Constructed Wetland Treatment System (CWTS)

Contango Strategies Ltd (CSL) Ducks Unlimited Canada Operating as Native Plant Solutions (DUC)

Dr. John Rodgers and Dr. James Castle

Forward looking. Lateral thinking.

Who We Are

- Contango Strategies Ltd
 - Saskatoon, Saskatchewan
 - Laboratories, and indoor and outdoor pilot-scale CWTS facilities
- Dr. John Rodgers and Dr. James Castle
 - University Professors with industry experience
 - Over 30 years experience building CWTS
- Ducks Unlimited Canada
 - Native Plant Solutions

Experience

- Many CWTS across North America
 - Alaska, over a decade in operation
- Treatment experience includes: arsenic, cadmium, chromium, cobalt, copper, iron, lead, manganese, mercury, nickel, selenium, vanadium and zinc
- Indoor and Outdoor facilities in Saskatoon, SK
- DUC brings over 75 years of wetlands experience across Canada, including the NWT

What is a CWTS? (Constructed Wetland Treatment System)

- Built on the scientific principals of natural wetlands cleaning water
- In natural wetlands, different types and areas of the wetland will have varied abilities
- Use knowledge of natural systems to design specific CWTS for specific types of water
- The CWTS at NICO will be built to site specific conditions

How does it work?

- Water, plants, soil
- Local plants will be used in CWTS construction
- The objective is to create the right environment for chemistry and natural microbes to clean water
 - Nutrients, pH, oxidation/reduction potential
- Remove contaminants from water and put into soil

Cold Climate

- Wetlands function to clean water
- Function during months of year when water is free flowing and during spring melt
- Pilot-scale will be performed in Saskatoon, Sk were it can be below -40°C in winter

Examples of Wetlands in the North

Location	Constituents Treated
United Keno Hill Mines, Yukon	Zinc and metals
Northern Saskatchewan	Uranium mining waste
Near Anchorage, Alaska	Military Waste
Yellowknife, NWT	Wastewater*
Hay River, NWT	Wastewater*
Dettah, NWT	Wastewater*
Fort Providence, NWT	Wastewater*
Nahanni Butte, NWT	Wastewater*
Deline, NWT	Wastewater*
Norman Wells, NWT	Wastewater*
Fort McPherson, NWT	Wastewater*
Aklavik, NWT	Wastewater*
Behchoko, NWT	Wastewater*
Gameti, NWT	Wastewater*
Wekeweeti, NWT	Wastewater*
Whati, NWT	Wastewater*

*Reported in: "Synopsis of Municipal Wastewater Treatment and Discharge in the NWT" by Dillon Consulting (2007) for Indian and Northern Affairs Canada

Our approach

- Site specific, case-by-case
- Scientific testing and optimization
- Put contaminants into the soil
 - Metals in sediment non-reactive
 - Remove from water
 - Doesn't go into plants
- Design to avoid toxic buildup in soil

Key Concepts

- Goal: remove targeted constituents from water put into sediments in safe forms
- Method: replicate natural systems
- Evaluation of performance: measure decrease in water and perform toxicity tests

How can we be confident in performance?

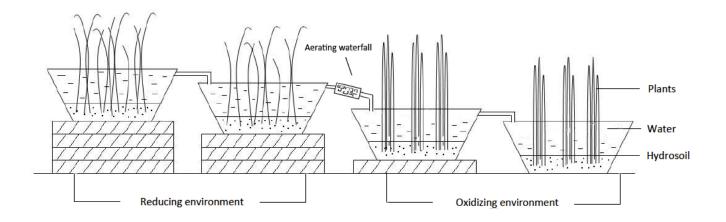
- Scientific Design
- Modelling, optimizing
- Pilots, demonstration scale (early in operations)
- Testing and validation of design
 - Water
 - Sediments
 - Plants
 - Toxicology
- Contingency

Phases

Assessment and feasibility (data gathering and review)

- A. Pilot-scale Indoor
- B. Pilot-scale Outdoor
- C. Demonstration-scale (on site)
- D. Full-scale

Scaling approach


Study Plan

- Evaluate pathways to remove each constituent from the water
- Design indoor pilot-scale CWTS
 - Test 2-3 different designs, learn from each
 - Test extreme situations (e.g., drought, spike in concentrations)
- Based on preliminary information from indoors, design outdoor pilot-scale CWTS
 - Test 2-3 designs through 2 years (freeze-thaw testing)

Pilot-scale CWTS

Goals

- Determine how quickly and effectively contaminants are removed from water
- Scientifically test to find most effective and reliable design
- Gather information and data needed to design demonstration scale CWTS on site
- Walk-away system for water treatment at NICO

