0.05	0.19	-0.09	-0.07	1.00 -0.02	4.00																				
Co	-0.0			0.21 0.3		.08 -0.0		0.00	0.80	-0.08	-0.04	0.51	0.56	-0.08		1.00																				
Cr	0.2			0.32 -0.3		.06 -0.3		0.15	0.01	0.50	-0.09	-0.61	0.07	-0.08	0.16	-0.08	1.00 0.04	4.00																		
cu 5-	0.0			0.88 0.8 0.07 -0.0				0.01	0.18	0.11	-0.09 0.46	-0.27 0.93	-0.07 0.01	0.00 0.93	0.06	0.00		1.00 0.03	1.00																	
re 	0.3							0.28	0.01	-0.41					-0.02	0.01	-0.11																			
K	0.1			0.26 0.3				0. 87 0.63	0.00	0.19 -0.74	-0.33	-0.79	0.00 -0.13	0.14	0.07	-0.03 -0.09	0.10 -0.34	0.11 -0.09	0.33	1.00 -0.67	4.00															
LI Ad::	0.0			0.05							0.93	0.90		0.86	-0.07				0.86		1.00	4 00														
Mg	0.3			0.00 -0.: 0.21 -0.:				0.08		-0.41	0.49	0.91	-0.04	0.98	-0.07	-0.03	-0.09	-0.01	0.96	0.16	0.88	1.00	4.00													
IVIN	0.2							0.32		-0.55	0.85	0.90	-0.07	0.63	-0.10	-0.07	-0.03	-0.13	0.50	-0.36	0.86	0.56														
Mo	0.0			0.42 0.3				0.02	0.54	-0.01	-0.18	-0.16	0.32	-0.05	0.13	0.57	-0.23	0.28	0.01	0.13	-0.14	-0.03		1.00	4.00											
Na Ni	0.0			0.08 -0.0		.16 0.2		0.27	-0.23	0.25	0.18	0.18	-0.16 0.45	-0.11	0.37	-0.10	0.02	-0.12	-0.02	0.04	-0.02	-0.07	0.02	-0.23	0.00	4.00										
NI Of:	0.0			0.16 0.2		.18 0.2		0.08	0.61	-0.26	0.24	0.91		0.15 -0.07	-0.09	0.73	-0.15	0.01	0.22	-0.12	0.24	0.21	0.19	0.47		1.00	4.00									
PD	0.0			0.01 0.:		.18 0.3		0.03	0.60	0.05	-0.08	-0.45	0.84		-0.05	0.41	0.19	-0.07	-0.02	0.06	-0.16	-0.04	0.07	0.29	-0.09	0.29	1.00	4.00								
50	-0.1			0.14 0.2 0.77 0. 5		.13 0.0		0.03	0.78	-0.09	-0.03	0.54	0.89	-0.03	-0.13	0.59	0.15	0.10	0.04		-0.08	0.01		0.36	-0.26	0.52	0.80	1.00 0.76	4.00							
se s:	-0.5							0.01	0.84	-0.18	-0.14	-0.17	0.90	-0.16	-0.17	0.93	-0.34	-0.19	-0.05	-0.03	-0.12	-0.11	-0.18	0.48	-0.16	0.77	0.52	0.76	1.00	4.00						
SII	0.0			0.00 0.:				0.16	-0.02	-0.47	0.53	0.92	-0.10	0.35	-0.03	-0.03	-0.19	-0.05	0.30	0.03	0.86	0.50	0.56	-0.06	-0.01	0.10	-0.09	-0.06	-0.14		4.00					
5 <i>r</i>	-0.1			0.18 -0.0		.04 0.0		0.11	0.01	0.43	0.28	-0.08	0.00	-0.19	0.15	-0.04	0.11	0.05	-0.16	-0.32	0.10	-0.14	0.16	-0.18	0.37	0.09	0.00	-0.06	-0.23	0.00	1.00	4.00				
II	0.2			0.23 -0.2		.74 0.1		0.09		-0.22 -0.14	0.70	0.92	-0.06	0.47	0.23	-0.12	0.18	-0.12	0.43	-0.24 -0.42	0.62	0.45	0.80	-0.33	0.41	0.12	-0.05	-0.03	-0.29	0.43	0.39	1.00 0.83	1.00			
"	0.4			0.54 -0.5		.68 0.2		0.16			0.55 -0.33	0.83	-0.14	0.66	0.24	-0.27	0.16	0.01			0.55	0.66	0.72	-0.34	0.21	-0.09	-0.04	-0.09	-0.48	0.27	0.48		1.00	1.00		
U	0.2			0.20 0.2		.33 0.0		0.18	0.27	0.28		-0.32	0.14	-0.14	0.19	0.21	0.19	0.34	-0.09	0.24	-0.39	-0.10	-0.33	0.60	-0.09	0.21	0.22	0.27	0.15	-0.22	-0.11	-0.28	-0.22	1.00	4 00	
V	0.2			0.26 -0.:		.69 0.3		0.14		-0.41	0.71	0.88	-0.17	0.45	0.18	-0.10	-0.07	-0.12	0.46	-0.35	0.67	0.44	0.78	-0.33	0.50	0.24	-0.22	-0.05	-0.27	0.45	0.38	0.95	0.80		1.00	00
W	0.4			0.85				0.17	-0.44	-0.26	0.34	0.43	0.10	0.35	0.44	0.43	-0.18	0.63	0.33	0.01	0.32	0.33	0.30	0.80	-0.12	0.27	0.35	0.60	-0.24	0.32	-0.34	0.24	0.13		0.18 1.0	
, -	0.0			0.15 -0.2		.67 0.3		0.29		-0.17	0.71	0.94	-0.06	0.33	0.21	-0.09	-0.05	-0.08	0.26	-0.40	0.69	0.30	0.64	0.03	0.08	0.20	-0.08	-0.09	-0.20	0.37	0.33	0.53				59 1.00
Zn	-0.2	2 -0.1	-(0.08)5 -0.	.13 0.1	13 -(0.12	-0.02	-0.07	0.11	-0.33	0.01	-0.11	-0.13	0.06	-0.30	-0.12	-0.08	-0.17	0.17	-0.05	-0.02	0.13	-0.02	0.44	-0.08	-0.07	0.54	-0.06	0.24	-0.16	-0.24	0.16 -	-0.09 -0.:	20 0.16 1.00

Shading indicates a correlation coefficient greater than 0.75, or less than -0.75.

May 2011 Appendix V 08-1118-0043

Siltstone - Drill Core Samples																								
NO	Total Culabum Culabata Culabum	Culabida Culabua Tatal Cashaa Aa	Al	A- D-	D-	0	n:	 -	 ~	٠	 V	1:	NA 1	A4 I	An No	AI:	n.	CL	-	 C-	T:	71	 1/ 1	47

Sitistone - Drill Core																_		_																	
aun.		Total Sulphur Su	ilphate-Sulphur	Sulphide-Sulphui	Total Carbon	Ag	AI A	As E	ia B	e	В	81 (Ca (Cd (Co (Cr	Cu F	e i	K	Li i	Mg N	VIn I	Mo I	Na M	II P	b SI	b Si	e Sn	n Sr	r Ti	ï Tl	ı U	J V	w w	Y Zn
NP	1.00 0.23	4.00																																	
Total Sulphur Sulphate-Sulphur	0.23	1.00 0.42	1	00																															
Sulphide-Sulphur	0.17	0.42			00																														
Total Carbon	0.14	0.90			. 00 0.36 1.0	0																													
Λα	0.34	-0.14			0.35 0.1																														
A)	-0.25	-0.56			0.27 -0.0		1.00																												
As	0.78	0.69			.95 0.9		0.03	1.00																											
Ва	-0.07	-0.07			0.05 0.1		0.65	0.29	1.00																										
Be	-0.60	-0.46			0.30 -0.5		0.30	-0.38	0.25	1.00																									
В	1.00	1.00	N/A	N/A	1.0		-1.00	-1.00	1.00	1.00	1.00																								
Bi	0.52	0.22			0.41 0.5		-0.12	0.55	-0.10	0.07	-1.00	1.00																							
Ca	0.05	0.71).59 -0.1		-0.24	0.19	0.05	-0.26	N/A	-0.02	1.00																						
Cd	-0.29	-0.60	-0.	58 -0	0.58 -0.6	4 1.00	0.74	-0.40	0.14	-0.11	-1.00	-0.62	-0.04	1.00																					
Co	0.16	0.54	0.	17 (0.31 0.1	.5 0.04	0.04	0.53	0.42	-0.08	1.00	0.22	0.42	-0.55	1.00																				
Cr	-0.50	-0.28	-0.	32 -0).21 -0.3	-0.41	-0.02	-0.49	0.23	0.46	1.00	-0.43	-0.20	0.05	-0.07	1.00																			
Cu	0.04	0.30).22 -0.2		-0.28	-0.10	-0.04	-0.38	-1.00	-0.36	0.13	0.53	0.36	-0.07																			
Fe	0.57	-0.03			0.09 0.6		0.15	0.54	0.17	0.02	1.00	0.75	-0.35	-0.56	0.15	-0.29	-0.06	1.00																	
K	0.35	-0.06			0.07 0.5		0.65	0.73	0.77	0.08	-1.00	0.32	0.03	-0.16	0.42	-0.22	-0.27	0.41	1.00																
Li	-0.35	0.48			0.56 -0.0		-0.05	0.35	-0.04	0.31	N/A	0.73	0.13	-0.62	0.46	-0.10	-0.11	0.43		1.00															
Mg	0.04	0.10			0.05 -0.0		0.17	0.01	0.30	0.26	1.00	0.45	0.08	-0.20	0.20	0.05	-0.06	0.48	0.15	0.47	1.00														
Mn	0.17	0.47			0.13 -0.1		-0.07	0.18	0.18	-0.31	-1.00	-0.04	0.57	0.40	0.64	-0.10	0.44	-0.12	0.03	0.07		1.00													
Mo	0.49	0.07			0.09 0.6		0.16	0.66	0.27	-0.35	-1.00	0.38	-0.13	-0.26	0.34	-0.34	0.13	0.47	0.49	0.07	0.11	0.08	1.00												
Na •••	-0.55 -0.45	-0.46 0.28).27 -0.5).17 -0.4		0.55 -0.16	-0.44 -0.45	0.10 0.11	0.06 0.24	-1.00	-0.60	0.08	0.85	-0.23	0.07 0.55	-0.16 0.32	-0.56	-0.02	-0.28 0.29	-0.23 0.48	-0.07 0.21	-0.27	1.00	4.00										
INI Dh	-0.45	0.51).17 -0.4).42 -0.0		-0.16	-0.45	0.11	-0.01	1.00 1.00	-0.16 -0.07	0.00 0.26	-0.18 0.11	0.07 -0.14	-0.20	-0.04	-0.12	-0.59	0.29	0.46	0.21	-0.08	-0.10	1.00 -0.08	1.00									
Sh	0.68	0.54			0.65 0.9		-0.03	0.15	0.14	-0.40	1.00	0.51	0.20	-0.55	0.40	-0.20	-0.10	0.16	0.50	0.11	-0.00	-0.01	0.21	-0.50	-0.08	-0.14	1 00								
So	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	-0.55 N/A	N/A	N/A	N/A	N/A	N/A	N/A	-U.13	N/A	N/A	N/A	N/A	N/A	N/A	1.00							
Sn	-0.12	0.06	,	,	0.10 -0.1		-0.01	-0.05	0.48	0.31	1.00	-0.09	0.28	-0.25	0.28	0.61	-0.10	-0.10	0.09	0.02	0.32	0.30	-0.22	-0.16	0.38	0.19	-0.06	N/A	1.00						
Sr	-0.59	-0.02).12 -0.5		0.21	-0.40	0.24	0.37	1.00	-0.25	0.33	-0.07	-0.01	0.01	0.12	-0.38	-0.03	0.11	0.19	0.06	-0.22	0.33	0.32	0.50	-0.45	N/A	0.26	1.00					
Ti	-0.45	-0.01).17 -0.4		0.40	-0.12	0.54	0.42	1.00	-0.19	0.48	0.24	0.24	0.21	-0.19	-0.29	0.26	0.10	0.20	0.16	-0.33	0.43	0.11	0.11	-0.19	N/A	0.58	0.59	1.00				
TI	0.45	0.24	0.		0.09 0.2	7 -0.35	-0.11	0.26	0.11	-0.07	1.00	0.47	-0.07	-0.43	0.16	-0.21	0.26	0.76	0.16	0.28	0.56	0.14	0.09	-0.58	0.06	-0.14	0.22	N/A		-0.27	-0.19	1.00			
U	-0.05	-0.42	-0.		0.37 -0.1		0.37	-0.17	0.01	-0.23	-1.00	-0.34	-0.19	0.88	-0.18	-0.19	0.02	-0.22	0.15	-0.44	-0.36	-0.03	0.04	0.63	-0.43	0.08	-0.29	N/A	-0.52	-0.17	-0.18	-0.28	1.00		
V	-0.45	-0.32	0.	.03 -0	0.37 -0.4	-0.23	0.40	-0.27	0.35	0.43	1.00	0.07	-0.06	-0.23	0.29	0.38	0.08	0.13	0.12	0.53	0.56	0.10	0.10	0.18	0.50	-0.25	-0.31	N/A	0.23	0.39	0.29	0.08	-0.15	1.00	
W	1.00	1.00	N/A	N/A	1.0		-1.00	-1.00	1.00	1.00	1.00	-1.00	N/A	-1.00	1.00	1.00	-1.00	1.00	-1.00	N/A	1.00	-1.00	-1.00	-1.00	1.00	1.00	1.00	N/A	1.00	1.00	1.00	1.00	-1.00	1.00	1.00
Y	-0.51	0.22			0.06 -0.5		-0.34	-0.48	-0.30	0.46	N/A	0.02	0.21	0.14	-0.03	0.13		-0.29	-0.48	0.46	0.28	0.01	-0.25	0.00	0.44	0.16		N/A	0.01	0.45	0.11	-0.12	-0.21		N/A 1.00
Zn	0.09	-0.09	0.	84 -0	0.10 -0.0	2 -0.02	0.04	-0.11	0.06	-0.18	-1.00	0.35	-0.05	-0.43	0.05	-0.05	0.20	0.39	-0.10	0.24	0.64	0.23	0.37	-0.21	0.43	-0.03	-0.15	N/A	0.07	0.09	-0.14	0.40	-0.15	0.49	-1.00 0.07 1.00

Wacke - Drill Core	Samples																	

	NP To	tal Sulphur S	ulphate-Sulphur	Sulphide-Sulphur	Total Carbon	Ag .	AI A	s E	Ba I	Be E		Bi Ci	a C	a c	co (Cr	Cu F	e K	(Li I	Mg I	Vin i	Mo N	a N	li P	b Si	b Se	· Si	n Sr	Ti	TI	U	v	W	Y Zn
NP	1.00																																		
Total Sulphur	-0.07	1.00																																	
Sulphate-Sulphur	0.43	0.57	1.0																																
Sulphide-Sulphur	-0.10	0.99	0.5																																
Total Carbon	0.54	-0.18	0.4	10 -0.																															
Ag	0.21	0.56	0.3	39 0.	55 0.04																														
Al	-0.17	-0.21	-0.0			0.20																													
As	-0.23	0.76	0.:				-0.34	1.00																											
Ва	-0.39	-0.18	-0.:			0.08	0.86	-0.21	1.00																										
Ве	0.19	-0.16	0.				0.58	-0.30	0.47	1.00																									
В	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00																								
Bi	0.63	-0.14	0.:			0.19	-0.20	-0.05	-0.27	-0.13	N/A	1.00																							
Ca	0.43	-0.18	0.:			0.19	-0.07	-0.21	-0.34	0.19	N/A	0.41	1.00																						
Cd	N/A	-0.30	N/A	N/A	N/A	N/A	-0.22	-0.59	-0.26		N/A	-0.44	-0.03	1.00																					
Co	-0.14	0.17	0.:			0.13	0.14	0.14	-0.05	0.00	N/A	0.22	0.48	-0.58	1.00																				
Cr	0.00	0.28	-0.0				-0.08	0.26	-0.04	0.07	N/A	-0.68	-0.11	0.02	-0.18	1.00																			
Cu	-0.04	0.57	0.3			0.53	-0.01	0.38	-0.04	0.28	N/A	0.06	-0.06	-0.56	0.06	0.04	1.00																		
Fe	0.72	0.06	0.:				-0.22	-0.05	-0.45	-0.03	N/A	0.49	0.39	0.36	0.04	-0.08	-0.04	1.00																	
K	-0.30	-0.11	-0.:			0.09	0.80	-0.10	0.90	0.36	N/A	-0.29	-0.38	-0.26	-0.13	0.01	-0.03	-0.30	1.00																
L	0.35	-0.20	0.3				0.05	-0.16	-0.21	0.09	N/A	0.55	0.64	-0.34	0.32	-0.31	0.08	0.25	-0.19																
Mg	0.83	-0.07	0.3			0.15	-0.35	-0.11	-0.58		N/A	0.39	0.54	0.18	-0.14	0.03	-0.04	0.79	-0.43		1.00	4 00													
ivin	0.41	-0.22 0.22	0.0				-0.08	-0.12	-0.26 0.04	0.16 -0.13		0.41	0.85	-0.22	0.33	-0.07	-0.03	0.35	-0.25	0.47	0.52	1.00 -0.19	4 00												
IVIO	-0.31 -0.23		-0.:			-0.31	-0.10	0.39 -0.34		0.63	N/A N/A	-0.03	-0.28	0.01	0.10	-0.20 -0.12	0.00 0.02	-0.21	0.13	-0.22	-0.38 -0.37	0.05		1.00											
NG Ni	-0.23	-0.26 0.21	-0.0 0.0			0.09	0.92 0.10	0.15	0.76 -0.04	0.03		-0.18 0.01	0.07 0.17	-0.32 -0.26	0.25 0.18	0.12	0.02	0.12	0.04	0.03	0.01	0.05	-0.03	1.00 0.18	1.00										
Ph	0.05	0.04	0.:			0.13	0.10	0.13	0.12	0.21	N/A	-0.14	0.17	-0.49	0.18	0.21	0.00	-0.12	0.13	0.02	-0.01	0.03	-0.03	0.10	0.08	1.00									
Sh	0.18	0.53	0.:			0.34	-0.29	0.58	-0.37	-0.13	N/A	0.25	0.25	-0.31	0.21	0.10	0.58	0.33	-0.00	0.13	0.04	0.07	0.02	-0.29	0.00	-0.23	1.00								
Se	N/A	1.00	N/A	N/A	N/A	N/A	-1.00	1.00	-1.00	-1.00	N/A	1.00	1.00	-1.00	1.00	-1.00	-1.00	1.00	-1.00	Ν/Δ	-1.00	1.00	1.00	1.00	1.00	N/A	1.00	1.00							
Sn	0.17	0.11	-0.0				-0.23	0.12	-0.35	0.00	N/A	0.46	0.61	0.01	0.53	-0.13	0.02	0.37	-0.37	0.37	0.22	0.49	0.10	-0.20	0.37	-0.14	0.23	1.00	1.00						
Sr	-0.09	-0.08	0.:			0.17	0.58	-0.22	0.30	0.31	N/A	0.02	0.28	-0.26	0.47	-0.13	0.09	-0.10	0.16	0.50	-0.15	0.02	-0.16	0.61	0.26	0.28	-0.07	-1.00	-0.03	1.00					
Ti	0.03	0.07	0.0			0.31	0.15	-0.04	-0.15	0.09	N/A	0.23	0.58	0.27	0.66	-0.01	0.14	0.32	-0.17	0.63	0.22	0.30	-0.20	0.13	0.23	0.00	0.31	-1.00	0.53		1.00				
TI	0.52	0.11	0.0				-0.12	-0.05	-0.35	-0.04	N/A	0.23	0.25	0.30	-0.28	0.09	0.01	0.65	-0.13	0.38	0.70	0.28	-0.31	-0.35	0.01	-0.05	0.28	-1.00	0.26	-0.11		1.00			
U	-0.22	-0.29	-0.:			0.19	0.83	-0.32	0.80	0.68	N/A	-0.38	-0.17	-0.24	-0.08	0.04	0.05	-0.39	0.78	-0.09	-0.36	-0.16	-0.02	0.77	-0.07	0.21	-0.31	-1.00	-0.28	0.24	-0.11		1.00		
V	0.02	-0.03	0.0			0.24	0.46	-0.18	0.15	0.14	N/A	0.23	0.38	-0.07	0.62	-0.17	0.04	0.14	0.06	0.56	0.00	0.19	-0.20	0.40	0.22	0.11	0.03	1.00	0.33	0.81	0.84	0.16		1.00	
W	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A I	N/A	N/A N		.00
Y	-0.09	-0.05	-0.0				0.65	-0.21	0.44	0.85	N/A	-0.25	0.23	-0.31	0.28	0.17	0.27	-0.10	0.33	0.13	-0.15	0.07	-0.11	0.73	0.28	0.20	-0.07	-1.00	0.08	0.54	0.38	-0.11	0.68	0.39 N/A	
Zn	-0.03	-0.25	-0.0			-0.33	0.36	-0.25	0.35	0.07	N/A	0.10	-0.07	-0.14	0.04	-0.32	-0.20	-0.19	0.34	-0.01	-0.18	0.19	0.24	0.39	-0.18	0.10	-0.28	-1.00	-0.28	0.13	-0.23	-0.20	0.22	0.09 N//	A -0.05 1.00

Shading indicates a correlation coefficient greater than 0.75, or less than -0.75. 'N/A' indicates that the solid phase concentration was less than the analytical detection limit.

May 2011 Appendix V 08-1118-0043

Black Rock Schist +	/- magnetite - Dri	ill Core																																	
	NP	Total Sulphur Su	ulphate-Sulphur	Sulphide-Sulphur	Total Carbon	Ag A	4/ /	As i	Ва В	le	В	Bi	Ca (:d (Co C	r (Cu i	Fe i	K I	i N	Vig I	Mn I	VIo I	Na I	Vi F	b s	5b .	Se	Sn S	ir 1	ri T	TI .	υ v	W	Y Zn
NP	1.00																																		
Total Sulphur	-0.03	1.00																																	
Sulphate-Sulphur	-0.01	0.82	1.00																																
Sulphide-Sulphur	-0.03	0.99	0.72	1.00)																														
Total Carbon	0.79	-0.17	0.07	-0.23																															
Ag	-0.08	0.26	0.39	0.20	0.16																														
Al	-0.07	0.05	-0.15			0.20	1.00																												
As	-0.09		-0.17			0.26	-0.20	1.00																											
Ва	-0.10	-0.10	-0.21			0.38	0.54	-0.24	1.00																										
Ве	-0.10		0.11		3 0.10	-0.30	0.04	0.06	-0.23	1.00																									
В	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00																								
Bi	-0.08	-0.02	0.09			0.10	0.02	0.30	-0.30	0.32	N/A	1.00																							
Са	0.18	-0.01	0.26			0.04	-0.22	-0.16	-0.28	-0.10	N/A	-0.02	1.00																						
Cd	0.08	-0.26	0.00				-0.24	0.25	0.32	0.27	N/A	-0.17	0.36	1.00																					
Со	-0.11	-0.04	-0.07	-0.12		0.22	0.12	0.39	-0.14	0.09	N/A	0.17	0.00	0.35	1.00																				
Cr	-0.19		0.09			-0.08	0.02	-0.12	0.06	0.34	N/A	-0.41	-0.01	0.45	-0.26	1.00																			
Cu	-0.04	0.11	0.00			0.09	0.04	0.19	0.02	0.07	N/A	-0.01	0.30	0.27	0.09	0.10	1.00																		
Fe	-0.09	0.09	0.22			-0.11	-0.03	0.31	-0.49	0.55	N/A	0.52	0.00	-0.17	0.05	0.13	-0.03	1.00	4.00																
K	0.02	-0.02	-0.26			0.03	0.65 0.42	-0.08 0.24	0.43 0.00	0.06 0.28	N/A	0.03	-0.15	0.30 -0.30	-0.20	0.09 -0.24	0.14	0.01	1.00 0.04	1.00															
LI 04-	-0.08 0.35		-0.13 -0.16			-0.38	-0.04	0.24	0.00	-0.15	N/A N/A	0.50	0.05	-0.30	0.31 -0.22	-0.24	-0.03	0.20	0.04	1.00 0.07	1.00														
Ma	-0.12		0.15			0.21	-0.04	-0.09	-0.40	0.03	N/A	0.08	0.03	0.25	0.26	0.03	0.34	0.21	0.14	-0.09	1.00 -0.11	1.00													
Mo	-0.12	0.01	0.13			0.40	-0.11	-0.03	-0.22	0.03	N/A	0.14	0.02	0.25	0.25	0.03	-0.04	0.03	-0.21	0.16	-0.11	0.20	1.00												
Na	-0.02	-0.15	-0.06			0.13	0.36	-0.06	0.22	-0.03	N/A	-0.10	0.02	-0.05	0.60	-0.07	-0.04	-0.10	-0.10	0.10	-0.25	0.20	0.06	1.00											
Ni	-0.21	0.03	0.05			-0.14	0.35	0.04	0.07	0.55	N/A	0.07	-0.15	0.40	-0.02	0.40	0.03	0.21	0.31	0.22	-0.09	-0.10	0.00	0.10	1.00										
Pb	-0.12		0.49			0.15	-0.12	0.04	-0.10	0.46	N/A	0.41	-0.10	0.10	0.02	0.19	0.03	0.38	-0.02	-0.01	-0.16	0.04	0.53	-0.13		1.00									
Sb	0.17		0.14			0.08	-0.33	0.36	-0.41	0.11	N/A	0.39	0.14	0.58	-0.06	0.09	0.13	0.42	-0.10	-0.02	0.48	0.03	0.20	-0.32	-0.07	0.36	1.00								
Se	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00							
Sn	-0.23	-0.01	0.17	-0.07	7 0.09	0.13	0.22	-0.02	-0.05	0.50	N/A	0.32	0.32	0.23	0.15	0.04	0.31	0.39	0.19	0.12	-0.38	0.51	0.38	0.16	0.20	0.23	-0.11	N/A	1.00						
Sr	0.02	-0.15	-0.19	-0.18	8 0.06	0.24	0.51	-0.31	0.60	-0.21	N/A	-0.12	-0.26	-0.01	0.02	0.03	-0.14	-0.41	0.14	0.28	-0.25	-0.23	0.12	0.64	0.18	-0.12	-0.34	N/A	-0.11	1.00					
Ti	0.01	-0.10	-0.16	-0.04	4 0.10	0.16	0.52	-0.01	0.30	0.28	N/A	0.15	-0.07	0.74	0.18	0.20	0.06	0.04	0.62	0.27	-0.18	0.04	0.04	0.36	0.32	0.09	-0.13	N/A	0.36	0.36	1.00				
TI	-0.14	0.06	-0.13	0.15	5 -0.04	-0.05	0.31	0.14	-0.07	0.34	N/A	0.14	-0.49	0.39	-0.07	0.26	-0.13	0.22	0.44	0.24	0.14	-0.43	0.05	-0.19	0.44	0.14	-0.06	N/A	0.05	0.05	0.34	1.00			
U	-0.08	0.02	0.42			0.37	-0.04	-0.07	-0.02	0.42	N/A	0.31	-0.01	0.32	-0.01	0.12	-0.01	0.23	-0.05	0.12	-0.27	0.15	0.98	-0.02	0.23	0.57	0.20	N/A	0.40	0.03	0.08	0.16	1.00		
V	-0.17	-0.13	-0.07	-0.10	0 -0.04	0.25	0.63	-0.02	0.38	0.30	N/A	0.12	-0.33	0.27	0.48	0.11	-0.02	0.05	0.31	0.51	-0.33	-0.08	0.20	0.70	0.39	0.16	-0.25	N/A	0.31	0.54	0.72	0.26	0.19	1.00	
W	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00
Y	-0.02	-0.01	0.27			-0.01	0.34	-0.15	-0.01	0.62	N/A	0.13	-0.01	0.57	-0.05	0.34	0.19	0.22	0.33	0.31	-0.01	0.10	0.52	-0.07	0.61	0.38	0.03	N/A	0.38	0.01	0.33	0.48	0.60		N/A 1.00
Zn	0.14	-0.05	0.16	-0.03	3 0.23	0.25	0.20	-0.15	-0.14	0.04	N/A	0.47	0.09	-0.20	0.22	-0.27	-0.03	0.29	-0.02	0.40	0.16	0.26	0.28	0.18	0.12	0.29	0.11	N/A	0.18	0.11	0.09	-0.04	0.24	0.26	N/A 0.22 1.00

lack	Rock	Schist	+	magnetite	Drill	Con

	NP	Total Sulphur	Sulphate-Sulphur	Sulphide-Sulphur	Total Carbon	Ag A	N A	ls B	а В	е в	3	Bi (Ca C	d C	o C	r C	Cu I	Fe i	K	Li	Mg I	Mn .	Mo I	Va N	i P	b S	b Se	Si	ı Sı	r Ti	TI	U	ı v	w	Y	Zn
NP	1.00																																			
Total Sulphur	0.31	1.00																																		
Sulphate-Sulphur	0.82																																			
Sulphide-Sulphur	-0.09		0.10																																	
Total Carbon	0.82	0.20	0.78	-0.2																																
Ag	0.02					1.00																														
Al	-0.48					0.02	1.00																													
As	-0.22					0.01	-0.21	1.00																												
Ва	-0.38					0.17	0.71	-0.14	1.00																											
Ве	-0.05				6 0.04	-0.23	0.35	0.17	-0.13	1.00																										
В	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00																									
Bi	-0.03					-0.02	-0.06	-0.01	-0.39	0.20	N/A	1.00																								
Ca	0.28				7 0.30	0.18	-0.36	-0.20	-0.34	0.08	N/A	0.01	1.00																							
Cd	N/A	-0.27		N/A	N/A	N/A	-0.12	-0.23	-0.25		N/A	0.78	-0.41	1.00																						
Со	-0.13			0.1		0.29	-0.06	0.57	-0.10		N/A	0.30	0.13	-0.37	1.00																					
Cr	-0.46					0.25	0.21	0.34	0.31		N/A	-0.34	0.03	-0.05	0.35	1.00																				
Cu	-0.09					0.43	0.06	-0.04	0.21		N/A	0.15	-0.04	0.17	0.23	-0.13	1.00																			
Fe	-0.04					0.02	0.10	0.28	-0.41		N/A	0.48	0.18	-0.08	0.35	-0.03	0.04	1.00																		
K	-0.33					-0.24	0.48	0.01	0.33		N/A	-0.01	-0.45	-0.06	-0.26	0.02	0.09	0.23	1.00																	
Li	-0.31					-0.43	-0.15	0.02	0.00		N/A	0.15	-0.11	0.05	-0.02	-0.25	-0.10	-0.14		1.00																
Mg	0.12			0.30		-0.25	-0.30	-0.08	-0.22		N/A	0.05	-0.06	0.44	-0.34	-0.33	0.13	0.11	0.20		1.00															
Mn	0.09					0.35	-0.13	-0.14	-0.24		N/A	0.12	0.84	-0.50	0.20	-0.03	-0.01	0.37	-0.44		-0.05	1.00														
Мо	0.25					-0.18	-0.14	-0.09	-0.15		N/A	-0.21	0.43	-0.20	0.13	0.25	-0.14	-0.07	-0.33	-0.01	-0.33	0.26														
Na	-0.25					0.17	0.63	-0.21	0.53		N/A	-0.08	-0.01	0.03	0.10	0.19	-0.02	-0.19	-0.13	-0.06	-0.51	0.05		1.00												
Ni	-0.13					0.46	0.22	0.22	0.28		N/A	-0.11	0.13	-0.47	0.61	0.25	0.13	0.13	-0.38	0.11	-0.36	0.28	0.12	0.51	1.00											
Pb	0.02					0.25	0.07	0.33	-0.25		N/A	0.52	0.12	0.34	0.71	0.26	0.14	0.58	-0.05	-0.26	-0.44	0.10	0.01	0.09	0.30	1.00										
Sb	-0.01					0.18	0.05 N/A	0.07	0.06	0.03	N/A	0.25	-0.08	0.12 N/A	0.12	-0.13	0.84	0.29	0.36	-0.10	0.26	-0.07	-0.11	-0.21	-0.12	0.17	1.00	4.00								
Se	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00	4.00							
Sn	-0.01					0.06	0.35	-0.04	0.09	0.54 -0.18	N/A N/A	-0.02 -0.19	0.29	0.14	0.19 -0.18	0.20	0.15	-0.43	0.21	-0.31	-0.57	0.26	0.41	0.27	0.17	0.32	-0.09	N/A	1.00 -0.06	4.00						
3/ T:	-0.16					-0.12	0.56		0.08			-0.19	-0.28	0.14	-0.18	0.11	0.14	0.24	0.11	0.02	-0.31	-0.55	0.02	0.74	0.23	-0.09	0.02	N/A		1.00	1 00					
11 Tl	-0.45 0.13					-0.12	0.51	0.00 0.17			N/A N/A		0.09	-0.50	-0.09	0.24	-0.27	0.24	0.49	-0.15	-0.36	0.03	0.00	0.36	0.01	0.15	-0.11	N/A	0.65	0.23	0.37	1.00				
,,	0.13					0.14	-0.06	-0.10	-0.12 -0.20		N/A N/A	-0.19 -0.10	-0.29 0.53	-0.03	0.24	0.07	0.01	0.32	0.48	0.02	0.10	0.32	-0.14 0.84	0.40	0.22	0.02	-0.03	N/A	0.23	-0.27	0.37	0.06	1 00			
V	-0.39					0.15	-0.06 0.78	-0.10	0.20	0.23	N/A	-0.16	0.55	0.19	0.29	0.15	0.01	0.22	0.30	-0.21	0.40	0.38	0.05	0.20	0.38	0.30	0.00	N/A	0.38	0.07	0.14	0.00	1.00	1.00		
IA/	N/A	-0.25 N/A	N/A	N/A	ν/Λ	N/A	N/A	-0.04 N/A	N/A	N/A	N/A	-0.10	-0.12 N/A	-U.12 N/A	0.05 N/A	N/A	-0.21 N/A	N/A	N/A	-0.13	-U.50 N/A	-0.03 N/A	N/A	N/A	U.36	N/A	-0.21 N/A	N/A	0.47 N/A	U.59 N/A	U.72	-0.01	N/A	N/A	1.00	
v	-0.21				0 0.04	0.04	0.50	-0 08	0.01	0.65	N/A	0.19	0.21	-0.14	0.20	14/M 0.27	-0.05	0.46	-0.04	-0.08	-0.50	U 33	0.25	0.47	0.27	0.46	-0.04	N/A	0.53	0.18	0.48	0.02	0.45	0.56	N/A 1.0	10
7n	-0.21					0.50	0.04	0.11	-0.01	-0.12	N/A	0.15	0.21	0.10	0.72	-0.05	0.49	0.40	-0.04	-0.08		0.30		0.47	0.62	0.53	0.19	N/A	0.10	-0.03		-0.48	0.43		N/A 0.2	

x Shading indicates a correlation coefficient greater than 0.75, or less than -0.75. "N/A" indicates that the solid phase concentration was less than the analytical detection limit.

08-1118-0043

May 2011 Appendix V

Sub-economic Mineralized Mine Rock - Black Rock Schist - Run of Mine

	NP	Total Sulphur	Acid Leachable SO4-S	Sulphide-S	Total Carbon	Ag	Al	As	Ba E	le E	3 В	i C	a C	id Co) Ci	r C	ı Fe	К	L	Li M	1g N	Vin M	1o N	a Ni	PŁ	Sb	Se	Sn	Sr	Ti	TI	U V	W	Y Zn
NP	1.	.00																																
Total Sulphur	-0	.58 1.0	0																															
Acid Leachable SO4	-1 0	.47 -0.5	4 1.00																															
Sulphide-S	-0	.61 0.9	5 -0.78	1.0	10																													
Total Carbon	0	.66 -0.8	0.49	-0.8	1.0	0																												
Ag	-0	0.4	-0.08	0.3	36 -0.2	9 1.00																												
Al	0	.17 -0.5	0.44	-0.5	53 0.4	4 0.11	1.00																											
As	-0	.61 0.8	6 -0.70	0.9	0 -0.7	9 0.24	-0.42	1.00																										
Ва	0	.47 -0.8	5 0.64	-0.8	7 0.9	2 -0.25	0.44	-0.79	1.00																									
Ве	-0	.66 0.7	-0.47	0.3	73 -0.8	8 0.40	-0.04	0.78	-0.79	1.00																								
В	-0	0.18 0.2	6 0.07	0.:	17 -0.2	5 -0.20	-0.33	0.44	-0.23	0.38	1.00																							
Bi	0	.34 -0.3	5 0.62	-0.5	50 0.4	2 0.56	0.35	-0.25	0.41	-0.03	0.03	1.00																						
Ca	-0	0.09 0.1	8 0.32	0.0	02 -0.2	5 0.54	0.39	-0.16	-0.17	0.30	-0.13	0.36	1.00																					
Cd	0	.34 -0.2	1 -0.21	-0.0	0.4	4 -0.10	-0.10	-0.28	0.30	-0.54	-0.41	-0.21	-0.50	1.00																				
Co	-0	0.25 0.5	-0.64	0.0	53 -0.4			0.63	-0.47	0.09	0.26	-0.63	-0.65	0.22	1.00																			
Cr	0	.08 -0.3	6 0.04	-0.2		1 -0.38		-0.31	0.27	-0.11	0.03	-0.03	-0.13	-0.02	-0.27	1.00																		
Cu	-0	0.61			63 -0.7			0.27	-0.62	0.57	-0.05	-0.22	0.71	-0.44	-0.12	-0.13	1.00																	
Fe	-0	.61 0.8	5 -0.75					0.92	-0.91	0.80	0.24	-0.40	-0.03	-0.19	0.59	-0.40	0.46	1.00																
K		.54 -0.7						-0.54	0.82	-0.79	-0.25	0.21	-0.52	0.59	-0.03	0.00	-0.84	-0.63	1.00															
Li		0.07						0.23	-0.08	-0.32	-0.04	-0.52	-0.86	0.63	0.81	-0.19	-0.50	0.22	0.42	1.00														
Mg		0.06 0.1						0.26	-0.21	-0.23	-0.06	-0.63	-0.77	0.55	0.83	-0.20	-0.37	0.31	0.30		1.00													
Mn		.08 -0.0						-0.28	0.05	0.16	-0.07	0.59	0.93	-0.49	-0.73	-0.09	0.45	-0.23	-0.31		-0.81	1.00												
Мо		.34 -0.3		-0.4				-0.01	0.36	0.01	0.12	0.87	-0.01	-0.04	-0.31	-0.16	-0.43	-0.21	0.35	-0.19	-0.37		1.00											
Na		.01 -0.4		-0.5				-0.52	0.58	-0.16	-0.20	0.42	0.54	-0.21	-0.78	0.22	0.16	-0.55	0.15		-0.78	0.58	0.21											
Ni		.58 -0.6						-0.66	0.81	-0.88	-0.11	0.28	-0.36	0.37	-0.08	0.27	-0.68	-0.82	0.78	0.22	0.10	-0.13	0.27	0.16										
Pb		.47 -0.3						-0.25	0.13	-0.24	-0.25	-0.20	-0.23	0.13	0.03	0.43	-0.24	-0.23	0.17	0.16	0.19	-0.26	-0.20	-0.11		1.00								
Sb		0.4		0.3				0.55	-0.24	0.57	0.36	0.65	0.11	-0.32	-0.04	-0.28	-0.01	0.37	-0.20	-0.21	-0.29	0.22	0.75	-0.08	-0.28	-0.42								
Se		.24 -0.3						-0.28	0.45	-0.06	0.05	0.99	0.36	-0.23	-0.64	-0.02	-0.21	-0.43	0.22	-0.53	-0.66	0.61	0.85	0.47	0.30			1.00						
Sn		.55 0.6		0.5				0.47	-0.68	0.84	0.12	0.01	0.72	-0.65	-0.22	-0.10	0.86	0.57	-0.90	-0.64	-0.52	0.53	-0.16		-0.84			0.00 1.0						
Sr 		.40 - 0.8						-0.68	0.97	-0.73	-0.17	0.29	-0.30	0.35	-0.35	0.33	-0.65	-0.82	0.84	0.03	-0.11	-0.11	0.31		0.76		-0.25	0.33 -0.7	0 1.0					
TI		.60 0.6						0.71	-0.74	0.53	0.04	-0.68	-0.04	-0.05	0.60	-0.40	0.50	0.85	-0.47	0.30	0.41	-0.30	-0.52	-0.38	-0.73	-0.20	-0.05	-0.69 0.4	5 -0.6	2 1.00				
11		0.12						0.38	-0.22	-0.12	0.00	-0.44	-0.77	0.59	0.80	-0.33	-0.47	0.39	0.33	0.94	0.92	-0.78	-0.10	-0.78	0.03	0.06	-0.03	-0.48 -0.4	9 -0.1	.2 0.40	1.00			
U		0.08						-0.12	0.29	-0.05	-0.27	0.57	0.18	0.01	-0.36	0.21	0.04	-0.23	0.08	-0.28	-0.40	0.26	0.47	0.39	0.17	0.02	0.41	0.58 0.0	0.2	8 -0.32	-0.34		4.00	
V		1.66 0.5						0.69	-0.63	0.51	0.04	-0.66	-0.14	-0.06	0.58	-0.39	0.41	0.81	-0.36	0.32	0.42	-0.38	-0.47	-0.31	-0.70	-0.18	-0.02	-U.bb 0.3	7 -0.4			0.02	1.00	4.00
W		1.52 0.6						0.43	-0.52	0.29	-0.05	-0.55	0.04	0.04	0.32	-0.15	0.49	0.53	-0.52	0.15	0.22	-0.21	-0.55	-0.29	-0.55	-0.22	-0.14	-0.55 0.3	7 -0.4	9 0.63				1.00
Y -		0.0						-0.18	-0.09	0.33	-0.16	0.46	0.96	-0.53	-0.74	0.02	0.65	-0.09	-0.50		-0.84	0.92	0.08	0.60	-0.35	-0.25	0.20	0.46 0.7						0.01 1.00
2n	-0	0.59 0.6	7 -0.48	0.0	59 -0.6	4 0.35	-0.11	0.25	-0.52	0.35	-0.15	-0.39	0.33	0.09	0.15	0.10	0.74	0.43	-0.56	-0.10	-0.03	0.10	-0.47	-0.01	-0.43	-0.22	-0.14	-0.36 0.5	0 -0.4	9 0.51	-0.12	0.04	0.39	0.48 0.27 1.00

Sub-economic Mineralized Mine Rock - Run of Mine

5of6

N	IP 1	Total Sulphur Acid Lead	hable SO4-S Sulphide-S	S Tota	tal Carbon A	g A	I As	Ва	Ве	В	l Bi	Ca	, с	d Co	Cı	r Cu	Fe	K		Li N	lg M	1n M	o No	n Ni	Pb	Sb	Se	Sn	Sr	Ti	TI	U	V	W Y Zn
NP	1.00																																	
Total Sulphur	-0.03	1.00																																
Acid Leachable SO4-5	0.29	0.95	1.00																															
Sulphide-S	-0.51	0.87	0.68	1.00																														
Total Carbon	-0.13	-0.41	-0.39	-0.23	1.00																													
Ag	0.90	0.15	0.41	-0.33	-0.54	1.00																												
Al	0.84	-0.24	0.06	-0.57	0.43	0.52	1.00																											
As	0.03	0.94	0.92	0.81	-0.08	0.06	0.00	1.00																										
Ва	0.82	-0.21	0.09	-0.53	0.46	0.49	1.00	0.05	1.00																									
Ве	-0.83	-0.19	-0.47	0.19	-0.27	-0.58	-0.91	-0.41	-0.92	1.00																								
В	0.56	-0.09	0.14	-0.28	0.70	0.17	0.90	0.24	0.92	-0.88	1.00																							
Bi	0.82	-0.10	0.13	-0.53	-0.58	0.95	0.43	-0.24	0.38	-0.37	0.00	1.00																						
Са	0.09	0.45	0.41	0.28	-1.00	0.51	-0.47	0.12	-0.49	0.29	-0.71	0.53	1.00																					
Cd	-0.20	-0.66	-0.66	-0.42	0.95	-0.58	0.34	-0.39	0.35	-0.07	0.53	-0.51	-0.96	1.00																				
Co	0.19	0.89	0.94	0.70	-0.05	0.18	0.16	0.99	0.21	-0.56	0.37	-0.14	0.08	-0.36	1.00																			
Cr	-0.44	-0.88	-0.97	-0.53	0.54	-0.60	-0.12	-0.81	-0.13	0.49	-0.08	-0.36	-0.55	0.77	-0.84	1.00																		
Cu	0.62	0.33	0.55	0.04	0.40	0.35	0.80	0.59	0.83	-0.95	0.90	0.09	-0.41	0.14	0.71	-0.50	1.00																	
Fe	0.02	0.31	0.25	0.19	-0.99	0.45	-0.53	-0.04	-0.56	0.41	-0.80	0.53	0.99	-0.89	-0.09	-0.40	-0.54	1.00																
K	-0.22	-0.94	-0.96	-0.68	0.63	-0.46	0.13	-0.81	0.12	0.27	0.13	-0.24	-0.66	0.85	-0.80	0.97	-0.31	-0.52	1.00															
Li	0.78	-0.47	-0.18	-0.75	0.49	0.45	0.97	-0.24	0.96	-0.77	0.83	0.42	-0.53	0.46	-0.08	0.11	0.64	-0.55	0.36	1.00														
Mg	0.31	0.34	0.37	0.08	-0.98	0.69	-0.26	0.03	-0.29	0.13	-0.58	0.73	0.97	-0.93	0.03	-0.55	-0.30	0.96	-0.60	-0.31	1.00													
Mn	0.22	0.42	0.42	0.19	-1.00	0.62	-0.35	0.10	-0.37	0.19	-0.63	0.64	0.99	-0.96	0.08	-0.58	-0.33	0.97	-0.66	-0.41	0.99	1.00												
Мо	0.29	-0.28	-0.22	-0.45	-0.75	0.58	-0.15	-0.56	-0.21	0.30	-0.58	0.78	0.72	-0.53	-0.55	0.00	-0.55	0.79	-0.02	-0.06	0.81	0.75	1.00											
Na	0.42	-0.60	-0.41	-0.67	0.81	0.00	0.82	-0.30	0.82	-0.58	0.85	0.00	-0.85	0.81	-0.18	0.43	0.54	-0.83	0.63	0.89	-0.69	-0.77	-0.35	1.00										
Ni	0.07	-0.83	-0.74	-0.70	0.84	-0.30	0.52	-0.57	0.51	-0.17	0.56	-0.19	-0.87	0.94	-0.51	0.77	0.15	-0.79	0.90	0.67	-0.76	-0.83	-0.27	0.90	1.00									
Pb	0.05	0.62	0.65	0.57	0.44	-0.15	0.30	0.86	0.35	-0.58	0.63	-0.45	-0.40	0.13	0.88	-0.48	0.80	-0.55	-0.42	0.11	-0.46	-0.41	-0.87	0.19	-0.07	1.00								
Sb	0.02	0.53	0.47	0.39	-0.99	0.45	-0.52	0.21	-0.54	0.31	-0.72	0.45	0.99	-0.97	0.15	-0.59	-0.39	0.97	-0.71	-0.60	0.94	0.97	0.64	-0.89	-0.91	-0.33	1.00							
Se	-0.89	0.47	0.18	0.84	0.04	-0.77	-0.78	0.43	-0.74	0.57	-0.43	-0.83	0.02	-0.04	0.28	0.01	-0.31	0.01	-0.20	-0.83	-0.23	-0.11	-0.49	-0.55	-0.36	0.33	0.12	1.00						
Sn	-0.21	0.70	0.56	0.65	-0.88	0.20	-0.67	0.40	-0.67	0.38	-0.74	0.16	0.91	-0.92	0.31	-0.61	-0.37	0.87	-0.77	-0.78	0.79	0.86	0.39	-0.97	-0.97	-0.12	0.95	0.41 1	.00					
Sr	0.91	-0.26	0.05	-0.64	0.30	0.64	0.99	-0.07	0.98	-0.88	0.82	0.56	-0.34	0.23	0.10	-0.14	0.73	-0.39	0.11	0.97	-0.12	-0.21	0.00	0.76	0.46	0.18	0.41 -	0.86	0.60	.00				
Ti	0.81	0.42	0.68	0.00	0.05	0.67	0.77	0.58	0.79	-0.96	0.73	0.42	-0.06	-0.19	0.70	-0.71	0.92	-0.20	-0.52	0.60	0.08	0.04	-0.23	0.33	-0.10	0.61	0.06	-0.48 -0	0.12	0.76 1	.00			
TI	0.75	0.63	0.83	0.17	-0.49	0.85	0.42	0.58	0.42	-0.68	0.26	0.64	0.49	-0.68	0.67	-0.92	0.59	0.35	-0.81	0.23	0.58	0.56	0.17	-0.17	-0.56	0.33	0.48	-0.39	0.39	0.47 0	.85 1.0	10		
U	0.79	0.17	0.38	-0.28	-0.70	0.98	0.34	0.01	0.30	-0.40	-0.04	0.96	0.67	-0.70	0.10	-0.59	0.16	0.62	-0.50	0.28	0.82	0.76	0.71	-0.18	-0.43	-0.29	0.61	-0.69	0.37	0.47 0	.52 0.8	0 1.00		
V	0.67	0.66	0.86	0.26	-0.10	0.61	0.57	0.76	0.59	-0.86	0.58	0.33	0.10	-0.37	0.85	-0.86	0.86	-0.06	-0.72	0.35	0.18	0.18	-0.26	0.09	-0.34	0.69	0.12	-0.26	0.12	0.55 0	.96 0.9	0.50	1.00	
W	0.58	0.40	0.60	0.12	0.38	0.32	0.74	0.66	0.78	-0.93	0.87	0.04	-0.38	0.11	0.76	-0.54	1.00	-0.53	-0.36	0.57	-0.30	-0.31	-0.59	0.48	0.09	0.84	0.36	-0.24 -0	0.32	0.67 0	. 92 0.	0.14	0.88	1.00
Y	0.03	0.61	0.55	0.45	-0.97	0.45	-0.50	0.29	-0.52	0.26	-0.68	0.42	0.98	-0.98	0.24	-0.65	-0.32	0.94	-0.77	-0.60	0.92	0.96	0.57	-0.89	-0.94	-0.24	1.00	0.15	.96	0.40	.00 0.	3 0.60	0.20	-0.28 1.00
Zn	-0.36	-0.70	-0.75	-0.38	0.89	-0.69	0.15	-0.46	0.16	0.13	0.35	-0.58	-0.89	0.98	-0.47	0.86	-0.05	-0.80	0.89	0.31	-0.89	-0.91	-0.47	0.69	0.90	0.01 -	0.90	0.08 -0	0.83	0.06 -0	.38 -0.8	1 -0.77	-0.54	-0.08 -0.92 1.00

Shading indicates a correlation coefficient greater than 0.75, or less than -0.75.

