THOR LAKE RARE EARTH METALS BASELINE PROJECT

Environmental Baseline Report: Volume 2 – Hydrogeology

FINAL INTERIM REPORT

Prepared for:

Avalon Rare Metals Inc. 130 Adelaide Street Suite 1901 Toronto, ON M5H 3P5

Prepared by:

Stantec 4370 Dominion Street, Suite 500 Burnaby, BC V5G 4L7 Tel: (604) 436-3014 Fax: (604) 436-3752

and

Stantec P.O. Box 1680, 5021 - 49 Street Yellowknife, NT X1A 2N4 Tel: (867) 920-2216 Fax: (867) 920-2278

Project No.: 123510050 and 103510051

January 2010

AUTHORSHIP

Jennifer Todd, B.Sc., GIT	Author
Tobi Gardner, Ph.D	Field Assistant
Steve Wilbur, Ph.D,, P.Geo.	Senior Review

EXECUTIVE SUMMARY

This report presents methods and results for the baseline hydrogeology studies conducted from 2008 to 2009 for Avalon Rare Metals Inc (Avalon), related to their Thor Lake Project (Project). The objectives were to:

- Describe hydrogeologic and hydrostratigraphic units and their spatial variability
- Measure occurrence of groundwater
- Quantify hydraulic properties of the hydrostratigraphic units
- Sample, analyze and summarize groundwater chemistry.

The 2008/2009 field programs consisted of a field program that consisted of; drilling and installing wells, developing, hydraulic testing, measuring groundwater levels, and sampling monitoring wells for select analytical parameters.

During the 2008/2009 field programs, borings were drilled and monitoring wells were installed which penetrated bedrock; monitoring wells were completed to depths ranging from 8.2 to 99.7 m below ground surface (m bgs). Surficial material in the study area has been interpreted to generally consist of an upper organic rich horizon overlying till, with bedrock outcrops dominating the landscape. The surficial material thickness and physical properties varies significantly throughout the Project area. Generally groundwater elevation has been measured to be near the ground surface in all wells, although the monitoring wells have not been measured frequently enough to observe seasonal effects. Two methods of hydraulic tests were performed (packer and recovery tests) over the Project area. The results of hydraulic testing of the site indicate a range of hydraulic conductivity from 10^{-5} m/s – 10^{-8} m/s. All groundwater quality were tabulated and summarized. Results of analysis for wells sampled over multiple years were generally in the same range, and no seasonal trends were apparent.

Groundwater quality data has been compared to federal, Canadian Council of Ministers of Environment (CCME) Canadian Water Quality Guidelines for the protection of Aquatic Life (December 2007), and to the British Columbia Contaminated Sites Regulation (CSR) Schedule 6 Generic Numerical Water Standards for the protection of Freshwater Aquatic Life (January, 2009). The following parameters exceeded the CCME and/or CSR guidance parameters in the Project area: aluminum, cadmium, copper, iron, lead, and/or silver. These exceedances of the CCME and/or CSR guidelines do not imply that the groundwater at the study area is currently contaminated; only that background concentrations of these parameters are higher than typically found in groundwater at other natural sites in Canada. These background groundwater quality results merely reflect the natural geologic and hydrogeologic conditions within these specific areas of the property.

A preliminary hydrogeologic conceptual model has been developed and assumes a near-surface (within active thaw zone) aquifer perched on permafrost. A deeper bedrock aquifer is present below permafrost; the depth of permafrost is estimated to be approximately 60 to 80 m bgs in the general area based on thermistor readings collected from a single borehole and the production of groundwater from two deep (~95 m bgs) wells. The range and spatial distribution of groundwater occurrence, hydrostratigraphy, hydraulic properties, permafrost distribution, hydraulic connectivity and hydrogeochemistry can only be generally described or are not known at this time.

ABBREVIATIONS AND ACRONYMS

CCME	Canadian Council of Ministers of Environment
cm	centimeter
CSR	Contaminated Sites Registry
К	hydraulic conductivity
km	kilometer
m	meters
m asl	meters above sea level
m bgs	meters below ground surface
meq	milliequivalent
mg/L	milligram per liter
mm	millimeter
m/s	meters per second
MW	
N.A	Not applicable
nm	not measured
PVC	Polyvinly chloride
QA/QC	Quality Assurance, Quality Control
TDS	total dissolved solids
μm	micrometer
μS/cm	Microsiemens per centimeter

TABLE OF CONTENTS

1	Intro	duction		1
2	Back	ground		1
	2.1	Study Ar	еа	1
		2.1.1	Physical Setting	1
		2.1.2	Surficial Geology	1
		2.1.3	Bedrock Geology	2
3	Meth	ods		2
	3.1	Monitori	ng Well Drilling and Installation	2
		3.1.1	Well Drilling	2
		3.1.2	Well Completion	3
	3.2	Groundv	vater Level Measurements	3
	3.3	Hydrauli	c Testing	4
		3.3.1	Recovery Tests	4
		3.3.2	Packer Tests	5
	3.4	Groundv	vater Sampling	6
4	Resu	lts		6
	4.1	Geologic	Setting	6
	4.2	Boring a	nd Monitoring Well Logs	7
	4.3	Groundv	vater Elevation	7
	4.4	Ground	Temperature	8
	4.5	Hydrauli	c Tests	8
		4.5.1	Recovery Tests	8
		4.5.2	Packer Tests	9
		4.5.3	Summary of Hydraulic Tests	9
	4.6	Hydroge	ochemistry	9
		4.6.1	General and Physical Parameters, Major Ion Chemistry, and Hydrochemical Facies	0
		4.6.2	QA/QC of Analytical Results 1	0
5	Discu	ussion		1
	5.1	Shallow	Aquifer1	1
	5.2	Deep Ac	juifer 1	1
6	Clos	ure		2
7	Refe	rences		3

List of Appendices

Appendix A	
Appendix B	Borehole Logs
Appendix C	
Appendix D	Results from Hydraulic Tests
Appendix E	
Appendix F	Laboratory Certificates

THIS PAGE INTENTIONALLY LEFT BLANK.

1 INTRODUCTION

This report presents background information, methods, and results for the baseline hydrogeology studies conducted during 2008 and 2009 for Avalon Rare Metals Inc (Avalon), related to the Thor Lake Project. A data gap analysis was completed during 2008 (JWA 2008) and was used to help determine scope for this work. The objectives were to:

- Describe hydrogeologic and hydrostratigraphic units and their spatial variability
- Measure occurrence of groundwater
- Quantify hydraulic properties of the hydrostratigraphic units
- Sample, analyze, and summarize groundwater chemistry.

2 BACKGROUND

2.1 Study Area

The study area is located approximately 100 km east of Yellowknife, approximately 4 km north of the Hearne Channel in the Great Slave Lake (Figure 1, Appendix A). The local study area lies between Thor Lake and Long Lake (Figure 2, Appendix A).

2.1.1 Physical Setting

The regional area lies within the Tazin Lake Upland Ecoregion of the Taiga Shield Ecozone as defined in the National Ecological Framework for Canada (1996). The region is characterized by rolling Precambrian bedrock outcrops with many lakes and wetlands in glacially carved depressions. The study area is relatively flat with maximum elevation change of approximately 50 m. Lowlands tend to have poor drainage and are commonly wet for prolonged periods. Permafrost is discontinuous but widespread.

The property is located approximately 230 m asl, approximately 80 m in elevation above Great Slave Lake. Drainage in the area appears to flow in a variety of directions but is expected to eventually reach Great Slave Lake.

2.1.2 Surficial Geology

The study area was covered by the Laurentide ice sheet during the last glaciation, during Late Wisconsinan (10,000 years BP). During maximum glaciation, the dominant ice flow direction was southwest and retreated to the northeast of the study area. Glacial meltwater impounded along this margin and, formed Glacial Lake McConnell. Modern remains of this lake are the separated and present day Great Bear Lake, Great Slave Lake, and Lake Athabasca (Dyke and Dredge 1989; Lemmen, *et al.* 1994; Fulton 1995).

Glaciation produced a thin and discontinuous till veneer covering bedrock, as depicted on the existing map for the study area (1:5 000 000) (Fulton 1995). Figure 3 (Appendix A) shows the mapped surficial geology for the study area.

2.1.3 Bedrock Geology

The Project is located within the Archean Slave Structural Province, near the contact with the Churchill Province, Figure 4 (Appendix A).

Specifically, the property is situated on a roughly semi-circular plutonic complex approximately 40 km in diameter, as mapped by Henderson (1985), belonging to the Early Proterozoic Blachford Lake Intrusive Suite. This suite can be divided into two portions: a western, less alkaline series of gabbro anorthosites, granites and syenites, and an eastern peralkaline granite-syenite and silica-undersaturated system (Davidson 1982).

The property is predominately situated on the Thor Lake Syenite (Henderson 1985), consisting of zoned, coarse-to medium-granied, dark green, faylite-hedenbergite syenite, coarse-grained ferrorichterite syenite, and inequigranular ferrorichterite syenite. Grace Lake Granite also outcrops; where it is a light grey to pale greenish grey, massive, coarse-grained, equigranular, riebeckite-bearing granite. Small dykes and sheets of diabase and gabbro are scattered thoughout the pluton (Henderson 1985). Emplacement of both the Grace Lake Granite and the Thor Lake Syenite was followed by a body of nepheline syenite, ijolite and urtite under the lake zone on the property (Pinckston and Smith 1991).

The Blatchford Lake plutonic complex is surrounded by Archean rocks belonging to the Burwash Formation, Duncan Lake Group, Yellowknife Supergroup (Henderson 1985). These rocks are typically psammitic to pelitic schists, interlayered with amphibolite grade greywacke and siltstones. Textures are typically coarsely porphyroblastic, and the rocks contain various assemblages of quartz-plagioclase-biotite-muscovite-cordierite-andalusite-sillimanite-staurolite-garnet.

3 METHODS

The 2008 and 2009 field program consisted of drilling and installing wells, developing, hydraulic testing, measuring groundwater levels, and sampling monitoring wells for select analytical parameters.

3.1 Monitoring Well Drilling and Installation

3.1.1 Well Drilling

During the Summer 2008 and Winter 2009 exploration program eight coreholes were drilled as multipurpose holes; five were installed as monitoring wells (MW08-127, MW08-128, MW08-130, MW09-151, and MW09-152), two were left as open coreholes (L08-123 and L08-124), and a thermistor was installed in one (L08-134). All 2008 coreholes were cored by Peak Drilling of Yellowknife, NWT, using a diamond drill and NW-sized drilling tools. The borehole diameter was

89 mm and the core diameter 76 mm. The 2009 boreholes were drilled by Foraco Drilling Ltd. (Foraco) of Yellowknife, NWT, using a diamond drill and NQ-sized drilling tools. The borehole diameter was 78 mm and the core diameter 48 mm.

All core logging was completed by Avalon, after the coreholes were drilled. Stantec later reviewed the core and borehole logs to evaluate hydrostratigraphy and help design the monitoring wells. Borehole logs are in Appendix B. Depending on ground conditions, the following parameters were recorded:

- Run depth
- Run length
- Lithology
- Recovery (length and %)
- Alteration and weathering.

3.1.2 Well Completion

Due to the drilling schedule, three monitoring wells installations were overseen by a Stantec hydrogeologist (MW09-127, MW09-151, and MW09-152) and the remaining wells were designed by Stantec and installed by Avalon (MW09-128 and MW08-130), (Figure 5, Appendix A). Monitoring well completion details are in Appendix A.

The 2008 boreholes were completed as monitoring wells using 51 mm diameter schedule 40 PVC well materials. The 2009 boreholes were completed as monitoring wells using 25 mm diameter schedule 40 PVC well materials. The screen sections for both diameter monitoring wells had slot openings of 0.25 mm (0.010 inch or 10 slot). The lengths of the screened intervals ranged from 2.3 m to 15.0 m depending on well depth, water levels and hydrostratigraphic variations.

A silica sand pack (#10-20, grain size 1 mm) was placed around the screen, 0.5 m to 5.0 m above the screen section of each well. The annulus was then sealed with bentonite chips. Caution was exercised to install proper seals to prevent bridging of the bentonite chips, borehole instability and collapse, and/or to prevent surface water from entering the borehole. The seal was achieved by pouring the bentonite chips very slowly and regularly checking the depth to the bentonite seal using a downhole measuring tape.

One thermistor string was installed in one of the boreholes (L08-134) during the 2009 field program. The thermistor was installed inside 51 mm diameter schedule 40 PVC and backfilled with sand to hold it in place. Ground temperature readings were collected with a TH2016 (RST Instruments Inc.) portable thermistor readout unit.

3.2 Groundwater Level Measurements

Instantaneous groundwater levels were recorded at monitoring wells using a Solinst water level meter. Groundwater levels were measured at various dates during August – October 2008, and during March and June – October 2009.

Groundwater elevations at the 2008 well locations were surveyed using ground-based differential GPS methods. The casing stick-up and ground elevation was measured at each monitoring well location and groundwater elevation was calculated.

3.3 Hydraulic Testing

Hydrualic tests were conducted in all new monitoring wells to determine the hydraulic conductivity of the hydrogeologic units. Two types of hydraulic tests were performed: hydraulic recovery tests and packer tests.

3.3.1 Recovery Tests

Hydraulic recovery tests were performed in the 2008 monitoring wells to determine the hydraulic conductivity of hydrogeological units. All wells were developed prior to testing to remove suspended sediments, develop the sand pack, and remove possible drill water that had been lost into the formation during drilling. Tests were performed once the wells had been developed and recovered to static water levels. For this project the slug was a one meter, single use bailer. A minimum of three rising head tests were performed on each well. To ensure the most accurate results possible, all testing was done in the following manner:

- A Solinst pressure transducer was placed one meter below the bottom of the slug and was used to continuously record the changes in water levels.
- Approximately 10 minutes after the pressure transducer was installed, and water levels had stabilized, tests were performed.
- Water level readings were confirmed with manual measurements taken with the Solinst water level meter.

The hydraulic tests results from the 2009 field program were interpreted using methods within the Aquifer Test version 3.0 software by Waterloo Hydrogeologic (now Schlumberger Water Services).

Hydraulic conductivity was estimated using an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. These analyses were based on Bouwer and Rice (1976) for fully or partially penetrating wells in unconfined aquifers. Both methods of analysis used a modified version of the Theim equation (Freeze and Cherry, 1979) to estimate hydraulic conductivity:

$$K = \frac{r_c^2 \ln(\frac{R_e}{r_w})}{\frac{2L}{t}} \frac{1}{t} \ln \frac{y_0}{y_t}$$

Where:

K = hydraulic conductivity [L/T]

 r_c = radius of the well casing [L]

 R_e = effective radial distance over which the head difference is dissipated [L]

 r_w = radial distance between well center and undisturbed aquifer [L]

L = screened interval [L]

 y_0 = difference between static (undisturbed pre-test) and slug displaced water level at time 0 [L]

 y_t = difference between static (undisturbed pre-test) and slug displaced water levels at time t [L]

t = time [T].

The equation assumes that the aquifer over the test section is homogeneous and isotropic, the water level change around the well is negligible, and no water flows through an unsaturated material above the water table. In general, this assumption implies that groundwater flow is primarily through bedrock fractures which are distributed more or less similarly across the hydrostratigraphic unit.

3.3.2 Packer Tests

Packer tests are used to determine in-situ hydraulic conductivity of a rock mass over a specific interval under constant pressure head conditions. Packer tests were performed in one of the 2009 boreholes (L09-152) over selected and representative intervals. The packer test intervals were selected after an inspection of the drill core to determine representative depth intervals for lithology, fracture frequency, and fault zones over the entire depth of the borehole.

The packer test system was composed of the following three main components:

- A downhole assembly of two or three inflatable packer glands used to seal the tested interval within the borehole
- A packer inflation system that used nitrogen to inflate the packer glands and seal the test section
- A water pressure system that facilitated water injection at a constant pressure (head) into the tested interval and provided a measurement of the flow rate.

The tests were conducted after the borehole was completed. The drill rods were pulled back to allow water levels to stabilize. The water level was used to determine the maximum (P^{max}) and minimum (P^{min}) inflation pressure to be applied over the tested interval, calculated as follows:

$$P^{max} = P_{hydrostatic} + P_{packer}$$
$$P^{min} = P_{hydro-test} + P_{infl} + P_{seal} + P_{gauge max}$$

Where,

 $P_{hydrostatic}$ = the hydrostatic pressure prior to the test at packer (psi)

 P_{packer} = maximum inflation pressure of the packer (from manufacturers curve) (psi)

 $P_{hydro-test}$ = the hydrostatic pressure during test with zero gauge pressure (psi)

P_{infl} = pressure inflate the packer (from manufacturers curve) (psi)

 P_{seal} = pressure to seal/seat the packer (from manufacturers curve) (psi)

 $P_{gauge max}$ = maximum pressure of injected water at gauge during tests (psi).

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report Section 4: Results

The packer inflation pressures insure that the tested interval is properly sealed, prevents slippage, and avoids damage to the packer gland.

The borehole was thoroughly flushed with water until clear, prior to testing to ensure the hole was free of any cuttings. The downhole assembly was lowered through the drill rods into the open borehole. The packer glands were slowly inflated using nitrogen gas; once inflated the water pressure system was connected to the system. Water was injected down the rods into the tested interval under staged but a constant pressure. The injected rate was measured using a flow meter and recorded for selected pressures. The packer tests were conducted in stages where the maximum injection pressure increased from 25%, 50%, 75%, to 100%. The data collected from these stages was then used to calculate the hydraulic properties of the rock mass within the test interval.

3.4 Groundwater Sampling

Groundwater samples were collected from existing and new monitoring wells using disposable bailers. Sample bottles were provided by ALS Laboratory Group (ALS). Non-powdered nitril gloves were worn at all stages of the sampling procedure to prevent sampling contamination.

The samples were analyzed for physical parameters, nutrients, total metals, dissolved metals, and total organic carbon. The samples to be analyzed for dissolved metals were filtered using a 0.45 μ m sterilized membrane in the field. The appropriate preservatives were added to the samples, as outlined by ALS. The samples were labeled and stored in a chilled cooler with ice packs while transported to the lab. A chain of custody form detailing the sampling handling information and analysis required was prepared and included with the samples prior to shipping via air cargo to ALS in Vancouver, BC. All samples were received by lab within QA/QC protocol.

Field and duplicate samples were also collected based on standard QA/QC protocols.

4 RESULTS

4.1 Geologic Setting

Borings penetrated unconsolidated surficial material and/or bedrock with boring depths ranging from 193.9 m bgs to 215.2 m bgs; a summary of boring logs is available in Table 1, Appendix C. Additional surficial geology information was available from the concurrent baseline studies regarding soils and terrain which are reported in a separate technical data report, the following information, from the Terrain and Permafrost Interim Report – Volume 4, is available here. Surficial material in the study area has been interpreted to generally consist of an upper organic rich horizon overlying till.

Organic deposits generally occupy topographic lows and either rest directly on bedrock or overlie poorly drained surficial deposits (lacustrine, glaciolacustrine material or fine grained till deposits). Due to the poor drainage, the accumulations form bogs and fens varying in thickness.

Till is the dominant unconsolidated surficial deposit, consisting of material deposited by ice due to lodgement, melt out, or post-melt out gravity flow. Facies vary throughout the study area but generally consist of poorly compact, stony matrix supported diamicton. Deposits are generally discontinuous veneers and blankets directly overlying the bedrock.

Bedrock outcrops are the dominant landscape elements throughout the region and within the study area. Evidence of former ice-flow patterns is found throughout the area, including striations, cragand-tail hills, glacially-smoothed outcrops, and roche moutonnées. Outcrops show variable degree of weathering in relation with surficial processes associated with thermal expansion (freeze and thaw cycles, frost heave).

4.2 Boring and Monitoring Well Logs

In 2008 and 2009 eight borings were cored for both exploration and groundwater study purposes in the general area between Thor Lake and Long Lake. Monitoring wells were installed in five of these borings. Locations are shown on Figure 5, Appendix A. Wells were completed in bedrock with total well depths ranging from 10.3 m bgs to 99.7 m bgs; Table 1, Appendix C is a summary of boring logs and well completion data. Borehole logs are in Appendix B.

In September/October 2008, three monitoring wells (MW08-127, MW08-128, and MW08-130) were completed as shallow wells in bedrock. The depths of completion ranged from 10.3 m bgs to 16.1 m bgs.

In March 2009, two deep monitoring wells (MW09-151 and MW09-152), were completed to 95.2 m bgs and 99.7 m bgs to evaluate sub-permafrost aquifer conditions.

Two 2008 coreholes (L08-123 and L08-124) were left as open wells to collect samples and measure water levels. A thermistor was installed in another 2008 corehole (L08-134) to provide data on permafrost temperature and depth.

4.3 Groundwater Elevation

Groundwater level measurements were attempted in the seven monitoring wells from three to five separate times during 2008 (September and October) and 2009 (March, June and October). In March 2009, ice was encountered in the five 2008 wells; in all cases the ice level was at or ~1.0 to 3.0 m below the previous autumn measurement, so that the depth to ice could reflect a lower wintertime water surface. Subsequent measurements in June and/or October 2009 had recovered to a similar level measured in the previous autumn, but in some cases these water levels were measured on top of an ice level in the well. Table 2, Appendix C, summarizes groundwater level measurements.

Generally groundwater elevation has been measured to be near the ground surface (0.7 m bgs to 4.5 m bgs) in all the wells. Although the monitoring wells have not been measured frequently enough to observe seasonal effects or responses to extended wet or dry periods, groundwater levels are expected to have some seasonal response so that higher groundwater levels would be expected during the spring freshet, and lower groundwater levels related to late summer.

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report Section 4: Results

Due to the general shallow depths to groundwater in all the wells, the relatively long distance between wells and the small overall difference in depths to groundwater levels, horizontal gradients (and as a result flow directions) are expected to follow the general topographic surface.

4.4 Ground Temperature

Near surface ground temperatures can vary substantially and are subject to seasonal temperature variations. Below the level of zero annual amplitude (i.e., below the depth of penetration of seasonal temperature variations), ground temperatures and permafrost thickness generally reflect the mean annual air temperature and local physical conditions. The depth of zero annual amplitude and thickness of permafrost also varies depending on local environmental conditions (soil properties, land cover, vegetation, insulation, proximity to large water bodies, and other factors). At some depth, the effect of the geothermal gradient is greater than the effect of surface effects, and ground temperatures steadily increase with further increasing depth.

The active layer is defined as the shallow soil zone that freezes and thaws with the changing seasons. Field observations at the Thor Lake study area in the late summer and early fall showed that existing boreholes in some low-lying areas were plugged by ice at a depth of about 3.3 mbg to 4.5 mbg in October 2009. Further, thermistor readings in L08-134 indicate subzero ground temperatures were reached at approximately 3 mbg (Figure 6, Appendix A). Taken together these data suggest the thickness of the active layer is about 3 - 4 mbg. More detailed observations of the depth of the active layer were made as part of the soils and terrain baseline assessment (see Terrain and Permafrost Interim Report – Volume 4).

The thermistor reading in L08-124 had a minimum temperature of -0.75 °C at 14 mbg which was at the end of the string. The temperature-depth data also suggest that permafrost temperature is rather warm (< 1 °C), and appeared to approach isothermal character with depth. A minimum permafrost thickness of 44 to 59 m at this location is estimated by assuming ground temperatures increase from -0.75 °C at -14.0 mbgs based on a geothermal gradient of 1°C per 30 to 60 m (Lachenbruch, 1968). Further, two of the deeper monitoring wells (i.e., MW09-151 and MW09-152) obtained groundwater from the 80 to 100 m bgs range, indicating that in those locations permafrost thickness was no deeper than approximately 80 m. Thus, it is reasonable to assume an approximately 60 to 80 m permafrost thickness at these well locations.

4.5 Hydraulic Tests

Results of the hydraulic tests have been summarized in Tables 3 and 4, Appendix C. Detailed results of the 2008 and 2009 hydraulic tests are presented in Appendix D.

4.5.1 Recovery Tests

Recovery tests were performed in the three shallow monitoring wells (MW08-127, MW08-128, and MW08-130) and two open coreholes (L08-123, and L08-124) during the 2008 field program. All three shallow monitoring wells were completed in bedrock. The data were analyzed with methods applicable to fully penetrating and partially penetrating wells in unconfined aquifers as described

above in Section 3.3.1. Although it is likely that the assumptions regarding isotropic, homogenous, and fully penetrating conditions are not likely met, the curves generated by the analytical methods described in Section 3.3.1 match fairly well to the observed conditions, so that the calculated hydraulic conductivities are reasonable as bulk (or average) conductivities over the screen length.

In the area of study, estimated hydraulic conductivity values in bedrock varied over three orders of magnitude 6.06 X 10^{-8} m/s to 3.08 X 10^{-5} m/s.

4.5.2 Packer Tests

One borehole was tested over five depth intervals in the local study area, during the 2009 winter field program. The test intervals ranged from 3.3 m to 139.4 m in length, and the depth of the test intervals ranged from 20.0 m bgs to 208.6 m bgs. Table 3, Appendix C is a summary of the packer test results. In general, hydraulic conductivity decreased with depth; this was expected due to the higher density of vugs in bedrock near surface, and the decreasing fractures and joints with depth. . Based on the method of analyses described above, the hydraulic conductivities were estimated to range from to 1.66×10^{-6} m/s in tests performed near surface and 2.90 x 10^{-8} m/s at depth.

4.5.3 Summary of Hydraulic Tests

The results of hydraulic testing of the wells suggest a range of hydraulic conductivity from 2.90×10^{-8} to 3.08×10^{-5} m/s. The variable hydraulic conductivity seen in the bedrock is typical of vuggy crystalline rock (Freeze and Cherry, 1979), which also showed decreasing hydraulic conductivity with depth. There are insufficient data to distinguish between the hydraulic conductivities of bedrock types, variability spatially throughout the study area, and with depth.

4.6 Hydrogeochemistry

All groundwater quality data have been compared to federal, Canadian Council of Ministers of Environment (CCME), Canadian Water Quality Guidelines for the protection of Aquatic Life (December 2007). In addition, data has been compared to the British Columbia Contaminated Sites Regulation (CSR), Schedule 6 Generic Numerical Water Standards for the protection of Freshwater Aquatic Life (January, 2009). These criteria were selected due to the absence of any other existing federal or territorial guidelines for groundwater quality. These criteria are meant to represent approximate background concentrations to a representative ambient level which may reflect natural geologic variations in relatively undeveloped areas. In addition, these criteria are to provide general guidance only and have been used for comparison to existing background groundwater quality conditions at the study area.

Monitoring wells were sampled up to three times during the 2008 and 2009 field programs. The analytical results of all groundwater samples collected as part of the hydrogeology field program are presented in Table 5-7, Appendix C. Laboratory certificates are provided in Appendix F.

Results of analysis for wells sampled over multiple events were generally in the same range. Although no seasonal trends were apparent this may be due to short term and infrequent data collection.

4.6.1 General and Physical Parameters, Major Ion Chemistry, and Hydrochemical Facies

Groundwater is classified based on major ion chemical compositions, while taking into account major anions and cations exceeding 10 meq-%. The water type (hydrochemical facies) is determined by listing the ions with concentrations greater than 10 meq-% in decreasing order (cations are listed first). Charts 1 – 5, Appendix E, show the major ion chemistry and hydrochemical facies.

Chart 6 (Appendix E) is a Piper Diagram which shows cations (represented on the right triangle), anions (represented on the left triangle), and both cations and anions in the diamond. Cations typically indicate mixing, solubility, and ion exchange processes; anions typically indicate solubility and precipitation reactions. The diamond field is used to represent waters of two or more chemistries. Groundwater samples plotted from the study area suggest two groundwater sources; one consisting of samples from L08-124, MWL08-127, and MWL08-130, and the second consisting of samples from MWL08-127 and MWL09-152. The chemistry indicates the samples from L08-124, MWL08-127, and MWL08-127, and MWL08-130 are in a near surface oxidizing environment. The chemistry for the remaining samples suggests a deeper more oxygen reducing environment. The grouping of the deep and shallow aquifers is consistent with that of the hydrogeochemical facies from Charts 1 - 5 (Appendix E) and as summarized in Table 8, Appendix C.

Magnesium is the dominating cation in two of monitoring wells sampled (L08-124 and MW08-130), while sodium dominates in the other two sample locations (MW08-127 and MW09-152), and both sodium and magnesium dominate MW08-128 depending on the sampling event. Carbonate was the dominating anion in all samples.

All groundwater samples were analyzed for their concentrations of total and dissolved metals. The measured dissolved metal concentrations were compared to CSR and CCME water quality guidelines for the protection of aquatic life. The CSR guideline values apply to both surface and groundwater, whereas the CCME guidelines only apply to surface water. However, as groundwater ultimately discharges to surface water bodies, the CCME guideline values are included here for reference. All exceedances are marked in Tables 5 - 7, Appendix C.

These exceedances of the CCME and/or CSR guidelines do not imply that the groundwater at the study area is currently contaminated; only that background concentrations of these parameters are higher than typically found in groundwater at other natural sites in Canada. These background groundwater quality results merely reflect the natural geologic and hydrogeologic conditions within these specific areas of the property.

4.6.2 QA/QC of Analytical Results

The duplicate samples MW09-152 (June and October) had very similar analytical results for most analyzed species. Notable differences are only present in concentrations low and close to the detection limits of the analytical method. The field duplicate results are within acceptable limits of reproducibility for the purpose of this study.

In addition, a QA/QC procedure has been implemented by ALS, and all analytical results have been approved by a laboratory representative.

5 DISCUSSION

Based on analyses and interpretation of the information gathered during the 2008 and 2009 fieldwork and data interpretation, the local hydrogeological conceptual model of the area between Thor Lake and Long Lake consists of shallow (perched) and deep aquifers separated by permafrost. The shallow aquifer is composed of unconsolidated surficial material and, in some places the bedrock is porous and vuggy, perched on the permafrost. The deep aquifer likely occurs below permafrost and is comprised of different bedrock lithologies in which groundwater flow mainly occurs along fractures and other rock discontinuities. Although this conceptual model can likely be extrapolated to other places in the proposed project footprint, more data (i.e., greater spatial – both vertically and horizontally - coverage of groundwater elevations and hydraulic properties) and information (i.e., surficial and bedrock maps, distribution of permafrost map) would be required to develop a more detailed concept. The following summarizes our understanding of the hydrogeology based on the data gathered to date.

5.1 Shallow Aquifer

The shallow aquifer is composed of unconsolidated surficial material and, where spatially present, porous and vuggy bedrock within the active zone, which has been interpreted to be perched on the permafrost. The unconsolidated surficial material mainly consists of till and organic deposits in topographically low areas. The till varies throughout the study area but generally consists of a poorly compact, stony, matrix supported diamicton. The organic deposits are poorly drained fine materials.

Recovery tests performed in shallow monitoring wells showed a hydraulic conductivity range over several orders of magnitude, from 7.56×10^{-7} m/s to 3.08×10^{-5} m/s. There is little spatial hydrostratigraphic and hydraulic conductivity data available, especially for areas north and west of Thor Lake.

Groundwater flow within the shallow aquifer occurs in the active layer (i.e., in the layer of seasonal thawing and freezing). The highest groundwater levels are expected to occur during the snowmelt in late spring after thawing the shallow sediments. Groundwater flow is expected to be characterized by local, small-scale flow, and the flow direction is assumed to follow the local topography.

5.2 Deep Aquifer

A deeper bedrock aquifer underlies permafrost. The bedrock lithology mainly consists of intrusive zoned syenite and granite, with dykes and sills throughout the pluton.

Groundwater flow in the bedrock aquifer is expected to occur, predominantly, in fractures and fault zones. Groundwater flow in fractured media is complex, depending on the local hydrogeological and structural geological conditions. Transmissivity values can differ over several orders of magnitude within the same rock mass, and groundwater flow may be largely controlled by a few conductive fractures or other rock mass discontinuities.

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report Section 6: Closure

Groundwater within the bedrock aquifer is thought to occur beneath the permafrost, which may or may not be in hydraulic connection with some of the taliks surrounding the larger and deeper lakes. In general, though it is expected that there is very little connection between the shallow and deep aquifers. Due to the limited number of groundwater monitoring wells there is little information to estimate flow direction of water in the bedrock. From a conceptual perspective, it is likely that the deep aquifer flows southward and is ultimately in hydraulic connection with deeper sections of Great Slave Lake.

Packer tests performed in the deep aquifer suggest a hydraulic conductivity that ranges over several orders of magnitude $(4.1 \times 10^{-8} \text{ m/s to } 1.7 \times 10^{-6} \text{ m/s})$. The range of hydraulic conductivity is within the expected range for fractured crystalline rock, (Freeze and Cherry, 1979). Hydraulic conductivity generally decreased with depth, which is expected due to the increasing competence of the bedrock with depth. Although the hydraulic conductivity data is consistent with fractured crystalline rock, the spatial variability across the study area is not well known at this time.

6 CLOSURE

Stantec has prepared this report for the sole benefit of Avalon Rare Metals for the purpose of documenting baseline conditions at its Thor Lake site. The report may not be relied upon by any other person or entity, other than for its intended purposes, without the express written consent of Stantec and Avalon. Any use of this report by a third party, or any reliance on decisions made based upon it, are the responsibility of such third parties.

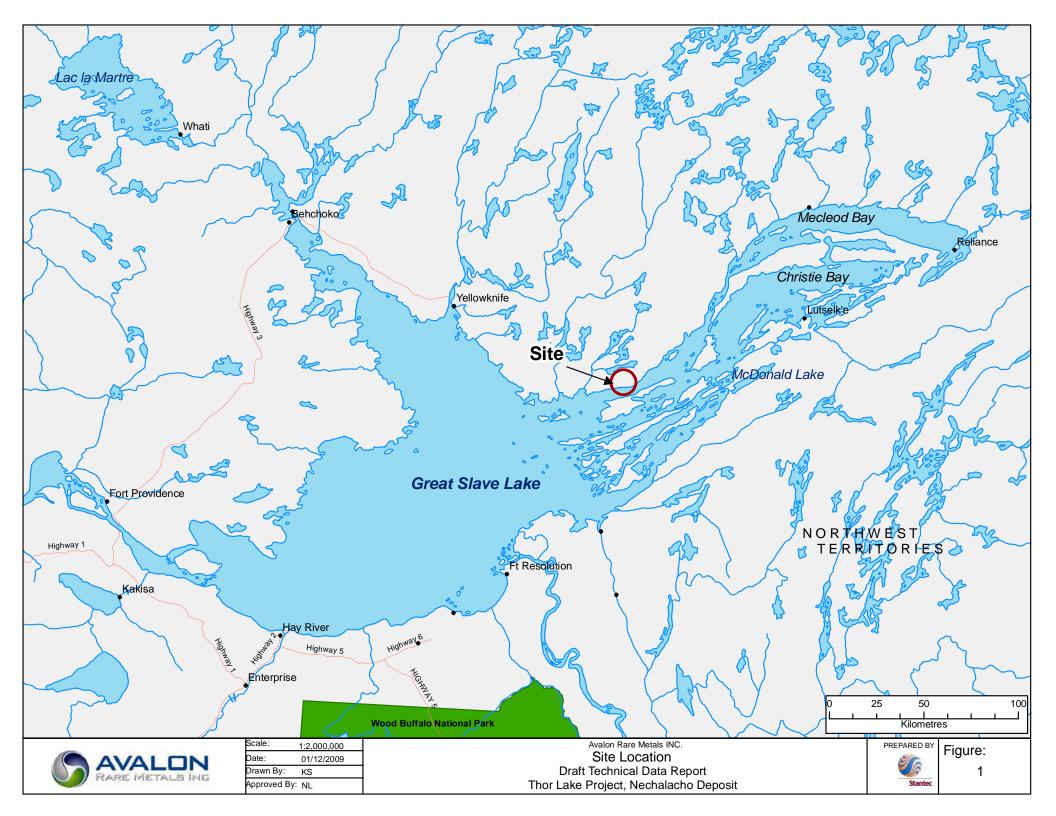
The information provided in this report was compiled from existing documents and data provided by Avalon and field data compiled by Stantec (formerly Jacques Whitford AXYS Ltd.). This report represents the best professional judgment of our personnel available at the time of its preparation. Stantec reserves the right to modify the contents of this report, in whole or in part, to reflect any new information that becomes available. If any conditions become apparent that differ significantly from our understanding of conditions as presented in this report, we request that we be notified immediately to reassess the conclusions provided herein.

