Ekati Diamond Mine

2014 Aquatic Effects Monitoring Program Part 3 - Statistical Report

Volume II Pigeon-Fay and Upper Exeter Watershed

Dominion Diamond Ekati Corporation

EKATI DIAMOND MINE

2014 Aquatic Effects Monitoring Program Part 3 - Statistical Report

March 2015

Project #0211136-0017

Citation:

ERM. 2015. *Ekati Diamond Mine:* 2014 Aquatic Effects Monitoring Program Part 3 - Statistical Report. Prepared for Dominion Diamond Ekati Corporation by ERM Consultants Canada Ltd.: Yellowknife, Northwest Territories.

ERM

5120 49th Street, Suite 201 Yellowknife, NT Canada X1A 1P8 T: (867) 920-2090 F: (867) 920-2015

ERM prepared this report for the sole and exclusive benefit of, and use by, Dominion Diamond Ekati Corporation. Notwithstanding delivery of this report by ERM or Dominion Diamond Ekati Corporation to any third party, any copy of this report provided to a third party is provided for informational purposes only, without the right to rely upon the report.

Table of Contents

Table of Contents				i	
1.	Koala	a Waters	shed and	Lac de Gras	1-1
	1.1	Water	1-1		
		1.1.1	General	Physical Variables and Anions	1-1
			1.1.1.1	рН	1-1
			1.1.1.2	Total Alkalinity	1-19
			1.1.1.3	Water Hardness	1-37
			1.1.1.4	Chloride	1-55
			1.1.1.5	Sulphate	1-70
			1.1.1.6	Potassium	1-88
		1.1.2	Nutrient	s	1-106
			1.1.2.1	Total Ammonia-N	1-106
			1.1.2.2	Nitrite-N	1-123
			1.1.2.3	Nitrate-N	1-138
			1.1.2.4	Total Phosphate-P	1-154
			1.1.2.5	Total Organic Carbon	1-172
		1.1.3	Metals		1-190
			1.1.3.1	Total Antimony	1-190
			1.1.3.2	Total Arsenic	1-205
			1.1.3.3	Total Barium	1-223
			1.1.3.4	Total Boron	1-241
			1.1.3.5	Total Cadmium	1-259
			1.1.3.6	Total Molybdenum	1-268
			1.1.3.7	Total Nickel	1-283
			1.1.3.8	Total Selenium	1-301
			1.1.3.9	Total Strontium	1-316
			1.1.3.10	Total Uranium	1-334
			1.1.3.11	Total Vanadium	1-352

1.2	Sedim	nent Qual	ity	1-367
	1.2.1	Nutrient	ts	1-367
		1.2.1.1	Total Organic Carbon	1-367
		1.2.1.2	Available Phosphorus	1-373
		1.2.1.3	Total Nitrogen	1-379
	1.2.2	Metals		1-385
		1.2.2.1	Total Antimony	1-385
		1.2.2.2	Total Arsenic	1-387
		1.2.2.3	Total Cadmium	1-393
		1.2.2.4	Total Molybdenum	1-399
		1.2.2.5	Total Nickel	1-404
		1.2.2.6	Total Phosphorus	1-410
		1.2.2.7	Total Selenium	1-415
		1.2.2.8	Total Strontium	1-420
1.3	Phyto	plankton		1-422
	1.3.1	Chlorop	hyll-a	1-422
	1.3.2	Density		1-428
1.4	Zoopla	ankton		1-434
	1.4.1	Biomas	S	1-434
	1.4.2	Density		1-440
1.5	Lake	Benthos		1-446
	1.5.1	Density		1-446
1.6	Stream	m Bentho	S	1-452
	1.6.1	Density		1-452
King	-Cujo W	atershed	l and Lac du Sauvage	2-1
2.1	Water	Quality		2-1
	2.1.1	Genera	I Physical Variables and Anions	2-1
		2.1.1.1	рН	2-1
		2.1.1.2	Total Alkalinity	2-18
		2.1.1.3	Water Hardness	2-36
		2.1.1.4	Chloride	2-54
		2.1.1.5	Sulphate	2-66

2.