08-1118-0043

Ore - Run of Mine																																						
Ore - Kun of Mine		Total Sulphur	Acid Leachable SO4-S Sulphide-S	Tot	tal Carbon Ag	ΔΙ	A	c R	a Be		R R	: (a c	d Co		r Cu	· Fe	e K		Li I	Ma N	An A	Мо	Na	Ni	Pb	Ch	ç,	Sn	- C.		Ti .	TI	U	V	W	Y Zn	=
NP	1.00		Acia Leachable 304-3 Sulphiae-3	700	tur curbon Ay	AI	А	з в	u be		ь ь	, .	u c	u co	,	Ci.	re	e n			viy iv	<i>an</i> 11	VIU	Nu	141	FU	30	36	311	31		<u>' </u>	"				1 211	4
Total Sulphur	-0.37																																					
Acid Leachable SO4-5	0.28																																					
Sulphide-S	-0.40			1.00																																		
Total Carbon	0.71			-0.60	1.00																																	
Aa	0.03			-0.14	-0.05	1.00																																
Al	0.46		-0.04	-0.79	0.54	-0.41	1.00																															
As	-0.31		0.24	0.96	-0.56	0.03	-0.60	1.00																														
Ва	0.64	-0.80	-0.01	-0.81	0.71	-0.32	0.95	-0.55	1.00																													
Ве	-0.08	-0.37		-0.40	0.27	0.26	-0.21	-0.23	-0.22	1.00																												
В	0.05	0.23	0.24	0.21	0.44	-0.15	0.09	0.06	0.14		1.00																											
Bi	0.43	-0.50	-0.25	-0.48	0.28	0.82	-0.15	-0.23	-0.03	0.31	-0.12	1.00																										
Ca	-0.04	0.42	0.31	0.39	-0.02	-0.06	-0.53	0.39	-0.65	0.00	0.09	-0.13	1.00																									
Cd	0.37	-0.46	-0.39	-0.43	0.12	0.35	0.34	-0.26	0.42	-0.25	-0.21	0.50	-0.22	1.00																								
Co	-0.60	0.85	0.21	0.84	-0.63	-0.11	-0.59	0.81	-0.63	-0.02	0.00	-0.40	0.53	-0.43	1.00																							
Cr	-0.09	-0.38	-0.22	-0.36	-0.01	-0.34	0.14	-0.32	-0.01	0.05	-0.29	-0.37	-0.13	-0.25	-0.16	1.00																						
Cu	0.43	0.30	0.55	0.25	0.30	0.22	-0.34	0.30	-0.35	0.37	0.11	0.34	0.59	0.00	0.27	-0.41	1.00																					
Fe	-0.47	0.71	0.45	0.68	-0.39	0.30	-0.85	0.59	-0.87	0.43	-0.03	0.09	0.65	-0.44	0.69	-0.24	0.59	1.00																				
K	0.60			-0.81	0.68	-0.27	0.92	-0.61	0.94	-0.04	0.09	0.09	-0.53	0.45	-0.64	-0.05	-0.17	-0.76	1.00																			
Li	0.68			-0.59	0.67	-0.14	0.49	-0.41	0.51	0.16	0.18	0.26	0.02	0.40	-0.37	-0.25	0.39	-0.26	0.69	1.00																		
Mg	0.36			0.31	0.29	0.00	-0.42	0.38	-0.44	0.16	0.26	-0.01	0.71	-0.18	0.31	-0.26	0.70	0.60	-0.30	0.25	1.00																	
Mn	0.41	0.00		-0.05	0.46	-0.07	-0.27	0.13	-0.32	0.27	0.07	0.05	0.77	0.02	0.19	-0.17	0.77	0.45	-0.11	0.50	0.82	1.00																
Mo	-0.13	-0.35		-0.32	-0.18	0.12	0.37	-0.27	0.29	0.02	-0.03	0.18	-0.15	0.31	-0.17	0.00	-0.07	-0.25	0.40	0.33	-0.11	-0.06	1.00															
Na	0.13			-0.46	0.06	-0.36	0.76	-0.43	0.73	-0.33	0.00	-0.29	-0.68	0.13	-0.52	0.33	-0.60	-0.79	0.53	-0.02	-0.59	-0.59	0.07			_												
Ni	-0.36	-0.28		-0.26	-0.19	-0.04	-0.20	-0.04	-0.24	0.19	-0.15	-0.09	0.21	-0.04	0.46	0.05	-0.03	0.25	-0.17	0.06	-0.01	0.09	0.13	-0.	32 1 .	00												
Pb	0.46			-0.41	0.33	0.16	0.09	-0.24	0.14	0.02	-0.23	0.35	-0.02	0.59	-0.21	-0.17	0.15	-0.14	0.24	0.38	0.13	0.26	0.19	9 -0.	16 0	.26 1	.00											
Sb	-0.02	0.37		0.38	-0.28	0.83	-0.67	0.42	-0.55	0.22	-0.11	0.73	0.16	0.15	0.22	-0.45	0.45	0.58	-0.49	-0.19	0.22	0.09	-0.09	-0.	58 -0	.01		.00										
Se	0.17	-0.26		-0.23	0.01	0.81	-0.43	0.07	-0.30	0.14	-0.25	0.82	0.05	0.47	-0.04	-0.37	0.28	0.27	-0.21	-0.01	0.06	0.08	-0.01	-0.	47 0	.18		0.81	1.00									
Sn	0.17			-0.19	0.14	0.14	-0.18	0.02	-0.28	0.05	0.17	0.21	0.70	0.09	0.12	-0.35	0.58	0.39	-0.10	0.34	0.52	0.59	0.19	-0.	55 0	.10	0.11	0.16	0.17	1.00								
Sr	0.58			-0.82	0.72	-0.38	0.94	-0.56	0.94	-0.14	0.15	-0.12	-0.60	0.29	-0.59	0.07	-0.28	-0.77	0.89	0.50	-0.33	-0.26	0.24	0.7	75 -0	.23	0.08 -	0.60	-0.40	-0.25	1.00							
Ti	0.23			-0.35	0.22	-0.28	0.45	-0.21	0.27	-0.02	0.06	-0.10	0.22	0.20	-0.08	0.12	0.25	-0.21	0.43	0.42	0.17	0.35	0.47	7 0.	02 0	.07	0.15 -	0.37	-0.22	0.38	0.31	1.00		_				
TI	0.42			-0.70	0.58	0.16	0.37	-0.50	0.41	0.47	0.12	0.44	-0.20	0.37	-0.44	-0.22	0.31	-0.16	0.62	0.78	0.17	0.33	0.44	· -0.	11 0	.04	0.44 -	0.01	0.15	0.24	0.41	0.38			_			
U	0.21			-0.03	0.21	-0.24	0.21	0.02	0.20	0.12	0.41	-0.17	0.15	-0.02	0.09	-0.23	0.25	0.02	0.31	0.54	0.49	0.41	0.37	7 -0.	17 0	.12	0.29 -	0.24	-0.27	0.28	0.22	0.32	0.54	4 1.00		_		
V	0.18			-0.38	0.38	-0.44	0.53	-0.28	0.35	0.06	0.08	-0.28	0.12	0.04	-0.13	0.22	0.14	-0.26	0.47	0.36	0.10	0.26	0.29	0.	12 0	.02	0.03 -	0.54	-0.44	0.32	0.46	0.89	0.34	4 0.36	0 1.0 0		_	
W	0.59			-0.14	0.31	0.16	-0.02	0.03	0.00	0.24	0.15	0.34	0.11	0.03	-0.13	-0.29	0.57	0.19	0.11	0.44	0.38	0.34	0.15	-0.	23 -0	.22	0.06	0.24	0.07	0.35	0.05	0.16	0.40	J 0.3	3 0.1	12 1.0		
Y	0.63			-0.56	0.52	-0.18	0.32	-0.29	0.24	0.00	0.19	0.12	0.35	0.41	-0.22	-0.16	0.40	-0.14	0.45	0.73	0.45	0.65	0.41	L -0.	17 0	.09	0.44 -	0.22	-0.02	0.59	0.22	0.70	0.61				30 1.00	_
Zn	0.46	-0.55	-0.20	-0.53	0.33	0.20	0.07	-0.30	0.09	0.01	-0.15	0.42	0.13	0.57	-0.26	-0.13	0.21	-0.09	0.22	0.40	0.11	0.29	0.27	7 -0.	28 0	.17	0.72	0.14	0.42	0.37	0.06	0.20	0.39	9 0.19	9 0.1	16 0.1	13 0.45 1.00	1

Shading indicates a correlation coefficient greater than 0.75, or less than -0.75.

'N/A' indicates that the solid phase concentration was less than the analytical detection limit.

APPENDIX VI

Reference Criteria for Evaluation of Geochemical Test Leachates

Reference Criteria for Evaluation of Geochemical Test Leachates NICO Project, Fortune Minerals Ltd.

		Site Specific Water Quality
		Objectives
рH		6.5 - 9
Alkalinity	mg/L as CaCO3	-
Al	mg/L	0.41
Sb	mg/L	0.03
As	mg/L	0.05
Boron	mg/L	-
Barium	mg/L	-
Beryllium	mg/L	-
Calcium	mg/L	-
Cd	mg/L	0.00015
Cl	mg/L	353
Со	mg/L	0.01
Chromium	mg/L	-
Cu	mg/L	0.022
Fe	mg/L	1.5
Mercury	mg/L	-
Nitrite (NO2)	mg/L as N	-
Nitrate (NO3)	mg/L as N	133
Ammonia (NH4+)	mg/L as N	4.16
Potassium	mg/L	-
Magnesium	mg/L	-
Manganese	mg/L	-
Мо	mg/L	0.073
Sodium	mg/L	-
Nickel	mg/L	-
Phosphorous	mg/L	-
Pb	mg/L	0.0076
Se	mg/L	0.005
Silver	mg/L	-
SO4	mg/L	500
Strontium	mg/L	-
Tin	mg/L	-
Vanadium	mg/L	-
Thallium	mg/L	-
U	mg/L	0.027
Zn	mg/L	0.11

Notes

--- = no value provided n/a = pH has no units

APPENDIX VII

Results of Laboratory Kinetic Testing of Mine Rock and Tailings Samples

Humidity Cell Results for Rock Sample 100859 (Feldspar Prophy

S-Total: 0.05 % S²: 0.02 % NP: 12.2 t CaCO3/1000 t CaNP: 10.8 t CaCO3/1000 t AP: 0.62 t CaCO3/1000 t Weight: 1000 g

Weeks	< 2	26-Apr-05 1000 952 7.09	2 3-May-05 1000 995	3 10-May-05 1000	17-May-05	5 24-May-05	31-May-05	7-Jun-05	14-Jun-05	04 1 05	10	11 5-Jul-05	12 12-Jul-05	13 19-Jul-05	14	15	16	17 16-Aug-05	18 23-Aug-05	19 30-Aug-05	20
Leachate Volume Recovered (mL) pH Effluent (units Acidity as CaCO ₃ (mg/L)	1000 850 7.62 < 2	1000 952	1000							21-Jun-05	28-Jun-05				26-Jul-05	2-Aug-05	9-Aug-05				6-Sep-05
Leachate Volume Recovered (mL) pH Effluent (units Acidity as CaCO ₃ (mg/L)	850 7.62 < 2	952			1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
pH Effluent (units Acidity as CaCO ₃ (mg/L)	7.62 < 2			919	949	907	951	966	943	954	964	957	991	945	969	965	965	956	948	940	946
,			7.49	7.33	7.55	7.50	7.62	7.60	7.48	7.37	7.50	7.71	7.22	7.09	7.21	7.07	7.45	7.22	7.36	7.23	7.36
Alkalinity as CaCO ₃ (mg/L)		< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2	< 2	<2	<2	<2	<2	< 2
	15	16	14	11	13	14	13	12	10	10	10	10	8	8	8	12	13	9	9	9	8
Conductivity µmhos/cm	53	57	36	27	50	24	38	26	22	24	23	22	23	19	18	18	20	19	18	19	18
Sulphate (SO ₄) mg/L	< 5	3.3	1.1	0.6	0.6	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5
Calcium (Ca) mg/L	3.78	4.7	0.69	3.4	4.22	3.7	3.82	3.91	3.5	3.88	3.56	3.6	3.76	3.36	3.61	3.59	3.77	0.93	3.27	3.45	3.43
Iron (Fe) mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	2.83	< 0.02	< 0.02	< 0.02	< 0.02	0.06
Chloride (CI) mg/L	2					< 0.2					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂) as N mg/L	< 0.6					< 0.06					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃) as N mg/L	< 0.5					< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃) as CaCO ₃ (mg/L)	< 2					< 2					< 2					< 2					< 2
Ammonia mg/L	< 0.1					< 0.1					< 0.1					< 0.1					< 0.1
Mercury (Hg) mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag) mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (Al) mg/L	0.13	0.07	0.04			0.07					0.06					0.08					0.06
Arsenic (As) mg/L	0.011	0.073	0.073			0.046					0.015					0.02					0.012
Barium (Ba) mg/L	0.003	0.003	0.003			0.001					0.006					< 0.001					< 0.001
Beryllium (Be) mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Boron (B) mg/L	< 0.01	0.02	< 0.01			< 0.02					< 0.01					< 0.01					< 0.01
Bismuth (Bi) mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd) mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co) mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					0.1680					< 0.0003					< 0.0003
Chromium (Cr) mg/L Copper (Cu) mg/L	< 0.001 < 0.0008	< 0.001	< 0.001 < 0.0008			< 0.001 < 0.0008					< 0.001 0.2190					< 0.001					< 0.001
Potassium (K) mg/L	4	3.1	1.85			1.0200					0.7000					0.67					0.54
Lithium (Li) mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg) mg/L	0.248	0.551	0.417			0.28					0.156					0.116					0.086
Manganese (Mn) mg/L	0.0046	0.0111	0.0061			0.0053					0.0195					0.0042					0.0045
Molydenum (Mo) mg/L	0.036	0.0597	0.0182			0.006					< 0.0003					0.0023					0.0018
Sodium (Na) mg/L	3.56	4.04	1.71			0.470					0.180					0.12					0.08
Nickel (Ni) mg/L	0.001	0.002	< 0.001			< 0.001					0.007					< 0.001					< 0.001
Phosphorous (P) mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1					< 0.1					< 0.1
Lead (Pb) mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					0.000					< 0.0002					< 0.0002
Antimony (Sb) mg/L	0.0029	0.0131	0.0081			0.0029					0.0006					0.0016					0.0011
Selenium (Se) mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Tin (Sn) mg/L	0.005	0.008	0.005			0.001					< 0.001					< 0.001					< 0.001
Strontium (Sr) mg/L	0.0142	0.0229	0.0185			0.0128					0.0038					0.0079					0.0062
Titanium (Ti) mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI) mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U) mg/L	0.0006	0.0331	0.0336			0.0248					0.0004					0.0085					0.0055
Vanadium (V) mg/L	< 0.0009	0.001	< 0.0009			< 0.0009					< 0.0009					< 0.0009					< 0.0009
Tungsten (W) mg/L	0.009	0.0188	0.005			0.0008					< 0.0002					0.0004					0.0003
Yttrium (Y) mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					0.0002					< 0.0001					< 0.0001
Zinc (Zn) mg/L	< 0.001	0.001	< 0.001			0.0010					0.0140					< 0.001					0.002

Date Leachate Volume Added (mL) Leachate Volume Recovered (mL) pH Effluent (13-Sep-05 1000 980 units) 7.44	20-Sep-05 1000	27-Sep-05 1000	4-Oct-05 1000	11-Oct-05 1000	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05	15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume Recovered (mL) pH Effluent (980		1000	1000	1000															
pH Effluent (1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
	units) 7.44	956	930	962	944	906	959	956	936	868	939	926	949	991	898	929	952	944	914	934
		6.79	7.36	7.38	7.54	7.24	7.25	7.34	7.31	7.24	7.29	7.34	7.19	7.38	7.47	7.32	7.64	7.47	7.46	7.4
Acidity as CaCO ₃ (m	g/L) <2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity as CaCO ₃ (m	g/L) 10	8	8	9	10	7	9	9	7	5	9	7	8	10	7	7	9	7	7	7
Conductivity µmhos/cm	24	19	16	20	20	14	18	17	16	14	18	16	17	20	19	21	29	17	21	16
Sulphate (SO ₄) mg/L	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca) mg/L	3.86	2.95	2.96	3.47	3.49	2.46	3.17	3.16	2.66	1.82	2.99	2.82	3.05	3.84	3.41	2.77	3.02	2.93	2.45	2.47
Iron (Fe) mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI) mg/L					< 0.2					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂) as N mg/L					< 0.06					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃) as N mg/L					< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃) as CaCO ₃ (m	g/L)				<2					< 2					< 2					<2
Ammonia mg/L					< 0.1					< 0.1					0.1					< 0.1
Mercury (Hg) mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag) mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (Al) mg/L					0.08					0.09					0.13					0.07
Arsenic (As) mg/L					0.013					0.012					0.008					0.008
Barium (Ba) mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Beryllium (Be) mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Boron (B) mg/L					< 0.01					< 0.01					< 0.01					< 0.01
Bismuth (Bi) mg/L					< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd) mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co) mg/L					< 0.0003					< 0.0003					< 0.0003					< 0.0003
Chromium (Cr) mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Copper (Cu) mg/L					< 0.0008					< 0.0008					< 0.0008					< 0.0008
Potassium (K) mg/L					0.5200					0.4600					0.8300					0.3900
Lithium (Li) mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg) mg/L					0.0650					0.04					0.08					0.04
Manganese (Mn) mg/L					0.00					0.0023					0.0058					0.0047
Molydenum (Mo) mg/L					0.00					0.0013					0.0009					0.0011
Sodium (Na) mg/L					< 0.05					< 0.05					0.1100					< 0.05
Nickel (Ni) mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Phosphorous (P) mg/L					< 0.1					< 0.1					< 0.1					< 0.1
Lead (Pb) mg/L					< 0.0002					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb) mg/L					0.001					0.0008					< 0.0004					0.0007
Selenium (Se) mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Tin (Sn) mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Strontium (Sr) mg/L					0.0049					0.0033					0.0045					0.0031
Titanium (Ti) mg/L					< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI) mg/L					< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U) mg/L Vanadium (V) mg/L					< 0.0048					< 0.0022					< 0.0022					< 0.0023
					< 0.0009					0.0009					< 0.0009					< 0.0009
Tungsten (W) mg/L Yttrium (Y) mg/L					< 0.0002					< 0.0004					< 0.0002					< 0.0002
					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn) mg/L		1			< 0.001					< 0.001					< 0.001					< 0.001

08-1118-0043

May 2011

0.07 % 0.04 % 16.1 t CaCO3/1000 t 10 t CaCO3/1000 t 1.2 t CaCO3/1000 t 1000 g S-Total: S²⁻: NP: CaNP: AP: Weight:

3 of 77

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Date		19-Apr-05	26-Apr-05	3-May-05	10-May-05	17-May-05	24-May-05	31-May-05	7-Jun-05	14-Jun-05	21-Jun-05	28-Jun-05	5-Jul-05	12-Jul-05	19-Jul-05	26-Jul-05	2-Aug-05	9-Aug-05	16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	overed (mL)	814	986	988	902	948	929	965	956	948	960	964	971	993	976	990	973	969	956	946	943	969
pH	Effluent (units)	8.8	7.53	8.11	7.72	7.62	7.73	7.67	7.57	7.74	7.75	7.65	7.78	7.34	7.20	7.45	7.23	7.46	7.38	7.45	7.49	7.43
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2	< 2	<2	<2	<2	<2	< 2
Alkalinity	as CaCO ₃ (mg/L)	30	28	21	16	16	16	15	13	12	13	12	12	11	10	12	10	10	9	10	12	10
Conductivity	µmhos/cm	160	69	46	35	54	31	40	28	26	28	27	26	26	25	22	20	20	20	21	20	19
Sulphate (SO ₄)	mg/L	< 5	2.5	1.5	1	1	0.8	0.7	0.6	0.6	0.5	0.6	0.6	0.6	0.8	0.8	0.6	0.5	<0.5	<0.5	<0.5	< 0.5
Calcium (Ca)	mg/L	2.47	3.4	4.17	3.16	3.67	3.62	3.55	3.55	3.47	4.06	3.52	3.62	3.93	4.17	4.05	3.61	3.5	3.36	3.3	3.44	3.43
Iron (Fe)	mg/L	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	0.53	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	2.5					< 0.2					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	3					< 2					< 2					< 2					< 2
Ammonia	mg/L	< 0.1					< 0.1					< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.33	0.15	0.06			0.11					0.10					0.11					0.08
Arsenic (As)	mg/L	0.043	0.065	0.036			0.017					0.011					0.011					0.007
Barium (Ba)	mg/L	0.001	< 0.001	< 0.001			< 0.001					< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	0.03	0.06	0.02			< 0.02					< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003					< 0.0003					< 0.0003
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	0.0013	0.0011	< 0.0008			< 0.0008					< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	5.53	4.28	3.31			2.1400					1.2500					1.11					0.88
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.124	0.209	0.247			0.29					0.203					0.156					0.126
Manganese (Mn)	mg/L	0.0009	0.0017	0.0013			0.0012					0.0012					0.0011					0.0009
Molydenum (Mo)	mg/L	0.0016	0.0158	0.0176			0.018					0.019					0.014					0.0101
Sodium (Na)	mg/L	7.93	8.5	4.73			1.400					0.450					0.31					0.2
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0022	0.0071	0.0044			0.0017					0.0012					0.0012					0.0007
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L	0.008	0.007	0.003			< 0.001					< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L	0.0073	0.0094	0.0106			0.0104					0.0094					0.0073					0.0061
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	< 0.0002	0.0003	0.0003			0.0003					0.0002					< 0.0002					< 0.0002
Vanadium (V)	mg/L	0.003	0.0034	0.0025			0.0017					0.001					0.001					< 0.0009
Tungsten (W)	mg/L	0.0049	0.0077	0.0022			0.0003					0.0002					0.0003					< 0.0002
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	< 0.001	< 0.001	< 0.001	***		< 0.001					< 0.001					< 0.001					< 0.001

Weeks	#	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Date		13-Sep-05	20-Sep-05	27-Sep-05	4-Oct-05	11-Oct-05	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05	15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume Add		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		966	941	940	971	962	907	969	952	936	871	950	944	951	992	906	929	963	967	910	927
pН	Effluent (units)	7.42	6.93	7.49	7.25	7.49	7.31	7.26	7.34	7.54	7.48	7.35	7.51	7.22	7.40	7.71	7.39	7.70	7.47	8.45	7.53
Acidity	as CaCO ₃ (mg/L)	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	11	9	10	9	10	8	10	9	8	8	9	10	9	11	10	8	10	9	9	11
Conductivity	µmhos/cm	24	21	19	21	21	17	19	18	19	17	20	21	18	23	24	24	32	21	28	19
Sulphate (SO ₄)	mg/L	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	3.61	3.07	3.18	3.37	3.33	2.6	3.33	3.05	2.86	2.25	3.28	3.44	3.09	3.95	3.11	2.76	3.28	3.34	2.64	2.66
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					<2					< 2					< 2					<2
Ammonia	mg/L					< 0.1					< 0.1					0.2					< 0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L					0.08					0.12					0.06					0.09
Arsenic (As)	mg/L					0.009					0.011					0.008					0.006
Barium (Ba)	mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L					< 0.01					< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L					< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L					< 0.0003					< 0.0003					< 0.0003					< 0.0003
Chromium (Cr)	mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L					< 0.0008					< 0.0008					0.0008					< 0.0008
Potassium (K)	mg/L					0.8300					0.9300					0.2100					0.7200
Lithium (Li)	mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L					0.0980					0.07					0.05					0.07
Manganese (Mn)	mg/L					0.00					< 0.0007					0.0011					< 0.0007
Molydenum (Mo)	mg/L					0.01					0.0022					< 0.0003					< 0.0003
Sodium (Na)	mg/L					0.14					0.1200					< 0.05					0.1000
Nickel (Ni)	mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L					< 0.1					< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L					< 0.0002					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L					0.0008					0.0006					< 0.0004					0.0006
Selenium (Se)	mg/L					< 0.005					< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L					< 0.001					< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L					0.005					0.0051					0.0036					0.0037
Titanium (Ti)	mg/L					< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L					< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L					< 0.0002					< 0.0002					< 0.0002					< 0.0002
Vanadium (V)	mg/L					< 0.0009					< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L					< 0.0002					0.0003					< 0.0002					< 0.0002
Yttrium (Y)	mg/L					< 0.0001					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	ma/L					< 0.001					< 0.001					< 0.001					< 0.001

S-Total:

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	#	0	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14
Date		April 19/05	April 26/05	May 03/05	May 10/05	May 17/05	May 24/05	May 31/05	June 7/05	June 14/05	June 21/05	June 28/05	July 5/05	July 12/05	July 19/05	July 26/05
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	· · · /	828	966	985	897	978	994	987	991	982	987	996	986	994	997	972
На	Effluent (units)	7.65	7.15	7.53	7.27	7.59	7.71	7.54	7.60	7.53	7.37	7.53	7.67	7.19	7.31	7.14
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	15	15	12	9	13	14	12	10	13	9	10	9	8	11	13
Conductivity	µmhos/cm	47	46	33	23	49	27	35	24	24	23	24	21	20	20	18
Sulphate (SO ₄)	mg/L	< 5	3.2	1.2	0.7	0.9	0.7	0.7	0.6	0.7	< 0.5	0.5	0.5	<0.5	0.6	<0.5
Calcium (Ca)		4.18	4.85	3.35	3.14	4.25	4.32	3.83	3.78	4.05	4.05	3.81	3.55	3.54	4.03	3.73
Iron (Fe)	mg/L mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02
Chloride (CI)	mg/L	< 2	< 0.02	< 0.02	< 0.02		< 0.02	< 0.02 	< 0.02	< 0.02	< 0.02	< 0.02		<0.02		<0.02
Nitrite (NO ₂)												< 0.2				
, -,	as N mg/L	< 0.6					< 0.06									
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05				-	< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.17	0.05	0.11			0.05					0.05				
Arsenic (As)	mg/L	0.1	0.46	0.543			0.394					0.25				
Barium (Ba)	mg/L	0.005	0.005	0.004			0.002					0.002				
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Boron (B)	mg/L	0.01	0.02	< 0.01			< 0.02					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	0.0023	0.0045	0.0035			0.0041					0.0042				
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Copper (Cu)	mg/L	0.0037	< 0.0008	< 0.0008			< 0.0008					< 0.0008				
Potassium (K)	mg/L	4.86	3.44	2.17			1.0700					0.5600				
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Magnesium (Mg)	mg/L	0.299	0.55	0.41			0.26					0.128				
Manganese (Mn)	mg/L	0.0051	0.013	0.0085			0.0114					0.0145				
	mg/L	0.0156	0.0305	0.0128			0.003					0.0017				
Sodium (Na)	mg/L	1.12	1.23	0.63			0.210					0.100				
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1				
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					0.000				
Antimony (Sb)	mg/L	0.0107	0.0384	0.0258			0.0088					0.0051				
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Tin (Sn)	mg/L	0.003	0.011	0.005			0.002					< 0.001				
Strontium (Sr)	mg/L	0.0187	0.0265	0.021			0.0153					0.0097				
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Uranium (U)	mg/L	0.0006	0.0142	0.0168			0.0125					0.0058				
Vanadium (V)	mg/L	< 0.0009	< 0.0009	< 0.0009			< 0.0009					< 0.0009				
Tungsten (W)	mg/L	0.0014	0.0046	0.0014			< 0.0002					< 0.0002				
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	< 0.001	0.003	0.001			0.0030					0.0040				

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	#	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Date		Aug 2/05	Aug 9/05	Aug 16/05	Aug 23/05	Aug 30/05	Sep 6/05	Sep 13/05	Sep 20/ 05	Sep 27/05	Oct 04/05	Oct 11/05	Oct18/05	Oct25/05	Nov1 01/05	Nov 08/05	Nov 15/05
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		930	993	988	998	991	984	994	985	992	984	990	988	991	966	994	990
На	Effluent (units)	7.20	7.27	7.25	7.23	7.38	7.34	7.33	6.84	7.20	7.21	7.42	7.21	6.47	7.22	7.25	7.28
Acidity	as CaCO ₃ (mg/L)	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	9.7	9	10	8	8	8	9	8	8	8	8	7	7	8	7	7
Conductivity	µmhos/cm	19	18	18	18	18	16	20	19	18	18	17	16	15	15	18	18
Sulphate (SO ₄)	mg/L	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	3.87	3.49	3.29	3.36	3.44	3.19	3.43	3.22	3.17	3.11	3.07	2.84	2.93	2.93	2.92	2.9
Iron (Fe)	mg/L	0.39	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2		<0.02 	<0.02 		< 0.02	<0.02 		< 0.02 		< 0.02					< 0.02
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06					< 0.2
(2)																	
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2					< 2
Ammonia	mg/L	< 0.1					< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.07					0.05					0.04					0.05
Arsenic (As)	mg/L	0.214					0.139					0.138					0.121
Barium (Ba)	mg/L	0.001					< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	< 0.01					< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	0.0038					0.0036					0.0035					0.0037
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	0.45					0.32					0.2500					0.2200
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.107					0.081					0.0550					0.05
Manganese (Mn)	mg/L	0.0146					0.0126					0.01					0.015
Molydenum (Mo)	mg/L	0.0013					0.001					0.00					0.0006
Sodium (Na)	mg/L	0.07					< 0.05					< 0.05					< 0.05
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.1					< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0045					0.0033					0.0028					0.0024
Selenium (Se)	mg/L	< 0.005					< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L	0.0073					0.0051					0.0037					0.0042
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	0.0035					0.0019					0.0019					0.0016
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	0.0040					0.002					0.004					0.0040

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	#	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Date		Nov22/05	Nov29/05	Dec06/05	Dec13/05	Dec 20/05	Dec 27/05	Jan 03/06	Jan 10/06	Jan 17/06	Jan 24/06	Jan 31/06	Feb 07/06	Feb 14/06	Feb 21/06	Feb 28/06
Leachate Volume Ad	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Re		988	993	985	992	988	993	996	985	978	980	901	862	810	797	982
pH	Effluent (units)	7.22	5.01	7.15	7.13	7.38	7.21	7.55	7.43	7.54	7.34	7.05	6.99	7.09	7.23	6.99
Acidity	as CaCO ₃ (mg/L)	< 2	5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	8	< 2	8	8	8	8	9	8	8	7	6	6	8	6	7
Conductivity	umhos/cm	18	19	16	16	21	22	30	16	22	17	15	13	16	18	19
Sulphate (SO ₄)	mg/L	< 0.5	6.3	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
. , ,	•															
Calcium (Ca)	mg/L	3.34	0.11	3.14	3.18	0.12 0.40	2.96	3	2.86	3.01	2.69	2.32	2.09	2.02	2.32	3.06 < 0.02
Iron (Fe)	mg/L	< 0.02	0.3	< 0.02	< 0.02	< 0.2	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02 < 0.2	< 0.02	< 0.02	< 0.02	< 0.02	
Chloride (CI)	mg/L															< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					<2					< 2
Ammonia	mg/L		-			0.1					< 0.1		-			< 0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L					0.20					0.05					0.05
Arsenic (As)	mg/L					0.107					0.1					0.098
Barium (Ba)	mg/L					< 0.001					< 0.001					0.001
Beryllium (Be)	mg/L					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L					< 0.01					< 0.01					< 0.07
Bismuth (Bi)	mg/L					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L					0.0042					0.0036					0.0034
Chromium (Cr)	mg/L					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L					< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L					0.3200					0.18					0.2
Lithium (Li)	mg/L					< 0.005					< 0.005					< 0.002
Magnesium (Mg)	mg/L					0.22					0.041					0.046
Manganese (Mn)	mg/L					0.0165					0.0144					0.0173
Molydenum (Mo)	mg/L					0.0005					0.0004					0.0006
Sodium (Na)	mg/L					< 0.05					< 0.05					< 0.03
Nickel (Ni)	mg/L					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L					< 0.1					< 0.1					0.02
Lead (Pb)	mg/L					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L					0.0022					0.0022					0.0022
Selenium (Se)	mg/L					< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L					< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L					0.0012					0.0029					0.0029
Titanium (Ti)	mg/L					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L					0.0011					0.0009					0.0008
Vanadium (V)	mg/L					< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L					0.0004					< 0.0002					< 0.0002
Yttrium (Y)	mg/L					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L					0.0030					0.001					0.001

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Date		Mar 07/06	Mar 14/06	Mar 21/06	Mar 28/06.	Apr 04/06	Apr 11/06	Apr 18/06	Apr 25/06	May 02/06	May 09/06	May 16/06	May 23/06	May 30/06	Jun 6/06	Jun 13/06
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		860	993	866	904	892	909	866	916	863	928	917	962	912	959	928
pН	Effluent (units)	7.06	7.18	7.16	6.98	6.98	6.92	7.04	7.10	7.10	6.86	6.84	7.14	7.12	7.17	7.20
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	8	6	6	5	5	5	11	2	6	6	8	6	7	6
Conductivity	µmhos/cm	10	18	12	17	11	11	11	16	13	50	134	61	16	17	13
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.38	3.21	1.61	2.21	1.67	1.92	1.69	2.07	1.48	2.11	1.99	3.1	2.11	3.09	2.07
Iron (Fe)	mg/L	< 0.02	< 0.01	< 0.01	< 0.01	0.03	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2					< 2
Ammonia	mg/L					< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L					0.04					0.04					0.04
Arsenic (As)	mg/L					0.0785					0.0649					0.0615
Barium (Ba)	mg/L					0.0004					0.00076					0.00047
Beryllium (Be)	mg/L					< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L					< 0.003			-		< 0.002					< 0.002
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.0015					0.0022					0.0022
Chromium (Cr)	mg/L					< 0.0003			-		< 0.0003					< 0.0003
Copper (Cu)	mg/L					0.0004					0.0002					0.0002
Potassium (K)	mg/L					0.15					0.14					0.11
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.038					0.042					0.035
Manganese (Mn)	mg/L					0.00772					0.0119					0.0116
Molydenum (Mo)	mg/L					0.00041					0.00054					0.00027
Sodium (Na)	mg/L					0.03					< 0.01					< 0.01
Nickel (Ni)	mg/L					< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L					0.05					< 0.01					0.01
Lead (Pb)	mg/L					0.00004					0.00034					< 0.00002
Antimony (Sb)	mg/L					0.0019					0.0019					0.0014
Selenium (Se)	mg/L					< 0.003					< 0.003					< 0.003
Tin (Sn)	mg/L					< 0.0003					< 0.0003					< 0.0003
Strontium (Sr)	mg/L					0.0017					0.0019					0.0009
Titanium (Ti)	mg/L					< 0.0002					< 0.0002					< 0.0002
Thallium (TI)	mg/L					< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L					0.00088					0.00081					0.00074
Vanadium (V)	mg/L					0.00008					0.00009 < 0.00007					0.00006 < 0.00007
Tungsten (W) Yttrium (Y)	mg/L					< 0.00007					0.00007					< 0.00007
Zinc (Zn)	mg/L mg/L					0.000005					0.00001					0.0000
ZIIIC (ZII)	mg/L					0.0011					0.0050					0.001

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	l #	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Date	"	Jun 20. 06	Jun 27, 06	Jul 04, 06	Jul 11. 06	Jul 18, 06	Jul 25, 06	Aug 1, 06	Aug 8, 06	Aug 15, 06	Aug 22, 06	Aug 29, 06	Sep 05, 06	Sep 12, 06	Sep 19, 06	Sep 26, 06
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red		847	933	901	869	868	885	868	872	878	882	875	872	N/A	886	860
На	Effluent (units)	7.21	7.16	6.80	7.00	6.75	6.81	6.89	6.84	7.11	6.97	6.97	6.96	7.22	7.16	6.91
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	7	5	3	4	4	3	6	4	4	3	3	5	4	3
Conductivity	µmhos/cm	12	15	11	7	7	7	6	8	11	10	6	7	11	11	14
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	•					1.24					1.68	1.09				
Calcium (Ca)	mg/L	1	2.59	1.56	1.22	< 0.02	1.43	1.2	1.23	1.39			1.01	2.01	1.58	1.11
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.07	< 0.01	0.03	< 0.02 < 0.2	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02 < 0.2
Chloride (CI) Nitrite (NO ₂)	mg/L															
, -,	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2					< 2
Ammonia	mg/L					< 0.1					< 0.1					0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L					0.06					0.04					0.05
Arsenic (As)	mg/L					0.0453					0.0492					0.0426
Barium (Ba)	mg/L					0.00043					0.00043					0.00034
Beryllium (Be)	mg/L					< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L					0.005					< 0.002					< 0.002
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.00127					0.00212					0.000977
Chromium (Cr)	mg/L					< 0.0003					< 0.0003					0.0015
Copper (Cu)	mg/L					0.0002					0.0001					0.0003
Potassium (K)	mg/L					0.12					0.12					0.07
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.03					0.043					0.031
Manganese (Mn)	mg/L					0.00675					0.0108					0.00581
Molydenum (Mo)	mg/L					0.00019					0.0001					0.00011
Sodium (Na)	mg/L					< 0.01					< 0.01					< 0.04
Nickel (Ni)	mg/L					< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L					< 0.01					< 0.01					0.04
Lead (Pb)	mg/L					< 0.00002					0.00043					0.00004
Antimony (Sb)	mg/L					0.0007					0.0016					0.0012
Selenium (Se)	mg/L					< 0.003					< 0.003					< 0.003
Tin (Sn)	mg/L					< 0.0003					< 0.0003					< 0.0003
Strontium (Sr)	mg/L					0.001					0.0015					0.0009
Titanium (Ti)	mg/L					< 0.0002					< 0.0002					< 0.0002
Thallium (TI)	mg/L					< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L					0.00045					0.00043					0.0003
Vanadium (V)	mg/L					< 0.00006					0.00011					< 0.00006
Tungsten (W)	mg/L					< 0.00007					< 0.00007					< 0.00007
Yttrium (Y)	mg/L					< 0.000005					< 0.000005					0.000009
Zinc (Zn)	mg/L					0.0009					0.0028					0.0008

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	1#	76	77	78	79	80	81	82	83	84	85	86	87	88	89
Date	<i>π</i>	Oct 03, 06	Oct 10, 06	Oct 17, 06	Oct 24, 06	Oct 31, 06	Nov 7, 06	Nov 14, 06	Nov 21, 06	Nov 28, 06	Dec 05, 06	Dec 12, 06	Dec 19, 06	Dec 27, 06	Jan 02. 07
Leachate Volume Add	ed (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		961	859	878	876	909	905	922	869	874	944	902	872	906	832
pH	Effluent (units)	7.19	7.44	7.21	6.93	6.85	6.76	6.94	6.86	8.06	7.15	6.90	6.91	6.98	7.15
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	5	< 2	< 2	< 2	< 2	< 2	< 2
,	-, -,								_						
Alkalinity	as CaCO ₃ (mg/L)	7	10	7	4	5	5	5	4	4	5	4	4	3	4
Conductivity	µmhos/cm	22	16	18	8	11	16	14	10	7	12	10	10	8	10
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	2.72	3.18	2.88	1.24	< 0.05	1.75	1.95	1.44	1.43	2.12	1.65	1.3	1.62	1.71
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	0.32	< 0.01	< 0.01	< 0.01	0.03	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L					< 0.2				-	< 0.2				
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L			-		< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2				
Ammonia	mg/L					< 0.1					< 0.1				
Mercury (Hg)	mg/L					< 0.0001					< 0.0001				
Silver (Ag)	mg/L					< 0.00003				-	< 0.00003				
Aluminum (AI)	mg/L					0.15					0.04				
Arsenic (As)	mg/L					0.0411					0.048				
Barium (Ba)	mg/L					0.00032					0.00035				
Beryllium (Be)	mg/L					< 0.00004					< 0.00004				
Boron (B)	mg/L					< 0.002					< 0.007				
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002				
Cadmium (Cd)	mg/L					0.00011					< 0.00006				
Cobalt (Co)	mg/L					0.002					0.00196				
Chromium (Cr)	mg/L					< 0.0003					< 0.0003				
Copper (Cu)	mg/L					0.0004					0.0002				
Potassium (K)	mg/L					0.12					0.1				
Lithium (Li)	mg/L					< 0.002					< 0.002				
Magnesium (Mg)	mg/L					0.156					0.035				
Manganese (Mn)	mg/L					0.0102					0.0125				
Molydenum (Mo)	mg/L					0.00021					0.00028				
Sodium (Na)	mg/L					< 0.01					< 0.04				
Nickel (Ni) Phosphorous (P)	mg/L					< 0.0007					< 0.0007 0.01				
	mg/L					0.0004									
Lead (Pb) Antimony (Sb)	mg/L					0.00004					< 0.00002 0.0013				
Selenium (Se)	mg/L					< 0.003					< 0.0013				
Tin (Sn)	mg/L mg/L					< 0.003					< 0.003				
Strontium (Sr)	mg/L					0.0003					0.0012				
Titanium (Ti)	mg/L					< 0.0003					< 0.0012				
Thallium (TI)	mg/L					< 0.0002					< 0.0002				
Uranium (U)	mg/L					0.00036					0.00086				
Vanadium (V)	mg/L					0.00030					< 0.00006				
Tungsten (W)	mg/L					< 0.00009					< 0.00007				
Yttrium (Y)	mg/L					< 0.000007					< 0.00007				
Zinc (Zn)	mg/L					0.0000					0.0006				
· ()	µ9/ ⊏			-		0.0012				-	0.0000				

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	1#	90	91	92	93	94	95	96	97	98	99	100	101	102	103	104
Date	#	Jan 9, 07	Jan 16, 07	Jan 23, 07	Jan 30, 07	Feb 6, 07	Feb 13, 07	Feb 20, 07	Feb 27, 07	Mar 06, 07	Mar 13,07	Mar 20, 07	Mar 27, 07	Apr 03, 07	Apr 10, 07	
Leachate Volume Add	od (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	\ /	926	940	941	921	926	946	946	955	976	986	988	957	992	975	970
pH	Effluent (units)	7.03	7.14	7.19	7.14	7.14	7.09	7.23	7.28	7.22	7.19	7.15	7.34	6.99	7.33	8.59
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	,															
Alkalinity	as CaCO ₃ (mg/L)	5	8	6	5	5	6	6	6	6	7	7	8	6	7	6
Conductivity	µmhos/cm	18	19	17	15	15	21	16	15	16	18	17	23	18	21	58
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	2.03	2.26	2.55	1.99	2.32	2.19	2.39	2.54	2.56	2.79	3	3.51	2.94	2.74	2.64
Iron (Fe)	mg/L	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003				
Aluminum (AI)	mg/L	0.05					0.02					0.05				
Arsenic (As)	mg/L	0.0496					0.0558					0.0544				
Barium (Ba)	mg/L	0.00034					0.00038					0.00047				
Beryllium (Be)	mg/L	< 0.00004					< 0.00004					< 0.00004				
Boron (B)	mg/L	< 0.002					< 0.002					< 0.002				
Bismuth (Bi)	mg/L	< 0.00002					< 0.00002					< 0.00002				
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006				
Cobalt (Co)	mg/L	0.00196					0.00237					0.00374				
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Copper (Cu)	mg/L	< 0.0001					0.0001					< 0.0001				
Potassium (K)	mg/L	0.1					0.12					0.1				
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002				
Magnesium (Mg)	mg/L	0.043					0.049					0.055				
Manganese (Mn)	mg/L	0.0134					0.0159					0.0241				
Molydenum (Mo) Sodium (Na)	mg/L mg/L	0.0001 < 0.01					0.00019 0.03					0.00006 < 0.01				
Nickel (Ni)		< 0.01					< 0.0007					< 0.007				
Phosphorous (P)	mg/L mg/L	< 0.0007					< 0.0007					< 0.0007				
Lead (Pb)	mg/L	< 0.0002					0.00013					< 0.00002				
Antimony (Sb)	mg/L	0.0002					0.00013					0.00002				
Selenium (Se)	mg/L	< 0.001					< 0.0011					< 0.0011				
Tin (Sn)	mg/L	< 0.0003					< 0.0003					0.0004				
Strontium (Sr)	mg/L	0.0015					0.0016					0.002				
Titanium (Ti)	mg/L	< 0.0013					< 0.0010					< 0.0002				
Thallium (TI)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Uranium (U)	mg/L	0.0008					0.00032					0.00085				
Vanadium (V)	mg/L	< 0.00006					< 0.00032					0.00006				
Tungsten (W)	mg/L	< 0.00007					0.0005					< 0.00007				
Yttrium (Y)	mg/L	< 0.000007					< 0.00005					< 0.000007				
Zinc (Zn)	mg/L	0.0007					0.0006					0.0009				
(-11)	12	0.0001	l			1	0.0000		l	l		0.0000	1	l	l	