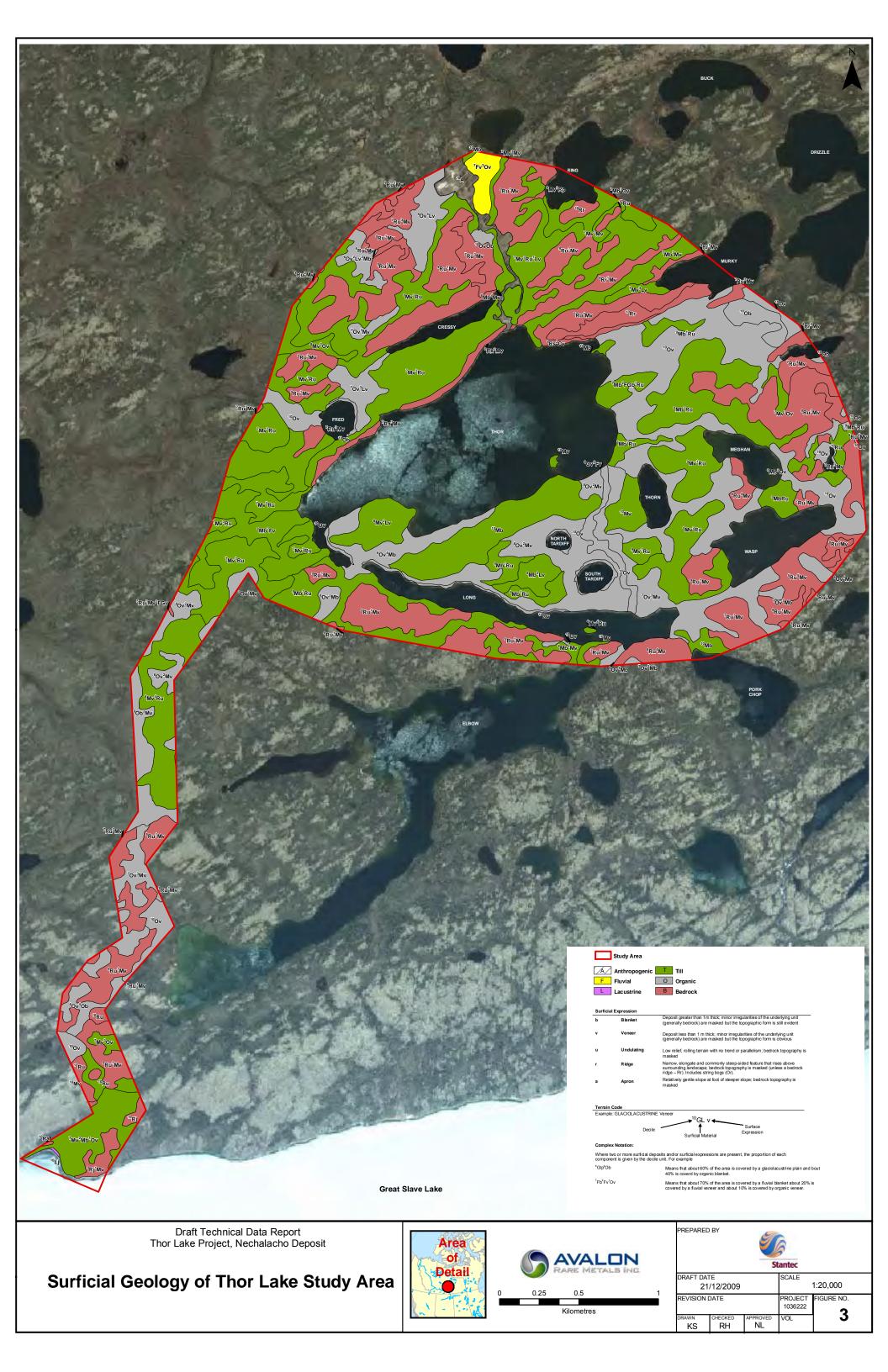
7 REFERENCES

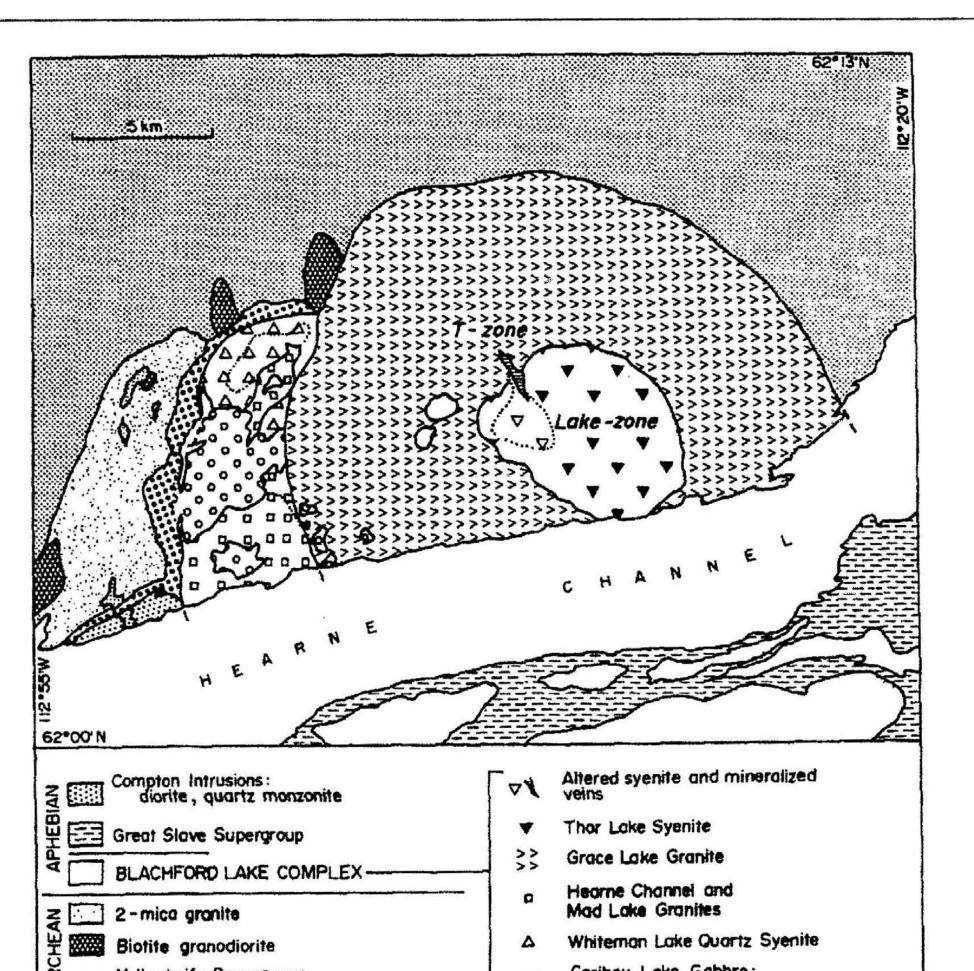
- BC Ministry of Environment. 2006. British Columbia Approved Water Quality Guidelines 2006 Edition. Water Quality Section, Water Management Branch, Environment and Resource Management Branch. Available at: http://www.env.gov.bc.ca/wat/wq/BCguidelines/approv_wq_guide/approved.html. Accessed November 2008.
- Bostock, H. S. 1970. Physiographic subdivisions of Canada. In: Geology and Economic Minerals of Canada. R.J.W Douglas (edt), Geological Survey of Canada. Ottawa, Ontario. 9-30.
- Bouwer, H., 1989. *The Bouwer and Rice slug test--an update*, Ground Water, vol. 27, no. 3, pp. 304-309.
- Bouwer, H. and R.C. Rice, 1976. A slug test method for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells, Water Resources Research, vol. 12, no. 3, pp. 423-428.
- Canadian Council of Ministers of the Environment (CCME). 2007. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Summary Table. Updated December 2007. In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment.
- Cooper, H. H., Jr., J.D. Bredehoeft, and I.S.Papadopolos. 1967. Response of a finite-diameter well to an instantaneous charge of water. *Water Resources Res.*, 3, pp. 263 269.
- Davidson, A. 1982. Petrochemistry of the Blatchford Lake complex near Yellowknife, Northwest Territories. In: Uranium in granites. Y. T. Maurice (edt), Geological Survey of Canada, Paper 81-63. 71-79.
- Dyke, A. S. and L. A. Dredge 1989. Quaternary geology of the northwestern Canadian Shield. In: Chapter 3 of Quaternary Geology of Canada and Greenland. R. J. Fulton (edt), Geological Survey of Canada, Geology of Canada, no. 1. Ottawa, Ontario. 189-214.
- Freeze, Alan R., and John A Cherry. 1979. *Groundwater*. Hamel Hampstead: Prentice Hall International
- Fulton, R. J. 1995. Surficial materials of Canada. Geological Survey of Canada. Ottawa, Ontario. "A" Series Map 1880A. 1: 5 000 000.
- Henderson, J. B. 1985. Geology, Yellowknife Hearne Lake. Geological Survey of Canada. Ottawa, Ontario. "A" Series Map 1601A. 1:250 000.
- Hvorselev, M.J. 1951. Time lag and soil permeability in groundwater observation. U.S. Army Corps Engrs. Waterways Exp. Sta. Bull. 36. Vicksburg, Miss.
- Kerr, D. E. and P. Wilson. 2000. Preliminary surficial geology studies and mineral exploration considerations in the Yellowknife area, Northwest Territories. Geological Survey of Canada, Current Research 2000-C3. 1-8.
- Lachenruch, A. H. 1968. Permafrost. In: Fairbridge, R. W., ed., Encyclopaedia of Geomorphology. Reinhold, New York, pp.833-838

- Pinckston, R. and D.G.W. Smith. 1991. Mineralogy and Petrogenesis of the Lake Zone, Thor Lake rare metals deposits, NWT., Canada, part of NTS 85I/02. Indian and Northern Affairs Canada NWT Geology Division, Ottawa, Ontario. EGS 1991-5.
- Theis, C.V., 1935. The Relation Between Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage. Am. Geophys. Union Trans., vol. 16, pp. 519-524.

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report


Appendix A – Figures




Figures

One Team. Infinite Solutions.

Yellowknife Supergroup, Burnwash formation		e Gobbro: eucoferrodiorite
Source: Avalon Ventures 2007	Great Slave Lake	
Draft Technical Data Report Thor Lake Project, Nechalacho Deposit Bedrock Geology	Area of Detail Petail	PREPARED BY Stantec DRAFT DATE 21/12/2009 SCALE Not to scale
		REVISION DATE PROJECT 1036222 DRAWN CHECKED APPROVED VOL 4 KS RH JT

1:10,000

PROJECT 1036222

VOL

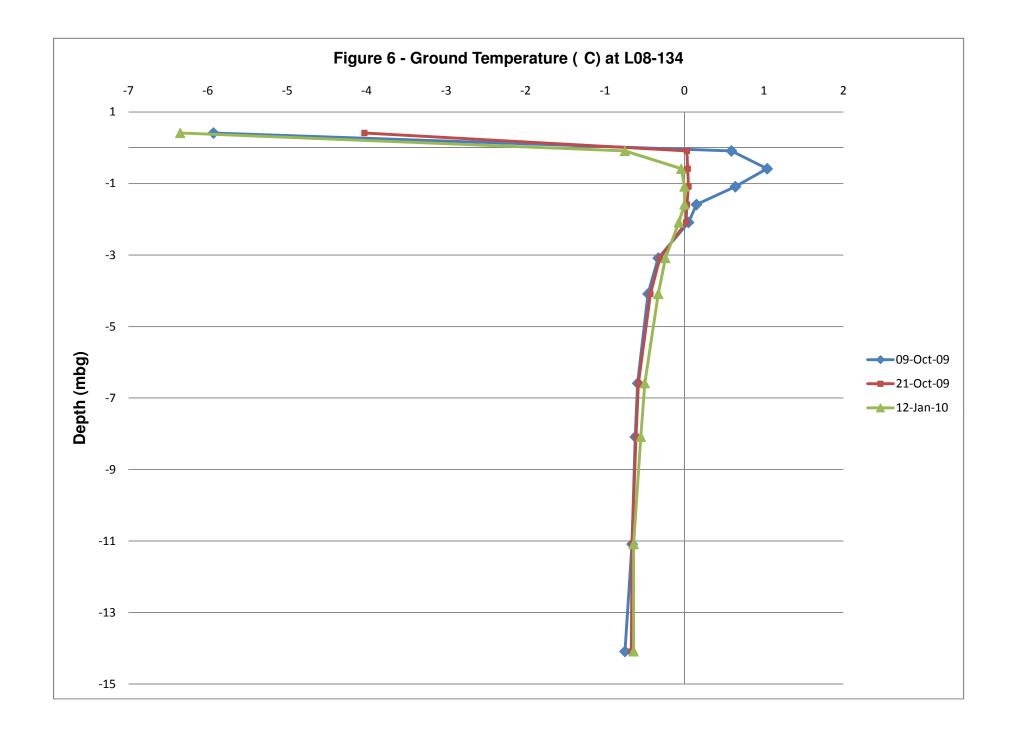
FIGURE NO.

5

18/12/2009

HECKED

JT


PPROVED NL

REVISION DATE

AWN

RH

Monitoring Well Locations

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

Appendix B - Borehole Logs

APPENDIX B

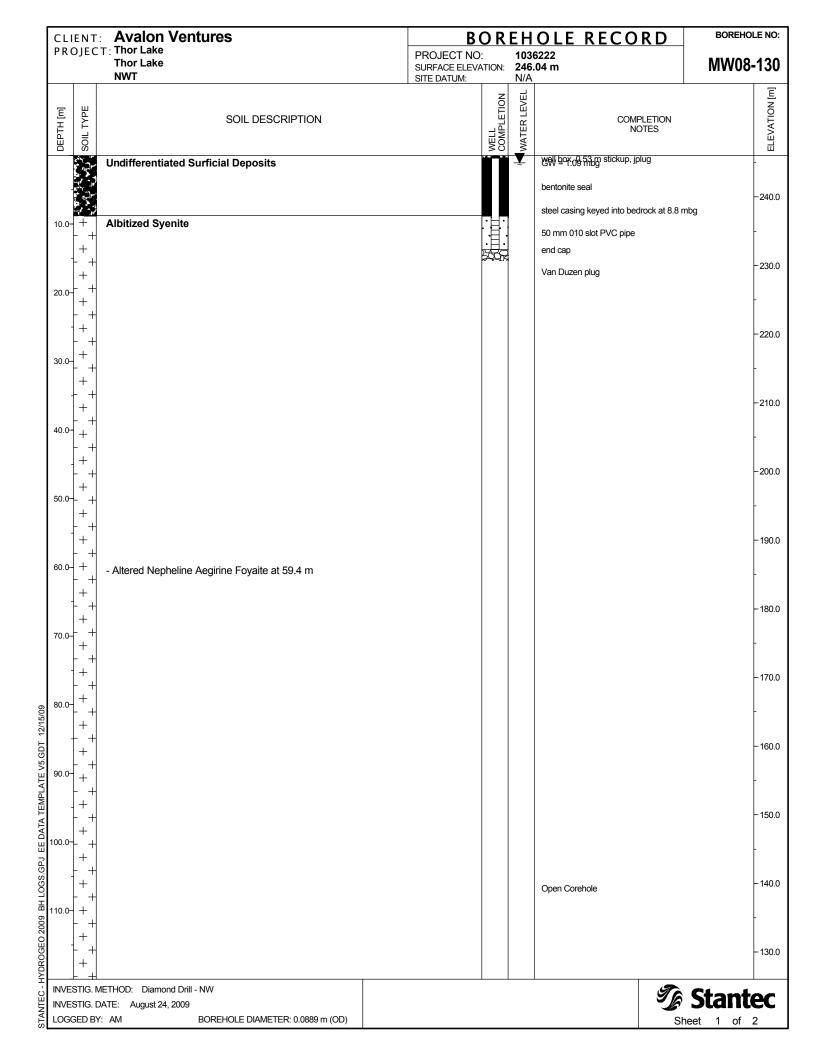
Borehole Logs

One Team. Infinite Solutions.

CLI PR(ENT DJEC	Avalon Ventures T: Thor Lake Thor Lake NWT	BOR PROJECT NO: SURFACE ELEVATION: SITE DATUM:	103		BOREHOLE NO: L08-123
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION	COMPLETION		COMPLETION NOTES	ELEVATION [m]
		Undifferentiated Surficial Deposits			GW = 0.32 mbg	
-	+	Altered Aegirine Syenite			steel casing	-
	+					-230.0
10.0-	+					
-	- +					-
	- +					-220.0
20.0-	- +					
-	- +					-
	+ - +	- Albitized Syenite at 26.7 m				-210.
30.0-	+	- Altered Aegirine Syenite at 31.9 m				
-	+					-
40.0	+					-200.0
40.0-	- +					
-	- +	- Pegmatite at 42.7 m				-
50.0-	- +	- Altered Aegirine Syenite 46.6 m				- 190.
50.0-	+					
-	+					Ī
60.0-	+					- 180.0
00.0-	+	- Albitized Syenite at 60.0 m				
-	- +					
70.0-	- +					- 170.0
10.0	- + +	- Altered Aegirine Syenite at 70.7 m				
-	- +					
80.0-	- +					- 160.0
00.0	+					_
-	+					
90.0-	+					- 150.
00.0	+ +					_
-	- +	- Albitized Syenite at 94.6 m				
100.0-	- +					- 140.
	- +	- Altered Aegirine Syenite at 101.2 m				
-	+					
110.0-	+				open corehole	- 130.0
	+					
-	+					
	- + +					- 120.0
		IETHOD: Diamond Drill - NW DATE: August 1, 2009			I I I I I I I I I I I I I I I I I I I	Stantec
	GED BY				Shee	

	ΝΤ: ΕΟΤ	Avalon Ventures	B	BOREHOLE N				
KOJI	ECI	Thor Lake	PROJECT NO: 1036222 SURFACE ELEVATION: 238.46 m				L08-12	
		NWT	SITE DATUM:		<u>N/A</u>			
	ц			WELL COMPLETION	WATER LEVEL			
DEPTH [m]	<u>+</u>	SOIL DESCRIPTION		E E	ERL	COMPLETION NOTES	- F	
DEPTH [m]				MEL	WAT			
+					-			
 +	+						ŀ	
1'	+							
80.0-	⊦						-11	
	+							
÷	+						-	
[+	-						-10	
0.0-+	⊢ '							
F.		- Layered Aegirine Syenite Cumulate at 141.6 m					-	
1+	+							
+	+						-90	
0.0++	+1							
'	+						-	
1+	⊦							
0.0-+	+						-80	
-	+							
+							-	
+	⊢ '						70	
'0.0-	+						-70	
+	+							
- +	F							
	+						-60	
80.0-	+							
+	⊦						-	
[+	$\left - \right $							
90.0- +	+						-50	
,0.0- <u>+</u>	-							
]+	⊢						-	
+								
0.0+							-40	
+	⊢							
1+	+							
H		End of borehole at 207.4 m						
		Top of Pipe (TOP) Elevation = 238.957 m						
		Groundwater Information: Depth to groundwater from TOP = 0.82 m ()						
		Open Borehole						
0.0-+++++++++++++++++++++++++++++++++++								
VESTI		THOD: Diamond Drill - NW				TA C	Stante	
IVESTI OGGED		August 1, 2009 BOREHOLE DIAMETER: 0.0889 m (OD)						
JUGEL	וסי.					Shee	et 2 of 2	

- + + - + - + - + - + - + - + - + - + -	NWT SOIL DESCRIPTION Undifferentiated Surfical Deposits	SITE DATUM:	ETION	N/A NEL		5
- + + - + - + - + - + - + - + - + - + -	Undifferentiated Surfical Deposits		WELL COMPLETION	WATER LEVEL	COMPLETION NOTES	
- + - + - + - + - + - + - + - + - + - +				Ţ	GW = 2.25 mbg	-240
0.0+ ++ ++ ++ ++ + 0.0++ +-+	Albitized Syenite				steel casing	-
- + + - + 0.0- + + + +						-23
0.0- + + +						20
+ +						-
						-22
	- Altered Syenite at 24.6 m					-
D.0+ ' + +						-2'
).0- +						
+ +						-20
						-
0.0- ⁺ + +						- 19
	- Aegirine Foyaite at 54.6 m					
).0- +	- Altered Aegirine Syenite at 58.3 m					
						- 18
						-
D.0- + + +						- 17
						-
).0+ +						
+ -+	- Aegirine Foyaite at 83.4 m					- 16
+++++++++++++++++++++++++++++++++++++++						-
0.0-1 +						- 15
+ + +	- Heterogeneous Altered Syenite at 95.3 m					-
D.0+						- 14
					open corehole	
						ŀ
0.0- ' + +						- 13
+ +						ŀ
	ETHOD: Diamond Drill - NW					
VESTIG. DA	ATE: August 4, 2009					Stante


CLIENT: PROJECT		: Avalon Ventures ⊤: Thor Lake Thor Lake	PROJECT NO: SURFACE ELEVA	BOREHOLE N			
		NWT	SITE DATUM:		N/A		
DEPTH [m]	- SOIL TYPE	SOIL DESCRIPTION		WELL	WATER LEVEL	COMPLETION NOTES	
-	+ - + + - +						- 12
30.0- <u>-</u>	+ - + - + +						-11
0.0-	- + + - + + - +						- 10
50.0 - -	+ - + + - + +						-90
:0.0- -	- + + - + + - +						- 80
0.0-	+ - + + - + +						- 7(
-0.0-	- + + - + + - +	- Nepheline Aegirine Syenite at 179.25 m					-60
10.0-	+ + + - + +						- 50
-	- +	End of borehole at 198.3 m					-
		Top of Pipe (TOP) Elevation = 241.714 m					
		Groundwater Information: Depth to groundwater from TOP = 2.37 m ()					
		Open Borehole					
		METHOD: Diamond Drill - NW DATE: August 4, 2009				Tr	Stante

	: Avalon Ventures ⊤: Thor Lake		BOREHOLE RECORD PROJECT NO: 1036222				
ROJEC	Thor Lake NWT	PROJECT NO: SURFACE ELEVATION: SITE DATUM:	103 238 N/A	.04 m	MW08-12		
DEPTH [m] SOIL TYPE	SOIL DESCRIPTION	STE DATOM.		COMPLETION NOTES			
	Undifferentiated Surficial Deposits		Ţ	QeV box 50.53bg stickup, jplug			
	Altered Syenite			steel casing keyed into bedrock at 2.5 mbg bentonite seal 10/20 silica sand 50 mm 010 slot PVC pipe end cap Van Duzen plug	-23		
	- MRZ at 23.0 m				-21		
					- 20		
					- 18 - - 17		
	- Heterogeneous Altered Syenite at 84.7 m				- 16 - 16		
					- 15 - 14		
				Open Corehole	- 1:		
	/IETHOD: Diamond Drill - NW DATE: August 13, 2009			<u> </u>	Stante		

CLI PR(: Avalon Ventures				OLE RECORD	BOREHOLE N
	5520	Thor Lake NWT	PROJECT NO: SURFACE ELEVA		238	6222 .04 m	MW08-12
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION	SITE DATUM:	WELL COMPLETION	WATER LEVEL	COMPLETION NOTES	
- 30.0- - 40.0- - 50.0- - 60.0-		- Layered Cumulate at 144.6 m					- 11 - 10 - 90 - 80 - 80
		- Aegirine Foyaite at 182.5 m - Altered Aegirine Syenite at 184.6 m					-70 -60 -50
00.0-		End of borehole at 201.3 m Completion Information: Screened interval from 6.9 m to 16.4 m below surface Top of Pipe (TOP) Elevation = 238.543 m Groundwater Information: Depth to groundwater from TOP = 1.00 m () Borehole plugged with Van Duzen Plug					-40
NVE		METHOD: Diamond Drill - NW DATE: August 13, 2009 f: AM BOREHOLE DIAMETER: 0.0889 m (OD)					Stante eet 2 of 2

Albitized Syeni 20.0 Vuggy in more in 30.0 - 40.0 - 50.0 - 60.0 - - -	tensely albitized sections, porous	SITE DATUM	ber stee 50 i	COMPLETION NOTES Dov. 69 53-09 stickup, jplug ntonite seal el casing keyed into bedrock at 8.0 mbg mm 010 slot PVC pipe d cap n Duzen plug	-23 -23 -22 -21 -20
10.0 Albitized Syeni 20.0 Vuggy in more in 30.0 - 40.0 - 50.0 - 60.0 - 60.0 - 70.0 - Albitized Syeni 70.0 - Albitized Syeni 70.0 - Altered Porphy	te tensely albitized sections, porous		ber stee 50 i	ntonite seal el casing keyed into bedrock at 8.0 mbg mm 010 slot PVC pipe d cap	-23 -22 -22 -21
 vuggy in more in vuggy in more in 20.0 30.0 40.0 50.0 - Altered Porphys 60.0 - Altered Porphys - Altered Porphys 	tensely albitized sections, porous		50 i end	mm 010 slot PVC pipe	-23 -22 -22 -21
30.0- 40.0- 50.0- 60.0- - Altered Porphyl 60.0- - Altered Porphyl - Altered Porphyl					-21
40.0- 50.0- 60.0- - Altered Porphys 60.0- - Albitized Syenit 70.0- - Altered Porphys					-
50.0- 60.0- - Altered Porphyl - Albitized Syenit - Altered Porphyl					-20
 Altered Porphys Albitized Syenit Altered Porphys Albitized Syenit Altered Porphys 					
60.0 - Albitized Syenit 70.0 - Altered Porphys	ritic Svenite at 52.1 m				- 19
- Altered Porphyl					- - 18
	e at 64.0 m				- 17
	itic Syenite at 72.7 m				- 16
90.0					- 15
					-
					- 14
- Albitized Syenit	e at 110.5 m, locally vuggy		Ope	en Corehole	- 13 -
NVESTIG. METHOD: Diamond I NVESTIG. DATE: August 16, 20				TE	Stante

105 ПОСТАТА 100	SOIL DESCRIPTION Very vuggy from 123.0 m to 149.0 m	PROJECT NO: SURFACE ELEVATIO SITE DATUM:	COMPLETION ::	1036 240. N/A N/A TEALE		MW08-12
Ш Зали () () () () () () () () () () () () ()	SOIL DESCRIPTION		COMPLETION		COMPLETION NOTES	EVATION fm1
40.0 50.0 - P		I UNICE	COMPLETION	WATER LEVE	COMPLETION NOTES	
30.0- 40.0- 50.0- - P	Very vuggy from 123.0 m to 149.0 m					ū
40.0- 						-
50.0 - P						- 110
- F						- 100
60.0	Pegmatitic Syenite at 148.0 m, fractured and locally vuggy Foyaite at 151.0 m					- 90.0
						- 80.0
70.0						- 70.0
80.0						-60.0
90.0						- 50.0
						-
00.0 10.0 10.0 En Cc Sc To Gr De Bo INVESTIG. METH INVESTIG. DATE LOGGED BY: AN	Pegmatitic Syenite at 199.4m					- 40.0
10.0						- 30.0
En	ind of borehole at 213.5 m		\neg			
Co	Completion Information: Icreened interval from 8.0 m to 10.3 m below surface					
То	op of Pipe (TOP) Elevation = 240.820 m					
Gr	Broundwater Information: Depth to groundwater from TOP = 1.44 m ()					
Bo	orehole plugged with Van Duzen Plug					
IVESTIG. METH						

NVT STE DATUM: N/A $\frac{F}{2}$ $\frac{V}{2}$ SOIL DESCRIPTION $\frac{V_{11}}{V_{20}}$ $\frac{V_{11}}{V_{20}}$ $\frac{V_{11}}{V_{20}}$ 1500 + + + + + 1500 + + + + + + + 1500 + + + + + + + 1600 + + + + + 1600 + + + + + + 1600 + + + +	C L I P R (ENT DJEC	Avalon Ventures T: Thor Lake Thor Lake	PROJECT NO:		103	OLE RECORD	BOREHOLE	
Very vuggy after 134.0 m • + + + + + + + + + + + + + + + + + + +					'ION:	246 N/A		MW08-13	
a + + + + + + + + + + + + + + + + + +	DEPTH [m]		SOIL DESCRIPTION		WELL COMPLETION	WATER LEVEL			
A definition of the second		- + + - + +						- 12	
and the second secon	30.0-	- + - +	- Very vuggy after 134.0 m					-11	
50.0 + + + + 90.0 + + + <td>40.0-</td> <td>- + + - +</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- 10</td>	40.0-	- + + - +						- 10	
90.0 + +	50.0-	- + + - +	- Nepheline Aegirine Syenite at 153.6 m					- 90	
n.0 + +<	60.0 -	- + + - +						-	
<pre>bullet in the second seco</pre>	0.0-	+ +						-80	
End of borehole at 198.3 m Completion Information: Screened interval from 7.6 m to 13.7 m below surface Top of Pipe (TOP) Elevation = 246.131 m Groundwater Information: Depth to groundwater from TOP = 1.18 m ()	80.0-	+ +						- 70	
Completion Information: Screened interval from 7.6 m to 13.7 m below surface Top of Pipe (TOP) Elevation = 246.131 m Groundwater Information: Depth to groundwater from TOP = 1.18 m ()	90.0-	- + + - +						- 60	
Screened interval from 7.6 m to 13.7 m below surface Top of Pipe (TOP) Elevation = 246.131 m Groundwater Information: Depth to groundwater from TOP = 1.18 m ()		- + + - +	End of borehole at 198.3 m					- 50	
Depth to groundwater from TOP = 1.18 m ()			Screened interval from 7.6 m to 13.7 m below surface						
			Depth to groundwater from TOP = 1.18 m ()						
			borenoie piuggeu with Valt Duzen Piug						
NVESTIG. METHOD: Diamond Drill - NW NVESTIG. DATE: August 24, 2009	NVE	STIG. I	METHOD: Diamond Drill - NW						

CL	ENT	: Avalon Ventures	BOREHOLE RECO				RD	BOREHOLE NO:	
PR	JEC	Thor Lake NWT	PROJECT NO		v: 2	40.5	222 55 m		MW09-151
		NVVI	SITE DATUM:			I/A			Ξ
Ξ	ΥPE	SOIL DESCRIPTION		WELL		WATER LEVEL		LETION	ELEVATION [m]
DEPTH [m]	SOIL TYPE			MELL		WATE	NC	TES	ELEVA
		Undifferentiated surficial deposits					well box, 0.53 m stickup, jpl steel casing keyed into bed		-240.0
					*				-
10.0-	+ -+	Feldspathite homogeneous, very porous and vuggy, negligible fracture fill or vein	development		•				220.0
	+ -+				• • • • • • • • • • • • • • • • • • •				-230.0
	+ -+				° °				-
20.0-	+ -+				•				-220.0
	+				•				
	+								-
30.0-	+				•				-210.0
	+				•				-
40.0-	+	- Abrupt end to vuggyness at 37.4 m							
40.0	+				•				-200.0
	+ +								-
50.0-	┝╶╶┼ ┥┿				°°.				- 190.0
	- + +	- Altered Syenite at 51.2 m							
	} + +	- MRZ / Altered Chlorite Syenite at 55.6 m							-
60.0-	- + +						hantanita adal		- 180.0
	- + +						bentonite seal		-
70.0-	- + +	- Albitized Syenite at 67.9 m							
70.0	- + +								- 170.0
	+ + +				÷				-
80.0-	- + +			ŀ			10/20 silica sand		- 160.0
0/91/21	- + +	- Altered Syenite at 82.7 m							
/9.GD1	- + +						50 mm 010 slot PVC pipe		
-0.06 -0.00 -0.00	 +			1 · H					- 150.0
	- `+ _+				-		end cap		-
	- `+ +						Van Ruth plug		140.0
	_ +								- 140.0
LUGS:	- + +								-
HH 110.0-									- 130.0
EO 20	+ +	- Altered Foyaitic Syenite at 112.2 m							
110.0-0-02009 BH LOGS GPJ	+ +								Ē
ınve ا		METHOD: Diamond Drill - NQ		1		[Ta	Stantec
5		DATE: March 21, 2009 Y: CP BOREHOLE DIAMETER: 0.0757 m (OD)							et 1 of 2

C L II P R C	ENT DJEC	: Avalon Ventures T: Thor Lake Thor Lake NWT	PROJECT NO: SURFACE ELEVA		103	OLE RECORD	BOREHOLE N	
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION	SITE DATUM:	WELL COMPLETION	WATER LEVEL	COMPLETION NOTES		
	+	- MRZ at 120.3 m			-		- 120	
30.0-	- + + - + + - +	- Heterogeneous Altered Albitized Syenite / MRZ at 125.4 m					- 11	
-	+ - + + - +	- Altered Foyaitic / Heterogeneous Syenite / MRZ at 131.4 m					-	
40.0- - -	+ - + + - +						- 10	
50.0-	+ - + + - + +					open corehole	-90	
60.0-	- + + - + +						-80	
70.0-	- + + - + + - +	- Altered Porphyritic Syenite at 167.0 m, subvertical fracturing infille carbonate and chlorite	d with				-70	
- 80.0-	+ - + + - + +						- -60	
- 90.0-	- + + - + + - + +	- Altered Aegiring Syenite at 189.5 m					- 50	
-0.0	- + + - + + - +						-40	
	+ - + + - + +						-30	
	+	End of borehole at 215.2 m						
		Completion Information: Screened interval from 81.2 m to 95.2 m below surface						
		Groundwater Information: Depth to groundwater from TOP = 1.88 m ()						
		Borehole plugged with Van Ruth Plug						
NVES	STIG. N	//ETHOD: Diamond Drill - NQ DATE: March 21, 2009				I I I I I I I I I I I I I I I I I I I	Stantee	

CLIEN PROJE	T: Avalon Ventures CT: Thor Lake	BOR PROJECT NO:			BOREHOLE NO:
	Thor Lake NWT	SURFACE ELEVATION: SITE DATUM:			MW09-152
DEPTH [m] SOIL TYPE	SOIL DESCRIPTION	WELL	WATER LEVEL	COMPLETION NOTES	ELEVATION [m]
o s				well box, 0.53 m stickup, jplug steel casing keyed into bedrock at 2.5 mb	-240.0
- + 10.0- +	Albitized Syenite / Feldspathite + occasional finely porous interval				-230.0
20.0-+	+				- -220.0
30.0	+ + - Heterogeneous Syenite / MRZ at 28.0 m +				- -210.0
40.0- +	+				-200.0
50.0-	+ + +				-
60.0- + + + +	+ - Feldspathite / Albitized Syenite at 52.0 m				- 190.0 -
	+ +			bentonite seal	– 180. -
70.0- + + + +	+				- 170.1 -
80.0	+ +			10/20 silica sand	- 160.0 -
90.0- +	- Altered / Albitized Syenite at 88.5 m + +			50 mm 010 slot PVC pipe	- 150.
00.0- + + + +	+ + ₊ - Feldspathaite at 105.5 m, vuggy			end cap Van Ruth plug	- 140.0
10.0- +	- Altered / Albitized Syenite at 112.0 m				- 130.
	H . METHOD: Diamond Drill - NQ . DATE: March 26, 2009			Te	Stantec
LOGGED				She	

CLI PR(ENT DJEC	: Avalon Ventures	PROJECT NO:			OLE RECORD	BOREHOLE N MW09-15	
		Thor Lake NWT	SURFACE ELEVA			.05 m		
DEPTH [m]	SOIL TYPE	SOIL DESCRIPTION		WELL COMPLETION	WATER LEVEL	COMPLETION NOTES		
_	+ - + + - +						-12	
30.0-	+ + + - +	- MRZ / Foyaitic Syenite at 128.1 m					- 11	
+0.0- -	- + + - + +						-10	
50.0-	+ - +	- Aegirine Syenite / Foyaitic Syenite at 153.0 m				open corehole	-90	
60.0-	+ + + + +						- 80	
′0.0-	- + - + - + - +						- 71	
0.0-	- + +						- 6	
90.0-	+ - + - +						5	
		End of borehole at 193.9 m Completion Information: Screened interval from 84.7 m to 99.7 m below surface						
		Groundwater Information: Depth to groundwater from TOP = 1.54 m ()						
		Borehole plugged with Van Ruth Plug						
		METHOD: Diamond Drill - NQ DATE: March 26, 2009				Ĩ	Stante	

Diamond Drill Log

3.05 0.00 From Hole_id: Zone: Elev_Plot: North_Plot: Depth (m) East_Plot: Elev_GPS: Northing_GPS: Easting_GPS: Hole No. 26.70 To 3.05 la Lithocode 417,400 -999.00 -999.00 -999.00 666-6,886,675 L08-123 L08-123 Lake Zone 9.20m: 3cm wide band of albite (cleavelandite) and secondary aegirine, almost Locally pegmatitic between 7.70-8.50m: anhedral k-spar megacrysts with angular spaces filled by interstitial albite, hematite, specular hematite and minor magnetite. Rare patches of weak mineralization, for example @ 11.80m (0.1Dy, all else is by hematite and specular hematite are rimmed by biotite. Porphyritic texture created by coarser primary aegirines altered by biotite, chlorite and 18.75-19.00m: coarse rhomb shaped primary aegirines are entirely replaced by hematite and specular hematite. Below is a 10cm wide band of pervasive albitization. relatively low). subhorizontal. around 4.00m, which could be altered nepheline? Often rims k-spar laths. fresh apple green secondary acgirine. There is also an orange feldspar in the matrix predominantly hematite. Primary acgirines are completely replaced by hematite and albite and strong hematization. Remnant k-spar laths (0.5cm in length on average) are OVERBURDEN sericite, rimmed by dark green serpentine. More euhedral aegirines replaced entirely more rarely specular hematite. At the start of the hole are several patches of relatively randomly oriented in a matic matrix of minor biotite, chlorite and sericite but Medium grained to locally pegmatitic syenite, altered by biotite, chlorite, magnetite, ALTERED AEGIRINE SYENITE Description Note: Collar Coords in NAD83 / Zone 12 Length (m): Logged By: Surveyed?: Core Size: Finished: Started: Drilled By: 207.40 NQ2 Emma Sheard 2008-08-01 2008-07-29 Peak Drilling Summary: Objective: Lake Zone Delineation Drilling Samp_id From Ē ê 7 Length TREO HREO Ē % % ppm ĸ ppm ő ppm Nd Downhole Survey Tests ppm Dy ppm Å ppm Ta P205 % Page 1 of 5 Page 1 of 5

Report designed by Hudgtec Consulting 2008

42.70 40		31,85 4;	26.70 3		Depth (m) From To	Hole No.
59,95 1	46.55 1	42.70 1	31.85 4			
lac	1ah	lac	4a		Lithocode	L08-123
ALTERED AEGIRINE SYENITE Same unit as above the pegmatite, characterized by strong hematization and pervasive alteration by biotite, chlorite and sericite. Heterogeneous unit which is medium grained to locally pegmatitic between 48.50-49.00m. 54.80-55.20m; locally strongly albitized with primary textures almost entirely overprinted by cleavelandite. 55.75m; calcite vein @ 80 degrees to core axis. Downhole, mafics are replaced by hematite and k-spars are brecciated into angular fragments of variable sizes. Trace	 PEGMATITE Gradational contact into this unit. K-spar megacrysts are cut by silver muscovite and in other places, biotite. Relict thomb shaped primary aegirines are replaced by cleavelandite, muscovite and hematite (different alteration events). 44.00-44.50m: vugs and cavities - k-spar megacrysts being resorbed and replaced by cleavelandite, muscovite and hematite. Fine grained disceminated zircon, associated with Nb enrichment @ for example 45.30m: 0.02Nd; 0.04Cc, 0.03La, 0.5Zr, 0.2Nb, 0.06Y. 	ALTERED AEGIRINE SYENITE Medium grained aegirine syenite as previous. Minor albitization and more pervasive hematization. Randomly oriented k-spar laths (0.5cm in length on average) in a mafic matrix of blue-green biotite, chlorite and sericite and red hematite. Minor magnetite, specular hematite and albite (cleavelandite). Becomming locally coarser grained downhole with more abundant clay and sericite alteration.	ALBITIZED SYENITE Gradational contact into this zone with white albite (cleavelandite) a pervasive secondary phase in the matrix; replaced both mafic and felise minerals. Porphyritic texture with remnant anhedral biotite, chlorite and sericite (aegirine precursor?) - replaced around the margins by cleavelandite. Others are entirely replaced by clay minerals. Weak mineralization throughout. Gradational contact with a decrease in the degree of albitization.	More abundant patches of mineralization towards the end of this unit @ for example 25.00m: 0.2Ce, 0.1La, 0.1Dy, 0.08Nd, 0.02Y and @ 24.85m: 0.08Dy, 0.16Nd, 0.32Ce, 0.16La, 0.2Nb, 0.3Zr, 0.2Y (mix of ziroon and other REE minerals).	S	
					Samp_id From (m)	
				:		
					To L	
					Length <u>TR</u> (m) %	
					ΎΕΟ	
					<u>HREO</u> % pi	
					Y Ce ppm ppm	
					e Nd m ppm	
					n ppm	
					- ppm	
					Ta ppm	
					P2O5 %	Page 2 of 5

·····

Report designed by Hudgtec Consulting 2008

Denne Ancien				141.55 207.40		Depth (m) From To	Hole No.
Bonot decision by Huddon Consulting 2008				7.40 lade) Lithocode	L08-123
	 Between 156.60-171.50m: the alternating red and green layers are well developed. Pervasive calcite veining throughout @ 80 degrees to core axis and subvertical. 178.00m: disseminated carbonates (mix of calcite and ankerite) and trace pyrite. 182.30-183.50m: no change in the phenocryst sizes through this medium grained layer. Primary phenocrysts are replaced by chlorite and sericite and rimmed by biotite (petrographic confirmation needed) and are fairly subheral to anhedral in shape. Sharp lower contact with phenocrysts bound by a 5mm layer of albite. 184.40-186.00m: rectangular shaped phenocrysts from 0.5-2cm in length (unknown precursor, could be aegtrine?) rimend by hematite in a fine grained matrix of feldspar 	 Becomes locally pegmatitic @ 150.00m after the first red, fine grained layer. No clear upper contact. Relict patches where primary textures are more evident and alteration is less strong @ for example 153.80m. Patchy disseminated zircon and REE mineralization in places, for example 156.00-156.50m. Cumulate layering becomes clearer downhole as there is less of an alteration overprint. Some of the red, hematized layers display an overall coarsening upwards in grain size up to the contact with the serpentinized layer above. 	Fine grained red layers are very homogeneous; composed of hematite and cleavelandite; up to 2m in thickness. Within these red layers, often see rounded patches of white cleavelandite @ for example 148.85m.	LAYERED AEGIRINE SYENITE CUMULATE With the exception of one pegmatitic interval, the layers become coarser grained downhole, though there is variation in grain size within each layer. At the top of the unit: alternating fine grained red and green layers. Generally see sharp, knife-edge igneous contacts between these layers @ 60 degrees to core axis. These could also be alteration fronts where either hematization (red) or serpentinization (green) dominate. Pervasive calcite veining @ 80 degrees to core axis and one or two patches of fine grained zircon, associated with weak mineralization.	typically altered by hematite and/or specular hematite and are inclusions within larger k-spar megacrysts. Often these phases grow inwards into spaces infilled by albite (cleavelandite). Some coarse k-spar laths are embedral with sharp crystal termination. 134.20m: calcite vein along fracture plane, infilled by disseminated pyrite. Hematization along upper contact of this vein. Downhole the phenocryst phases are entirely replaced by hematite and occasionally rimmed by biotite. 139.00-139.50m: pervasive calcite veining @ 80 degrees to core axis. Becoming finer grained into the next layered unit.	Samp_id From To Length <u>TREO</u> Y Ce Nd Dy Nb Ta P2O5 e Description (m) (m) % % ppm ppm ppm ppm ppm ppm ppm ppm %	23 Page 4 of 5

tary green aegirine	from 5-10cm thick in the last 2.5m of the hole.		
	is part of a relatively late stage alteration event. Bands of secondary green aegirine		
ite. Thus, the aegirine	198.20m: secondary acgirine cuts phenocrysts rimmed by hematite. Thus, the acgirine		
	decreasing in abundance towards the end of the hole.		
mineralized patches	Downhole, see repeated cycles of fining upward cumulates with mineralized patches		
Ċ	well mineralized (0.16Nd, 0.34Ce, 0.21La, 0.15Nb, 0.2Zr, 0.15Y).		
e matrix. Locally	191.20-192.00m: patches of zircon and REE mineralization in the matrix. Locally		
	upper and lower contacts - alteration fronts?		
velandite. Sharp	186.55-186.95m: phenocrysts now in a matrix of white/pink cleavelandite. Sharp		
	flow differentiation also?		
and be a component of	are aligned subhorizontally but most are randomly oriented. Could be a component of		
. Some phenocrysts	downhole to the bottom of the layer, attributed to crystal settling. Some phenocrysts		
	and secondary acgirine which is wrapped around the phenocrysts. Grain size increase		
% wdd wdd wdd wdd wdd yd % % (w) (w) (w)	Description	Lithocode	From To
Samp_id From To Length TREO HREO Y Ce Nd Dy Nb Ta P205			Depth (m)
Page 5 of 5		L08-123	Hole No.

