

Ekati Diamond Mine Air Quality Monitoring Program

Air Quality Monitoring Program

- Ekati Air Quality Monitoring 1998 2015
- 2014 AQMP
 - Components
 - Methods
 - Results

Air Quality Monitoring Program

Ekati Air Quality Monitoring 1998 – 2015

Ekati Air Quality Monitoring 1998 – 2015

1998: The Air Quality Monitoring Program (AQMP) was initiated (climate, HVAS-TSP, emission calculations, snow and vegetation studies every 3 years)

2002: AQMP report summarizing data collected 1998 to 2001

2006: AQMP report summarizing data collected 2002 to 2005 (climate, HVAS-TSP, emission calculations, snow and lichen sampling and vegetation distribution surveys)

2006: CALPUFF Air Dispersion Modelling Assessment and Review of the monitoring program

Ekati Air Quality Monitoring 1998 – 2015 (continued)

2008: Review of monitoring and changes made based on stakeholder comments (CAMB move, improvements with lichen monitoring)

2011: AQMP report summarizing data collected 2006 to 2008 (climate, HVAS-TSP, **CAM**, emission calculations, **dustfall monitoring**, snow and lichen sampling)

2011: AQMP report summarizing data collected 2009 to 2011 (climate, HVAS-TSP, CAM, emission calculations, dustfall monitoring, snow and lichen sampling)

2014: AQMP report summarizing data collected 2012 to 2014 (climate, HVAS-TSP, **Partisol**, emission calculations, snow and lichen sampling and vegetation distribution surveys)

Air Quality Monitoring Program

2014 Air Quality Monitoring Program Report

2014 Air Quality Monitoring Program Report

- Summary of 2012-2014
- Compare to historical and 2006 CALPUFF
- Components:
 - Meteorological Monitoring
 - Air emissions and greenhouse gas (GHG) calculations
 - Ambient air quality monitoring (HVAS, Partisol, CAM)

- Dustfall monitoring
- Snow chemistry monitoring
- Lichen tissue monitoring

Meteorological and Air Quality Monitoring Stations, 2012 to 2014

Meteorological Monitoring

Meteorological Monitoring

- Results are summarized for
 - Temperature
 - Precipitation (snow water equivalent and rainfall)
 - Wind Speed

Air emissions and GHG Calculations

- Diesel Fuel Consumption
 - National Pollutant Release Inventory
 - Carbon monoxide, oxides of nitrogen, sulphur dioxide, volatile
 - Organic compounds (VOCs) and particulate matter (TSP, PM₁₀ and PM_{2.5})
 - GHG Reporting program
 - Carbon dioxide equivalent (CO_{2e})

Air emissions and GHG Calculations

Emission Sources and Resulting GHG Emissions at the Ekati Mine, 2012 to 2014

	Emission Sources				Resulting GHG Emissions			
								Total
		ANFO +	Fugitive					GHG
Annual	Total Fuel ¹	Emulsion	Emission	Biomass	CO ₂	CH_4	N ₂ O	Emission
Total	(L)	(kgs)	s (tCO ₂ e)	(tCO ₂ e)	(tonnes)	(tCO ₂ e)	(tCO ₂ e)	s (tCO ₂ e)
2012	62,733,564	6,966,379	3	345	172,992	158	1,599	174,748
2013	69,871,165	9,284,526	0	331	192,996	175	1,778	194,949
2014	71,619,668	8,923,323	0	262	197,600	180	1,824	199,603

¹ Total fuel is comprised of diesel, Jet A-1, waste oil and gasoline

GHG Calculations completed according to NPRI and available onlinehttp://ec.gc.ca/inrp-npri/ http://www.ec.gc.ca/ges-ghg/default.asp?lang=En&n=040E378D-1

Air emissions and GHG Calculations

- DDEC continues to implement programs that will minimize the amount of fuel used by utilizing:
 - the Energy Smart Program initiated 2002;
 - the "No Idle" Campaign (including the onsite shuttle service), re-launched by DDEC in 2013;
 - > testing the use of biodiesel as a fuel during a 2014 pilot project; and
 - formation of an Energy and GHG Steering Committee responsible for approving and overseeing energy and GHG reduction projects and tracking performance.

Ambient air quality monitoring (HVAS, Partisol, CAM)

- Total Suspended Solids (TSP)
 - HVAS (1997 to 2013)
 - Partisol Sampler (2012 to 2014)
 - Grizzly and Cell B
 - CAMB- PM_{2.5}

Advantages of Partisol Sampler:

- Sealed from environmental conditions
- Digital programmable timers
- Digital air volume data acquisition
- Easier sample handling
- Easier performance checks, and
- Certified laboratory analysis of samples

15

Ambient air quality monitoring (HVAS, Partisol, CAM)

• The Northwest Territories Ambient Air Quality Standard for 24 hour TSP concentration is 120 $\mu g/m^3$

Year	Sample Station	Number of Samples	Maximum [TSP] 24 hour (μg/m³)	Minimum [TSP] 24 hour (μg/m³)	Arithmetic Mean [TSP] 24 hour (μg/m³)	Windy Fugit Dus	Day - of ive y st sed
2012	TSP-2	47 (12)	18.9	0.6	6.0	4.6	0
	TSP-3	44 (10)	145.6	0.9	11.8	6.1	
	Grizzly	11 (5)	15.2	2.0	5.6	4.5	0
	Cell B	7 (8)	32.3	2.7	10.2	6 - Visi	hle
2013	TSP-2	20 (7)	33.5	Tuktoyaktuk, p Inuvik	Paul atuk	Smo	oke
	TSP-3	22 (5)	51.8	Fort McPherson	d Hope	(Wild	fires)
	Grizzly	47 (14)	52.1	Yukon	it and a second se		
	Cell B	57 (3)	31.9	the state	Fort on the solution	5.1	0
2014	Grizzly	55 (5)	183.6	1.4	19.2	9.5	2
	Cell B	54 (6)	93.7	2.2	13.5	7.8	0

• 2014 TSP and $PM_{2.5}$

 Shaded date ranges indicate consecutive days with visible daytime smoke recorded by Ekati Airport.