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	1#	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119
Date	#	Apr 24, 07	May 01, 07	May 08, 07	May 15, 07	May 22, 07	May 29, 07	Jun 5, 07	Jun 12, 07	Jun 19, 07	Jun 26, 07	Jul 03, 07	Jul 10, 07	Jul 17, 07	Jul 24, 07	Jul 31, 07
Leachate Volume Add	ad (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		970	978	982	989	967	963	995	954	991	937	779	805	997	870	855
pH	Effluent (units)	7.06	7.24	6.95	7.05	7.27	7.29	7.24	7.15	6.92	7.33	7.29	7.35	7.14	7.21	7.35
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	,															
Alkalinity	as CaCO ₃ (mg/L)	6	7	7	7	11	7	6	6	5	8	7	10	8	7	10
Conductivity	µmhos/cm	16	18	18	19	19	16	27	21	19	22	19	24	21	22	27
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	3.8	< 0.5
Calcium (Ca)	mg/L	2.76	2.77	2.82	3.16	2.62	2.96	3.28	2.77	2.89	3.37	3.29	4.13	0.23	2.9	3.08
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2				-	< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003				
Aluminum (AI)	mg/L	0.04					0.04					0.05				
Arsenic (As)	mg/L	0.0617					0.0443					0.0589				
Barium (Ba)	mg/L	0.00042					0.00047					0.00054				
Beryllium (Be)	mg/L	< 0.00004		-			< 0.00004					< 0.00004				
Boron (B)	mg/L	< 0.002					< 0.002					< 0.002				
Bismuth (Bi)	mg/L	< 0.00002					< 0.00002					< 0.00002				
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006				
Cobalt (Co)	mg/L	0.00373					0.00449					0.00424				
Chromium (Cr)	mg/L	< 0.0003					0.0005					< 0.0003				
Copper (Cu)	mg/L	0.0001					0.0002					0.0012				
Potassium (K)	mg/L	0.1					0.09					0.09				
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002				
Magnesium (Mg)	mg/L	0.045					0.046					0.036				
Manganese (Mn)	mg/L	0.0226					0.0259 0.00014					0.0266 0.00023				
Molydenum (Mo) Sodium (Na)	mg/L mg/L	0.00019 0.01					< 0.01					< 0.01				
Nickel (Ni)	mg/L	< 0.007					< 0.007					< 0.007				
Phosphorous (P)	mg/L	0.02					< 0.007					< 0.007				
Lead (Pb)	mg/L	< 0.00002					0.00004					0.0001				
Antimony (Sb)	mg/L	0.0011					0.0004					0.0016				
Selenium (Se)	mg/L	< 0.001					< 0.0012					< 0.001				
Tin (Sn)	mg/L	0.0005					< 0.0003					< 0.0003				
Strontium (Sr)	mg/L	0.0016					0.0015					0.0019				
Titanium (Ti)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Thallium (TI)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Uranium (U)	mg/L	0.00088					0.00033					0.00078				
Vanadium (V)	mg/L	< 0.00006					< 0.00006					< 0.00006				
Tungsten (W)	mg/L	< 0.00007					< 0.00007					< 0.00007				
Yttrium (Y)	mg/L	< 0.000005					< 0.000005					< 0.000005				
Zinc (Zn)	mg/L	0.0013					0.0018					0.0016				
LIIIO (LII)	mg/L	0.0013					0.0010					0.0010				

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	#	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134
Date		Aug 7, 07	Aug 14, 07	Aug 21, 07	Aug 28, 07	Sep 4, 07	Sep 11, 07	Sep 18, 07	Sep 25, 07	Oct 02, 07	Oct 09, 07	Oct 16, 07	Oct 23, 07	Oct 30, 07	Nov 06, 07	Nov 13, 07
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		915	993	987	980	987	978	987	981	987	989	983	990	992	976	999
На	Effluent (units)	6.71	6.81	6.57	7.23	6.69	7.16	7.10	6.97	6.80	7.28	6.66	7.19	7.10	7.04	7.14
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	5	6	7	7	6	6	6	4	6	6	6	8	6	7
Conductivity	µmhos/cm	14	15	17	16	71	22	18	14	14	41	15	15	17	13	15
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	•	2.69	2.43	2.58	2.71	2.37	2.37	2.58	2.23	2.51	2.35	2.34	2.45	3.18	2.23	2.87
Iron (Fe)	mg/L	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L mg/L	< 0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Nitrite (NO ₂)																
, -,	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	0.11					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.00003					< 0.00001					< 0.00001				
Aluminum (AI)	mg/L	0.03					0.04					0.03				
Arsenic (As)	mg/L	0.0485					0.0462					0.0434				
Barium (Ba)	mg/L	0.00049					0.00043					0.00046				
Beryllium (Be)	mg/L	< 0.00004					< 0.00002					< 0.00002				
Boron (B)	mg/L	0.008					< 0.002					< 0.002				
Bismuth (Bi)	mg/L	< 0.00002					< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L	< 0.00006					0.000004					< 0.000003				
Cobalt (Co)	mg/L	0.0042					0.00467					0.00471				
Chromium (Cr)	mg/L	< 0.0003					< 0.0005					< 0.0005				
Copper (Cu)	mg/L	0.0001					< 0.0005					< 0.0005				
Potassium (K)	mg/L	0.09					0.07					0.07				
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002				
Magnesium (Mg)	mg/L	0.05					0.043					0.043				
Manganese (Mn)	mg/L	0.0244					0.0244					0.0238				
Molydenum (Mo)	mg/L	0.00022					0.00021					0.00018				
Sodium (Na)	mg/L	0.04					< 0.01					< 0.01				
Nickel (Ni)	mg/L	< 0.0007					< 0.0001					< 0.0001				
Phosphorous (P)	mg/L	< 0.01					< 0.01					< 0.01				
Lead (Pb)	mg/L	0.00004					< 0.00002					< 0.00002				
Antimony (Sb)	mg/L	0.0011					0.00081					0.00076				
Selenium (Se)	mg/L	< 0.001					< 0.001					< 0.001				
Tin (Sn)	mg/L	< 0.0003					0.00023					0.00015				
Strontium (Sr)	mg/L	0.0014					0.0012					0.0012				
Titanium (Ti)	mg/L	< 0.0002					< 0.0001					< 0.0001				
Thallium (TI)	mg/L	< 0.0001					< 0.00001					< 0.00001				
Uranium (U)	mg/L	0.00041					0.000588					0.000585				
Vanadium (V)	mg/L	< 0.00006					< 0.00003					< 0.00003				
Tungsten (W)	mg/L	< 0.00007					< 0.00003					< 0.00003				
Yttrium (Y)	mg/L	< 0.000005					< 0.000001					0.000002				
Zinc (Zn)	mg/L	0.0012					0.001					0.001				

0.03 % <0.01 % 11.2 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	1#	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Date	π	Nov 20, 07	Nov 27, 07	Dec 04, 07	Dec 11, 07		Dec 24, 07	Jan 02, 08	Jan 08. 08	Jan 15, 08	Jan 22, 08	Jan 29, 08	Feb 05, 08	Feb 12, 08	Feb 19, 08	Feb 26, 08
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	()	982	*	984	980	987	987	988	985	984	990	988	978	998	976	983
pH	Effluent (units)	7.25	7.24	7.09	6.74	6.93	6.85	6.72	7.03	6.74	6.89	7.17	7.12	6.89	7.25	6.90
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	-, -,															
Alkalinity	as CaCO ₃ (mg/L)	8	8	6	7	6	6	5	6	5	5	6	8	5	10	4
Conductivity	µmhos/cm	17	17	13	15	13	13	15	14	16	14	14	15	14	13	13
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	2.8	2.8	2.27	2.48	2.55	2.05	2.28	2.39	2.35	2.19	2.27	2.25	2.21	2.19	2.18
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.2	-				< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05					0.06					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1					0.2				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.00001					< 0.00001					< 0.00001				
Aluminum (AI)	mg/L	0.06					0.02					0.02				
Arsenic (As)	mg/L	0.064					0.0399					0.0447				
Barium (Ba)	mg/L	0.00058					0.00042					0.00043				
Beryllium (Be)	mg/L	< 0.00002					< 0.00002					< 0.00002				
Boron (B)	mg/L	0.039					0.038					0.002				
Bismuth (Bi)	mg/L	< 0.00001					< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L	0.000004					0.000004					0.000006				
Cobalt (Co)	mg/L	0.00674					0.00482					0.00494				
Chromium (Cr)	mg/L	< 0.0005					< 0.0005					< 0.0005				
Copper (Cu)	mg/L	< 0.0005					< 0.0005					< 0.0005				
Potassium (K)	mg/L	0.11					0.06					0.07				
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002				
Magnesium (Mg)	mg/L	0.057					0.045					0.046				
Manganese (Mn)	mg/L	0.0296					0.0237					0.0245				
Molydenum (Mo)	mg/L	0.00021					0.00015					0.00017				
Sodium (Na)	mg/L	0.01					0.02					0.03				
Nickel (Ni)	mg/L	< 0.0001					0.0001					< 0.0001				
Phosphorous (P)	mg/L	< 0.01					< 0.01					< 0.01				
Lead (Pb)	mg/L	< 0.00002					0.00004					0.00003				
Antimony (Sb)	mg/L	0.00088					0.00053					0.00051				
Selenium (Se) Tin (Sn)	mg/L	< 0.001 < 0.00001					< 0.001 < 0.00001					< 0.001 < 0.00001				
Strontium (Sr)	mg/L	0.00001					0.00001					0.00001				
Titanium (Ti)	mg/L	< 0.0016					< 0.0011					< 0.0012				
Thallium (TI)	mg/L	< 0.00001					< 0.00001					< 0.00001				
Uranium (11)	mg/L mg/L	0.000696					0.000542					0.000497				
Vanadium (V)	•	0.000096					< 0.000342					0.000497				
Tungsten (W)	mg/L mg/L	< 0.00009					< 0.00003					< 0.00018				
Yttrium (Y)	mg/L	0.000003					0.000003					0.000003				
Zinc (Zn)	mg/L	0.00001					0.00002					0.00002				
ZIIIC (ZII)	mg/L	0.002					0.003					0.001				

Humidity Cell Results for Rock Sample 100872 (Rhyolite)

S-Total: 0.05 % S²⁻: NP: 0.01 %

May 2011

12.4 t CaCO3/1000 t 7.5 t CaCO3/1000 t CaNP: 0.31 t CaCO3/1000 t 1000 g AP:

Weight:

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11
Date	π	19-Apr-05	26-Apr-05	3-May-05	10-May-05	17-May-05	24-May-05	31-May-05	7-Jun-05	14-Jun-05	21-Jun-05	28-Jun-05	5-Jul-05
Leachate Volume Adde	2d (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	· · \ /	790	997	976	886	915	871	916	943	904	994	992	996
pH	Effluent (units)	7.68	7.13	7.49	7.28	7.47	7.54	7.55	7.59	7.57	7.68	8.48	7.75
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	15	16	15	11	12	10	14	11	10	12	12	11
,	.,		_	32	25		-	32		_	26	32	
Conductivity	µmhos/cm	42	44		_	46	21		26	21			24
Sulphate (SO ₄)	mg/L	< 5	2.1	0.8	0.6	0.6	0.5	0.5	0.5	0.5	< 0.5	0.5	0.5
Calcium (Ca)	mg/L	3.64	4.28	1.69	3.17	3.75	2.97	3.43	3.63	3.26	4.39	3.81	3.77
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 2					< 0.2					< 0.2	
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					2.0	
Ammonia	mg/L	< 0.1					< 0.1					< 0.1	
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001	
Aluminum (AI)	mg/L	0.14	0.05	< 0.01			0.08					0.06	
Arsenic (As)	mg/L	0.038	0.1	0.113			0.063					0.043	
Barium (Ba)	mg/L	0.005	0.005	0.004			0.002					0.002	
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005	
Boron (B)	mg/L	< 0.01	0.02	< 0.01			< 0.02					< 0.01	
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003	
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001	
Cobalt (Co)	mg/L	< 0.0003	0.0006	< 0.0003			< 0.0003					< 0.0003	
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001	
Copper (Cu)	mg/L	0.0012	0.002	< 0.0008			< 0.0008					< 0.0008	
Potassium (K)	mg/L	4.57	2.46	1.7			1.0200					0.6800	
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005	
Magnesium (Mg)	mg/L	0.29	0.528	0.48			0.32					0.24	
Manganese (Mn)	mg/L	0.0035	0.0068	0.003			0.0019					0.0023	
Molydenum (Mo)	mg/L	0.0025	0.0276	0.0114			0.001					< 0.0003	
Sodium (Na)	mg/L	1.73	2.07	1.09			0.360					0.150	
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001	
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1	
Lead (Pb)	mg/L	< 0.0002	0.0002	< 0.0002			< 0.0002					< 0.0002	
Antimony (Sb)	mg/L	0.0091	0.0742	0.0447			0.0170					0.0143	
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005	
Tin (Sn)	mg/L	0.006	0.008	0.004			0.001					< 0.001	
Strontium (Sr)	mg/L	0.0218	0.0339	0.0293			0.0183					0.0187	
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003	
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002	
Uranium (U)	mg/L	0.0006	0.0126	0.0148			0.0073					0.0047	
Vanadium (V)	mg/L	< 0.0009	< 0.0009	< 0.0009			< 0.0009					< 0.0009	
Tungsten (W)	mg/L	0.0027	0.0069	0.0025			0.0004					0.0003	
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001	
Zinc (Zn)	mg/L	< 0.001	0.004	< 0.001			< 0.001					0.0020	

S-Total: 0.05 % S²⁻: NP: 0.01 %

May 2011

12.4 t CaCO3/1000 t 7.5 t CaCO3/1000 t CaNP: 0.31 t CaCO3/1000 t 1000 g AP:

Weight:

Weeks	T#	12	13	14	15	16	17	18	19	20	21	22	23
Date	#	12-Jul-05	19-Jul-05	26-Jul-05	2-Aug-05	9-Aug-05	16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05	13-Sep-05	20-Sep-05	27-Sep-05
Leachate Volume Adde	d (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		996	980	996	1000	990	995	998	965	979	992	991	991
pH	Effluent (units)	7.31	7.26	7.24	7.18	7.31	7.30	7.26	7.44	7.35	7.33	6.80	7.34
Acidity	as CaCO ₃ (mg/L)	<2	<2	<2	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2
,	as CaCO ₃ (mg/L)												
Alkalinity	0 \ 0 /	8	10	9	8.1	10	13	9	9	8	9	9	9
Conductivity	µmhos/cm	22	25	18	18	19	19	20	20	16	24	22	21
Sulphate (SO ₄)	mg/L	<0.5	1.9	<0.5	< 0.5	<0.5	<0.5	<0.5	0.5	0.5	0.6	0.6	0.6
Calcium (Ca)	mg/L	3.52	4.26	3.58	3.64	3.39	0.58	3.39	3.75	3.1	3.47	3.42	3.41
Iron (Fe)	mg/L	<0.02	<0.02	<0.02	0.62	< 0.02	0.11	<0.02	<0.02	< 0.02	0.02	< 0.02	< 0.02
Chloride (CI)	mg/L				< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L				< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2			
Ammonia	mg/L				< 0.1					< 0.1			
Mercury (Hg)	mg/L				< 0.0001					< 0.0001			
Silver (Ag)	mg/L				< 0.0001					< 0.0001			
Aluminum (AI)	mg/L				0.08					0.06			
Arsenic (As)	mg/L			-	0.036			1	-	0.017		-	-
Barium (Ba)	mg/L				0.002					0.001			
Beryllium (Be)	mg/L				< 0.005					< 0.005			
Boron (B)	mg/L				< 0.01					< 0.01			
Bismuth (Bi)	mg/L				< 0.0003					< 0.0003			
Cadmium (Cd)	mg/L				< 0.0001					< 0.0001			
Cobalt (Co)	mg/L				< 0.0003					< 0.0003			
Chromium (Cr)	mg/L				< 0.001					< 0.001			
Copper (Cu)	mg/L				< 0.0008					< 0.0008			
Potassium (K)	mg/L				0.58					0.47			
Lithium (Li)	mg/L				< 0.005					< 0.005			
Magnesium (Mg)	mg/L				0.208					0.139			
Manganese (Mn) Molydenum (Mo)	mg/L				0.0031					0.0026			
Sodium (Na)	mg/L mg/L				0.0003					0.0003			
Nickel (Ni)	mg/L				< 0.001					< 0.001			
Phosphorous (P)	mg/L				< 0.001					< 0.001			
Lead (Pb)	mg/L				< 0.0002					< 0.0002			
Antimony (Sb)	mg/L				0.0107					0.0076			
Selenium (Se)	mg/L				< 0.005					< 0.005			
Tin (Sn)	mg/L				< 0.001					< 0.001			
Strontium (Sr)	mg/L				0.0136					0.0097			
Titanium (Ti)	mg/L				< 0.003					< 0.003			
Thallium (TI)	mg/L				< 0.0002					< 0.0002			
Uranium (U)	mg/L				0.0033					0.002			
Vanadium (V)	mg/L				< 0.0009					< 0.0009			
Tungsten (W)	mg/L				0.0003					< 0.0002			
Yttrium (Y)	mg/L				< 0.0001					< 0.0001			
(t titiuiti (t)													

Humidity Cell Results for Rock Sample 100872 (Rhyolite)

S-Total: 0.05 % S²⁻: NP: 0.01 %

May 2011

12.4 t CaCO3/1000 t 7.5 t CaCO3/1000 t CaNP: 0.31 t CaCO3/1000 t 1000 g AP:

Weight:

Weeks	#	24	25	26	27	28	29	30	31	32	33	34	35
Date	n e	4-Oct-05	11-Oct-05	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05	15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05
Leachate Volume Ad	Ided (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Re		996	986	980	983	983	995	978	992	974	979	992	995
pH	Effluent (units)	7.38	7.37	7.24	7.27	7.27	7.32	7.33	7.32	7.37	7.10	7.28	7.43
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	9	8	8	8	8	8	13	9	8	8	8	8
,		_	_	_	-	_	_	-	-	_	_	_	_
Conductivity	μmhos/cm	19	20	21	17	17	20	20	20	18	17	18	22
Sulphate (SO ₄)	mg/L	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	< 0.5	0.5
Calcium (Ca)	mg/L	3.28	3.27	2.91	3.05	3.05	3	2.97	3.08	3.21	3.16	3.3	1
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L		< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		<2					< 2					< 2
Ammonia	mg/L		< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L		< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L		0.05					0.06					0.04
Arsenic (As)	mg/L		0.022					0.019					0.014
Barium (Ba)	mg/L		0.00	-		-		0.001	-		-		0.001
Beryllium (Be)	mg/L		< 0.005					< 0.005					< 0.005
Boron (B)	mg/L		< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L		< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L		< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L		< 0.0003					< 0.0003					< 0.0003
Chromium (Cr)	mg/L		< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L		< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L		0.4000					0.3300					0.7100
Lithium (Li)	mg/L		< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L		0.1160					0.10					0.07
Manganese (Mn)	mg/L		0.00					0.004					0.005
Molydenum (Mo)	mg/L		< 0.0003					< 0.0003					< 0.0003
Sodium (Na)	mg/L		< 0.05					< 0.05					0.0600
Nickel (Ni)	mg/L		< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L		< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L		< 0.0002					< 0.0002					0.000
Antimony (Sb)	mg/L		0.007					0.0060					0.0053
Selenium (Se)	mg/L		< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L		< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L		0.0087					0.0087					0.0018
Titanium (Ti)	mg/L		< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L		< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L		0.0022					0.0018					0.0014
Vanadium (V)	mg/L		< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L		0.0002					0.0002					0.0002
Yttrium (Y)	mg/L		< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L		< 0.001					< 0.001					0.0030

0.59% 0.49%

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12
Date	T .	April 19/05	April 26/05	May 03/05	May 10/05	May 17/05	May 24/05	May 31/05	June 7/05			June 28/05	July 5/05	July 12/05
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	()	837	976	990	983	985	984	992	993	988	988	993	992	993
На	Effluent (units)	5.66	5.59	5.76	5.83	5.89	5.86	6.16	5.63	5.65	5.53	5.62	5.45	5.26
Acidity	as CaCO ₃ (mg/L)	5	5	2	< 2	2	2	<2	2	< 2	3	< 2	2	3
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	8	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<0.3
Conductivity	µmhos/cm	75	81	38	27	29	21	6	21	21	19	20	20	18
Sulphate (SO₄)	mg/L	23	29	13	9.2	8.6	7.5	7.4	6.8	7.1	6.8	7.1	7.4	6.4
Calcium (Ca)	mg/L	2.52	3.9	4.3	1.13	1	0.93	0.9	0.84	0.9	0.84	0.77	0.82	0.69
Iron (Fe)	mg/L	0.33	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	0.02
Chloride (CI)	mg/L	< 2					< 0.02		~ 0.02			< 0.2		
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2		
Ammonia	mg/L	< 0.1					< 0.1					< 0.1		
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001		
Aluminum (AI)	mg/L	0.04	< 0.01	0.04			< 0.01					0.01		
Arsenic (As)	mg/L	0.008	0.02	0.017			0.016					0.014		
Barium (Ba)	mg/L	0.015	0.01	0.006			0.005					0.006		
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005		
Boron (B)	mg/L	< 0.01	0.02	< 0.01			< 0.02					< 0.01		
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003		
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001		
Cobalt (Co)	mg/L	0.348	0.249	0.114			0.1040					0.1690		
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001		
Copper (Cu)	mg/L	0.239	0.076	0.0336			0.0556					0.2150		
Potassium (K)	mg/L	8.76	6.07	3.63			1.8500					1.1800		
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005		
Magnesium (Mg)	mg/L	1.64	2.47	1.1			0.63		-			0.506		
Manganese (Mn)	mg/L	0.0173	0.0402	0.0193			0.0144					0.0193		
Molydenum (Mo)	mg/L	< 0.0003	0.0004	0.0003			< 0.0003					< 0.0003		
Sodium (Na)	mg/L	1.93	1.76	0.7			0.150					0.050		
Nickel (Ni)	mg/L	0.009	0.012	0.005			0.005					0.007		
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1		
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					0.000		
Antimony (Sb)	mg/L	0.0009	0.0006	0.0007			0.0004					0.0005		
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005		
Tin (Sn)	mg/L	0.006	0.006	0.004			0.001					< 0.001		
Strontium (Sr)	mg/L	0.01	0.0131	0.0059			0.0034					0.0038		
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003		
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002		
Uranium (U)	mg/L	0.0031	0.0007	0.0003			0.0002					0.0004		
Vanadium (V)	mg/L	< 0.0009	< 0.0009	< 0.0009			< 0.0009					< 0.0009		
Tungsten (W)	mg/L	< 0.0002	0.0008	0.0003			< 0.0002					< 0.0002		
Yttrium (Y)	mg/L	0.0005 0.008	0.0003 0.01	< 0.0001			< 0.0001 0.0090					0.0002 0.0150		
Zinc (Zn)	mg/L	0.008	0.01	0.01			0.0090					0.0150		

08-1118-0043

0.59% 0.49%

5/16/2011

Weeks	#	13	14	15	16	17	18	19	20	21	22	23	24	25	26
Date		July 19/05	July 26/05	Aug 2/05	Aug 9/05	Aug 16/05	Aug 23/05	Aug 30/05	Sep 6/05	Sep 13/05	Sep 20/ 05	Sep 27/05	Oct 04/05	Oct 11/05	
Leachate Volume Adde	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	\ /	976	994	987	986	992	992	985	962	984	985	988	984	989	985
рН	Effluent (units)	5.14	5.29	5.13	5.50	5.18	4.95	5.37	5.12	5.18	4.90	4.95	5.08	4.93	5.01
Acidity	as CaCO ₃ (mg/L)	4	6	4	3	<2	5	15	3	4	4	4	4	4	4
Alkalinity	as CaCO ₃ (mg/L)	<2	<0.3	0.6	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	23	18	17	16	18	20	14	16	21	19	18	16	18	15
Sulphate (SO ₄)	mg/L	9.1	7.7	6.7	7.9	6.8	7.0	6.6	5.8	6.5	5.4	6.7	6.2	6.2	5.6
Calcium (Ca)	mg/L	1.02	0.77	0.69	0.63	3.4	0.58	0.41	0.38	0.41	0.32	0.34	0.28	0.23	0.17
Iron (Fe)	mg/L	0.06	0.06	0.22	0.08	<0.02	0.12	0.13	0.16	0.21	0.19	0.25	0.24	0.26	0.17
Chloride (CI)	mg/L			< 0.22				0.13	< 0.2	0.21	0.19	0.25		< 0.20	0.23
Nitrite (NO ₂)	as N mg/L			< 0.2					< 0.06					< 0.06	
` -/															
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					<2	
Ammonia	mg/L			< 0.1					< 0.1					< 0.1	
Mercury (Hg)	mg/L			0.0008					< 0.0001					< 0.0001	
Silver (Ag)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Aluminum (AI)	mg/L			0.04					0.08					0.14	
Arsenic (As)	mg/L			0.01					0.008					0.009	
Barium (Ba)	mg/L			0.007					0.007					0.01	
Beryllium (Be)	mg/L			< 0.005					< 0.005					< 0.005	
Boron (B)	mg/L			< 0.01					< 0.01					< 0.01	
Bismuth (Bi)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Cadmium (Cd)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Cobalt (Co)	mg/L			0.198					0.144					0.122	
Chromium (Cr)	mg/L			< 0.001					< 0.001					< 0.001	
Copper (Cu)	mg/L			0.474					0.627					0.67	
Potassium (K)	mg/L			0.97					0.62					0.5000	
Lithium (Li)	mg/L			< 0.005					< 0.005 0.301					< 0.005 0.2530	
Magnesium (Mg) Manganese (Mn)	mg/L			0.46 0.0197					0.301					0.2530	
Molydenum (Mo)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Sodium (Na)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Nickel (Ni)	mg/L			0.008					0.006					0.005	
Phosphorous (P)	mg/L mg/L			< 0.1					< 0.1					< 0.1	
Lead (Pb)	•			0.000					0.0005					0.0015	
Antimony (Sb)	mg/L mg/L			0.0006					< 0.0003					< 0.0013	
Selenium (Se)	mg/L			< 0.005					< 0.0004					< 0.0004	
Tin (Sn)	mg/L			< 0.003					< 0.003					< 0.003	
Strontium (Sr)	mg/L			0.0039					0.0028					0.0014	
Titanium (Ti)	mg/L			< 0.0039					< 0.0028					< 0.0014	
Thallium (TI)	mg/L			< 0.003					< 0.003					< 0.003	
Uranium (U)	mg/L			0.0002					0.0002					0.0002	
Vanadium (V)	mg/L			< 0.0009					< 0.0013					< 0.0022	
Tungsten (W)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Yttrium (Y)	mg/L			0.0002					0.0002					0.0002	
Zinc (Zn)	mg/L			0.0005					0.001					0.0019	
ZIIIO (ZII)	mg/L			0.0100					0.01					0.000	

5/16/2011

S-Total: S²⁻: NP: CaNP: AP: 0.00 t CaCO3/1000 t 0.83 t CaCO3/1000 t 15.4 t CaCO3/1000 t Weight: 1000 g

Weeks	#	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Date		Oct25/05	Nov1 01/05	Nov 08/05	Nov 15/05	Nov22/05	Nov29/05	Dec06/05	Dec13/05	Dec 20/05	Dec 27/05	Jan 03/06	Jan 10/06	Jan 17/06	Jan 24/06
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	overed (mL)	987	959	985	990	993	993	973	993	992	986	991	985	993	990
pH	Effluent (units)	4.85	4.91	4.87	4.81	5.01	6.68	5.61	4.80	4.87	4.83	4.91	4.74	4.89	4.83
Acidity	as CaCO ₃ (mg/L)	6	5	5	8	5	3	< 2	5	4	5	5	6	4	5
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	17	19	21	21	19	7	11	18	24	30	30	20	24	20
Sulphate (SO ₄)	mg/L	6.6	6.7	6.4	8.8	6.3	1.6	5.0	7.7	6.3	7.1	8.7	7.9	9.1	6.6
Calcium (Ca)	mg/L	0.21	0.18	0.18	0.15	0.11	0.05	0.13	0.1	3.14	0.11	0.07	0.07	0.09	0.08
Iron (Fe)	mg/L	0.3	0.33	0.36	0.34	0.3	< 0.02	0.27	0.33	< 0.02	0.46	0.42	0.47	0.41	0.43
Chloride (CI)	mg/L				< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L				< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2					<2
Ammonia	mg/L				< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L				< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L				< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L				0.18					0.06					0.21
Arsenic (As)	mg/L				0.011					0.009					0.01
Barium (Ba)	mg/L				0.009					0.007					0.008
Beryllium (Be)	mg/L				< 0.005					< 0.005					< 0.005
Boron (B)	mg/L				< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L				< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L				< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L				0.103					0.081					0.071
Chromium (Cr)	mg/L				< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L				0.608					0.521					0.465
Potassium (K)	mg/L				0.3800					0.3500					0.29
Lithium (Li)	mg/L				< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L				0.25					0.10					0.221
Manganese (Mn)	mg/L				0.008					0.0059					0.0054
Molydenum (Mo)	mg/L				< 0.0003					< 0.0003					< 0.0003
Sodium (Na)	mg/L				< 0.05					0.0600					< 0.05
Nickel (Ni)	mg/L				0.003					0.003					0.003
Phosphorous (P)	mg/L				< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L				0.000					0.001					0.0007
Antimony (Sb)	mg/L				< 0.0004					< 0.0004					< 0.0004
Selenium (Se)	mg/L				< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L				< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L				0.0022					0.0068					0.0009
Titanium (Ti)	mg/L				< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L				< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L				0.002					0.0019					0.0018
Vanadium (V)	mg/L				< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L				< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L				0.0024					0.0022					0.0023
Zinc (Zn)	mg/L				0.0060					0.0060					0.005

5/16/2011

S-Total: S²⁻: NP: CaNP: AP: 0.00 t CaCO3/1000 t 0.83 t CaCO3/1000 t 15.4 t CaCO3/1000 t Weight: 1000 g

Weeks	#	41	42	43	44	45	46	47	48	49	50	51	52	53
Date	"	Jan 31/06	Feb 07/06	Feb 14/06	Feb 21/06	Feb 28/06	Mar 07/06	Mar 14/06	Mar 21/06	Mar 28/06.	Apr 04/06	Apr 11/06	Apr 18/06	Apr 25/06
Leachate Volume Adde	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		933	951	956	947	960	870	973	886	945	918	928	881	947
На	Effluent (units)	4.89	4.76	4.97	4.79	4.79	4.85	4.74	4.83	4.92	4.85	4.91	4.85	4.95
Acidity	as CaCO ₃ (mg/L)	4	6	< 2	5	4	5	5	5	5	< 2	5	5	3
	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	1
Conductivity	µmhos/cm	20	20	18	22	19	17	20	22	21	19	15	17	18
Sulphate (SO ₄)	mg/L	8.4	6.0	6.2	6.8	5.7	6.1	6.5	6.4	5.3	5.1	4.4	5.9	9.0
Calcium (Ca)	•	_		0.2				0.07			0.06			
Iron (Fe)	mg/L	0.09 0.39	< 0.05 0.43	0.11	0.06 0.46	0.09 0.44	0.06	0.07	0.06 0.35	0.08	0.06	0.03	0.04 0.37	0.05
Chloride (CI)	mg/L	0.39	0.43	0.47	0.46	< 0.2	0.3	0.45	0.35	0.4	< 0.2		0.37	
Nitrite (NO ₂)	mg/L					< 0.2					< 0.2			
` -/	as N mg/L													
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2			
Ammonia	mg/L					< 0.1					< 0.1			
Mercury (Hg)	mg/L					< 0.0001					< 0.0001			
Silver (Ag)	mg/L					< 0.0001					< 0.00003			
Aluminum (AI)	mg/L					0.21					0.15			
Arsenic (As)	mg/L					0.008					0.0088			
Barium (Ba)	mg/L					0.007					0.00574			
Beryllium (Be)	mg/L					< 0.005					0.00029			
Boron (B)	mg/L					< 0.07					< 0.003			
Bismuth (Bi)	mg/L					< 0.0003					< 0.00002			
Cadmium (Cd)	mg/L					< 0.0001					< 0.00006			
Cobalt (Co)	mg/L					0.0625					0.0608			
Chromium (Cr)	mg/L					< 0.001					< 0.0003			
Copper (Cu)	mg/L					0.448					0.415			
Potassium (K)	mg/L					0.31					0.23			
Lithium (Li)	mg/L					< 0.002					< 0.002			
Magnesium (Mg)	mg/L					0.223					0.219			
Manganese (Mn)	mg/L					0.0054					0.00563			
Molydenum (Mo)	mg/L					< 0.0003					< 0.00005			
Sodium (Na)	mg/L					< 0.03					0.03			
Nickel (Ni)	mg/L					0.002					0.0022 0.04			
Phosphorous (P)	mg/L					< 0.01								
Lead (Pb)	mg/L					0.0004					0.00011			
Antimony (Sb)	mg/L					< 0.0004					0.0004 < 0.003			
Selenium (Se) Tin (Sn)	mg/L mg/L					< 0.005 < 0.001					< 0.003			
Strontium (Sr)	mg/L					0.0008					0.0006			
Titanium (Ti)						< 0.0008					< 0.0006			
Thallium (TI)	mg/L					< 0.003					< 0.0002			
Uranium (TI)	mg/L mg/L					0.0002					0.0017			
Vanadium (V)	mg/L					< 0.0018					< 0.00017			
Tungsten (W)	mg/L					< 0.0009					< 0.00008			
Yttrium (Y)	mg/L					0.0021					0.00215			
Zinc (Zn)	mg/L					0.0021					0.00215			
ZIIIC (ZII)	mg/L					0.000					0.0040			

5/16/2011

S-Total: S²: NP: CaNP: AP: 0.00 t CaCO3/1000 t 0.83 t CaCO3/1000 t 15.4 t CaCO3/1000 t Weight: 1000 g

Weeks	#	54	55	56	57	58	59	60	61	62	63	64	65	66	67
Date	n e	May 02/06	May 09/06	May 16/06	May 23/06	May 30/06	Jun 6/06	Jun 13/06	Jun 20, 06	Jun 27, 06	Jul 04, 06	Jul 11, 06		Jul 25, 06	
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	,	886	950	938	958	938	964	947	887	944	905	912	912	912	917
На	Effluent (units)	4.87	4.80	4.96	4.76	4.95	5.08	4.90	5.07	4.88	4.77	4.87	4.83	4.79	4.75
Acidity	as CaCO ₃ (mg/L)	4	5	4	5	4	4	4	4	5	4	3	4	4	4
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	26	51	139	55	16	12	15	13	15	16	14	15	13	14
Sulphate (SO ₄)	mg/L	5.0	7.2	4.9	4.5	5.0	5.8	8.0	7.0	5.1	6.9	5.3	4.6	7.5	7.8
Calcium (Ca)	mg/L	0.04	< 0.05	0.89	< 0.03	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03	< 0.03	0.06	< 0.05	< 0.03	< 0.03
Iron (Fe)	mg/L	0.3	0.29	0.26	0.28	0.27	0.33	0.29	0.24	0.35	0.28	0.31	0.31	0.31	0.24
Chloride (CI)	mg/L		< 0.2					< 0.2					< 0.2		
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					< 2		
Ammonia	mg/L		< 0.1					0.1					< 0.1		
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L		< 0.00003					< 0.00003					< 0.00003		
Aluminum (AI)	mg/L		0.14					0.14					0.16		
Arsenic (As)	mg/L		0.0085					0.0074					0.0059		
Barium (Ba)	mg/L		0.00513					0.00434					0.00383		
Beryllium (Be)	mg/L		0.00035					0.00018					0.00018		
Boron (B)	mg/L		< 0.002					< 0.002					0.005		
Bismuth (Bi)	mg/L		< 0.00002					< 0.00002					< 0.00002		
Cadmium (Cd)	mg/L		< 0.00006					< 0.00006					< 0.00006		
Cobalt (Co)	mg/L		0.0579					0.0412					0.0428		
Chromium (Cr)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Copper (Cu)	mg/L		0.344					0.284					0.298		
Potassium (K)	mg/L		0.2					0.14					0.16		
Lithium (Li)	mg/L		< 0.002					< 0.002					< 0.002		
Magnesium (Mg)	mg/L		0.175					0.166					0.173		
Manganese (Mn)	mg/L		0.00444					0.00347					0.00412		
Molydenum (Mo)	mg/L		0.00015 0.06					< 0.00005					< 0.00005 < 0.01		
Sodium (Na) Nickel (Ni)	mg/L		0.0019					< 0.01 0.0015					0.0011		
Phosphorous (P)	mg/L mg/L		< 0.019					0.0015					0.0011		
Lead (Pb)	mg/L		0.00009					0.00007					< 0.00002		
Antimony (Sb)	mg/L		0.00003					0.00007					0.0003		
Selenium (Se)	mg/L		< 0.003					< 0.003					< 0.003		
Tin (Sn)	mg/L		< 0.0003					< 0.003					< 0.003		
Strontium (Sr)	mg/L		0.0004					< 0.0006					0.0003		
Titanium (Ti)	mg/L		< 0.0004					< 0.0002					< 0.0002		
Thallium (TI)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Uranium (U)	mg/L		0.00141					0.00128					0.0014		
Vanadium (V)	mg/L		< 0.00006					< 0.00006					< 0.00006		
Tungsten (W)	mg/L		< 0.00007					< 0.00007					< 0.00007		
Yttrium (Y)	mg/L		0.0018					0.00152					0.00186		
Zinc (Zn)	mg/L		0.0049					0.0031					0.003		
	13 =	1	0.00.0	l		l	l	0.0007	1	l	l	1	0.000	1	

0.59% 0.49%

Weeks	#	68	69	70	71	72	73	74	75	76	77	78	79	80	81
Date	π	Aug 8, 06	Aug 15, 06	Aug 22, 06	Aug 29, 06	Sep 05, 06	Sep 12, 06	Sep 19, 06		Oct 03, 06	Oct 10, 06		Oct 24, 06	Oct 31, 06	Nov 7. 06
Leachate Volume Add	ed (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		892	911	896	887	881	N/A	916	887	964	876	895	890	927	921
pH	Effluent (units)	5.10	5.47	4.72	4.98	4.91	4.82	4.79	4.79	4.79	4.88	5.02	4.84	4.75	4.96
Acidity	as CaCO ₃ (mg/L)	3	5	4	5	3	5	5	5	4	4	4	4	4	4
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	13	15	15	13	14	15	16	21	21	15	12	15	15	18
Sulphate (SO ₄)	mg/L	4.6	6.0	4.2	3.9	3.9	7.3	6.3	4.6	4.7	4.0	5.3	3.4	3.2	4.0
1 \ 3/	U										_			_	
Calcium (Ca)	mg/L	< 0.03	0.03	< 0.05	< 0.03	< 0.03	0.04	< 0.03	< 0.05	< 0.03	0.03	0.04	< 0.03	0.87	0.04
Iron (Fe)	mg/L	0.3	0.36	0.34	0.29	0.28	0.34	0.3	0.25	0.32	0.34	0.32	0.26	< 0.02	0.3
Chloride (CI)	mg/L			< 0.2					< 0.2					< 0.2	
Nitrite (NO ₂)	as N mg/L			< 0.06					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					< 2	
Ammonia	mg/L			< 0.1					0.2					< 0.1	
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L			< 0.00003					< 0.00003					< 0.00003	
Aluminum (AI)	mg/L			0.15		-			0.14				-	0.01	
Arsenic (As)	mg/L			0.0074					0.006					0.0053	
Barium (Ba)	mg/L			0.00323					0.00287					0.00293	
Beryllium (Be)	mg/L			0.0002					0.00016					0.00019	
Boron (B)	mg/L			< 0.002					< 0.002					< 0.002	
Bismuth (Bi)	mg/L			< 0.00002		-			< 0.00002				-	< 0.00002	
Cadmium (Cd)	mg/L			< 0.00006					< 0.00006					0.00007	
Cobalt (Co)	mg/L			0.0408					0.0324					0.0278	
Chromium (Cr)	mg/L			< 0.0003					0.0014					< 0.0003	
Copper (Cu)	mg/L			0.307					0.251					0.234	
Potassium (K)	mg/L			0.15					0.11					0.52	
Lithium (Li)	mg/L			< 0.002					< 0.002					< 0.002	
Magnesium (Mg)	mg/L			0.177					0.138					0.052	
Manganese (Mn)	mg/L			0.0043					0.00348					0.00277	
Molydenum (Mo)	mg/L			< 0.00005					< 0.00005					< 0.00005	
Sodium (Na)	mg/L			< 0.01					< 0.04					0.05	
Nickel (Ni)	mg/L			0.001					0.0011					0.0012	
Phosphorous (P)	mg/L			0.02					0.03					0.03	
Lead (Pb)	mg/L			0.00008					0.00005					0.00008	
Antimony (Sb)	mg/L			0.0003					0.0005					0.0002	
Selenium (Se)	mg/L			< 0.003					< 0.003					< 0.003	
Tin (Sn)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Strontium (Sr)	mg/L			0.0004					0.0002					0.0012	
Titanium (Ti)	mg/L			< 0.0002					< 0.0002					0.0002	
Thallium (TI)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Uranium (U)	mg/L			0.00118					0.00116					0.00106	
Vanadium (V)	mg/L			< 0.00006					< 0.00006					0.00009	
Tungsten (W)	mg/L			< 0.00007					< 0.00007					< 0.00007	
Yttrium (Y)	mg/L			0.00148					0.00139					0.00113	
Zinc (Zn)	mg/L			0.0029					0.0034					0.0057	

5/16/2011

Weeks	#	82	83	84	85	86	87	88	89	90	91	92	93	94
Date	"	Nov 14, 06	Nov 21, 06	Nov 28, 06	Dec 05, 06	Dec 12, 06	Dec 19, 06	Dec 27, 06		Jan 9, 07	Jan 16, 07		Jan 30, 07	Feb 6, 07
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	covered (mL)	904	876	902	936	915	880	928	874	938	940	943	954	942
рН	Effluent (units)	4.81	4.81	4.80	4.92	4.60	4.64	4.68	4.85	4.65	4.79	5.02	4.70	4.68
Acidity	as CaCO ₃ (mg/L)	5	6	5	5	4	8	5	4	6	6	3	5	43
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	17	17	16	15	18	20	19	13	21	21	17	22	20
Sulphate (SO₄)	mg/L	4.4	5.6	7.9	5.5	6.6	4.8	5.6	3.1	8.0	3.9	4.0	6.1	4.4
Calcium (Ca)	mg/L	< 0.03	< 0.03	0.04	< 0.05	< 0.05	0.04	< 0.03	< 0.03	< 0.05	< 0.03	< 0.03	< 0.03	< 0.03
Iron (Fe)	mg/L	0.32	0.44	0.43	0.38	0.36	0.42	0.39	0.26	0.39	0.39	0.42	0.45	0.46
Chloride (CI)	mg/L				< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L				< 0.05					0.1				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2				
Ammonia	mg/L				< 0.1					< 0.1				
Mercury (Hg)	mg/L				< 0.0001					< 0.0001				
Silver (Ag)	mg/L				< 0.00003					< 0.00003				
Aluminum (AI)	mg/L			-	0.16					0.15				
Arsenic (As)	mg/L				0.0054					0.0036				
Barium (Ba)	mg/L				0.0037					0.00352				
Beryllium (Be)	mg/L				0.00015					0.0001				
Boron (B)	mg/L				< 0.007					< 0.002				
Bismuth (Bi)	mg/L				< 0.00002					< 0.00002				
Cadmium (Cd)	mg/L				< 0.00006					< 0.00006				
Cobalt (Co)	mg/L				0.0336					0.026				
Chromium (Cr)	mg/L				< 0.0003					< 0.0003				
Copper (Cu)	mg/L				0.286					0.233				
Potassium (K)	mg/L				0.15					0.14				
Lithium (Li)	mg/L				< 0.002					< 0.002				
Magnesium (Mg)	mg/L				0.169					0.168				
Manganese (Mn)	mg/L				0.00411					0.00421				
Molydenum (Mo)	mg/L				< 0.00005 < 0.04					< 0.00005				
Sodium (Na) Nickel (Ni)	mg/L				0.0012					0.009				
Phosphorous (P)	mg/L				0.0012					< 0.01				
Lead (Pb)	mg/L mg/L				0.00002					< 0.0002				
Antimony (Sb)	mg/L				0.00002					0.00002				
Selenium (Se)	mg/L				< 0.003					< 0.0002				
Tin (Sn)	mg/L				< 0.003					< 0.0003				
Strontium (Sr)	mg/L				< 0.0003					0.0003				
Titanium (Ti)	mg/L				< 0.0001					< 0.0003				
Thallium (TI)	mg/L				< 0.0002					< 0.0002				
Uranium (U)	mg/L				0.00158					0.00157				
Vanadium (V)	mg/L				< 0.00006					< 0.00006				
Tungsten (W)	mg/L				< 0.00007					< 0.00007				
Yttrium (Y)	mg/L				0.00139					0.00121				
Zinc (Zn)	mg/L				0.0024					0.0049				
\ - /	15-	I			0.00=1	ll		L	l	0.00.0	L	1	l	l

0.59% 0.49%

Weeks	#	95	96	97	98	99	100	101	102	103	104	105	106	107
Date	"	Feb 13, 07	Feb 20, 07	Feb 27, 07	Mar 06, 07	Mar 13,07	Mar 20, 07	Mar 27, 07	Apr 03, 07	Apr 10, 07	Apr 17, 07	Apr 24, 07	May 01, 07	May 08, 07
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		945	958	947	956	952	984	954	983	966	948	949	950	973
Н	Effluent (units)	4.84	4.81	4.72	4.74	4.78	4.55	4.78	4.69	4.77	4.70	4.78	4.91	5.51
Acidity	as CaCO ₃ (mg/L)	5	6	5	5	5	6	6	< 2	6	8	5	5	2
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	4	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	23	17	18	18	18	22	16	17	18	46	21	18	14
Sulphate (SO ₄)	mg/L	5.3	5.6	7.1	6.2	4.7	4.9	5.0	5.1	4.5	4.7	4.5	4.4	5.0
Calcium (Ca)	mg/L	< 0.05	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03	< 0.03	0.03	< 0.03	< 0.03	0.03	< 0.03
Iron (Fe)	mg/L	0.32	0.42	0.43	0.43	0.41	0.46	0.44	0.41	0.45	0.44	0.49	0.44	0.41
Chloride (CI)	mg/L	< 0.2		0.40			< 0.2					< 0.2		
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L	< 0.05					0.2					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2		
Ammonia	mg/L	< 0.1					< 0.1					< 0.1		
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003		
Aluminum (AI)	mg/L	0.09					0.19					0.19		
Arsenic (As)	mg/L	0.0053					0.0042					0.0047		
Barium (Ba)	mg/L	0.00413					0.0042					0.00417		
Beryllium (Be)	mg/L	0.00018					0.00012					0.00014		
Boron (B)	mg/L	< 0.002					< 0.002					< 0.002		
Bismuth (Bi)	mg/L	< 0.00002			-		< 0.00002					< 0.00002		-
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006		
Cobalt (Co)	mg/L	0.0311					0.0271					0.0268		
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003		
Copper (Cu)	mg/L	0.295			-		0.284					0.284		
Potassium (K)	mg/L	0.18					0.14					0.14		
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002		
Magnesium (Mg)	mg/L	0.234					0.19					0.185		
Manganese (Mn)	mg/L	0.00465					0.00421					0.0046		
Molydenum (Mo)	mg/L	< 0.00005					< 0.00005					< 0.00005		
Sodium (Na)	mg/L	0.03					0.01					0.01		
Nickel (Ni)	mg/L	0.0013					0.0011					0.0011		
Phosphorous (P)	mg/L	< 0.01					0.02					< 0.01		
Lead (Pb)	mg/L	0.00014					0.00008					< 0.00002		
Antimony (Sb)	mg/L	0.0002					< 0.0002					< 0.0002		
Selenium (Se)	mg/L	< 0.001					< 0.001					< 0.001		
Tin (Sn)	mg/L	< 0.0003					0.0003					0.0003		
Strontium (Sr)	mg/L	0.0004					0.0003					0.0003		
Titanium (Ti)	mg/L	< 0.0002					< 0.0002					< 0.0002		
Thallium (TI)	mg/L	< 0.0001					< 0.0001					< 0.0001		
Uranium (U)	mg/L	0.00071					0.00151					0.00157		
Vanadium (V)	mg/L	< 0.00006					< 0.00006					< 0.00006		
Tungsten (W)	mg/L	0.00047					< 0.00007					0.00021		
Yttrium (Y) Zinc (Zn)	mg/L	0.001016 0.0031					0.00138 0.0027					0.00156 0.0028		
ZIIIC (ZII)	mg/L	0.0031					0.0027					0.0028		