0		Altered Syenite	24.60 54.60 3a Altered	54.60	24.60
	n local intersertal	Partial white calcite replacement of remnant mafic laths. Common local intersertal purple fluorite. Unmineralized.	Partial purple Unmin		
	th abundant medium ore commonly coarse only strongly to strongly mmnonly associated ommonly associated id prismatic albite. (m) carbonate veins, re is approximately	Buff to pink kspar phenocrysts in dark mafic matrix up to 5m, with abundant medium grained silver zircon pseudomorphs. Generally, highly fieldpathic; kspar ranges from megacrystic to more commonly coarse to medium grained and anhedral (fractured megacrysts?). Commonly strongly abtrized, often partially replaced by magnetite. Silver zircon commonly associated with more altered mafic sections. Matrix composed mainly of coarse grained, salmon pink kspar and prismatic albite. Minor light green intersertal clay alteration. Common thick (4-6cm) carbonate veins, with open fracture filling euclided kspar and pyrite. Vein/fracture is approximately parallel to core axis.	Buff to grained Genera to med albitize othoriti with or with or with or parallel		
		Albitized Syenite	4a Albitiz	24.60	4.00
		ırden	9 Overburden	4.00	0.00
Y Ce Nd Dy Nb Ta P2O5 ppm ppm ppm ppm ppm %	Samp_id From To Length <u>TREO</u> HREO . (m) (m) (m) % % pj	Description	Lithocode Des	(m) To	Depth (m) From To
Page 1 of 3			L08-124	No.	Hole No.
		Note: Collar Coords in NAD83 / Zone 12	-999.00	lot:	Elev_Plot:
		Length (m): <u>198.25</u>	00,666-	Plot:	North_Plot:
		Logged By: Angela Martin	-999.00	lot:	East_Plot:
		Surveyed?:	666-	PS:	Elev_GPS:
		Core Size: NQ2	6,886,575	Northing_GPS:	Northi
	Summary:	Finished: 2008-08-04	417,400	GPS:	Easting_GPS:
		Started: 2008-08-01	Lake Zone		Zone:
Downhole Survey Tests	Objective: Lake Zone Delineation Drilling	Drilled By: Peak Drilling	L08-124	#	Hole_id:
Page 1 of 3	Diamond Drill Log				

Report designed by Hudgtec Consulting 2008

Hole No.	L08-124	
Depth (m) From To	Lithocode	Samp_id From To Length <u>TREO</u> Y Ce Nd Description (m) (m) % % ppm ppm
		Weakly to strongly altered; textures partially obscured by hematite/biotite/chlorite alteration. Local bright pink, hematite-stained kspar. Matrix becoming increasingly albitized downhole. Texture fairly heterogeneous, with variations in grain size. Mafics strongly chloritized.
		Shear zones @ 36.1 and 36.4; abrupt reduction in grain size, with abundant chlorite/illite. Contact crumbly and ~ 80 degrees to core axis.
		Short foyaitic sections.
		31.0-31.65: alternating bands of sub-pegmatitic, coarse to medium grained and highly albitized sections.
		46.5-46.85; foyaitic, albitized and matics chloritized.
54.60 58.30	lac	Aegirine Foyaite
		Coarse to very coarse grained; two generations of aegirine (7), very coarse grained, amorphous, green (chloritized) and medium to coarse grained hematized prisms, pointed terminations. Possible bastnaesite at 58; red, amorphous; 1.8 Ce, 0.56 Nd, 0.67 La, 0.59 Nb. Coarse grained whitish k-spar laths, generally randomly oriented.
58.30 83,40	1a	Altered aegirine syenite
		Moderately altered; hematized/albitized/chloritized throughout. Marked increase in very coarse granined amorphous, partially chloritized, green/black mafic mineral.
83.40 95.25	1c	Aegirine Foyaite
		Same as previous. Abundant coarse to very coarse grained, angular, subhedral green aegirine. Medium to coarse grained, randomly oriented kspar laths. Matrix moderately to strongly bematized. Common short, intensely hematized sections, often with specular hematite.
95.25 179.25	3c	Heterogeneous Altered syenite
		Matrix moderately to strongly albitized locally, mafics strongly hematized. Common albite (cleave)andite) lenses and bands. Minor intersertal calcite. Common coarse to

Hole No.	L08-124	Page 3 of 3
Depth (m) From To	Lithocode	Samp_id From To Length <u>TREO</u> Y Ce Nd Dy Nb Ta P2OS (m) (m) % % ppm ppm ppm ppm ppm ppm %
		very coarse grained amorphous, green chloritized aegirine.
		132-144: layered; alternating coarse grained foyaitio with 1-2m pegmatitic sections.
		144-179.25: pervasie hematite staining.
		161.4-179.25: increasingly albitized, with lenses of white and pink cleavelandite. Common specular hematite.
		172-179.25: spotted texture: hematized phenocrysts in albitized and/or dark altered matrix.
		Possible nepheline; bright orange, amorphous, very coarse grained.
		Shear zone @ 178, sub-horizontal to core axis.
179.25 198.25	1a	Nepheline Aegirine syenite
		Weakly altered, both medium to coarse grained of relatively fresh looking, yet altered, aegirine. Also minor coarse grained hematite-replaced aegirine (commonly specular). Strongly albitized throughout, locally slightly vuggy, with magnetite and pyrite infiling vugs.
		Minor kspar partially/completely replaced by orange/red nepheline; very coarse grained and amorphous.
		Generally kspar is coarse grained and albitized. Non magnetic.
		EOH

91 4

ę

Report designed by Hudgtec Consulting 2008

Diamond Drill Log

Hole id.	108-177			Page 1 of 3
Hole_id:	LU8-127	Drilled By: Peak Drilling	Objective:	1 ests
Easting GPS:	417,235	••		
Northing_GPS:	688,670	Core Size: NQ2		
Elev_GPS:	666-	Surveyed?:		
East_Plot:	417,235.00	Logged By: Angela Martin		
North_Plot:	688,670.00	Length (m): 201.30		
Elev_Plot:	00.666-	Note: Collar Coords in NAD83 / Zone 12		
Hole No.	L08-127			Page 1 of 3
Depth (m) From To	Lithocode	Description	Samp_id From To Length <u>TREO HREO</u> Y Ce Nd Dy Nb Ta (m) (m) (m) % % ppm ppm ppm ppm ppm ppm	Ta P2O5 ppm %
0.00 2.50	9	Overburden,		
2.50 23.00	3d	Altered Syenite		
		Dark pink kspar-rich syenite up to 3.5m.		
		Predominantly dark; moderate to strong chlorite/biotite alteration throughout. Altered porphyritic syenite up to 10m, with buff kspar phenocrystic laths ~3-5cm, partially resorbed. Locally weakly magnetic. After 10m; texture partially obscured by intense albitization (cleavelandite). Overall dark brown/grey, with poophyritic textures visible in places. Narrow bands of MRZ (~5cm wide) with abundant fine grained ribbony tan zircon. Strongly mineralized: 1.6 Nd, 2.9 La, 0.9 Pr, 0.3 Nb, 5.5 Ce.	ion throughout. rystic laths ~3-5cm, leavelandite). Overall arrow bands of MRZ rongly mineralized: 1.6	
23.00 84.70	2	MRZ/3d		
<u></u>		Predominantly dark brown, texture obscured by strong chlorite/biotite alteration. Albitized throughout, except for narrow horizons.	/biotite alteration.	

Report designed by Hudgtec Consulting 2008

Upper boundary sharp; defined by darker colour, decrease in cleavelandite and remnant felsic minerals. Becoming increasingly albitized downhole, interlayered with darker, more mafic sections. Due to alteration, syenitic textures preserved in places; matrix composed of

Hole No.	L08-127	
Depth (m)		To I would TRED HEED V CA NEL De NIL
From To	Lithocode	Samp_id From 10 Length <u>IKEV</u> Y Ce Nd Dy Nb Ta P2OS Description (m) (m) % % ppm ppm ppm ppm ppm ppm %
<u></u>		grey cleavelandite with hematized coarse grained pyroxene (square cross section). Mafies often pseudomorphed by tan zircon. Local hematized bands 10-20cm. Strongly magnetic throughout. Patchy tan zircon mineralization; wide sections with abundant medium to coarse grained pseudomorphs. Common fine grained interstitial and narrow (~3cm) bands of fine grained ribbony zircon. Common whitish, repeating bands (5-10cm) and lenses of cleavelandite throughout.
84.70 144.60	3c	Heterogeneous Altered Syenite
		Texture highly variable over short intervals. Strong biotite/chlorite alteration throughout. Increasingly felsic downhole. Narrow MRZ sections (10-100cm) and bands (5-10cm) ~ 70 degrees to core axis. Kspar is generally light pink, rounded and resorbed and varies in size.
		Repeated 10-40cm altered aegirine cumulate.
		Common 10-15cm sections with clusters of coarse grained chloritized aegirine in white albitized matrix. Narrow hematized/chloritized bands (5-10cm) throughout. Sporadic coarse grained tan zircon pseudomorphs. Fault guage @ 93.0: thin layers of purplish kspar, calcite and massive pyrite ~ 60 degrees to core axis.
144.60 182.50	ldeh	Lower boundary arbritrary due to degree of alteration. Layered cumulate
		144.6-155: Cumulate: Coarse to medium grained, illitized/chloritized aegirine pseudomorphs in albitic matrix. Local minor sericitization of aegerine. Strongly altered: mafies coalescing into illitic lenses and bands. Narrow white bands of cleavelandite.
		155-158: Pegmatitic syenite; highly altered; rounded pink kspar, megacrystic to pematitic with chloritic lenses.
		158-160: dark red (hematized), higly altered with little visible texture. Vague, medium grained (kspar) foyaitic texture becoming fine grained (kspar) to 160.
		160-182.5: Cumulate interlayered with pegmatitic sections (20cm to 2m) and banded
Report designed b	Report designed by Hudgtec Consulting 2008	ing 2008 September-25-08

Hole NO.	LU8-127	Page 3 of 3
Depth (m)		Samp_id From To Length <u>TREO</u> Y Ce Nd Dy Nb Ta P2O5
From To	Lithocode	(m) (m) % % ppm ppm ppm ppm (m)
		sections (50-150cm). Banded sections: red/green, aphanitic with minor fine grained aligned kspar laths. Sharp contact between bands. Aegirine becoming lighter green (illitzed), matrix increasingly albitized downhole. Short hematized, luitavitic section 182-182.5. enclosing 10cm cumulate section.
182.50 184.60) 1c	Acgirine foyaite
		Foraitic, coarse grained kepar laths, with hematite/chlorite replaced acciring misms in
		hematized matrix. Minor amorphous, green phenocrysts (another generation of acgirine?). Kapats randomly oriented.
184.60 201.30) la	Altered Aegirine Syenite
		Aegirine syenite becoming progressively altered downhole; strongly hematized. Mafics chloritized.
		Weak fabric @ 184.8-185.25 and near bottom; coarse grained kspar laths "flow" around both red and green phenocrysts. Kspar laths oriented perpendicular to core axis.
		Red phenocrysts: 1-3cm, rimmed with hematite with chloritized core. Suggesting hematite is replacing green arguine pseudomorphs. Phenocrysts commonly lath shaped.
		187.55-188.05 and 189.65-190.0; pegmatitic intervals

. . .

Report designed by Hudgtec Consulting 2008

Diamond Drill Log

Hole_id:

Zone:

North_Plot: Easting_GPS: Northing_GPS: Depth (m) 64.00 52.10 8.00 5 3a 8 Ś Lithocode L08-128 417,224 L08-128 -9999.00 417,224.00 6,885,960 Lake Zone 6,885,960.00 666 Megacrystic kspar, rounded and resorbed, in places with dense coarse to medium grained highly felsic groundmass consisting of coarse white, angular kspar, pink albitized kspar and partially albitized coarse grained mafics. Mafics often partially pseudomorphed by very fine grained zircon. Weakly more intensely albitized sections, along with coarse purple intersertal fluorite. Chloritized mafies are bright green and semi translucent (ex: 46.2-48.0) 29.7-30.0: very coarse, euhedral aegirine pseudomorphs (partially albitized) in matrix Overall pale pink, intensely to strongly albitized throughout. Texture obscured by albitization, except in short sections. Fredominantly very coarse grained to coarse grained, rounded and resorbed Kspar, white with orange core. Matrix composed of grained. Overburden. 20' casing. Porous. of white cleavelandite. Minor coarse grained, irregualr chloritized mafics throughout. Commonly vuggy in Upper and lower boundaries defined by increase and decrease of mafics, respectively. mineralized. Altered Porphyritic Syenite white cleavelandite. Albitized Syenite Description Length (m): Logged By: Surveyed?: Core Size: Finished: Started: Drilled By: Note: Collar Coords in NAD83 / Zone 12 213.50 NQ2 Angela Martin 2008-16-08 2008-13-08 Peak Drilling Objective: Summary: Samp_id From € e 7 Length TREO HREO E % % ppm ĸ ppm ĉ Nd Nd Downhole Survey Tests Dy ppm mdd wdd Ş Ta P205 Page 1 of 3 Page 1 of 3

8.00 0.00 From

Elev_Plot:

Hole No.

East_Plot: Elev_GPS:

Report designed by Hudgtec Consulting 2008

52.10

September-25-08

130-131.2: band of purple fluorite with narrow chloritic horizons.			
Intensely albitized from 123149; composed almost completely of white cleavelandire. Abundant purple fluorite possibly replacing mafics, enveloped by pink, granular albite. Very vuggy. Minor coarse grained pseudomorphs composed of fine grained tan zircon, angular crystal outline.			
Increasingly albitized downhole. Locally vuggy. Strongly to intensely albitized; both kspar phenocrysts and matrix. Syenitic texture preserved in most places. Mafics are medium to coarse grained. Sometimes partially replaced by purple fluorite.			
Albitized Syenite	5 4a	110.50 147.95	110.50
Lower boundary arbitrary, becoming increasingly albitized.			
96-108.8: upper boundary abruptly gradational and defined by increase in mafic content; dark, relatively unaltered. Possibly a 'mafic layer'? Coarse to megacrystic kspar, amorphous with medium grained orange/pink nepheline? aggregates (or skeletal crystal). Moderately albitized. Minor medium grained intersertal fluorite and fine tan zircon pseudomorphs and interstitial.			<u></u>
83-96: becoming increasingly felsic and strongly albitized. Nepheline (?) appears at 93.2 and is abundant down section, enveloping kspar phenocrysts and coarse grained fluorite. Minor fine grained tan zircon pseudomorphs.			
77-80: same as previous interval, but with dark red (nepheline?) partially replacing relict coarse grained aegirine. Mafics range from medium to very coarse prisms, often in clusters.			
72.7-77.0: white/pale pink megacrystic to coarse grained kspar fragments in dark pink cleavelandite matrix, with minor coarse grained rennant mafies.			
Altered Porphyritic Syenite) 3a	110.50	72.70
As previous, except kspar megacrysts are fresher and more angular.			
Albitized Syenite	4a	72.70	64.00
Samp_id From To Length <u>TREO</u> Y Ce Nd Dy Nb Ta P2O5 (m) (m) % % ppm ppm ppm ppm ppm %	Lithocode	Depth (m) from To	Depth From
28 Page 2 of 3	L08-128	Hole No.	Hole

3

Hole No.	L08-128	Page 3 of 3
Depth (m)		Samp id From To Length TREO HREO Y Ce Nd Dy Nb Ta P2OS
From To	Lithocode	wada wada wada wada %, %, {w) {w)
147.95 151.00	lh	Pegmatitic Syenite
		Fractured, often poikilitic, albitized kspar megacrysts (medium grained mafic prisms) with abundant pegmatitic to very coarse chloritized/illitized aegirine. Very coarse grained purple fluorite replacing mafics. Locally vuggy.
151.00 199.40	1c	Foyaite
		Fine to very coarse foyaitic sections, strongly hematized.
		Short green illitic sections: @ 152.5 (25cm), @163 (35cm), @154.6 (40cm).
		Relatively altered; coarse mafics hematized/illitized, coalesced into irregular blebs.
		183-199.4: pristine green aegirine with angular coarse grained amorphous red blebs, possibly altered nepheline.
		After 191: abundant bright red, megacrystic, amorphous nepheline? with white very coarse grained poiklitic kspar.
199.40 213.50	lh	Pegmatitic Syenite
		Same as previous, but aegirine less altered; pristine and bright green.
		209.7 down: coarse grained aggregates of aegirine, both green and replaced by specular hematite. Specular hematite. Common megacyrstic aegirine, partially replaced by dark purple fluorite.

•

Report designed by Hudgtec Consulting 2008

59.35 153.60 8.80 0.00 From To Hole_id: Easting_GPS: Zone: North_Plot: Northing_GPS: Depth (m) Elev_Plot: East_Plot: Elev_GPS: Hole No. Not exact Collar. 59.35 8.80 lac 4a Q Lithocode 416,525 -9999.00 416,525.00 6,886,365 L08-130 6,886,365.00 Lake Zonc 666-Predominantly medium to coarse grained. Subhedral to euhedral aegirine is commonly replaced by hematite, magnetite and chlorite. Kspar is coarse to pegmatitic, commonly ablitzed. Matrix is composed mainly of white/grey cleavelandite. Syenitic textures well preserved. Sporadic, medium grained silver zircon partially overgrowing maffics, usually in clusters. Mineralized: 1.2 Nb, 0.1 Ce, 0.1 Ta. 90.9-91.3: amorphous, megacrystic, deep orange mineral (nepheline? or hematite sporadic medium grained pseudomorphs composed of fine grained tan zircon. Matrix strongly hematized or ablitized throughout. Bands of massive purple fluorite \sim 10cm wide @ -60m, abruptly grading into weakly altered, coarse grained foyaite. Upper boundary defined by foyaitic texture, abruptly gradational. Altered Nepheline Aegirine Foyaite 27' casing, overburden. Mafics replaced with chlorite, hematite, magnetite and sometimes fluorite. Minor and Becoming finer grained downhole from 10cm band of massive purple fluorite at 57.95. Albitized Syenite Description Logged By: Surveyed?: Core Size: Finished: Started: Drilled By: Note: Collar Coords in NAD83 / Zone 12 Length (m): 198.25 Angela Martin NQ2 \square 2008-08-24 2008-08-19 Peak Drilling Objective: Summary: **Diamond Drill Log** Samp_id From Ē () 1 Length <u>TREO</u> <u>HREO</u> <u>Y</u> (m) <u>%</u> % ppm ppm Ce ppm Nd ppm Downhole Survey Tests Dy ppm ppm Nb ppm Ta P2O5 Page 1 of 2 Page 1 of 2 %

AVALON VENTURES LTD. / THOR LAKE PROJECT

Report designed by Hudgtec Consulting 2008

Hole No.	L08-130	Page 2 of 2
Depth (m) From To	Lithocode	Samp_id From To Length <u>TREO</u> Y Ce Nd Dy Nb Ta P2O5 (m) (m) % % ppm ppm ppm ppm ppm 90 %
		Multiple short aegirine-rich sections 10-75 cm wide. Aegirine is predominantly medium grained, densely packed, prismatic and pristine green (yet altered).
		130.95-131: aegirine-rich (as described above) with megacrystic and coarse grained kspar. Kspar is partially pseudomorphed by very fine grained tan zircon? and minor fluorite. Mineralized: 1.08 Ce, 0.3 Pr, 0.5 Nd, 0.6 Nb. These pseudomorphs become quite abundant from 177 down.
		Kspar megacrysts are commonly poililitic, with medium grained, black and dark red argirine needles. Some replaced by specular hematite.
		@133.8-134.2: pegmatitic; kspar albitized, rounded and resorbed. Pegmatitic aegirine is replaced by chlorite, hematite and partially pseudomorphed by silver zircon.
		Vuggy after 134, maftos sercitized with bright red hematite blebs. Minor fluorite and albite replacement.
153.60 198.25	la	Nepheline Aegirine Syenite
		Medium to coarse grained, prismatic, green, pristine yet altered aegirine with minor white and/or pink Fd, anhedral, medium to coarse grained. Matrix predominantly white (primary?) albite (crystalline, translucent). Darker pink/brown interval from 153.6-160.4 and 163-168.4 due to abundant dark pink kspar and dark green aegirine.
		Minor, coarse grained amorphous, orange/red nepheline throughout.
		Strongly albitized 189.8-192.15; predominantly white cleavelandite with minor medium grained aegerine needles and aggregates of buff, medium grained feldspar (?). Becoming very coarse grained after 194; both kspar and pristine green aegirine.
		EOH

Diamond Drill Log

Page 1 of 5

Hole_id	d:	L09-152	Drilled By:	Foraco Drilling	Objective:	Define B	Basal Zone									Downh	ole Sur	rvey T	ests
Zone:		Lake Zone	Started:	2009-03-22]	Depth	Dip	Azim	uth	Туре
Easting	g_GPS:	417,133	Finished:	2009-03-26	Summary:	Packer h	ole								<u>0</u>	<u>-90</u>	<u>0</u>		<u>Collar</u>
Northin	ng_GPS:	6,886,271	Core Size:	NQ										1	93.85	<u>-90</u>	<u>0</u>		Acid
Elev_G	SPS:	242	Surveyed?:	\checkmark															
East_P	lot:	417,133.77	Logged By:	JC Pedersen															
North_	Plot:	6,886,268.78	B Length (m):	193.85															
Elev_P	'lot:	241.05	Note: Collar	Coords in NAD83 / Zone 12															
Hole	No.	L09-152																	Page 1 of 5
Depth						S	Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From		Lithocode	Description					(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
0.00	4.20	9	Overburden; Organics, sar	nd, boulders (greywacke).															
4.20	28.00	4a		hite; Light pink with partially prese			591562	4.20	5.85	1.65	<u>1.18</u>	<u>0.12</u>	480	4300	2020	101	669	67	0.10
				gly albitized, with pervasive interstit chlorite, clay, and calcite, with spor			591563	5.85	8.00	2.15	<u>0.75</u>	<u>0.06</u>	215	2790	1310	57	947	65	0.07
			zircon and pyrite. Occasio	nal finely porous intervals. Local ir			591564	8.00	10.00	2.00	<u>0.77</u>	<u>0.07</u>	278	2830	1310	61	581	51	0.05
			interstitial mafics (3cd).				591565	10.00	12.00	2.00	<u>0.77</u>	<u>0.07</u>	239	2850	1350	55	494	43	0.06
							591566		14.00		<u>0.87</u>	<u>0.07</u>	250	3250	1515	58	953	53	0.03
							591567		16.00		<u>0.98</u>	<u>0.06</u>	161	3760	1760	52	844	54	0.08
							591568	16.00			<u>1.27</u>	<u>0.10</u>	351	4740	2280	85	1320	73	0.03
							591569		19.00		<u>0.84</u>	<u>0.06</u>	154	3160	1565	47	709	40	0.12
							591570 591571	21.00	21.00 23.00		<u>0.72</u>	<u>0.04</u>	92	2790	1245 801	33 28	612 321	26 21	0.08 0.03
							591571 591572	21.00			<u>0.44</u> 0.54	<u>0.03</u> 0.04	103 124	1660 2060	801 925	28 33	521 644	21 39	0.03
							591572	25.00			<u>0.54</u> 0.52	<u>0.04</u> 0.03	124 94	2000	923 858	28	044 446	24	0.03
							591575 591574		28.00		<u>0.52</u> <u>1.00</u>	<u>0.05</u> 0.06	159	3880	1650	28 57	1195	72	0.04
28.00	52.00	3c; 2		RZ; Dark green-grey, heterogeneous c metasomatic overprint. Precursor		clude	591576	28.00	30.00	2.00	<u>2.54</u>	<u>0.15</u>	386	9810	4310	131	1955	149	0.08

Report designed by Hudgtec Consulting 2008

Hole	No.	L09-152														Page 2 of 5
Depth	n (m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
			medium grained syenite, porphyritic syenite, and syenite pegmatite with variable	591577	30.00	32.00	2.00	<u>2.13</u>	<u>0.11</u>	271	8180	3550	97	1955	146	0.07
			primary mafic minerals now completely replaced. Alteration minerals include abundant fine to patchy chlorite, hematite, magnetite, bastnaesite, zircon, and trace	591578	32.00	34.00	2.00	<u>1.19</u>	<u>0.07</u>	176	4580	2030	60	1045	64	0.08
			fluorite and pyrite.	591579	34.00	36.00	2.00	<u>1.32</u>	<u>0.08</u>	218	5080	2370	66	1285	67	0.07
			Zircon varies from fine disseminated chalky grains to irregular tan to bronze coloured masses and coarse skeins up to 5 cm in size. Local intense zircon-REE enrichment in	591581	36.00	38.30	2.30	<u>1.27</u>	<u>0.11</u>	354	4760	2190	96	1210	85	0.13
			numerous intervals at 32.0; 28.4-39.0; 44.0-44.5; 50.7-50.9.	591582	38.30	39.00	0.70	<u>2.65</u>	<u>0.20</u>	443	9880	4720	226	3420	179	0.73
			Intermittently strongly magnetic, particularly in zircon-enriched sections.	591583	39.00	41.00	2.00	<u>0.42</u>	<u>0.03</u>	77	1590	674	27	400	26	0.01
				591584	41.00	43.00	2.00	<u>0.68</u>	<u>0.05</u>	146	2530	1175	46	678	45	0.11
				591585	43.00	45.00	2.00	<u>2.60</u>	<u>0.21</u>	656	9530	4680	168	3670	228	0.10
				591586	45.00	47.00	2.00	<u>1.76</u>	<u>0.11</u>	256	6630	3100	90	2560	146	0.12
				591587	47.00	49.00	2.00	<u>1.70</u>	<u>0.10</u>	231	6430	2990	92	1655	103	0.16
				591588	49.00			<u>2.01</u>	<u>0.16</u>	450	7340	3650	125	3670		0.20
				591589	51.00	52.00	1.00	<u>3.39</u>	<u>0.45</u>	1770	11650	5840	448	5540	319	0.10
52.00	88.50	5ab; 4b	Feldspathite/Albitized Syenite; Light pink, medium to coarse grained intensely	591590	52.00	54.00	2.00	1.62	0.16	518	5680	2970	134	3820	223	0.21
			albitized and altered. Various degrees of albitization with resultant partially preserved	591591	54.00	56.00	2.00	1.10	0.11	398	4080	1760	122	1440	99	0.13
			relict textures. Predominant texture/lithology is light pink albitized syenite with coarse red-brown aegirine (?) pseudomorphs imparting distinct coarse brown spotted	591592	56.00	59.00	3.00	0.54	0.05	166	2030	888	40	1135	62	0.02
			texture, commonly in association with finely miarolitic groundmass. Minor	591593	59.00	60.50	1.50	0.12	0.05	226	295	129	39	1205	95	0.01
			interlayered altered mafic syenite and fine grained pseudo-foyaitic intervals. Uniqe interval from 65.2-67.5 with massive aphanitic fluorite and fluorite-clay-sericite	591594	60.50	62.00	1.50	0.30	0.05	184	1065	454	45	1420	88	0.04
			replacement.	591595	62.00	64.00	2.00	<u>0.98</u>	<u>0.08</u>	206	3720	1635	86	2630	168	0.17
				591596	64.00	65.20	1.20	<u>0.66</u>	<u>0.09</u>	403	2380	949	85	3530	237	0.07
				591597	65.20	67.50	2.30	<u>0.15</u>	<u>0.02</u>	65	564	215	13	200	9	0.02
				591598	67.50	69.00	1.50	<u>0.14</u>	<u>0.03</u>	122	425	230	28	238	13	0.02
				591599	69.00	71.00	2.00	<u>0.18</u>	<u>0.04</u>	214	552	254	48	277	17	0.03
				591601	71.00	73.00	2.00	<u>0.18</u>	<u>0.03</u>	139	646	277	33	227	13	0.02
				591602	73.00	75.00	2.00	<u>0.43</u>	<u>0.02</u>	59	1725	714	23	623	30	0.02
				591603	75.00	77.00	2.00	<u>0.66</u>	<u>0.03</u>	59	2630	1200	24	472	18	0.04
				591604	77.00	79.00	2.00	<u>0.42</u>	<u>0.02</u>	61	1675	668	24	873	30	0.03
				591605	79.00	81.00	2.00	<u>0.40</u>	<u>0.02</u>	54	1580	631	20	377	17	0.02
				591606	81.00	83.00	2.00	<u>1.05</u>	<u>0.04</u>	100	4220	1580	37	498	21	0.01

Hole I	No.	L09-152														Page 3 of 5
Depth	(m) –			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description	-	(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
				591607	83.00	85.00	2.00	<u>0.57</u>	0.02	48	2360	849	18	795	22	0.01
				591608	85.00	87.00	2.00	<u>0.40</u>	<u>0.02</u>	70	1605	619	20	729	26	0.01
				591609	87.00	88.50	1.50	<u>0.52</u>	<u>0.02</u>	61	2110	823	22	554	20	0.01
88.50	105.50	3d	Altered/Albitized syenite; Dark grey, medium to coarse grained, fairly homogeneous	591610	88.50	91.00	2.50	<u>0.53</u>	<u>0.04</u>	147	2110	806	42	1605	61	0.05
			with strong earlier albitizing event producing weakly developed coarse net-texture. Likely originally an aegirine syenite. Pervasive hematization, strongly magnetic.	591611	91.00	93.00	2.00	<u>0.83</u>	<u>0.07</u>	270	3190	1185	80	2240	117	0.10
			Common interstitial medium grained chalky mineralmay be pseudomorph, and now	591612	93.00	95.00	2.00	<u>0.35</u>	<u>0.03</u>	99	1320	551	34	464	19	0.01
			comprised of calcite (at least in part). Generally only trace zircon and REE mineralization.	591613	95.00	97.00	2.00	<u>0.54</u>	<u>0.05</u>	163	2090	811	52	909	44	0.03
				591614	97.00	99.00	2.00	<u>0.51</u>	<u>0.05</u>	187	1885	758	55	902	59	0.09
				591615	99.00	101.00	2.00	<u>0.24</u>	<u>0.01</u>	39	909	354	17	534	21	0.10
				591616	101.00			<u>0.45</u>	<u>0.03</u>	67	1675	708	39	752	16	0.11
				591617	103.00	105.50	2.50	<u>0.61</u>	<u>0.05</u>	132	2280	1005	62	1875	87	0.18
105.50	112.00	5b	Feldspathite; Light pink and vuggy, as previous.	591618	105.50	107.00	1.50	<u>2.05</u>	<u>0.19</u>	654	7670	3450	184	3830	256	0.54
				591619	107.00	109.00	2.00	<u>1.10</u>	<u>0.09</u>	309	4220	1795	83	1730	144	0.11
				591621	109.00	111.00	2.00	<u>0.19</u>	<u>0.04</u>	171	671	263	36	771	73	0.01
				591622	111.00	112.00	1.00	<u>0.51</u>	<u>0.03</u>	115	2090	770	28	523	54	0.01
112.00	128.10	3d	Altered/Albitized Syenite As previous, farily heterogeneous, highly albitic to 120.9.	591623	112.00	114.00	2.00	<u>0.32</u>	<u>0.11</u>	508	910	341	108	1970	178	0.01
			After 120.9, increasing mafics, but only trace zircon and REE's. Basal Zone commences with abrupt appearance of zircon. Section is weakly to moderately	591624	114.00	116.00	2.00	<u>0.57</u>	<u>0.06</u>	209	2180	858	62	1960	147	0.16
			magnetic.	591626	116.00	118.00	2.00	<u>0.53</u>	<u>0.07</u>	265	1980	786	66	935	69	0.09
				591627	118.00	120.90	2.90	<u>0.40</u>	<u>0.06</u>	270	1400	558	61	1305	102	0.04
				591628	120.90	123.00	2.10	<u>0.12</u>	<u>0.02</u>	82	443	164	17	1085	55	0.03
				591629	123.00	125.00	2.00	<u>0.08</u>	<u>0.02</u>	78	273	102	16	1260	36	0.01
				591630	125.00	127.00	2.00	<u>0.11</u>	<u>0.02</u>	84	401	160	19	749	51	0.06
				591631	127.00	128.10	1.10	<u>0.06</u>	<u>0.01</u>	26	202	81	7	312	5	0.03
128.10	152.95	2b/1c	MRZ (Basal Zone)/Foyaitic Syenite; Abrupt appearance of zircon and REE's, with	591632	128.10	130.00	1.90	<u>1.42</u>	<u>0.24</u>	1030	4870	2140	234	2000	168	0.06
			progressively developed foyaitic textures. Strongly magnetic. Heterogeneous textures, from finely foyaitic to coarse foyaitic, and porphyritic to sub-pegmaititic	591633	130.00	131.00	1.00	<u>1.83</u>	<u>0.50</u>	2330	5440	2450	462	2490	268	0.02
			syenite, all with heterogeneous alteration overprint. Ubiquitous tan zircon, as fine	591634	131.00	133.00	2.00	<u>1.45</u>	0.28	1240	4810	2090	270	2330	254	0.05
			disseminated grains, skeins, irregular masses with chlorite/biotite, coarse	591635	133.00	134.00	1.00	<u>0.93</u>	<u>0.19</u>	882	3080	1310	191	1230	121	0.16