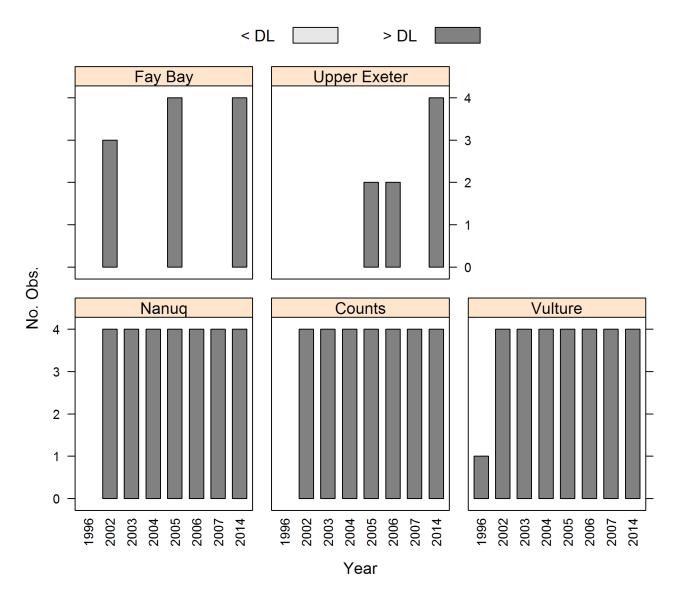
		2.1.1.6	Potassium	2-84
	2.1.2	Nutrients	2-101	
		2.1.2.1	Total Ammonia-N	2-101
		2.1.2.2	Nitrite-N	2-116
		2.1.2.3	Nitrate-N	2-122
		2.1.2.4	Total Phosphate-P	2-137
		2.1.2.5	Total Organic Carbon	2-152
	2.1.3	Metals		2-169
		2.1.3.1	Total Antimony	2-169
		2.1.3.2	Total Arsenic	2-179
		2.1.3.3	Total Barium	2-196
		2.1.3.4	Total Boron	2-212
		2.1.3.5	Total Cadmium	2-227
		2.1.3.6	Total Copper	2-233
		2.1.3.7	Total Molybdenum	2-249
		2.1.3.8	Total Nickel	2-262
		2.1.3.9	Total Selenium	2-280
		2.1.3.10	Total Strontium	2-292
		2.1.3.11	Total Uranium	2-309
		2.1.3.12	Total Vanadium	2-325
2.2	Sedim	ent Qualit	У	2-336
	2.2.1	Nutrients	3	2-336
		2.2.1.1	Total Organic Carbon	2-336
		2.2.1.2	Available Phosphorus	2-342
		2.2.1.3	Total Nitrogen	2-348
	2.2.2	Metals		2-354
		2.2.2.1	Total Antimony	2-354
		2.2.2.2	Total Arsenic	2-356
		2.2.2.3	Total Cadmium	2-361
		2.2.2.4	Total Copper	2-363
		2.2.2.5	Total Molybdenum	2-368
		2.2.2.6	Total Nickel	2-370

