

Benthic Invertebrate Baseline Report Jay Project Appendix B, Mesh Size Comparison September 2014

ANNEX XIII: APPENDIX B

MESH SIZE COMPARISON

Table of Contents

B1	INTRODUCTION	1
B2	METHODS	1
В3	RESULTS	1
B4	SUMMARY	6

Tables

Table B-1	Mesh Size Comparison for Major Taxonomic Groups for Selected Benthic Invertebrate Stations in the Jay Project Baseline Study Area, August and September 2013	2
Table B-2	Mesh Size Comparison for Chironomidae Groups for Selected Benthic Invertebrate Stations in the Jay Project Baseline Study Area, August and September 2013	

Abbreviations

Abbreviation	Definition				
Dominion Diamond Dominion Diamond Ekati Corporation					
i.e.,	that is				
Ν	number of ratios included in the calculation of summary statistics				
n/a	not applicable				

Units of Measure

Unit	Definition				
μm	micrometre				
mm	millimetre				
org/m ²	number of organisms per square metre				

B1 INTRODUCTION

Benthic invertebrate taxonomy samples collected at pelagic stations for the Dominion Diamond Ekati Corporation (Dominion Diamond) Jay Project 2013 baseline survey were field-sieved through a 250 micrometre (µm) mesh net. Samples were to be processed in the laboratory using 500 µm and 250 µm as the lowest mesh size, and results for the two mesh sizes were to be compared to aid in the selection of the appropriate mesh size for future monitoring. However, samples collected in Lac du Sauvage were mistakenly sieved through a 500 µm mesh screen in the laboratory, and the material that passed through this screen was discarded. As a result, organisms that were in the 250 to 500 µm size range were lost. Once this error was identified, the sieving procedure in the laboratory was corrected for the remaining samples. As a consequence of the laboratory error, the mesh size comparison was completed on a reduced set of samples. The following sections describe the methods used for sample processing and the results for the mesh size comparison.

B2 METHODS

The correctly processed samples were sieved through 1 millimetre (mm), 500 μ m, and 250 μ m mesh screens in the laboratory. Benthic invertebrates were identified and enumerated separately in each size fraction. The numbers of organisms retained by the 1 mm and 500 μ m screens were combined to form the 500 μ m dataset, which included all organisms larger than 500 μ m in size. The umber of organisms in each entire sample (i.e., total numbers retained by all three screens) is referred to as the 250 μ m dataset. The ratio of the number of organisms in the 250 μ m dataset divided by those in 500 μ m dataset was calculated for densities of major invertebrate groups, chironomid sub-groups, and total density, to evaluate the effect of mesh size used during sample processing on benthic invertebrate abundance.

B3 RESULTS

Differences were observed between the datasets obtained using the two different mesh sizes during sample processing. On average, mean total density was 1.8 times greater in the 250 µm dataset compared to the 500 µm dataset (Table B-1). Densities of small organisms, such as Acari, Oligochaeta, and Chironomidae were 2.0, 4.6, and 1.8 times greater, respectively, in the 250 µm dataset compared to the 500 µm dataset. Gastropoda and Bivalvia densities were the same in both datasets (ratios of 1.0), consistent with the larger size of these organisms. The greatest variability in the ratio was observed for Oligochaeta (aquatic worms), reflecting the shape of these organisms (i.e., often curled up and tangled in detritus, and easily broken into pieces during processing).

Densities in major chironomid groups also generally reflected the size of organisms in these groups (Table B-2). The typically larger Chironomini had the lowest mean ratio (1.3), indicating that most organisms in this group were retained by the 500 µm screen during sample processing. The smaller Tanytarsini and Orthocladiinae had higher ratios (2.6 and 1.9, respectively), suggesting that approximately half of the total individuals in these groups were retained by the 500 µm screen. Data are insufficient to calculate representative mean ratios for Pseudochironomini, Diamesinae, and Prodiamesinae, due their low numbers in the samples collected during this study.