Hole N	lo.	L09-152														Page 4 of 5
Depth	(m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
			pseudomorphs after unknow mineral, and local narrow cumulate assemblages. Broad	591636	134.00	135.50) 1.50	<u>2.62</u>	<u>0.20</u>	491	9570	4680	145	3550	347	0.04
			patches of hematite alteration. 130-131 Strong zircon replacement, possible cumulate.	591637	135.50	137.00) 1.50	<u>0.16</u>	<u>0.02</u>	85	560	268	24	333	13	0.01
			131-133 Fine grained layered foyaite with common disseminated bands of fine	591638	137.00	139.00	2.00	<u>1.16</u>	<u>0.13</u>	391	4110	1975	115	2140	215	0.03
			grained zircon.	591639	139.00	141.40	2.40	<u>1.97</u>	<u>0.41</u>	1570	6100	3080	492	3070	341	0.15
			133-134 Coarser grained, decreasing zircon.134-135.5 Strong chloritic and hematitic alteration, coarse patches of very fine	591640	141.40	143.70	2.30	<u>4.41</u>	<u>1.27</u>	5540	12100	6370	1175	6350	689	0.12
			zircon, with 15cm aggregate of zircon-hematite-chlorite with Niton reading of	591641	143.70	145.10) 1.40	<u>2.71</u>	0.64	2840	7980	4480	673	2010	266	0.24
			2%Sm/2.9%Nd/4.7%Ce/2.7%La/.62Gd/.12Eu/1.8%Nb/.3%Ta.	591642	145.10	147.00) 1.90	2.66	0.75	3170	7390	3800	834	3990	504	0.07
			135.5-137 Feldspathic, foyaitic with minor zircon.137-139 Altered porphyritic syenite, may be weakly banded, with patchy zircon	591643	147.00	149.00	2.00	2.75	0.82	3690	7430	3860	811	3430	446	0.13
			replacement.	591644	149.00	150.60) 1.60	3.20	0.92	3870	8780	4530	935	4860	672	0.13
			139-141.4 As above. 141.4-143.7 Very strong alteration and zircon-REE enrichment. Coarse zircon	591645				1.40	0.33		4190	2070	365	2990	406	0.26
			pseudomorphs in aegirine (nepheline) syenite precursor. Strongly magnetic,						<u></u>							
			hematitic, Niton spot reading with 1.3%y/.22Ta.													
			143.7-145.1 Coarse foyaite, likely nepheline foyaite with significant interstitial hematite. Local fine patches of zircon-REE enrichment.													
			145.1-147 Coarse grained, strongly mineralized with localized coarse cumulate													
			textures.													
			147-149 As above, less cumulate. 149-150.6 As above, becoming more leucocratic.													
			150.6-152.95 Mafics decreasing, more feldspathic, medium grained, decreasing													
			zircon mineralziation.													
152.95	193.85	lac	Aegirine Syenite/Foyaitic Syenite; Transitional to aegirine syenite. Heterogeneous	591646	152.95	155.00	2.05	<u>0.36</u>	<u>0.05</u>	208	1315	531	44	1085	142	0.10
			textures and assemblages. Little or no zircon. Mafics chloritized, also altered to illite, sericite, hematite, and magnetite. Magnetite decreasing after 173. Local interstitial	591647	155.00	157.00	2.00	<u>0.41</u>	<u>0.06</u>	263	1485	554	52	1060	122	0.16
			and patchy fluorite, particularly 173-178. Aggirine increasing downhole, locally with	591648	157.00	159.00	2.00	0.26	<u>0.03</u>	121	956	410	25	637	54	0.03
			characteristic green colour. Well developed intermittent coarse graained aegirine	591649	159.00	160.90) 1.90	0.23	<u>0.03</u>	136	838	359	25	363	27	0.03
			nepheline foyaite. 154.3 Hydrothermal breccia directly below pegmatitic interval.	591651	160.90	163.00) 2.10	0.24	<u>0.02</u>	66	903	411	20	874	25	0.01
			194.5 Hydrotholmar breeda aneedy below pegmatile interval.	591652	163.00	165.40	2.40	1.07	0.05	171	4250	1600	46	707	51	0.09
				591653	165.40	166.85	5 1.45	0.08	0.02	85	260	114	18	467	20	0.05
				591654	166.85			0.08	0.01	27	299	133	8	210	7	0.02
				591655	169.00			0.07	<u>0.01</u>	53	241	111	13	318	16	0.01
				591656	171.00			<u>0.24</u>	<u>0.03</u>	132	823	394	33	490	44	0.18
				591650				<u>0.24</u> 0.19	0.03	100	622	306	37	389	45	0.01
				571057	1,5.00	1,5.00	2.00	<u>0.1</u>	0.05	100	022	200	51	207	чJ	0.01

Hole N	No.	L09-152														Page 5 of 5
Depth	(m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
				591658	175.00	177.00) 2.00	<u>0.20</u>	<u>0.02</u>	52	737	344	22	231	13	0.01
				591659	177.00	179.00	2.00	<u>0.15</u>	<u>0.02</u>	53	545	257	16	188	13	0.01
				591661	179.00	181.00	2.00	<u>0.07</u>	<u>0.01</u>	28	273	122	7	265	19	0.01
				591662	181.00	183.00) 2.00	<u>0.11</u>	<u>0.01</u>	58	386	178	14	227	11	0.01
				591663	183.00	185.00) 2.00	<u>0.19</u>	<u>0.02</u>	84	664	334	25	410	24	0.01
				591664	185.00	187.00) 2.00	<u>0.51</u>	<u>0.05</u>	131	1900	916	50	288	22	0.02
				591665	187.00	189.00	2.00	<u>0.13</u>	<u>0.01</u>	48	457	208	16	216	12	0.01
				591666	189.00	191.00	2.00	<u>0.10</u>	<u>0.02</u>	102	319	150	22	246	15	0.01
				591667	191.00	193.85	5 2.85	<u>0.23</u>	<u>0.07</u>	293	643	327	74	386	51	0.06

Diamond Drill Log

Page 1 of 5

Hole_id:		L09-151	Dr	Foraco Drilling	Objective:	Define B	asal Zone									Downh	ole Sur	vey T	ests	
Zone:		Lake Zone	Sta	arted:	2009-03-18										I	Depth	Dip	Azimı	ıth	Туре
Easting_GF	PS:	417,423	Fi	nished:	2009-03-21	Summary:	Packer ho	ole								<u>0</u>	<u>-90</u>	<u>0</u>		<u>Collar</u>
Northing_G	GPS:	6,886,298	Co	ore Size:	NQ	~ J ·									<u>2</u>	15.19	<u>-90</u>	<u>0</u>		Acid
Elev_GPS:		241	Su	irveyed?:	\checkmark															
East_Plot:		417,423.03	Lo	ogged By:	JC Pedersen															
North_Plot:	:	6,886,295.40) Le	ength (m):	215.19															
Elev_Plot:		240.55	No	ote: Collar Co	oords in NAD83 / Zone 12															
Hole No.		L09-151				-														Page 1 of 5
Depth (m))						S	amp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From To) I	ithocode	Description	n					(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
0.00 6.70	0 9		Overburden; or	organics, clay,	boulders.															
6.70 37.4	40 5				neous, very porous and vuggy. Al			591449	6.70	9.00	2.30	<u>0.15</u>	<u>0.01</u>	12	598	249	5	428	4	0.03
					grained cleavelandite. Minor loca			591451	9.00	11.00	2.00	<u>0.10</u>	<u>0.00</u>	12	418	163	4	630	7	0.03
			Locally to 20%	, commonly i	miarolitic with fine sulphide crysta	ds including		591452	11.00	13.00	2.00	<u>0.12</u>	<u>0.01</u>	25	460	176	8	651	8	0.03
					na (=1%). Calcite also common<br aCO3 and NaO coeval. Vugs and			591453	13.00	15.00	2.00	<u>0.09</u>	<u>0.00</u>	9	345	139	3	257	3	0.02
					ndite, and locally quartz. Randon			591454	15.00	17.00	2.00	<u>0.09</u>	<u>0.00</u>	9	366	153	3	143	2	0.01
			overgrowths.	high lovel on	l late stage. Negligible fracture fi	l or voin develo		591455	17.00	19.00	2.00	<u>0.17</u>	<u>0.01</u>	13	676	297	6	187	2	0.03
			Section is very	lingii level alio	i late stage. Negligible fracture fr	I OI VEIII UEVEIO	opment.	591456		21.00	2.00	<u>0.25</u>	<u>0.01</u>	18	951	390	9	203	2	0.01
								591457		23.00	2.00	<u>0.37</u>	<u>0.01</u>	23	1455	623	11	287	4	0.04
								591458		25.00	2.00	<u>0.29</u>	<u>0.01</u>	18	1175	458	8	264	4	0.03
								591459		27.00	2.00	<u>0.30</u>	<u>0.01</u>	20	1185	447	9	154	2	0.02
								591461		29.00	2.00	<u>0.31</u>	<u>0.01</u>	22	1215	504	10	139	2	0.02
								591462		31.00	2.00	<u>1.20</u>	<u>0.04</u>	59	4780	2000	30	321	4	0.05
								591463		33.00	2.00	<u>0.45</u>	<u>0.02</u>	30	1775	783	16	151	5	0.03
								591464		35.00	2.00	<u>0.54</u>	<u>0.02</u>	38	2100	942	19 °	121 122	2	0.03 0.01
								591465	33.00	37.40	2.40	<u>0.29</u>	<u>0.01</u>	19	1115	545	8	122	2	0.01

Report designed by Hudgtec Consulting 2008

Hole	No.	L09-151														Page 2 of 5
Depth	(m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
37.40	51.20	5a	Abrupt change from vuggy section. Strongly megacrystic, with decreasing albite.	591466	37.40	39.00	1.60	<u>0.58</u>	<u>0.02</u>	32	2300	1055	13	227	3	0.01
			Strong intersertal clay alteration, in patches to 10cm, olive-green, softe and waxy, often with late fluorite. Relict medium grained syncite textures after 148. Trace	591467	39.00	41.00	2.00	<u>0.29</u>	<u>0.01</u>	21	1095	541	8	401	6	0.01
			REE's (Niton) average 0.15% Ce.	591468	41.00	43.00	2.00	<u>0.12</u>	<u>0.01</u>	22	456	200	7	1010	20	0.02
				591469	43.00	45.00	2.00	<u>0.34</u>	<u>0.01</u>	27	1315	640	11	558	13	0.02
				591470	45.00	47.00	2.00	<u>0.43</u>	<u>0.02</u>	56	1695	671	21	321	10	0.02
				591471	47.00	49.00	2.00	<u>0.72</u>	<u>0.03</u>	71	2730	1270	29	614	27	0.02
				591472	49.00	51.20	2.20	<u>0.95</u>	<u>0.05</u>	103	3690	1535	38	450	18	0.02
51.20	55.60	3cd	Altered Syenite; Abruptly gradational with increasing mafic/chloritic content.	591473	51.20	53.00	1.80	<u>1.08</u>	<u>0.06</u>	146	4060	1850	59	1125	52	0.05
			Heterogeneous textures and assemblages, but precursor generally coarsely porphyritic to sub-pegmatitic syenite. Mafic sections magnetic. Local finely disseminated bastnaesite in chloritic interstices and aggregates. Trace fine grained chalky zircon.	591474	53.00	55.60	2.60	<u>1.21</u>	<u>0.06</u>	152	4650	2040	60	922	42	0.04
			basinaeshe in emorne mersiees and aggregates. Trace fine granted charky zireon.													
55.60	67.90	2,3d	MRZ/Altered Chlorite Syenite; Much more mafic alteration and replacement.	591476	55.60	57.00	1.40	<u>1.45</u>	<u>0.10</u>	274	5440	2500	96	1095	68	0.21
			Common medium grained grey cleavelandite replacement, appears earlier than mafic replacement. Common sub-perpendicular skein-like fractures and replacement	591477	57.00	59.00	2.00	<u>1.03</u>	<u>0.05</u>	99	3990	1695	40	990	60	0.03
			stringers. Fine grained zircon dissemniated throughout, generally dispersed and non-	591478	59.00	61.00	2.00	<u>2.33</u>	<u>0.11</u>	214	9020	3730	89	1315	95	0.12
			aggregated. Localpegmatitic interval at 64.5-65.4 which is less mafic. Moderately to	591479	61.00	63.00	2.00	<u>1.77</u>	<u>0.14</u>	425	6490	3180	130	1960	127	0.19
			strongly magnetic, ubiquitous subordinate hematite.	591480	63.00	64.50	1.50	<u>2.00</u>	<u>0.11</u>	212	7650	3450	88	1585	123	0.18
				591481	64.50	65.40	0.90	<u>1.34</u>	<u>0.07</u>	184	5130	2260	52	525	37	0.02
				591482	65.40	67.90	2.50	<u>1.45</u>	<u>0.09</u>	232	5480	2570	74	936	80	0.18
67.90	82.70	4a	Albitized Syenite; Abruptly pinker, albitized and preserved syenitc textures. Locally	591483	67.90	70.00	2.10	0.64	0.04	99	2400	1175	33	202	15	0.04
			pegmatitic. Interstitial mafics completely chloritized/illitized. Common interstitial calcite. Ubiquitous minor disseminated zircon grains, trace bastnaesite. Erratic	591484	70.00	72.00	2.00	<u>0.65</u>	<u>0.04</u>	97	2430	1150	38	239	17	0.04
			intervals with increasing interstitial mafics.	591485	72.00	74.00	2.00	<u>0.89</u>	<u>0.06</u>	172	3300	1550	61	410	31	0.09
				591486	74.00	76.00	2.00	<u>0.85</u>	<u>0.06</u>	158	3150	1490	49	632	36	0.04
				591487	76.00	78.00	2.00	<u>0.87</u>	<u>0.07</u>	188	3190	1560	63	519	44	0.08
				591488	78.00	80.00	2.00	<u>0.62</u>	<u>0.04</u>	80	2340	1135	34	87	5	0.01
				591489	80.00	82.70	2.70	<u>0.78</u>	<u>0.05</u>	98	2900	1430	46	412	23	0.02
82.70	98.30	3d	Altered Syenite; Gradational from previous with decrease in albite and increase in	591490	82.70	84.00	1.30	<u>0.55</u>	<u>0.04</u>	94	2040	1020	35	133	11	0.05
			mafics, and decrease in grain size. Section precursor fairly homogeneous. Medim to caorse grained, with increase in interstitial mafics and mific replacement, mainly	591491	84.00	86.00	2.00	<u>0.66</u>	<u>0.09</u>	367	2200	1140	91	487	53	0.10

Hole	No.	L09-151														Page 3 of 5
Depth	- (m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
			chloritic, biotite (?), and very minor magnetite. Common fine white interstitial calcite,	591492	86.00	88.00	2.00	<u>1.27</u>	<u>0.09</u>	197	4720	2350	83	701	62	0.11
			trace pyrite. Precursor porphyritic syenite. Minor ubiquitous fine chalky zircon graains. Section hs moderately elevated REE mineralization, average = 1% (Niton).</td <td>591493</td> <td>88.00</td> <td>90.00</td> <td>2.00</td> <td><u>1.03</u></td> <td><u>0.07</u></td> <td>178</td> <td>3760</td> <td>1930</td> <td>64</td> <td>1020</td> <td>82</td> <td>0.07</td>	591493	88.00	90.00	2.00	<u>1.03</u>	<u>0.07</u>	178	3760	1930	64	1020	82	0.07
				591494	90.00	92.00	2.00	<u>0.87</u>	<u>0.06</u>	153	3210	1610	56	953	74	0.07
				591495	92.00	94.00	2.00	<u>1.10</u>	<u>0.09</u>	263	4020	2080	68	970	79	0.12
				591496	94.00	96.00	2.00	<u>1.01</u>	<u>0.07</u>	183	3700	1950	64	640	60	0.13
				591497	96.00	98.30	2.30	<u>0.87</u>	<u>0.11</u>	418	2990	1540	104	647	65	0.11
98.30	112.15	3d,2	Increasing matics with increase in tan coloured zircon, possibly minor fine grained	591498	98.30	100.00) 1.70	<u>2.41</u>	<u>0.21</u>	593	8670	4540	160	3110	197	0.38
			interstitial bastnaesite. Section continuous from previous, but becoming more heterogenous, with minor local pegmatitic feldspar. Local intervals with salmon red	591499	100.00	102.00	2.00	<u>1.36</u>	<u>0.16</u>	547	4720	2420	144	2640	162	0.20
			feldspar may in part be altered nepheline. Moderately to strongly magnetic. Fine	591502	102.00	104.00	2.00	<u>1.14</u>	<u>0.11</u>	348	4040	2060	99	1210	120	0.16
			grained reddish foyaitic intervals after 108, with similar moderate REE-mineralization $(2N4/5C_2/1N)$	591503	104.00	106.00	2.00	<u>1.11</u>	<u>0.11</u>	335	3940	2000	93	1060	115	0.20
			(.3Nd/.5Ce/.1Y).	591504	106.00	108.00	2.00	<u>1.18</u>	<u>0.11</u>	322	4220	2150	87	1500	135	0.11
				591505	108.00	110.00	2.00	<u>1.56</u>	<u>0.35</u>	1540	4730	2420	374	2560	202	0.07
				591506	110.00	112.15	5 2.15	<u>2.77</u>	<u>0.58</u>	2520	8540	4460	580	3640	309	0.14
112.15	120.25	3e	Altered Foyaitic Syenite Abrupt transition from previous, suggesting layer/horizon	591507	112.15	114.00) 1.85	<u>0.72</u>	<u>0.13</u>	504	2310	1180	132	827	86	0.03
			boundary. Coarse grained, light pink, heterogeneous textures. Ubiquitous fine chalky zircon dusting. Increasing mafic alteration toward bottom of section.	591508	114.00	116.00	2.00	<u>0.91</u>	<u>0.12</u>	405	3050	1515	112	1235	94	0.10
			Zieon dusting. Increasing mane alcouton to ward bottom of section.	591509	116.00	118.00	2.00	<u>0.77</u>	<u>0.09</u>	323	2590	1370	82	1030	83	0.06
				591510	118.00	120.25	5 2.25	<u>1.55</u>	<u>0.14</u>	405	5610	2710	135	1690	156	0.34
120.25	125.40	2	MRZ; Abrupt transtion from previous. Coarse porphyritic syenite precursor. Very	591511	120.25	122.30	2.05	2.52	<u>0.25</u>	852	8840	4590	223	4230	380	0.26
			dark green-tan colour imparted by abundant fine grained chlorite-biotit with associated fine grained tan-coloured skeins of zircon. REE values surprisingly low for	591512	122.30	124.00) 1.70	<u>1.82</u>	<u>0.47</u>	2150	5270	2700	481	2340	251	0.10
			this section, suggesting REE's may not be confined to zircon.	591513	124.00	125.40) 1.40	<u>2.79</u>	<u>0.63</u>	2770	8480	4320	621	3880	408	0.16
			Possible brittle (healed) fault offsets at 125.4 with sub-vertical contact between finer grained MRZ and coarser albitized altered syenite. Note that fine zircon overgrowths occur in MRZ but do not carry over to albitized section along sharp fault(?) stoped block(?) boundary.													
125.40	131.40	3c	Heterogeneous Altered Albitized Syenite/MRZ Coarse grained, heterogeneous	591514	125.40	127.00) 1.60	<u>0.22</u>	<u>0.02</u>	82	790	378	23	285	31	0.02
			textures, with subvertical shears/offsets to 128, commonly finely anastomosing. Appear healed and suggest late stage co-eval internal displacement/movement. Highly	591515	127.00	129.00	2.00	<u>1.24</u>	<u>0.12</u>	316	4450	2180	124	1765	152	0.30
			Appear heated and suggest late stage co-eval internal displacement/movement. Highly albitized with common zones of medium grained grey-white cleavelandite masses, often with interstitial mafic replacement.	591516	129.00	131.40) 2.40	<u>1.12</u>	<u>0.11</u>	308	3990	1900	123	2330	176	0.40

Hole I	No.	L09-151														Page 4 of 5
Depth From	. ,	Lithocode	Description	Samp_id	From (m)	To (m)	Length (m)	<u>TREO</u> %	<u>HREO</u> %	Y ppm	Ce ppm	Nd ppm	Dy ppm	Nb ppm		P2O5 %
			A.		. ,	()	· · /									
131.40	167.00	3ec;2b	Altered Foyaitic/Heterogeneous Syenite/ MRZ; Predominantly altered foyaitic syenite with non-foyaitic porphyritic syenite intervals. Ubiquitous interstitial chloritic	591517				<u>0.39</u>	<u>0.06</u>	233	1300	630	63	447	49	0.07
			alteration and disseminated fine overgrowing tan zircon. Common local accumulation	591518				<u>0.82</u>	<u>0.18</u>	772	2550	1240	201	1000		
			of zircon. Moderately to strongly magnetic. Minor intermittent finer pink-red foyaitic intervals. Very local random disseminated pyrite. Possible salmon-red altered	591519				<u>1.03</u>	<u>0.11</u>	346	3620	1765	98	1625	144	
			nepheline throughout.	591520 591521				<u>1.42</u>	<u>0.15</u>	460 522	5000 2510	2430	144	2230		
			155-167 Basal Zone enrichment. No obvious boundaries, interpreted mainly from		139.00			<u>1.04</u>	<u>0.15</u> 0.50	522 2220	3510 4990	1740 2500	141 526	1690 2680	315	
			local accumulation of zircon and moderate Niton readings.		141.00			<u>1.77</u> 1.03	<u>0.50</u> 0.19	726	3280	2300 1665	320 187	1785	221	0.07
					145.00			<u>1.05</u> 0.57	<u>0.19</u> 0.09	358	1870	950	100	974	102	
				591526				<u>0.57</u> 0.51	<u>0.07</u>	249	1740	897	72	880	87	0.20
					149.00			1.19	0.13	434	4210	2050	145	1510		0.44
				591528	151.00	153.00	2.00	1.15	0.17	604	3810	1910	174	3070	279	0.20
				591529	153.00	155.00	2.00	<u>1.13</u>	0.16	593	3750	1900	171	2390	249	0.14
				591530	155.00	157.00	2.00	<u>1.15</u>	0.25	979	3440	1785	303	2220	270	0.08
				591531	157.00	159.00	2.00	<u>1.56</u>	<u>0.31</u>	1180	4900	2460	319	2720	331	0.10
				591532	159.00	161.00	2.00	<u>2.50</u>	<u>0.55</u>	2020	7580	3860	661	4210	589	0.12
				591533				<u>1.88</u>	<u>0.60</u>	2640	4910	2600	639	3140	407	0.08
				591534				<u>2.01</u>	<u>0.57</u>	2290		2930	725	4330	582	0.21
				591535	165.00	167.00	2.00	<u>1.23</u>	<u>0.22</u>	733	3890	1980	272	2610	343	0.04
167.00	189.50	3cd	Altered Porphyritic Syenite; Somewhat heterogeneous, with abrupt decrease in	591536	167.00	169.00	2.00	<u>1.59</u>	0.37	1410	4700	2400	474	3650	463	0.28
			disseminated zircon. Local fine disseminated grains. reserved porphyritic to local sub-pegmatitic textures with albitic overprint. Local primary silvery zircon.	591537	169.00	171.00	2.00	<u>1.41</u>	<u>0.26</u>	905	4510	2240	289	2830	403	0.29
			occasional grains or aggregates of pyrite, <1%. Interstitial mafics completely altered.	591538	171.00	173.00	2.00	<u>1.14</u>	<u>0.31</u>	1390	3250	1600	345	2460	365	0.38
			Local altered salmon-red nepheline. Moderately to strongly magnetic. Increasingly pegmatitic downhole, grading to more peralkaline aegirine-bearing syenite.	591539	173.00	175.00	2.00	<u>0.29</u>	<u>0.04</u>	162	1005	478	36	921	117	0.04
			183-189 Subvertical fracturing, filled with carbonate and chlorite.	591541	175.00	177.00	2.00	<u>0.28</u>	<u>0.03</u>	88	1040	482	23	674	57	0.03
				591542				<u>0.19</u>	<u>0.02</u>	52	691	313	15	397	23	0.01
				591543				<u>0.19</u>	<u>0.02</u>	51	696	323	17	359	22	0.03
				591544				<u>0.14</u>	<u>0.01</u>	44	490	237	14	226	13	0.04
					183.00			<u>0.11</u>	<u>0.03</u>	114	337	158	25	429	28	0.05
				591546	185.00	187.00	2.00	<u>0.08</u>	<u>0.01</u>	55	281	133	12	163	9	0.01

Hole	No.	L09-151														Page 5 of 5
Depth	n (m)			Samp_id	From	То	Length	<u>TREO</u>	<u>HREO</u>	Y	Ce	Nd	Dy	Nb	Та	P2O5
From	То	Lithocode	Description		(m)	(m)	(m)	%	%	ppm	ppm	ppm	ppm	ppm	ppm	%
				591547	187.00	189.50	2.50	<u>0.15</u>	<u>0.02</u>	72	541	253	18	230	11	0.02
189.50	215.19	1a	Altered Aegirine Syenite; Gradational and subjective boundary with previous, with	591548	189.50	191.00	1.50	<u>0.33</u>	<u>0.03</u>	94	1190	554	33	370	26	0.03
			appearance of locally abundant medium to coarse grained altered and replaced aegirine. Section heterogeneous and coarse grained to sub-pegmaititic. Strong	591549	191.00	193.00	2.00	<u>0.08</u>	<u>0.01</u>	50	264	124	15	225	15	0.03
			interstitial hematization. Mafic minerals commonly altered to olive-green clay. Local	591551	193.00	195.00	2.00	<u>0.10</u>	<u>0.02</u>	65	330	162	19	346	29	0.01
			patchy fluorite, generally associated with clay alteration. Erratically moderately to	591552	195.00	197.00	2.00	<u>0.13</u>	<u>0.02</u>	63	427	211	20	186	14	0.01
			strongly magnetic	591553	197.00	199.00	2.00	<u>0.18</u>	<u>0.02</u>	76	654	304	21	570	48	0.01
				591554	199.00	201.00	2.00	<u>0.09</u>	<u>0.01</u>	34	320	149	11	149	8	0.11
				591555	201.00	203.00	2.00	<u>0.14</u>	<u>0.01</u>	42	510	256	14	135	5	0.02
				591556	203.00	205.00	2.00	<u>0.17</u>	<u>0.02</u>	67	607	257	20	679	35	0.01
				591557	205.00	207.00	2.00	0.32	<u>0.03</u>	102	1175	535	31	812	65	0.09
				591558	207.00	209.00	2.00	<u>0.11</u>	<u>0.01</u>	38	367	188	12	191	13	0.01
				591559	209.00	211.00	2.00	<u>0.15</u>	0.02	50	535	274	18	213	12	0.01
				591560	211.00	213.00	2.00	<u>0.04</u>	<u>0.01</u>	43	124	61	12	282	13	0.02
				591561	213.00	215.19	2.19	<u>0.07</u>	<u>0.01</u>	49	215	114	13	399	25	0.02

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

Appendix C – Tables

APPENDIX C

Tables

One Team. Infinite Solutions.

	Date of Well		IAD83	Ground	Screen Interval
Well	Completion	Northing	Easting	Elevation (m asl)	(m)
L08-123	1-Aug-08	6,886,674.93	417,404.22	238.46	open corehole
L08-124	4-Aug-08	6,886,571.71	417,400.08	241.59	open corehole
MW08-127	13-Aug-08	6,886,671.67	417,235.41	238.04	6.9 - 16.4
MW08-128	16-Aug-08	6,885,963.61	417,228.73	240.28	8.0 - 10.3
MW08-130	24-Aug-08	6,886,370.61	416,518.77	246.04	7.6 - 13.7
MW09-151	21-Mar-09	6,886,295.40	417,423.03	240.55	81.2 - 95.2
MW09-152	26-Mar-09	6,886,268.78	417,133.77	241.05	84.7 - 99.7

Table 1: Monitoring Well Location Summary

NOTE:

masl - meters above sea level

MWID	Date	UTM N	AD83	Elevation	Screened	Stick up	EOH	DTW	Groundwater	
	Date	Northing	Easting	(masl)	Length (m)	(m)	(mb TOC)	(mb TOC)	Elevation (masl)	
	10-Aug-08							0.997	237.46	
	7-Oct-08							0.82	237.64	
MWL08-123	23-Mar-09	6,886,674.93	417,404.22	238.46	open corehole	0.50	207.00	2.93	235.54 ¹	
	2.0++ 00							0.70	237.76 ²	
	2-Oct-09							3.79	234.68 ¹	
	9-Aug-08							1.55	240.04	
	23-Sep-08	6,886,571.71	417,400.08	241.59	open corehole	0.12	198.00	2.37	239.22	
MWL08-124	7-Oct-08							2.11	239.48	
	23-Mar-09							3.32	238.27 ¹	
	2-Oct-09							1.93	239.66	
	13-Aug-08							0.94	237.10	
	20-Sep-08							1.00	237.04	
	7-Oct-08							0.91	237.13	
MWL08-127	23-Mar-09	6,886,671.67	417,235.41	238.04	6.9 – 16.4	0.50	17.37	0.99	237.05 ¹	
	00 km 00							1.10	236.94 ²	
	23-Jun-09							4.18	233.86 ¹	
	2-Oct-09							0.94	237.10	

Table 2: Monitoring Well Summary

MWID	Date	UTM N	AD83	Elevation	Screened	Stick up		DTW	Groundwater
	Date	Northing	Easting	(masl)	Length (m)	(m)	(mb TOC)	(mb TOC)	Elevation (masl)
	23-Sep-08							1.44	238.85
	7-Oct-08							0.92	239.36
	23-Mar-09	0.005.000.04	447 000 70	040.00	0.0 40.0	0.54	10.01	0.92	239.36 ¹
MWL08-128	00 h.m. 00	6,885,963.61	417,228.73	240.28	8.0 – 10.3	0.54	10.81	1.36	238.92 ²
	23-Jun-09							1.52	238.76 ¹
	2-Oct-09							0.80	239.48
	23-Sep-08							1.18	244.87
	7-Oct-08	6,886,370.61	416,518.77	246.04	7.6 – 13.7		8.16	0.68	245.36
	23-Mar-09					0.00		1.18	244.86 ¹
MWL08-130	23-Jun-09					0.09		1.22	244.82 ¹
	2.0++.00							1.53	244.52 ²
	2-Oct-09							3.33	242.71 ¹
	22-Mar-09							1.88	238.67
MWL09-151	23-Jun-09	0.000.005.40	447 400 00	240.55	81.2 – 95.2	0.65	96.21	2.26	238.29 ²
WWL09-151	23-Jun-09	6,886,295.40	417,423.03	240.00	01.2 - 95.2	0.05	90.21	2.45	238.10 ¹
	2-Oct-09							0.92	239.63
	26-Mar-09							1.54	239.51
	23-Jun-09	0.000.000.70	447 400 77	044.05	047 007	0.40	00.00	2.47	238.58 ¹
MWL09-152	2 Oct 00	6,886,268.78	417,133.77	241.05	84.7 – 99.7	0.40	99.66	3.72	237.33 ²
	2-Oct-09							4.47	236.57 ¹

NOTES:

masl - meters above sea level

mb TOC - meters below top of casing

¹ - Elevation of ice

EOH - end of hole

DTW - depth to water

² - Elevation of water on ice

	In	terval Teste	ed		Hydra	ctivity*	
Well	From	То	Midpoint	Length of Interval	Min	Max	Average
		m bgs		m		m/s	
	20.01	23.29	21.65	3.28	1.26E-06	2.02E-06	1.66E-06
	59.37	62.65	61.01	3.28	2.13E-07	4.48E-07	3.84E-07
MWL09-152	69.21	208.61	138.91	139.40	3.45E-08	5.36E-08	4.10E-08
	102.01	208.61	155.31	106.60	1.86E-08	5.30E-08	2.90E-08
	134.48	208.61	171.54	74.13	2.96E-08	5.43E-08	3.82E-08

Table 3: Summary of Hydraulic Properties from Packer Tests

NOTES:

mbgs - meters below ground surface

m/s - meters per second

* - method from Theim

Table 4. R	ecovery rest our	lilliary		
Monitoring Well	Screened Interval (m)	Screen Length (m)	Hydraulic Conductivity (m/s)	Calculation Method
1.00.400		007.0	6.06 x 10-8	Cooper, <i>et al.</i>
L08-123	open corehole	207.0	8.35 x 10-8	Hvorslev
1.00.104	anan aarabala	108.0	5.17 x 10 -7	Cooper, et al.
L08-124	open corehole	198.0	6.88 x 10-7	Hvorslev
			1.03 x 10-5	Bouwer & Rice
MW08-127	6.9 – 16.4	9.5	7.56 x 10-7	Cooper, <i>et al.</i>
			1.56 x 10-5	Hvorslev
			2.30 x 10 -5	Bouwer & Rice
MW08-128	8.0 – 10.3	2.3	3.08 x 10 -5	Hvorslev
			2.72 x 10-6	Cooper, <i>et al.</i>
			8.09 x 10-6	Bouwer & Rice
MW08-130	7.6 – 13.7	6.1	1.04 x 10-5	Hvorslev
			1.55 x 10-6	Cooper, et al.

Table 4: Recovery Test Summary

NOTE:

Bouwer and Rice – Bouwer and Rice (1976), Bouwer (1989) Cooper – Cooper, *et al.* (1969)

									Sai	mple Stations	5					
Parameter	Units	D.L.	MWLC	8-124		MWL08-127			MWL08-128		MWLO	8-130		MWLO	8-152	
			8-Oct-08	08-Oct-09	20-Sep-08	9-Oct-08	08-Oct-09	20-Sep-08	8-Oct-08	08-Oct-09	21-Sep-08	7-Oct-08	26-Jun-09	Dup 26-Jun-09	08-Oct-09	Dup 08-Oct-09
Physicals																
Hardness (as CaCO ₃)	mg/L	0.7	469	365	142	72.6	74.5	261	166	147	282	304	71.4	71.3	95.9	96.5
Conductivity	uS/cm	2	738	460	878	405	404	482	382	367	557	558	717	721	592	587
рН	рН	0.01	8.25	8.10	8.15	8.16	6.86	7.59	7.9	7.41	8.1	8.21	8.52	8.56	8.17	8.24
Total Dissolved Solids	mg/L	10	422	274	487	291	240	335	258	230	331	335	446	464	388	399
Total Suspended Solids	mg/L	3	110	28.8	33	213	56.8	49.5	29.20	17.8	14.50	3.20	110.00	116.00	23.3	35.8
Turbidity	NTU	0.1	171	70.6	13	1150	42.7	79.3	42.2	20.0	4.05	2.69	35.1	34.1	22.6	19.8
Anions					·										· · · · · ·	
Alkalinity, Total (as CaCO ₃)	mg/L	2	442	265	287	144	121	251	202	173	266	276	287	282	278	289
Bromide (Br)	mg/L	0.05	<0.050	<0.050	0.358	<0.25	<0.050	<0.25	<0.25	<0.050	<0.050	<0.050	0.188	0.193	<0.050	<0.050
Chloride (CI)	mg/L	0.5	1.55	0.84	108	43.2	36.9	3.6	3.5	11.4	3.48	3.68	61.8	62	20.8	21.0
Fluoride (F)	mg/L	0.02	2.41	2.19	2.54	1.37	0.720	1.29	397	1.16	1.05	1.04	4.37	4.38	2.76	2.79
Sulfate (SO ₄)	mg/L	0.5	24.5	7.80	1	4	25.1	4.8	7.7	6.88	14.9	14.4	12.6	12.6	8.40	7.08
Nutrients																
Nitrate as N	mg/L	0.005	0.475	0.125	<0.0050	<0.025	0.0063	<0.025	<0.025	<0.0050	5.07	5.5	4.37	4.38	<0.0050	<0.0050
Nitrite as N	mg/L	0.001	0.0254	<0.0010	<0.0010	0.0079	<0.0010	0.0137	0.0078	<0.0010	0.227	0.237	<0.0050	<0.0050	<0.0010	<0.0010
Total Kjeldahl Nitrogen	mg/L	0.05	0.47	0.481	0.477	2.19	0.508	1.88	1.79	1.14	0.813	0.872	0.705	0.681	0.716	0.769
Ortho Phosphate as P	mg/L	0.001	<0.0010	<0.0010	<0.0010	0.0087	<0.0010	0.0016	<0.0010	<0.0010	<0.0010	<0.0010	-	-	<0.0010	<0.0010
Total Phosphate as P	mg/L	0.20	<0.020	0.019	0.024	0.066	0.060	0.030	0.163	0.041	0.0062	0.0044	-	-	0.0078	0.0148
Organics																
Total Organic Carbon (TOC)	mg/L	0.5	7.78	11.9	10.4	28.7	11.8	30.9	25.5	14.9	16	15.8	9.32	8.78	19.7	18.5

Table 5: Groundwater General Chemistry

			COME				Sar	nple Station	S		
Total Metals	Units	D.L.	CCME FAL	BC CSR AW	MWL08-124	MWLC)8-127	MWLO)8-128	MWLO)8-130
					8-Oct-08	20-Sep-08	9-Oct-08	20-Sep-08	8-Oct-08	21-Sep-08	7-Oct-08
Aluminum (Al)	mg/L	0.005*	0.1 ₆	-	1.14	0.566	37.0	0.552	0.302	0.811	0.178
Antimony (Sb)	mg/L	0.0005*	-	0.20	<0.00050	<0.0010	<0.0025	<0.00050	<0.00050	<0.00050	<0.00050
Arsenic (As)	mg/L	0.0005*	0.005	0.05	0.00067	0.0017	0.0067	0.0231	0.00512	0.00102	0.00054
Barium (Ba)	mg/L	0.02	-	10	0.160	0.044	0.473	0.179	0.156	0.440	0.407
Beryllium (Be)	mg/L	0.001*	-	0.053	<0.0010	<0.0020	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010
Boron (B)	mg/L	0.1	-	50	<0.10	0.67	0.33	<0.10	<0.10	<0.10	<0.10
Cadmium (Cd)	mg/L	0.000017*	0.000017	0.00001 - 0.000067	<u>0.000254</u>	<u>0.000316</u>	<u>0.000287</u>	<u>0.000430</u>	<u>0.000282</u>	<u>0.000156</u>	0.000060
Calcium (Ca)	mg/L	0.1	-	-	30.9	24.3	17.6	49.1	29.1	48.3	50.5
Chromium (Cr)	mg/L	0.001*	-	-	0.0104	<0.0020	0.0489	0.0013	0.0010	0.0071	<0.0010
Cobalt (Co)	mg/L	0.003*	-	0.04	0.00439	<0.00060	0.0143	0.00146	0.00138	0.00316	0.00349
Copper (Cu)	mg/L	0.001*	0.002-0.004,	0.002 - 0.009 ₈	<u>0.0256</u>	<u>0.0276</u>	<u>0.0804</u>	0.0033	0.0029	<u>0.0402</u>	<u>0.0272</u>
Iron (Fe)	mg/L	0.03	0.3	-	32.1	0.837	37.4	8.89	14.5	2.69	0.303
Lead (Pb)	mg/L	0.0005*	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	0.00069	<0.0010	<u>0.0146</u>	0.00253	0.00103	0.00360	<0.00050
Lithium (Li)	mg/L	0.005	-	-	0.0208	0.051	0.075	0.0161	0.0147	0.0154	0.0126
Magnesium (Mg)	mg/L	0.1	-	-	94.1	19.8	17.2	33.6	22.1	39.1	43.0
Manganese (Mn)	mg/L	0.0003*	-	-	0.188	0.190	0.619	0.490	0.552	0.123	0.100
Mercury (Hg)	mg/L	0.00002	-	0.001	<0.000020	<0.000020	<0.00010	<0.000020	<0.000020	<0.000020	<0.000020
Molybdenum (Mo)	mg/L	0.001*	0.073	10	0.0215	0.0286	0.0359	0.0241	0.0177	0.0559	0.0456
Nickel (Ni)	mg/L	0.001*	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.0075	0.0020	0.0396	0.0035	0.0036	0.0108	0.0115
Potassium (K)	mg/L	2	-	-	3.9	5.9	10.5	7.8	4.1	3.9	3.1
Selenium (Se)	mg/L	0.001*	0.001	0.01	<0.0010	<0.0020	<0.0050	<0.0010	<0.0010	0.0011	<0.0010
Silver (Ag)	mg/L	0.00002*	0.0001	0.0005 - 0.01514	0.00470	0.000396	<u>0.00229</u>	0.000332	0.000171	0.00351	0.00377