0.59% 0.49%

Weeks	#	108	109	110	111	112	113	114	115	116	117	118	119	120	121
Date	T .		May 22, 07	May 29, 07	Jun 5, 07	Jun 12, 07	Jun 19, 07	Jun 26, 07	Jul 03, 07	Jul 10, 07	Jul 17, 07		Jul 31, 07	Aug 7, 07	Aug 14, 07
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red		922	975	954	977	916	834	963	837	981	988	876	904	992	981
рН	Effluent (units)	4.52	4.88	4.83	4.90	4.72	4.70	4.68	4.70	4.70	4.43	4.56	4.87	4.64	4.63
Acidity	as CaCO ₃ (mg/L)	6	5	5	5	5	5	4	5	6	5	7	4	5	6
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	22	14	14	26	22	20	22	20	18	21	19	15	16	19
Sulphate (SO ₄)	mg/L	5.4	5.1	5.0	6.0	5.4	5.8	6.9	5.4	5.9	4.8	< 0.5	5.5	7.0	6.0
Calcium (Ca)	mg/L	< 0.03	< 0.03	< 0.03	0.0	< 0.03	< 0.03	< 0.03	< 0.03	0.03	0.05	2	0.04	0.04	0.03
Iron (Fe)	mg/L	0.59	0.36	0.38	0.41	0.39	0.47	0.46	0.53	0.03	0.03	0.4	0.04	0.04	0.03
Chloride (CI)	mg/L	0.59	0.30	< 0.2	0.41	0.39	0.47	0.40	< 0.2	0.43	0.43		0.43	< 0.2	0.39
Nitrite (NO ₂)	as N mg/L			< 0.2					< 0.2					< 0.2	
` -/															
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					0.07	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					< 2	
Ammonia	mg/L			< 0.1					< 0.1					< 0.1	
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L			< 0.00003					< 0.00003					< 0.00003	
Aluminum (AI)	mg/L			0.15					0.2					0.14	
Arsenic (As)	mg/L			0.0041					0.0042					0.0039	
Barium (Ba)	mg/L			0.00363					0.00501					0.00373	
Beryllium (Be)	mg/L			0.00008					0.00013					0.00009	
Boron (B)	mg/L			< 0.002					< 0.002					0.003	
Bismuth (Bi)	mg/L			< 0.00002					< 0.00002					< 0.00002	
Cadmium (Cd)	mg/L			< 0.00006					< 0.00006 0.02439					< 0.00006	
Cobalt (Co) Chromium (Cr)	mg/L mg/L			0.0196 < 0.0003					< 0.0003					< 0.0003	
Copper (Cu)	mg/L			0.224					0.283					0.224	
Potassium (K)	mg/L			0.224					0.203					0.224	
Lithium (Li)	mg/L			< 0.002					< 0.002					< 0.002	
Magnesium (Mg)	mg/L			0.136					0.177					0.142	
Manganese (Mn)	mg/L			0.00322					0.00399					0.00347	
Molydenum (Mo)	mg/L			< 0.00005					0.00006					< 0.00005	
Sodium (Na)	mg/L			0.02					< 0.01					0.02	
Nickel (Ni)	mg/L			0.0009					0.001					0.0008	
Phosphorous (P)	mg/L			< 0.01					< 0.01					0.02	
Lead (Pb)	mg/L			0.0001					0.00009					0.00014	
Antimony (Sb)	mg/L			0.0004					0.0004					0.0004	
Selenium (Se)	mg/L			< 0.001					< 0.001					< 0.001	
Tin (Sn)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Strontium (Sr)	mg/L			< 0.0001					0.0003					0.0001	
Titanium (Ti)	mg/L			< 0.0002					< 0.0002					< 0.0002	
Thallium (TI)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Uranium (U)	mg/L			0.00068					0.00157					0.001	
Vanadium (V)	mg/L			< 0.00006					< 0.00006					< 0.00006	
Tungsten (W)	mg/L			< 0.00007					< 0.00007					< 0.00007	
Yttrium (Y)	mg/L			0.000687					0.001407					0.00103	
Zinc (Zn)	mg/L			0.0044					0.0032					0.003	

0.59% 0.49%

Weeks	#	122	123	124	125	126	127	128	129	130	131	132	133	134
Date		Aug 21, 07	Aug 28, 07	Sep 4, 07	Sep 11, 07	Sep 18, 07		Oct 02, 07	Oct 09, 07	Oct 16, 07	Oct 23, 07	Oct 30, 07	Nov 06, 07	Nov 13, 07
Leachate Volume Add		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red		966	980	978	976	970	993	985	988	976	982	990	956	971
pН	Effluent (units)	4.44	4.75	4.57	4.83	4.73	4.88	4.85	4.94	4.73	6.41	4.56	4.88	4.78
Acidity	as CaCO ₃ (mg/L)	5	5	3	5	5	6	7	5	4	9	4	5	5
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2
Conductivity	μmhos/cm	26	17	108	22	21	18	13	21	15	33	15	16	14
Sulphate (SO ₄)	mg/L	4.6	6.3	5.9	6.6	7.5	5.4	8.0	9.9	6.3	7.9	7.3	8.7	6.0
Calcium (Ca)	mg/L	0.03	0.04	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	0.1	0.03	0.09	< 0.03
Iron (Fe)	mg/L	0.41	0.44	0.49	0.41	0.44	0.53	0.44	0.42	0.4	0.39	0.41	0.69	0.41
Chloride (CI)	mg/L				< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L				< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2				
Ammonia	mg/L				< 0.1					< 0.1				
Mercury (Hg)	mg/L				< 0.0001					< 0.0001				
Silver (Ag)	mg/L				< 0.00001					< 0.00001				
Aluminum (AI)	mg/L				0.15					0.14				
Arsenic (As)	mg/L				0.0036					0.0033				
Barium (Ba)	mg/L				0.00386					0.00378				
Beryllium (Be)	mg/L				0.0001					0.00009				
Boron (B)	mg/L				< 0.002					< 0.002				
Bismuth (Bi)	mg/L				< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L				0.000003					< 0.000003				
Cobalt (Co)	mg/L				0.0183					0.0164				
Chromium (Cr)	mg/L				< 0.0005					< 0.0005				
Copper (Cu)	mg/L				0.228					0.229				
Potassium (K)	mg/L				0.11					0.11				
Lithium (Li)	mg/L				< 0.002					< 0.002				
Magnesium (Mg) Manganese (Mn)	mg/L mg/L				0.15 0.00346					0.145 0.00326				
0 (/														
Molydenum (Mo) Sodium (Na)	mg/L mg/L				0.00001 < 0.01					< 0.00001 0.01				
Nickel (Ni)	mg/L				0.0008					0.008				
Phosphorous (P)	mg/L				< 0.01					< 0.01				
Lead (Pb)	mg/L				0.00011					0.00165				
Antimony (Sb)	mg/L				0.00011					0.00103				
Selenium (Se)	mg/L				< 0.001					< 0.001				
Tin (Sn)	mg/L				0.00018					0.00009				
Strontium (Sr)	mg/L				0.0002					0.0002				
Titanium (Ti)	mg/L				< 0.0001					< 0.0001				
Thallium (TI)	mg/L				< 0.00001					< 0.00001				
Uranium (U)	mg/L				0.00126					0.00125				
Vanadium (V)	mg/L				< 0.00003					< 0.00003				
Tungsten (W)	mg/L				< 0.00003					< 0.00003				
Yttrium (Y)	mg/L				0.00109					0.00104				
Zinc (Zn)	mg/L				0.003					0.003				

5/16/2011 <u>Appendix VII - 1e</u> 08-1118-0043

 S-Total:
 0.59%

 S²:
 0.49%

 NP:
 0.00 t CaCO3/1000 t

 CaNP:
 0.83 t CaCO3/1000 t

 AP:
 15.4 t CaCO3/1000 t

Weight: 15.4 t Cas

		_'												
Weeks	#	135	136	137	138	139	140	141	142	143	144	145	146	147
Date		Nov 20, 07		Dec 04, 07			Dec 24, 07	Jan 02, 08	Jan 08, 08		, , , , ,	Jan 29, 08	Feb 05, 08	
Leachate Volume Add		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red		4.93	*	975	485	991	962	976	962	982	987	955	965	978
рН	Effluent (units)	7.00	4.60	4.83	4.83	4.66	4.82	4.56	4.57	4.76	4.76	4.98	4.80	4.65
Acidity	as CaCO ₃ (mg/L)	< 2	7	4	8	6	6	6	6	5	6	5	4	5
Alkalinity	as CaCO ₃ (mg/L)	14	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	6	25	14	21	16	14	20	19	17	19	14	17	19
Sulphate (SO ₄)	mg/L	< 0.03	6.3	5.5	6.3	8.5	4.8	3.6	3.2	3.1	3.6	3.6	3.6	4.0
Calcium (Ca)	mg/L	0.41	0.06	< 0.03	0.05	< 0.03	< 0.03	0.03	< 0.03	< 0.03	0.04	< 0.03	0.05	0.03
Iron (Fe)	mg/L	< 0.2	0.58	0.33	0.62	0.38	0.28	0.4	0.38	0.32	0.38	0.4	0.38	0.32
Chloride (CI)	mg/L	< 0.06					< 0.2					< 0.2		
Nitrite (NO ₂)	as N mg/L	< 0.05					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L	< 2					0.06					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 0.1					< 2					< 2		
Ammonia	mg/L	< 0.0001					< 0.1					0.1		
Mercury (Hg)	mg/L	< 0.00001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L	0.15					< 0.00001					< 0.00001		
Aluminum (AI)	mg/L	0.0032					0.13					0.15		
Arsenic (As)	mg/L	0.00366					0.003					0.0029		
Barium (Ba)	mg/L	0.0001					0.00319					0.00363		
Beryllium (Be)	mg/L	0.034					0.00008					0.00008		
Boron (B)	mg/L	< 0.00001					0.036					0.003		
Bismuth (Bi)	mg/L	0.000005					< 0.00001					< 0.00001		
Cadmium (Cd)	mg/L	0.0186					0.000006					0.000005		
Cobalt (Co)	mg/L	< 0.0005					0.0149					0.0157		
Chromium (Cr)	mg/L	0.24					< 0.0005					< 0.0005		
Copper (Cu)	mg/L	0.1					0.198					0.228		
Potassium (K)	mg/L	< 0.002					0.08					0.1		
Lithium (Li)	mg/L	0.153					< 0.002					< 0.002		
Magnesium (Mg)	mg/L	0.0036					0.122					0.143		
Manganese (Mn)	mg/L	< 0.00001					0.00313					0.00358		
Molydenum (Mo)	mg/L	0.01					< 0.00001					< 0.00001		
Sodium (Na)	mg/L	0.0008					0.01					0.02		
Nickel (Ni)	mg/L	0.01					0.0007					0.0007		
Phosphorous (P)	mg/L	0.00006					0.01					< 0.01		
Lead (Pb)	mg/L	0.00019					0.00006					0.0001		
Antimony (Sb)	mg/L	< 0.001					0.00013					0.00006		
Selenium (Se)	mg/L	< 0.00001					< 0.001					< 0.001		
Tin (Sn)	mg/L	0.0002					< 0.00001					< 0.00001		
Strontium (Sr)	mg/L	< 0.0001					0.0002					0.0002		
Titanium (Ti)	mg/L	< 0.000002					< 0.0001					< 0.0001		
Thallium (TI)	mg/L	0.00131					< 0.000002					< 0.000002		
Uranium (U)	mg/L	0.00004					0.00117					0.001221		
Vanadium (V)	mg/L	< 0.00003					< 0.00003					0.00017		
Tungsten (W)	mg/L	0.00099					< 0.00003					< 0.00003		
Yttrium (Y)	mg/L	0.004					0.000938 0.004					0.001048 0.002		
Zinc (Zn)	mg/L						0.004					0.002		

08-1118-0043

S-Total:

May 2011

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Date		April 19/05	April 26/05		May 10/05	May 17/05	May 24/05		June 7/05	June 14/05			July 5/05	July 12/05		
Leachate Volume Adde	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	overed (mL)	811	981	985	987	965	917	960	965	936	970	991	994	993	991	967
pН	Effluent (units)	6.95	6.85	7.19	7.12	7.07	7.15	8.39	7.07	7.19	7.16	7.25	7.34	7.00	6.94	5.63
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	7
Alkalinity	as CaCO ₃ (mg/L)	6	7	7	8	7	6	11	5	5	7	6	5	4	4	3
Conductivity	µmhos/cm	39	28	25	18	34	13	32	13	14	12	15	12	11	11	17
Sulphate (SO ₄)	mg/L	< 5	1.4	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	<0.5	0.6	<0.5
Calcium (Ca)	mg/L	0.92	1.51	16.1	1.27	1.07	0.94	1.04	0.92	0.9	0.99	1.14	0.95	0.89	0.96	0.86
Iron (Fe)	mg/L	0.06	< 0.02	0.18	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
Chloride (CI)	mg/L	< 2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					0.9					< 0.1				
Mercury (Hg)	mg/L	< 0.0001		-			< 0.0001			-		< 0.0001		-		
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.08	0.03	2.17			0.05					0.06				
Arsenic (As)	mg/L	0.032	0.068	0.093			0.091					0.113				
Barium (Ba)	mg/L	< 0.001	0.001	< 0.001			< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Boron (B)	mg/L	< 0.01	0.02	< 0.01			< 0.02					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Cobalt (Co) Chromium (Cr)	mg/L	0.0009	0.0013	0.0006			0.0004					0.0006				
Copper (Cu)	mg/L	< 0.001 0.0032	< 0.001 0.0034	< 0.001 0.0013			< 0.001 < 0.0008					< 0.001 0.0009				
Potassium (K)	mg/L mg/L	2.29	1.92	1.75			1.2200					1.2200				
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Magnesium (Mg)	mg/L	0.355	0.628	0.583			0.43					0.444				
Manganese (Mn)	mg/L	0.0024	0.026	0.0014			0.0009					0.0016				
Molydenum (Mo)	mg/L	0.0005	0.0025	0.002			0.000					< 0.0003				
Sodium (Na)	mg/L	1.51	1.83	1.33			0.380					0.150				
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1				
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0021	0.0025	0.0028			0.0018					0.0023				
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Tin (Sn)	mg/L	0.004	0.008	0.003			0.001					< 0.001				
Strontium (Sr)	mg/L	0.0014	0.002	0.0017			0.001					0.0013				
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Uranium (U)	mg/L	< 0.0002	0.0006	0.0007			0.0006					0.0004				
Vanadium (V)	mg/L	< 0.0009	< 0.0009	< 0.0009			< 0.0009					< 0.0009				
Tungsten (W)	mg/L	0.0007	0.0012	0.0011			0.0003					0.0002				
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	< 0.001	0.001	< 0.001			< 0.001					0.0020				

S-Total:

Weeks	#	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Date		Aug 2/05	Aug 9/05	Aug 16/05	Aug 23/05	Aug 30/05	Sep 6/05	Sep 13/05	Sep 20/05	Sep 27/05	Oct 04/05	Oct 11/05	Oct18/05	Oct25/05	Nov1 01/05	Nov 08/05	Nov 15/05
Leachate Volume Adde	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	overed (mL)	966	986	992	988	995	982	989	996	991	978	974	985	988	989	999	988
pH	Effluent (units)	7.00	6.96	6.80	7.85	7.00	7.03	8.29	6.34	6.97	6.82	6.91	6.74	6.72	6.89	6.90	6.90
Acidity	as CaCO ₃ (mg/L)	< 2	<2	<2	<2	<2	< 2	<2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5.2	5	3	5	3	4	6	3	3	4	3	3	3	4	2	3
Conductivity	μmhos/cm	12	9	9	12	10	7	18	11	9	9	10	7	6	8	10	10
Sulphate (SO ₄)	mg/L	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.94	0.86	0.41	0.8	0.79	0.79	0.81	0.73	0.77	0.82	0.66	0.63	0.67	0.69	0.71	0.67
Iron (Fe)	mg/L	0.07	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2	-				< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2					< 2
Ammonia	mg/L	< 0.1					0.2					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001	-	1			< 0.0001			ł		< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.04					0.01			-		< 0.01					0.02
Arsenic (As)	mg/L	0.083					0.052					0.047					0.049
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	0.01					< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	0.0005					0.0005					0.0004					0.0004
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	0.90					0.67					0.5600					0.5400
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.344 0.0013					0.285					0.2330					0.24 < 0.0007
Manganese (Mn)	mg/L						0.0013					0.00					
Molydenum (Mo) Sodium (Na)	mg/L mg/L	< 0.0003					< 0.0003 < 0.05					< 0.0003 < 0.05					< 0.0003 < 0.05
Nickel (Ni)	•	< 0.001					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.001					< 0.001					< 0.001					< 0.001
Lead (Pb)	mg/L mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0023					0.0002					0.0002					0.0002
Selenium (Se)	mg/L	< 0.0023					< 0.0015					< 0.0011					< 0.0011
Tin (Sn)	mg/L	< 0.003					< 0.003					< 0.003					< 0.003
Strontium (Sr)	mg/L	0.0009					0.0008					< 0.001					0.0013
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	< 0.0002					< 0.0002					< 0.0002					< 0.0002
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L	0.0006					< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001					0.0020

May 2011

S-Total:

0.02 % 0.01 % 8.7 t CaCO3/1000 t 2.5 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 0.31 t CaCO3/1000 t 1000 g

Weeks	#	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Date		Nov22/05	Nov29/05	Dec06/05			Dec 27/05			Jan 17/06	-		Feb 07/06		Feb 21/06	Feb 28/06
Leachate Volume Add	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		995	994	988	991	991	988	960	994	983	997	910	958	905	886	901
На	Effluent (units)	6.86	6.78	6.77	6.71	6.87	6.91	6.92	7.07	6.94	6.90	6.67	6.71	6.52	6.85	6.61
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	4	3	3	3	3	3	2	4	3	3	2	2	2	2	4
Conductivity	µmhos/cm	11	6	6	6	11	13	17	14	14	7	12	6	4	5	16
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.63	0.67	0.6	0.66	0.63	0.63	0.36	0.57	0.6	0.56	0.38	0.44	0.39	0.48	0.86
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					<2					< 2
Ammonia	mg/L					< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L					0.02					0.02					0.01
Arsenic (As)	mg/L					0.035					0.034					0.06
Barium (Ba)	mg/L					< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L					< 0.005					< 0.005					< 0.005
Boron (B)	mg/L					< 0.01					< 0.01					< 0.07
Bismuth (Bi)	mg/L					< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L					< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L					0.0004					0.0004					0.0007
Chromium (Cr)	mg/L					< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L					< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L					0.4800					0.44					0.76
Lithium (Li)	mg/L					< 0.005					< 0.005					< 0.002
Magnesium (Mg)	mg/L					0.23					0.203					0.306
Manganese (Mn)	mg/L					< 0.0007					< 0.0007					0.0011
Molydenum (Mo)	mg/L					< 0.0003					< 0.0003					0.0004
Sodium (Na)	mg/L					< 0.05					< 0.05					< 0.03
Nickel (Ni)	mg/L					< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L					< 0.1					< 0.1					< 0.01
Lead (Pb)	mg/L					< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L					0.0006					0.0008					0.0011
Selenium (Se)	mg/L					< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L					< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L					0.0006					0.0006					0.0008
Titanium (Ti)	mg/L					< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L					< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L					< 0.0002					< 0.0002					< 0.0002
Vanadium (V)	mg/L					< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L					< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L					< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L					0.0010					< 0.001					0.002

S-Total:

Weeks	#	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Date		Mar 07/06	Mar 14/06	Mar 21/06	Mar 28/06.	Apr 04/06	Apr 11/06	Apr 18/06	Apr 25/06	May 02/06	May 09/06	May 16/06	May 23/06	May 30/06	Jun 6/06	Jun 13/06
Leachate Volume Adde	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	overed (mL)	883	982	875	925	888	903	870	926	867	683	994	957	908	962	913
рН	Effluent (units)	6.97	6.77	6.93	6.55	6.63	6.68	6.82	7.08	6.89	6.60	6.44	6.60	6.80	6.84	6.78
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	42	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	3	4	3	2	4	4	4	4	3	4	3	6	3	2
Conductivity	µmhos/cm	7	6	7	10	6	6	9	11	12	45	133	52	459	6	6
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.41	0.57	0.45	0.44	0.34	0.37	0.49	0.41	0.46	0.5	0.78	0.51	0.42	0.6	0.34
Iron (Fe)	mg/L	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	0.02	< 0.01	< 0.01	< 0.01	< 0.02	0.01	< 0.01	0.02	< 0.01	< 0.02
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2	-				< 2					< 2
Ammonia	mg/L					< 0.1					< 0.1					0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L					< 0.01					< 0.01					< 0.01
Arsenic (As)	mg/L					0.0417					0.0382					0.0269
Barium (Ba)	mg/L					0.0003					0.00046					0.00025
Beryllium (Be)	mg/L					< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L					< 0.003					< 0.002					< 0.002
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.0004					0.0005					0.00029
Chromium (Cr)	mg/L					< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L					0.0009					0.0028					0.001
Potassium (K)	mg/L					0.38					0.44					0.28
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.142					0.218					0.142
Manganese (Mn)	mg/L					0.00046					0.00065					0.00044
Molydenum (Mo)	mg/L					0.00005					0.00089					0.00008
Sodium (Na)	mg/L					0.03					0.02					< 0.01
Nickel (Ni)	mg/L					< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L										< 0.01					< 0.01
Lead (Pb)	mg/L					0.00003					0.00005 0.0007					0.00005 0.0006
Antimony (Sb)	mg/L					< 0.0007					< 0.0007					< 0.003
Selenium (Se) Tin (Sn)	mg/L mg/L					< 0.003					< 0.003					< 0.003
Strontium (Sr)	mg/L					0.0003					0.0003					< 0.0003
Titanium (Ti)	mg/L					< 0.0002					< 0.0002					< 0.0002
Thallium (TI)	mg/L					< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L					0.00007	1	-			0.00009					0.00004
Vanadium (V)	mg/L					0.00009					0.00009					0.0001
Tungsten (W)	mg/L					< 0.00007					< 0.00007					< 0.00007
Yttrium (Y)	mg/L					0.00002					0.00001					< 0.000005
Zinc (Zn)	mg/L					0.0005					0.0016					0.0008

S-Total:

Weeks	#	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Date	"		Jun 27. 06			Jul 18, 06								Sep 12, 06		
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		872	918	879	880	880	884	879	877	883	891	872	879	N/A	879	880
На	Effluent (units)	6.99	6.52	6.41	6.68	7.09	6.46	6.63	6.45	6.61	6.45	6.60	6.65	6.72	6.54	7.29
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	3	2	2	2	2	2	2	4	2	2	2	2	3	2	2
Conductivity	µmhos/cm	10	5	6	5	1	4	5	5	6	5	4	5	5	5	13
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.35	0.34	0.59	0.32	0.31	0.31	0.26	0.36	0.27	0.36	0.26	0.36	0.48	0.27	0.24
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	0.05	< 0.02	< 0.01	< 0.07	< 0.01	0.17	< 0.02	< 0.01	< 0.01	< 0.01	0.01	< 0.02
Chloride (CI)	mg/L		-			< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2					< 2
Ammonia	mg/L					< 0.1					< 0.1					0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L					0.01					0.02					0.01
Arsenic (As)	mg/L					0.0261					0.0246					0.0242
Barium (Ba)	mg/L					0.00021					0.00028					0.00038
Beryllium (Be)	mg/L					< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L					0.008					< 0.002					< 0.002
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.00025					0.000353					0.000219
Chromium (Cr)	mg/L					< 0.0003					< 0.0003					0.001
Copper (Cu)	mg/L					0.0007					0.0005					0.0004
Potassium (K)	mg/L					0.29					0.29					0.22
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.134					0.141					0.13
Manganese (Mn)	mg/L					0.00034					0.0005					0.00046
Molydenum (Mo)	mg/L					< 0.00005					< 0.00005					0.0002
Sodium (Na)	mg/L					0.01					< 0.01					< 0.04
Nickel (Ni)	mg/L					< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L					0.02					< 0.01					0.07
Lead (Pb)	mg/L					< 0.00002					0.00004					< 0.00002
Antimony (Sb)	mg/L					0.0005					0.0007					0.0007
Selenium (Se) Tin (Sn)	mg/L					< 0.003 < 0.0003					< 0.003 < 0.0003					< 0.003 < 0.0003
	mg/L															
Strontium (Sr) Titanium (Ti)	mg/L					0.0002 < 0.0002					0.0003					0.0002 < 0.0002
Thallium (TI)	mg/L					< 0.0002					< 0.0002					< 0.0002
Uranium (11)	mg/L mg/L					0.00006					0.00001					0.0001
Vanadium (V)	mg/L					< 0.00006					0.00002					< 0.00013
Tungsten (W)	mg/L mg/L					< 0.00006					< 0.00012					0.00015
Yttrium (Y)	mg/L					0.00001					0.00007					0.00013
Zinc (Zn)	mg/L					0.000018					0.000021					0.0006
ZIIIO (ZII)	III9/ =					0.0000					0.0003					0.0000

S-Total:

Weeks	#	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90
Date		Oct 03, 06	Oct 10, 06		Oct 24, 06	Oct 31, 06	Nov 7, 06		Nov 21, 06	Nov 28, 06			Dec 19, 06			Jan 9, 07
Leachate Volume Add	\ /	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		946	849	874	676	891	884	900	880	879	910	885	878	871	828	890
pН	Effluent (units)	6.56	6.82	6.78	6.23	6.42	6.27	6.52	6.47	6.65	6.56	6.40	6.53	6.47	< 0.05	6.39
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	3	3	< 2	2	< 2	3	2	2	< 2	3	2	2	< 2	2
Conductivity	µmhos/cm	12	12	8	5	5	8	7	5	4	4	4	6	5	4	11
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.33	0.59	0.55	0.15	0.23	0.29	0.28	0.35	0.3	0.26	0.26	0.37	0.36	0.2	0.32
Iron (Fe)	mg/L	< 0.01	0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	0.11	< 0.02	< 0.02	0.01	< 0.01	< 0.01	< 0.02
Chloride (CI)	mg/L			-		< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					0.15
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2					< 2
Ammonia	mg/L					0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L					< 0.01					0.01					0.01
Arsenic (As)	mg/L					0.0187					0.0212					0.0247
Barium (Ba)	mg/L					0.00023					0.00021					0.00023
Beryllium (Be)	mg/L					< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L					< 0.002					< 0.007					0.004
Bismuth (Bi)	mg/L					< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.0004					0.000234					0.000327
Chromium (Cr)	mg/L					< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L					0.0004					0.0002					0.0003
Potassium (K)	mg/L					0.61					0.29					0.33
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.09					0.105					0.13
Manganese (Mn)	mg/L					0.00046					0.00117					0.00055
Molydenum (Mo)	mg/L					0.00007					0.00015					< 0.00005
Sodium (Na) Nickel (Ni)	mg/L mg/L					< 0.01 < 0.0007					< 0.04 < 0.0007					0.02
Phosphorous (P)	mg/L					0.0007					< 0.0007					< 0.0007
Lead (Pb)	mg/L					0.00007					< 0.00002					< 0.00002
Antimony (Sb)	mg/L					0.0006					0.0006					0.0007
Selenium (Se)	mg/L					< 0.000					< 0.003					< 0.001
Tin (Sn)	mg/L					< 0.0003					< 0.0003					< 0.0003
Strontium (Sr)	mg/L					0.0009					< 0.0001					0.0003
Titanium (Ti)	mg/L					< 0.0002					< 0.0001					< 0.0002
Thallium (TI)	mg/L					< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L					< 0.00002					0.00004					< 0.00002
Vanadium (V)	mg/L					0.00014					< 0.00006					0.00009
Tungsten (W)	mg/L					0.00016					< 0.00007					< 0.00007
Yttrium (Y)	mg/L					0.00001					0.000008					0.000009
Zinc (Zn)	mg/L					0.0023					0.0005					0.0012

S-Total:

Weeks	105 7 Apr 24, 07 1000 920 6.36 3 6.36 3 < 2 6 < 0.5 < 0.31 < 0.01 < 0.02 < 0.06 < 0.05 < 2 < 0.01 < 0.05 < 2 < 0.01 < 0.05 < 0.01 < 0.05 < 0.05 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 0.00
Leachate Volume Added (mL) 1000 <t< td=""><td>1000 920 6.36 3 < 2 6 < 0.5 0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.01</td></t<>	1000 920 6.36 3 < 2 6 < 0.5 0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.01
Leachate Volume Recovered (mL) 899 911 908 907 924 912 908 930 921 1026 968 985 952 920	920 6.36 3 <2 6 <0.5 0.31 <0.01 <0.2 <0.06 <0.05 <2 <0.1
DH Effluent (units) 6.31 6.39 6.50 8.89 6.40 6.65 6.50 6.62 6.46 6.80 6.70 6.52 6.49 6.3	6.36 3 < 2 6 < 0.5 0.31 < 0.01 < 0.02 < 0.06 < 0.05 < 2 < 0.1
Acidity as CaCO ₃ (mg/L) < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <	3 < 2 6 < 0.5 0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.1
Conductivity µmhos/cm 11 7 10 21 4 6 5 5 6 8 5 9 5 8 Sulphate (SO ₄) mg/L <0.5	6 < 0.5 0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.1
Sulphate (SO ₄) mg/L < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.0 < 0.0 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	 < 0.5 0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.1
Calcium (Ca) mg/L 0.25 0.28 0.25 0.26 0.27 0.26 0.26 0.27 0.26 0.44 0.44 0.44 0.34 0.2 lron (Fe) mg/L < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.0	0.31 < 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.1
Calcium (Ca) mg/L 0.25 0.28 0.25 0.26 0.27 0.26 0.26 0.27 0.26 0.44 0.44 0.44 0.44 0.34 0.2 Iron (Fe) mg/L < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Chloride (Cl) mg/L < 0.2 < 0.2 < 0.2 Nitrite (NO ₂) as N mg/L < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	< 0.01 < 0.2 < 0.06 < 0.05 < 2 < 0.1
Chloride (CI) mg/L	< 0.2 < 0.06 < 0.05 < 2 < 0.1
Nitrite (NO ₂) as N mg/L < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.05 < 0.05	< 0.06 < 0.05 < 2 < 0.1
Nitrite (NO ₂) as N mg/L < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.06 < 0.05 < 0.05	< 0.05 < 2 < 0.1
Carbonate (CO ₃) as CaCO ₃ (mg/L) <2 <2 <2	< 2 < 0.1
Ammonia mg/L < < < < < <	< 0.1
Mercury (Hg) mg/L < 0.0001 < 0.0001 < 0.0001	
Mercury (Hg) mg/L < 0.0001 < 0.0001 < 0.0001	< 0.0001
Silver (Ag) mg/l	< 0.0001
	< 0.00003
Aluminum (Al) mg/L < 0.01 < 0.01 < 0.01	< 0.01
Arsenic (As) mg/L 0.0215 0.0154	0.0176
Barium (Ba) mg/L 0.00022 0.00027	0.00021
Beryllium (Be) mg/L < 0.00004 < 0.00004 < 0.00004	< 0.00004
Boron (B) mg/L < 0.002 < 0.002 < 0.002	< 0.002
Bismuth (Bi) mg/L < 0.00002 < 0.00002 < 0.00002	< 0.00002
Cadmium (Cd) mg/L < 0.00006 < 0.00006 < 0.00006	< 0.00006
Cobalt (Co) mg/L 0.000177 0.000368	0.000328
Chromium (Cr) mg/L < 0.0003 < 0.0003 < 0.0003	< 0.0003
Copper (Cu) mg/L 0.0003 0.0003 0.0003	0.0003
Potassium (K) mg/L 0.35 0.32	0.27
Lithium (Li) mg/L < 0.002 < 0.002 < 0.002	< 0.002
Magnesium (Mg) mg/L 0.121 0.167	0.11
Manganese (Mn) mg/L 0.00044 0.00076	0.0002
Molydenum (Mo) mg/L < 0.00005 < 0.00005	0.00009
Sodium (Na) mg/L 0.04 0.04 0.04	0.02
Nickel (Ni) mg/L < 0.0007 < 0.0007	< 0.0007
Phosphorous (P) mg/L < 0.01 < 0.01 Lead (Pb) mg/L < 0.00002 0.00007	< 0.01
	< 0.00002
Antimony (Sb) mg/L < 0.0002 0.0004	0.0004
Selenium (Se) mg/L < 0.001 < 0.001	< 0.001 0.0004
Strontium (Sr) mg/L 0.0003 0.0004	0.0004
Titanium (Ti) mg/L < 0.0002 0.0003 0.0003	< 0.0003
Thallium (TI) mg/L < 0.0001 < 0.0001 < 0.0001	< 0.0002
Uranium (U) mg/L < 0.00002 < 0.00002 < 0.00002	< 0.00001
Vanadium (V) mg/L < 0.00006 0.00013	0.00006
Tungsten (W) mg/L < 0.00007 < 0.00007 < 0.00007	0.0003
Yttrium (Y) mg/L < 0.000005 < 0.000005 -	< 0.000005
Zinc (Zn) mg/L 0.0005 0.0021	0.0012

S-Total:

Weeks	#	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
Date		May 01, 07	May 08, 07	May 15, 07	May 22, 07	May 29, 07	Jun 5, 07	Jun 12, 07	Jun 19, 07	Jun 26, 07	Jul 03, 07	Jul 10, 07	Jul 17, 07	Jul 24, 07	Jul 31, 07	Aug 7, 07
Leachate Volume Adde	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco	overed (mL)	958	948	990	949	934	966	899	985	984	948	956	968	986	972	946
рН	Effluent (units)	6.53	6.61	6.66	6.52	6.84	7.07	6.93	6.61	6.53	6.48	7.57	6.41	6.45	6.30	6.27
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	3	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	2	3	2	2	3	3	2	2	< 2	3	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	7	7	7	5	7	26	20	7	7	5	10	5	4	5	4
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.34	0.3	0.49	0.3	0.33	1.09	0.29	0.47	0.33	0.29	0.28	0.37	1.23	0.42	0.25
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	< 0.01
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					0.06
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					< 2					< 2
Ammonia	mg/L					< 0.1					< 0.1					0.1
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L					< 0.00003					< 0.00003					< 0.00003
Aluminum (Al)	mg/L					< 0.01			-		< 0.01					< 0.01
Arsenic (As)	mg/L					0.0135					0.016					0.0146
Barium (Ba)	mg/L					0.00021			-		0.00021					0.00019
Beryllium (Be)	mg/L					< 0.00004			-		< 0.00004					< 0.00004
Boron (B)	mg/L					< 0.002					< 0.002					< 0.002
Bismuth (Bi)	mg/L					< 0.00002			-		< 0.00002					< 0.00002
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L					0.000349					0.000254					0.000307
Chromium (Cr)	mg/L					< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L					0.0008					0.0004					0.0003
Potassium (K)	mg/L					0.28					0.24					0.23
Lithium (Li)	mg/L					< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L					0.123					0.088					0.095
Manganese (Mn)	mg/L					0.00043					0.00007					0.00042
Molydenum (Mo)	mg/L					0.00008					0.00047					0.00044
Sodium (Na)	mg/L					< 0.01					< 0.01					0.01
Nickel (Ni)	mg/L					< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L					< 0.01					< 0.01					0.01
Lead (Pb)	mg/L					< 0.00002					0.00003					< 0.00002
Antimony (Sb)	mg/L					0.0006					0.0009					0.0005
Selenium (Se)	mg/L					< 0.001					< 0.001					< 0.001
Tin (Sn) Strontium (Sr)	mg/L mg/L					< 0.0003 0.0001					< 0.0003					< 0.0003 0.0001
Titanium (Ti)	mg/L					< 0.0001					< 0.0003					< 0.0001
Thallium (TI)	mg/L					< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L					< 0.00002					0.00005					< 0.00002
Vanadium (V)	mg/L					< 0.00006					< 0.00006					< 0.00006
Tungsten (W)	mg/L					< 0.00007			-		< 0.00007					< 0.00007
Yttrium (Y)	mg/L					< 0.000005					< 0.000005					< 0.000005
Zinc (Zn)	mg/L					0.0013					0.001					0.0008

S-Total:

Weeks	#	121	122	123	124	125	126	127	128	129	130	131	132	133	134
Date	n .		Aug 21, 07			Sep 11, 07		Sep 25, 07	Oct 02, 07	Oct 09, 07		Oct 23, 07	Oct 30, 07		
Leachate Volume Add	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	\ /	882	909	886	938	963	964	939	937	950	956	879	887	949	883
Н	Effluent (units)	6.17	5.95	6.39	6.12	9.56	6.26	6.35	6.59	6.56	6.15	3.64	6.29	6.34	6.53
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	2	3	< 2	3	2	< 2	< 2	< 2	12	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	10	< 2	< 2	2	< 2	2	< 2	< 2	< 2	2
Conductivity	umhos/cm	4	6	4	14	59	6	4	12	7	5	81	6	5	4
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.3	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.22	0.24	0.2	0.22	0.27	0.22	0.2	0.23	0.24	0.22	0.24	0.28	0.24	0.27
Iron (Fe)	mg/L	< 0.01	0.01	< 0.01	0.19	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Chloride (CI)	mg/L					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					8					< 2				
Ammonia	mg/L					< 0.1					< 0.1				
Mercury (Hg)	mg/L					< 0.0001					< 0.0001				
Silver (Ag)	mg/L					< 0.00001					< 0.00001				
Aluminum (AI)	mg/L					0.01					< 0.01				
Arsenic (As)	mg/L					0.0158					0.0136				
Barium (Ba)	mg/L					0.0002					0.00015				
Beryllium (Be)	mg/L					< 0.00002					< 0.00002				
Boron (B)	mg/L					< 0.002					0.004				
Bismuth (Bi)	mg/L					< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L					< 0.000003					< 0.000003				
Cobalt (Co)	mg/L					0.000377					0.000307				
Chromium (Cr)	mg/L					< 0.0005					< 0.0005				
Copper (Cu)	mg/L					< 0.0005 0.26					< 0.0005 0.22				
Potassium (K) Lithium (Li)	mg/L mg/L					< 0.002					< 0.002				
Magnesium (Mg)	mg/L					0.105					0.002				
Manganese (Mn)	mg/L					0.00049					0.00034				
Molydenum (Mo)	mg/L					0.00008					0.00001				
Sodium (Na)	mg/L					< 0.01					< 0.01				
Nickel (Ni)	mg/L					< 0.0001					< 0.0001				
Phosphorous (P)	mg/L					< 0.01					< 0.01				
Lead (Pb)	mg/L					0.00003					0.00004				
Antimony (Sb)	mg/L					0.00042					0.00043				
Selenium (Se)	mg/L					< 0.001					< 0.001				
Tin (Sn)	mg/L					0.00026					0.00019				
Strontium (Sr)	mg/L					0.0002					0.0002				
Titanium (Ti)	mg/L					< 0.0001					< 0.0001				
Thallium (TI)	mg/L					< 0.00001					< 0.00001				
Uranium (U)	mg/L					< 0.000001 0.00005					0.000011				
Vanadium (V) Tungsten (W)	mg/L mg/L					< 0.00005					< 0.00003				
Yttrium (Y)	mg/L					< 0.00003					0.000003				
Zinc (Zn)	mg/L					0.000					0.000003				
ZIIIC (ZII)	Img/ L					0.001					0.001				

S-Total:

Weeks	#	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149
Date		Nov 20, 07	Nov 27, 07	Dec 04, 07	Dec 11, 07	Dec 18, 07	Dec 24, 07	Jan 02, 08	Jan 08, 08	Jan 15, 08	Jan 22, 08	Jan 29, 08	Feb 05, 08	Feb 12, 08	Feb 19, 08	Feb 26, 08
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	covered (mL)	882	*	875	892	874	889	902	896	888	877	953	885	995	994	990
pН	Effluent (units)	6.54	6.53	6.56	6.26	6.23	6.37	6.19	6.21	6.26	6.15	6.24	6.22	6.32	6.61	6.03
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	2	3	2	2	3	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	2	2	2	< 2	2	2	< 2	< 2	< 2	< 2	2	< 2	3	< 2
Conductivity	µmhos/cm	5	6	4	4	3	4	4	4	3	22	5	6	5	6	5
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.23	0.22	0.2	0.21	0.16	0.19	0.22	0.22	0.19	0.2	0.24	0.18	0.28	0.25	0.24
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2				-	< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05					0.08					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					0.1					0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001				-	< 0.0001				
Silver (Ag)	mg/L	< 0.00001					< 0.00001					< 0.00001				
Aluminum (Al)	mg/L	0.01					< 0.01				-	< 0.01				
Arsenic (As)	mg/L	0.0157					0.0145					0.0142				
Barium (Ba)	mg/L	0.00023					0.00022					0.0002				
Beryllium (Be)	mg/L	< 0.00002					< 0.00002					< 0.00002				
Boron (B)	mg/L	0.055					0.036					0.003				
Bismuth (Bi)	mg/L	< 0.00001					< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L	< 0.000003					< 0.000003					< 0.000003				
Cobalt (Co)	mg/L	0.00037					0.000419					0.000344				
Chromium (Cr)	mg/L	< 0.0005					< 0.0005					< 0.0005				
Copper (Cu)	mg/L	< 0.0005					0.0006					< 0.0005				
Potassium (K)	mg/L	0.25					0.23					0.24				
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002				
Magnesium (Mg)	mg/L	0.09					0.084					0.087				
Manganese (Mn)	mg/L	0.00049					0.00057					0.00056				
Molydenum (Mo)	mg/L	< 0.00001					0.00003					0.00011				
Sodium (Na)	mg/L	< 0.01					0.01					0.02				
Nickel (Ni)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Phosphorous (P)	mg/L	0.01					0.01					< 0.01				
Lead (Pb)	mg/L	< 0.00002					< 0.00002					< 0.00002				
Antimony (Sb)	mg/L	0.00036					0.00024					0.00029				
Selenium (Se)	mg/L	< 0.001					< 0.001					< 0.001				
Tin (Sn)	mg/L	< 0.00001					< 0.00001					0.00048				
Strontium (Sr)	mg/L	0.0002 < 0.0001					0.0002 < 0.0001					0.0003				
Titanium (Ti)	mg/L											< 0.0001 0.000002				
Thallium (TI)	mg/L	< 0.000002 0.000023					< 0.000002 0.000029									
Uranium (U)	mg/L											0.000017				
Vanadium (V) Tungsten (W)	mg/L mg/L	0.00016					0.00004 < 0.00003					0.00022 < 0.00003				
Yttrium (Y)	mg/L mg/L	0.000005					0.00001					0.000004				
Zinc (Zn)	mg/L	0.000005					0.00001					< 0.000				
ZIIIC (ZII)	IIIg/L	0.001					0.002					< 0.001				

0.05% 0.03% 10.2 t CaCO3/1000 t 1.7 t CaCO3/1000 t 0.94 t CaCO3/1000 t 1000 g S-Total: S-Total.

S²⁻:
NP:
CaNP:
AP:
Weight:

Weeks	1#	0	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Date	#	19-Apr-05	26-Apr-05	3-May-05	10-May-05		24-May-05		7-Jun-05	14-Jun-05	21-Jun-05	28-Jun-05	5-Jul-05	12-Jul-05	19-Jul-05	26-Jul-05	2-Aug-05
Leachate Volume Added (mL)		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Recovered (mL)		806	996	991	997	996	974	1000	987	988	993	992	984	991	981	985	982
pH	Effluent (units)	7.9	7.44	7.82	7.57	7.51	7.48	7.54	7.48	7.42	6.82	7.46	7.42	7.21	7.12	7.01	6.92
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2	< 2
Alkalinity	as CaCO ₃ (mg/L)	20	26	20	16	12	11	10	8	11	6	7	5	5	5	5	4.5
Conductivity	µmhos/cm	61	68	53	39	48	25	36	22	20	23	21	17	16	15	12	11
Sulphate (SO ₄)	mg/L	< 5	3.7	2.3	1.3	< 0.5	0.8	0.9	0.8	0.8	0.8	1.0	0.8	0.7	0.9	0.7	0.6
Calcium (Ca)	mg/L	0.24	0.6	1.34	0.44	0.81	0.43	0.38	0.37	0.4	0.4	0.43	0.38	0.31	0.37	0.34	0.31
Iron (Fe)	mg/L	0.18	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	0.02	0.02	0.02	0.03	0.04	0.05	3.67
Chloride (CI)	mg/L	< 2			< 0.02		< 0.2					< 0.2	0.02	0.00			< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	·	< 0.5										< 0.05					
(3/	as N mg/L						< 0.05										< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2					< 2
Ammonia	mg/L	0.1					< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.17	0.06	0.04			0.05					0.07					0.05
Arsenic (As)	mg/L	0.105	0.611	0.595			0.355					0.336					0.261
Barium (Ba)	mg/L	0.001	< 0.001	< 0.001			< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	0.02	0.05	0.02			< 0.02					< 0.01					0.02
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	0.0005	0.0012	< 0.0003			< 0.0003					< 0.0003					0.0003
Chromium (Cr)	mg/L	0.001	< 0.001	< 0.001			< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	< 0.0008	< 0.0008	< 0.0008			< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	6.56	6.9	5.42			4.2100					3.8400					3.05
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.17	0.243	0.186			0.18					0.192					0.168
Manganese (Mn)	mg/L	0.0016	0.0009	< 0.0007			< 0.0007					< 0.0007					0.0007
Molydenum (Mo)	mg/L	0.0044	0.0085	0.0039			0.001					0.0004					< 0.0003
Sodium (Na) Nickel (Ni)	mg/L	7.27 < 0.001	9.5 0.002	7.12 < 0.001			2.780 < 0.001					0.970 < 0.001					0.43
,	mg/L	< 0.001	< 0.1	< 0.001			< 0.001										
Phosphorous (P) Lead (Pb)	mg/L mg/L	< 0.10002	0.0003	< 0.10002			< 0.10002					< 0.1 < 0.0002					< 0.1 < 0.0002
Antimony (Sb)	mg/L	0.0484	0.0003	0.0304			0.0002					0.0053					0.0038
Selenium (Se)	mg/L	< 0.0464	< 0.0474	< 0.0304			< 0.0092					< 0.005					< 0.005
Tin (Sn)	mg/L	0.005	0.008	0.005			0.005					< 0.005					< 0.005
Strontium (Sr)	mg/L	0.000	0.008	0.004			0.002					0.0054					0.0035
Titanium (Ti)	mg/L	< 0.0023	< 0.003	< 0.003			< 0.0048					< 0.0034					< 0.0033
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.003					< 0.0002
Uranium (U)	mg/L	< 0.0002	0.0002	0.0012			0.0002					0.0002					0.0002
Vanadium (V)	mg/L	0.0002	0.0013	0.0012			0.001					0.0009					< 0.0002
Tungsten (W)	mg/L	0.0003	0.0013	0.0006			< 0.0002					< 0.0003					0.0003
Yttrium (Y)	mg/L	< 0.0001	< 0.0013	< 0.0001			< 0.0002					< 0.0002					< 0.0001
Zinc (Zn)	mg/L	< 0.001	0.004	0.001			< 0.001					< 0.001					< 0.001
()	g, –	\ 0.001	0.004	0.001	i		× 0.001					\ 0.001				1	1 0.001

0.05% 0.03% 10.2 t CaCO3/1000 t 1.7 t CaCO3/1000 t 0.94 t CaCO3/1000 t 1000 g S-Total: S-Total.