			2.2.2.7	Total Phosphorus	2-376
			2.2.2.8	Total Selenium	2-382
			2.2.2.9	Total Strontium	2-388
	2.3	Phyto	plankton		2-390
		2.3.1	Chlorop	hyll-a	2-390
		2.3.2	Density		2-395
	2.4	Zoopla	ankton		2-401
		2.4.1	Biomass	S	2-401
		2.4.2	Density		2-406
	2.5	Lake I	Benthos		2-411
		2.5.1	Density		2-411
	2.6	Stream	m Bentho	S	2-417
		2.6.1	Density		2-417
3.	Pige	on-Fay a	and Uppe	er Exeter Watershed	3-1
	3.1	Water	Quality		3-1
		3.1.1	General	Physical Variables and Anions	3-1
			3.1.1.1	рН	3-1
			3.1.1.2	Total Alkalinity	3-26
			3.1.1.3	Water Hardness	3-54
			3.1.1.4	Chloride	3-79
			3.1.1.5	Sulphate	3-95
			3.1.1.6	Potassium	3-120
			3.1.1.7	TSS	3-145
		3.1.2	Nutrient	S	3-154
			3.1.2.1	Total Ammonia-N	3-154
			3.1.2.2	Nitrite-N	3-176
			3.1.2.3	Nitrate-N	3-185
			3.1.2.4	Total Phosphate-P	3-207
			3.1.2.5	Total Organic Carbon	3-234
		3.1.3	Metals		3-257
			3.1.3.1	Total Antimony	3-257
			3.1.3.2	Total Arsenic	3-266

		3.1.3.3	Total Barium	3-291
		3.1.3.4	Total Boron	3-316
		3.1.3.5	Total Cadmium	3-325
		3.1.3.6	Total Molybdenum	3-334
		3.1.3.7	Total Nickel	3-343
		3.1.3.8	Total Selenium	3-368
		3.1.3.9	Total Strontium	3-377
		3.1.3.10	Total Uranium	3-402
		3.1.3.11	Total Vanadium	3-423
3.2	Sedim	ent Qualit	ty	3-439
	3.2.1	Nutrients	5	3-439
		3.2.1.1	Total Organic Carbon	3-439
		3.2.1.2	Available Phosphorus	3-448
		3.2.1.3	Total Nitrogen	3-457
	3.2.2	Metals		3-466
		3.2.2.1	Total Antimony	3-466
		3.2.2.2	Total Arsenic	3-469
		3.2.2.3	Total Cadmium	3-478
		3.2.2.4	Total Molybdenum	3-485
		3.2.2.5	Total Nickel	3-488
		3.2.2.6	Total Phosphorus	3-497
		3.2.2.7	Total Selenium	3-506
		3.2.2.8	Total Strontium	3-515
3.3	Phyto	olankton		3-518
	3.3.1	Chlorop	nyll-a	3-518
	3.3.2	Density		3-527

3. Pigeon-Fay and Upper Exeter Watershed

EKATI DIAMOND MINE


2014 Aquatic Effects Monitoring Program Part 3 - Statistical Report

Analysis of Winter pH Values in Lakes of the Pigeon-Fay and Upper Exeter Watershed

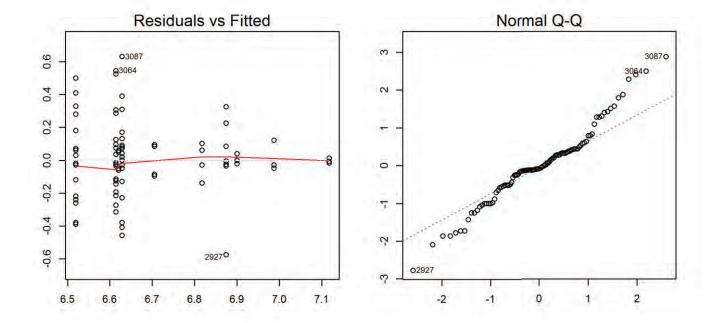
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

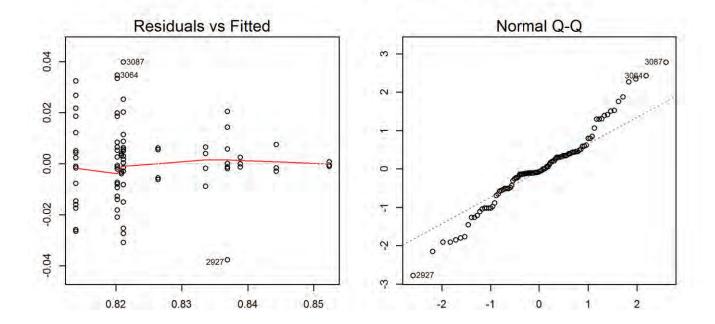
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