Table 6: Groundwater Total Metals

			CCME FAL	BC CSR AW	Sample Stations								
Total Metals	Units	D.L.			MWL08-124	MWL08-127		MWL08-128		MWL08-130			
					8-Oct-08	20-Sep-08	9-Oct-08	20-Sep-08	8-Oct-08	21-Sep-08	7-Oct-08		
Sodium (Na)	mg/L	2	-	-	10.6	131	74.5	11.8	22.3	16.6	13.8		
Thallium (TI)	mg/L	0.002*	0.0008	0.003	<0.00020	<0.00040	<0.0010	<0.00020	<0.00020	<0.00020	<0.00020		
Tin (Sn)	mg/L	0.0005*	-	-	0.00196	<0.0010	<0.0025	<0.00050	0.00176	0.00053	0.00106		
Titanium (Ti)	mg/L	0.01	-	1	0.018	<0.010	0.696	0.010	0.010	0.016	<0.010		
Uranium (U)	mg/L	0.0002*	-	0.30	0.0197	0.0132	0.0035	0.0266	0.00382	0.00273	0.00235		
Vanadium (V)	mg/L	0.001*	-		0.0013	<0.0020	0.0642	0.0021	0.0012	<0.0010	<0.0010		
Zinc (Zn)	mg/L	0.005	0.03	0.075 - 2.415	0.0188	0.0091	0.0987	0.0140	0.0139	0.0118	0.0052		
Chromium (VI)	mg/L	0.001				<0.001		<0.001		<0.001			

Table 7:Groundwater Dissolved Metals

										Sample	Stations				
Dissolved Metals	Units	D.L.	CCME FAL	BC CSR AW	MWLO	08-124	MWLO	08-127	MWLO	08-128	MWL08-130		MWL0	9-152	
					08-Oct-08	08-Oct-09	09-Oct-08	08-Oct-09	08-Oct-08	08-Oct-09	07-Oct-08	26-Jun-09	Dup 26-Jun-09	08-Oct-09	Dup 08-Oct-09
Aluminum (Al)	mg/L	0.005*	0.1 ₆	-	0.0065	0.0037	15.3	0.0108	0.0338	0.0084	0.0077	0.0178	0.0181	0.0066	0.0245
Antimony (Sb)	mg/L	0.0005*	-	0.20	<0.00050	<0.00010	<0.0025	0.00013	<0.00050	0.00011	<0.00050	0.00032	0.00029	0.00011	0.00012
Arsenic (As)	mg/L	0.0005*	0.005	0.05	<0.00050	0.00038	0.0027	0.00066	0.00233	0.00404	0.00065	0.0018	0.00174	0.00084	0.00090
Barium (Ba)	mg/L	0.02	-	10	0.084	0.0874	0.257	0.0496	0.143	0.107	0.401	0.016	0.0164	0.0212	0.0217
Beryllium (Be)	mg/L	0.001*	-	0.053	<0.0010	<0.00050	<0.0050	<0.00050	<0.0010	<0.00050	<0.0010	<0.0010	<0.0010	<0.00050	<0.00050
Boron (B)	mg/L	0.1	-	50	<0.10	0.050	0.31	0.067	<0.10	0.021	<0.10	0.806	0.817	0.690	0.725
Cadmium (Cd)	mg/L	0.000017*	0.000017	0.00001 - 0.000067	<0.000017	<0.000080	0.000206	<0.00080	<u>0.000249</u>	<0.00020	0.000018	<0.00020	<0.0020	<0.00010	<0.00020
Calcium (Ca)	mg/L	0.1	-	-	29.5	26.7	14.9	17.1	29.3	29.8	50.4	15.7	15.6	20.4	20.5
Chromium (Cr)	mg/L	0.001*	-	-	0.0013	<0.0030	0.0179	<0.0060	<0.0010	<0.0030	<0.0010	<0.003	<0.0030	<0.0020	<0.0030
Cobalt (Co)	mg/L	0.003*	-	0.04	0.00178	0.00138	0.0057	0.00045	0.00126	0.00043	0.00328	<0.00020	<0.00020	0.00017	0.00017
Copper (Cu)	mg/L	0.001*	0.002-0.004,	0.002 - 0.009 ₈	0.0046	0.00408	0.0474	0.00102	<0.0010	0.00046	0.0182	<0.00020	0.00021	0.00040	0.00062
Iron (Fe)	mg/L	0.03	0.3	-	0.133	0.324	8.85	1.09	10.8	5.96	<0.030	0.083	0.093	0.098	0.094
Lead (Pb)	mg/L	0.0005*	0.001 - 0.007 ₁₁	0.004 - 0.016 ₁₀	<0.00050	<0.000050	0.0066	0.000141	<0.00050	<0.000050	<0.00050	<0.00010	<0.00010	<0.000050	0.000052
Lithium (Li)	mg/L	0.005	-	-	0.0194	0.0189	0.043	0.0188	0.0152	0.0139	0.0127	0.063	<0.061	0.0580	0.0586
Magnesium (Mg)	mg/L	0.1	-	-	96.1	72.6	8.59	7.73	22.5	17.5	43.3	7.79	7.83	10.9	11.0
Manganese (Mn)	mg/L	0.0003*	-	-	0.0506	0.0508	0.260	0.222	0.544	0.336	0.0888	0.0255	0.0254	0.0294	0.0304
Mercury (Hg)	mg/L	0.00002	-	0.001	<0.000020		<0.00010		<0.000020		<0.000020	<0.000050	<0.000050		
Molybdenum (Mo)	mg/L	0.001*	0.073	10	0.0119	0.0281	0.0345	0.0230	0.0194	0.0627	0.0466	0.0497	0.0497	0.0382	0.0403
Nickel (Ni)	mg/L	0.001*	0.025 - 0.15 ₁₃	0.025 - 0.15 ₁₃	0.0024	0.00208	0.0151	0.00663	0.0027	0.00371	0.0108	<0.0010	<0.0010	0.00054	0.00071
Potassium (K)	mg/L	2	-	-	3.4	3.5	6.6	2.7	4.2	3.0	3.0	3.2	3.2	3.2	3.2
Selenium (Se)	mg/L	0.001*	0.001	0.01	<0.0010	<0.0010	<0.0050	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010
Silver (Ag)	mg/L	0.00002*	0.0001	0.0005 - 0.01514	<0.000020	0.000010	0.00133	<0.000010	0.000031	0.000013	<0.000020	<0.000020	<0.000020	<0.000010	<0.000010
Sodium (Na)	mg/L	2	-	-	10.5	8.1	72.9	58.8	23.3	36.0	13.9	147	148	112	112
Thallium (TI)	mg/L	0.002*	0.0008	0.003	<0.00020	<0.00010	<0.0010	<0.00010	<0.00020	<0.00010	<0.00020	<0.00020	<0.00020	<0.00010	<0.00010
Tin (Sn)	mg/L	0.0005*	-	-	<0.00050	0.00014	0.0027	0.00036	0.00071	0.00048	0.00333	<0.00020	<0.00020	0.00022	0.00022
Titanium (Ti)	mg/L	0.01	-	1	<0.010	<0.010	0.354	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Uranium (U)	mg/L	0.0002*	-	0.30	0.0199	0.0175	0.0027	0.000918	0.00324	0.00428	0.00230	0.00662	0.00658	0.00764	0.00765
Vanadium (V)	mg/L	0.001*	-		<0.0010	<0.0010	0.0229	<0.0010	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0010	<0.0010
Zinc (Zn)	mg/L	0.005	0.03	0.075 - 2.415	< 0.0050	0.0022	0.0327	0.0076	0.0090	0.0063	0.0061	< 0.0020	<0.0020	0.0018	0.0031
Chromium (VI)	mg/L	0.001	-	-		<0.0010		<0.0010		<0.0010		0.0032	0.0015	< 0.0010	<0.0010

Notes:

- 1. Bolded and/or Underlined result implies a guideline exceedance, Blue indicates guidelines less than detection limits available
- 2. D.L. = laboratory detection limit
- 3. ** implies detection limit varied '<' (less than) value implies detection limit
- 4. CCME FAL Canadian Council of Ministers of the Environment Freshwater Aquatic Life guidelines (December 2007)
- 5. BC CSR AW British Columbia Contaminated Sites Regulation Aquatic Life Guidelines; provided for comparison only
- 6. Aluminum guideline is 100 μ g/L when pH \geq 6.5
- 7. Cadmium guideline: 0.1 μg/L when [CaCO3] is 0 30 mg/L 0.3 μg/L when [CaCO3] is 30 - 90 mg/L
- 0.3 μg/L when [CaCO3] is 30 90 mg/L

 0.5 μg/L when [CaCO3] is 90 150 mg/L

 0.6 μg/L when [CaCO3] is > 150 mg/L

 8. Copper guideline:
 2 μg/L when [CaCO3] is 0 50 mg/L
- <u>3 μg/L when [CaCO3] is 50 75 mg/L</u> <u>4 μg/L when [CaCO3] is 75 - 100 mg/L</u> <u>5 μg/L when [CaCO3] is 100 - 125 mg/L</u> <u>6 μg/L when [CaCO3] is 125 - 150 mg/L</u> <u>7 μg/L when [CaCO3] is 150 - 175 mg/L</u>
- 8 μg/L when [CaCO3] is 175 200 mg/L

 9 μg/L when [CaCO3] is > 200 mg/L

 9.
 Copper guideline:

 2 μg/L when [CaCO3] is 0 120 mg/L
- $\frac{3 \mu g/L \text{ when } [CaCO3] \text{ is } 120 180 \text{ mg/L}}{4 \mu g/L \text{ when } [CaCO3] \text{ is } > 180 \text{ mg/L}}$ 10. Lead guideline: $\frac{4 \mu g/L \text{ when } [CaCO3] \text{ is } 0 50 \text{ mg/L}}{4 \mu g/L \text{ when } [CaCO3] \text{ is } 0 50 \text{ mg/L}}$
- <u>5 μg/L when [CaCO3] is 50 100 mg/L</u> <u>6 μg/L when [CaCO3] is 100 - 200 mg/L</u> 110 μg/L when [CaCO3] is 200 - 300 mg/L
- 11. Lead guideline: $1 \mu g/L$ when [CaCO3] is > 300 mg/L 11. Lead guideline: $1 \mu g/L$ when [CaCO3] is 0 - 60 mg/L
- 2 μg/L when [CaCO3] is 60 120 mg/L 4 μg/L when [CaCO3] is 120 - 180 mg/L 7 μg/L when [CaCO3] is > 180 mg/L
- 12 Manganese guideline: $1 \mu g/L$ when [CaCO3] is 0 60 mg/L $1 \mu g/L$ when [CaCO3] is 0 - 60 mg/L $2 \mu g/L$ when [CaCO3] is 0 - 60 mg/L $4 \mu g/L$ when [CaCO3] is 120 - 180 mg/L $7 \mu g/L$ when [CaCO3] is > 180 mg/L 13 Nickel guideline: $25 \mu g/L$ when [CaCO3] is 0 - 60 mg/L $65 \mu g/L$ when [CaCO3] is 0 - 60 mg/L $110 \mu g/L$ when [CaCO3] is 120 - 180 mg/L $150 \mu g/L$ when [CaCO3] is > 180 mg/L
- Silver guidline: 0.5 μg/L when [CaCO3] < 100 mg/L
 μg/L when [CaCO3] > 100 mg/L
 Zinc guideline: 7.5 μg/L when [CaCO3] is 0 90 mg/L
 μg/L when [CaCO3] is 90 100 mg/L
 μg/L when [CaCO3] is 100 200 mg/L
 μg/L when [CaCO3] is 200 300 mg/L
 μg/L when [CaCO3] is > 300 mg/L

Monitoring Well	TDS (mg/L)	EC (µS/cm)	рН	Hydrogeochemical Facies	Exceeds CSR and/or CCME Guidelines
L08-124	274 – 422	460 – 738	8.10 – 8.25	Magnesium-Calcium- Carbonate	Aluminum, Cadmium, Copper, Iron, Silver
MWL08-127	240 – 487	404 – 878	6.86 – 8.16	Sodium -Calcium- Carbonate-Sulphate	Aluminum, Cadmium, Copper, Iron, Lead, Silver
MWL08-128	230 – 335	367 – 482	7.41 – 7.90	Sodium/Magnesium- Calcium- Magnesium/Sodium- Carbonate	Aluminum, Arsenic, Cadmium, Iron, Silver
MWL08-130	331 – 335	557 – 558	8.10 - 8.21	Magnesium-Calcium- Carbonate	Aluminum, Cadmium, Copper, Iron, Silver
MWL09-152	388 – 464	587 – 721	8.17 – 8.56	Sodium -Calcium- Carbonate-Chlorate	n.a.

Table 8: Sumn	ary of Groundwater	Parameters
---------------	--------------------	------------

NOTES:

TDS – Total Dissolved Solids

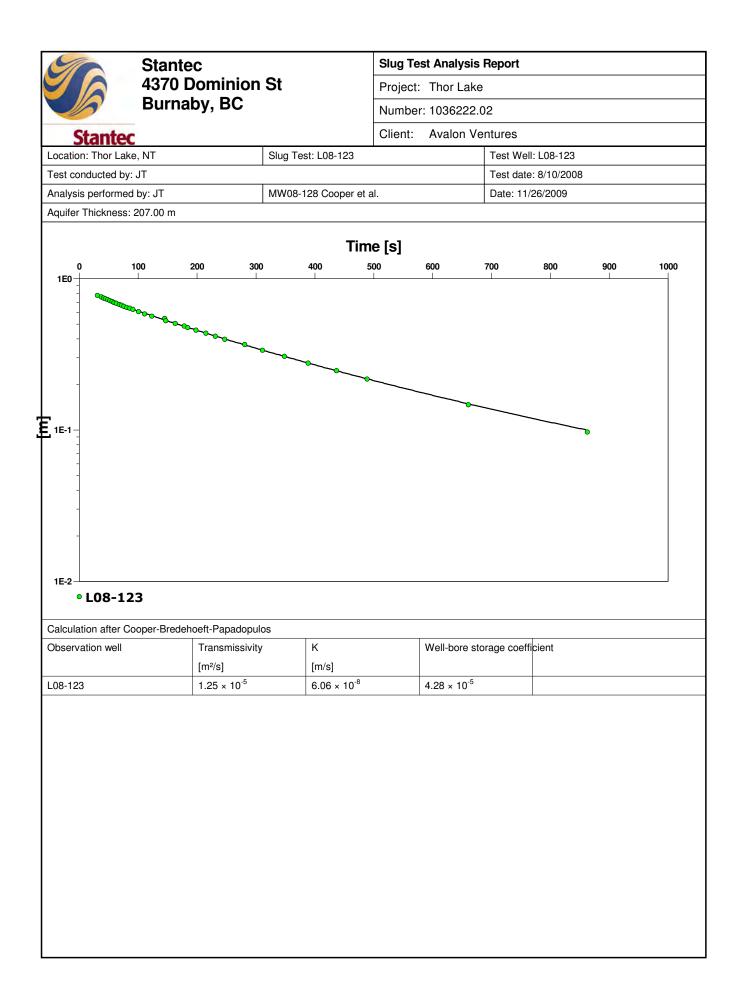
EC – Electrical Conductivity

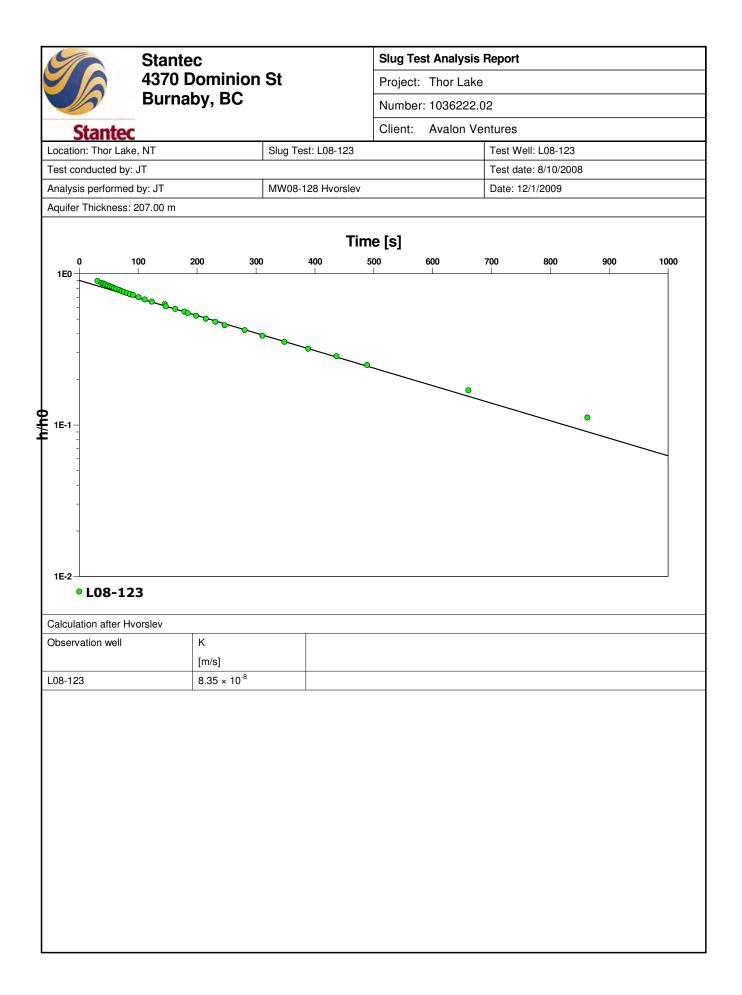
mg/L – milligram per liter

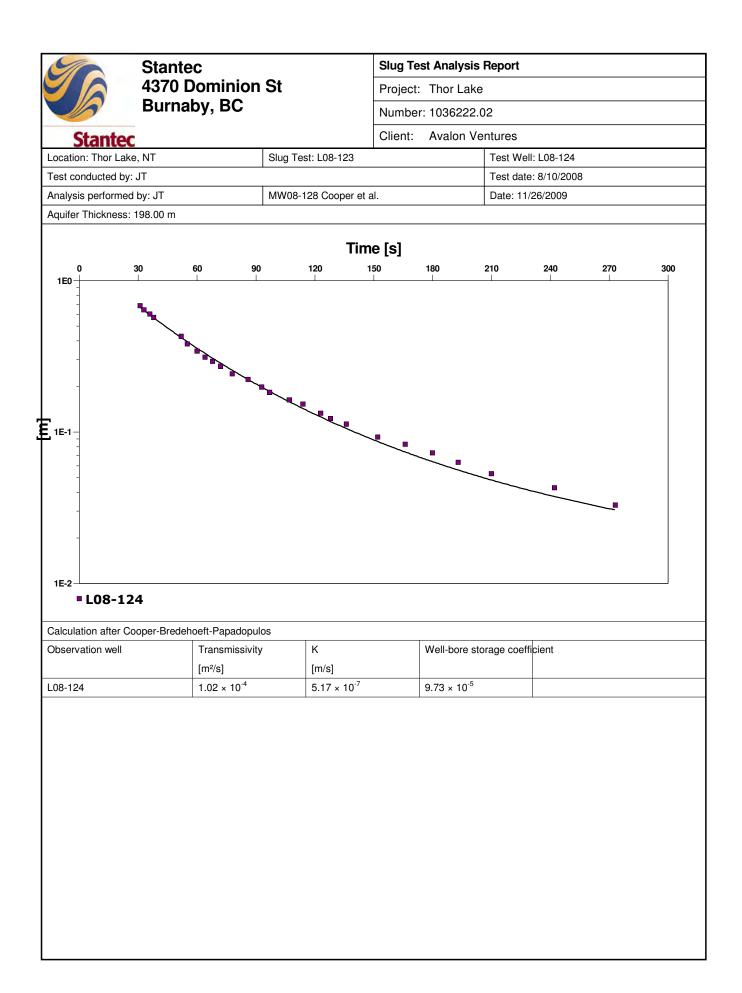
 $\mu S/cm-microsiemen \ pre \ centimetre$

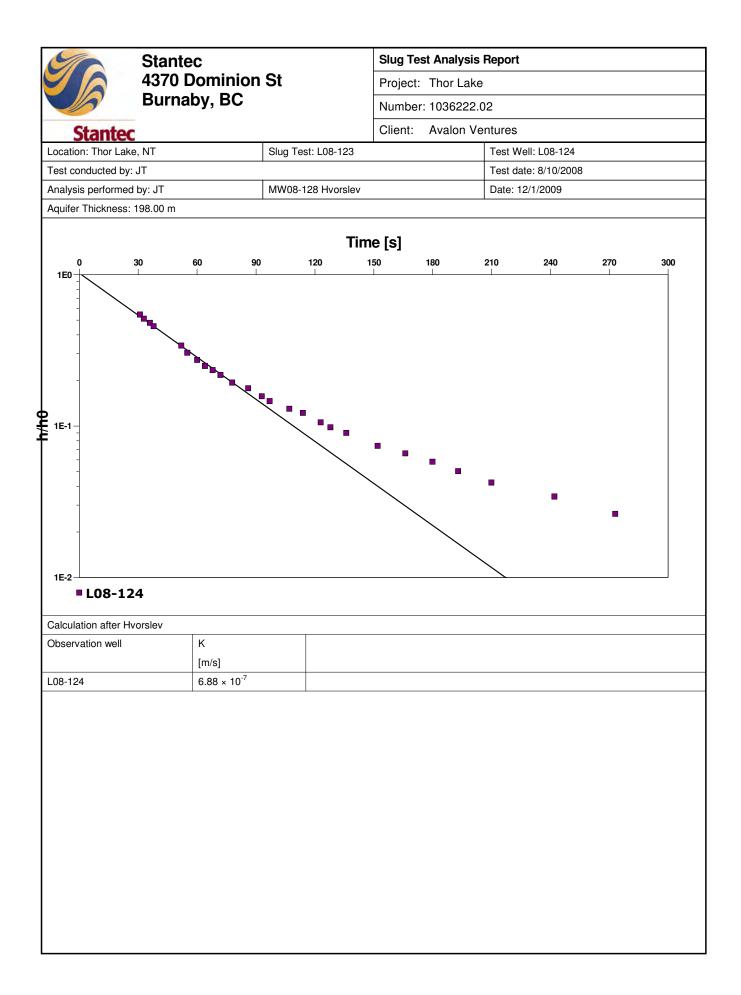
n.a. -data not available (total metals not collected)

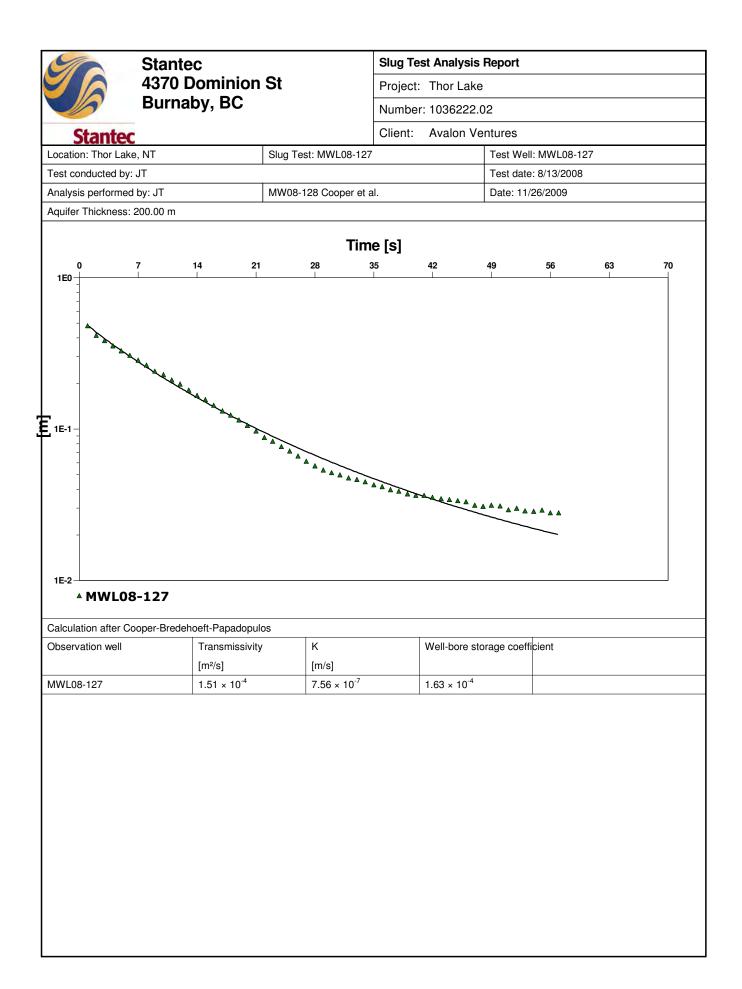
Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

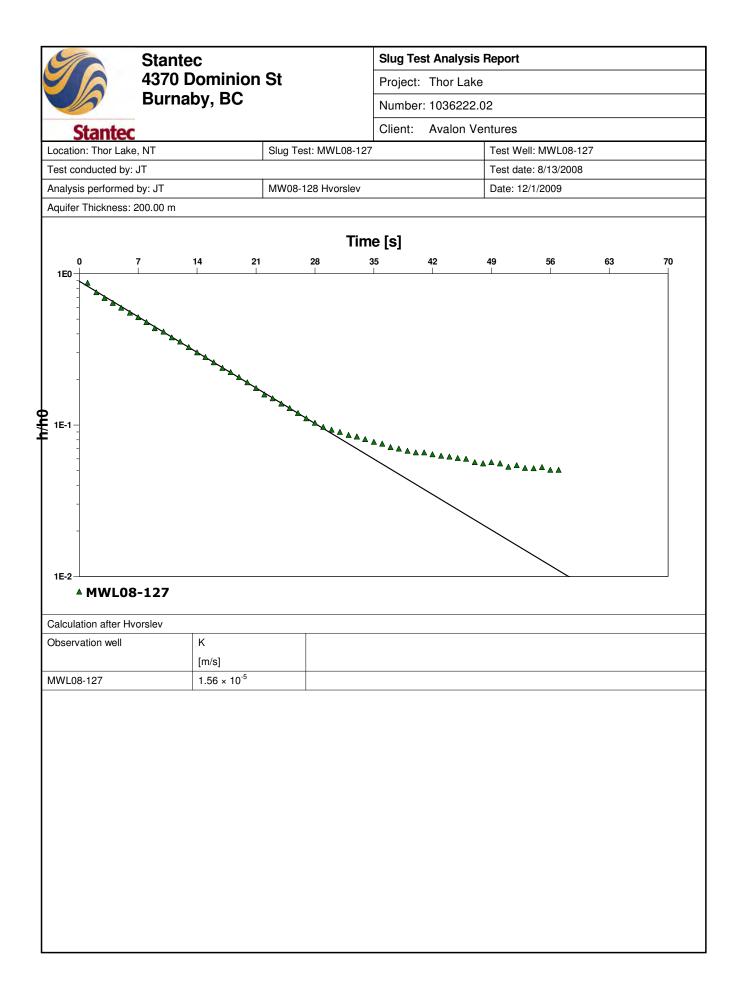


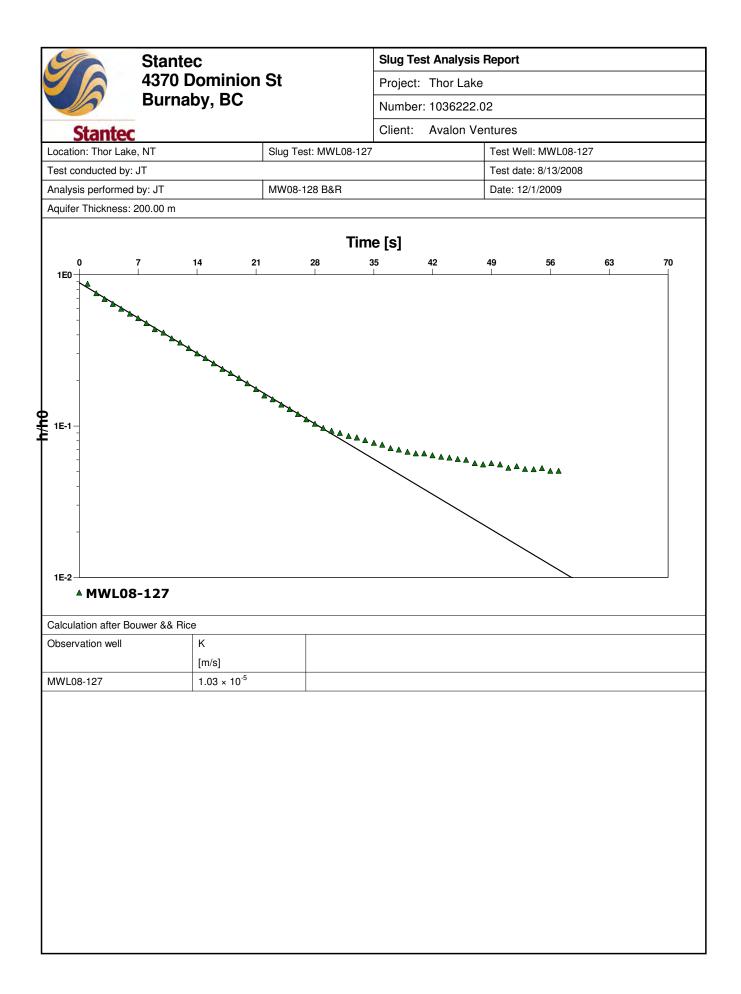

Appendix D – Results from Hydraulic Tests

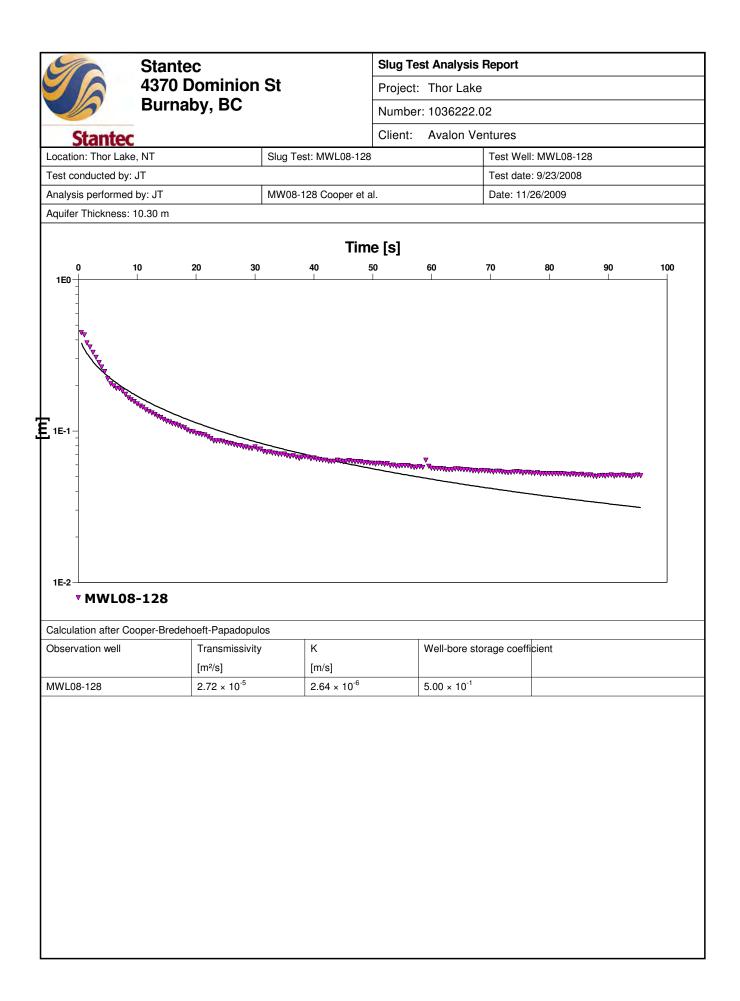

APPENDIX D

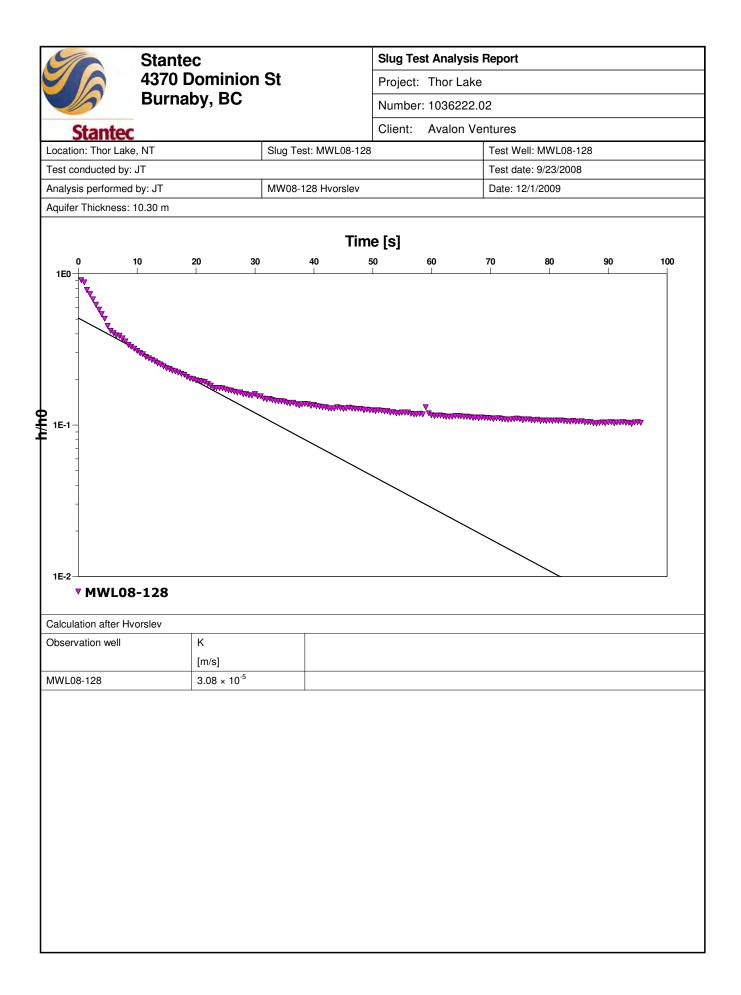

Results from Hydraulic Tests

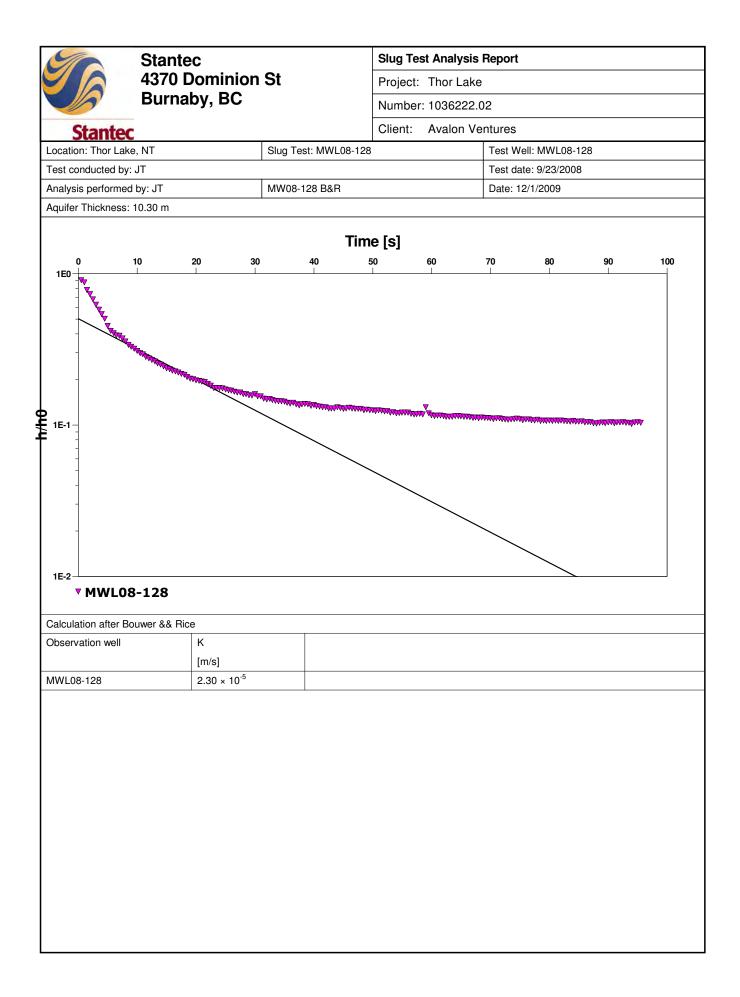

One Team. Infinite Solutions.