S²⁻:
NP:
CaNP:
AP:
Weight:

Weeks	1#	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Date	#	9-Aug-05	17 16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05	13-Sep-05	22 20-Sep-05	23 27-Sep-05	4-Oct-05	25 11-Oct-05	26 18-Oct-05	25-Oct-05	28 1-Nov-05	8-Nov-05	15-Nov-05	
Leachate Volume Added (mL)		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Recovered (mL)		989	988	997	991	989	975	981	969	984	985	987	981	987	983	986	980
nH	Effluent (units)	7.06	7.02	7.27	7.08	7.03	7.18	6.39	6.99	6.92	7.06	6.89	6.72	6.89	6.98	7.00	6.52
Acidity	as CaCO ₃ (mg/L)	<2	<2	<2	<2	< 2	<2	4	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	5	4	4	4	5	3	4	4	3	3	3	3	3	4	< 2
,	0 (0)	_	-		-	-	_	13	-	-	_	_	_	-	_	13	
Conductivity Sulphate (SO ₄)	µmhos/cm	12	12	11	11	10	14		11	10	10	9	8	9	11		5
1 (4/	mg/L	0.6	0.6	<0.5	0.7	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.34	0.9	0.27	0.23	0.24	0.24	0.21	0.23	0.25	0.19	0.18	0.2	0.19	0.19	0.23	< 0.05
Iron (Fe)	mg/L	0.04	<0.02	0.05	0.04	0.03	0.03	0.03	0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02
Chloride (CI)	mg/L					< 0.2					< 0.2					< 0.2	
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L					< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					< 2					<2					< 2	
Ammonia	mg/L			-		< 0.1		-			< 0.1					< 0.1	
Mercury (Hg)	mg/L					< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L					< 0.0001					< 0.0001					< 0.0001	
Aluminum (AI)	mg/L					0.02					< 0.01					0.03	
Arsenic (As)	mg/L					0.187					0.164					0.144	
Barium (Ba)	mg/L					< 0.001					< 0.001					< 0.001	
Beryllium (Be)	mg/L					< 0.005					< 0.005					< 0.005	
Boron (B)	mg/L					< 0.01					< 0.01					< 0.01	
Bismuth (Bi)	mg/L					< 0.0003					< 0.0003					< 0.0003	
Cadmium (Cd)	mg/L					< 0.0001					< 0.0001					< 0.0001	
Cobalt (Co)	mg/L					0.0003					0.0004					< 0.0003	
Chromium (Cr)	mg/L					< 0.001 < 0.0008					< 0.001 < 0.0008					< 0.001 < 0.0008	
Copper (Cu)	mg/L					2.45					2.2900					2.1800	
Potassium (K) Lithium (Li)	mg/L mg/L					< 0.005					< 0.005					< 0.005	
Magnesium (Mg)	mg/L					0.135					0.1090					0.13	
Manganese (Mn)	mg/L					< 0.0007					< 0.0007					< 0.0007	
Molydenum (Mo)	mg/L					0.0007					< 0.0007					< 0.0007	
Sodium (Na)	mg/L					0.24					0.15					0.1300	
Nickel (Ni)	mg/L					< 0.001					< 0.001					< 0.001	
Phosphorous (P)	mg/L					< 0.1					< 0.1					< 0.1	
Lead (Pb)	mg/L					< 0.0002					< 0.0002					< 0.0002	
Antimony (Sb)	mg/L					0.0027					0.0022					0.0019	
Selenium (Se)	mg/L					< 0.005					< 0.005					< 0.005	
Tin (Sn)	mg/L					< 0.001					< 0.001					< 0.001	
Strontium (Sr)	mg/L					0.0029					0.0019					0.0049	
Titanium (Ti)	mg/L					< 0.003					< 0.003					< 0.003	
Thallium (TI)	mg/L					< 0.0002					< 0.0002					< 0.0002	
Uranium (U)	mg/L					< 0.0002					< 0.0002					< 0.0002	
Vanadium (V)	mg/L					< 0.0009					< 0.0009					< 0.0009	
Tungsten (W)	mg/L					< 0.0002					< 0.0002					< 0.0002	
Yttrium (Y)	mg/L			-		< 0.0001		•			< 0.0001					< 0.0001	
Zinc (Zn)	mg/L					< 0.001					< 0.001					< 0.001	

0.05% 0.03% 10.2 t CaCO3/1000 t 1.7 t CaCO3/1000 t 0.94 t CaCO3/1000 t 1000 g S-Total: S-Total.

S²⁻:
NP:
CaNP:
AP:
Weight:

Weeks	#	32	33	34	35	36	37	38	39	40
Date		29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume Added (mL)		1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Recovered (mL)		983	982	992	975	964	974	982	984	987
pH	Effluent (units)	6.87	6.84	6.57	6.98	6.95	7.06	6.97	6.89	6.95
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	3	3	3	3	3	3	3	3	7
Conductivity	umhos/cm	7	8	7	12	16	19	16	14	8
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.15	0.22	0.19	0.17	0.21	0.14	0.13	0.15	0.14
Iron (Fe)	mg/L	0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L				< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L				< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					<2
Ammonia	mg/L				< 0.1					< 0.1
Mercury (Hg)	mg/L				< 0.0001					< 0.0001
Silver (Ag)	mg/L				< 0.0001					< 0.0001
Aluminum (AI)	mg/L				0.03					0.00
Arsenic (As)	mg/L				0.03					0.02
Barium (Ba)	mg/L				< 0.001					< 0.001
Beryllium (Be)	mg/L				< 0.001					< 0.001
Boron (B)	mg/L				< 0.003					< 0.003
Bismuth (Bi)	mg/L				< 0.0003					< 0.0003
Cadmium (Cd)	mg/L				< 0.0003					< 0.0003
Cobalt (Co)	mg/L				< 0.0003					0.0003
Chromium (Cr)	mg/L				< 0.001					< 0.001
Copper (Cu)	mg/L				< 0.0008					< 0.0008
Potassium (K)	mg/L				2.0100					1.8400
Lithium (Li)	mg/L				< 0.005					< 0.005
Magnesium (Mg)	mg/L				0.10					0.09
Manganese (Mn)	mg/L				< 0.0007					< 0.0007
Molydenum (Mo)	mg/L				< 0.0003					< 0.0003
Sodium (Na)	mg/L				0.1000					0.0800
Nickel (Ni)	mg/L				< 0.001					< 0.001
Phosphorous (P)	mg/L				< 0.1					< 0.1
Lead (Pb)	mg/L				< 0.0002					< 0.0002
Antimony (Sb)	mg/L				0.0012					0.0018
Selenium (Se)	mg/L				< 0.005					< 0.005
Tin (Sn)	mg/L				< 0.001					< 0.001
Strontium (Sr)	mg/L				0.0022					0.002
Titanium (Ti)	mg/L				< 0.003					< 0.003
Thallium (TI)	mg/L				< 0.0002					< 0.0002
Uranium (U)	mg/L				< 0.0002					< 0.0002
Vanadium (V)	mg/L				< 0.0009					< 0.0009
Tungsten (W)	mg/L				< 0.0002					< 0.0002
Yttrium (Y)	mg/L		•		< 0.0001					< 0.0001
Zinc (Zn)	mg/L				< 0.001					< 0.001

0.07% 0.04% 13.8 t CaCO3/1000 t 1.7 t CaCO3/1000 t 1.2 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight:

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Date	π	19-Apr-05	26-Apr-05	3-May-05	10-May-05	17-May-05	24-May-05	31-May-05	7-Jun-05	14-Jun-05	21-Jun-05	28-Jun-05	5-Jul-05	12-Jul-05	19-Jul-05	26-Jul-05
Leachate Volume Ad	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Re	/	836	966	991	931	943	917	953	971	939	989	960	989	992	987	989
H	Effluent (units)	7.83	7.22	7.41	7.17	7.31	7.35	5.73	7.25	7.29	7.34	7.34	7.55	7.24	7.11	7.06
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	17	22	15	11	11	9	32	8	6	8	7	8	6	7	6
,	- , ,	57	57	37	26	44	20	< 1	19	15	18	16	20	16	15	13
Conductivity Sulphate (SO₄)	µmhos/cm			-												
,	mg/L	< 5	1.6	0.8	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5
Calcium (Ca)	mg/L	0.59	0.61	0.47	0.54	0.25	0.85	1.1	1.07	0.96	1.43	1.13	1.52	1.29	1.34	1.32
Iron (Fe)	mg/L	0.16	0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	<0.02
Chloride (CI)	mg/L	2.9					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1				-	< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.13	0.05	0.04			0.03					0.03				
Arsenic (As)	mg/L	0.088	0.204	0.126			0.044					0.018				
Barium (Ba)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Boron (B)	mg/L	0.01	0.03	< 0.01			< 0.02					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Copper (Cu)	mg/L	0.0009	< 0.0008	< 0.0008			< 0.0008					< 0.0008				
Potassium (K) Lithium (Li)	mg/L	8.31 < 0.005	6.79 < 0.005	5.4 < 0.005			3.9300 < 0.005					2.0900 < 0.005				
Magnesium (Mg)	mg/L	< 0.005 0.176	0.184	0.213			< 0.005 0.26					0.269				
Manganese (Mn)	mg/L mg/L	0.176	< 0.0007	< 0.0007			< 0.0007					< 0.0007				
Molydenum (Mo)	mg/L	0.0011	0.0014	0.0008			< 0.0007					< 0.0007				
Sodium (Na)	mg/L	6.65	7.04	4.28			1.000					0.160				
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1				
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.006	0.0183	0.0123			0.0050					0.0033				
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Tin (Sn)	mg/L	0.004	0.006	0.003			0.001					< 0.001				
Strontium (Sr)	mg/L	0.0026	0.005	0.0059			0.0062					0.0077				
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Uranium (U)	mg/L	< 0.0002	0.0018	0.0012			0.0007					0.0004				
Vanadium (V)	mg/L	0.0017	0.0015	0.0012			< 0.0009					< 0.0009				
Tungsten (W)	mg/L	0.006	0.0103	0.0047			0.0005				1	0.0003				
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001				1	< 0.0001				
Zinc (Zn)	mg/L	< 0.001	0.001	0.001			< 0.001					< 0.001				

0.07% 0.04% 13.8 t CaCO3/1000 t 1.7 t CaCO3/1000 t 1.2 t CaCO3/1000 t 1000 g S²⁻: NP: CaNP: AP: Weight:

Weeks	1#	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Date	#	2-Aug-05	9-Aug-05	16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05	13-Sep-05	20-Sep-05	27-Sep-05	4-Oct-05	11-Oct-05	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	(/	986	994	990	988	979	988	991	990	977	988	983	977	985	991	989
pH	Effluent (units)	6.96	7.02	7.03	6.96	7.17	7.11	7.14	6.60	7.08	7.02	7.19	6.13	6.85	7.01	7.09
Acidity	as CaCO ₃ (mg/L)	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
,	as CaCO ₃ (mg/L)															
Alkalinity		7.8	6	5	6	6	5	6	5	5	5	5	4	5	5	5
Conductivity	µmhos/cm	5	13	13	13	12	11	15	14	12	13	12	12	9	12	12
Sulphate (SO ₄)	mg/L	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.31	1.29	0.31	1.27	1.26	1.14	1.31	1.16	1.2	1.13	1.07	1.04	1.06	1.04	1.07
Iron (Fe)	mg/L	8.95	<0.02	0.04	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2				
Ammonia	mg/L	< 0.1					< 0.1	-				< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001			-		< 0.0001	-	-			< 0.0001	-			
Aluminum (AI)	mg/L	0.04					0.01		-			0.02	-			
Arsenic (As)	mg/L	0.014					0.008					0.011				
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005				
Boron (B)	mg/L	0.02					< 0.01					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001				
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008				
Potassium (K)	mg/L	1.97					1.42					1.3500				
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005				
Magnesium (Mg)	mg/L	0.28					0.224					0.1960				
Manganese (Mn)	mg/L	0.0009					< 0.0007					0.00				
Molydenum (Mo) Sodium (Na)	mg/L	< 0.0003					< 0.0003 < 0.05					< 0.0003 < 0.05				
Nickel (Ni)	mg/L	< 0.001					< 0.05					< 0.05				
Phosphorous (P)	mg/L mg/L	< 0.001					< 0.001					< 0.001				
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0002					0.0002					0.0002				
Selenium (Se)	mg/L	< 0.005					< 0.0013					< 0.0019				
Tin (Sn)	mg/L	< 0.003					< 0.003					< 0.003				
Strontium (Sr)	mg/L	0.0071					0.0057					0.0046				
Titanium (Ti)	mg/L	< 0.003					< 0.0037					< 0.003				
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Uranium (U)	mg/L	0.0002					< 0.0002					< 0.0002				
Vanadium (V)	mg/L	< 0.0009					< 0.0002					< 0.0002				
Tungsten (W)	mg/L	0.0005					< 0.0003					0.0003				
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	0.0020					< 0.001					< 0.001				
	ı···ər =	0.0020	l			·	- 0.001					- 0.001				

0.07% 0.04% 13.8 t CaCO3/1000 t 1.7 t CaCO3/1000 t 1.2 t CaCO3/1000 t S²: NP: CaNP: AP: Weight: 1000 g

Weeks	#	30	31	32	33	34	35	36	37	38	39	40
Date	#	15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume Add	od (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	(/	990	985	989	987	989	991	981	990	991	990	988
pH	Effluent (units)	6.51	7.06	6.94	6.87	7.00	7.13	7.08	7.24	7.30	7.14	7.06
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
,	- ,											
Alkalinity	as CaCO ₃ (mg/L)	5	5	5	5	5	4	5	4	5	4	4
Conductivity	µmhos/cm	17	11	10	10	10	15	18	22	15	15	10
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1	0.99	1	1.01	1.04	0.11	1.24	0.82	1.07	0.87	0.85
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.04	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2	-	-	1		< 0.2		-			< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L	< 0.05	-	-			< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2
Ammonia	mg/L	< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001					< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.02					0.03					0.03
Arsenic (As)	mg/L	0.01					0.01					0.01
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L	< 0.0003	-	-	-		< 0.0003		-			< 0.0003
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	< 0.0003					< 0.0003					< 0.0003
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	1.1300					2.6500					1.0000
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.18					0.09					0.15
Manganese (Mn)	mg/L	< 0.0007					0.0008					0.0008
Molydenum (Mo)	mg/L	< 0.0003					< 0.0003					< 0.0003
Sodium (Na)	mg/L	< 0.05					0.1700					< 0.05
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0017					0.0010					0.0014
Selenium (Se)	mg/L	< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L	< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L	0.0073					0.0016					0.0036
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	< 0.0002					< 0.0002					< 0.0002
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L	0.0002					< 0.0002					0.0002
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001

S-Total: 0.02% <0.01%

S²⁻: NP: CaNP: AP: Weight: 28.2 t CaCO3/1000 t 4.2 t CaCO3/1000 t 0.31 t CaCO3/1000 t 1000 g

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Date		19-Apr-05	26-Apr-05	3-May-05	10-May-05	17-May-05	24-May-05	31-May-05	7-Jun-05	14-Jun-05	21-Jun-05	28-Jun-05	5-Jul-05	12-Jul-05	19-Jul-05	26-Jul-05
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Re	/	821	970	984	942	945	944	958	958	959	980	961	952	979	965	989
На	Effluent (units)	7.4	7.08	7.37	7.65	7.37	7.37	7.54	7.27	7.08	7.31	7.54	7.37	7.20	5.74	7.09
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	14	15	14	11	11	9	12	8	7	7	11	7	6	<2	7
Conductivity	µmhos/cm	41	41	39	43	44	21	41	20	26	17	26	18	16	1	14
Sulphate (SO ₄)	mg/L	< 5	1.1	1	0.6	1.1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5
Calcium (Ca)	mg/L	0.37	0.46	0.82	0.24	0.34	0.2	0.32	0.24	0.2	0.3	0.43	0.3	0.34	0.26	0.38
Iron (Fe)	mg/L	0.08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	0.02	<0.02
Chloride (CI)	mg/L	< 2					< 0.02					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06				
Nitrate (NO ₃)	ŭ															
(0)	as N mg/L	< 0.5					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.07	0.03	0.03			0.02					0.02				
Arsenic (As)	mg/L	< 0.005	< 0.005	0.006			< 0.005					< 0.005				
Barium (Ba)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Boron (B)	mg/L	0.01	0.03	0.01			< 0.02					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Copper (Cu)	mg/L	0.001	0.0012	< 0.0008			< 0.0008					0.0011				
Potassium (K)	mg/L	5.82	5.82	5.79			3.7500					4.5900				
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Magnesium (Mg)	mg/L	0.192	0.163	0.173			0.09					0.139				
Manganese (Mn)	mg/L	0.0009	0.001	< 0.0007			< 0.0007					< 0.0007				
Molydenum (Mo)	mg/L	< 0.0003	0.0006	0.0005			< 0.0003					< 0.0003				
Sodium (Na)	mg/L	4.99	4.64	4.68			2.340					2.010				
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1				
Lead (Pb)	mg/L	0.0003	0.0003	< 0.0002			< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0022	0.0082	0.0092			0.0044					0.0064				
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Tin (Sn)	mg/L	0.003	0.004	0.003			0.001					< 0.001				
Strontium (Sr)	mg/L	0.0042	0.0057	0.0068			0.0028					0.0057				
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002				
Uranium (U)	mg/L	< 0.0002	0.0002	0.0002			0.0003					0.0006				
Vanadium (V)	mg/L	0.0012	0.0015	0.0019			0.0015					0.0014				
Tungsten (W)	mg/L	0.0007	0.0021	0.0017			0.0003					0.0005				
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	< 0.001	0.002	< 0.001			< 0.001					0.0010				

S-Total: 0.02% <0.01%

S²⁻: NP: CaNP: AP: Weight: 28.2 t CaCO3/1000 t 4.2 t CaCO3/1000 t 0.31 t CaCO3/1000 t 1000 g

Weeks	1#	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Date	π	2-Aug-05	9-Aug-05	16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05	13-Sep-05	20-Sep-05	27-Sep-05	4-Oct-05	11-Oct-05	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05
Leachate Volume Add	ed (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	(/	899	993	970	955	945	967	962	956	964	969	947	964	964	944	964
pH	Effluent (units)	6.97	6.97	7.03	6.87	7.13	7.11	7.15	6.46	6.97	6.90	7.12	6.75	6.75	6.90	6.91
Acidity	as CaCO ₃ (mg/L)	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
,	as CaCO ₃ (mg/L)					5						5	5			
Alkalinity	,	7.6	11	6	4	-	5	6	4	4	3	-	-	5	4	4
Conductivity	µmhos/cm	13	13	6	10	11	11	17	12	11	12	11	10	10	10	10
Sulphate (SO ₄)	mg/L	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.31	0.33	1.29	0.19	0.21	0.3	0.32	0.21	0.17	0.21	0.2	0.31	0.31	0.27	0.15
Iron (Fe)	mg/L	1.54	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.05			ł		< 0.05		-		1	< 0.05	-			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001			-		< 0.0001		-			< 0.0001				
Aluminum (AI)	mg/L	0.02					< 0.01					< 0.01				
Arsenic (As)	mg/L	< 0.005					< 0.005					< 0.005				
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005				
Boron (B)	mg/L	< 0.01					< 0.01					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001				
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008				
Potassium (K)	mg/L	3.53					2.79					2.7200				
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005				
Magnesium (Mg)	mg/L	0.114					0.105 < 0.0007					0.0790 < 0.0007				
Manganese (Mn) Molydenum (Mo)	mg/L	< 0.0007					< 0.0007					< 0.0007				
Sodium (Na)	mg/L mg/L	0.93					0.48					0.31				
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001				
Phosphorous (P)	mg/L	< 0.001					< 0.001					< 0.001				
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0040					0.003					0.0025				
Selenium (Se)	mg/L	< 0.005					< 0.005					< 0.005				
Tin (Sn)	mg/L	< 0.003					< 0.003					< 0.003				
Strontium (Sr)	mg/L	0.004					0.004					0.0023				
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Uranium (U)	mg/L	0.0004					0.0004					0.0003				
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009				
Tungsten (W)	mg/L	0.0004					< 0.0002					< 0.0002				
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001				

S-Total: 0.02% <0.01%

S²⁻: NP: CaNP: AP: Weight: 28.2 t CaCO3/1000 t 4.2 t CaCO3/1000 t 0.31 t CaCO3/1000 t 1000 g

Weeks	#	30	31	32	33	34	35	36	37	38	39	40
Date	#	15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	,	870	967	923	954	990	924	936	949	961	920	942
pH	Effluent (units)	7.00	6.95	6.88	6.80	6.89	7.01	7.14	7.19	6.99	6.94	6.97
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
,	- (• ,											
Alkalinity	as CaCO ₃ (mg/L)	4	3	3	4	4	4	4	4	4	3	4
Conductivity	µmhos/cm	12	10	7	9	11	14	20	21	10	15	10
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.18	0.14	0.12	0.23	0.39	0.45	0.13	0.15	0.16	0.13	0.16
Iron (Fe)	mg/L	0.05	< 0.02	0.04	0.02	0.06	< 0.02	0.03	0.03	0.02	0.03	0.03
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					<2
Ammonia	mg/L	< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001			-		< 0.0001					< 0.0001
Aluminum (AI)	mg/L	0.03			-		0.02					0.02
Arsenic (As)	mg/L	< 0.005					< 0.005					< 0.005
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005
Boron (B)	mg/L	< 0.01					< 0.01					< 0.01
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003
Cadmium (Cd)	mg/L	< 0.0001					< 0.0001					< 0.0001
Cobalt (Co)	mg/L	< 0.0003					< 0.0003					< 0.0003
Chromium (Cr)	mg/L	< 0.001					< 0.001					< 0.001
Copper (Cu)	mg/L	< 0.0008					< 0.0008					< 0.0008
Potassium (K)	mg/L	2.3400					1.1000					1.9900
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005
Magnesium (Mg)	mg/L	0.12					0.16					0.07
Manganese (Mn)	mg/L	< 0.0007					< 0.0007					< 0.0007
Molydenum (Mo)	mg/L	< 0.0003			-		< 0.0003		-			< 0.0003
Sodium (Na)	mg/L	0.2500					< 0.05		-			0.1300
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0021					0.0013					0.0017
Selenium (Se)	mg/L	< 0.005					< 0.005		-			< 0.005
Tin (Sn)	mg/L	< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L	0.0042					0.0024					0.002
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	0.0004					< 0.0002					< 0.0002
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L	< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Date		April 19/05	April 26/05	May 03/05	May 10/05	May 17/05	May 24/05	May 31/05	June 7/05		June 21/05		July 5/05	July 12/05	July 19/05
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		834	985	977	947	973	934	922	969	938	979	940	970	994	962
На	Effluent (units)	7.58	7.18	7.36	7.25	7.17	7.14	8.55	7.11	7.14	7.18	7.10	7.28	7.00	6.91
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	22	15	10	6	7	6	15	6	5	5	5	5	4	4
Conductivity	µmhos/cm	78	46	34	23	36	17	44	20	16	16	15	16	15	14
Sulphate (SO ₄)	mg/L	< 5	1.6	2.2	1.7	2	1.5	1.4	1.4	1.4	1.2	1.2	1.3	1.0	1.5
Calcium (Ca)	mg/L	0.69	0.57	0.54	0.53	0.98	0.62	0.77	0.94	0.88	0.99	0.88	0.99	0.98	0.99
Iron (Fe)	mg/L	0.15	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	2.5					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	< 0.1					< 0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001			
Aluminum (AI)	mg/L	0.13	0.04	0.02			0.04					0.02			
Arsenic (As)	mg/L	0.191	0.111	0.096			0.048					0.025			
Barium (Ba)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005			
Boron (B)	mg/L	0.05	0.04	0.02			< 0.02					< 0.01			
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003			
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001			
Cobalt (Co)	mg/L	0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003			
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Copper (Cu)	mg/L	0.0011	< 0.0008	< 0.0008			0.1120					< 0.0008			
Potassium (K)	mg/L	10.2	6.2	5.46			3.1600					1.8500			
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005			
Magnesium (Mg)	mg/L	0.208	0.221	0.268			0.28					0.324			
Manganese (Mn)	mg/L	0.0013	0.001	0.0009			0.0009					0.0012			
Molydenum (Mo)	mg/L	0.0009	0.0008	0.0006			< 0.0003					< 0.0003			
Sodium (Na)	mg/L	9.4	4.97	3.22			0.650					0.140			
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1			
Lead (Pb)	mg/L	< 0.0002	< 0.0002	< 0.0002			0.025					0.000			
Antimony (Sb)	mg/L	0.0257	0.0249	0.0219			0.0079					0.0067			
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005			
Tin (Sn)	mg/L	0.011	0.005	0.003			0.001					< 0.001			
Strontium (Sr)	mg/L	0.0042	0.0046	0.0057			0.0047					0.0056			
Titanium (Ti)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003			
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002			
Uranium (U)	mg/L	0.0003	0.0012	0.0013			0.0008					0.0007			
Vanadium (V)	mg/L	< 0.0009 0.0077	< 0.0009 0.0032	< 0.0009 0.0015			< 0.0009 0.0002					< 0.0009 0.0002			
Tungsten (W) Yttrium (Y)	mg/L	< 0.0077	< 0.0032	< 0.0015			< 0.0002					< 0.0002			
Zinc (Zn)	mg/L mg/L	< 0.0001	< 0.0001	< 0.0001			0.1090					< 0.0001			
ZITIC (ZIT)	Jilig/∟	< 0.001	< 0.001	< 0.001			0.1090					< 0.001			

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Date		July 26/05	Aug 2/05	Aug 9/05	Aug 16/05	Aug 23/05	Aug 30/05	Sep 6/05	Sep 13/05	Sep 20/ 05	Sep 27/05	Oct 04/05	Oct 11/05	Oct18/05	Oct25/05
Leachate Volume Adde	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		991	970	982	950	967	951	983	965	960	938	980	963	927	968
На	Effluent (units)	6.96	6.84	6.91	6.88	6.90	6.96	6.96	6.95	6.39	6.87	6.81	6.25	6.69	6.65
Acidity	as CaCO ₃ (mg/L)	<2	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	6	3.5	4	5	4	3	3	3	3	3	3	3	3	3
Conductivity	µmhos/cm	12	11	11	12	11	11	10	13	12	10	11	11	9	8
Sulphate (SO ₄)	mg/L	1.2	1.0	1.0	1.1	0.8	0.9	0.8	0.7	0.9	0.9	0.7	0.8	0.8	0.8
Calcium (Ca)	mg/L	1.04	0.91	0.84	0.29	0.87	0.86	0.84	0.8	0.74	0.74	0.78	0.74	0.65	0.7
Iron (Fe)	mg/L	< 0.02	6.08	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L		< 0.2		-			< 0.2				-	< 0.2		
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					<2		
Ammonia	mg/L		< 0.1					< 0.1					< 0.1		
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Aluminum (AI)	mg/L		0.02					< 0.01					< 0.01		
Arsenic (As)	mg/L		0.025					0.02					0.022		
Barium (Ba)	mg/L		< 0.001					< 0.001					< 0.001		
Beryllium (Be)	mg/L		< 0.005					< 0.005					< 0.005		
Boron (B)	mg/L		0.01					< 0.01					< 0.01		
Bismuth (Bi)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Cadmium (Cd)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Cobalt (Co)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Chromium (Cr)	mg/L		< 0.001					< 0.001					< 0.001		
Copper (Cu)	mg/L		< 0.0008					< 0.0008					< 0.0008		
Potassium (K)	mg/L		1.79					1.33					1.1800		
	mg/L		< 0.005					< 0.005					< 0.005		
Magnesium (Mg) Manganese (Mn)	mg/L mg/L		0.322 0.0015					0.285 0.0014					0.2370		
Molydenum (Mo)			< 0.0015					< 0.0014					< 0.0003		
Sodium (Na)	mg/L mg/L		0.06					< 0.0003					< 0.0003		
Nickel (Ni)	mg/L		< 0.001					< 0.001					< 0.001		
Phosphorous (P)	mg/L		< 0.001					< 0.001					< 0.001		
Lead (Pb)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Antimony (Sb)	mg/L		0.0055					0.0002					0.0002		
Selenium (Se)	mg/L		< 0.005					< 0.005					< 0.0057		
Tin (Sn)	mg/L		< 0.001					< 0.001					< 0.001		
Strontium (Sr)	mg/L		0.005					0.0043					0.0031		
Titanium (Ti)	mg/L		< 0.003					< 0.003					< 0.003		
Thallium (TI)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Uranium (U)	mg/L		0.0004					0.0003					0.0002		
Vanadium (V)	mg/L		< 0.0009					< 0.0009					< 0.0009		
Tungsten (W)	mg/L		0.0004					< 0.0002					< 0.0002		
Yttrium (Y)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Zinc (Zn)	mg/L		< 0.001					< 0.001					< 0.001		

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Date	"	Nov1 01/05	Nov 08/05	Nov 15/05	Nov22/05	Nov29/05	Dec06/05	Dec13/05	Dec 20/05	Dec 27/05	Jan 03/06	Jan 10/06		Jan 24/06	Jan 31/06
Leachate Volume Add	ded (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	covered (mL)	968	942	879	948	942	951	993	922	940	956	942	929	913	914
pН	Effluent (units)	6.41	6.76	6.72	6.78	6.71	6.64	6.73	6.70	6.61	6.91	6.71	6.69	6.67	6.69
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	3	2	2	3	2	2	2	2	3	2	2	< 2	< 2	3
Conductivity	µmhos/cm	9	10	10	9	6	7	7	12	15	21	9	14	9	12
Sulphate (SO ₄)	mg/L	0.8	0.7	0.7	0.6	0.6	1.0	0.6	0.7	0.7	0.8	0.6	0.6	0.7	0.8
Calcium (Ca)	mg/L	0.7	0.63	0.46	0.5	0.48	0.58	0.64	2.7	0.51	0.47	0.47	0.44	0.42	0.57
Iron (Fe)	mg/L	< 0.02	< 0.02	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L			< 0.2					< 0.2					< 0.2	
Nitrite (NO ₂)	as N mg/L			< 0.06					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					<2	
Ammonia	mg/L			< 0.1					< 0.1					< 0.1	
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Aluminum (AI)	mg/L			0.03					0.10					0.02	
Arsenic (As)	mg/L			0.027					0.019					0.017	
Barium (Ba)	mg/L			< 0.001					< 0.001					< 0.001	
Beryllium (Be)	mg/L			< 0.005					< 0.005					< 0.005	
Boron (B)	mg/L			< 0.01					< 0.01					< 0.01	
Bismuth (Bi)	mg/L			0.0005					< 0.0003					< 0.0003	
Cadmium (Cd)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Cobalt (Co)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Chromium (Cr)	mg/L			< 0.001					< 0.001					< 0.001	
Copper (Cu)	mg/L			< 0.0008					< 0.0008					< 0.0008	
Potassium (K)	mg/L			1.0200					0.4300					0.81	
Lithium (Li)	mg/L			< 0.005					< 0.005					< 0.005	
Magnesium (Mg)	mg/L			0.18					0.05					0.138	
Manganese (Mn)	mg/L			0.0014					0.0016					0.0008	
Molydenum (Mo)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Sodium (Na)	mg/L			< 0.05					< 0.05					< 0.05	
Nickel (Ni)	mg/L			< 0.001					< 0.001					< 0.001	
Phosphorous (P)	mg/L			< 0.1					< 0.1					< 0.1	
Lead (Pb)	mg/L			< 0.0002					< 0.0002					< 0.0002	
Antimony (Sb)	mg/L			0.0028					0.0018					0.0022	
Selenium (Se) Tin (Sn)	mg/L			< 0.005 < 0.001					< 0.005 < 0.001					< 0.005 < 0.001	
Strontium (Sr)	mg/L mg/L			0.0035					0.0034					0.001	
Titanium (Ti)	mg/L			< 0.0033					< 0.0034					< 0.002	
Thallium (TI)	mg/L			< 0.0002					< 0.0002					< 0.0002	
Uranium (U)	mg/L			0.0002					< 0.0002					< 0.0002	
Vanadium (V)	mg/L			< 0.0009					< 0.0009					< 0.0009	
Tungsten (W)	mg/L			< 0.0002					< 0.0002					< 0.0002	
Yttrium (Y)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Zinc (Zn)	mg/L			< 0.001					< 0.001					< 0.001	
- \=/	1 J -	1						·		L					

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	42	43	44	45	46	47	48	49	50	51	52	53	54
Date	n .	Feb 07/06	Feb 14/06	Feb 21/06	Feb 28/06	Mar 07/06	Mar 14/06	Mar 21/06	Mar 28/06.	Apr 04/06	Apr 11/06	Apr 18/06	Apr 25/06	May 02/06
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	()	942	954	912	919	896	979	907	913	905	896	892	934	897
На	Effluent (units)	6.60	6.60	6.72	6.29	6.83	6.67	6.94	6.52	6.58	6.55	6.77	6.78	6.88
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	< 2	2	2	2	3	2	4	2	2	< 2	3	3	4
Conductivity	umhos/cm	7	6	6	7	9	8	9	10	8	5	9	12	12
Sulphate (SO ₄)	mg/L	0.6	0.6	0.8	0.6	0.9	0.5	0.6	0.6	< 0.5	0.6	< 0.5	0.5	< 0.5
Calcium (Ca)	mg/L	0.4	0.42	0.46	0.35	0.46	0.45	0.42	0.36	0.28	0.31	0.39	0.36	0.38
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.43	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.02	< 0.02		< 0.02	< 0.02	0.02		< 0.01	< 0.02				< 0.01
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06				
Nitrate (NO ₃)	Ü													
(3/	as N mg/L				< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2				
Ammonia	mg/L				< 0.1					< 0.1				
Mercury (Hg)	mg/L				< 0.0001					< 0.0001				
Silver (Ag)	mg/L				< 0.0001					< 0.00003				
Aluminum (Al)	mg/L				< 0.01					< 0.01				
Arsenic (As)	mg/L				0.012					0.0185				
Barium (Ba)	mg/L				< 0.001					0.00015				
Beryllium (Be)	mg/L				< 0.005					< 0.00004				
Boron (B)	mg/L				< 0.07					< 0.003				
Bismuth (Bi)	mg/L				< 0.0003					0.00008				
Cadmium (Cd) Cobalt (Co)	mg/L				< 0.0001 < 0.0003					< 0.00006 0.0001				
Chromium (Cr)	mg/L				< 0.0003					< 0.0001				
Copper (Cu)	mg/L mg/L				< 0.0001					0.0006				
Potassium (K)	mg/L				0.92					0.0000				
Lithium (Li)	mg/L				< 0.002					< 0.002				
Magnesium (Mg)	mg/L				0.127					0.108				
Manganese (Mn)	mg/L				0.0017					0.00062				
Molydenum (Mo)	mg/L				< 0.0003					< 0.00005				
Sodium (Na)	mg/L				< 0.03					0.02				
Nickel (Ni)	mg/L				< 0.001					< 0.0007				
Phosphorous (P)	mg/L				< 0.01					0.04				
Lead (Pb)	mg/L				0.0003					0.00003				
Antimony (Sb)	mg/L				0.0021					0.0025				
Selenium (Se)	mg/L				< 0.005					< 0.003				
Tin (Sn)	mg/L				< 0.001					< 0.0003				
Strontium (Sr)	mg/L				0.0017					0.0013				
Titanium (Ti)	mg/L				< 0.003					< 0.0002				
Thallium (TI)	mg/L				< 0.0002					< 0.0001				
Uranium (U)	mg/L				< 0.0002					0.0001				
Vanadium (V)	mg/L				< 0.0009					0.00007				
Tungsten (W)	mg/L				< 0.0002					0.00007				
Yttrium (Y)	mg/L				< 0.0001					< 0.000005				
Zinc (Zn)	mg/L				0.003					0.0009				

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	55	56	57	58	59	60	61	62	63	64	65	66	67	68
Date		May 09/06	May 16/06	May 23/06	May 30/06	Jun 6/06	Jun 13/06	Jun 20. 06	Jun 27, 06	Jul 04. 06	-	Jul 18, 06	Jul 25, 06	Aug 1, 06	Aug 8, 06
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		928	912	968	909	885	950	925	929	883	1012	988	904	896	902
рН	Effluent (units)	6.48	6.63	6.51	6.62	6.79	6.72	6.95	6.90	6.11	6.46	6.29	6.23	6.39	6.52
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	3	2	2	3	2	4	26	2	2	< 2	< 2	< 2	2
Conductivity	umhos/cm	46	131	47	11	7	6	7	10	9	5	3	4	5	5
Sulphate (SO ₄)	mg/L	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.32	0.51	0.37	0.32	0.46	0.3	0.35	0.59	0.26	0.31	0.18	0.18	0.21	0.2
Iron (Fe)	mg/L	< 0.02	< 0.01	< 0.01	0.02	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	0.02	< 0.02	< 0.01	< 0.07	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	< 0.1					0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003			
Aluminum (AI)	mg/L	< 0.01					< 0.01					< 0.01			
Arsenic (As)	mg/L	0.0123					0.0128					0.0084			
Barium (Ba)	mg/L	0.00027					0.00013					0.00011			
Beryllium (Be)	mg/L	< 0.00004					< 0.00004					< 0.00004			
Boron (B)	mg/L	< 0.002					< 0.002					0.006			
Bismuth (Bi)	mg/L	0.00002					0.00005					0.00011			
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006			
Cobalt (Co)	mg/L	0.0002					0.00009					0.000048			
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003			
Copper (Cu)	mg/L	0.003					0.0006					0.0002			
Potassium (K)	mg/L	0.83					0.61					0.45			
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002			
Magnesium (Mg)	mg/L	0.135					0.12					0.062			
Manganese (Mn)	mg/L	0.001					0.00082					0.00062			
Molydenum (Mo)	mg/L	0.00037					0.00014					< 0.00005			
Sodium (Na)	mg/L	< 0.01					< 0.01					< 0.01			
Nickel (Ni)	mg/L	< 0.0007					< 0.0007					< 0.0007			
Phosphorous (P)	mg/L	< 0.01					< 0.01					0.02			
Lead (Pb)	mg/L	0.00005					0.00003					< 0.00002			
Antimony (Sb)	mg/L	0.0021					0.0017					0.0008			
Selenium (Se) Tin (Sn)	mg/L mg/L	< 0.003 < 0.0003					< 0.003 < 0.0003					< 0.003 < 0.0003			
Strontium (Sr)	mg/L mg/L	0.0003					0.0006					0.0003			
Titanium (Ti)	mg/L	< 0.0013					< 0.0002					< 0.0007			
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002			
Uranium (U)	mg/L	0.00001					0.00005					< 0.0001			
Vanadium (V)	mg/L	< 0.00006					0.00008					< 0.00002			
Tungsten (W)	mg/L	< 0.00007					< 0.00007					0.00009			
Yttrium (Y)	mg/L	< 0.000005					< 0.000005					< 0.000005			
Zinc (Zn)	mg/L	0.003					0.0014					0.0006			
_IIIC (ZII)	mg/L	0.003					0.0014					0.0000			

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	69	70	71	72	73	74	75	76	77	78	79	80	81	82
Date	π	Aug 15, 06	Aug 22, 06	Aug 29, 06		Sep 12, 06	Sep 19. 06	Sep 26, 06	Oct 03. 06	Oct 10. 06	Oct 17, 06	Oct 24, 06	Oct 31. 06	Nov 7. 06	Nov 14. 06
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	()	904	908	887	903	N/A	899	903	941	874	892	902	905	881	914
pH	Effluent (units)	6.65	6.35	6.40	6.53	6.78	8.80	6.60	6.43	6.72	6.67	6.40	6.34	6.30	6.06
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2
Alkalinity	as CaCO ₃ (mg/L)	2	< 2	< 2	2	3	4	2	< 2	4	2	< 2	< 2	< 2	< 2
Conductivity	umhos/cm	6	5	4	5	6	17	12	12	10	7	6	5	11	8
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
Calcium (Ca)	mg/L	0.2	0.26	0.21	0.22	0.39	0.21	0.18	0.19	0.37	0.35	0.19	1.84	0.23	0.0
Iron (Fe)	mg/L	0.03	< 0.02	< 0.01	< 0.01	0.01	< 0.01	< 0.02	< 0.19	0.01	0.03	< 0.01	< 0.02	< 0.01	< 0.01
Chloride (CI)	mg/L	0.03	< 0.02		< 0.01	0.01		< 0.02		0.01			< 0.02		
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.26					< 0.2		
Nitrate (NO ₃)	Ü														
(3)	as N mg/L		0.09					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					< 2		
Ammonia	mg/L		< 0.1					0.1					< 0.1		
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L		< 0.00003					< 0.00003					< 0.00003		
Aluminum (Al)	mg/L		< 0.01					0.02					0.03		
Arsenic (As)	mg/L		0.0081 0.00014					0.0097 0.00017					0.0076 0.00015		
Barium (Ba)	mg/L		< 0.00014					< 0.00017					< 0.00015		
Beryllium (Be)	mg/L		< 0.0004					< 0.0004					< 0.0004		
Boron (B) Bismuth (Bi)	mg/L		0.0002					0.00005					< 0.002		
Cadmium (Cd)	mg/L mg/L		< 0.00003					< 0.00005					< 0.00002		
Cobalt (Co)	mg/L		0.00007					0.000065					0.0000		
Chromium (Cr)	mg/L		< 0.00007					0.00011					< 0.0001		
Copper (Cu)	mg/L		0.0002					0.0002					0.001		
Potassium (K)	mg/L		0.62					0.55					0.09		
Lithium (Li)	mg/L		< 0.002					< 0.002					< 0.002		
Magnesium (Mg)	mg/L		0.108					0.089					0.04		
Manganese (Mn)	mg/L		0.00059					0.00051					0.00036		
Molydenum (Mo)	mg/L		< 0.00005					0.00012					< 0.00005		
Sodium (Na)	mg/L		< 0.01					< 0.04				-	< 0.01		
Nickel (Ni)	mg/L		< 0.0007					< 0.0007					< 0.0007		
Phosphorous (P)	mg/L		< 0.01					0.05					< 0.01		
Lead (Pb)	mg/L		< 0.00002					< 0.00002					0.00004		
Antimony (Sb)	mg/L		0.0015					0.0016					0.0015		
Selenium (Se)	mg/L		< 0.003					< 0.003					< 0.003		
Tin (Sn)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Strontium (Sr)	mg/L		0.0011					0.0009					0.0014		
Titanium (Ti)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Thallium (TI)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Uranium (U)	mg/L		< 0.00002					0.00003					< 0.00002		
Vanadium (V)	mg/L		0.00007					0.00007					< 0.00006		
Tungsten (W)	mg/L		0.00008					0.00011					0.00018		
Yttrium (Y)	mg/L		< 0.000005					0.000008					0.000011		
Zinc (Zn)	mg/L		0.0009					0.0007					0.0019		

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	83	84	85	86	87	88	89	90	91	92	93	94	95
Date		Nov 21, 06	Nov 28, 06	Dec 05, 06	Dec 12, 06	Dec 19, 06	Dec 27, 06	Jan 02, 07	Jan 9, 07	Jan 16, 07	Jan 23, 07	Jan 30, 07	Feb 6, 07	Feb 13, 07
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	overed (mL)	894	932	908	907	903	911	834	909	904	919	910	908	917
pН	Effluent (units)	6.68	6.79	6.41	6.06	6.42	6.57	6.29	6.85	6.45	6.36	6.42	6.30	6.37
Acidity	as CaCO ₃ (mg/L)	< 2	3	< 2	< 2	< 2	< 2	2	4	< 2	< 2	2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	4	3	< 2	2	2	2	< 2	2	2	< 2	< 2	< 2	< 2
Conductivity	µmhos/cm	12	8	4	5	6	5	4	15	11	8	7	7	13
Sulphate (SO ₄)	mg/L	0.7	0.6	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5	0.6	0.8	0.7	0.6	0.6
Calcium (Ca)	mg/L	0.64	0.54	0.19	0.2	0.25	0.31	0.15	0.22	0.22	0.24	0.21	0.22	0.27
Iron (Fe)	mg/L	< 0.01	0.05	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
Chloride (CI)	mg/L			< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L			< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					< 2
Ammonia	mg/L			< 0.1					< 0.1		1			< 0.1
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L			< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L			< 0.01					< 0.01					< 0.01
Arsenic (As)	mg/L			0.0095					0.0102					0.011
Barium (Ba)	mg/L			0.00008					0.00008					0.0001
Beryllium (Be)	mg/L			< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L			< 0.007					0.002					< 0.002
Bismuth (Bi)	mg/L			0.00003					< 0.00002					0.00008
Cadmium (Cd)	mg/L			< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L			0.000051					0.000097		-			0.000028
Chromium (Cr)	mg/L			< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L			0.0003					0.0002					0.0002
Potassium (K)	mg/L			0.63					0.76					0.76
Lithium (Li)	mg/L			< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L			0.067					0.09					0.113
Manganese (Mn)	mg/L			0.00058					0.0006					0.00058
Molydenum (Mo)	mg/L			0.00007					< 0.00005					0.00008
Sodium (Na)	mg/L			< 0.04					0.01					0.03
Nickel (Ni)	mg/L			< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L			0.02					< 0.01					< 0.01
Lead (Pb)	mg/L			< 0.00002					< 0.00002					0.00011
Antimony (Sb)	mg/L			0.001					0.0012					0.0011
Selenium (Se)	mg/L			< 0.003					< 0.001					< 0.001
Tin (Sn)	mg/L			< 0.0003					< 0.0003					< 0.0003
Strontium (Sr)	mg/L			0.0005					0.0009					0.0011
Titanium (Ti)	mg/L			< 0.0002					< 0.0002					< 0.0002
Thallium (TI)	mg/L			< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L			0.00002					0.00002					< 0.00002
Vanadium (V)	mg/L			< 0.00006					0.00007					< 0.00006
Tungsten (W)	mg/L			< 0.00007					< 0.00007					0.00053
Yttrium (Y)	mg/L			< 0.000005					< 0.000005					< 0.000005
Zinc (Zn)	mg/L			0.0004					0.0006					0.0004

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	96	97	98	99	100	101	102	103	104	105	106	107	108	109
Date		Feb 20, 07	Feb 27, 07	Mar 06. 07	Mar 13.07	Mar 20. 07	Mar 27. 07	Apr 03, 07	Apr 10. 07	Apr 17. 07	Apr 24, 07	May 01, 07		May 15, 07	May 22, 07
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		910	905	926	914	978	974	986	952	936	899	959	934	946	951
На	Effluent (units)	6.41	6.38	6.37	6.43	9.25	6.53	6.48	6.29	6.15	6.32	6.43	6.29	6.29	4.44
Acidity	as CaCO ₃ (mg/L)	3	3	< 2	4	< 2	< 2	< 2	2	4	2	< 2	2	< 2	52
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	7	< 2	2	< 2	< 2	< 2	2	< 2	< 2	35
Conductivity	µmhos/cm	6	5	5	6	36	5	8	6	10	6	7	5	6	5
Sulphate (SO ₄)	mg/L	0.6	0.5	0.5	0.6	< 0.5	0.5	0.7	< 0.5	0.6	0.6	< 0.5	< 0.5	0.5	< 0.5
Calcium (Ca)	mg/L	0.23	0.24	0.22	0.21	0.28	0.31	0.46	0.23	0.23	0.24	0.25	0.2	0.25	0.19
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L					0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)					6					< 2				
Ammonia	mg/L					< 0.1					< 0.1				
Mercury (Hg)	mg/L					< 0.0001					< 0.0001				
Silver (Ag)	mg/L					< 0.00003					< 0.00003				
Aluminum (AI)	mg/L					0.02					< 0.01				
Arsenic (As)	mg/L					0.0092					0.0118				
Barium (Ba)	mg/L					0.00014					0.00012				
Beryllium (Be)	mg/L					< 0.00004					< 0.00004				
Boron (B)	mg/L					< 0.002					< 0.002				
Bismuth (Bi)	mg/L					< 0.00002					0.00004				
Cadmium (Cd)	mg/L					< 0.00006					< 0.00006				
Cobalt (Co)	mg/L					0.000116					0.000092				
Chromium (Cr)	mg/L					< 0.0003					< 0.0003				
Copper (Cu)	mg/L					0.0002					0.0001				
Potassium (K)	mg/L					0.68					0.62				
Lithium (Li)	mg/L					< 0.002					< 0.002				
Magnesium (Mg)	mg/L					0.118					0.097				
Manganese (Mn)	mg/L					0.001					0.00047				
Molydenum (Mo)	mg/L					< 0.00005					< 0.00005				
Sodium (Na)	mg/L					< 0.01					< 0.01				
Nickel (Ni)	mg/L					< 0.0007					< 0.0007				
Phosphorous (P)	mg/L					< 0.01					< 0.01				
Lead (Pb)	mg/L					< 0.00002					< 0.00002				
Antimony (Sb)	mg/L					0.0011					0.0009				
Selenium (Se) Tin (Sn)	mg/L					< 0.001 0.0003					< 0.001 0.0004				
Strontium (Sr)	mg/L					0.0003					0.0004				
Titanium (Sr)	mg/L					< 0.0011					< 0.0009				
Thallium (TI)	mg/L mg/L					< 0.0002					< 0.0002				
Uranium (T)	mg/L					< 0.0001					< 0.0001				
Vanadium (V)	mg/L					0.00002					< 0.00002				
Tungsten (W)	mg/L					< 0.00007					0.00006				
Yttrium (Y)	mg/L					< 0.00007					< 0.00010				
Zinc (Zn)	mg/L					0.0105					0.0005				
-···- (-· ··)	13.=	1				0.0.00					0.000			1	