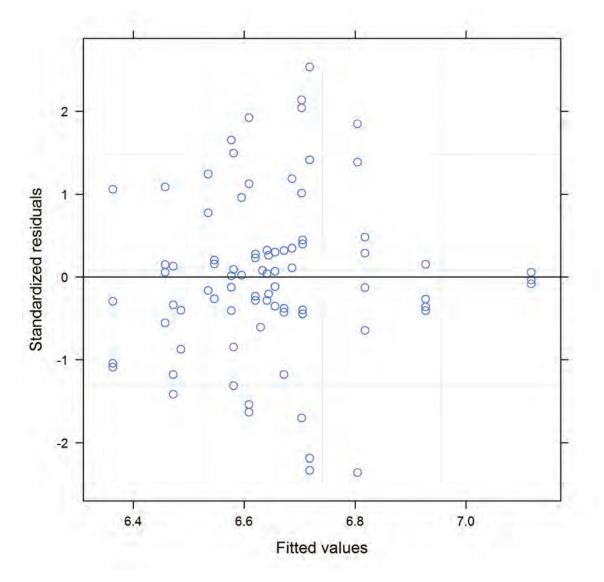
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.22	0.34	0.28
Log-10	0.01	0.34	0.28

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	26.54	-4.27		
LME	10	22.03	-1.01	6.51	0.01

Conclusion:

The most appropriate model for pH at the Fay Bay monitoring site was the LME with a year term for interannual variation (p = 0.011).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	82	24063	<.0001
##	site	3	82	7	0.0003
##	period	1	6	2	0.2520
##	<pre>site:period</pre>	3	82	1	0.2214

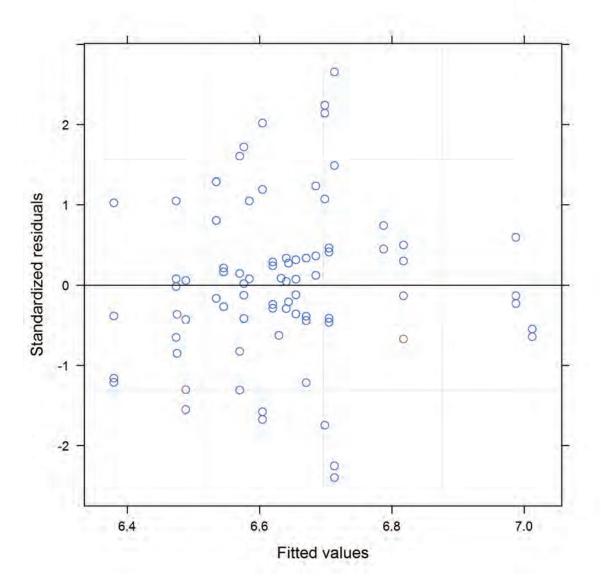
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.27	-0.62	0.08	not sig.
Counts	0.02	-0.34	0.38	not sig.
Vulture	-0.2	-0.55	0.15	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

pH at the Fay Bay site were not significantly (p = 0.221) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

M	odel	D.F.	AIC	log(Like.)	L. Ratio	р
GI	'S	9	20.13	-1.07		
LN	ΙE	10	15.46	2.27	6.67	0.01

Conclusion:

The most appropriate model for pH at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p = 0.01).