							Density			
Waterbody	Station	Dataset	Units	Acari	Gastropoda	Oligochaeta	Bivalvia	Total Chironomidae	Other	Total
		500 µm	org/m ²	0	0	534	440	500	0	1,474
Lake Af1	Af-10	250 µm	org/m²	26	0	1,448	448	836	0	2,758
		Ratio	n/a	—	-	2.7	1.0	1.7	—	1.9
		500 µm	a mar / ma 2	0	0	151	22	1,897	0	2,070
	Af-1	250 µm	org/m ²	0	0	625	22	2,457	0	3,104
	-	Ratio	n/a	—	_	4.1	1.0	1.3	_	1.5
		500 µm	org/m²	0	0	69	26	552	0	647
	Af-2	250 µm		0	17	690	26	1,552	9	2,294
Duck see Lake		Ratio	n/a	—	_	10.0	1.0	2.8	_	3.5
Duchess Lake	Af-4	500 µm	org/m²	52	26	259	534	1,948	26	2,845
		250 µm		86	26	1,017	534	2,836	26	4,525
	-	Ratio	n/a	1.7	1.0	3.9	1.0	1.5	1.0	1.6
		500 µm	org/m²	9	0	34	164	1,198	9	1,414
	Af-7	250 µm		9	0	155	164	2,121	9	2,458
	-	Ratio	n/a	1.0	_	4.6	1.0	1.8	1.0	1.7
		500 µm	um	9	9	17	43	603	0	681
	E-L1-1	250 µm	org/m²	34	9	26	43	793	0	905
	ľ	Ratio	n/a	3.8	1.0	1.5	1.0	1.3		1.3
Lake E1		500 µm	a mar (ma 2	26	43	190	328	3,474	0	4,061
	E-L1-2	250 µm	org/m ²	52	43	371	336	5,966	0	6,768
	Ì	Ratio	n/a	2.0	1.0	2.0	1.0	1.7		1.7
		500 µm	a mar / ma 2	9	0	34	121	681	0	845
Lake C1	C-L1	250 µm	org/m ²	26	0	52	121	1,259	0	1,458
	Ī	Ratio	n/a	2.9	_	1.5	1.0	1.8		1.7

Table B-1Mesh Size Comparison for Major Taxonomic Groups for Selected Benthic Invertebrate Stations in the Jay Project
Baseline Study Area, August and September 2013

1.9

1.8

1.3

3.5

13

1.0

1.0

1.0

3

				Density														
Waterbody	Station	Dataset	Units	Acari	Gastropoda	Oligochaeta	Bivalvia	Total Chironomidae	Other	Total								
		500 µm	org/m2	26	0	52	422	1,052	17	1,569								
	PL-1	250 µm	org/m ²	86	0	302	431	2,534	17	3,370								
		Ratio	n/a	3.3	—	5.8	1.0	2.4	1.0	2.1								
	PL-2	500 µm	org/m2	43	0	9	216	3,259	0	3,527								
		250 µm	org/m ²	52	0	138	216	4,207	0	4,613								
		Ratio	n/a	1.2	—	15.3	1.0	1.3	_	1.3								
		500 µm	org/m²	0	0	181	95	276	0	552								
Paul Lake	PL-3	250 µm		9	0	276	95	552	0	932								
		Ratio	n/a	—	—	1.5	1.0	2.0	—	1.7								
		500 µm	org/m2	9	0	121	34	414	0	578								
	PL-4	250 µm	org/m²	9	0	241	34	578	0	862								
		Ratio	n/a	1.0	—	2.0	1.0	1.4	_	1.5								
		500 µm	org/m2	17	9	95	336	8,164	0	8,621								
	PL-5	· ora/	org/m ²	26	9	422	336	16,000	0	16,793								
						-		H										

Table B-1Mesh Size Comparison for Major Taxonomic Groups for Selected Benthic Invertebrate Stations in the Jay Project
Baseline Study Area, August and September 2013

Note: Data are mean densities calculated from individual Ekman grabs collected at each station.

1.5

2.0

1.0

3.8

9

n/a

Ratio

Mean Ratio

Minimum Ratio

Maximum Ratio

Ν

 org/m^2 = number of organisms per square metre; μm = micrometre; n/a = not applicable; — = unable to calculate ratio between total and 500 μm fractions, because no individuals were present in the 500 μm fraction (i.e., division by zero); N = number of ratios included in the calculation of summary statistics.

4.4

4.6

1.5

15.3

13

1.0

1.0

1.0

1.0

13

2.0

1.8

1.3

2.8

13

1.0

1.0

1.0

1.0

4

Table B-2	Mesh Size Comparison for Chironomidae Groups for Selected Benthic Invertebrate Stations in the Jay Project Baseline
	Study Area, August and September 2013