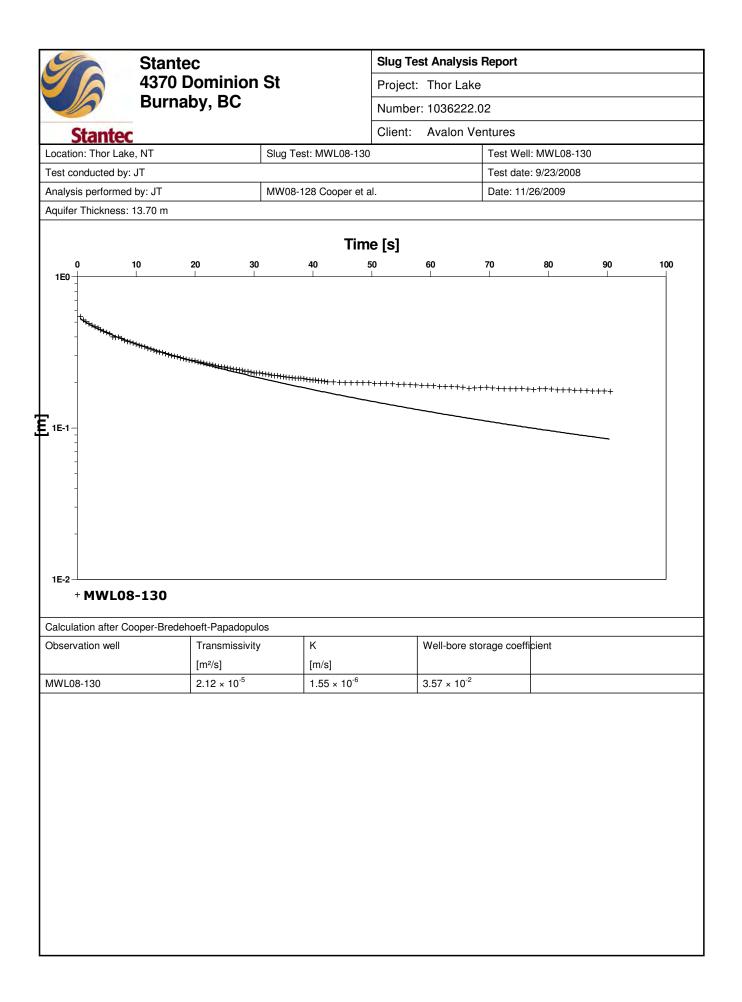


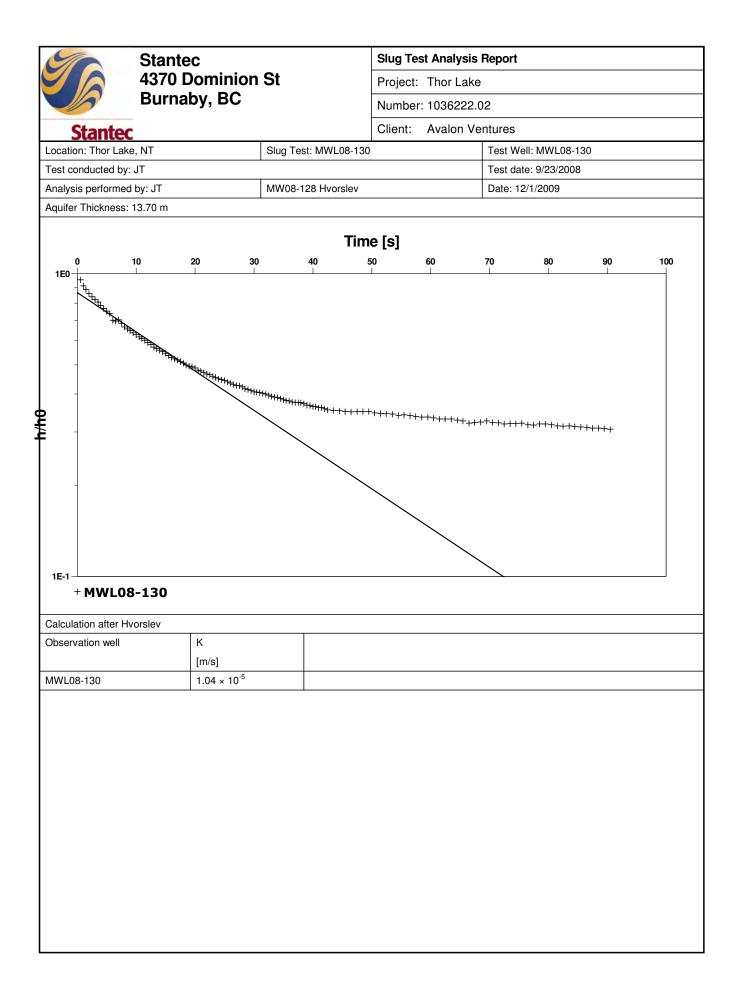


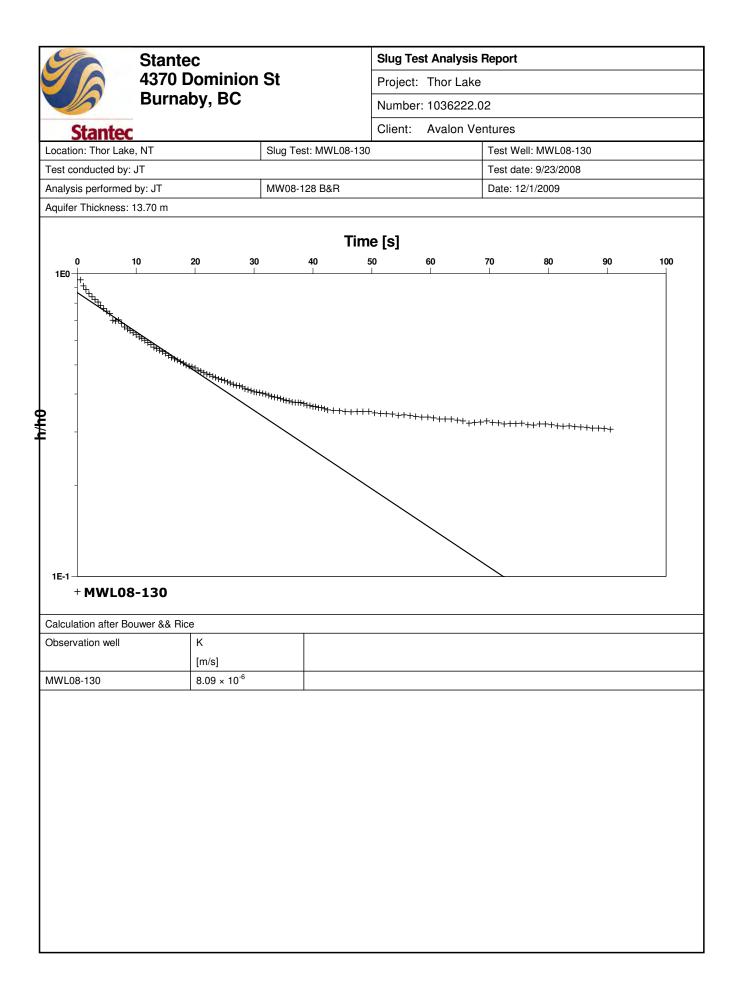












Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Personnel:	TL

Pressure Interval						
Minutes	Pressure	Volume	∆ Volume			
0	25	0	-			
1	25	3.1	3.1			
2	25	5.3	2.2			
3	25	7.1	1.8			
4	25	9	1.9			
5	25	10.9	1.9			
6	25					
7	25	14.3	3.4			
8	25	15.9	1.6			
9	25	17.4	1.5			
10	25	19	1.6			

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
0	50	0	-
1	50	2.8	2.8
2	50	5.3	2.5
3	50	7.9	2.6
4	50	10.4	2.5
5	50	12.9	2.5
6	50	15.2	2.3
7	50	17.7	2.5
8	50	20	2.3
9	50	22.4	2.4
10	50	24.7	2.3

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
winnutes	FIESSULE	volume	Δ volume
0	75	0	-
1	75	3.2	3.2
2	75	6.3	3.1
3	75	9.3	3
4	75	12.3	3
5	75	15.4	3.1
6	75		
7	75	21.4	6
8	75	24.4	3
9	75	27.4	3
10	75	30.4	3

Collar E.I. <u>1.06 m</u> Trend:

Trend:		
Plunge:		
Date:	25-Mar-09	

Pressure Interval					
Minutes	Pressure	Volume	∆ Volume		
0	95	0	-		
1	95	3.6	3.6		
2	95	7.1	3.5		
3	95	10.6	3.5		
4	95	14.8	4.2		
5	95	17.5	2.7		
6	95	21	3.5		
7	95	24.3	3.3		
8	95	27.6	3.3		
9	95	30.9	3.3		
10	95	34.3	3.4		

Pressure Interval

Minutes	Pressure	Volume	∆ Volume
0	75	0	-
1	75	2.6	2.6
2	75	5.1	2.5
3	75	7.7	2.6
4	75	10.2	2.5
5	75	12.6	2.4
6	75	15.2	2.6
7	75	17.6	2.4
8	75	20.1	2.5
9	75	22.5	2.4
10	75	25	2.5

Pressure Interval

Minutes	Pressure	Volume	∆ Volume			
0	50	0	-			
1	50	1.6	1.6			
2	50	3.2	1.6			
3	50	4.8	1.6			
4	50	6.5	1.7			
5	50	8.1	1.6			
6	50	9.7	1.6			
7	50	11.3	1.6			
8	50	13	1.7			
9	50	14.6	1.6			
10	50	16.2	1.6			

Hole # L09-152 Design Test Interval: 410' - 636' = 225' Test #: 1 Measurements: Depth to WT: 3.5 m b T.O.P Top of Packer Interval: 411' Bottom of Packer Interval (or Bottom of hole): 636' Packer Int. Midpoint (double packer): // Water Flushed: (Vol./Time/Until Clean): Packer Inflation Pressure: 500 psi Stickup Height: Borehole Outside Diametric: NQ 3" Packer Pipe ID / or Drill Rod ID:

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

<u>Time</u>

Start Packer Testing:	1230pm
Start Flushing:	7am
End Flushing:	1230pm
End Packer Testing:	1430am

Calculations

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

										K = T/b
Step	P (psi)	Pi	(m)	gal/min	Q (m3/s)	R (m)		rb (m)	T (m2/d)	68.5
	1	25	18.635	1.6	0.000101		5	0.038	4.21E-06	6.15E-08 m/s
	2	50	36.21	2.4	0.000151		5	0.038	3.25E-06	4.74E-08 m/s
	3	75	53.785	3	0.000189		5	0.038	2.73E-06	3.99E-08 m/s
	4	100	71.36	3.3	0.000208		5	0.038	2.27E-06	3.31E-08 m/s
	3b	75	53.785	2.4	0.000151		5	0.038	2.19E-06	3.19E-08 m/s
	2b	50	36.21	1.6	0.000101		5	0.038	2.17E-06	3.16E-08 m/s

Client:	Avalon			
Project:	Thor Lake			
Project #:	1036222			
Personnel: JT				

Pressure Interval				
Minutes	Pressure	Volume	Δ Volume	
0	20	0	-	
1	20	2	2	
2	20	3	1	
3	20	4.8	1.8	
4	20	7.7	2.9	
5	20	9.5	1.8	
6	20	11.3	1.8	
7	20	13.1	1.8	
0	40	0	-	
1	40	2.9	2.9	
2	40	5.8	2.9	
3	40	8.7	2.9	
0	60	0	-	
1	60	3.7	3.7	
2	60	7.3	3.6	
3	60	10.9	3.6	
4	60	14.3	3.4	
5	60	17.8	3.5	
6	60	20.8	3	
7	60	23.8	3	
8	60	26.8	3	
0	80	0	-	
1	80	3.7	3.7	
2	80	7.3	3.6	
3	80	10.8	3.5	
4	80	14.3	3.5	
5	80	17.8	3.5	
0	100	0	-	
1	100	3.7	3.7	
2	100	7.5	3.8	
3	100	11	3.5	
4	100	14.7	3.7	
5	100	18.4	3.7	
6	100	22	3.6	
7	100	25.6	3.6	
8	100	29.2	3.6	

Collar E.I.:	1.06 m
Trend:	
Plunge:	
Date:	25-Mar-09

Pressure Interval				
Minutes	Pressure	Volume	∆ Volume	
0	120	0	-	
1	120	4	4	
2	120	7.9	3.9	
3	120	11.7	3.8	
4	120	15.2	3.5	
5	120	18.7	3.5	
6	120	22.2	3.5	
7	120			
8	120	29.1	6.9	
0	180	0	-	
1	180	5.3	5.3	
2	180	10.6	5.3	
3	180	15.9	5.3	
0	120	0	-	
1	120	4	4	
2	120	7.3	3.3	
3	120	10.6	3.3	
4	120	14.1	3.5	
5	120	17.3	3.2	
6	120	20.5	3.2	
7	120	23.7	3.2	
0	100	0	-	
1	100	2.9	2.9	
2	100	5.6	2.7	
3	100	8.4	2.8	
4	100	11.2	2.8	
5	100	14	2.8	
0	80	0	-	
1	80	2.5	2.5	
2	80	4.9	2.4	
3	80	7.4	2.5	
4	80	9.9	2.5	
5	80	12.4	2.5	
	1	1		

L09-152 Hole # Design Test Interval: 300' Test #: 3 Measurements: Depth to WT: 3.3 m.b. t.o.p Top of Packer Interval: 311' Bottom of Packer 626' Interval (or Bottom of hole): Packer Int. Midpoint (double packer): _// Water Flushed: (Vol./Time/Until Clean): clean Packer Inflation Pressure: 500 psi Stickup Height: Borehole Outside Diametric: NQ 3" Packer Pipe ID / or Drill Rod ID:

Measurement Units

gal
psi
ft

<u>Time</u>

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

										K = T/b
Step	P (ps	i)	Pi (m)	gal/min	Q (m3/s)	R (m)	rb	o (m)	T (m2/d)	96
	1	20	15.12	1.8	0.000114		5	0.038	5.84E-06	6.08E-08
	2	40	29.18	2.9	0.000183		5	0.038	4.87E-06	5.08E-08
	3	60	43.24	3	0.000189		5	0.038	3.40E-06	3.54E-08
	4	80	57.3	3.5	0.000221		5	0.038	2.99E-06	3.12E-08
	5	100	71.36	3.6	0.000227		5	0.038	2.47E-06	2.58E-08
	6	120	85.42	3.5	0.000221		5	0.038	2.01E-06	2.09E-08
	7	180	127.6	5.3	0.000334		5	0.038	2.04E-06	2.12E-08
	6a	120	85.42	3.2	0.000202		5	0.038	1.84E-06	1.91E-08
	5a	100	71.36	2.8	0.000177		5	0.038	1.92E-06	2.00E-08
	4a	80	57.3	2.5	0.000158		5	0.038	2.14E-06	2.23E-08

Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Crew:	JT

Pressure Ir	nterval		
Minutes	Pressure	Volume	∆ Volume
0	20	0	-
1	20	2.7	2.7
2	20	5.3	2.6
3	20	7.8	2.5
4	20	10.2	2.4
5	20	12.6	2.4
6	20	14.9	2.3
7	20	17.3	2.4
0	40	0	-
1	40	3.8	3.8
2	40	7.5	3.7
3	40	11.3	3.8
4	40	15	3.7
5	40	18.7	3.7
6	40	22.4	3.7
0	60	0	-
1	60	4.8	4.8
2	60	9.7	4.9
3	60	14.6	4.9
4	60	19.5	4.9
0	80	0	-
1	80	6.3	6.3
2	80	12.5	6.2
3	80	18.7	6.2
4	80	24.9	6.2
0	100	0	-
1	100	8.4	8.4
2	100	16.5	8.1
3	100	24.6	8.1
4	100	32.7	8.1

Collar E.I.:	1.06 m
Date:	25-Mar-09

Pressure Interval				
Minutes	Pressure	Volume	∆ Volume	
0	120	0	-	
1	120	9.2	9.2	
2	120	18.3	9.1	
3	120	26.8	8.5	
4	120	34.9	8.1	
5	120	42.9	8	
6	120	50.9	8	
7	120	59	8.1	
0	100	0	-	
1	100	6.9	6.9	
2	100	13.8	6.9	
3	100	20.6	6.8	
4	100	27.5	6.9	
0	80	0	-	
1	80	5.3	5.3	
2	80	10.7	5.4	
3	80	16.1	5.4	
4	80	21.4	5.3	
0	60	0	-	
1	60	4.6	4.6	
2	60	9.2	4.6	
3	60	13.7	4.5	
4	60	18.3	4.6	

 ID
 L09-152

 Test Interval:
 415 ft

 Test #:
 4

Measurements:

Depth to WT:	3.3 m
Top of Packer Interval:	211'
Bottom of Packer	
Interval (or Bottom of hole):	626'
Packer Int. Midpoint	
(double packer): //	
Water Flushed:	
(Vol./Time/Until Clean):	clean
Borehole Outside Diametric:	NQ 3"

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

hg = height of gauge obove ground level (m)

hs = depth to pre-test water level (m)

hf = frictional losses (m)

										K = T/b
Step	P (psi) P	Pi (m)	gal/min	Q (m3/s)	R (m)	rb	(m)	T (m2/d)	126.5
	1	20	15.12	2.4	0.000151		5	0.038	7.78E-06	6.15E-08
	2	40	29.18	3.7	0.000233		5	0.038	6.22E-06	4.91E-08
	3	60	43.24	4.9	0.000309		5	0.038	5.56E-06	4.39E-08
	4	80	57.3	6.2	0.000391		5	0.038	5.31E-06	4.19E-08
	5	100	71.36	8.1	0.000511		5	0.038	5.57E-06	4.40E-08
	6	120	85.42	8	0.000505		5	0.038	4.59E-06	3.63E-08
	6a	100	71.36	6.9	0.000435		5	0.038	4.74E-06	3.75E-08
	5a	80	57.3	5.3	0.000334		5	0.038	4.53E-06	3.58E-08
	4a	60	43.24	4.6	0.00029		5	0.038	5.22E-06	4.12E-08

Client:	Avalon
Project:	Thor Lake
Project #:	1036222
Personnel:	Τι

0 20 0 1 20 0 2 20 0 0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	- 0 0 - 0.7 0.5 0.6
1 20 0 2 20 0 0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0 - 0.7 0.5 0.6
2 20 0 0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0 - 0.7 0.5 0.6
0 40 0 1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	- 0.7 0.5 0.6
1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0.5 0.6
1 40 0.7 2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0.5 0.6
2 40 1.2 3 40 1.8 4 40 2.3 5 40 2.7	0.5 0.6
3 40 1.8 4 40 2.3 5 40 2.7	0.6
4 40 2.3 5 40 2.7	
5 40 2.7	
	0.5
	0.4
6 40 3.1	0.4
7 40 3.5	0.4
0 60 0	-
1 60 1.3	1.3
2 60 2.5	1.2
3 60 3.7	1.2
4 60 4.9	1.2
0 80 0	-
1 80 1.4	1.4
2 80 2.8	1.4
3 80 4.2	1.4
0 100 0	-
1 100 2	2
2 100 4	2
3 100 6	2

Collar E.I.:	1.06 m
Trend:	
Plunge:	
Date:	25-Mar-09

Pressure Interval							
Minutes	Pressure	Volume	∆ Volume				
0	80	0	-				
1	80	1.5	1.5				
2	80	2.9	1.4				
3	80	4.4	1.5				
4	80	5.8	1.4				
0	60	0	-				
1	60	1.2	1.2				
2	60	2.4	1.2				
3	60	3.6	1.2				
0	40	0	-				
1	40	0.7	0.7				
2	40	1.4	0.7				
3	40	2.2	0.8				
4	40	2.9	0.7				
	1	1	1				

Hole #	L09-152							
Design Te	st Interval:	10 ft						
Test #:		5						
Measuren	nents:							
Depth to \	NT:		2.64					
Top of Pac	ker Interval:	181'						
Bottom of	Packer							
Interval (c	or Bottom of hole):	191'						
Packer Int	. Midpoint							
(double pa	acker):	186'						
Water Flu	shed:							
(Vol./Time	e/Until Clean):	clean						
Packer Inf	Packer Inflation Pressure:							
Stickup He	eight:							
Borehole Outside Diametric: NQ 3"								
Packer Pip	e ID / or							
Drill Rod I	D <u>:</u>							
Measuren	<u>nent Units</u>							
Volume:	gal							
Pressure:	psi							
Length:	ft							
Time								
Start Pack	er Testing:							

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pg + hg + hs - hf Pi =

- Pg =
- gauge pressure (m) height of gauge obove ground level (m) hg =

depth to pre-test water level (m) frictional losses (m) hs =

hf =

	inclonal losses (iii)									
										K = T/b
Step	P (psi) Р	'i (m)	Q (gal/min)	Q (m3/s) R	(m)	rb (n	י (ר	T (m2/d)	3
	1	20	15.12	0	0		5	0.038	0	0.00E+00
	2	40	29.18	0.4	2.52E-05		5	0.038	6.72E-07	2.24E-07
	3	60	43.24	1.2	7.57E-05		5	0.038	1.36E-06	4.54E-07
	4	80	57.3	1.4	8.83E-05		5	0.038	1.2E-06	3.99E-07
	5	100	71.36	2	1.26E-04		5	0.038	1.37E-06	4.58E-07
	4a	80	57.3	1.4	8.83E-05		5	0.038	1.2E-06	3.99E-07
	3a	60	43.24	1.2	7.57E-05		5	0.038	1.36E-06	4.54E-07
	2a	40	29.18	0.7	4.42E-05		5	0.038	1.18E-06	3.92E-07

Client:	Avalon	
Project:	Thor Lake	
Project #:	1036222	
Personnel	JT	

Pressure I			
Minutes	Pressure	Volume	∆ Volume
0	20	0	-
1	20	1.4	1.4
2	20	2.6	1.2
3	20	3.7	1.1
4	20	4.9	1.2
5	20	6	1.1
0	40	0	
-	40	0	3.2
1	40	3.2	
2	40	6.3	3.1
3	40	9.4	3.1
4	40	12.3	2.9
5	40	15.1	2.8
6	40	18	2.9
7	40	20.8	2.8
0	60	0	-
1	60	5	5
2	60	9.6	4.6
3	60	13.3	3.7
4	60	13.5	3.7
5	60	20.7	3.7
,	00	20.7	5.7
0	80	0	-
1	80	6.5	6.5
2	80	13	6.5
3	80	19.4	6.4
4	80	25.8	6.4
0	100	0	-
1	100	8.7	8.7
2	100	16.5	7.8
3	100	24.7	8.2
4	100	32.7	8
5	100	40.8	8.1
6	100	48.8	8
7	100	56.8	8
		1	

Collar E.I.:	1.06 m
Trend:	
Plunge:	
Date:	25-Mar-09

Pressure Interval							
Minutes	Pressure	Volume	∆ Volume				
0	80	0	-				
1	80	3.4	3.4				
2	80	8.7	5.3				
3	80	14.6	5.9				
4	80	20.2	5.6				
5	80	25.3	5.1				
6	80	30.3	5				
7	80	35.4	5.1				
8	80	40.5	5.1				
0	60	0	-				
1	60	1.8	1.8				
2	60	5.6	3.8				
3	60	9.5	3.9				
4	60	13.4	3.9				
5	60	17.1	3.7				
6	60	20.8	3.7				
7	60	24.6	3.8				
	1	1	1				

Hole # L09-152	
Design Test Interval:	10 ft
Test #:	6
Measurements:	
Depth to WT:	3.3
Top of Packer Interval:	61'
Bottom of Packer	
Interval (or Bottom of hole):	71'
Packer Int. Midpoint	
(double packer):	66'
Water Flushed:	
(Vol./Time/Until Clean):	clean
Packer Inflation Pressure:	
Stickup Height:	
Borehole Outside Diametric:	NQ 3"
Packer Pipe ID / or	
Drill Rod ID:	

2.24

Measurement Units

Volume:	gal
Pressure:	psi
Length:	ft

<u>Time</u>

Start Packer Testing:	
Start Flushing:	
End Flushing:	
End Packer Testing:	

Pi = Pg + hg + hs - hf

Pg = gauge pressure (m)

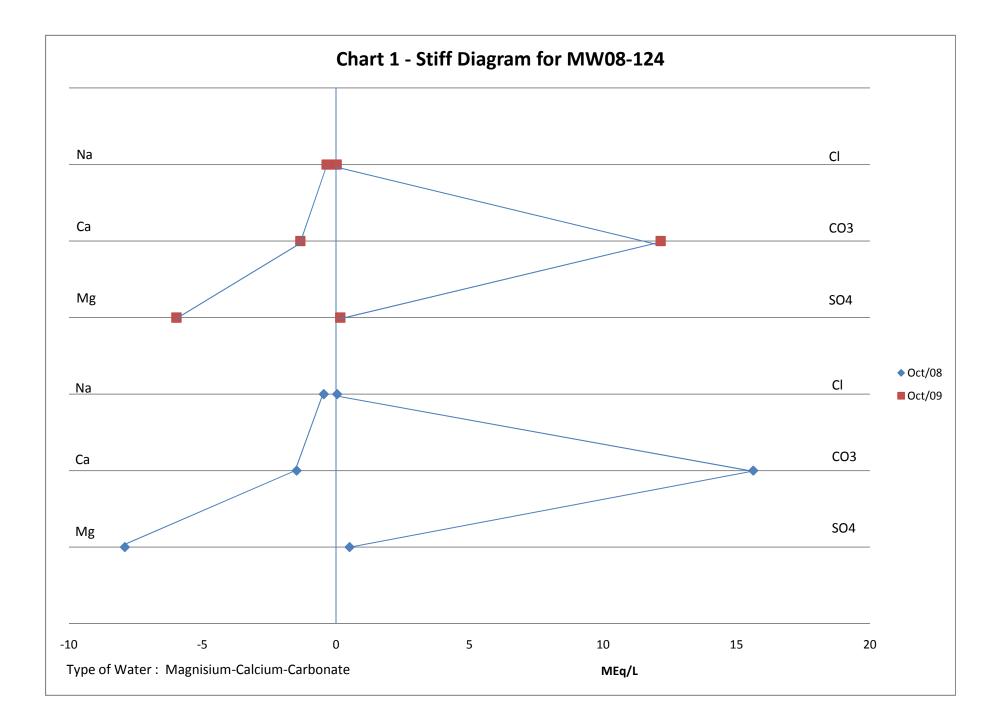
height of gauge above ground level (m) depth to pre-test water level (m) hg =

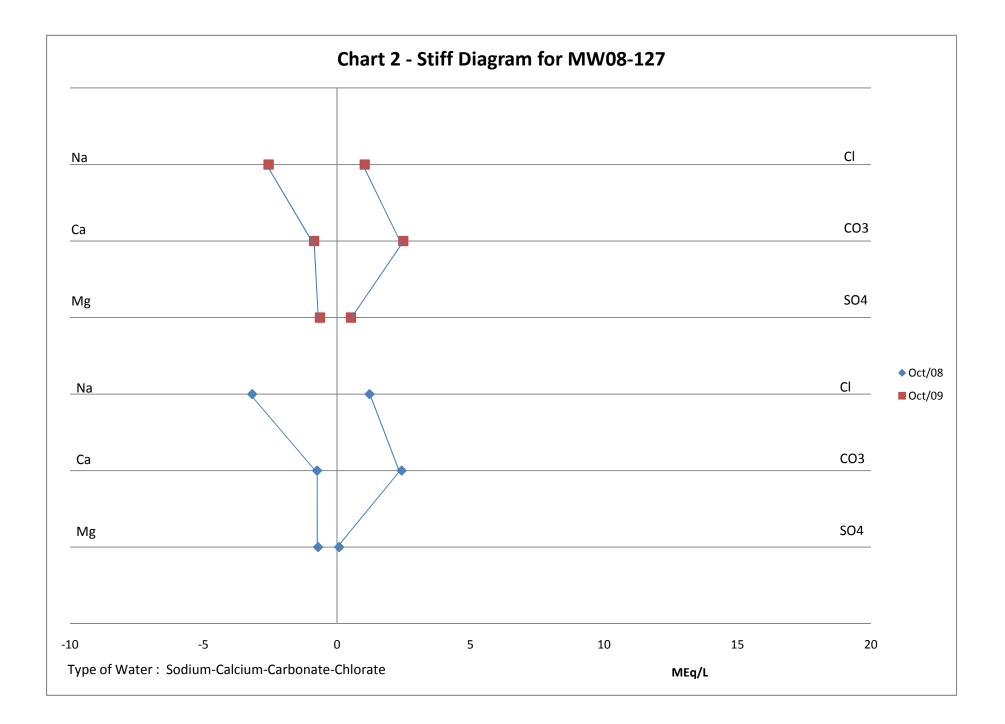
hs =

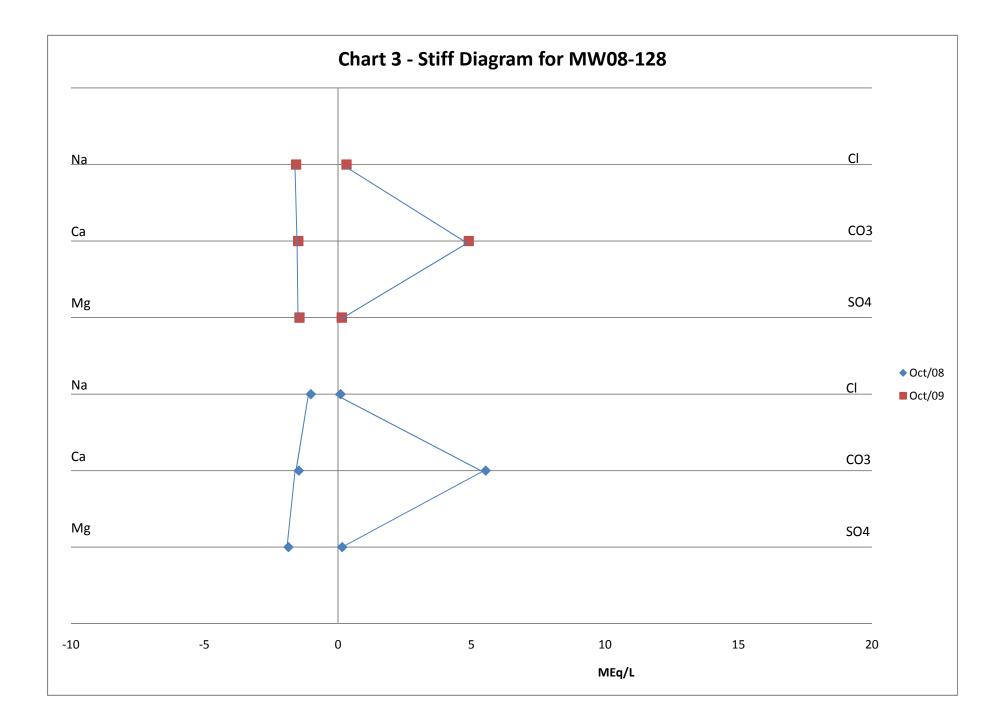
hf = frictional losses (m)

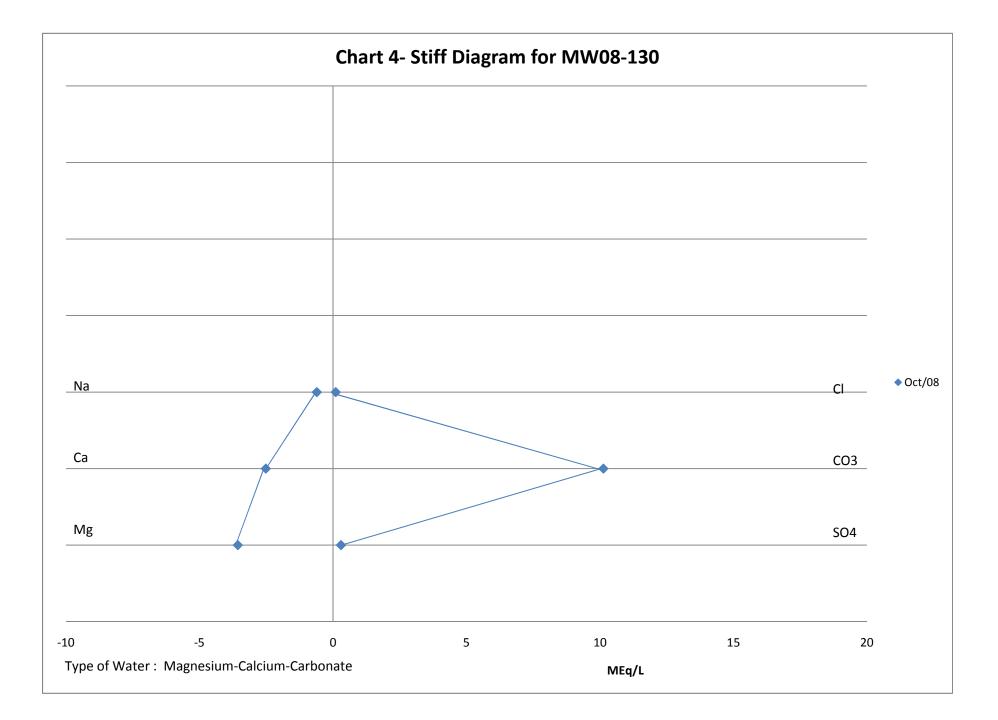
										K = T/b	b = length of test interval
Step	P (psi)	1	Pi (m)	Gal/Min	Q (m3/s)	R (m)	I	rb (m)	T (m2/d)	3	
	1	20	17.8	1.2	0.00007572		10	0.0379	3.78E-06	1.26E-06 m/s	
	2	40	31.86	2.9	0.00018299		10	0.0379	5.10E-06	1.70E-06 m/s	
	3	60	45.92	3.7	0.00023347		10	0.0379	4.51E-06	1.50E-06 m/s	
	4	80	59.98	6.4	0.00040384		10	0.0379	5.98E-06	1.99E-06 m/s	
	5	100	74.04	8	0.0005048		10	0.0379	6.05E-06	2.02E-06 m/s	
	4a	80	59.98	5.1	0.00032181		10	0.0379	4.76E-06	1.59E-06 m/s	
	3a	60	45.92	3.8	0.00023978		10	0.0379	4.64E-06	1.55E-06 m/s	

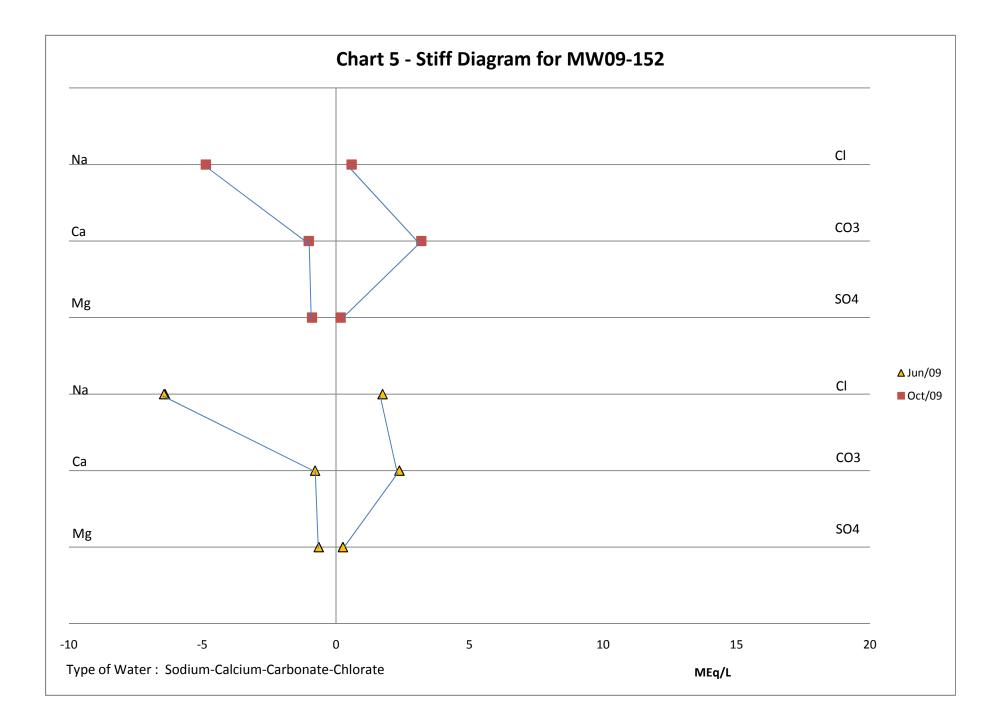
Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

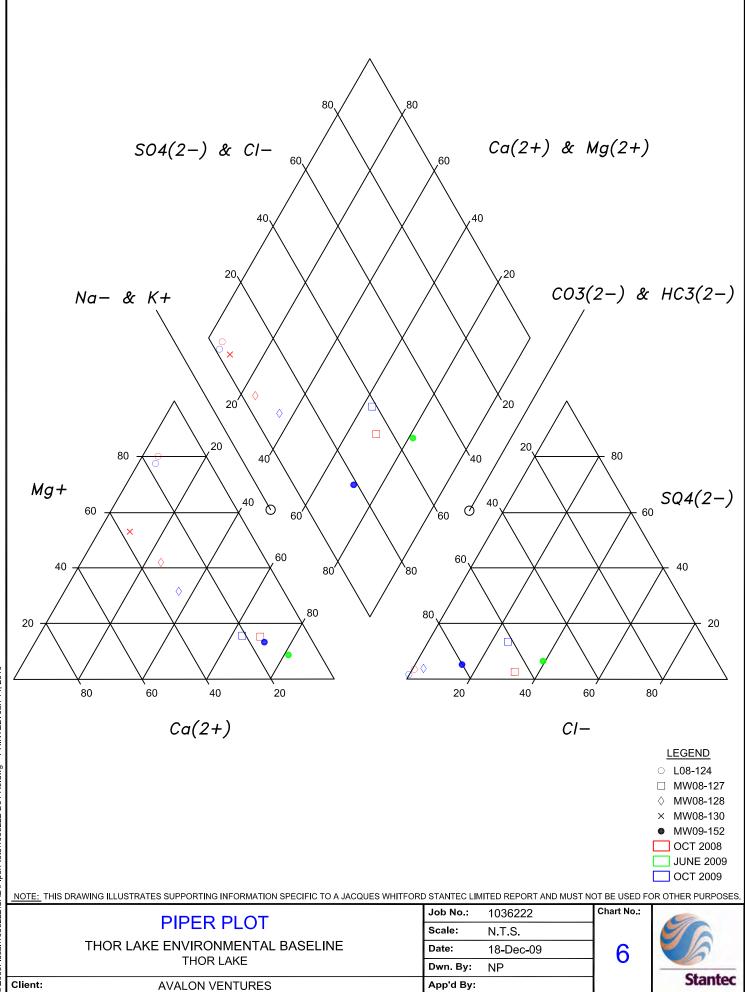

Appendix E – Hydrogeochemical Plots






Hydrogeochemical Plots


One Team. Infinite Solutions.



Jacques Whitford Stantec Limited © 2009

Thor Lake Rare Earth Metals Baseline Project Environmental Baseline Report: Volume 2 – Hydrogeology Final Interim Report

Appendix F – Laboratory Certificates

Laboratory Certificates

One Team. Infinite Solutions.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

. .