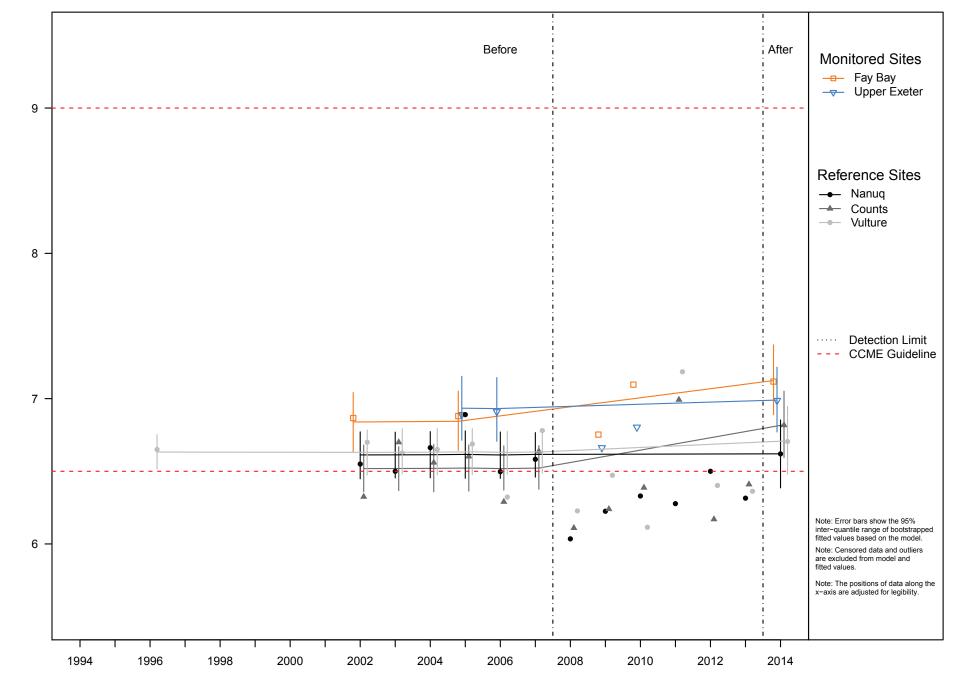
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	26601	<.0001
##	site	3	79	6	0.0009
##	period	1	6	1	0.3586
##	<pre>site:period</pre>	3	79	1	0.2764

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.05	-0.44	0.32	not sig.
Counts	0.24	-0.13	0.6	not sig.
Vulture	0.02	-0.36	0.38	not sig.

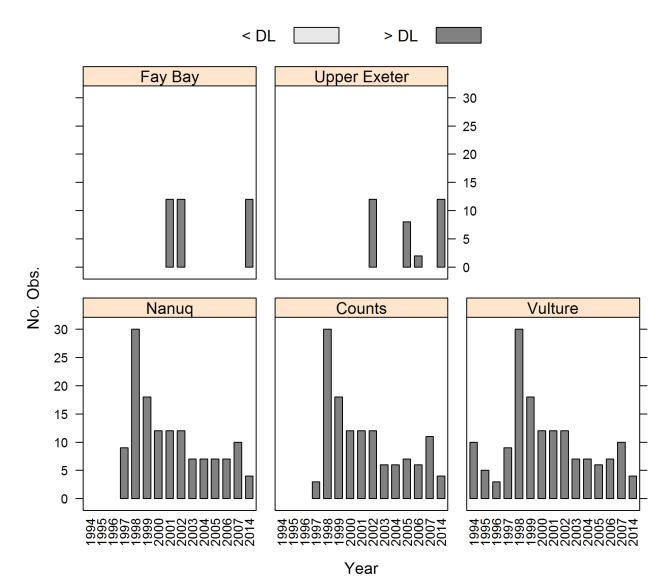

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

pH at the Upper Exeter site were not significantly (p = 0.276) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer pH Values in Lakes of the Pigeon-Fay and Upper Exeter Watershed

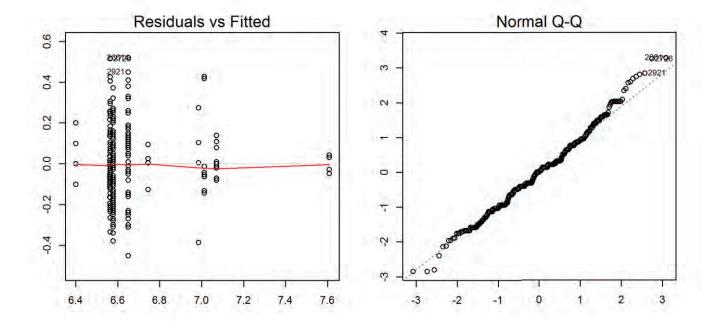
January 21, 2014

1 Censored Data

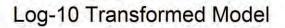
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