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

	T.,														
Weeks	#	110	111	112	113	114	115	116	117	118	119	120	121	122	123
Date		May 29, 07	Jun 5, 07			Jun 26, 07	Jul 03, 07	Jul 10, 07	Jul 17, 07	Jul 24, 07	Jul 31, 07	Aug 7, 07	Aug 14, 07	Aug 21, 07	Aug 28, 07
Leachate Volume Add		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		930	833	986	976	978	942	940	939	978	948	991	826	947	967
pH	Effluent (units)	6.41	6.47	6.51	5.67	6.42	6.69	6.34	6.21	6.32	6.23	6.18	6.08	5.83	6.41
Acidity	as CaCO ₃ (mg/L)	< 2	2	< 2	6	< 2	6	< 2	< 2	2	< 2	< 2	4	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2
Conductivity	µmhos/cm	5	16	13	11	8	11	5	4	5	4	5	7	7	6
Sulphate (SO ₄)	mg/L	0.6	0.7	0.6	< 0.5	0.6	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.7	0.6	0.5
Calcium (Ca)	mg/L	0.26	0.43	0.4	0.28	0.29	0.22	0.21	3	0.9	0.23	0.35	0.38	0.29	0.29
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					0.13			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	< 0.1					< 0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003			
Aluminum (AI)	mg/L	< 0.01					< 0.01					< 0.01			
Arsenic (As)	mg/L	0.01					0.0134					0.0137			
Barium (Ba)	mg/L	0.00015					0.00014					0.00014			
Beryllium (Be)	mg/L	< 0.00004					< 0.00004					< 0.00004			
Boron (B)	mg/L	< 0.002					< 0.002					< 0.002			
Bismuth (Bi)	mg/L	< 0.00002					0.00002					< 0.00002			
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006			
Cobalt (Co)	mg/L	0.000143					0.00001					0.000164			
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003			
Copper (Cu) Potassium (K)	mg/L	0.0006 0.6					0.0004					0.0002 0.54			
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002			
Magnesium (Mg)	mg/L mg/L	0.105					0.069					0.108			
Manganese (Mn)	mg/L	0.00084					0.00055					0.0012			
Molydenum (Mo)	mg/L	< 0.00005					0.00033					0.00026			
Sodium (Na)	mg/L	0.02					< 0.01					0.03			
Nickel (Ni)	mg/L	< 0.0007					< 0.0007					< 0.0007			
Phosphorous (P)	mg/L	< 0.01					< 0.01					< 0.01			
Lead (Pb)	mg/L	0.0005					0.00059					0.00002			
Antimony (Sb)	mg/L	0.0011					0.0014					0.0015			
Selenium (Se)	mg/L	< 0.001					< 0.001					< 0.001			
Tin (Sn)	mg/L	< 0.0003					0.006					< 0.0003			
Strontium (Sr)	mg/L	0.0007					0.0008					0.0008			
Titanium (Ti)	mg/L	< 0.0002					< 0.0002					< 0.0002			
Thallium (TI)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Uranium (U)	mg/L	< 0.00002					< 0.00002					< 0.00002			
Vanadium (V)	mg/L	< 0.00006					< 0.00006					< 0.00006			
Tungsten (W)	mg/L	< 0.00007					< 0.00007					< 0.00007			
Yttrium (Y)	mg/L	< 0.000005					< 0.000005					< 0.000005			
Zinc (Zn)	mg/L	0.0201					0.0011					0.0014			

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	124	125	126	127	128	129	130	131	132	133	134	135	136
Date	π	Sep 4, 07	Sep 11, 07	Sep 18, 07			Oct 09, 07	Oct 16, 07	Oct 23. 07	Oct 30, 07	Nov 06. 07	Nov 13. 07	Nov 20. 07	Nov 27. 07
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		978	987	977	989	992	990	992	964	971	907	946	981	*
pH	Effluent (units)	6.10	6.58	6.20	6.35	6.32	6.24	5.94	6.08	6.15	6.23	6.38	6.43	5.88
Acidity	as CaCO ₃ (mg/L)	2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	3	< 2	7
Alkalinity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Conductivity	umhos/cm	15	13	7	5	4	9070	5	6	4	5	4	5	6
Sulphate (SO ₄)	l	0.6	0.6	0.6	0.6	0.6	0.5	0.5	0.6	0.5	0.6	0.5	0.7	0.7
Calcium (Ca)	mg/L		0.0		0.6			0.23		0.3				0.7
Iron (Fe)	mg/L	0.26	< 0.01	0.23 < 0.01		0.26	0.24 < 0.01	< 0.23	0.28		0.19 < 0.01	0.19	0.23 < 0.01	< 0.01
	mg/L	< 0.01	< 0.01		< 0.01	< 0.01		< 0.01	< 0.01	< 0.01		< 0.01	< 0.01	< 0.01
Chloride (CI) Nitrite (NO ₂)	mg/L		< 0.2					< 0.2					< 0.2	
\/	as N mg/L													
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					< 2	
Ammonia	mg/L		< 0.1					0.1					< 0.1	
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L		< 0.00001					< 0.00001					< 0.00001	
Aluminum (Al)	mg/L		< 0.01					< 0.01					< 0.01	
Arsenic (As)	mg/L		0.0164					0.0163					0.0179	
Barium (Ba)	mg/L		0.00012					0.00016					0.00014	
Beryllium (Be)	mg/L		< 0.00002					< 0.00002					< 0.00002	
Boron (B)	mg/L		< 0.002					0.002					0.053	
Bismuth (Bi)	mg/L		0.00003					0.00003					0.00002	
Cadmium (Cd) Cobalt (Co)	mg/L		< 0.000003 0.00018					0.000004 0.00018					< 0.000003 0.000215	
Chromium (Cr)	mg/L mg/L		< 0.00018					< 0.00018					< 0.0005	
Copper (Cu)	mg/L		< 0.0005					0.0003					< 0.0005	
Potassium (K)	mg/L		0.52					0.0021					0.5	
Lithium (Li)	mg/L		< 0.002					< 0.002					< 0.002	
Magnesium (Mg)	mg/L		0.111					0.11					0.109	
Manganese (Mn)	mg/L		0.00111					0.00123					0.00107	
Molydenum (Mo)	mg/L		0.00003					0.00007					< 0.00001	
Sodium (Na)	mg/L		< 0.01					< 0.01					< 0.01	
Nickel (Ni)	mg/L		< 0.0001					< 0.0001					< 0.0001	
Phosphorous (P)	mg/L		< 0.01					< 0.01					< 0.01	
Lead (Pb)	mg/L		< 0.00002					0.00002					< 0.00002	
Antimony (Sb)	mg/L		0.00104					0.00098					0.00101	
Selenium (Se)	mg/L		< 0.001					< 0.001					< 0.001	
Tin (Sn)	mg/L		0.00015					0.00018					< 0.00001	
Strontium (Sr)	mg/L		0.0008					0.0008					0.0009	
Titanium (Ti)	mg/L		< 0.0001					< 0.0001					< 0.0001	
Thallium (TI)	mg/L		< 0.00001					< 0.00001					< 0.000002	
Uranium (U)	mg/L		< 0.000001					0.000006					0.000007	
Vanadium (V)	mg/L		0.00003					< 0.00003					0.00008	
Tungsten (W)	mg/L		< 0.00003					< 0.00003					< 0.00003	
Yttrium (Y)	mg/L		< 0.000001					< 0.000001					< 0.000001	
Zinc (Zn)	mg/L		0.001					0.001					0.001	

May 2011

0.31% 0.27% 10.1 t CaCO3/1000 t 1.7 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 8.3 t CaCO3/1000 t 1000 g

Weeks	#	137	138	139	140	141	142	143	144	145	146	147	148	149	150
Date				Dec 18, 07	Dec 24, 07	Jan 02. 08	Jan 08, 08	Jan 15, 08		Jan 29, 08	Feb 05, 08			Feb 26, 08	Mar 04. 08
Leachate Volume Adde	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		949	990	980	977	952	927	962	987	987	961	962	991	958	988
рН	Effluent (units)	6.27	6.39	6.36	6.29	6.10	6.12	4.19	6.40	6.54	6.48	6.22	5.47	5.21	6.43
Acidity	as CaCO ₃ (mg/L)	3	2	< 2	3	3	2	6	< 2	< 2	< 2	< 2	< 2	2	< 2
Alkalinity	as CaCO ₃ (mg/L)	< 2	2	< 2	2	2	2	< 2	< 2	< 2	3	< 2	3	< 2	< 2
Conductivity	umhos/cm	4	5	4	4	5	5	25	6	6	8	6	8	8	6
Sulphate (SO ₄)	mg/L	0.5	0.6	0.6	0.5	0.5	0.5	< 0.5	0.6	0.6	0.6	0.7	0.6	0.9	0.7
Calcium (Ca)	mg/L	0.19	0.24	0.2	0.2	0.24	0.24	0.24	0.24	0.24	0.26	0.25	0.23	0.25	0.24
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L				< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L				0.06					< 0.05					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2					< 2
Ammonia	mg/L				< 0.1					0.2					< 0.1
Mercury (Hg)	mg/L				< 0.0001		-			< 0.0001				-	< 0.0001
Silver (Ag)	mg/L				< 0.00001					< 0.00001					< 0.00001
Aluminum (Al)	mg/L				< 0.01		-			< 0.01				-	< 0.01
Arsenic (As)	mg/L				0.0175					0.0208					0.0306
Barium (Ba)	mg/L				0.00011					0.00012					0.0001
Beryllium (Be)	mg/L				< 0.00002					< 0.00002					< 0.00002
Boron (B)	mg/L				0.038					0.004					< 0.002
Bismuth (Bi)	mg/L				0.00002					0.00002					0.00004
Cadmium (Cd)	mg/L				0.000004					< 0.000003					< 0.000003
Cobalt (Co)	mg/L				0.000154		-			0.000196					0.000268
Chromium (Cr)	mg/L				< 0.0005		-			< 0.0005					< 0.0005
Copper (Cu)	mg/L				< 0.0005					< 0.0005					< 0.0005
Potassium (K)	mg/L				0.43					0.66					0.48
Lithium (Li)	mg/L				< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L				0.096					0.107					0.111
Manganese (Mn)	mg/L				0.00125					0.00138					0.00153
	mg/L				< 0.00001					0.00002					0.00155
Sodium (Na)	mg/L				0.01					0.02					0.01
Nickel (Ni)	mg/L				< 0.0001					0.0001					< 0.0001
Phosphorous (P)	mg/L				0.02					0.02					< 0.01
_ ,	mg/L				0.00002					< 0.00002					< 0.00002
Antimony (Sb)	mg/L				0.00082					0.00068					0.00102
Selenium (Se)	mg/L				< 0.001					< 0.001					< 0.001
Tin (Sn)	mg/L				< 0.00001					0.00003					< 0.00001
Strontium (Sr)	mg/L				0.0007					0.0008					0.0008
Titanium (Ti)	mg/L				< 0.0001					< 0.0001					< 0.0001
Thallium (TI)	mg/L				< 0.000002					< 0.000002					< 0.000002
Uranium (U)	mg/L				0.000013					0.000008					0.000225
Vanadium (V)	mg/L				< 0.00003					0.00021					0.00005
Tungsten (W)	mg/L				< 0.00003					< 0.00003					0.00004
Yttrium (Y)	mg/L				< 0.000001					0.000001					< 0.000001
Zinc (Zn)	mg/L				0.002					0.001					< 0.001

S-Total: 0.03% 0.03% 0.03% 16.8 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.62 t CaCO3/1000 t 1000 g S²⁻: NP: CaNP: AP: Weight:

We also	#	0	4	0	1 2	1 4	-		7	0		10	44	10	40	44
Weeks	#		1	2 May 05	3 10-May-05	4 17-May-05	5 24-May-05	6 31-May-05	7 7-Jun-05	8	9 21-Jun-05	10 28-Jun-05	11 5-Jul-05	12 12-Jul-05	13 19-Jul-05	14 26-Jul-05
Date	A d d a d / a d)	19-Apr-05 1000	26-Apr-05 1000	3-May-05	10-May-05		•			14-Jun-05						
Leachate Volume	\ /	827	967	1000 942	902	1000 914	1000 865	1000 926	1000 937	1000 911	1000 934	1000 924	1000 938	1000 991	1000 972	1000 888
Leachate Volume	Effluent (units)	7.7	7.23	7.62	7.52	7.52	7.86	7.55	7.59	7.37	7.45	7.35	7.52	7.08	7.09	7.08
	as CaCO ₃ (mg/L)			_												
Acidity	0, 0,	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	17	21	16	13	11	13	9	8	6	7	6	6	7	6	9
Conductivity	µmhos/cm	51	54	42	34	42	29	29	18	16	17	16	15	18	19	11
Sulphate (SO ₄)	mg/L	< 5	2.1	1.5	1.2	0.7	8.0	< 0.5	< 0.5	0.6	< 0.5	< 0.5	< 0.5	<0.5	1.7	<0.5
Calcium (Ca)	mg/L	1.01	0.59	1.59	0.37	0.3	0.43	0.41	0.4	0.39	0.52	0.45	0.52	0.81	1.31	0.5
Iron (Fe)	mg/L	0.02	< 0.02	< 0.02	0.02	< 0.02	0.04	< 0.02	< 0.02	0.02	0.07	0.04	< 0.02	<0.02	0.02	0.04
Chloride (CI)	mg/L	< 2					< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2		-			< 2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.13	0.06	0.07			0.10					0.05				
Arsenic (As)	mg/L	0.019	0.039	0.061			0.066					0.045				
Barium (Ba)	mg/L	0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Boron (B)	mg/L	< 0.01	0.02	< 0.01			< 0.02					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003				
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001				
Cobalt (Co)	mg/L	< 0.0003	0.0004	< 0.0003			< 0.0003					< 0.0003				
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001				
Copper (Cu)	mg/L	< 0.0008	< 0.0008	< 0.0008			< 0.0008					0.0137				
Potassium (K)	mg/L	4.82	3.12	2.92			2.1400					1.2400				
Lithium (Li)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Magnesium (Mg)		0.198	0.193	0.173			0.19					0.13				
Manganese (Mn)		< 0.0007	0.0011	< 0.0007			< 0.0007					< 0.0007				
Molydenum (Mo)	3	0.0014	0.0035	0.0022			0.000					< 0.0003				
Sodium (Na)	mg/L	6.73	8.5	7.03			4.960					1.840				
Nickel (Ni)	mg/L	< 0.001	0.003	0.001			< 0.001					< 0.001				
Phosphorous (P)		< 0.1	< 0.1	< 0.1			< 0.1					< 0.1				
Lead (Pb)	mg/L	< 0.0002	0.0002	< 0.0002			< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0017	0.0033	0.003			0.0013					0.0011				
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005			< 0.005					< 0.005				
Tin (Sn)	mg/L	0.006	0.006	0.003 0.0052			0.001 0.0038					< 0.001				
Strontium (Sr)	mg/L	0.0057 < 0.003	0.0052 < 0.003	< 0.0052			< 0.0038					0.0043 < 0.003				
Titanium (Ti) Thallium (Tl)	mg/L	< 0.003	< 0.003	< 0.003			< 0.003					< 0.003				
Uranium (11)	mg/L	< 0.0002	0.0002	0.0002			0.0002					0.0002				
Vanadium (V)	mg/L	0.0002	0.0002	0.0002			0.0004					0.0005				
Tungsten (W)	mg/L mg/L	0.001	0.0015	0.0017			< 0.0017					< 0.001				
Yttrium (Y)	mg/L	< 0.0003	< 0.0011	< 0.0007			< 0.0002					< 0.0002				
Zinc (Zn)		< 0.001	< 0.0001	0.0001			< 0.0001					< 0.0001				
ZITIC (ZIT)	mg/L	< 0.001	< 0.001	0.002			< 0.001					< 0.001				

S-Total: 0.03%

S-Total:

S²⁻:

NP:

CaNP:

AP:

Weight: 0.03% 0.03% 16.8 t CaCO3/1000 t 8.3 t CaCO3/1000 t 0.62 t CaCO3/1000 t 1000 g

Weeks	#	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
Date		2-Aug-05	9-Aug-05	16-Aug-05	23-Aug-05	30-Aug-05	6-Sep-05	13-Sep-05	20-Sep-05	27-Sep-05	4-Oct-05	11-Oct-05	18-Oct-05	25-Oct-05	1-Nov-05	8-Nov-05
Leachate Volume	Added (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume	Recovered (mL)	934	956	920	928	920	962	932	934	921	958	950	902	962	943	912
pН	Effluent (units)	7.02	7.01	7.03	7.04	7.12	7.26	7.17	6.66	6.92	7.14	7.15	6.99	6.84	6.99	7.15
Acidity	as CaCO ₃ (mg/L)	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5.8	4	6	5	4	5	5	5	3	5	4	3	4	5	4
Conductivity	umhos/cm	11	11	10	11	12	11	16	12	13	11	12	9	9	10	10
Sulphate (SO ₄)	mg/L	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.54	0.59	1.61	0.51	0.59	0.74	0.64	0.65	0.6	0.71	0.68	0.42	0.66	0.66	0.5
Iron (Fe)	mg/L	7.99	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2					< 0.02					< 0.02				
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06				
Nitrate (NO ₃)	Ŭ .															
, -,	as N mg/L	< 0.05					< 0.05					< 0.05				
(0)	as CaCO ₃ (mg/L)	< 2					< 2					<2				
Ammonia	mg/L	< 0.1					< 0.1					< 0.1				
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Silver (Ag)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Aluminum (AI)	mg/L	0.03					0.03					0.02				
Arsenic (As)	mg/L	0.047					0.038					0.04				
Barium (Ba)	mg/L	< 0.001					< 0.001					< 0.001				
Beryllium (Be)	mg/L	< 0.005					< 0.005					< 0.005				
Boron (B)	mg/L	0.01					< 0.01					< 0.01				
Bismuth (Bi)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Cadmium (Cd) Cobalt (Co)	mg/L	< 0.0001 < 0.0003					< 0.0001 < 0.0003					< 0.0001 < 0.0003				
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003				
Copper (Cu)	mg/L	< 0.001					< 0.001					< 0.001				
Potassium (K)	mg/L mg/L	1.29					1.34					1.1300				
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005				
Magnesium (Mg)		0.154					0.238					0.2090				
Manganese (Mn)		< 0.0007					0.001					< 0.0007				
Molydenum (Mo)		< 0.0007					< 0.0003					< 0.0007				
Sodium (Na)	mg/L	1.27					0.78					0.54				
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001				
Phosphorous (P)		< 0.1					< 0.1					< 0.1				
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Antimony (Sb)	mg/L	0.0010					0.0007					0.0007				
Selenium (Se)	mg/L	< 0.005					< 0.005					< 0.005				
Tin (Sn)	mg/L	< 0.001					< 0.001					< 0.001				
Strontium (Sr)	mg/L	0.0041					0.0053					0.0047				
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003				
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Uranium (U)	mg/L	0.0006					0.0007					0.0007				
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009				
Tungsten (W)	mg/L	< 0.0002					< 0.0002					< 0.0002				
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001				
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001				

 S-Total:
 0.03%

 S²:
 0.03%

 NP:
 16.8 t CaCO3/1000 t

 CaNP:
 8.3 t CaCO3/1000 t

 AP:
 0.62 t CaCO3/1000 t

 Weight:
 1000 g

Weeks	#	30	31	32	33	34	35	36	37	38	39	40
Date		15-Nov-05	22-Nov-05	29-Nov-05	6-Dec-05	13-Dec-05	20-Dec-05	27-Dec-05	3-Jan-06	10-Jan-06	17-Jan-06	24-Jan-06
Leachate Volume	Added (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume	Recovered (mL)	886	920	913	955	882	894	930	939	953	897	936
pН	Effluent (units)	7.18	7.04	6.96	6.94	6.99	8.66	7.02	7.28	7.03	7.14	7.12
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	24	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	6	4	4	4	5	6	4	5	3	12	4
Conductivity	µmhos/cm	17	11	10	10	11	24	15	22	9	16	12
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.77	0.5	0.56	0.75	0.64	0.6	0.54	0.58	0.57	0.56	0.54
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	0.02	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05
, -,	as CaCO ₃ (mg/L)											
(0)	0(0)	< 2					< 2					<2
Ammonia	mg/L	< 0.1					< 0.1					< 0.1
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L	< 0.0001					< 0.0001					< 0.0001
Aluminum (Al)	mg/L	0.03					0.05					0.03
Arsenic (As)	mg/L	0.047 < 0.001					0.044 < 0.001					0.032 < 0.001
Barium (Ba)	mg/L						< 0.001					< 0.001
Beryllium (Be)	mg/L	< 0.005										
Boron (B)	mg/L	< 0.01					< 0.01					< 0.01
Bismuth (Bi) Cadmium (Cd)	mg/L	< 0.0003 < 0.0001					< 0.0003 < 0.0001					< 0.0003 < 0.0001
Cobalt (Co)	mg/L mg/L	< 0.0001					< 0.0001					< 0.0001
Chromium (Cr)		< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L	< 0.001					< 0.0001					< 0.0001
Potassium (K)	mg/L mg/L	1.3400					1.1600					0.9500
Lithium (Li)	mg/L	< 0.005					< 0.005					< 0.005
Magnesium (Mg)		0.30					0.25					0.19
	mg/L	< 0.0007					< 0.0007					< 0.0007
Molydenum (Mo)		< 0.0007					< 0.0007					< 0.0007
Sodium (Na)	mg/L	0.5900					0.4300					0.2800
Nickel (Ni)	mg/L	< 0.001					< 0.001					< 0.001
Phosphorous (P)	mg/L	< 0.1					< 0.1					< 0.1
Lead (Pb)	mg/L	< 0.0002					< 0.0002					< 0.0002
Antimony (Sb)	mg/L	0.0008					0.0004					0.0006
Selenium (Se)	mg/L	< 0.005					< 0.005					< 0.005
Tin (Sn)	mg/L	< 0.001					< 0.001					< 0.001
Strontium (Sr)	mg/L	0.0086					0.0049					0.0041
Titanium (Ti)	mg/L	< 0.003					< 0.003					< 0.003
Thallium (TI)	mg/L	< 0.0002					< 0.0002					< 0.0002
Uranium (U)	mg/L	0.0008					0.0006					0.0004
Vanadium (V)	mg/L	< 0.0009					< 0.0009					< 0.0009
Tungsten (W)	mg/L	< 0.0002					< 0.0002					< 0.0002
Yttrium (Y)	mg/L	< 0.0001					< 0.0001					< 0.0001
Zinc (Zn)	mg/L	< 0.001					< 0.001					< 0.001
· \=,												

May 2011

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Date	"	April 19/05	April 26/05	May 03/05	May 10/05	May 17/05	May 24/05	May 31/05	June 7/05	June 14/05	June 21/05		July 5/05	July 12/05	July 19/05
Leachate Volume Add	led (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	\ /	814	970	994	910	913	861	937	932	917	934	883	996	996	998
Н	Effluent (units)	7.57	7.24	7.4	7.16	7.36	7.35	7.40	7.24	7.24	7.31	7.41	7.60	7.42	7.09
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	<2	< 2	< 2	< 2	< 2	< 2	<2	<2
Alkalinity	as CaCO ₃ (mg/L)	14	20	13	8	9	7	8	7	6	6	7	11	11	5
Conductivity	umhos/cm	47	50	34	23	43	18	29	20	16	18	20	27	31	20
Sulphate (SO ₄)	mg/L	< 5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	1.5
Calcium (Ca)	mg/L	0.74	1.17	4.07	1.07	1.6	1.22	1.82	1.83	1.49	1.88	2.16	3.33	2.45	2.18
Iron (Fe)	ma/L	0.05	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	0.05
Chloride (CI)	mg/L	< 2					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.6					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.5					< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	< 0.1					< 0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Silver (Ag)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001			
Aluminum (AI)	mg/L	0.26	0.08	0.05		-	0.09					0.05			
Arsenic (As)	mg/L	0.008	0.01	0.011			0.008					0.006			
Barium (Ba)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Beryllium (Be)	mg/L	< 0.005	< 0.005	< 0.005		-	< 0.005					< 0.005			
Boron (B)	mg/L	0.02	0.04	0.02			< 0.02					< 0.01			
Bismuth (Bi)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003			
Cadmium (Cd)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001			
Cobalt (Co)	mg/L	< 0.0003	< 0.0003	< 0.0003			< 0.0003					< 0.0003			
Chromium (Cr)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Copper (Cu)	mg/L	< 0.0008	< 0.0008	0.0009			< 0.0008					< 0.0008			
Potassium (K)	mg/L	6.44	6.26	5.04 < 0.005			2.8600					1.7600			
Lithium (Li)	mg/L	< 0.005 0.091	< 0.005 0.145	0.185			< 0.005 0.19					< 0.005 0.203			
Magnesium (Mg) Manganese (Mn)	mg/L mg/L	< 0.091	0.145	< 0.0007			< 0.0007					0.203			
Molydenum (Mo)	mg/L	0.0007	0.0007	0.0007			< 0.0007					< 0.0003			
Sodium (Na)	mg/L	5.95	5.7	2.87			0.750					0.260			
Nickel (Ni)	mg/L	< 0.001	< 0.001	< 0.001			< 0.001					< 0.001			
Phosphorous (P)	mg/L	< 0.1	< 0.1	< 0.1			< 0.1					< 0.1			
Lead (Pb)	mg/L	< 0.0002	0.0002	< 0.0002			< 0.0002					< 0.0002			
Antimony (Sb)	mg/L	0.0044	0.0198	0.0139			0.0039					0.0035			
Selenium (Se)	mg/L	< 0.005	< 0.005	< 0.005		-	< 0.005					< 0.005			
Tin (Sn)	mg/L	0.002	0.004	0.003			< 0.001					0.001			
Strontium (Sr)	mg/L	0.0021	0.0056	0.0066		-	0.0042					0.0059			
Titanium (Ti)	mg/L	0.004	< 0.003	< 0.003			< 0.003					< 0.003			
Thallium (TI)	mg/L	< 0.0002	< 0.0002	< 0.0002			< 0.0002					< 0.0002			
Uranium (U)	mg/L	< 0.0002	0.002	0.0028			0.0022					0.0017			
Vanadium (V)	mg/L	0.0017	0.0021	0.0019			0.0016					0.0012			
Tungsten (W)	mg/L	0.0074	0.0091	0.0028			0.0003					0.0003			
Yttrium (Y)	mg/L	< 0.0001	< 0.0001	< 0.0001			< 0.0001					< 0.0001			
Zinc (Zn)	mg/L	< 0.001	0.002	< 0.001			< 0.001					< 0.001			

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S-Total: S²⁻: NP: CaNP: AP: Weight:

1000 g

Weeks	#	14	15	16	17	18	19	20	21	22	23	24	25	26	27
Date		July 26/05	Aug 2/05	Aug 9/05	Aug 16/05	Aug 23/05	Aug 30/05	Sep 6/05	Sep 13/05	Sep 20/ 05	Sep 27/05	Oct 04/05	Oct 11/05	Oct18/05	Oct25/05
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	covered (mL)	900	938	963	926	938	9.23	960	958	936	916	972	956	918	948
pH	Effluent (units)	6.77	6.94	7.13	7.04	7.01	6.52	6.85	7.13	6.58	7.21	7.12	7.13	6.93	6.83
Acidity	as CaCO ₃ (mg/L)	<2	< 2	<2	<2	<2	<2	< 2	<2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	6.8	6	7	4	4	10	5	4	5	6	5	4	5
Conductivity	µmhos/cm	10	12	13	12	12	15	13	18	15	11	14	13	12	12
Sulphate (SO ₄)	mg/L	<0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.33	1.74	1.84	3.28	1.5	1.61	1.99	1.95	1.6	1.46	1.98	1.83	1.23	1.74
Iron (Fe)	mg/L	< 0.02	7.73	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L		< 0.2					< 0.2					< 0.2		
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.06					< 0.06		
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					<2		
Ammonia	mg/L		0.1					< 0.1					< 0.1		
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Aluminum (AI)	mg/L		0.06					0.03					0.04		
Arsenic (As)	mg/L		< 0.005					< 0.005					< 0.005		
Barium (Ba)	mg/L		< 0.001					< 0.001					< 0.001		
Beryllium (Be)	mg/L		< 0.005					< 0.005					< 0.005		
Boron (B)	mg/L		0.01					< 0.01					< 0.01		
Bismuth (Bi)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Cadmium (Cd)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Cobalt (Co)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Chromium (Cr)	mg/L		< 0.001					< 0.001					< 0.001		
Copper (Cu)	mg/L		< 0.0008					< 0.0008					< 0.0008		
Potassium (K)	mg/L		1.28					0.92					0.8500		
Lithium (Li)	mg/L		< 0.005					< 0.005					< 0.005		
Magnesium (Mg)	mg/L		0.142					0.134					0.1020		
Manganese (Mn)	mg/L		< 0.0007					< 0.0007					0.00		
Molydenum (Mo)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Sodium (Na)	mg/L		0.17					0.11					0.07		
Nickel (Ni)	mg/L		< 0.001					< 0.001					< 0.001		
Phosphorous (P)	mg/L		< 0.1					< 0.1					< 0.1		
Lead (Pb)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Antimony (Sb)	mg/L		0.0030					0.0026					0.0021		
Selenium (Se)	mg/L		< 0.005					< 0.005					< 0.005		
Tin (Sn)	mg/L		< 0.001					< 0.001					< 0.001		
Strontium (Sr)	mg/L		0.0035					0.0037					0.0026		
Titanium (Ti)	mg/L		< 0.003					< 0.003					< 0.003		
Thallium (TI)	mg/L		< 0.0002					< 0.0002					< 0.0002		
Uranium (U)	mg/L		0.0013					0.0009					0.0007		
Vanadium (V)	mg/L		0.001					< 0.0009					< 0.0009		
Tungsten (W)	mg/L		0.0004					< 0.0002					< 0.0002		
Yttrium (Y)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Zinc (Zn)	mg/L		< 0.001					< 0.001					< 0.001		

S-Total:

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Date	"	Nov1 01/05	Nov 08/05	Nov 15/05	Nov22/05	Nov29/05	Dec06/05	Dec13/05	Dec 20/05	Dec 27/05	Jan 03/06	Jan 10/06	Jan 17/06	Jan 24/06	Jan 31/06
Leachate Volume Add	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red		958	906	878	927	932	950	882	879	925	972	941	931	921	918
Н	Effluent (units)	6.95	6.95	6.82	6.87	8.00	6.89	6.62	6.80	6.80	7.11	6.93	6.96	6.91	6.65
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	22	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	5	4	3	4	7	4	3	3	4	4	3	3	3	4
Conductivity	umhos/cm	12	11	11	11	15	11	7	13	18	24	12	17	12	17
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.85	1.2	0.99	1.05	1.36	1.75	0.98	0.6	1.54	1.36	1.49	1.15	1.27	1.18
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.03	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chloride (CI)	mg/L			< 0.2					< 0.2					< 0.2	
Nitrite (NO ₂)	as N mg/L			< 0.06					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L			< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					<2	
Ammonia	mg/L			< 0.1					< 0.1					< 0.1	
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Silver (Ag)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Aluminum (AI)	mg/L			0.05					0.06					0.03	
Arsenic (As)	mg/L			< 0.005					< 0.005					< 0.005	
Barium (Ba)	mg/L			< 0.001					< 0.001					< 0.001	
Beryllium (Be)	mg/L			< 0.005					< 0.005					< 0.005	
Boron (B)	mg/L			< 0.01					< 0.01					< 0.01	
Bismuth (Bi)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Cadmium (Cd)	mg/L			< 0.0001					< 0.0001					< 0.0001	
Cobalt (Co)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Chromium (Cr)	mg/L			< 0.001					< 0.001					< 0.001	
Copper (Cu)	mg/L			< 0.0008					< 0.0008					< 0.0008	
Potassium (K)	mg/L			0.7700					1.1800					0.64	
Lithium (Li)	mg/L			< 0.005					< 0.005					< 0.005	
Magnesium (Mg)	mg/L			0.08					0.26					0.068	
Manganese (Mn)	mg/L			< 0.0007					< 0.0007					< 0.0007	
Molydenum (Mo)	mg/L			< 0.0003					< 0.0003					< 0.0003	
Sodium (Na)	mg/L			0.0700					0.4200					0.06	
Nickel (Ni)	mg/L			< 0.001					< 0.001					< 0.001	
Phosphorous (P)	mg/L			< 0.1					< 0.1					< 0.1	
Lead (Pb)	mg/L			< 0.0002					< 0.0002					< 0.0002	
Antimony (Sb)	mg/L			0.0017					0.0009					0.0014	
Selenium (Se)	mg/L			< 0.005					< 0.005					< 0.005	
Tin (Sn)	mg/L			< 0.001 0.0034					< 0.001 0.0049					< 0.001 0.002	
Strontium (Sr)	mg/L														
Titanium (Ti) Thallium (TI)	mg/L			< 0.003 < 0.0002					< 0.003 < 0.0002					< 0.003 < 0.0002	
	mg/L			0.0002										< 0.0002	
Uranium (U)	mg/L								< 0.0002 < 0.0009						
Vanadium (V)	mg/L			< 0.0009 0.0003					0.0009					< 0.0009 < 0.0002	
Tungsten (W) Yttrium (Y)	mg/L			< 0.0003					< 0.0002					< 0.0002	
Zinc (Zn)	mg/L mg/L			< 0.0001					< 0.0001					< 0.0001	
ZITIC (ZII)	IIIg/L			< 0.001					< 0.001					< 0.001	

S-Total:

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

14/	Tu	1 40	40	4.4	45	40	47	40	10	50	F4	50	50	F.4
Weeks	#	42	43	44	45	46	47	48	49	50	51	52	53	54
Date	dod (m)	Feb 07/06 1000	Feb 14/06 1000	Feb 21/06 1000	Feb 28/06 1000	Mar 07/06 1000	Mar 14/06 1000	Mar 21/06 1000	Mar 28/06. 1000	Apr 04/06 1000	Apr 11/06	Apr 18/06 1000	Apr 25/06 1000	May 02/06 1000
Leachate Volume Ad- Leachate Volume Re		948	946	908	962	882	970	878	939		1000 897	879	928	888
pH	Effluent (units)	6.79	6.62	6.77	6.65	6.84	6.83	6.81	6.95	891 6.54	6.53	6.64	6.74	6.71
	as CaCO ₃ (mg/L)	< 2	9		< 2									< 2
Acidity	-, 0 ,		_	< 2		< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	
Alkalinity	as CaCO ₃ (mg/L)	4	6	6	4	3	4	4	5	2	< 2	3	3	4
Conductivity	µmhos/cm	11	10	10	15	10	12	11	19	9	7	10	9	20
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.35	1.38	1.24	1.47	0.86	1.58	0.99	2.35	0.81	0.82	1.03	0.94	0.89
Iron (Fe)	mg/L	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	0.02	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L				< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L				< 0.05					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2				
Ammonia	mg/L				< 0.1					< 0.1				
Mercury (Hg)	mg/L				< 0.0001					< 0.0001				
Silver (Ag)	mg/L				< 0.0001					< 0.00003				
Aluminum (AI)	mg/L				0.01					0.01			-	
Arsenic (As)	mg/L				< 0.005					0.0026				
Barium (Ba)	mg/L				< 0.001					0.00014			-	
Beryllium (Be)	mg/L				< 0.005					< 0.00004				
Boron (B)	mg/L				< 0.07					< 0.003				
Bismuth (Bi)	mg/L				< 0.0003					< 0.00002				
Cadmium (Cd)	mg/L				< 0.0001					< 0.00006				
Cobalt (Co)	mg/L				< 0.0003					0.00002			-	
Chromium (Cr)	mg/L				< 0.001					< 0.0003				
Copper (Cu)	mg/L				< 0.0008					0.0004				
Potassium (K)	mg/L				0.78					0.54				
Lithium (Li)	mg/L				< 0.002					< 0.002				
Magnesium (Mg)	mg/L				0.072					0.049				
Manganese (Mn)	mg/L				0.0013					0.00047				
Molydenum (Mo)	mg/L				< 0.0003					< 0.00005				
Sodium (Na)	mg/L				< 0.03					0.06				
Nickel (Ni)	mg/L				< 0.001					< 0.0007				
Phosphorous (P)	mg/L				< 0.01					0.05				
Lead (Pb)	mg/L				< 0.0002					0.00002				
Antimony (Sb)	mg/L				0.0013					0.0011				
Selenium (Se)	mg/L				< 0.005					< 0.003				
Tin (Sn)	mg/L				< 0.001					< 0.0003				
Strontium (Sr)	mg/L				0.0023					0.0013				
Titanium (Ti)	mg/L				< 0.003					< 0.0002				
Thallium (TI)	mg/L				< 0.0002					< 0.0001				
Uranium (U)	mg/L				< 0.0002					0.00013				
Vanadium (V)	mg/L				< 0.0009					0.00046 0.00007				
Tungsten (W)	mg/L				< 0.0002 < 0.0001					< 0.00007				
Yttrium (Y)	mg/L													
Zinc (Zn)	mg/L				< 0.001					0.0007				

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S-Total: S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	55	56	57	58	59	60	61	62	63	64	65	66	67	68
Date		May 09/06	May 16/06	May 23/06	May 30/06	Jun 6/06	Jun 13/06	Jun 20, 06	Jun 27, 06	Jul 04, 06	Jul 11, 06	Jul 18, 06	Jul 25, 06	Aug 1, 06	
Leachate Volume Add	led (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	covered (mL)	920	914	962	909	978	922	873	924	881	853	916	872	882	884
рН	Effluent (units)	6.54	6.42	6.67	6.77	7.08	6.82	6.87	6.68	6.50	6.49	6.46	6.52	6.27	6.49
Acidity	as CaCO ₃ (mg/L)	3	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	3	4	4	6	3	6	3	2	2	2	2	2	2
Conductivity	µmhos/cm	48	118	53	15	17	7	8	10	7	7	6	8	5	6
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.92	0.87	1.45	1.47	1.6	0.86	0.66	0.99	0.77	0.74	0.74	0.77	0.7	0.66
Iron (Fe)	mg/L	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.07	< 0.01
Chloride (CI)	mg/L	< 0.2					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					< 0.05			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	0.1					< 0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Silver (Ag)	mg/L	< 0.00003					< 0.00003					< 0.00003			
Aluminum (AI)	mg/L	0.02					0.02					0.02			
Arsenic (As)	mg/L	0.0018					0.0014					0.0014			
Barium (Ba)	mg/L	0.00012					0.00011					0.00014			
Beryllium (Be)	mg/L	< 0.00004					< 0.00004					< 0.00004			
Boron (B)	mg/L	< 0.002					< 0.002					0.004			
Bismuth (Bi)	mg/L	< 0.00002					< 0.00002			-		< 0.00002			
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006			
Cobalt (Co)	mg/L	0.00001					< 0.000007					< 0.000007			
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003			
Copper (Cu)	mg/L	0.0005					0.0004					0.0001			
Potassium (K)	mg/L	0.55					0.46					0.5			
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002			
Magnesium (Mg)	mg/L	0.054					0.048					0.046			
Manganese (Mn)	mg/L	0.00063					0.0005					0.00038			
Molydenum (Mo)	mg/L	0.00009					< 0.00005					< 0.00005			
Sodium (Na)	mg/L	0.04					0.03					0.04			
Nickel (Ni)	mg/L	< 0.0007					< 0.0007					< 0.0007			
Phosphorous (P)	mg/L	< 0.01					< 0.01					< 0.01			
Lead (Pb)	mg/L	0.00002					0.00002					< 0.00002			
Antimony (Sb)	mg/L	0.001					0.0008					0.0006			
Selenium (Se)	mg/L	< 0.003					< 0.003					< 0.003			
Tin (Sn)	mg/L	< 0.0003					< 0.0003					< 0.0003			
Strontium (Sr)	mg/L	0.0014					< 0.0006					0.001			
Titanium (Ti)	mg/L	< 0.0002					< 0.0002					< 0.0002			
Thallium (TI)	mg/L	< 0.0001 0.00014					< 0.0001 0.0001					< 0.0001			
Uranium (U)	mg/L											0.00007			
Vanadium (V)	mg/L	0.00027 0.00011					0.00039					0.00038			
Tungsten (W)	mg/L						< 0.00007					0.00013			
Yttrium (Y)	mg/L	< 0.000005					< 0.000005					< 0.000005			
Zinc (Zn)	mg/L	0.0013					0.0008					0.0007			

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	69	70	71	72	73	74	75	76	77	78	79	80	81	82
Date	π	Aug 15, 06	Aug 22, 06	Aug 29, 06		Sep 12, 06	Sep 19, 06	Sep 26, 06	Oct 03, 06	Oct 10. 06	Oct 17, 06	Oct 24, 06	Oct 31, 06	Nov 7. 06	Nov 14. 06
Leachate Volume Adde	ed (ml)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Reco		882	867	866	890	N/A	872	878	949	849	882	855	884	896	910
pH	Effluent (units)	6.56	6.49	6.56	6.52	6.83	6.61	6.52	6.76	6.93	6.96	6.45	6.41	6.28	7.09
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	3
Alkalinity	as CaCO ₃ (mg/L)	2	2	2	2	3	2	2	3	4	4	2	2	2	4
Conductivity	umhos/cm	2	6	5	7	10	10	14	16	13	16	8	7	13	24
· · · · · · · · · · · · · · · · · · ·		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
1 ()/	mg/L														
Calcium (Ca) Iron (Fe)	mg/L	0.72	0.84 < 0.02	0.69	0.64	1.19	0.91	0.69 < 0.02	1.07	1.83	1.67	0.93	5.09 < 0.02	0.8	0.86
Chloride (CI)	mg/L	0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01
Nitrite (NO ₂)	mg/L		< 0.2										< 0.2		
\ -/	as N mg/L							< 0.06							
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05		
Carbonate (CO ₃)	as CaCO ₃ (mg/L)		< 2					< 2					< 2		
Ammonia	mg/L		< 0.1					0.1					< 0.1		
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Silver (Ag)	mg/L		< 0.00003					< 0.00003					< 0.00003		
Aluminum (Al)	mg/L		< 0.01					0.04					< 0.01		
Arsenic (As)	mg/L		0.0014					0.001					0.0006		
Barium (Ba)	mg/L		0.00015					0.00018					0.00012		
Beryllium (Be)	mg/L		< 0.00004					< 0.00004					< 0.00004		
Boron (B)	mg/L		< 0.002					< 0.002					0.047		
Bismuth (Bi)	mg/L		< 0.00002					< 0.00002					< 0.00002		
Cadmium (Cd) Cobalt (Co)	mg/L		< 0.00006 < 0.000007					< 0.00006 0.000045					0.00007 0.0001		
Chromium (Cr)	mg/L mg/L		< 0.00007					0.000045					< 0.0001		
Copper (Cu)	mg/L		0.0003					0.0014					0.0012		
Potassium (K)	mg/L		0.55					0.45					1.35		
Lithium (Li)	mg/L		< 0.002					< 0.002					< 0.002		
Magnesium (Mg)	mg/L		0.056					0.049					33.2		
Manganese (Mn)	mg/L		0.00073					0.00048					0.0005		
Molydenum (Mo)	mg/L		< 0.00005					< 0.00005					< 0.00005		
Sodium (Na)	mg/L		0.04					< 0.04					0.46		
Nickel (Ni)	mg/L		< 0.0007					< 0.0007					< 0.0007		
Phosphorous (P)	mg/L		< 0.01					0.05					0.01		
Lead (Pb)	mg/L		0.00007					0.00011					0.00007		
Antimony (Sb)	mg/L		0.001					0.0011					0.0012		
Selenium (Se)	mg/L		< 0.003					< 0.003					< 0.003		
Tin (Sn)	mg/L		< 0.0003					< 0.0003					< 0.0003		
Strontium (Sr)	mg/L		0.0013					0.001					0.0063		
Titanium (Ti)	mg/L		< 0.0002					< 0.0002					0.0004		
Thallium (TI)	mg/L		< 0.0001					< 0.0001					< 0.0001		
Uranium (U)	mg/L		0.00004					0.00003					< 0.00002		
Vanadium (V)	mg/L		0.00039					0.00017					0.00033		
Tungsten (W)	mg/L		0.00011					0.0001					0.00018		
Yttrium (Y)	mg/L		< 0.000005					0.000011					0.00001		
Zinc (Zn)	mg/L		0.0038					0.0008					0.0023		

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	83	84	85	86	87	88	89	90	91	92	93	94	95
Date		Nov 21, 06	Nov 28, 06	Dec 05, 06	Dec 12, 06	Dec 19, 06	Dec 27, 06	Jan 02, 07	Jan 9, 07	Jan 16, 07	Jan 23, 07	Jan 30, 07	Feb 6, 07	Feb 13, 07
Leachate Volume Add	ded (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Red	covered (mL)	966	867	947	893	980	885	917	994	915	911	912	896	910
рН	Effluent (units)	7.01	6.53	6.76	6.30	6.57	6.43	6.63	6.72	6.52	6.66	6.48	6.36	6.38
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	5	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	16	2	3	< 2	3	2	2	3	2	2	< 2	< 2	2
Conductivity	µmhos/cm	18	7	6	6	10	7	7	16	13	10	10	11	14
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	0.56	0.86	0.85	0.75	1.28	0.79	0.94	1.45	0.75	0.87	0.78	0.86	0.79
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.02	< 0.02	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.02
Chloride (CI)	mg/L			< 0.2					< 0.2					< 0.2
Nitrite (NO ₂)	as N mg/L			< 0.06					< 0.06					< 0.06
Nitrate (NO ₃)	as N mg/L			< 0.05					0.08					< 0.05
Carbonate (CO ₃)	as CaCO ₃ (mg/L)			< 2					< 2					< 2
Ammonia	mg/L			< 0.1					< 0.1		1			< 0.1
Mercury (Hg)	mg/L			< 0.0001					< 0.0001					< 0.0001
Silver (Ag)	mg/L			< 0.00003					< 0.00003					< 0.00003
Aluminum (AI)	mg/L			0.01					0.01					0.02
Arsenic (As)	mg/L			0.0009					0.0017					0.0009
Barium (Ba)	mg/L			0.0001					0.00015					0.00012
Beryllium (Be)	mg/L			< 0.00004					< 0.00004					< 0.00004
Boron (B)	mg/L			< 0.007					< 0.002					< 0.002
Bismuth (Bi)	mg/L			< 0.00002					< 0.00002					< 0.00002
Cadmium (Cd)	mg/L			< 0.00006					< 0.00006					< 0.00006
Cobalt (Co)	mg/L			0.000011					0.000009					< 0.000007
Chromium (Cr)	mg/L			< 0.0003					< 0.0003					< 0.0003
Copper (Cu)	mg/L			0.0003					< 0.0001					0.0002
Potassium (K)	mg/L			0.55					0.59					0.54
Lithium (Li)	mg/L			< 0.002					< 0.002					< 0.002
Magnesium (Mg)	mg/L			0.038					0.07					0.051
Manganese (Mn)	mg/L			0.00056					0.00095					0.00048
Molydenum (Mo)	mg/L			< 0.00005					< 0.00005					< 0.00005
Sodium (Na)	mg/L			< 0.04					0.06					0.06
Nickel (Ni)	mg/L			< 0.0007					< 0.0007					< 0.0007
Phosphorous (P)	mg/L			0.01					< 0.01					< 0.01
Lead (Pb)	mg/L			< 0.00002					< 0.00002					0.0001
Antimony (Sb)	mg/L			0.0008					0.0009					0.0005
Selenium (Se)	mg/L			< 0.003					< 0.001					< 0.001
Tin (Sn)	mg/L			< 0.0003					< 0.0003					< 0.0003
Strontium (Sr)	mg/L			0.0009					0.0018					0.0012
Titanium (Ti)	mg/L			< 0.0002					< 0.0002					< 0.0002
Thallium (TI)	mg/L			< 0.0001					< 0.0001					< 0.0001
Uranium (U)	mg/L			0.00005					0.0001					0.00003
Vanadium (V)	mg/L			0.00023					0.0003					0.00017
Tungsten (W)	mg/L			< 0.00007					0.00017					0.00057
Yttrium (Y)	mg/L			< 0.000005					< 0.000005					< 0.000005
Zinc (Zn)	mg/L			0.0006					0.0017					0.0004