	Certificate of A	Analysis						
ATTN: JENNIFER TODD A370 DOMINION ST STHELOOP Reported On: 10-OCT-08 04:33 PM								
4370 DOMINION ST 5TH FLOOR								
BURNABY BC V5G	4L7							
Lab Work Order #:	L688290	Date Received: 26-SEP-08						
Project P.O. #:	1036222.OD / Z9100							
Job Reference:	1036222.OD / Z9100							
Legal Site Desc:	AVALON VENTURES - THOR LAKE							
CofC Numbers:	C048742							
Other Information:								
		e to high levels of metals in the samples or interferences encountered						
during	analysis.							
	Bryan Mark Account Manager	\geq						

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L688290 CONTD Ρ

ALS LABORATORY GROUP ANALYTICAL REPORT

P	AGE	2	of	6	
1	0-00	CT-08	16:	32	

	Sample ID	L688290-1	L688290-2	L688290-3	
	Description Sampled Date				
	Sampled Date Sampled Time	20-SEP-08	20-SEP-08	21-SEP-08	
	Client ID	MWL08-127	MWL08-128	MWL08-130	
Grouping	Analyte				
WATER					
Physical Tests	Conductivity (uS/cm)	878	482	557	
	Hardness (as CaCO3) (mg/L)	142	261	282	
	рН (рН)	8.15	7.59	8.10	
	Total Suspended Solids (mg/L)	33.0	49.5	14.5	
	Total Dissolved Solids (mg/L)	487	335	331	
	Turbidity (NTU)	13.0	79.3	4.05	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	287	251	266	
	Ammonia as N (mg/L)	<0.020	0.581	0.066	
	Bromide (Br) (mg/L)	0.358	<0.25	<0.050	
	Chloride (Cl) (mg/L)	108	3.6	3.48	
	Fluoride (F) (mg/L)	2.54	1.29	1.05	
	Nitrate (as N) (mg/L)	<0.0050	<0.025	5.07	
	Nitrite (as N) (mg/L)	<0.0010	0.0137	0.227	
	Total Kjeldahl Nitrogen (mg/L)	0.477	1.88	0.813	
	Ortho Phosphate as P (mg/L)	<0.0010	0.0016	<0.0010	
	Total Phosphate as P (mg/L)	0.024	0.030	0.0062	
	Sulfate (SO4) (mg/L)	1.00	4.8	14.9	
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	10.4	30.9	16.0	
Total Metals	Aluminum (Al)-Total (mg/L)	0.566	0.552	0.811	
	Antimony (Sb)-Total (mg/L)	<0.0010	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	0.0017	0.0231	0.00102	
	Barium (Ba)-Total (mg/L)	0.044	0.179	0.440	
	Beryllium (Be)-Total (mg/L)	<0.0020	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	0.67	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.000316	0.000430	0.000156	
	Calcium (Ca)-Total (mg/L)	24.3	49.1	48.3	
	Chromium (Cr)-Total (mg/L)	<0.0020	0.0013	0.0071	
	Cobalt (Co)-Total (mg/L)	<0.00060	0.00146	0.00316	
	Copper (Cu)-Total (mg/L)	0.0276	0.0033	0.0402	
	Iron (Fe)-Total (mg/L)	0.837	8.89	2.69	
	Lead (Pb)-Total (mg/L)	<0.0010	0.00253	0.00360	
	Lithium (Li)-Total (mg/L)	0.051	0.0161	0.0154	
	Magnesium (Mg)-Total (mg/L)	19.8	33.6	39.1	
	Manganese (Mn)-Total (mg/L)	0.190	0.490	0.123	
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.000020	<0.000020	
	Molybdenum (Mo)-Total (mg/L)	0.0286	0.0241	0.0559	
	Nickel (Ni)-Total (mg/L)	0.0020	0.0035	0.0108	
	Potassium (K)-Total (mg/L)	5.9	7.8	3.9	

L688290 CONTD.... PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT ^{10-OCT-08 16:32}

			1	1	1	1
	Sample ID Description	L688290-1	L688290-2	L688290-3		
	Sampled Date Sampled Time	20-SEP-08	20-SEP-08	21-SEP-08		
	Client ID	MWL08-127	MWL08-128	MWL08-130		
Grouping	Analyte					
WATER						
Total Metals	Selenium (Se)-Total (mg/L)	<0.0020	<0.0010	0.0011		
	Silver (Ag)-Total (mg/L)	0.000396	0.000332	0.00351		
	Sodium (Na)-Total (mg/L)	131	11.8	16.6		
	Thallium (TI)-Total (mg/L)	<0.00040	<0.00020	<0.00020		
	Tin (Sn)-Total (mg/L)	<0.0010	<0.00050	0.00053		
	Titanium (Ti)-Total (mg/L)	<0.010	0.010	0.016		
	Uranium (U)-Total (mg/L)	0.0132	0.0266	0.00273		
	Vanadium (V)-Total (mg/L)	<0.0020	0.0021	<0.0010		
	Zinc (Zn)-Total (mg/L)	0.0091	0.0140	0.0118		
Speciated Metals	Chromium, Hexavalent (mg/L)	<0.001	<0.001	<0.001		

Additional Comment	s for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
LK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried colourimetric method.	out using pro	cedures adapted from EPA Method 310.2 "Alka	linity". Total Alkalinity is determined using the methyl orange
LK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
			alinity". Total alkalinity is determined by potentiometric titration to om phenolphthalein alkalinity and total alkalinity values.
NIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
NIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
NIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
NIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
NIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
NIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	f Inorganic An		termination of Anions by Ion Chromatography" and EPA Method determined by this method include: bromide, chloride, fluoride,
ARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using pro	cedures adapted from APHA Method 5310 "Tot	al Organic Carbon (TOC)".
R-CR6-ED	Water	Chromium, Hexavalent (Cr +6)	APHA 3500-Cr C (Ion Chromatography)
C-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using pro	cedures adapted from APHA Method 2510 "Co	nductivity". Conductivity is determined using a conductivity

Methods Listed (if applicable): ALS Test Code Matrix Test Description Analytical Method Reference(Based On) Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. HG-TOT-CCME-CVAFS- Water Total Mercurv in Water by CVAFS (CCME) EPA 245.7 VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7). Total Metals in Water by ICPOES (CCME) MET-TOT-CCME-ICP-VA Water EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). MET-TOT-CCME-MS-VA Water Total Metals in Water by ICPMS (CCME) EPA SW-846 3005A/6020A This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A). NH3-SIE-VA Water APHA 4500-NH3 "Nitrogen (Ammonia)" Ammonia by SIE This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode. PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value" This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode PO4-DO-COL-VA Water Dissolved ortho Phosphate by Color APHA 4500-P "Phosphorous" This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate. PO4-T-COL-VA Water Total Phosphate P by Color APHA 4500-P "Phosphorous" This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate. **TDS-VA** Water Total Dissolved Solids by Gravimetric APHA 2540 C - GRAVIMETRIC This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre filter, TDS is determined by evaporating the filtrate to dryness at 180 degrees celsius. **TKN-SIE-VA** Water Total Kjeldahl Nitrogen by SIE APHA 4500-Norg (TKN) This analysis is carried out using procedures adapted from APHA Method 4500-Norg "Nitrogen (Organic)". Total kjeldahl nitrogen is determined by sample digestion at 367 celcius with analysis using an ammonia selective electrode. **TSS-VA** Water Solids by Gravimetric APHA 2540 D - GRAVIMETRIC

This analysis is carried out using procedures adapted from APHA Method 2540 "Solids". Solids are determined gravimetrically. Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, TSS is determined by drying the filter at 104 degrees celsius.

L688290 CONTD.... PAGE 5 of 6

Methods Listed (if applicable):

·	,		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
TURBIDITY-VA	Water	Turbidity by Meter	APHA 2130 "Turbidity"

This analysis is carried out using procedures adapted from APHA Method 2130 "Turbidity". Turbidity is determined by the nephelometric method.

** Laboratory Methods employed follow in-house procedures, which are generally based on nationally or internationally accepted methodologies. The last two letters of the above ALS Test Code column indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	Laboratory Definition Code	Laboratory Location
ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA	VA	ALS LABORATORY GROUP - VANCOUVER, BC, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

REFER TO BACK	RELINQUISHED BY	Ву	-						2	-	Sample #	(lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO:	PHONE:	Bunaby	ADDRESS:	CONTACT:	COMPANY:	REPORT TO:	Enviror	ALS
PAGE FOR REGIONAL	HED BY:	F se of this form the	CCHE	GUIDELINES / REGULATIONS	6			MW 1-00- 150	-	12	(This description will appear on the report)	#	FAX:				Y	SAME AS REPORT ?	04 436 3014 FAX: 604	-	ASTO DON	5	r: Jacques Whitfoud	10:	Environmental Division	
LOCATIONS AND SAM	DATE & TIME: R	ilure to complete user acknowledge		JLATIONS		1	* TKN				ppear on the report		0	E	P	L	0	ES INO IN	436 3752	-	St. STITYLOON E	-	AXKS S	77	ALS	
MPLING INFORMATION	RECEIVED BY.	ailure to complete all portions of this form may delay analysis. user acknowledges and agrees with the Terms and Conditions	QAIQC				, Ampronia All	Xp 21,00	Sept 20.08	Sept 20,08) DATE		QUOTE #:	Legal Site Description: That	PO /AFE:	JOB# 1036222.02	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2: 0	EMAIL 1: jenniler. to	PDF V EXCEL V CUS	STANDARD COTHER	REPORT FORMAT / DISTRIBUTION	www.a	CHAIN OF CUSTOD
WHITE - REPORT COPY, PIN	1 Pook Sot 26	may delay analysis. Ple erms and Conditions as s	- EDT.	SPECIAL INSTRUCTIONS /			sampled sept			Groundwater	TIME SAMPLE TYPE	(Initials): JT	Lake	low Ventures - That		00152/	FION:	RESERVED (F/P) $\rightarrow \rightarrow -$		0	todd @ lang wanhit	CUSTOM FAX	(R)	TION	www.alsenviro.com	CANADA TOUL EREF 1-800-668-9878
WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY	COND SAMPLE COND	 Please fill in this form LEGIBLY. as specified on the reverse page of the white report copy. 		HAZARDOUS			24.200	C C C C C C C C C C C C C C C C C C C	2 2 2	222	To Cr Anit TK	CV Drb TSS O-PC N	34	te CE	A	Plai It d,	r sthc)	NA AAAA	ANALYS		Or PRIORITY SERVICE (1 DAY or ASAP	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVICE REQUESTED	L 6883 J	
COPY GENF14.00	SAMPLES RECEIVED IN GOOD CONDITION YES	of the white report copy.		DETAILS						5		ARDC		2	ATE	=D 2			ANALYSIS REQUEST	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	л ASAP)	PACKS -	LT)		+ of 0	
00	ON /	2				1		U	nu			BER C								S	L				3	-

REFER TO BACK	RELINQUISHED BY	Ву	-						2	-	Sample #	(lab use only)	PHONE:		ADDRESS:	CONTACT:	COMPANY:	INVOICE TO:	PHONE:	Bunaby	ADDRESS:	CONTACT:	COMPANY:	REPORT TO:	Enviror	ALS
PAGE FOR REGIONAL	HED BY:	F se of this form the	CCHE	GUIDELINES / REGULATIONS	6			MW 1-00- 150	-	12	(This description will appear on the report)	#	FAX:				Y	SAME AS REPORT ?	04 436 3014 FAX: 604	-	ASTO DON	5	r: Jacques Whitfoud	10:	Environmental Division	
LOCATIONS AND SAM	DATE & TIME: R	ilure to complete user acknowledge		JLATIONS		1	* TKN				ppear on the report		0	E	P	L	0	ES INO II	436 3752	-	St. STITYLOON E	-	AXYS S	77	ALS	
MPLING INFORMATION	RECEIVED BY.	ailure to complete all portions of this form may delay analysis. user acknowledges and agrees with the Terms and Conditions	QAIQC				, Ampronia All	Xp 21,00	Sept 20.08	Sept 20,08) DATE		QUOTE #:	Legal Site Description: That	PO /AFE:	JOB# 1036222.02	CLIENT / PROJECT INFORMATION:	INDICATE BOTTLES: FILTERED / PRESERVED (F/P)		EMAIL 2: 0	EMAIL 1: jenniler. to	PDF V EXCEL V CUS	STANDARD COTHER	REPORT FORMAT / DISTRIBUTION	www.a	CHAIN OF CUSTOD
WHITE - REPORT COPY, PIN	1 Pook Sotal	may delay analysis. Ple erms and Conditions as s	- EDT.	SPECIAL INSTRUCTIONS /			sampled sept			Groundwater	TIME SAMPLE TYPE	(Initials): JT	Lake	low Ventures - That		00152/	FION:	RESERVED (F/P) $\rightarrow \rightarrow -$		0	todd @ lang wanhit	CUSTOM FAX	(R)	TION	www.alsenviro.com	CANADA TOUL EREF 1-800-668-9878
WHITE - REPORT COPY, PINK - FILE COPY, YELLOW - CLIENT COPY	COND SAMPLE COND	 Please fill in this form LEGIBLY. as specified on the reverse page of the white report copy. 		HAZARDOUS			24.200	C C C C C C C C C C C C C C C C C C C	2 2 2	222	To Cr Anit TK	CV Drb TSS O-PC N	34	te CE	A	Plai It d,	r sthc)	NA AAAA	ANALYS		Or PRIORITY SERVICE (1 DAY or ASAP	RUSH SERVICE (2-3 DAYS)	REGULAR SERVICE (DEFAULT)	SERVICE REQUESTED	L 6883 J	
COPY GENF14.00	SAMPLES RECEIVED IN GOOD CONDITION YES	of the white report copy.		DETAILS						5		ARDC		2	ATE	=D 2			ANALYSIS REQUEST	EMERGENCY SERVICE (<1 DAY / WEEKEND) - CONTACT ALS	л ASAP)	PACKS -	LT)		+ of 0	
00	ON /	2				1		U	nu			BER C								S	L				3	-

Part of the ALS Laboratory Group

Toll Free: 1-800-668-9878 Manitoba: 1-800-607-7555

1988 Triumph Street, Vancouver, BC V5L 1K5

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP SAMPLE RECEIPT CONFIRMATION

Company:	JACQUES WHITF	ORD AXYS LTD.
ATTN:	JENNIFER TODD	
Fax Number: Account Manager:	604-436-3752 NATASHA MARKC	VIC-MIROVIC
Job Reference: Project P.O. #: Date Sampled: Date Received: Sampled By: Workorder #:	1036222.OD / Z91 1036222.OD / Z9100 20-SEP-08 26-SEP-08 JT L688290	
Chain of Custody #:	C048742	

Sample #/SampleID/DateSampled/DateDue: L688290-1/MWL08-127/20-SEP-08/09-OCT-08

Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Total Metals in Water (CCME/BCWQG)	
	Hardness	
	Total Mercury in Water by CVAFS (CCME)	
	Total Metals in Water by ICPOES (CCME)	
	Total Metals in Water by ICPMS (CCME)	
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Water	Dissolved ortho Phosphate by Color	
Water	Total Phosphate P by Color	
Misc.	Handling/Disposal Fee	

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

Sample #	/SampleID/DateSampled/DateDue: L	688290-1/MWL08-127/20-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by SIE	
Water	Solids by Gravimetric	
Water	Turbidity by Meter	
Sample #	/SampleID/DateSampled/DateDue: L	688290-2/MWL08-128/20-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Total Metals in Water (CCME/BCWQG)	
	Hardness	
	Total Mercury in Water by CVAFS (CC	ME)
	Total Metals in Water by ICPOES (CC	ME)
	Total Metals in Water by ICPMS (CCM	IE)
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Water	Dissolved ortho Phosphate by Color	
Water	Total Phosphate P by Color	
Misc.	Handling/Disposal Fee	
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by SIE	
Water	Solids by Gravimetric	
Water	Turbidity by Meter	
Sample #	/SampleID/DateSampled/DateDue: L	688290-3/MWL08-130/21-SEP-08/09-OCT-08
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	

Water Alkalinity by Colourimetric (Automated)

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

Sample #/SampleID/DateSampled/DateDue: L688290-3/MWL08-130/21-SEP-08/09-OCT-08

Matrix	Product Description Product Due*
Water	Anions by Ion Chromatography
Water	Bromide by Ion Chromatography
	Chloride by Ion Chromatography
	Fluoride by Ion Chromatography
	Nitrite by Ion Chromatography Nitrate by Ion Chromatography
	Sulfate by Ion Chromatography
Matan	
Water	Total organic carbon by combustion
Water	Chromium, Hexavalent (Cr +6)
Water	Conductivity (Automated)
Water	Total Metals in Water (CCME/BCWQG)
	Hardness
	Total Mercury in Water by CVAFS (CCME)
	Total Metals in Water by ICPOES (CCME)
	Total Metals in Water by ICPMS (CCME)
Water	Ammonia by SIE
Water	pH by Meter (Automated)
Water	Dissolved ortho Phosphate by Color
Water	Total Phosphate P by Color
Misc.	Handling/Disposal Fee
Water	Total Dissolved Solids by Gravimetric
Water	Total Kjeldahl Nitrogen by SIE
Water	Solids by Gravimetric
Water	Turbidity by Meter
* INDICATES	ESTIMATED COMPLETION DATE OF REQUESTED PRODUCT IF DIFFERENT THAN THE ESTIMATED COMPLETION DATE.

Notice of Sub-contract Laboratory Service

Please be advised that the following tests will be subcontracted to the corresponding laboratory:

Chromium, Hexavalent (Cr +6) Subcontracted to: ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

Please contact your Account Manager immediately should you have questions or concerns regarding this arrangement. Approval of this arrangement shall be implied unless otherwise notified by you.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certifica	te of Analysis
JACQUES WHITFO	RD	
ATTN: JENNIFER	TODD	
	REET, 5TH FLOOR	Reported On: 30-OCT-08 04:38 PM
PO BOX 21 BURNABY BC V50	G 4L7	
ab Work Order #:	L694303	Date Received: 10-OCT-08
Drainat D.O. #		
Project P.O. #: Job Reference:	1036222.02./79100	
Legal Site Desc:		
CofC Numbers:	08-011347	
Other Information:		
- fie - bia - fie - fie	ld sample grab bias - where separate grab samp	torage, transportation and/or analysis of the sample; bles are processed to produce total and dissolved samples; barameters samples are produced from the same grab sample. n, please contact your ALS account manager.
	Bryan Mark Account Manager	hZ

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L694303 CONTD

ALS LABORATORY GROUP ANALYTICAL REPORT

PAGE	2	of	6
30-OCT	-08	16:	35

	Sample ID Description Sampled Date Sampled Time Client ID	L694303-1 WATER 08-OCT-08 MWL08-124	L694303-2 WATER 09-OCT-08 10:00 MWL08-127	L694303-3 WATER 08-OCT-08 MWL08-128	L694303-4 WATER 07-OCT-08 MWL08-130	
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	738	405	382	558	
	Hardness (as CaCO3) (mg/L)	469	72.6	166	304	
	рН (рН)	8.25	8.16	7.90	8.21	
	Total Suspended Solids (mg/L)	110	213	29.2	3.2	
	Total Dissolved Solids (mg/L)	422	291	258	335	
	Turbidity (NTU)	171	1150	42.2	2.69	
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	442	144	202	276	
	Ammonia as N (mg/L)	<0.020	0.024	0.610	0.070	
	Bromide (Br) (mg/L)	<0.050	<0.25	<0.25	<0.050	
	Chloride (Cl) (mg/L)	1.55	43.2	3.5	3.68	
	Fluoride (F) (mg/L)	2.41	1.37	0.97	1.04	
	Nitrate (as N) (mg/L)	0.475	<0.025	<0.025	5.55	
	Nitrite (as N) (mg/L)	0.0254	0.0079	0.0078	0.237	
	Total Kjeldahl Nitrogen (mg/L)	0.470	2.19	1.79	0.872	
	Ortho Phosphate as P (mg/L)	<0.0010	0.0087	<0.0010	<0.0010	
	Total Phosphate as P (mg/L)	<0.020	0.066	0.163	0.0044	
	Sulfate (SO4) (mg/L)	24.5	4.0	7.7	14.4	
Organic / Inorganic Carbon	Dissolved Organic Carbon (mg/L)	7.78	28.7	25.5	15.8	
	Total Organic Carbon (mg/L)	14.4	48.9	26.9	15.6	
Total Metals	Aluminum (Al)-Total (mg/L)	1.14	37.0	0.302	0.178	
	Antimony (Sb)-Total (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050	
	Arsenic (As)-Total (mg/L)	0.00067	0.0067	0.00512	0.00054	
	Barium (Ba)-Total (mg/L)	0.160	0.473	0.156	0.407	
	Beryllium (Be)-Total (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010	
	Boron (B)-Total (mg/L)	<0.10	0.33	<0.10	<0.10	
	Cadmium (Cd)-Total (mg/L)	0.000254	0.000287	0.000282	0.000060	
	Calcium (Ca)-Total (mg/L)	30.9	17.6	29.1	50.5	
	Chromium (Cr)-Total (mg/L)	0.0104	0.0489	0.0010	<0.0010	
	Cobalt (Co)-Total (mg/L)	0.00439	0.0143	0.00138	0.00349	
	Copper (Cu)-Total (mg/L)	0.0256	0.0804	0.0029	0.0272	
	Iron (Fe)-Total (mg/L)	32.1	37.4	14.5	0.303	
	Lead (Pb)-Total (mg/L)	0.00069	0.0146	0.00103	<0.00050	
	Lithium (Li)-Total (mg/L)	0.0208	0.075	0.0147	0.0126	
	Magnesium (Mg)-Total (mg/L)	94.1	17.2	22.1	43.0	
	Manganese (Mn)-Total (mg/L)	0.188	0.619	0.552	0.100	
	Mercury (Hg)-Total (mg/L)	<0.000020	<0.00010	<0.000020	<0.000020	
	Molybdenum (Mo)-Total (mg/L)	0.0215	0.0359	0.0177	0.0456	
	Nickel (Ni)-Total (mg/L)	0.0075	0.0396	0.0036	0.0115	

L694303 CONTD.... PAGE 3 of 6 30-OCT-08 16:35

ALS LABORATORY GROUP ANALYTICAL REPORT 30-OCT-08 16:35

	Sample ID Description Sampled Date Sampled Time Client ID	L694303-1 WATER 08-OCT-08 MWL08-124	L694303-2 WATER 09-OCT-08 10:00 MWL08-127	L694303-3 WATER 08-OCT-08 MWL08-128	L694303-4 WATER 07-OCT-08 MWL08-130
Grouping	Analyte				
WATER					
Total Metals	Potassium (K)-Total (mg/L)	3.9	10.5	4.1	3.1
	Selenium (Se)-Total (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Silver (Ag)-Total (mg/L)	0.00470	0.00229	0.000171	0.00377
	Sodium (Na)-Total (mg/L)	10.6	74.5	22.3	13.8
	Thallium (TI)-Total (mg/L)	<0.00020	<0.0010	<0.00020	<0.00020
	Tin (Sn)-Total (mg/L)	0.00196	<0.0025	0.00176	0.00106
	Titanium (Ti)-Total (mg/L)	0.018	0.696	0.010	< 0.010
	Uranium (U)-Total (mg/L)	0.0197	0.0035	0.00382	0.00235
	Vanadium (V)-Total (mg/L)	0.0013	0.0642	0.0012	<0.00233
	Zinc (Zn)-Total (mg/L)	0.0188	0.0987	0.0139	0.0052
Dissolved Metals	Aluminum (Al)-Dissolved (mg/L)	0.0065	15.3	0.0338	0.0077
	Antimony (Sb)-Dissolved (mg/L)	<0.00050	<0.0025	<0.00050	<0.00050
	Arsenic (As)-Dissolved (mg/L)	<0.00050	0.0027	0.00233	0.00065
	Barium (Ba)-Dissolved (mg/L)	0.084	0.257	0.143	0.401
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	<0.10	0.31	<0.10	<0.10
	Cadmium (Cd)-Dissolved (mg/L)	<0.000017	0.000206	0.000249	0.000018
	Calcium (Ca)-Dissolved (mg/L)	29.5	14.9	29.3	50.4
	Chromium (Cr)-Dissolved (mg/L)	0.0013	0.0179	<0.0010	<0.0010
	Cobalt (Co)-Dissolved (mg/L)	0.00178	0.0057	0.00126	0.00328
	Copper (Cu)-Dissolved (mg/L)	0.0046	0.0474	<0.00120	0.0182
	Iron (Fe)-Dissolved (mg/L)	0.133	8.85	10.8	< 0.030
	Lead (Pb)-Dissolved (mg/L)	<0.00050	0.0066	<0.00050	<0.00050
	Lithium (Li)-Dissolved (mg/L)	0.0194	0.043	0.0152	0.0127
	Magnesium (Mg)-Dissolved (mg/L)	96.1	8.59	22.5	43.3
	Magnese (Mn)-Dissolved (mg/L)	0.0506	0.260	0.544	0.0888
	Manganese (Mir) Disserved (mg/L) Mercury (Hg)-Dissolved (mg/L)	<0.000020	<0.00010	<0.00020	<0.000020
	Molybdenum (Mo)-Dissolved (mg/L)	0.0119	0.0345	0.0194	0.0466
	Nickel (Ni)-Dissolved (mg/L)	0.0024	0.0151	0.0027	0.0108
	Potassium (K)-Dissolved (mg/L)	3.4	6.6	4.2	3.0
	Selenium (Se)-Dissolved (mg/L)	<0.0010	<0.0050	<0.0010	<0.0010
	Silver (Ag)-Dissolved (mg/L)	<0.000020	0.00133	0.000031	<0.000020
	Sodium (Na)-Dissolved (mg/L)	10.5	72.9	23.3	13.9
	Thallium (TI)-Dissolved (mg/L)	<0.00020	<0.0010	<0.00020	<0.00020
	Tin (Sn)-Dissolved (mg/L)	<0.00050	0.0027	0.00071	0.00333
	Titanium (Ti)-Dissolved (mg/L)	<0.010	0.354	<0.010	<0.010
	Uranium (U)-Dissolved (mg/L)	0.0199	0.0027	0.00324	0.00230
	Vanadium (V)-Dissolved (mg/L)	<0.0010	0.0229	<0.0010	<0.0010
	Zinc (Zn)-Dissolved (mg/L)	<0.0050	0.0327	0.0090	0.0061

L694303 CONTD.... PAGE 4 of 6 30-OCT-08 16:35

Additional Comments	for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	licable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automate	d) APHA 310.2
This analysis is carried or colourimetric method.	ut using proc	cedures adapted from EPA Method 310.2	"Alkalinity". Total Alkalinity is determined using the methyl orange
ALK-PCT-VA	Water	Alkalinity by Auto. Titration	APHA 2320 "Alkalinity"
) "Alkalinity". Total alkalinity is determined by potentiometric titration to ed from phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 "Determination of Anions by IC
	norganic An) "Determination of Anions by Ion Chromatography" and EPA Method inely determined by this method include: bromide, chloride, fluoride,
CARBONS-DOC-VA	Water	Dissolved organic carbon by combus	tion APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
		cedures adapted from APHA Method 5310 ough a 0.45 micron membrane filter prior) "Total Organic Carbon (TOC)". Dissolved carbon (DOC) fractions are to analysis.
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried o	ut using proc	cedures adapted from APHA Method 5310) "Total Organic Carbon (TOC)".
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried of electrode.	ut using proc	cedures adapted from APHA Method 2510) "Conductivity". Conductivity is determined using a conductivity

L694303 CONTD.... PAGE 5 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)

HARDNESS-CALC-VA Water Hardness

Water

Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents.

Diss. Mercury in Water by CVAFS (CCME)

Total Mercury in Water by CVAFS (CCME)

Diss. Metals in Water by ICPOES (CCME)

VA This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by filtration (EPA Method 3005A) and involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

HG-TOT-CCME-CVAFS- Water

MET-DIS-CCME-ICP-VA Water

HG-DIS-CCME-CVAFS-

VA. This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to

reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

EPA SW-846 3005A/6010B

APHA 2340B

EPA 3005A/245.7

EPA 245.7

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-DIS-CCME-MS-VA Water

Diss. Metals in Water by ICPMS (CCME)

ME) EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method

MET-TOT-CCME-ICP-VA Water

Total Metals in Water by ICPOES (CCME)

EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

МЕТ-ТОТ-ССМЕ-М	S-VA Water

Total Metals in Water by ICPMS (CCME)

EPA SW-846 3005A/6020A

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion, using either hotblock or microwave oven, or filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

NH3-SIE-VA

6020A).

Water Ammonia by SIE

APHA 4500-NH3 "Nitrogen (Ammonia)"

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-PCT-VA

Water pH by Meter (Automated)

APHA 4500-H "pH Value"

This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

Water Dissolved ortho Phosphate by Color

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the

L694303 CONTD.... PAGE 6 of 6

ALS Test Code	Matrix	Test Description	Analy	rtical Method Reference(Based On)
phosphate (total phos	phorous) is dete	ermined after persulphate dige	solved reactive phosphorous) is determine stion of a sample. Total dissolved phospha ilter followed by persulfate digestion of the	te (total dissolved phosphorous) is
PO4-T-COL-VA	Water	Total Phosphate P by Colo	or APHA	A 4500-P "Phosphorous"
ascorbic acid colourin phosphate (total phos	netric method. D phorous) is dete	Dissolved ortho-phosphate (distermined after persulphate dige	lethod 4500-P "Phosphorus". All forms of p solved reactive phosphorous) is determine stion of a sample. Total dissolved phospha ilter followed by persulfate digestion of the	d by direct measurement. Total te (total dissolved phosphorous) is
TDS-VA	Water	Total Dissolved Solids by	Gravimetric APHA	A 2540 C - GRAVIMETRIC
			lethod 2540 "Solids". Solids are determine r, TDS is determined by evaporating the fil	
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by	SIE APHA	A 4500-Norg (TKN)
		edures adapted from APHA M analysis using an ammonia sel	lethod 4500-Norg "Nitrogen (Organic)". To ective electrode.	tal kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by	Gravimetric APHA	2540 D - GRAVIMETRIC
			lethod 2540 "Solids". Solids are determine ore filter, TSS is determined by drying the f	
TURBIDITY-VA	Water	Turbidity by Meter	APHA	A 2130 "Turbidity"
This analysis is carrie	d out using proc	edures adapted from APHA N	lethod 2130 "Turbidity". Turbidity is determ	ined by the nephelometric method.
			are generally based on nationally or internate laboratory that performed analytical ana	
Laboratory Definition	on Code La	boratory Location	Laboratory Definition Code	Laboratory Location
		S LABORATORY GROUP -		

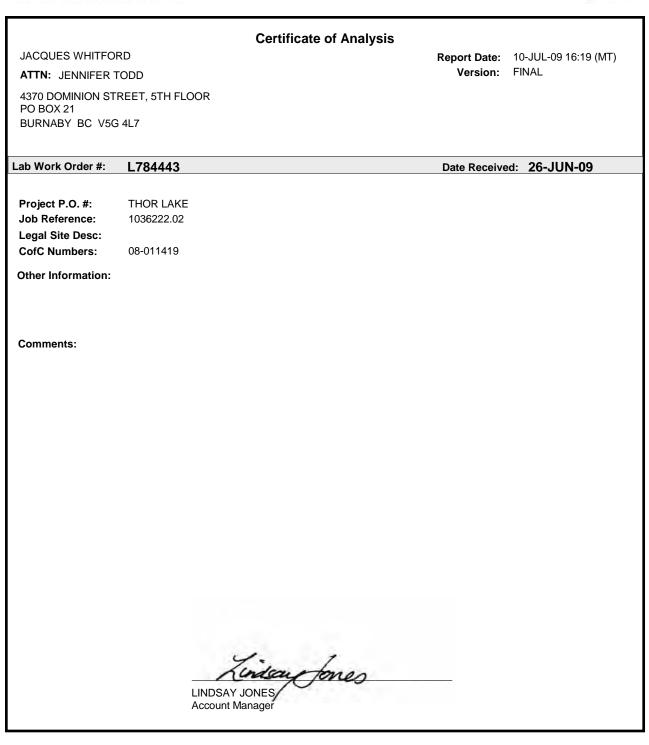
Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation


Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

347						TS				_	_	ners	iet	noO lo	er c	qui	nN					-	-	-	-	F										ront
08-011347	Page of	availability)		charge	Surcharge	ekend - Contact A		(F/P)	111		144	-		· 17	2	1	0							20	00	1-1-1								ab use only)	Observations: Yes / No 7	CIENE 18.00 Front
COC #	1303	Seprice Requested: (rush - subject to availability)	ult)	morthy (2-3 Business Days) - 50% Surcharge	Emergency (1 Business Day) - 100% Surcharge	For Emergency < 1 Day, ASAP or Weekend - Contact ALS	Analysis Request	(Indicate Filtered or Preserved, F/P)	1201	PID	11	DI VI	1750	1-2 112 10	いちょう	10	-1-4-1-	141	11	22	144			A A HON	ied Lata								white - report copy.	SHIPMENT VERIFICATION (lab use only)	Date & Time:	ENT COPY
	7694303	Seprice-Reque	(Regular (Default)	Priority (2-3 Bu	Emergency (1	· COM . For Emergency		1	10075	57	10/0	N- N-	n pa	mic	N N N N N N N N N N N N N N N N N N N	ううろ		1111	ンレンレ	1111	レントー			could no	102	1 00 -1	107	X				Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY.	By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy.		Verified by:	PINK - FILE COPY, VELLOW - CLIENT COPY
E					aggreed	hitterd u	-		129100		18.1	5				Sample Type	add - and -	GW	17		-	-		£-127	200	0 E				us Details		Please fill in this	as specified on	(A)	Terriperature:	
il Request For	0 668 9878 om	ión	Other:	, Digital	torld (a)	AN			122 02.					Sampler:		Time			Mr.Cl S	X				MW1_0%		100	-			ttions / Hazardo		elay analysis.	and Conditions	TION (lab use on	AS ICAL	·
Chain of Custody / Analytical Request Form	Canada Toll Free: 1 800 668 9878 www.alsglobal.com	Format / Distribution	7	PDF - Excel	KUNI KI	0		Project Information:	19501		Legal Site Description:					Date		octa	049/0	0c+ 8%	NO1 + 108			He: Br	TNP SP	KUM				Special Instructions / Regulations / Hazardous Details	-	this form may d	with the Terms a	HIPMENT RECEPTION (lab use only	Oct 90	WE WITH
Chain of Custo	Canada	Report Fo	Standard:	A. Select: PI	/ bode mail 1:	Email 2:	0	~	Job #:	PO / AFE:	Legal Site		Quote #:	ALS Contact:										FN X						Special Instri		all portions of	es and agrees v	S	Received by:	NO GAN
7					str.	V544L	86.875									atiôn	r on the report)				-				ř						-	ure to complete	er acknowledg		199	SAMPLING, INFOR
~	ALS)	-	- Dic -	D	FSUDIU	A DE	Fax: ON	Kes No ?					Fax:			Sample Identification	(This description will appear on the report)	24	t'	28	30		+	d in	Ţ				3.5			Failt	this form the us	(client use)	A Date & time:	BEFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING, INFORTING CON
rty Group	uc		White a	en los	Domin	X		Report ?						rder #			(This desc	1-2071	- 407	1-307	1-2011	5	Preservo "		llowknik				1.25				By the use of	ENT RELEASE	(or the	PAGE FOR ALS L
ALS Laboratory Group	Environmental Division	10	Jacque	Jenni /	9-22-6	ingla		o: same as Report ?						Lab Work Order #		0		MH !	Z MWI	2 MWI	2		J		\sum_{k}						į		V	SHIPMENT R	Sea by CC	EFER TO BACK
ALS	Environ	Report to:	Company:	Contact:	Address;	DUNG	Phone:	Invaice To:	Company	Contact:	Address:		Phone:		1	Sample	**																1	1	Haileased	P

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

L784443 CONTD.... PAGE 2 of 6 10-JUL-09 16:22

ALS LABORATORY GROUP ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L784443-1 WATER 26-JUN-09 10:00 152	L784443-2 WATER 26-JUN-09 10:00 163
Grouping	Analyte		
WATER			
Physical Tests	Conductivity (uS/cm)	717	721
	Hardness (as CaCO3) (mg/L)	71.4	71.3
	pH (pH)	8.52	8.56
	Total Suspended Solids (mg/L)	110	116
	Total Dissolved Solids (mg/L)	466	464
	Turbidity (NTU)	35.1	34.1
Anions and Nutrients	Alkalinity, Total (as CaCO3) (mg/L)	287	282
	Ammonia as N (mg/L)	0.100	0.103
	Bromide (Br) (mg/L)	0.188	0.193
	Chloride (Cl) (mg/L)	61.8	62.0
	Fluoride (F) (mg/L)	4.37	4.38
	Nitrate (as N) (mg/L)	<0.0050	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.705	0.681
	Sulfate (SO4) (mg/L)	12.6	12.6
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	9.32	8.78
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0176	0.0181
	Antimony (Sb)-Dissolved (mg/L)	0.00032	0.00029
	Arsenic (As)-Dissolved (mg/L)	0.00180	0.00174
	Barium (Ba)-Dissolved (mg/L)	0.0160	0.0164
	Beryllium (Be)-Dissolved (mg/L)	<0.0010	<0.0010
	Bismuth (Bi)-Dissolved (mg/L)	<0.0010	<0.0010
	Boron (B)-Dissolved (mg/L)	0.806	0.817
	Cadmium (Cd)-Dissolved (mg/L)	<0.00020	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	15.7	15.6
	Chromium (Cr)-Dissolved (mg/L)	<0.0030	<0.0030
	Cobalt (Co)-Dissolved (mg/L)	<0.00020	<0.00020
	Copper (Cu)-Dissolved (mg/L)	<0.00020	0.00021
	Iron (Fe)-Dissolved (mg/L)	0.083	0.093
	Lead (Pb)-Dissolved (mg/L)	<0.00010	<0.00010
	Lithium (Li)-Dissolved (mg/L)	0.063	0.061
	Magnesium (Mg)-Dissolved (mg/L)	7.79	7.83
	Magnese (Mn)-Dissolved (mg/L)	0.0255	0.0254
	Manganese (Min)-Dissolved (mg/L) Mercury (Hg)-Dissolved (mg/L)	<0.0255	<0.00050
	Melculy (Hg)-Dissolved (Hg/L) Molybdenum (Mo)-Dissolved (mg/L)	<0.000050	0.0497
	Nickel (Ni)-Dissolved (mg/L)	<0.0497	<0.0497
	Phosphorus (P)-Dissolved (mg/L)	<0.30	<0.30
	Potassium (K)-Dissolved (mg/L)	3.2	3.2
	Selenium (Se)-Dissolved (mg/L)	<0.0020	<0.0020
	Silicon (Si)-Dissolved (mg/L)	4.09	4.02

L784443 CONTD PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

10-JUL-09 16:22

	Sample ID Description Sampled Date Sampled Time Client ID	L784443-1 WATER 26-JUN-09 10:00 152	L784443-2 WATER 26-JUN-09 10:00 163		
Grouping	Analyte				
WATER					
Dissolved Metals	Silver (Ag)-Dissolved (mg/L) Sodium (Na)-Dissolved (mg/L) Strontium (Sr)-Dissolved (mg/L) Thallium (TI)-Dissolved (mg/L) Tin (Sn)-Dissolved (mg/L) Titanium (Ti)-Dissolved (mg/L) Uranium (U)-Dissolved (mg/L) Vanadium (V)-Dissolved (mg/L)	<0.000020 147 0.270 <0.00020 <0.00020 <0.010 0.00662 <0.0020	<0.000020 148 0.269 <0.00020 <0.00020 <0.010 0.00658 <0.0020		
Speciated Metals	Zinc (Zn)-Dissolved (mg/L) Hexavalent Chromium (mg/L)	<0.0020 0.0032	<0.0020 0.0015		

Additional Comment	s for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if ap	plicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-COL-VA	Water	Alkalinity by Colourimetric (Automated)	APHA 310.2
This analysis is carried colourimetric method.	out using proc	cedures adapted from EPA Method 310.2 "Alka	alinity". Total Alkalinity is determined using the methyl orange
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
This analysis is carried Conductivity" and EPA	out using proc Method 300.0	edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	Method 300.0		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	Method 300.0		Ion Chromatography with Chemical Suppression of Eluent romatography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		edures adapted from APHA Method 4110 B. ' "Determination of Inorganic Anions by Ion Ch	Ion Chromatography with Chemical Suppression of Eluent romatography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)"
This analysis is carried	out using proc	cedures adapted from APHA Method 5310 "To	tal Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried	out using proc	cedures adapted from APHA Method 5310 "To	tal Organic Carbon (TOC)".
CR-CR6-ED	Water	Chromium, Hexavalent (Cr +6)	APHA 3500-Cr C (Ion Chromatography)
EC-PCT-VA	Water	Conductivity (Automated)	APHA 2510 Auto. Conduc.
This analysis is carried electrode.	out using proc	cedures adapted from APHA Method 2510 "Co	nductivity". Conductivity is determined using a conductivity
HARDNESS-CALC-VA	Water	Hardness	APHA 2340B
Hardness is calculated	from Calcium	and Magnesium concentrations, and is expres	sed as calcium carbonate equivalents.