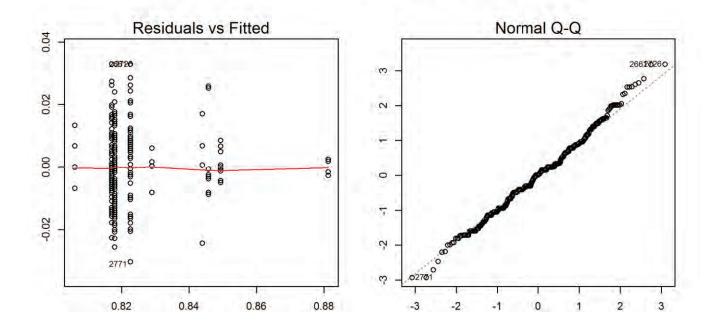
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

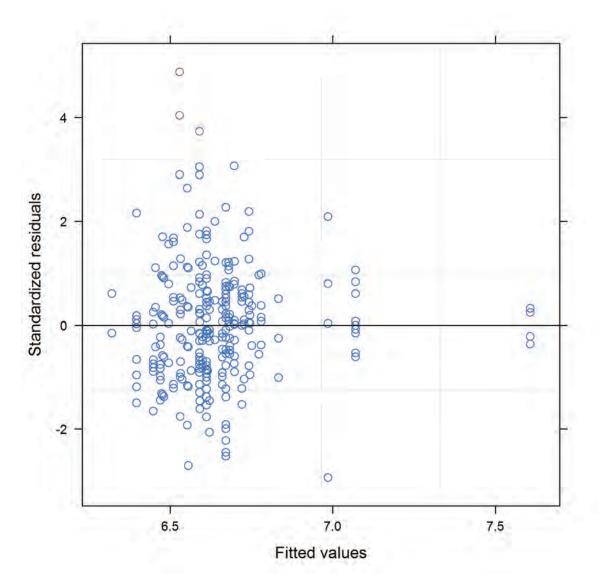
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.16	0.47	0.46
Log-10	0.01	0.46	0.45

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р	
GLS	9	-326.88	172.44			
LME	10	-458.21	239.1	133.33	0	

Conclusion:

The most appropriate model for pH at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	429	45339	<.0001
##	site	3	429	22	<.0001
##	period	1	13	20	6e-04
##	<pre>site:period</pre>	3	429	26	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.46	-0.62	-0.3	sig.
Counts	0.32	0.16	0.48	sig.
Vulture	-0.24	-0.4	-0.08	sig.

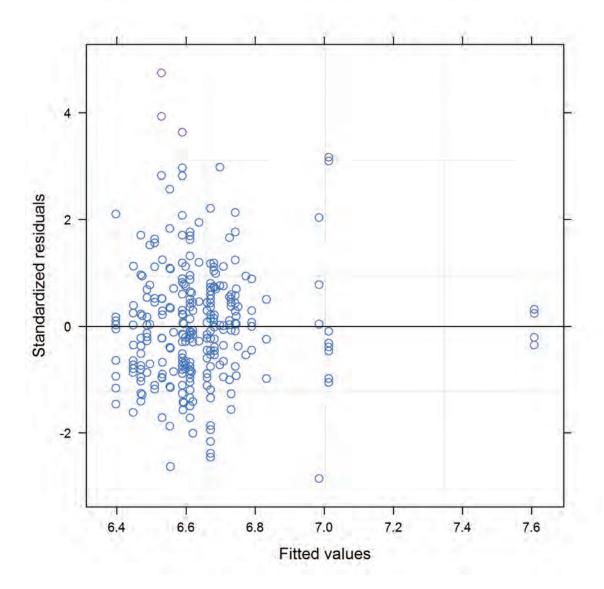
A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

pH concentrations at the Fay Bay site were significantly (p < 0.0001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:


 Model
 D.F.
 AIC
 log(Like.)
 L. Ratio
 p

 GLS
 9
 -306.22
 162.11

 LME
 10
 -432.15
 226.07
 127.93
 0

Conclusion:

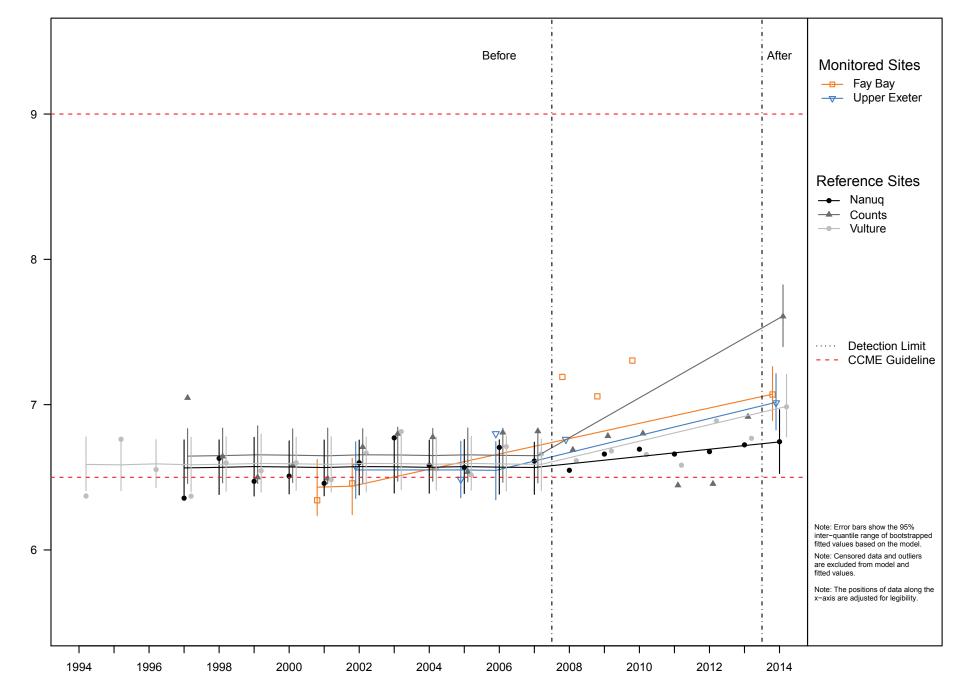
The most appropriate model for pH at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	427	44200	<.0001
##	site	3	427	16	<.0001
##	period	1	13	15	0.0018
##	<pre>site:period</pre>	3	427	23	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.29	-0.46	-0.11	sig.
Counts	0.49	0.32	0.66	sig.
Vulture	-0.07	-0.24	0.1	not sig.