08-1118-0043

S-Total: <0.01% S²-: <0.01% NP: 9.5 t CaCO3/1000 t CaNP: 0.83 t CaCO3/1000 t AP: 0.31 t CaCO3/1000 t Weight:

1000 q

Weeks 96 97 98 99 100 101 102 103 104 105 106 107 108 109 Date Feb 20, 07 Feb 27, 07 Mar 06, 07 Mar 13,07 Mar 20, 07 Mar 27, 07 Apr 03, 07 Apr 10, 07 Apr 17, 07 Apr 24, 07 May 01, 07 May 08, 07 May 15, 07 May 22, 07 Leachate Volume Added (mL) 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Leachate Volume Recovered (mL) 938 900 998 988 982 957 977 989 964 969 989 996 996 964 Effluent (units) 6.54 6.47 6.73 6.62 6.61 6.87 6.59 6.64 6.70 6.64 6.79 6.52 6.66 6.64 as CaCO₃ (mg/L) Acidity < 2 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 88 as CaCO₃ (mg/L) Alkalinity 2 2 3 3 2 3 3 2 3 2 4 2 3 4 7 Conductivity umhos/cm 9 11 12 11 12 10 11 38 20 13 11 12 11 Sulphate (SO₄) mg/L < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 Calcium (Ca) mg/L 0.9 0.76 1.27 1.24 1.41 1.7 1.4 1.31 1.34 1.34 1.41 1.31 1.45 1.15 Iron (Fe) < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 mg/L < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 Chloride (CI) mg/L < 0.2 < 0.2 ------------------------------Nitrite (NO₂) < 0.06 as N mg/L < 0.06 ---------------------------------Nitrate (NO₃) 0.05 as N mg/L ------------------------< 0.05 ---------Carbonate (CO₃) as CaCO₃ (mg/L) ---------< 2 ---------< 2 ---Ammonia mg/L < 0.1 < 0.1 ------------------------------------< 0.0001 < 0.0001 Mercury (Hg) mg/L ------------------------------------Silver (Ag) mg/L ------< 0.00003 ---------< 0.00003 ---------Aluminum (Al) mg/L ---0.02 ---0.01 ------------Arsenic (As) 0.0006 0.0008 mg/L Barium (Ba) 0.00013 0.00011 mg/L ------Beryllium (Be) mg/L < 0.00004 ------< 0.00004 ---Boron (B) < 0.002 < 0.002 mg/L ---------------Bismuth (Bi) < 0.00002 < 0.00002 mg/L ---------------< 0.00006 Cadmium (Cd) mg/L < 0.00006 Cobalt (Co) mg/L 0.000019 0.000016 < 0.0003 Chromium (Cr) mg/L < 0.0003 Copper (Cu) mg/L < 0.0001 < 0.0001 Potassium (K) mg/L ------0.5 0.47 Lithium (Li) mg/L < 0.002 ---< 0.002 ------Magnesium (Mg) 0.07 0.057 mg/L ------Manganese (Mn) 0.00071 0.00054 mg/L ---------------------------------Molydenum (Mo) < 0.00005 < 0.00005 mg/L ------------------------------------Sodium (Na) mg/L ------------0.04 ------------0.04 ------------Nickel (Ni) < 0.0007 < 0.0007 mg/L ------------------------------------Phosphorous (P) mg/L ------------< 0.01 ------------< 0.01 ------------Lead (Pb) mg/L ---------< 0.00002 ---< 0.00002 ---------0.0007 0.0007 Antimony (Sb) mg/L ------------------------------------Selenium (Se) mg/L ------< 0.001 ------------< 0.001 ------------------Tin (Sn) 0.0003 < 0.0003 mg/L ------------------------Strontium (Sr) 0.0017 0.0014 mg/L ------------Titanium (Ti) < 0.0002 < 0.0002 mg/L Thallium (TI) < 0.0001 < 0.0001 mg/L Uranium (U) mg/L ---0.0001 0.00006 Vanadium (V) 0.00024 0.00025 mg/L Tungsten (W) 0.00014 0.00043 mg/L Yttrium (Y) mg/L < 0.000005 < 0.000005 Zinc (Zn) mg/L 0.0008 0.0005 ------------

S-Total:

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

	T.,														
Weeks	#	110	111	112	113	114	115	116	117	118	119	120	121	122	123
Date		May 29, 07	Jun 5, 07	Jun 12, 07	Jun 19, 07	Jun 26, 07	Jul 03, 07	Jul 10, 07	Jul 17, 07	Jul 24, 07	Jul 31, 07	Aug 7, 07	Aug 14, 07	Aug 21, 07	Aug 28, 07
Leachate Volume Add		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec		981	982	980	984	947	979	982	970	824	980	928	937	990	976
pH	Effluent (units)	6.83	6.77	6.72	6.60	6.70	6.63	6.75	6.51	6.74	6.84	6.43	6.44	8.62	7.02
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	2	3	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	3	5	3	2	3	2	4	3	3	3	2	2	6	4
Conductivity	µmhos/cm	10	22	16	12	15	11	13	9	10	13	10	10	24	17
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.37	1.39	1.33	1.33	1.58	1.28	1.61	1.31	2.06	1.48	1.5	1.27	1.27	1.26
Iron (Fe)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L	0.2					< 0.2					< 0.2			
Nitrite (NO ₂)	as N mg/L	< 0.06					< 0.06					< 0.06			
Nitrate (NO ₃)	as N mg/L	< 0.05					< 0.05					0.12			
Carbonate (CO ₃)	as CaCO ₃ (mg/L)	< 2					< 2					< 2			
Ammonia	mg/L	< 0.1					< 0.1					< 0.1			
Mercury (Hg)	mg/L	< 0.0001					< 0.0001			-		< 0.0001			
Silver (Ag)	mg/L	< 0.00003					< 0.00003			-		< 0.00003			
Aluminum (Al)	mg/L	< 0.01					0.01			-		0.02			
Arsenic (As)	mg/L	0.0007					0.0007					0.0007			
Barium (Ba)	mg/L	0.00017					0.00014					0.00018			
Beryllium (Be)	mg/L	< 0.00004					< 0.00004					< 0.00004			
Boron (B)	mg/L	< 0.002					< 0.002					0.003			
Bismuth (Bi)	mg/L	< 0.00002					< 0.00002					< 0.00002			
Cadmium (Cd)	mg/L	< 0.00006					< 0.00006					< 0.00006			
Cobalt (Co)	mg/L	0.00003					0.000027					0.000017			
Chromium (Cr)	mg/L	< 0.0003					< 0.0003					< 0.0003			
Copper (Cu)	mg/L	0.0003					0.0001					0.0008			
Potassium (K)	mg/L	0.46					0.43					0.43			
Lithium (Li)	mg/L	< 0.002					< 0.002					< 0.002			
Magnesium (Mg)	mg/L	0.058					0.035					0.059			
Manganese (Mn) Molvdenum (Mo)	mg/L	0.00089 < 0.00005					0.00043 < 0.00005					0.00095 < 0.00005			
Sodium (Na)	mg/L	0.00005					< 0.00005					0.00005			
Nickel (Ni)	mg/L mg/L	< 0.0007					< 0.007					< 0.0007			
Phosphorous (P)	mg/L	< 0.0007					< 0.0007					< 0.0007			
Lead (Pb)	mg/L	0.00013					0.00004					0.00012			
Antimony (Sb)	mg/L	0.0009					0.000					0.00012			
Selenium (Se)	mg/L	< 0.001					< 0.001					< 0.001			
Tin (Sn)	mg/L	< 0.0003					< 0.0003					0.0033			
Strontium (Sr)	mg/L	0.0013					0.0014					0.0015			
Titanium (Ti)	mg/L	< 0.0002					< 0.0002					< 0.0002			
Thallium (TI)	mg/L	< 0.0001					< 0.0001					< 0.0001			
Uranium (U)	mg/L	0.00006					0.00009					0.00012			
Vanadium (V)	mg/L	0.0002					0.00017					0.00018			
Tungsten (W)	mg/L	0.00008					0.00008					< 0.00007			
Yttrium (Y)	mg/L	0.000005					< 0.000005					0.000005			
Zinc (Zn)	mg/L	0.0029					0.0009					0.002			

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S-Total: S²⁻: NP: CaNP: AP: Weight:

1000 g

Weeks	#	124	125	126	127	128	129	130	131	132	133	134	135	136
Date	"	Sep 4, 07	Sep 11, 07	Sep 18, 07	Sep 25, 07	Oct 02, 07	Oct 09, 07	Oct 16. 07	Oct 23, 07	Oct 30, 07	Nov 06. 07	Nov 13. 07	Nov 20. 07	Nov 27. 07
Leachate Volume Ad	ded (ml.)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Re	()	969	988	974	990	998	1000	993	998	938	1001	957	870	*
На	Effluent (units)	5.69	6.65	6.59	6.87	6.60	6.78	6.28	4.80	6.54	6.40	6.66	6.69	6.76
Acidity	as CaCO ₃ (mg/L)	4	< 2	< 2	< 2	< 2	< 2	< 2	3	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	2	3	2	3	2	2	2	< 2	12	< 2	3	3	4
Conductivity	umhos/cm	20	18	13	14	8	14	8	18	11	9	9	1480	16
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.21	1.22	1.17	1.11	1.4	1.12	1.14	1.18	1.47	1.2	1.29	1.31	1.97
Iron (Fe)	ma/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L		< 0.01					< 0.2					< 0.01	
Nitrite (NO ₂)	as N mg/L		< 0.06					< 0.06					< 0.06	
Nitrate (NO ₃)	as N mg/L		< 0.05					< 0.05					< 0.05	
Carbonate (CO ₃)	as N Hig/L as CaCO ₃ (mg/L)													
(0,	٥, ٥,		< 2					< 2					< 2	
Ammonia	mg/L		< 0.1					0.2					< 0.1	
Mercury (Hg)	mg/L		< 0.0001					< 0.0001					< 0.0001	
Silver (Ag) Aluminum (Al)	mg/L		< 0.00001 0.02					< 0.00001					< 0.00001 0.01	
Arsenic (As)	mg/L mg/L		0.02					0.005					0.0005	
Barium (Ba)	mg/L		0.0011					0.0003					0.0003	
Beryllium (Be)	mg/L		< 0.00013					< 0.00012					< 0.00017	
Boron (B)	mg/L		< 0.0002					< 0.002					0.032	
Bismuth (Bi)	mg/L		< 0.0002					< 0.0002					< 0.00001	
Cadmium (Cd)	mg/L		< 0.000001					< 0.000003					0.000007	
Cobalt (Co)	mg/L		0.000019					0.000017					0.000126	
Chromium (Cr)	mg/L		< 0.0005					< 0.0005					0.0119	
Copper (Cu)	mg/L		< 0.0005					< 0.0005					< 0.0005	
Potassium (K)	mg/L		0.41					0.38					0.46	
Lithium (Li)	mg/L		< 0.002					< 0.002					< 0.002	
Magnesium (Mg)	mg/L		0.049					0.046					0.051	
Manganese (Mn)	mg/L		0.00087					0.001					0.00314	
Molydenum (Mo)	mg/L		< 0.00001					0.00007					0.00004	
Sodium (Na)	mg/L		0.03					0.03					0.04	
Nickel (Ni)	mg/L		< 0.0001					< 0.0001					0.0079	
Phosphorous (P)	mg/L		0.01					< 0.01					< 0.01	
Lead (Pb)	mg/L		0.00007					< 0.00002					< 0.00002	
Antimony (Sb)	mg/L		0.00051					0.00054					0.00054	
Selenium (Se)	mg/L		< 0.001					< 0.001					< 0.001	
Tin (Sn)	mg/L		0.00012					0.00008					< 0.00001	
Strontium (Sr)	mg/L		0.0012					0.0011					0.0013	
Titanium (Ti) Thallium (TI)	mg/L		< 0.0001 < 0.00001					< 0.0001 < 0.00001					< 0.0001 < 0.000002	
Uranium (11)	mg/L mg/L		0.00001					0.00001					0.000126	
Vanadium (V)	mg/L		0.000084					0.000089					< 0.000126	
Tungsten (W)	mg/L		0.00019					0.00017					0.00003	
Yttrium (Y)	mg/L		< 0.00010					0.00001					0.000007	
Zinc (Zn)	mg/L		0.005					0.000					0.00003	
L (L.I.)	ia.		0.000	i	i	i		0.001	1		i		0.000	

May 2011

<0.01% <0.01% 9.5 t CaCO3/1000 t 0.83 t CaCO3/1000 t 0.31 t CaCO3/1000 t S²⁻: NP: CaNP: AP: Weight: 1000 g

Weeks	#	137	138	139	140	141	142	143	144	145	146	147	148	149
Date	"		Dec 11. 07		Dec 24, 07	Jan 02. 08	Jan 08, 08	Jan 15. 08		Jan 29, 08	Feb 05, 08		Feb 19. 08	Feb 26, 08
Leachate Volume Add	ed (mL)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000
Leachate Volume Rec	overed (mL)	991	988	996	959	988	992	964	984	993	982	993	984	996
pН	Effluent (units)	6.57	6.54	6.63	6.43	6.32	6.60	6.53	6.56	6.76	6.53	5.12	6.08	6.03
Acidity	as CaCO ₃ (mg/L)	< 2	< 2	< 2	2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO ₃ (mg/L)	3	4	3	2	2	3	3	3	3	3	64	3	< 2
Conductivity	µmhos/cm	8	11	10	8	8	10	10	10	10	11	16	10	10
Sulphate (SO ₄)	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Calcium (Ca)	mg/L	1.25	1.26	1.18	1.02	1.13	1.24	1.14	1.21	1.2	1.13	1.13	1.1	1.11
Iron (Fe)	mg/L	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.06	< 0.01	< 0.01	< 0.01
Chloride (CI)	mg/L				< 0.2					< 0.2				
Nitrite (NO ₂)	as N mg/L				< 0.06					< 0.06				
Nitrate (NO ₃)	as N mg/L				0.07					< 0.05				
Carbonate (CO ₃)	as CaCO ₃ (mg/L)				< 2					< 2				
Ammonia	mg/L				< 0.1					< 0.1				
Mercury (Hg)	mg/L				< 0.0001					< 0.0001				
Silver (Ag)	mg/L				< 0.00001					< 0.00001				
Aluminum (AI)	mg/L				< 0.01					0.01				
Arsenic (As)	mg/L				0.0005					0.0004				
Barium (Ba)	mg/L				0.00014					0.00015				
Beryllium (Be)	mg/L				< 0.00002					< 0.00002				
Boron (B)	mg/L				0.038					< 0.002				
Bismuth (Bi)	mg/L				< 0.00001					< 0.00001				
Cadmium (Cd)	mg/L				< 0.000003					< 0.000003				
Cobalt (Co)	mg/L				0.00002					0.000012				
Chromium (Cr)	mg/L				< 0.0005					< 0.0005				
Copper (Cu)	mg/L				< 0.0005					0.0006				
Potassium (K)	mg/L				0.35					0.42				
Lithium (Li)	mg/L				< 0.002 0.04					< 0.002 0.041				
Magnesium (Mg) Manganese (Mn)	mg/L mg/L				0.00099					0.041				
Molydenum (Mo)	mg/L				< 0.00099					< 0.000112				
Sodium (Na)	mg/L				0.05					0.07				
Nickel (Ni)	mg/L				0.0002					0.0001				
Phosphorous (P)	mg/L				0.01					< 0.01				
Lead (Pb)	mg/L				0.00005					0.00006				
Antimony (Sb)	mg/L				0.00037					0.00034				
Selenium (Se)	mg/L				< 0.001					< 0.001				
Tin (Sn)	mg/L				< 0.00001					< 0.00001				
Strontium (Sr)	mg/L				0.001					0.0012				
Titanium (Ti)	mg/L				< 0.0001					< 0.0001				
Thallium (TI)	mg/L				< 0.000002					< 0.000002				
Uranium (U)	mg/L				0.000094					0.000091				
Vanadium (V)	mg/L				0.00012					0.00034				
Tungsten (W)	mg/L				0.00004					0.00005				
Yttrium (Y)	mg/L				0.000001					0.000002				
Zinc (Zn)	mg/L				0.003					0.002				

0.08% 0.02% 24.8 t CaCO3/1000 t 10.873 t CaCO3/1000 t 0.54 t CaCO3/1000 t S-Total: S-Total:

S²⁻:
NP:
CaNP:
AP:
Weight:

1000 g

Weeks	Lu .						_		_			4.0	
	#	0 10275-FEB09	1	2	3	4	5	6	7	8	9	10	11
Date			10276-FEB09	10046-MAR09	10048-MAR09	10071-MAR09	11129-MAR09	10010-APR09	10037-APR09	10049-APR09	10073-APR09	11231-APR09	10017-MAY09
Hum Cell Leachate Vol	mLs	569	898	953	912	893	884	886	853	931	821	830	868
pH	units	7.53	*7.60	7.44	7.55	7.57	7.46	7.62	7.47	7.77	7.69	7.28	7.46
Acidity	mg/L as CaCO ₃	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2
Alkalinity	mg/L as CaCO ₃	16	16	17	16	13	11	10	9	9	11	8	8
Conductivity	uS/cm	79	82	82	65	46	49	50	55	49	51	42	49
SO ₄	mg/L	15	17	18	13	9.5	8.4	11	12	12	9.1	9.6	11
Hg	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001					< 0.0001	
Ag	mg/L	< 0.00001	< 0.00001	0.00010	< 0.00001	0.00011	< 0.00001					0.00004	
Al	mg/L	0.05	0.03	0.03	0.02	0.02	0.03					0.04	
As	mg/L	0.0967	0.0447	0.0455	0.0331	0.0340	0.0313					0.0279	
В	mg/L	0.0109	0.0115	0.0138	0.0107	0.0068	0.0060					0.0075	
Ва	mg/L	0.0006	< 0.0002	0.0014	0.0004	0.0006	0.0010					0.0006	
Be	mg/L	< 0.0001	< 0.00002	< 0.0001	< 0.0001	< 0.0001	< 0.0001					< 0.0001	
Bi	mg/L	0.00091	0.00097	0.00184	0.00141	0.00158	0.00176					0.00172	
Ca	mg/L	6.65	7.11	7.30	6.31	5.23	4.76					4.25	
Cd	mg/L	< 0.000003	< 0.000003	0.000046	0.000005	0.000114	< 0.000003					0.000017	
Co	mg/L	0.000395	0.000246	0.000404	0.000237	0.000244	0.000135					0.000172	
Cr	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005					< 0.0005	
Cu	mg/L	< 0.001	< 0.001	< 0.001	0.004	< 0.001	0.032					< 0.001	
Fe	mg/L	0.02	0.02	0.05	0.03	0.02	0.02					0.03	
K	mg/L	8.89	6.80	7.20	5.51	4.21	3.80					3.60	
Li	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002					< 0.002	
Mg	mg/L	1.32	1.60	1.76	1.36	0.938	0.836					0.867	
Mn	mg/L	0.004	0.009	0.012	0.012	0.009	0.008					0.008	
Мо	mg/L	0.00361	0.00372	0.00406	0.00290	0.00179	0.00148					0.00126	
Na	mg/L	2.13	1.81	1.69	2.16	0.84	0.67					0.47	
Ni	mg/L	0.0003	0.0002	0.0002	0.0004	0.0002	< 0.0001					< 0.0001	
Pb	mg/L	0.00003	0.00022	0.00017	0.00009	0.00011	0.00003					0.00005	
Sb	mg/L	0.0046	0.0048	0.0057	0.0045	0.0035	0.0032					0.0034	
Se	mg/L	0.004	0.002	0.002	0.003	0.003	0.002					0.002	
Sn	mg/L	0.0319	0.00814	0.00358	0.00190	0.00093	0.00083					0.00130	
Sr	mg/L	0.0111	0.0119	0.0138	0.0104	0.0078	0.0071					0.0072	
Ti	mg/L	< 0.001	0.0003	< 0.001	< 0.001	< 0.001	< 0.001					< 0.001	
TI	mg/L	0.000007	0.000003	0.000130	0.000009	0.000117	< 0.0002					< 0.0002	
U	mg/L	0.00323	0.0116	0.0151	0.0121	0.00668	0.00601					0.00560	
V	mg/L	< 0.001	0.00010	< 0.001	< 0.001	< 0.001	< 0.001					< 0.001	
W	mg/L	0.00352	0.00322	0.00327	0.00209	0.00135	0.00119					0.00120	
Υ	mg/L	0.000005	0.000023	0.000092	0.000011	0.000098	0.000004					0.000027	
Zn	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01					< 0.01	

0.08% 0.02% 24.8 t CaCO3/1000 t 10.873 t CaCO3/1000 t 0.54 t CaCO3/1000 t S-Total:

S²⁻:
NP:
CaNP:
AP:
Weight: 1000 g

Weeks	#	12	13	14	15	16	17	18	19	20
Date		10037-MAY09	10066-MAY09	11109-MAY09	10017-JUN09	10035-JUN09	10053-JUN09	11099-JUN09	11132-JUN09	10016-JUL09
Hum Cell Leachate Vol	mLs	858	865	859	852	868	850	821	851	855
pН	units	7.53	7.44	7.47	7.51	7.53	7.31	7.55	7.35	7.41
Acidity	mg/L as CaCO ₃	<2	<2	<2	<2	<2	<2	<2	<2	<2
Alkalinity	mg/L as CaCO ₃	8	9	7	7	9	7	8	8	7
Conductivity	uS/cm	38	48	37	34	43	36	30	36	33
SO ₄	mg/L	8.0	8.1	8.0	6.3	7.0	3.8	4.3	5	4
Hg	mg/L				< 0.0001					< 0.0001
Ag	mg/L				< 0.00001					< 0.00001
Al	mg/L				< 0.01					0.02
As	mg/L				0.0264					0.0247
В	mg/L				0.0035					0.0032
Ва	mg/L				0.0002					0.0004
Ве	mg/L				< 0.0001					< 0.0001
Bi	mg/L				0.00112					0.00275
Ca	mg/L				3.05					3.15
Cd	mg/L				< 0.000003					< 0.000003
Co	mg/L				0.000127					0.000143
Cr	mg/L				< 0.0005					< 0.0005
Cu	mg/L				< 0.001					< 0.001
Fe	mg/L				0.02					0.03
K	mg/L				2.95					2.56
Li	mg/L				< 0.002					< 0.002
Mg	mg/L				0.615					0.5
Mn	mg/L				0.005					0.006
Мо	mg/L				0.00084					0.00054
Na	mg/L				0.33					0.2
Ni	mg/L				< 0.0001					< 0.0001
Pb	mg/L				0.00003					80000.0
Sb	mg/L				0.0031					0.003
Se	mg/L				0.002					0.002
Sn	mg/L				0.00102					0.00067
Sr	mg/L				0.0047					0.0047
Ti	mg/L				< 0.001					< 0.001
TI	mg/L				< 0.0002					< 0.0002
U	mg/L				0.00454					0.00419
V	mg/L				< 0.001					< 0.001
W	mg/L				0.00104					0.00091
Υ	mg/L				0.000009					0.000003
Zn	mg/L				< 0.01					< 0.01

 S-Total:
 0.08%

 S²:
 0.02%

 NP:
 22.5 t C

NP: 22.5 t CaCO3/1000 t
CaNP: 6.74 t CaCO3/1000 t
AP: 0.62 t CaCO3/1000 t
Weight: 1000 g

Weeks	#	0	1	2	3	4	5	6	7	8
Date		10545-APR08	10635-APR08	10067-MAY07	10129-MAY07	10155-MAY07	10705-MAY08	10019-JUN08	10052-JUN08	10102-JUN08
Leachate	mL	864	919	936	940	942	981	936	974	973
pH	Effluent (units)	7.19	7.05	6.96	6.89	7.75	7.168	6.97	7.04	7.33
Acidity	as CaCO3 (mg/L)	< 2	< 2	< 2	< 2	< 2	*< 2	< 2	< 2	< 2
Alkalinity	as CaCO3 (mg/L)	11	7	7	6	4	7	3	6	13
Conductivity	µmhos/cm	60	53	53	57	70	58.6	51	62	80
Sulphate (SO4)	mg/L	6.3	9.2	10	11	15	18	12	15	20
Calcium (Ca)	mg/L	4.91	3.29	3.4	3.77	4.46	5.99			
Iron (Fe)	mg/L	0.12	0.03	0.02	0.03	0.02	0.02			
Silver (Ag)	mg/L	< 0.00001	< 0.00001	< 0.00001	< 0.00001	0.00004	< 0.00001			
Aluminum (AI)	mg/L	0.04	< 0.01	< 0.01	0.01	< 0.01	< 0.01			
Arsenic (As)	mg/L	0.0495	0.0306	0.0246	0.0211	0.0217	0.0251			
Barium (Ba)	mg/L	0.0012	0.0006	0.0009	0.001	0.001	0.0015			
Beryllium (Be)	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001			
Boron (B)	mg/L	0.0067	0.0076	0.0076	0.0072	0.0085	0.0102			
Bismuth (Bi)	mg/L	0.00247	0.00067	0.00037	0.00049	0.0005	0.0005			
Cadmium (Cd)	mg/L	< 0.000003	0.000003	< 0.000003	< 0.000003	0.000005	0.000011			
Cobalt (Co)	mg/L	0.000942	0.00103	0.000866	0.000995	0.000957	0.0012			
Chromium (Cr)	mg/L	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005			
Copper (Cu)	mg/L	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Potassium (K)	mg/L	4.28	4.91	4.43	4.52	4.93	5.9			
Lithium (Li)	mg/L	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002			
Magnesium (Mg)	mg/L	0.535	0.687	0.768	0.9	1.18	1.53			
Manganese (Mn)	mg/L	0.008	0.01	0.01	0.012	0.014	0.02			
Molydenum (Mo)	mg/L	0.00248	0.00265	0.0025	0.00249	0.00306	0.00358			
Nickel (Ni)	mg/L	0.0006	0.0002	0.0003	0.0003	0.0003	0.0006			
Lead (Pb)	mg/L	0.00009	0.00003	< 0.00002	< 0.00002	< 0.00002	0.00004			
Antimony (Sb)	mg/L	0.00253	0.00234	0.00284	0.00288	0.00228	0.00461			
Selenium (Se)	mg/L	< 0.001	0.001	< 0.001	< 0.001	0.001	0.002			
Tin (Sn)	mg/L	0.00548	0.00757	0.00781	0.00605	0.00562	0.00646			
Strontium (Sr)	mg/L	0.0068	0.0064	0.007	0.0076	0.0093	0.0146			
Titanium (Ti)	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Thallium (TI)	mg/L	0.000098	0.000015	0.000009	0.000002	< 0.000002	0.000004			
Uranium (U)	mg/L	0.00118	0.0017	0.00191	0.0019	0.00251	0.00383			
Vanadium (V)	mg/L	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Tungsten (W)	mg/L	0.00183	0.00103	0.00096	0.00058	0.00072	0.00088			
Yttrium (Y)	mg/L	0.000018	0.000011	0.000006	0.000007	0.000005	0.000006			
Zinc (Zn)	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			

Created by: KAS Checked by: KJD May 2011

 S-Total:
 0.08%

 S²:
 0.02%

 NP:
 22.5 t 0

NP: 22.5 t CaCO3/1000 t
CaNP: 6.74 t CaCO3/1000 t
AP: 0.62 t CaCO3/1000 t
Weight: 1000 g

Weeks	#	9	10	11	12	13	14	15	16	17
Date		10381-JUN08	10021-JUL08	10048-JUL08	10125-JUL08	10151-JUL08	10459-JUL08	10022-AUG08	10048-AUG08	10430-AUG08
Leachate	mL	985	946	966	930	910	921	901	912	797
рН	Effluent (units)	6.96	6.93	6.9	6.57	6.62	6.75	6.89	7.01	7.4
Acidity	as CaCO3 (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO3 (mg/L)	9	5	6	4	4	4	6	5	12
Conductivity	µmhos/cm	68	55	73	48	55	51	59	84	165
Sulphate (SO4)	mg/L	20	14	20	13	16	15	17	19	37
Calcium (Ca)	mg/L		4.33					5.23		
Iron (Fe)	mg/L		0.03					0.03		
Silver (Ag)	mg/L		< 0.00001					0.00007		
Aluminum (Al)	mg/L		< 0.01					< 0.01		
Arsenic (As)	mg/L		0.0209					0.0253		
Barium (Ba)	mg/L		0.001					0.0007		
Beryllium (Be)	mg/L		< 0.0001					< 0.0001		
Boron (B)	mg/L		0.0059					0.0042		
Bismuth (Bi)	mg/L		0.00043					0.00089		
Cadmium (Cd)	mg/L		< 0.000003					0.000067		
Cobalt (Co)	mg/L		0.000661					0.000599		
Chromium (Cr)	mg/L		< 0.0005					< 0.0005		
Copper (Cu)	mg/L		< 0.001					< 0.001		
Potassium (K)	mg/L		4.03					4.13		
Lithium (Li)	mg/L		< 0.002					< 0.002		
Magnesium (Mg)	mg/L		1.17					1.16		
Manganese (Mn)	mg/L		0.009					0.008		
Molydenum (Mo)	mg/L		0.00202					0.00171		
Nickel (Ni)	mg/L		< 0.0001					0.0002		
Lead (Pb)	mg/L		< 0.00002					0.00007		
Antimony (Sb)	mg/L		0.00328					0.0024		
Selenium (Se)	mg/L		0.001					0.002		
Tin (Sn)	mg/L		0.00099					0.00076		
Strontium (Sr)	mg/L		0.0091					0.0097		
Titanium (Ti)	mg/L		< 0.001					< 0.001		
Thallium (TI)	mg/L		< 0.000002					0.000076		
Uranium (U)	mg/L		0.00201					0.00176		
Vanadium (V)	mg/L		0.00003					< 0.001		
Tungsten (W)	mg/L		0.00039					0.00038		
Yttrium (Y)	mg/L		0.000003					0.000065		
Zinc (Zn)	mg/L		< 0.01					< 0.01		

 S-Total:
 0.08%

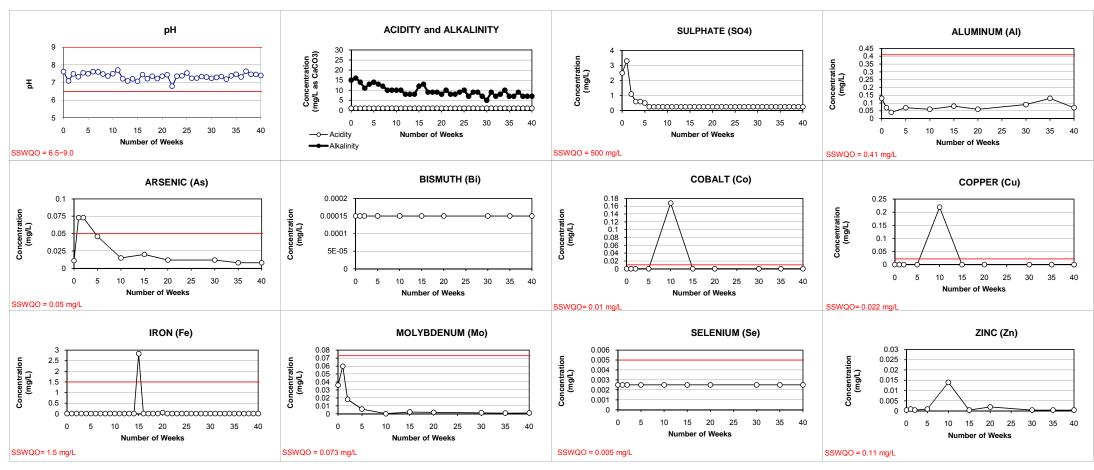
 S²:
 0.02%

 NP:
 22.5 t 0

NP: 22.5 t CaCO3/1000 t
CaNP: 6.74 t CaCO3/1000 t
AP: 0.62 t CaCO3/1000 t
Weight: 1000 g

Weeks	#	18	19	20	21	22	23
Date		10504-AUG08	10021-SEP08	10049-SEP08	10213-SEP08	10440-SEP08	10060-OCT08
Leachate	mL	918	926	982	901	902	995
рН	Effluent (units)	6.94	7.11	7.14	6.88	6.96	7.05
Acidity	as CaCO3 (mg/L)	< 2	< 2	< 2	< 2	< 2	< 2
Alkalinity	as CaCO3 (mg/L)	9	8	9	5	5	11
Conductivity	µmhos/cm	84	65	76	53	50	67
Sulphate (SO4)	mg/L	26	18	20	14	14	19
Calcium (Ca)	mg/L			7.41			
Iron (Fe)	mg/L			< 0.01			
Silver (Ag)	mg/L			0.00009			
Aluminum (Al)	mg/L			0.01			
Arsenic (As)	mg/L			0.0245			
Barium (Ba)	mg/L			< 0.0002			
Beryllium (Be)	mg/L			< 0.0001			
Boron (B)	mg/L			0.006			
Bismuth (Bi)	mg/L			0.00049			
Cadmium (Cd)	mg/L			0.000005			
Cobalt (Co)	mg/L			0.000968			
Chromium (Cr)	mg/L			< 0.0005			
Copper (Cu)	mg/L			< 0.001			
Potassium (K)	mg/L			4.98			
Lithium (Li)	mg/L			< 0.002			
Magnesium (Mg)	mg/L			1.45			
Manganese (Mn)	mg/L			0.014			
Molydenum (Mo)	mg/L			0.00186			
Nickel (Ni)	mg/L			0.0002			
Lead (Pb)	mg/L			0.00007			
Antimony (Sb)	mg/L			0.00541			
Selenium (Se)	mg/L			0.003			
Tin (Sn)	mg/L			0.00248	===	===	
Strontium (Sr)	mg/L			0.0125			
Titanium (Ti)	mg/L			< 0.001			
Thallium (TI)	mg/L			0.000053			
Uranium (U)	mg/L			0.00526			
Vanadium (V)	mg/L			< 0.001			
Tungsten (W)	mg/L			0.00046			
Yttrium (Y)	mg/L			0.000024			
Zinc (Zn)	mg/L			< 0.01			

Created by: KAS Checked by: KJD



APPENDIX VIII

Graphical Results of Selected Results of Kinetic Testing

GEOCHEMISTRY OF HUMIDITY CELL 100859 Feldspar Porphyry NICO PROJECT, FORTUNE MINERALS LIMITED

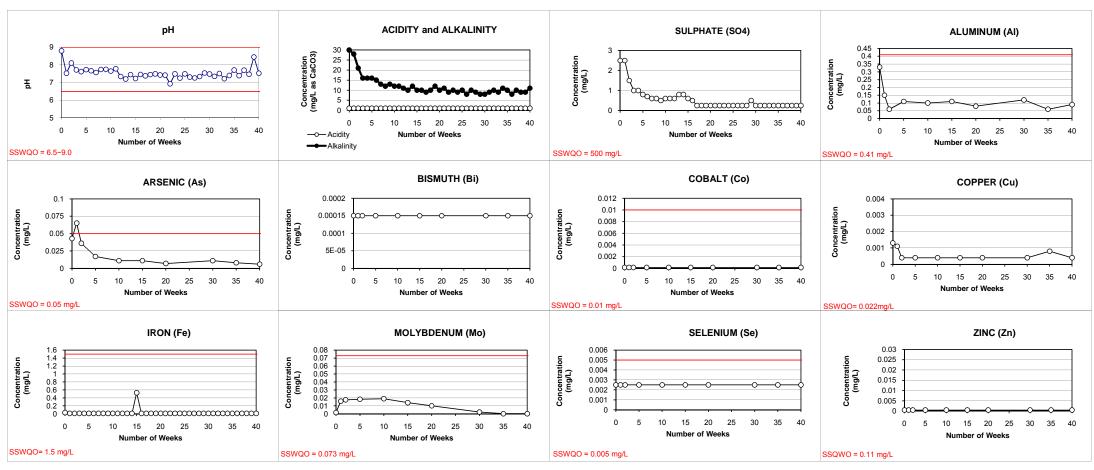
Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

41 Years

GEOCHEMISTRY OF HUMIDITY CELL 100913 Feldspar Porphyry NICO PROJECT, FORTUNE MINERALS LIMITED

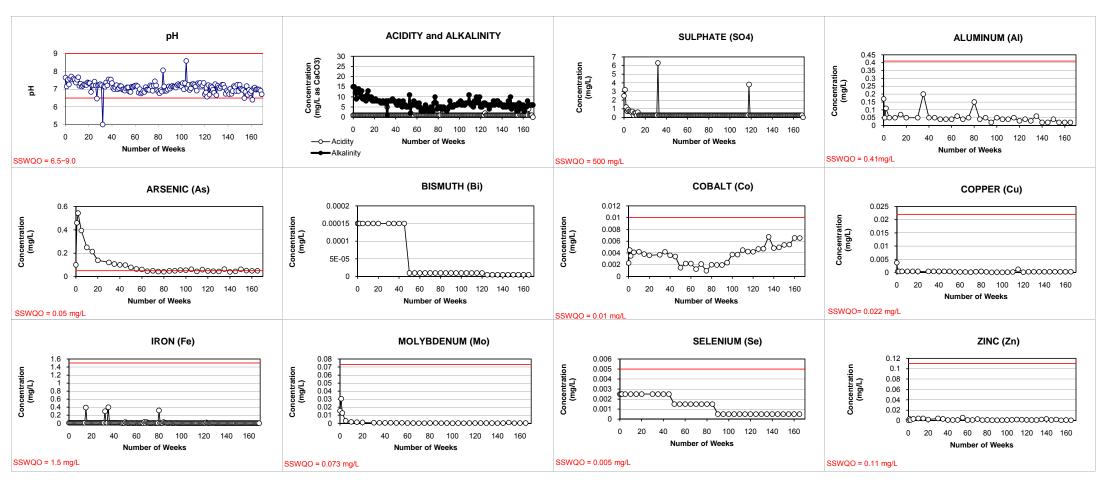
Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

48 Years

GEOCHEMISTRY OF HUMIDITY CELL 100863 Rhyolite NICO PROJECT, FORTUNE MINERALS LIMITED

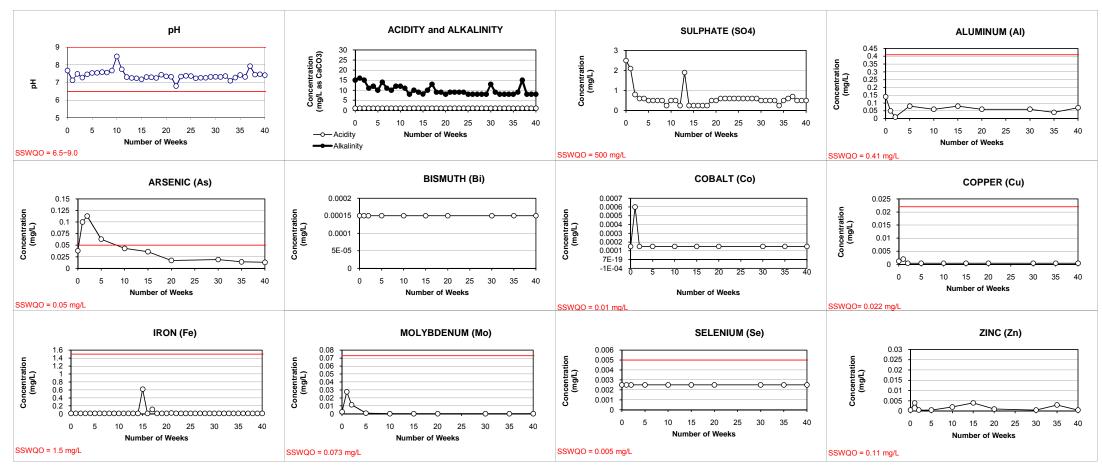
- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

45 Years

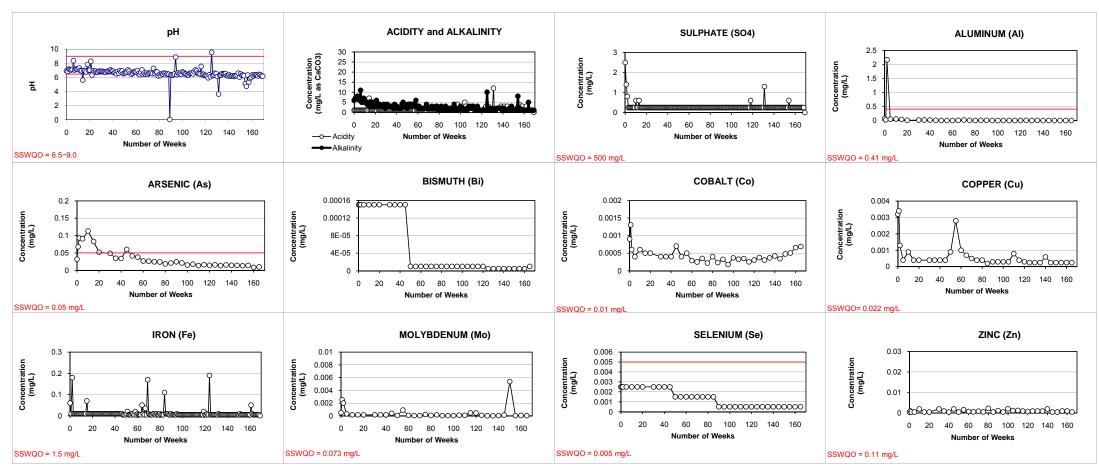
GEOCHEMISTRY OF HUMIDITY CELL 100872 Rhyolite NICO PROJECT. FORTUNE MINERALS LIMITED

Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%): 0.05
Sulphide Sulphur (%): 0.01
Neutralization Potential (t CaCO₃/1000 t): 12.4
Carbonate Neutralization Potential (t CaCO₃/1000 t): 7.5
Acid Potential (t CaCO₃/1000 t): 0.31
Estimated Time to Sulphide Depletion: 10 Years
Estimated Time to Depletion of Neutralization Potential: 29 Years

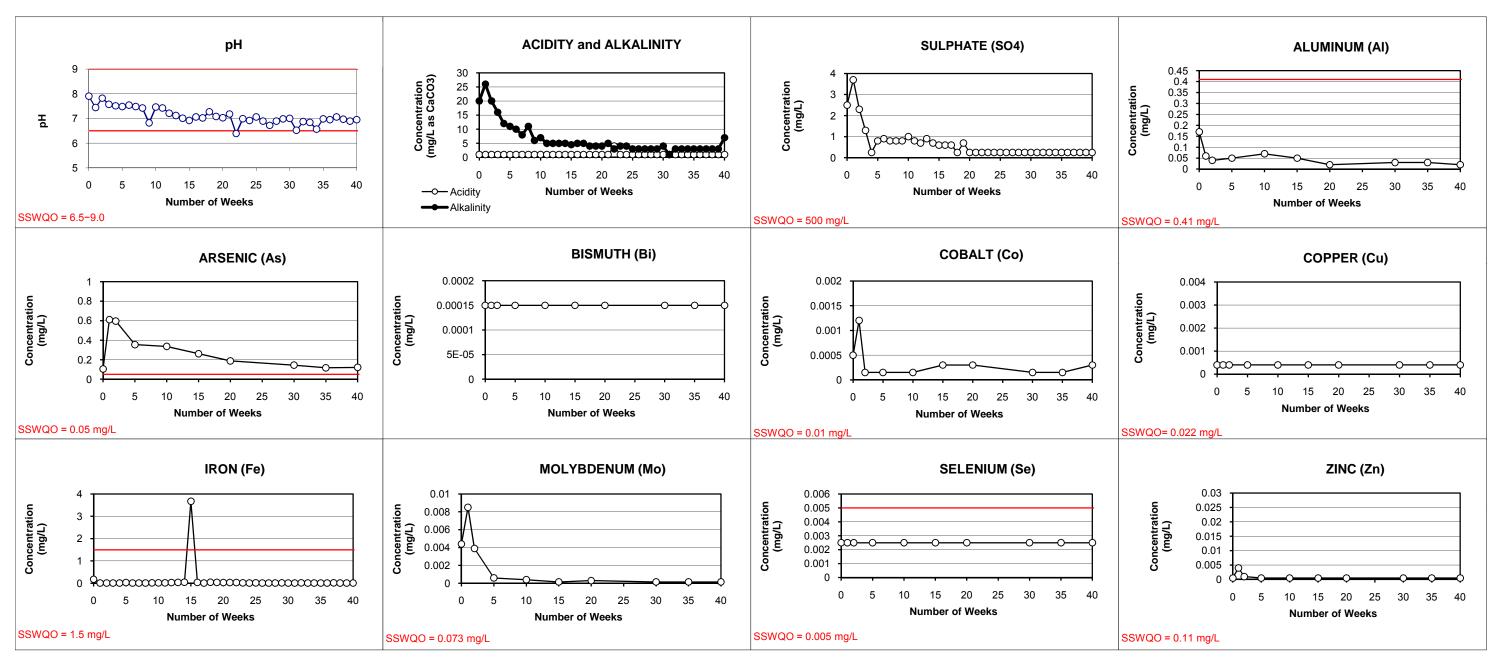
Note: Values reported at the analytical detection limit are plotted at 50% of the analytical detection limit

10-1118-0046


GEOCHEMISTRY OF HUMIDITY CELL 100932 Rhyolite NICO PROJECT, FORTUNE MINERALS LIMITED

- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%): 0.59
Sulphide Sulphur (%): 0.49
Neutralization Potential (t CaCO₃/1000 t): 0.83
Acid Potential (t CaCO₃/1000 t): 15.4
Estimated Time to Sulphide Depletion: 45 Years
Estimated Time to Depletion of Neutralization Potential: 0 Years


Appendix VIII-1j GEOCHEMISTRY OF HUMIDITY CELL 100925 Breccia NICO PROJECT, FORTUNE MINERALS LIMITED

- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%): 0.02
Sulphide Sulphur (%): 0.01
Neutralization Potential (t CaCO₃/1000 t): 8.7
Carbonate Neutralization Potential (t CaCO₃/1000 t): 2.5
Acid Potential (t CaCO₃/1000 t): 0.31
Estimated Time to Sulphide Depletion: 9 Years
Estimated Time to Depletion of Neutralization Potential: 148 Years

GEOCHEMISTRY OF HUMIDITY CELL 100890 Black Rock Schist + Magnetite NICO PROJECT, FORTUNE MINERALS LIMITED