				Density							
Waterbody	Station	Dataset	Units	Chironomini	Pseudochironomini	Tanytarsini	Diamesinae	Orthocladiinae	Prodiamesinae	Tanypodinae	
		500 µm	a	181	0	129	0	103	0	86	
Lake Af1	Af-10	250 µm	org/m ²	198	0	397	0	121	0	121	
		Ratio	n/a	1.1	—	3.1	—	1.2	—	1.4	
		500 µm	org/m ²	129	0	108	0	1,616	0	43	
	Af-1	250 µm	org/m²	151	0	108	0	2,112	22	65	
		Ratio	n/a	1.2	—	1.0	—	1.3	—	1.5	
		500 µm	ora/m²	103	0	69	9	345	9	17	
	Af-2	250 µm	org/m ²	121	0	664	9	698	9	52	
Duchess Lake		Ratio	n/a	1.2	—	9.6	1.0	2.0	1.0	3.0	
Duchess Lake		500 µm	org/m²	405	0	888	9	379	0	267	
	Af-4	250 µm		448	0	1,310	26	741	0	310	
		Ratio	n/a	1.1	—	1.5	3.0	2.0	—	1.2	
		500 µm	org/m²	319	0	241	0	543	9	86	
	Af-7	250 µm		509	0	379	0	1,103	17	112	
		Ratio	n/a	1.6	—	1.6	—	2.0	2.0	1.3	
		500 μm org/m²	164	0	448	0	34	0	34		
Lake C1	C-L1	250 µm	olg/III-	241	0	914	0	34	0	69	
		Ratio	n/a	1.5	—	2.0	_	1.0	—	2.0	
		500 µm	org/m ²	319	0	138	0	147	0	0	
Lake E1	E-L1-1	250 µm	org/m-	336	0	267	0	190	0	0	
		Ratio	n/a	1.1	—	1.9	—	1.3	—	_	
		500 µm	org/m ²	500	0	397	0	2,483	0	95	
Lake E1	E-L1-2	250 µm	olg/III-	681	9	1,362	0	3,784	0	129	
		Ratio	n/a	1.4	—	3.4	_	1.5	—	1.4	

Table B-2	Mesh Size Comparison for Chironomidae Groups for Selected Benthic Invertebrate Stations in the Jay Project Baseline
	Study Area, August and September 2013

				Density							
Waterbody	Station	Dataset	Units	Chironomini	Pseudochironomini	Tanytarsini	Diamesinae	Orthocladiinae	Prodiamesinae	Tanypodinae	
		500 µm	org/m2	371	0	560	0	69	9	43	
	PL-1	250 µm	org/m ²	466	9	1,543	0	388	9	121	
		Ratio	n/a	1.3	—	2.8	—	5.6	1.0	2.8	
		500 µm	0.50 /002	1,431	0	638	0	1,129	0	60	
	PL-2	250 µm	org/m²	1,552	0	1,224	0	1,371	0	60	
		Ratio	n/a	1.1	—	1.9	—	1.2	—	1.0	
		500 µm	org/m ²	103	0	86	0	86	0	0	
Paul Lake	PL-3	250 µm	org/m-	138	0	164	0	250	0	0	
		Ratio	n/a	1.3	—	1.9	—	2.9	—	—	
		500 µm	org/m²	95	0	147	0	147	0	26	
	PL-4	250 µm		164	0	198	0	155	0	60	
		Ratio	n/a	1.7	—	1.4	—	1.1	—	2.3	
		500 µm	0.50 /002	638	26	5,897	0	1,371	9	224	
	PL-5	250 µm	org/m²	871	34	12,216	0	2,526	17	336	
		Ratio	n/a	1.4	1.3	2.1	—	1.8	2.0	1.5	
	Mean Ratio			1.3	1.3	2.6	2.0	1.9	1.5	1.8	
	Minimum Ratio			1.1	1.3	1.0	1.0	1.0	1.0	1.0	
1	Maximum Ratio			1.7	1.3	9.6	3.0	5.6	2.0	3.0	
	Ν			13	1	13	2	13	4	11	

Note: Data are mean densities calculated from individual Ekman grabs collected at each station.

 org/m^2 = number of organisms per square metre; μm = micrometre; n/a = not applicable; — = unable to calculate ratio between total and 500 μm fractions because no individuals were present in the 500 μm fraction (i.e., division by zero); N = number of ratios included in the calculation of summary statistics.

Benthic Invertebrate Baseline Report Jay Project Appendix B, Mesh Size Comparison September 2014

B4 SUMMARY

The results of the mesh size comparison indicate that using a 250 μ m mesh sieve in the field resulted in more representative samples for smaller invertebrates, such as Acari, Chironomidae, and Oligochaeta, which is consistent with expectations. There were no differences in numbers of larger invertebrates between the 250 μ m the 500 μ m datasets. On average, total invertebrate density was 1.8 times higher in the 250 μ m dataset compared to the 500 μ m dataset.