L784443 CONTD.... PAGE 5 of 6

ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
American Public Health States Environmental F involves a cold-oxidatio	Association, rotection Age n of the acidif	and with procedures adapted from "Test Method ncy (EPA). The procedures may involve prelimir	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United hary sample treatment by filtration (EPA Method 3005A) and reduction of the sample with stannous chloride. Instrumental 7).
MET-DIS-ICP-VA	Water	Dissolved Metals in Water by ICPOES	EPA SW-846 3005A/6010B
American Public Health	Association, rotection Age	and with procedures adapted from "Test Method ncy (EPA). The procedure involves filtration (EP	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United A Method 3005A) and analysis by inductively coupled plasma -
MET-DIS-LOW-MS-VA	Water	Dissolved Metals in Water by ICPMS(Low)	EPA SW-846 3005A/6020A
American Public Health States Environmental F	Association, rotection Age	and with procedures adapted from "Test Method	Examination of Water and Wastewater" published by the s for Evaluating Solid Waste" SW-846 published by the United sample treatment by filtration (EPA Method 3005A). hod 6020A).
NH3-SIE-VA	Water	Ammonia by SIE	APHA 4500 D NH3 NITROGEN (AMMONIA)
		uric acid preserved samples, using procedures a monia selective electrode.	dapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)".
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H "pH Value"
This analysis is carried electrode	out using proc	edures adapted from APHA Method 4500-H "pH	I Value". The pH is determined in the laboratory using a pH
PH-PCT-VA	Water	pH by Meter (Automated)	APHA 4500-H pH Value
This analysis is carried electrode	out using proc	edures adapted from APHA Method 4500-H "pF	I Value". The pH is determined in the laboratory using a pH
TDS-VA	Water	Total Dissolved Solids by Gravimetric	APHA 2540 C - GRAVIMETRIC
			Is". Solids are determined gravimetrically. Total Dissolved Solids ned by evaporating the filtrate to dryness at 180 degrees celsius.
TKN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	APHA 4500-Norg (TKN)
This analysis is carried sample digestion at 367	out using prod ' celcius with a	cedures adapted from APHA Method 4500-Norg analysis using an ammonia selective electrode.	"Nitrogen (Organic)". Total kjeldahl nitrogen is determined by
TSS-VA	Water	Total Suspended Solids by Gravimetric	APHA 2540 D - GRAVIMETRIC
			ls". Solids are determined gravimetrically. Total Suspended etermined by drying the filter at 104 degrees celsius.
		Turbidity by Meter	APHA 2130 "Turbidity"
TURBIDITY-VA	Water		idie de Trancistica in determinent les the group place stais as the set
		cedures adapted from APHA Method 2130 "Turb	laity . Turbiaity is determined by the nephelometric method.
TURBIDITY-VA This analysis is carried TURBIDITY-VA		cedures adapted from APHA Method 2130 "Turb	APHA 2130 Turbidity

L784443 CONTD.... PAGE 6 of 6

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	A	Analytical Method Reference(Based On)
Laboratory Definiti	on Code La	aboratory Location	Laboratory Definition Code	Laboratory Location
VA		S LABORATORY GROUP - NCOUVER, BC, CANADA	ED	ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

GLOSSARY OF REPORT TERMS

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in environmental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

ALS	rcharge		subje	rush		quest	ce Reg	ervic			1		195			
ALS	rcharge	% Surcha			1.	1		-		+		mat / Distributio			STANTEC	eport to:
ALS	rcharge	% Surcha	Regular (Default) Priority (2-3 Business Days) - 50% Surcharge				+	Other:	K	Standard:		1	ompany:			
ALS	ACT.					-	-	-			Digital		Select: PD		LENNIFER TODD	
ALS	and - Contact A					-	-		1 1	-110	TODAQ JACQUESU	ENNIFER. TO	Email 2		4320 DOMINION BURNABY BC V	Idress:
	For Emergency < 1 Day, ASAP or Weekend - Contact ALS Analysis Request				+			Enidi 2.	Fax:	04 436 3014	one: (.c					
	F/P)	erved, Fr		-		dicate	(Inc	-		+	ON: THOR LAKE	iect Information	Client / Pr	~~~		voice To:
	1/1/	11	1	1	1	6		0	10	-	222.02		Job #:		STANTE	
	FFF		- K		4			-		Ť	PO / AFE:				2100100	ontact:
					TURBUA	1						escription:	Legal Site I	Z 838 1W8	P.O. Box 38212	ddress: P
			N		2				5						ARTMONTH N.S	
	1 1	12	E		Inc		m		F				Quote #:	Fax:		hone:
		N Sund	ALKA	752	PH, Community,	0	TKN/N43	5	SS METAL		Sampler:		ALS Contact:		Lab Work Order # (lab Use only)	
		ANIAN	Total	Tbs	pH, G	700	TKA	CrVI	SSIC	e	Time	Date	ort)	Sample Identification This description will appear on the repo	(This des	Sample #
5		x	x	x	x	x	×	×	×		A ID: DOAN G	JUNE 26/0		52	152	and the state
5		x		x	x	X		×	×		10:00 AM G				163	Frank State
		-	~	-	-		-	-		+					NI CONTRACTOR	and the second second
	+ + +		-	-	-	-		-		+	-					and the second second
			-	-	-	-		-		+	-				17 10	The second
	+ + +	-	-	-	-	-		_		-		_			and a second sec	TRACTOR STATE
			-	_		-				-					10	-
										_					12	Maria and Colored
															12	and the second second
																12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
										1		1.00				- Linto
		-	-							+						A strand
-	+ + +		-	-		-	-	-		+						
								_		_			0		6	a marine
-					_	-				_	lations / Hazardous	ictions / Regula	Special Instri			
	1.12						BLY.	LEGI	form I	uis fe	delay analysis. Pie	his form may d	lete all portions of	Failure to comp		
		DV.	ort cor	- rep	white	the v								he use of this form the user acknowl	By the use	
a family in	use only)							CO BS	Inthese	(0)4	TION (lab use only)				SHIPMENT RELEAS	Profile and
,	Observations Yes / No ? If Yes attach		and the second	& Th	States of the second			ied b	Verifi		Time: T	Date:	Received by:	Date & Time:	CALL	Released by

Part of the ALS Laboratory Group Toll Free: 1-800-668-9878 Manitoba: 1-800-607-7555

1988 Triumph Street, Vancouver, BC V5L 1K5

Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com

ALS LABORATORY GROUP SAMPLE RECEIPT CONFIRMATION

ATTN:JENNIFER TODDFax Number:604-436-3752Account Manager:NATASHA MARKOVIC-MIROVICJob Reference:Project P.O. #:Date Sampled:26-JUN-09Date Received:26-JUN-09Sampled By:JTWorkorder #:L784443	Company:	JACQUES WHITFO)RD
Account Manager: NATASHA MARKOVIC-MIROVIC Job Reference: Project P.O. #: Date Sampled: 26-JUN-09 Date Received: 26-JUN-09 Sampled By: JT	ATTN:	JENNIFER TODD	
Job Reference: Project P.O. #: Date Sampled: 26-JUN-09 Date Received: 26-JUN-09 Sampled By: JT	Fax Number:	604-436-3752	
Project P.O. #:Date Sampled:26-JUN-09Date Received:26-JUN-09Estimated Completion Date:11-JUL-09Sampled By:JT	Account Manager:	NATASHA MARKO	VIC-MIROVIC
Date Sampled:26-JUN-09Date Received:26-JUN-09Sampled By:JT	Job Reference:		
Date Received: 26-JUN-09 Estimated Completion Date: 11-JUL-09 Sampled By: JT	Project P.O. #:		
Sampled By: JT	Date Sampled:	26-JUN-09	
	Date Received:	26-JUN-09	Estimated Completion Date: 11-JUL-09
Workorder #: L784443	Sampled By:	JT	
	Workorder #:	L784443	
Chain of Custody #: 08-011419	Chain of Custody #:	08-011419	

Sample #/SampleID/DateSampled/DateDue: L784443-1/152/26-JUN-09/11-JUL-09

-		
Matrix	Product Description	Product Due*
Water	Alkalinity by Colourimetric (Automated)	
Water	Anions by Ion Chromatography	
	Bromide by Ion Chromatography	
	Chloride by Ion Chromatography	
	Fluoride by Ion Chromatography	
	Nitrite by Ion Chromatography	
	Nitrate by Ion Chromatography	
	Sulfate by Ion Chromatography	
Water	Total organic carbon by combustion	
Water	Chromium, Hexavalent (Cr +6)	
Water	Conductivity (Automated)	
Water	Dissolved Mercury in Water by CVAFS	
Water	Diss. Metals in Water by ICPOES & ICPMS	
	Hardness	
	Dissolved Metals in Water by ICPOES	
	Dissolved Metals in Water by ICPMS(Low)	
Water	Ammonia by SIE	
Water	pH by Meter (Automated)	
Misc.	Handling/Disposal Fee	
Water	Total Dissolved Solids by Gravimetric	
Water	Total Kjeldahl Nitrogen by Auto. Colour	

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

Sample #	/SampleID/DateSampled/DateDue:	L784443-1/152/26-JUN-09/11-JUL-09	
Matrix	Product Description	Product Due*	
Water	Total Suspended Solids by Gravimetric		
Water	Turbidity by Meter		
Sample #	/SampleID/DateSampled/DateDue:	L784443-2/163/26-JUN-09/11-JUL-09	
Matrix	Product Description	Product Due*	
Water	Alkalinity by Colourimetric (Automated)		
Water	Anions by Ion Chromatography		
	Bromide by Ion Chromatography		
	Chloride by Ion Chromatography		
	Fluoride by Ion Chromatography		
	Nitrite by Ion Chromatography		
	Nitrate by Ion Chromatography		
	Sulfate by Ion Chromatography		
Water	Total organic carbon by combustion		
Water	Chromium, Hexavalent (Cr +6)		
Water	Conductivity (Automated)		
Water	Dissolved Mercury in Water by CVAFS		
Water	Diss. Metals in Water by ICPOES & ICPM	S	
	Hardness		
	Dissolved Metals in Water by ICPO	ES	
	Dissolved Metals in Water by ICPM	S(Low)	
Water	Ammonia by SIE		
Water	pH by Meter (Automated)		
Misc.	Handling/Disposal Fee		
Water	Total Dissolved Solids by Gravimetric		
Water	Total Kjeldahl Nitrogen by Auto. Colour		
Water	Total Suspended Solids by Gravimetric		
Water	Turbidity by Meter		

* INDICATES ESTIMATED COMPLETION DATE OF REQUESTED PRODUCT IF DIFFERENT THAN THE ESTIMATED COMPLETION DATE.

Notice of Sub-contract Laboratory Service

Please be advised that the following tests will be subcontracted to the corresponding laboratory:

Chromium, Hexavalent (Cr +6) Subcontracted to: ALS LABORATORY GROUP - EDMONTON, ALBERTA, CANADA

Please contact your Account Manager immediately should you have questions or concerns regarding this arrangement. Approval of this arrangement shall be implied unless otherwise notified by you.

ALS Laboratory Group strives to deliver on-time results to our clients at all times. However, there are times when, due to capacity issues or other unforeseen circumstances, we are unable to meet our expected TATs. The information above is related to a recent workorder you have submitted to our laboratory. We have also included a summary on the parameters of interest for this workorder. In the event that you have an inquiry, please refer to the Work Order # (L+6 digits) when calling your Account Manager.

IMPORTANT: The accompanying message is intended only for the use of the individual or entity to which it is addressed and may represent an attorney-client communication or otherwise contain information privileged, confidential and exempt from disclosure under applicable law. If the reader of this message is not the intended recipient, you are hereby notified that any dissemination, distribution or copying or other use of the communication is strictly prohibited. If you receive the communication in error, please notify us immediately by telephone, and return the message to us at the above address via Canadian Postal Service postage due. Thank you.

ALS	rcharge		subje	rush		quest	ce Reg	ervic			1		195			
ALS	rcharge	% Surcha			1.	1		-		+		mat / Distributio			STANTEC	eport to:
ALS	rcharge	% Surcha	Regular (Default) Priority (2-3 Business Days) - 50% Surcharge				+	Other:	K	Standard:		1	ompany:			
ALS	ACT.					-	-	-			Digital		Select: PD		LENNIFER TODD	
ALS	and - Contact A					-	-		1 1	-110	TODAQ JACQUESU	ENNIFER. TO	Email 2		4320 DOMINION BURNABY BC V	Idress:
	For Emergency < 1 Day, ASAP or Weekend - Contact ALS Analysis Request				+			Enidi 2.	Fax:	04 436 3014	one: (.c					
	F/P)	erved, Fr		-		dicate	(Inc	-		+	ON: THOR LAKE	iect Information	Client / Pr	~~~		voice To:
	1/1/	11	1	1	1	6		0	10	-	222.02		Job #:		STANTE	
	FFF		- K		4			-		Ť	PO / AFE:				2100100	ontact:
					TURBUA	1						escription:	Legal Site I	Z 838 1W8	P.O. Box 38212	ddress: P
			N		2				5						ARTMONTH N.S	
	1 1	12	E		Inc		m		F				Quote #:	Fax:		hone:
		N Sund	ALKA	752	PH, Community,	0	TKN/N43	5	SS METAL		Sampler:		ALS Contact:		Lab Work Order # (lab Use only)	
		ANIAN	Total	Tbs	pH, G	700	TKA	CrVI	SSIC	e	Time	Date	ort)	Sample Identification This description will appear on the repo	(This des	Sample #
5		x	x	x	x	x	×	×	×		A ID: DOAN G	JUNE 26/0		52	152	and the state
5		x		x	x	X		×	×		10:00 AM G				163	Frank State
		-	~	-	-		-	-		+					NI CONTRACTOR	and the second second
	+ + +		-	-	-	-		-		+	-					and the second second
			-	-	-	-		-		+	-				17 10	The second
	+ + +	-	-	-	-	-		_		-		_			and a second sec	TRACTOR STATE
			-	_		-				-					10	-
										_					12	Maria and Colored
															12	
																12 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
										1		1.00				- Linto
		-	-							+						A selected
-	+ + +		-	-		-	-	-		+						
								_		_			0		6	a marine
-					_	-				_	lations / Hazardous	ictions / Regula	Special Instri			
	1.12						BLY.	LEGI	form I	uis fe	delay analysis. Pie	his form may d	lete all portions of	Failure to comp		
		DV.	ort cor	- rep	white	the v								he use of this form the user acknowl	By the use	
a family in	use only)							CO BS	Inthese	(0)4	TION (lab use only)				SHIPMENT RELEAS	Profile and
,	Observations Yes / No ? If Yes attach		and the second	& Th	States of the second		the second se	ied b	Verifi		Time: T	Date:	Received by:	Date & Time:	CALL	Released by

ALS Laboratory Group ANALYTICAL CHEMISTRY & TESTING SERVICES

Environmental Division

	Certificate of Analysis	6
JACQUES WHITFO		Report Date: 26-OCT-09 14:03 (MT)
ATTN: JENNIFER	TODD	Version: FINAL
4370 DOMINION ST PO BOX 21 BURNABY BC V50		
Lab Work Order #:	L829174	Date Received: 13-OCT-09
Project P.O. #: Job Reference: Legal Site Desc: CofC Numbers:	THOR LAKE 1036222.02/Z9100 GROUNDWATER SAMPLES 09-020378	
Other Information:		
Comments:	Linday fores	
	Lindsay Jones Account Manager	

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN AUTHORITY OF THE LABORATORY. ALL SAMPLES WILL BE DISPOSED OF AFTER 30 DAYS FOLLOWING ANALYSIS. PLEASE CONTACT THE LAB IF YOU REQUIRE ADDITIONAL SAMPLE STORAGE TIME.

ALS Canada Ltd. Part of the ALS Laboratory Group 1988 Triumph Street, Vancouver, BC V5L 1K5 Phone: +1 604 253 4188 Fax: +1 604 253 6700 www.alsglobal.com A Campbell Brothers Limited Company

. 88

L829174 CONTD.... PAGE 2 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

26-OCT-09 14:15

	Sample ID Description	L829174-1	L829174-2	L829174-3	L829174-4	L829174-5
	Sampled Date Sampled Time	08-OCT-09	08-OCT-09	08-OCT-09	08-OCT-09	08-OCT-09
	Client ID	MW08-127	MW08-128	MW09-152	L08-124	DUP1
Grouping	Analyte					
WATER						
Physical Tests	Conductivity (uS/cm)	404	367	592	460	587
-	Hardness (as CaCO3) (mg/L)	74.5	147	95.9	365	96.5
	рН (рН)	6.86	7.41	8.17	8.10	8.24
	Total Suspended Solids (mg/L)	56.8	17.8	23.3	28.8	35.8
	Total Dissolved Solids (mg/L)	240	230	388	274	399
	Turbidity (NTU)	42.7	20.0	22.6	70.6	19.8
Anions and Nutrients	Alkalinity, Bicarbonate (as CaCO3) (mg/L)	121	173	278	265	289
	Alkalinity, Carbonate (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Hydroxide (as CaCO3) (mg/L)	<2.0	<2.0	<2.0	<2.0	<2.0
	Alkalinity, Total (as CaCO3) (mg/L)	121	173	278	265	289
	Ammonia as N (mg/L)	0.063	0.575	0.106	0.046	0.067
	Bromide (Br) (mg/L)	<0.050	<0.050	<0.050	<0.050	<0.050
	Chloride (Cl) (mg/L)	36.9	11.4	20.8	0.84	21.0
	Fluoride (F) (mg/L)	0.720	1.16	2.76	2.19	2.79
	Nitrate (as N) (mg/L)	0.0063	<0.0050	<0.0050	0.125	<0.0050
	Nitrite (as N) (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Kjeldahl Nitrogen (mg/L)	0.508	1.14	0.716	0.481	0.769
	Ortho Phosphate as P (mg/L)	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
	Total Phosphate as P (mg/L)	0.060	0.041	0.0078	0.019	0.0148
	Sulfate (SO4) (mg/L)	25.1	6.88	8.40	7.80	7.08
Organic / Inorganic Carbon	Total Organic Carbon (mg/L)	11.8	14.9	19.7	11.9	18.5
Dissolved Metals	Aluminum (AI)-Dissolved (mg/L)	0.0108	0.0084	0.0066	0.0037	0.0245
	Antimony (Sb)-Dissolved (mg/L)	0.00013	0.00011	0.00011	<0.00010	0.00012
	Arsenic (As)-Dissolved (mg/L)	0.00066	0.00404	0.00084	0.00038	0.00090
	Barium (Ba)-Dissolved (mg/L)	0.0496	0.107	0.0212	0.0874	0.0217
	Beryllium (Be)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Bismuth (Bi)-Dissolved (mg/L)	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
	Boron (B)-Dissolved (mg/L)	0.067	0.021	0.690	0.050	0.725
	Cadmium (Cd)-Dissolved (mg/L)	<0.000080	<0.00020	<0.00010	<0.000080	<0.00020
	Calcium (Ca)-Dissolved (mg/L)	17.1	29.8	20.4	26.7	20.5
	Chromium (Cr)-Dissolved (mg/L)	<0.0060	<0.0030	<0.0020	<0.0030	<0.0030
	Cobalt (Co)-Dissolved (mg/L)	0.00045	0.00043	0.00017	0.00138	0.00017
	Copper (Cu)-Dissolved (mg/L)	0.00102	0.00046	0.00040	0.00408	0.00062
	Iron (Fe)-Dissolved (mg/L)	1.09	5.96	0.098	0.324	0.094
	Lead (Pb)-Dissolved (mg/L)	0.000141	<0.000050	<0.000050	<0.000050	0.000052
	Lithium (Li)-Dissolved (mg/L)	0.0188	0.0139	0.0580	0.0189	0.0586
	Magnesium (Mg)-Dissolved (mg/L)	7.73	17.5	10.9	72.6	11.0
	Manganese (Mn)-Dissolved (mg/L)	0.222	0.336	0.0294	0.0508	0.0304
	Molybdenum (Mo)-Dissolved (mg/L)	0.0230	0.0627	0.0382	0.0281	0.0403
	Nickel (Ni)-Dissolved (mg/L)	0.00663	0.0027	0.00054	0.00208	0.00071

L829174 CONTD.... PAGE 3 of 6

ALS LABORATORY GROUP ANALYTICAL REPORT

26-OCT-09 14:15

Sampled Time Client ID mg/L) g/L) g/L)) /L) g/L) /L)	<pre>08-OCT-09 MW08-127 </pre> <0.30 2.7 <0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010 35	08-OCT-09 MW08-128 <0.30 3.0 <0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.00428 <0.0010 0.0063 <0.0010 23	08-OCT-09 MW09-152 <0.30 3.2 <0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.00764 <0.0010 0.0018 <0.0010 64	08-OCT-09 L08-124 <0.30 3.5 <0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	08-OCT-09 DUP1 <0.30 3.2 <0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031 <0.0010
g/L) g/L) , /L) g/L) /L) L) g/L)	2.7 <0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	3.0 <0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	3.2 <0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	3.5 <0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	3.2 <0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
g/L) g/L) , /L) g/L) /L) L) g/L)	2.7 <0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	3.0 <0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	3.2 <0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	3.5 <0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	3.2 <0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
g/L) g/L) , /L) g/L) /L) L) g/L)	2.7 <0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	3.0 <0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	3.2 <0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	3.5 <0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	3.2 <0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
g/L) g/L) , /L) g/L) /L) L) g/L)	2.7 <0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	3.0 <0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	3.2 <0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	3.5 <0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	3.2 <0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
g/L)) /L) g/L) /L) L) g/L)	<0.0010 1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	<0.0010 3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	<0.0010 4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	<0.0010 4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	<0.0010 4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
) /L) /L) /L) L) g/L)	1.88 <0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	3.52 0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	4.36 <0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	4.78 0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	4.37 <0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
) g/L) /L) /L) g/L)	<0.000010 58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	0.000013 36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	<0.000010 112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	0.000010 8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	<0.000010 112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
/L) g/L) /L) L) g/L)	58.8 0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	36.0 0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	112 0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	8.1 0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	112 0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
g/L) /L) L) g/L)	0.110 <0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	0.122 <0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	0.375 <0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	0.0932 <0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	0.388 <0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
/L) /L) g/L)	<0.00010 0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	<0.00010 0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	<0.00010 0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	<0.00010 0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	<0.00010 0.00022 <0.010 0.00765 <0.0010 0.0031
/L) L) g/L)	0.00036 <0.010 0.000918 <0.0010 0.0076 <0.0010	0.00048 <0.010 0.00428 <0.0010 0.0063 <0.0010	0.00022 <0.010 0.00764 <0.0010 0.0018 <0.0010	0.00014 <0.010 0.0175 <0.0010 0.0022 <0.0010	0.00022 <0.010 0.00765 <0.0010 0.0031
L) g/L)	<0.010 0.000918 <0.0010 0.0076 <0.0010	<0.010 0.00428 <0.0010 0.0063 <0.0010	<0.010 0.00764 <0.0010 0.0018 <0.0010	<0.010 0.0175 <0.0010 0.0022 <0.0010	<0.010 0.00765 <0.0010 0.0031
L) g/L)	0.000918 <0.0010 0.0076 <0.0010	0.00428 <0.0010 0.0063 <0.0010	0.00764 <0.0010 0.0018 <0.0010	0.0175 <0.0010 0.0022 <0.0010	0.00765 <0.0010 0.0031
g/L)	<0.0010 0.0076 <0.0010	<0.0010 0.0063 <0.0010	<0.0010 0.0018 <0.0010	<0.0010 0.0022 <0.0010	<0.0010 0.0031
	0.0076 <0.0010	0.0063 <0.0010	0.0018 <0.0010	0.0022 <0.0010	0.0031
_)	<0.0010	<0.0010	<0.0010	<0.0010	
·					
				94	59

L829174 CONTD.... PAGE 4 of 6 26-OCT-09 14:15

Additional Comments	for Sample	Listed:	
Samplenum	Matrix	Report Remarks	Sample Comments
Methods Listed (if app	olicable):		
ALS Test Code	Matrix	Test Description	Analytical Method Reference(Based On)
ALK-SCR-VA	Water	Alkalinity by colour or titration	EPA 310.2 OR APHA 2320
colourimetric method. OR This analysis is carried o	out using pro	cedures adapted from APHA Method 2320 "Alkalin	ity". Total Alkalinity is determined using the methyl orange nity". Total alkalinity is determined by potentiometric titration to phenolphthalein alkalinity and total alkalinity values.
ANIONS-BR-IC-VA	Water	Bromide by Ion Chromatography	APHA 4110 B.
This analysis is carried of	out using pro		Chromatography with Chemical Suppression of Eluent
ANIONS-CL-IC-VA	Water	Chloride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chrom	Chromatography with Chemical Suppression of Eluent atography".
ANIONS-F-IC-VA	Water	Fluoride by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chrom	Chromatography with Chemical Suppression of Eluent atography".
ANIONS-NO2-IC-VA	Water	Nitrite by Ion Chromatography	APHA 4110 B.
	Aethod 300.0		Chromatography with Chemical Suppression of Eluent atography". Specifically, the nitrite detection is by UV
ANIONS-NO3-IC-VA	Water	Nitrate by Ion Chromatography	APHA 4110 B.
	Aethod 300.0		Chromatography with Chemical Suppression of Eluent atography". Specifically, the nitrate detection is by UV
ANIONS-SO4-IC-VA	Water	Sulfate by Ion Chromatography	APHA 4110 B.
		cedures adapted from APHA Method 4110 B. "Ion "Determination of Inorganic Anions by Ion Chrom	Chromatography with Chemical Suppression of Eluent atography".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 "TOTAL ORGANIC CARBON (TOC)
This analysis is carried of	out using pro	cedures adapted from APHA Method 5310 "Total	Organic Carbon (TOC)".
CARBONS-TOC-VA	Water	Total organic carbon by combustion	APHA 5310 TOTAL ORGANIC CARBON (TOC)
This analysis is carried of	out using pro	cedures adapted from APHA Method 5310 "Total	Organic Carbon (TOC)".
COD-COL-VA	Water	Chemical Oxygen Demand by Colorimetric	APHA 5220 D. CHEMICAL OXYGEN DEMAND
		cedures adapted from APHA Method 5220 "Chem	ical Oxygen Demand (COD)". Chemical oxygen demand is
This analysis is carried of			APHA 3500-Cr C (Ion Chromatography)

This analysis is carried out using procedures adapted from APHA Method 2510 "Conductivity". Conductivity is determined using a conductivity electrode.

Test Description

Hardness

PAGE 5 of 6 Analytical Method Reference(Based On) APHA 2340B Hardness is calculated from Calcium and Magnesium concentrations, and is expressed as calcium carbonate equivalents. **Dissolved Metals in Water by ICPOES** EPA SW-846 3005A/6010B This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B). Dissolved Metals in Water by ICPMS(Low) EPA SW-846 3005A/6020A

EPA SW-846 3005A/6020A

APHA 4500 D. - NH3 NITROGEN (AMMONIA)

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures involves preliminary sample treatment by filtration (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - mass spectrometry (EPA Method 6020A).

Diss. Metals in Water by ICPMS (Ultra)

Ammonia by SIE

This analysis is carried out, on sulphuric acid preserved samples, using procedures adapted from APHA Method 4500-NH3 "Nitrogen (Ammonia)". Ammonia is determined using an ammonia selective electrode.

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H "pH Value" This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PH-PCT-VA Water pH by Meter (Automated) APHA 4500-H pH Value This analysis is carried out using procedures adapted from APHA Method 4500-H "pH Value". The pH is determined in the laboratory using a pH electrode

PO4-DO-COL-VA

NH3-SIE-VA

Water

Methods Listed (if applicable):

Matrix

Water

Water

Water

Water

Water

ALS Test Code

MET-DIS-ICP-VA

HARDNESS-CALC-VA

MET-DIS-LOW-MS-VA

MET-DIS-ULTRA-MS-VA Water

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-DO-COL-VA

Dissolved ortho Phosphate by Colour

Dissolved ortho Phosphate by Colour

APHA 4500-P Phosphorous

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

Water Total Phosphate P by Color APHA 4500-P "Phosphorous"

APHA 4500-P "Phosphorous"

This analysis is carried out using procedures adapted from APHA Method 4500-P "Phosphorus". All forms of phosphate are determined by the ascorbic acid colourimetric method. Dissolved ortho-phosphate (dissolved reactive phosphorous) is determined by direct measurement. Total phosphate (total phosphorous) is determined after persulphate digestion of a sample. Total dissolved phosphate (total dissolved phosphorous) is determined by filtering a sample through a 0.45 micron membrane filter followed by persulfate digestion of the filtrate.

PO4-T-COL-VA

L829174 CONTD.... PAGE 6 of 6

ALS Test Code	Matrix	Test Description	Δ	nalytical Method Reference(Based On)
	mann			
ascorbic acid colourin phosphate (total phos	netric method. E phorous) is dete	Dissolved ortho-phosphate (dissolver ermined after persulphate digestio	ved reactive phosphorous) is determ	of phosphate are determined by the nined by direct measurement. Total sphate (total dissolved phosphorous) is the filtrate.
DS-VA	Water	Total Dissolved Solids by Gra	vimetric A	PHA 2540 C - GRAVIMETRIC
				nined gravimetrically. Total Dissolved Solids ne filtrate to dryness at 180 degrees celsius.
KN-SIE-VA	Water	Total Kjeldahl Nitrogen by SIE	A	PHA 4500-Norg (TKN)
		cedures adapted from APHA Meth analysis using an ammonia selecti		. Total kjeldahl nitrogen is determined by
20.1/4	Water	Total Suspended Solids by G		
SS-VA	Valei	Total Suspended Solids by Ol		PHA 2540 D - GRAVIMETRIC
This analysis is carrie	d out using proc	cedures adapted from APHA Meth		nined gravimetrically. Total Suspended
This analysis is carrie	d out using proc	cedures adapted from APHA Meth	od 2540 "Solids". Solids are detern filter, TSS is determined by drying	nined gravimetrically. Total Suspended
This analysis is carrie Solids (TSS) are dete URBIDITY-VA	d out using proo rmined by filteri Water	cedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter	od 2540 "Solids". Solids are detern filter, TSS is determined by drying A	nined gravimetrically. Total Suspended he filter at 104 degrees celsius.
This analysis is carrie Solids (TSS) are dete URBIDITY-VA	d out using proo rmined by filteri Water	cedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter	od 2540 "Solids". Solids are detern filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is det	hined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity"
This analysis is carrie Solids (TSS) are dete URBIDITY-VA This analysis is carrie URBIDITY-VA	d out using prod rmined by filterin Water d out using prod Water	eedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter	od 2540 "Solids". Solids are detern filter, TSS is determined by drying A od 2130 "Turbidity". Turbidity is det A	hined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" ermined by the nephelometric method.
This analysis is carrie Solids (TSS) are dete URBIDITY-VA This analysis is carrie URBIDITY-VA This analysis is carrie * Laboratory Methods	d out using prod rmined by filterin Water d out using prod Water d out using prod	cedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter cedures adapted from APHA Meth cedures adapted from APHA Meth	od 2540 "Solids". Solids are detern filter, TSS is determined by drying f A od 2130 "Turbidity". Turbidity is det A od 2130 "Turbidity". Turbidity is det generally based on nationally or in	hined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" ermined by the nephelometric method. PHA 2130 Turbidity ermined by the nephelometric method.
This analysis is carrie Solids (TSS) are dete URBIDITY-VA This analysis is carrie URBIDITY-VA This analysis is carrie * Laboratory Methods	d out using proo rmined by filterin Water d out using proo Water d out using proo s employed follo	cedures adapted from APHA Meth ng a sample through a glass fibre Turbidity by Meter cedures adapted from APHA Meth Turbidity by Meter cedures adapted from APHA Meth cedures adapted from APHA Meth	od 2540 "Solids". Solids are detern filter, TSS is determined by drying f A od 2130 "Turbidity". Turbidity is det A od 2130 "Turbidity". Turbidity is det generally based on nationally or in	hined gravimetrically. Total Suspended the filter at 104 degrees celsius. PHA 2130 "Turbidity" ermined by the nephelometric method. PHA 2130 Turbidity ermined by the nephelometric method.

Surr - A surrogate is an organic compound that is similar to the target analyte(s) in chemical composition and behavior but not normally detected in enviromental samples. Prior to sample processing, samples are fortified with one or more surrogate compounds.

The reported surrogate recovery value provides a measure of method efficiency.

mg/kg (units) - unit of concentration based on mass, parts per million

mg/L (units) - unit of concentration based on volume, parts per million

N/A - Result not available. Refer to qualifier code and definition for explanation

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Although test results are generated under strict QA/QC protocols, any unsigned test reports, faxes, or emails are considered preliminary.

ALS Laboratory Group has an extensive QA/QC program where all analytical data reported is analyzed using approved referenced procedures followed by checks and reviews by senior managers and quality assurance personnel. However, since the results are obtained from chemical measurements and thus cannot be guaranteed, ALS Laboratory Group assumes no liability for the use or interpretation of the results.

GENF 18.01 Front	YELLOW - CLIENT COPY	WHITE - LABORATORY COPY YE	WHITE - LABO	NG INFORMATION	REFER TO BACK PAGE FOR ALS LOCATIONS AND SAMPLING INFORMATION	REFI
Yes / No ? If Yes add SIF		റ റ	091/10113 (156	10	a UXUX Oct 1101	d'la
Time: Observations:	Verified by: Date:	Temperature: Ve	Date: Time:	Received by:	222	Released by
SHIPMENT VERIFICATION (lab use only)	SHIPMENT VE	nly)	SHIPMENT RECEPTION (lab use on	S S	SHIPMANT RELEASE (client use)	-
- report copy.	as specified on the back page of the white - report copy.	as specified on the	s with the Terms and Conditions	nowledges and agree	By the use of this form the user acknowledges and agrees with the Terms and Conditions	
	rm LEGIBLY.	Please fill in this form LEGIBLY	Failure to complete all portions of this form may delay analysis.	omplete all portions	Failure to c	
			Atlac	EDT /0x/00	CCHE ICSR	
				Specific		
	·····					
	as industrial barries of a row of the state		na da de la companya			ganne mer a son an anna an an anna an anna an an an an
2	\ 7 7 7 7	AM M	Dct 8/09		Dup 1	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \	ЧМ К	0,18109		L08-124	
<u>م</u>	1 5 5 5 5	AN AN	00000		HW09-152	
5	7 9 9 1	dw r	0ct 8/09		UN08-128	
5	י ד ד ד	aw r	0d 8 109		11	
	- () ()		(dd-mmm-yy) (hh:mm)	e report)	(This description will appear on the report)	
	100 0D	Sample Type	Date MWDW Time			Sample #
er of Co	IVE /TK /TK	mily lod	Č		Lab Work Order # (lab use only) L8 20(174	Lab Work
To div	:N/				364.49.38 Fax: 411	Phone: 416
		Me		0N, H5# 385	Adelaide St. W, J	Address: 13)
		Sample	Groundwater		(cur 1 Cindy	Contact:
			Thor Lake		2	Company:
	2 2 2 2 1	100	PZ/ 20. 72560	Job #:	Copy of Invoice with Report? (circle) Yes or No	
Indicate Filtered or Preserved, F/P)	(Indicate Filtere	م	ject Information	CI	~	Invoice To
Analysis Request	Ana	a	v @ andersen co. c	info ¹ t cind	M USO SOIY Fax	Phone:
A R M Jab - Why or Emergency < 1 Day, ASAP or Weekend - Contact ALS	provide the second seco	wave metals- a	burly an equalor	hilling HEmail 2:	·	R
Emergency (1 Business Day) - 100% Surcharge	Emergency (1 Business	antician	ennilier, bodd las Sta	Email 1:	1370 Dominion St.	Address:
(Surcharges apply)	Priority, Date Req'd:	Fax	K Excel X Digital	Select: PDF	Jennifer Todd	Contact:
(Standard Turnaround Times))	9		1: V Other (specify):	Standard:	Startic .	Company:
Requested: (Rush subject to availability)	Service Requested: (R		Report Format / Distribution	Report		Report To
Page of			www.alsglobal.com		Environmental Division	Environmen
		9878	Canada Toli Free: 1 800 668 9878		ISTAT & LESTING SERVICES	
COC # 09 - 0 20378		uest Form	Chain of Custody / Analytical Request Form	Ch	ALS Laboratory Group	ALS Lab