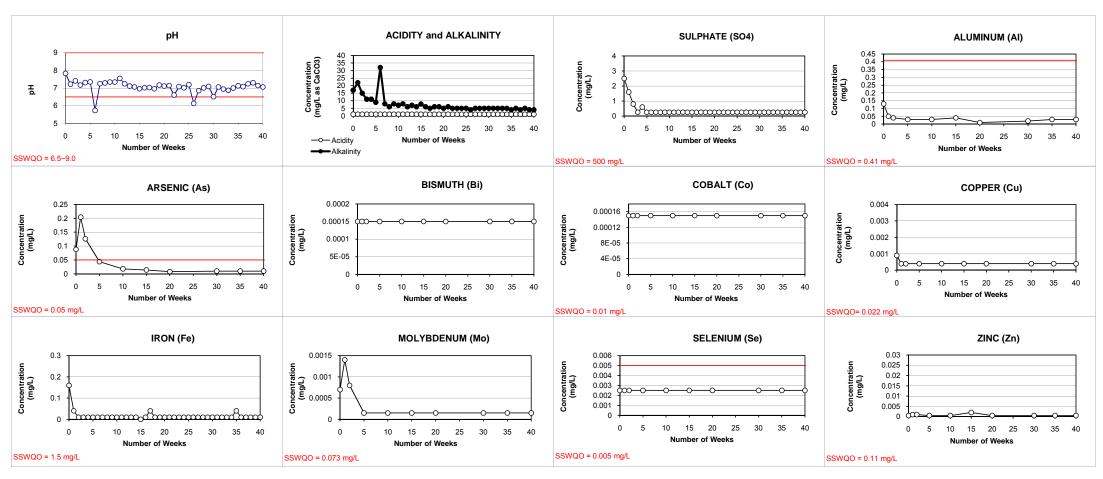
- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Stimated Time to Depletion of Neutralization Potential:

84 Years

GEOCHEMISTRY OF HUMIDITY CELL 100977 Black Rock Schist + Magnetite NICO PROJECT, FORTUNE MINERALS LIMITED

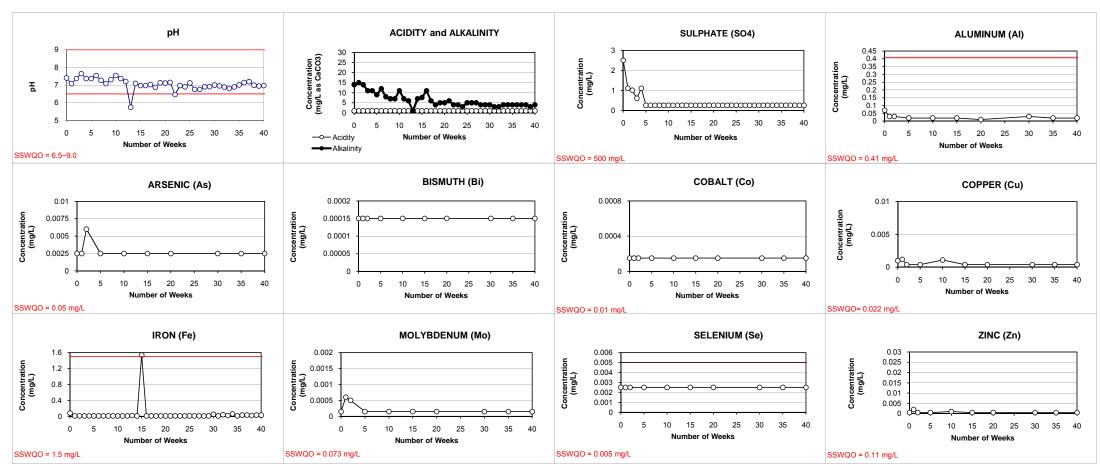
Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

90 Years

GEOCHEMISTRY OF HUMIDITY CELL 100802 Black Rock Schist ± Magnetite NICO PROJECT, FORTUNE MINERALS LIMITED

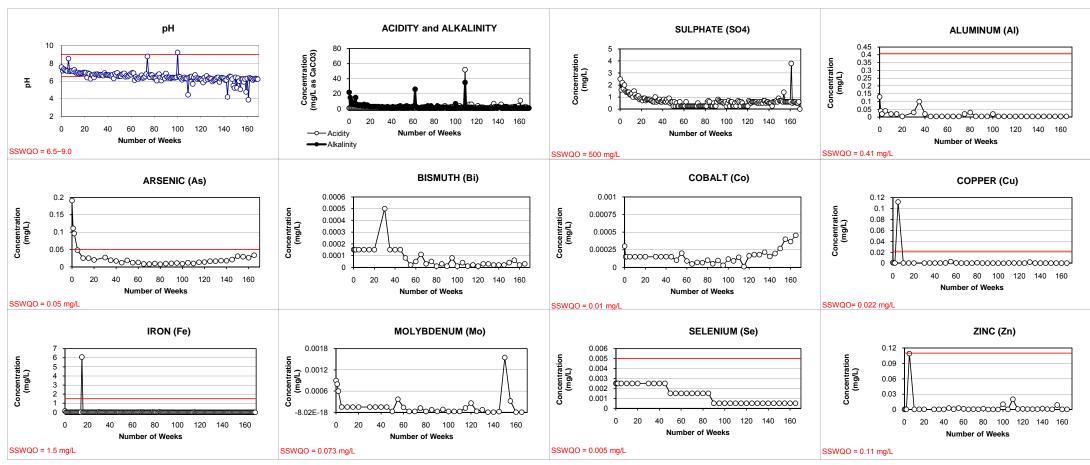
---- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

246 Years

GEOCHEMISTRY OF HUMIDITY CELL 100907 Black Rock Schist ± Magnetite NICO PROJECT, FORTUNE MINERALS LIMITED

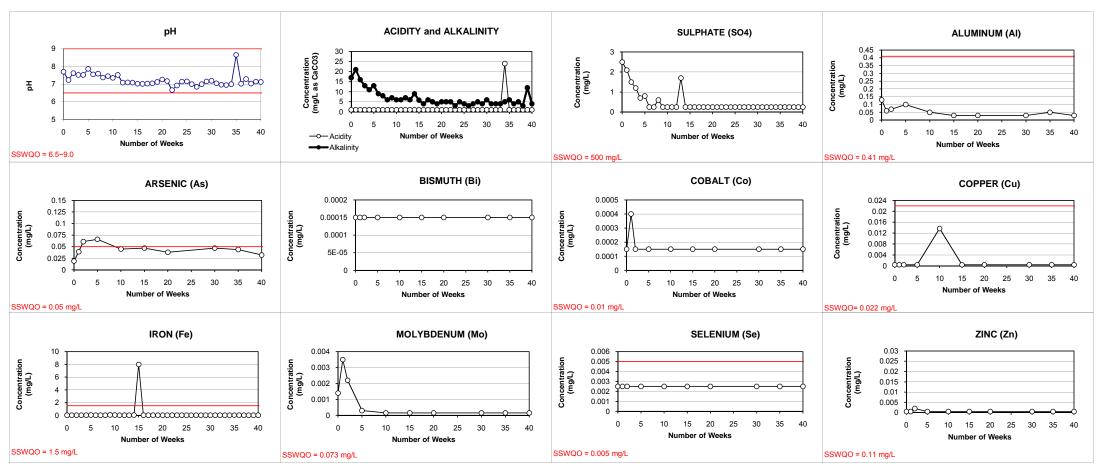
- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

514 Years

GEOCHEMISTRY OF HUMIDITY CELL 100881 Sub-Arkosic Wacke NICO PROJECT, FORTUNE MINERALS LIMITED

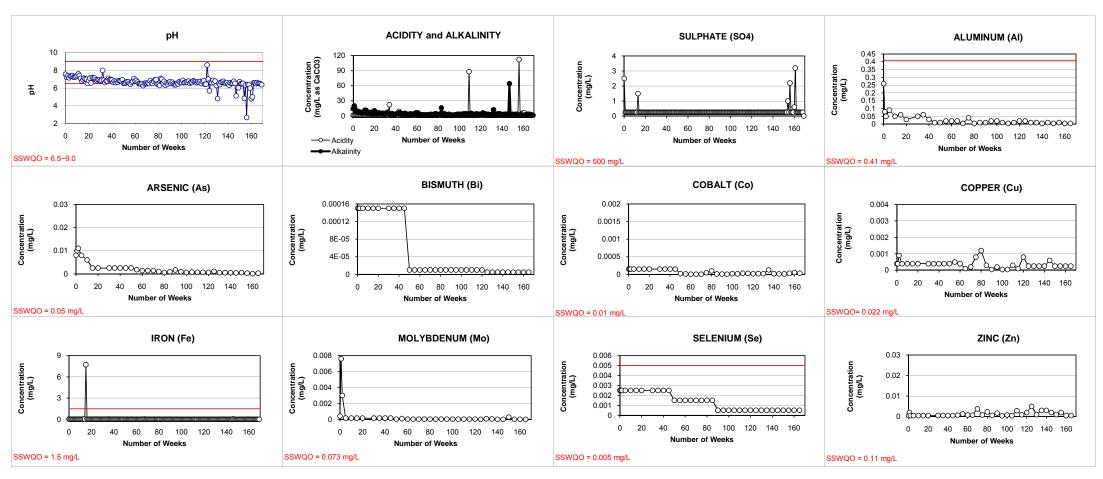
- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

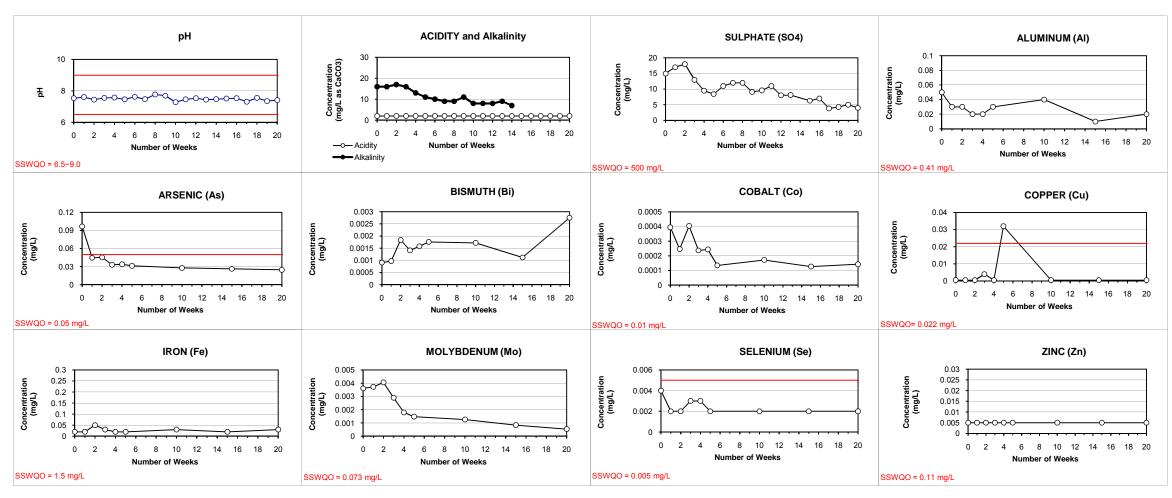
Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

85 Years


GEOCHEMISTRY OF HUMIDITY CELL 100914 Siltstone NICO PROJECT, FORTUNE MINERALS LIMITED

Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%): <0.01
Sulphide Sulphur (%): <0.01
Neutralization Potential (t CaCO₃/1000 t): 9.5
Carbonate Neutralization Potential (t CaCO₃/1000 t): 0.83
Acid Potential (t CaCO₃/1000 t): 8 Years
Estimated Time to Sulphide Depletion: 8 Years
Estimated Time to Depletion of Neutralization Potential: 165 Years

GEOCHEMISTRY OF HUMIDITY CELL Bulk Rougher Tails NICO PROJECT, FORTUNE MINERALS LIMITED

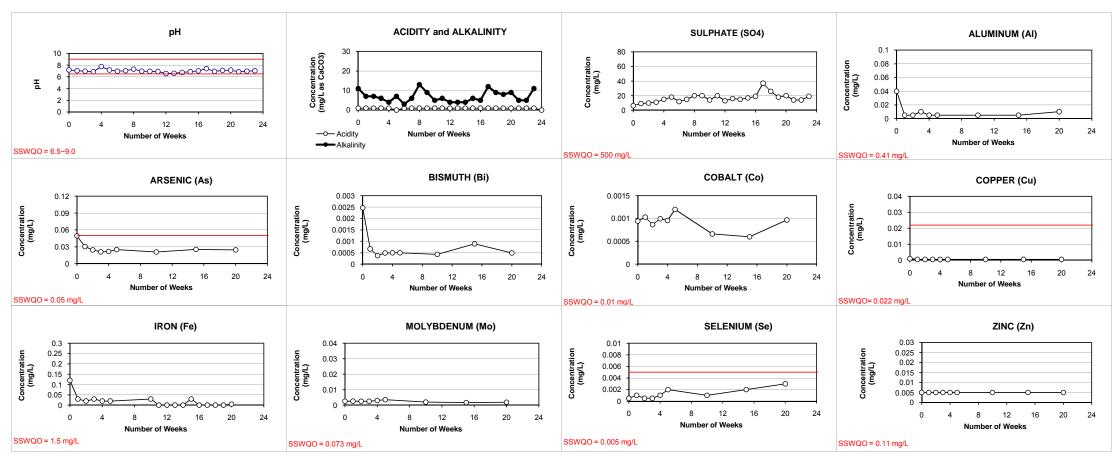
---- Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):


Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

51 years

GEOCHEMISTRY OF HUMIDITY CELL Tailings PP#14 NICO PROJECT, FORTUNE MINERALS LIMITED

Site Specific Water Quality Objectives (SSWQO)

Total Sulphur (%):

Sulphide Sulphur (%):

Neutralization Potential (t CaCO₃/1000 t):

Carbonate Neutralization Potential (t CaCO₃/1000 t):

Acid Potential (t CaCO₃/1000 t):

Estimated Time to Sulphide Depletion:

Estimated Time to Depletion of Neutralization Potential:

19 Years

APPENDIX IX

Results of Field Cell Monitoring – September 2008 to September 2009

Field Cell ID: Field Cell Rock / Tailings Type: Mass of Field Cell:

FC-1 Sub-economic mineralized mine rock; mixed feldspar porphyry and black rock schist

219 kg

Station ID		FC-1	FC-1	FC-1	FC-1	FC-1	FC-1	FC-1
Date		9/9/2008	6/17/2009	7/14/2009	9/8/2009	7/18/2010	8/12/2010	9/29/2010
Time		12:05:00 PM	8:00:00 PM	12:00:00 AM				
Sample ID		L680895-1	L780179-2	L792165-2	L815696-2	L909880-2	L920049-2	L937669-2
ROUTINE ANALYSIS								
pН		8.00	7.94	7.33	7.83	7.82	7.80	7.86
Specific Conductivity	uS/cm	953	591	358	421	334	438	441
Total Alkalinity	mg/L as CaCO3	129	156	35.9	54.9	58.1	59.1	63.4
Hardness	mg/L as CaCO4	145	93	97.9	160	121	173	161
Total Dissolved Solids	mg/L	535	298	216	278	199	291	273
Total Suspended Solids	mg/L	NA/	NA	NA	30	18	<3.0	<3.0
Arsenic Speciation								
Arsenic (As)	mg/L	0.0806	0.144	0.114	0.143	0.243	0.21	0.164
Arsenic, Pentavalent	ug/L	62.8	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	3.54	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
NUTRIENTS								
Nitrate-Nitrite	mg/L as N	20.1	5.3	19.4	29.7	16.2	26.2	23.1
Nitrate-N	mg/L as N	19.8	4.19	10.1	11.4	13.3	25.7	23.1
Nitrite-N	mg/L as N	0.3	1.11	9.34	18.3	2.93	0.544	<0.050
MAJOR IONS								
Bicarbonate	mg/L as HCO3	158	190	43.9	67	70.8	72.1	77.4
Carbonate	mg/L as CO3	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	197	79.5	41.9	35.7	31.2	49.8	53.1
Chloride	mg/L	15	5.64	1.78	1.09	0.88	1.62	1.23
Calcium	mg/L	43.4	29.6	30	49.5	38.4	55.4	51.5
Magnesium	mg/L	9	4.63	5.59	8.89	6.03	8.47	7.95
Potassium	mg/L	34.1	24.6	17.4	10.7	7.92	11	9.6
Sodium	mg/L	70	36.7	11.5	7.6	6.22	11.2	7.8
Ion Balance	mg/L	79.8	77	95.8	95.3	94	99.9	92.4
DISSOLVED METALS								
Aluminum	mg/L	0.01	0.014	0.039	<0.010	<0.010	0.018	<0.010
Antimony	mg/L	0.0526	0.0646	0.0459	0.0268	0.0254	0.0323	0.023
Barium	mg/L	0.103	0.0763	0.0936	0.0644	0.0587	0.0903	0.0982
Beryllium	mg/L	< 0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.00006	0.000254	0.000085	0.000053	0.000074	0.00005	<0.000050
Boron	mg/L	0.189	0.103	0.0869	0.0632	0.0462	0.0704	0.0464
Cadmium	mg/L	0.0002	0.00015	0.00015	0.0001	<0.00010	0.00012	<0.00010
Chromium	mg/L	0.0004	0.0005	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.0062	0.00286	0.00201	0.00173	0.00137	0.00195	0.00147
Copper	mg/L	0.0038	0.00335	0.00392	0.00311	0.00228	0.0024	0.00196
Iron	mg/L	<0.005	0.013	0.019	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Manganese	mg/L	0.077	0.0339	0.13	0.0949	0.0335	0.0266	0.0056
Mercury	mg/L	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Molybdenum	mg/L	0.121	0.0615	0.0406	0.0294	0.0226	0.0335	0.0309
Nickel	mg/L	0.0031	0.00264	0.00344	0.00221	0.00133	0.00238	0.00111
Selenium	mg/L	0.0333	0.0142	0.0048	0.00714	0.0102	0.0032	0.0108
Silver	mg/L	<0.0002	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.315	0.232	0.241	0.285	0.209	0.278	0.285
Thallium	mg/L	0.00011	0.000111	0.000088	<0.000050	0.00015	<0.000050	<0.000050
Tin	mg/L	<0.0002	<0.00020	<0.00020	<0.00020	<0.00020	0.00086	0.00045
Titanium	mg/L	0.0006	0.00093	0.00106	0.00071	0.00056	0.00105	<0.00030
Uranium	mg/L	0.167	0.143	0.0447	0.117	0.0723	0.0728	0.143
Vanadium	mg/L	0.002	0.00149	0.00169	0.00168	0.00263	0.00319	0.002
Zinc	mg/L	0.008	0.0019	0.0097	0.0023	<0.0010	0.0031	0.0016

Field Cell ID: Field Cell Rock / Tailings Type: Mass of Field Cell:

FC-2 Sub-economic mineralized mine rock; black rock schist 219 kg

Station ID		FC-2	FC-2	FC-2	FC-2	FC-2
Date		9/9/2008	6/18/2009	7/14/2009	9/8/2009	7/18/2010
Time		12:15:00 PM	1:19:00 PM	12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L680895-2	L780179-3	L792165-3	L815696-3	L909880-3
ROUTINE ANALYSIS						
pH		8.00	8.08	7.78	7.96	7.84
Specific Conductivity	uS/cm	1030	647	358	223	225
Total Alkalinity	mg/L as CaCO3	113	150	51.7	55.8	53.4
Hardness	mg/L as CaCO4	128	89.2	93.4	76.2	80.9
Total Dissolved Solids	mg/L	577	341	208	124	124
Total Suspended Solids	mg/L	#N/A	#N/A	8.0	17	11
Arsenic Speciation						
Arsenic (As)	mg/L	0.0038	0.00702	0.00479	0.00603	0.0114
Arsenic, Pentavalent	ug/L	1.79	#N/A	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	2.63	#N/A	#N/A	#N/A	#N/A
NUTRIENTS						
Nitrate-Nitrite	mg/L as N	9.9	2.87	12.6	3.84	1.88
Nitrate-N	mg/L as N	9.7	2.53	12.3	3.84	1.72
Nitrite-N	mg/L as N	0.2	0.339	0.246	<0.050	0.155
MAJOR IONS						
Bicarbonate	mg/L as HCO3	138	183	63.0	68.1	65.1
Carbonate	mg/L as CO3	<5	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	284	123	56.1	29.2	38.3
Chloride	mg/L	10	4.95	2.06	0.79	0.75
Calcium	mg/L	38.9	27.8	30.1	24.1	26
Magnesium	mg/L	7.6	4.81	4.43	3.89	3.89
Potassium	mg/L	38.3	27.9	15.2	9.66	8.04
Sodium	mg/L	87	50.0	13.9	6.3	5.46
Ion Balance	mg/L	80	79.1	90.7	101	99.5
DISSOLVED METALS						
Aluminum	mg/L	0.01	<0.010	<0.010	<0.010	<0.010
Antimony	mg/L	0.0207	0.0317	0.0212	0.02	0.0236
Barium	mg/L	0.174	0.0859	0.114	0.0424	0.0454
Beryllium	mg/L	<0.0005	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.00034	0.000881	0.00127	0.0019	0.0066
Boron	mg/L	0.607	0.342	0.208	0.0998	0.0851
Cadmium	mg/L	<0.0001	<0.00010	0.00012	<0.00010	<0.00010
Chromium	mg/L	<0.0004	<0.00040	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.0013	0.00070	0.00046	0.00026	0.00038
Copper	mg/L	0.0024	0.00133	0.00261	0.00184	0.00381
Iron	mg/L	<0.005	<0.010	<0.010	<0.010	0.019
Lead	mg/L	<0.0001 0.031	<0.00010	<0.00010	<0.00010 0.03	<0.00010
Manganese Mercury	mg/L	0.031 <0.00010	0.0059 <0.00010	0.0433 <0.00010	0.03 <0.00010	0.0433 <0.00010
Molybdenum	mg/L mg/L	0.0308	0.0249	0.0155	0.0010	0.0105
Nickel		0.0308	0.0249	0.0155	0.0115	0.0105
Selenium	mg/L mg/L	0.002	0.00211	0.00262	0.00136	0.00135
Silver	mg/L mg/L	<0.0993	<0.0020	<0.00020	<0.00020	<0.00020
Strontium	mg/L mg/L	<0.0002 0.274	<0.00020 0.212	0.00020	0.146	0.125
Thallium	mg/L	0.274	0.00066	0.000055	<0.000050	0.00063
Tin	mg/L mg/L	<0.0009	<0.00006	<0.00020	<0.000050	<0.000063
Titanium	mg/L mg/L	0.0002	0.00020	0.00020	0.00020	0.00084
Uranium	mg/L	0.0003	0.00069	0.00064	0.00067	0.00084
Vanadium	mg/L	0.0422	0.0472	0.0081	0.0202	0.00093
Zinc	mg/L	0.0016	0.00121	0.00061	0.00091	0.00093
ZITIC	mg/L	0.006	0.0021	0.0015	0.0011	0.0014

Field Cell Rock / Tailings Type: Sub-economic mineralized mine rock; black rock schist

Mass of Field Cell: 220 kg

Station ID		FC-3	FC-3	FC-3	FC-3	FC-3
Date		9/9/2008	6/18/2009	7/18/2010	8/12/2010	9/29/2010
Time		12:25:00 PM	1:19:00 PM	12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L680895-3	L780179-4	L909880-4	L920049-3	L937669-3
ROUTINE ANALYSIS						
pH		7.60	7.98	7.12	7.18	7.25
Specific Conductivity	uS/cm	1120	640	379	826	1060
Total Alkalinity	mg/L as CaCO3	75	116	31.3	14.1	13.5
Hardness	mg/L as CaCO4	161	46.5	115	266	319
Total Dissolved Solids	mg/L	689	336	246	570	711
Total Suspended Solids	mg/L	0	0	18	14	4
Arsenic Speciation						
Arsenic (As)	mg/L	0.0164	0.0431	0.0357	0.0256	0.019
Arsenic, Pentavalent	ug/L	8.37	#N/A	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	1.79	#N/A	#N/A	#N/A	#N/A
NUTRIENTS						
Nitrate-Nitrite	mg/L as N	33.7	9.11	19.7	50.2	74.1
Nitrate-N	mg/L as N	33.4	8.75	19.4	50	74.1
Nitrite-N	mg/L as N	0.27	0.366	0.381	0.184	<0.050
MAJOR IONS						
Bicarbonate	mg/L as HCO3	91	141	38.2	17.2	16.4
Carbonate	mg/L as CO3	<5	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	284	120	63.8	181	189
Chloride	mg/L	14	3.67	0.68	1.61	1.82
Calcium	mg/L	48.4	13.7	35	83.3	99.6
Magnesium	mg/L	9.8	2.99	6.77	14	17.1
Potassium	mg/L	35.6	26.7	19.2	28.5	33.6
Sodium	mg/L	103	59.4	12.8	29.2	32.4
Ion Balance	mg/L	84.4	75.4	97.3	94.3	90
DISSOLVED METALS						
Aluminum	mg/L	0.08	0.025	0.088	0.014	<0.010
Antimony	mg/L	0.0445	0.0587	0.0322	0.0328	0.0213
Barium	mg/L	0.156	0.0563	0.0955	0.141	0.195
Beryllium	mg/L	<0.0005	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.00018	0.00336	0.00572	0.00047	0.000144
Boron	mg/L	0.275	0.168	0.105	0.249	0.288
Cadmium	mg/L	0.0001	<0.00010	0.00013	0.00015	0.00021
Chromium	mg/L	0.0006	<0.00040	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.0038	0.00246	0.00275	0.00313	0.00313
Copper	mg/L	0.0049	0.00311	0.00369	0.00305	0.00309
Iron	mg/L	0.047	0.027	0.118	<0.010	<0.010
Lead	mg/L	<0.0001	<0.00010	<0.00010	<0.00010	<0.00010
Manganese	mg/L	0.018	<0.0020	0.177	0.316	0.383
Mercury	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Molybdenum	mg/L	0.0545	0.0334	0.014	0.0274	0.0355
Nickel	mg/L	0.002	0.00137	0.0028	0.00458	0.00393
Selenium	mg/L	0.0485	0.0261	0.0122	0.0308	0.0319
Silver	mg/L	<0.0002	<0.00020	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.292	0.113	0.184	0.409	0.569
Thallium	mg/L	0.00005	0.000062	0.000121	0.000107	0.000078
Tin	mg/L	< 0.0002	<0.00020	<0.00020	<0.00020	<0.00020
Titanium	mg/L	0.0028	0.00084	0.00085	0.00134	<0.00030
Uranium	mg/L	0.0389	0.0596	0.00962	0.00166	0.00412
Vanadium	mg/L	0.001	0.00088	0.00076	0.00095	0.00059
Zinc	mg/L	<0.002	0.0017	0.0026	<0.0010	0.0035

Field Cell ID: Field Cell Rock / Tailings Type: Mass of Field Cell:

FC-4 Sub-economic mineralized mine rock; black rock schist 225 kg

Station ID		FC-4	FC-4	FC-4	FC-4	FC-4	FC-4	FC-4
Date		9/9/2008	6/18/2009	7/14/2009	9/8/2009	7/18/2010	8/12/2010	9/29/2010
Time		12:35:00 PM	1:19:00 PM	12:00:00 AM	12:00:00 AM	12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L680895-4	L780179-5	L792165-4	L815696-4	L909880-5	L920049-4	L937669-4
ROUTINE ANALYSIS				2.02.00	20100001	20000000	20200.0	200.000
pH		7.90	7.76	7.45	7.74	7.69	7.68	7.73
Specific Conductivity	uS/cm	1040	716	650	700	598	617	820
Total Alkalinity	mg/L as CaCO3	74	101	29.9	39.1	44.5	29.6	37.3
Hardness	mg/L as CaCO4	354	264	258	308	268	287	362
Total Dissolved Solids	mg/L do odoo4	661	433	424	470	383	429	567
Total Suspended Solids	mg/L	0	0	0	187	8	<3.0	<3.0
Arsenic Speciation	mg/L	0		0	107	0	\3.0	₹5.0
Arsenic (As)	mg/L	0.005	0.0109	0.00891	0.0265	0.0263	0.0324	0.0503
Arsenic (As)	ug/L	1.18	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
Arsenic, Pentavalent	ug/L ug/L	2.76	#N/A	#N/A #N/A	#N/A #N/A	#N/A	#N/A	#N/A
NUTRIENTS	ug/L	2.76	#IN/A	#IN/A	#IN/A	#IN/A	#IN/A	#IN/A
	man/L no N	44.4	4.00	40.0	0.40	0.0	0.0	24
Nitrate-Nitrite	mg/L as N	11.4	1.69	12.2	9.18	6.2	8.8	21
Nitrate-N	mg/L as N	11.2	1.45	11.9	8.76	5.1	8.5	20
Nitrite-N	mg/L as N	0.16	0.241	0.334	0.42	1.1	0.215	1.09
MAJOR IONS		0.	46.	00.5	4	540	00.1	45.5
Bicarbonate	mg/L as HCO3	91	124	36.5	47.7	54.3	36.1	45.5
Carbonate	mg/L as CO3	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	363	227	233	267	213	248	296
Chloride	mg/L	6	4.42	2.15	1.99	1.13	1.54	1.88
Calcium	mg/L	104	90.9	85.1	102	91.4	97.8	124
Magnesium	mg/L	22.9	8.91	11.1	13	9.57	10.4	12.6
Potassium	mg/L	36.2	18.6	13.5	14.1	8.12	8.19	10
Sodium	mg/L	34	14.7	7.3	7.5	4.5	5.15	5.3
Ion Balance	mg/L	94.5	91.2	91.2	97.1	98.1	94.9	90.5
DISSOLVED METALS								
Aluminum	mg/L	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Antimony	mg/L	0.0203	0.0306	0.0192	0.0243	0.0315	0.0321	0.0159
Barium	mg/L	0.206	0.0693	0.12	0.0924	0.0628	0.0656	0.0705
Beryllium	mg/L	<0.0005	<0.00050	< 0.00050	<0.00050	<0.00050	< 0.00050	< 0.00050
Bismuth	mg/L	< 0.00005	<0.000050	0.00006	0.000072	0.000343	0.000075	0.000096
Boron	mg/L	0.356	0.154	0.156	0.193	0.119	0.144	0.125
Cadmium	mg/L	<0.0001	<0.00010	0.0001	0.0001	<0.00010	<0.00010	<0.00010
Chromium	mg/L	< 0.0004	0.00047	<0.00040	<0.00040	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.0019	0.00119	0.00141	0.00166	0.00222	0.00088	0.00586
Copper	mg/L	0.003	0.00183	0.00262	0.0038	0.00284	0.00199	0.00263
Iron	mg/L	< 0.005	<0.010	<0.010	<0.010	0.021	<0.010	<0.010
Lead	mg/L	<0.0001	< 0.00010	<0.00010	< 0.00010	<0.00010	< 0.00010	<0.00010
Manganese	mg/L	0.142	0.0572	0.261	0.224	0.135	0.0701	0.206
Mercury	mg/L	<0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010	<0.00010
Molybdenum	mg/L	0.0103	0.00789	0.00679	0.0107	0.0103	0.0125	0.00868
Nickel	mg/L	0.0026	0.00353	0.0037	0.00334	0.00189	0.00299	0.00124
Selenium	mg/L	0.0928	0.0331	0.0282	0.0376	0.0336	0.0402	0.054
Silver	mg/L	< 0.0002	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.411	0.359	0.366	0.334	0.229	0.222	0.28
Thallium	mg/L	0.0001	0.000054	0.000053	0.00005	0.00005	<0.000050	<0.000050
Tin	mg/L	< 0.0002	<0.00020	0.00021	<0.00020	<0.00020	0.00178	0.00044
Titanium	mg/L	<0.0003	0.00113	0.00097	0.00085	0.00052	0.0009	<0.00030
Uranium	mg/L	0.0305	0.0256	0.00505	0.00935	0.00699	0.00241	0.00864
Vanadium	mg/L	0.0012	0.00108	0.00071	0.00119	0.00113	0.00105	0.00112

 $\ensuremath{\mathrm{\#N/A}}$ indicates that the parameter was not measured in the leachate sample.

Field Cell ID: Field Cell Rock / Tailings Type: Mass of Field Cell: FC-5 Ore; black rock schist 224 kg

Station ID		FC-5	FC-5	FC-5	FC-5	FC-5	FC-5	FC-5
Date		9/9/2008	6/18/2009	7/14/2009	9/8/2009	7/18/2010	8/12/2010	9/29/2010
Time		12:45:00 PM	1:19:00 PM	12:00:00 AM	12:00:00 AM	12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L680895-5	L780179-6	L792165-5	L815696-5	L909880-6	L920049-5	L937669-5
ROUTINE ANALYSIS		E000033-3	£700173-0	E732103-3	E013030-3	E303000-0	L320043-3	E337003-3
pH		7.80	7.83	7.50	7.79	7.79	7.64	7.71
Specific Conductivity	uS/cm	2240	851	460	601	491	645	995
Total Alkalinity	mg/L as CaCO3	82	77.6	37.4	40.8	47.1	34.6	39.1
Hardness	mg/L as CaCO4	538	189	125	234	194	286	421
Total Dissolved Solids		1590	540	277	392	306	456	680
Total Suspended Solid		0	0	0	73	5	<3.0	7
Arsenic Speciation	Ť							
Arsenic (As)	mg/L	1.93	1.58	1.78	1.49	2.23	1.69	2.33
Arsenic, Pentavalent	ug/L	1470	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	< 0.050	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
NUTRIENTS								
Nitrate-Nitrite	mg/L as N	17.3	2.74	6.8	7.97	7.92	15.9	29.4
Nitrate-N	mg/L as N	15.9	1.7	4.19	5.46	5.05	14.8	29.3
Nitrite-N	mg/L as N	1.48	1.04	2.62	2.52	2.87	1.13	0.086
MAJOR IONS								
Bicarbonate	mg/L as HCO3	101	94.6	45.6	49.8	57.5	42.3	47.7
Carbonate	mg/L as CO3	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	960	302	140	214	149	230	338
Chloride	mg/L	21	5.34	1.17	1.32	0.8	1.21	1.68
Calcium	mg/L	156	57.9	36.8	72.6	62.1	92	137
Magnesium	mg/L	36.1	10.9	8.07	12.8	9.37	13.6	19.2
Potassium	mg/L	40.6	19.6	17.6	14.4	9.47	12	15.3
Sodium	mg/L	250	85.1	20.7	17.1	10.8	14.6	14.8
Ion Balance	mg/L	96.6	97.6	92.1	98.5	97.9	99.2	94.5
DISSOLVED METALS								
Aluminum	mg/L	<0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Antimony	mg/L	0.0907	0.065	0.0605	0.0398	0.0417	0.0425	0.034
Barium	mg/L	0.214	0.0556	0.115	0.0837	0.0781	0.0871	0.13
Beryllium	mg/L	<0.0005	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	<0.00005 0.908	<0.000050	<0.000050 0.269	<0.000050 0.244	0.000098	<0.000050 0.22	<0.000050 0.191
Boron	mg/L	0.0003	0.288 0.0001	0.269	0.244	0.197 <0.00010	<0.0010	0.191
Cadmium Chromium	mg/L	0.0003	<0.0001	<0.00013	<0.00040	<0.00010	<0.00010	<0.0001
Cobalt	mg/L mg/L	0.0006	0.00303	0.00108	0.00229	0.00191	0.00159	0.00317
Copper	mg/L	0.0053	0.00303	0.00108	0.00229	0.00191	0.00159	0.00317
Iron	mg/L	<0.005	<0.0103	<0.010	<0.010	<0.010	<0.010	<0.010
Lead	mg/L	<0.0001	<0.0010	<0.0010	<0.0010	<0.0010	<0.00010	<0.0010
Manganese	mg/L	0.179	0.0512	0.0516	0.101	0.0176	0.0221	0.0471
Mercury	mg/L	<0.00010	<0.0012	<0.0010	<0.00010	<0.00010	<0.00010	<0.00010
Molybdenum	mg/L	0.142	0.0358	0.0289	0.0297	0.0227	0.0303	0.038
Nickel	mg/L	0.0048	0.00294	0.0203	0.00313	0.00184	0.00322	0.00164
Selenium	mg/L	0.0469	0.0137	0.0027	0.00871	0.00713	0.00326	0.00805
Silver	mg/L	<0.0002	<0.00020	<0.0000	<0.00020	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.986	0.347	0.267	0.344	0.249	0.329	0.49
Thallium	mg/L	0.0001	<0.00050	<0.000050	<0.000050	<0.00050	<0.00050	<0.000050
Tin	mg/L	0.0003	<0.00020	<0.00020	<0.00020	<0.00020	0.00057	<0.00020
Titanium	ma/L	0.0006	0.00061	0.00083	0.00076	0.00057	0.00101	<0.00030
Uranium	ma/L	0.339	0.259	0.035	0.0756	0.053	0.0149	0.0634
Vanadium	mg/L	0.0041	0.00168	0.00299	0.00249	0.0025	0.00377	0.00227
Zinc	mg/L	0.026	0.0088	0.0062	0.0048	0.0011	0.0051	0.0039

Field Cell Rock / Tailings Type: Tailings; bulk rougher tailings

Mass of Field Cell: 40 kg

Station ID		FC-8	FC-8	FC-8	FC-8
Date		4/28/2010	7/18/2010	8/12/2010	9/29/2010
Time		12:00:00 AM	12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L881302-1	L909880-7	L920049-6	L937669-6
ROUTINE ANALYSIS					
pH		7.88	8.08	8.03	8.06
Specific Conductivity	uS/cm	335	707	359	195
Total Alkalinity	mg/L as CaCO3	45.6	79.9	62.9	57.6
Hardness	mg/L as CaCO4	147	190	96.3	58.8
Total Suspended Solids		6030	27	8	<3.0
Total Dissolved Solids	mg/L	240	419	205	99.4
Arsenic Speciation					
Arsenic (As)	mg/L	0.417	0.175	0.104	0.0766
Arsenic, Pentavalent	ug/L	#N/A	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	#N/A	#N/A	#N/A	#N/A
NUTRIENTS	-9-				
Nitrate-Nitrite	mg/L as N	0.14	0.639	0.112	<0.071
Nitrate-N	mg/L as N	0.14	0.574	0.112	<0.050
Nitrite-N	mg/L as N	<0.050	0.066	<0.050	<0.050
MAJOR IONS	J = / -	.5.555	2.300	.5.000	.5.000
Bicarbonate	mg/L as HCO3	55.7	97.5	76.7	70.3
Carbonate	mg/L as CO3	<5.0	<5.0	<5.0	<5.0
Hydroxide	mg/L	<5.0	<5.0	<5.0	<5.0
Sulphate	mg/L	89.8	206	91	27.2
Chloride	mg/L	9.15	20.1	7.03	0.54
Calcium	mg/L	36.6	43	24.9	16.8
Magnesium	mg/L	13.4	20.1	8.29	4.1
Potassium	mg/L	50.5	52.3	23.2	14.1
Sodium	mg/L	11.8	25.3	10.9	1.39
Ion Balance	mg/L	152	94.5	87.6	90.1
DISSOLVED METALS	mg/L	102	04.0	07.0	50.1
Aluminum	mg/L	7.48	0.019	0.04	0.025
Antimony	mg/L	0.014	0.0287	0.0142	0.0133
Barium	mg/L	0.127	0.0757	0.0298	0.0164
Beryllium	mg/L	<0.00050	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.392	0.00074	0.000335	0.000225
Boron	mg/L	0.057	0.096	0.0467	0.0164
Cadmium	mg/L	0.00014	<0.00010	<0.00010	<0.00010
Chromium	mg/L	0.00772	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.0486	0.00237	0.00115	0.00049
Copper	mg/L	0.0233	0.00272	0.00118	0.00086
Iron	mg/L	31.9	0.02	<0.010	<0.010
Lead	mg/L	0.0125	<0.00010	<0.0010	<0.0010
Manganese	mg/L	0.463	0.0576	0.0293	0.0116
Mercury	mg/L	<0.00010	<0.00010	<0.00010	<0.00010
Molybdenum	mg/L	0.0172	0.0389	0.0181	0.00256
Nickel	mg/L	0.00776	0.00093	0.00086	0.00016
Selenium	mg/L	0.0189	0.0479	0.0148	0.0047
Silver	mg/L	<0.00020	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.0658	0.129	0.067	0.0343
Thallium	mg/L	0.000529	0.000061	<0.00050	<0.000050
Tin	mg/L	0.000529	<0.000001	0.00047	<0.00020
Titanium	mg/L	0.33	0.00066	0.00047	<0.00020
Uranium	mg/L	0.146	0.164	0.00044	0.0672
Vanadium	mg/L	0.00456	0.00055	0.00041	0.0072
Zinc	mg/L	0.00436	0.00055	0.0041	0.0028
ZII 10	mg/L	0.204	0.0010	0.0043	0.0020

Field Cell Rock / Tailings Type: Tailings; bulk rougher tailings

Mass of Field Cell: 100 kg

Station ID		FC-9	FC-9	FC-9
Date		4/28/2010	8/12/2010	9/29/2010
Time		12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L881302-2	L920049-7	L937669-7
ROUTINE ANALYSIS				
pH		7.70	7.93	7.98
Specific Conductivity	uS/cm	630	125	385
Total Alkalinity	mg/L as CaCO3	49.6	46.6	62.9
Hardness	mg/L as CaCO4	195	42	115
Total Suspended Solids		1990	11	<3.0
Total Dissolved Solids	mg/L	405	66.8	214
Arsenic Speciation	1119/12	100	00.0	211
Arsenic (As)	mg/L	0.134	0.115	0.0827
Arsenic, Pentavalent	ug/L	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	#N/A	#N/A	#N/A
NUTRIENTS	ug/L	πιν//	#TI V//-X	#TN//A
Nitrate-Nitrite	mg/L as N	0.23	<0.071	0.677
Nitrate-N	mg/L as N	0.23	<0.050	0.677
Nitrite-N	mg/L as N	<0.050	<0.050	<0.050
MAJOR IONS	IIIg/L as IV	<0.030	V0.030	V0.030
Bicarbonate	mg/L as HCO3	60.5	56.8	76.7
Carbonate	mg/L as CO3	<5.0	<5.0	<5.0
Hydroxide	mg/L as CO3	<5.0	<5.0	<5.0
Sulphate	mg/L	213	10.6	99.5
Chloride		23.2	0.54	4.56
Calcium	mg/L	46.4		
	mg/L	19.3	12.6 2.56	30.5 9.53
Magnesium Potassium	mg/L	47.9	10.8	23.5
	mg/L			
Sodium	mg/L	23.4	1.32	5.02
Ion Balance	mg/L	99.7	98.5	88
DISSOLVED METALS		0.005	0.000	0.040
Aluminum	mg/L	0.035	0.036	<0.010
Antimony	mg/L	0.0106	0.00761	0.0185
Barium	mg/L	0.0928	0.0137	0.048
Beryllium	mg/L	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.00183	0.00149	0.000167
Boron	mg/L	0.0705	0.0123	0.0296
Cadmium	mg/L	<0.00010	<0.00010	<0.00010
Chromium	mg/L	<0.00040	<0.00040	<0.00040
Cobalt	mg/L	0.00189	0.00074	0.00066
Copper	mg/L	0.0019	<0.00060	0.00094
Iron	mg/L	0.147	0.038	<0.010
Lead	mg/L	<0.00010	<0.00010	<0.00010
Manganese	mg/L	0.0617	0.014	0.0075
Mercury	mg/L	<0.00010	<0.00010	<0.00010
Molybdenum	mg/L	0.0405	0.00124	0.00618
Nickel	mg/L	0.00126	0.00043	0.00025
Selenium	mg/L	0.0446	0.00239	0.0127
Silver	mg/L	<0.00020	<0.00020	<0.00020
Strontium	mg/L	0.206	0.0317	0.0953
Thallium	mg/L	<0.000050	<0.000050	<0.000050
Tin	mg/L	<0.00020	0.00044	<0.00020
Titanium	mg/L	0.00291	0.00108	<0.00030
Uranium	mg/L	0.217	0.0217	0.0983
Vanadium	mg/L	0.00073	0.00208	0.00084
Zinc	mg/L	0.0017	0.0023	0.004

Field Cell Rock / Tailings Type: Tailings; bulk rougher tailings

Mass of Field Cell: 60 kg

Station ID		FC-10	FC-10	FC-10
Date		4/28/2010	8/12/2010	9/29/2010
Time		12:00:00 AM	12:00:00 AM	12:00:00 AM
Sample ID		L881302-3	L920049-8	L937669-8
ROUTINE ANALYSIS				
pН		7.81	8.06	8.05
Specific Conductivity	uS/cm	616	517	298
Total Alkalinity	mg/L as CaCO3	63.4	81	66.8
Hardness	mg/L as CaCO4	189	162	88
Total Suspended Solids		382	<3.0	<3.0
Total Dissolved Solids	mg/L	385	316	163
Arsenic Speciation				,,,,,
Arsenic (As)	mg/L	0.207	0.156	0.142
Arsenic, Pentavalent	ug/L	#N/A	#N/A	#N/A
Arsenic, Trivalent	ug/L	#N/A	#N/A	#N/A
NUTRIENTS	ug/L	1111//	111177	111177
Nitrate-Nitrite	mg/L as N	0.257	2	0.671
Nitrate-N	mg/L as N	0.257	1.92	0.671
Nitrite-N	mg/L as N	<0.050	0.077	<0.050
MAJOR IONS	mg/L as IN	₹0.000	0.011	\0.030
Bicarbonate	mg/L as HCO3	77.3	98.9	81.4
Carbonate	mg/L as CO3	<5.0	<5.0	<5.0
Hydroxide	mg/L as 005	<5.0	<5.0	<5.0
Sulphate	mg/L	192	146	59.7
Chloride	mg/L	21.1	7.26	1.47
Calcium	mg/L	44.1	40.5	21.8
Magnesium	mg/L	19.2	14.9	8.14
Potassium	mg/L	41.7	37.8	24.9
Sodium	mg/L	25.7	10.3	2.84
Ion Balance	mg/L	100	91.6	92.7
DISSOLVED METALS	mg/L	100	91.0	92.1
Aluminum	mg/L	0.012	0.013	<0.010
Antimony	mg/L	0.012	0.0205	0.0234
Barium	mg/L	0.010	0.107	0.0545
Beryllium	mg/L	<0.00050	<0.00050	<0.00050
Bismuth	mg/L	0.000784	0.000196	0.00015
Boron	mg/L	0.121	0.0699	0.0288
Cadmium	mg/L	0.00011	<0.0099	<0.00010
Chromium	mg/L	<0.00011	<0.00040	<0.00040
Cobalt	mg/L	0.00156	0.00089	0.00029
Copper	mg/L	0.00130	0.00085	0.00029
Iron	mg/L	0.00273	<0.010	<0.010
Lead		0.0002	<0.0010	<0.0010
Manganese	mg/L mg/L	0.0002	0.0092	<0.00010
Mercury	mg/L	<0.00010	<0.0092	<0.0020
Molybdenum	mg/L	0.0344	0.0134	0.00452
Nickel				0.00432
_	mg/L mg/L	0.0015 0.0473	0.00124 0.0211	0.00022
Selenium Silver	mg/L mg/L	<0.0020	<0.00211	<0.00020
Strontium			0.154	0.0824
	mg/L	0.215 <0.000050		
Thallium	mg/L		<0.000050	<0.000050
Tin	mg/L	<0.00020	0.00038	<0.00020
Titanium	mg/L	0.00077	0.00089	<0.00030
Uranium	mg/L	0.258	0.0942	0.115
Vanadium	mg/L	0.00123	0.0033	0.00161
Zinc	mg/L	0.0025	0.0076	0.0039

At Golder Associates we strive to be the most respected global company providing consulting, design, and construction services in earth, environment, and related areas of energy. Employee owned since our formation in 1960, our focus, unique culture and operating environment offer opportunities and the freedom to excel, which attracts the leading specialists in our fields. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees who operate from offices located throughout Africa, Asia, Australasia, Europe, North America, and South America.

Africa + 27 11 254 4800
Asia + 86 21 6258 5522
Australasia + 61 3 8862 3500
Europe + 356 21 42 30 20
North America + 1 800 275 3281
South America + 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Ltd. 6700 Century Avenue

Mail: 2390 Argentia Road, Mississauga, Ontario, L5N 5Z7

Canada

T: +1 (905) 567 4444