CAM Results

Monthly maximum values for hourly and daily mean concentrations of NO₂, NO, NO_x,

CAM Results

Monthly maximum values for hourly and daily mean concentrations of SO₂

Ambient air quality monitoring (HVAS, Partisol, CAM)

CAM Results

Monthly maximum values for hourly and daily mean concentrations of TSP and PM_{2.5}

Improvements in 2014

- Replacement of the problematic HVAS units with more reliable Partisol air samplers
- Using an external certified laboratory to perform filter weighing, and correcting TSP and PM_{2.5} data collected from the CAM station

Dustfall monitoring

- 2012- Fox WRSA stations
- 2014- Misery Haul Road
- Samples analyzed for soluble and insoluble particulate, ammonia, chloride, nitrate, sulphate, and total metals
- Calculate acid deposition

Dustfall monitoring

Fox Haul Road and Fox Pit Waste Rock

Dustfall monitoring

Misery Haul Road

Dustfall monitoring

Dustfall Measured at Airstrip, LLCF and Background Monitoring Stations

AIR-P125

AIR-P162

AIR-P280

LLCE-PA

LLCF-PB

AQ-49

AQ-54

Dustfall monitoring

Acid Deposition

Maximums:

- 836 eq/ha/yr, from LLCF-PA between mid-June and mid September 2014
- 392 eq/ha/yr from FOX-U30 between June and mid-September 2012

Jurisdictions					
Province	Median (eq/ha/yr)	5th Percentile (eq/ha/yr)			
Newfoundland	572	247			
Nova Scotia	817	277			
Prince Edward Island	2,063	715			
New Brunswick	1,169	559			
Quebec	519	358			
Ontario	548	388			
Total	559	358			

Established Critical Loads for Soil in Canadian

Alberta PAI load standard of 250 eq/ha/yr

Ekati non-background median: 173 eq/ha/yr

Ekati background ranged from 58 to 140 eq/ha/yr

Dustfall Monitoring

Dust Suppression 2012 to 2014

- Road watering
- DL-10
- EK-35 (airstrip only)
- Established Speed Limits

Dustfall Monitoring

- 2015 Pilot Study: EnviroKleen[®] as an alternative dust suppressant on the Misery Road
 - 5 dustfall monitoring stations
 - Motion trigger camers
- Results will be circulated
 Fall 2015

Snow chemistry monitoring

- Collected between March 25 and April 12
- Three separate snow samples were collected using a Mt. Rose sampler
- Three samples were then homogenised and analyzedvariable list same as the AEMP water quality list

2014 AQMP Snow and Lichen Sampling Locations

30

Snow chemistry monitoring

Total Suspended Solids

Snow chemistry monitoring

Total Aluminum

Snow chemistry monitoring

2014 Comparison to Historical

- TSS generally lower when compared to 2008 and 2011
- Metals generally similar between years (2008 and 2011)
- Nitrate, ammonia, and sulphate loadings similar between years (2008 and 2011)

Snow chemistry monitoring

2014 Comparison to Historical

- TSS generally lower when compared to 2008 and 2011
- Metals generally similar between years (2008 and 2011)

Snow chemistry monitoring

Nitrate, ammonia, and sulphate loadings:

- Similar trends with elevated loadings at close proximity to mining activity
- Generally below Snare Rapids (background)
- In agreement with CALPUFF and similar results to 2008 and 2011 loadings

- **1.** Is there a relationship between distance from the mine site and the concentration of elements in *Flavocetraria cucullata*?
- 2. Is there a difference in element concentrations in co-located *Flavocetraria cucullata* between years (2008, 2011 and 2014)?
- 3. Is there a relationship between dustfall and snow melt water with the lichen and soil sample collection areas?

- In conjunction with snow core sampling
- 39 Air Quality (AQ) lichen plots
- Soil samples were collected at 19 random AQ sites
- Road dust: two from the Misery Haul Road and one from the Dike B Road

Lichen Species Collected: Flavocetraria cucullata Peltigera (mainly) rufescens

- 1. Is there a relationship between distance from the mine site and the concentration of elements in *Flavocetraria cucullata*?
- Most enhancements occurred within 10 to 30 km from the mine site
- Tends to decline with distance from the mine site
- Highest concentrations generally occurred within 1 km of roads
- Example: Aluminum

- 2. Is there a difference in element concentrations in co-located *Flavocetraria cucullata* between years (2008, 2011 and 2014)?
 - Al, Cr, Pb, and Na declined
 - As, Cd, Ca, Fe, Mg, Ni, N, V, Zn fluctuated
 - All 2014 concentrations were low
 - Most elements are below Arctic background levels at 30 km from the mine.

- 3. Is there a relationship between dustfall and snow melt water with the lichen and soil sample collection areas?
- No general relationship with dustfall or soil samples
- Typically correlated well with snow core results

Air Quality Monitoring Program

Questions?

Air Quality Monitoring Program

Linking Air Quality to Other Environmental Programs

Linking Air Quality to Other Environmental Programs

Thank -you