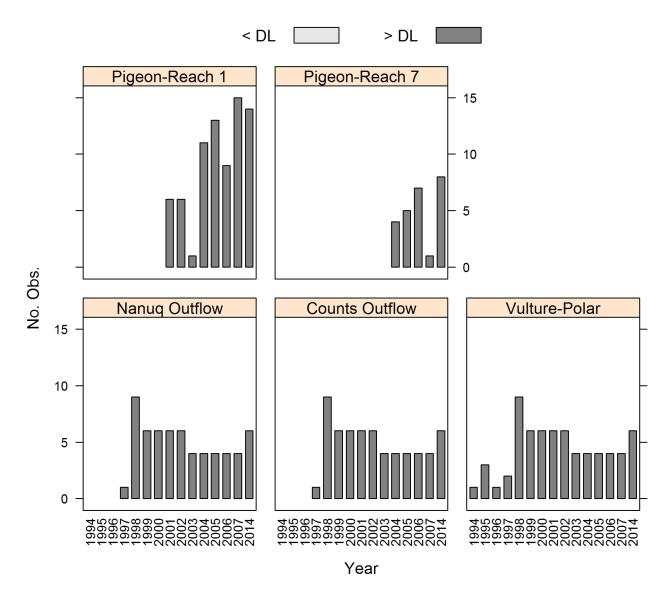

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

pH at the Upper Exeter site were significantly (p < 0.0001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer pH Values in Streams of the Pigeon-Fay and Upper Exeter Watershed

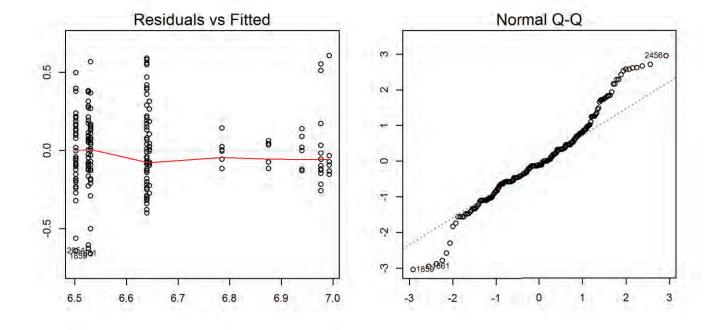
January 21, 2014

1 Censored Data

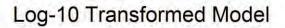
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

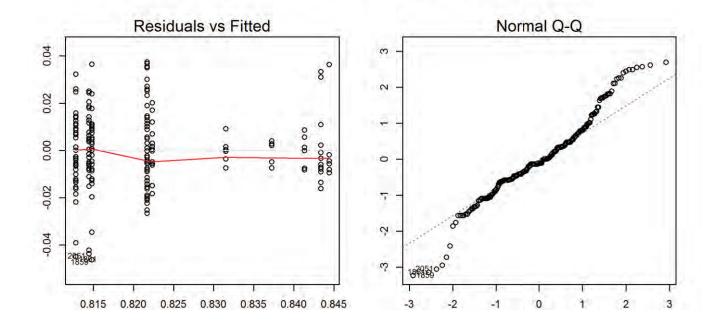
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
2064 Pigeon-Reach 1 2004 July summer
2110 Pigeon-Reach 1 2005 September summer

3 Initial Model Fit

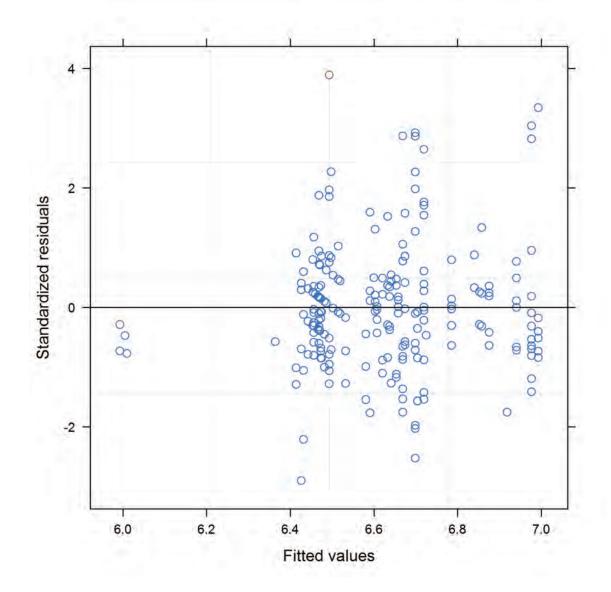
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.22	0.3	0.28
Log-10	0.01	0.3	0.28

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-1.11	11.56		
LME	12	-69	46.5	69.89	1.11×10 ⁻¹⁶

Conclusion:

The most appropriate model for pH at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

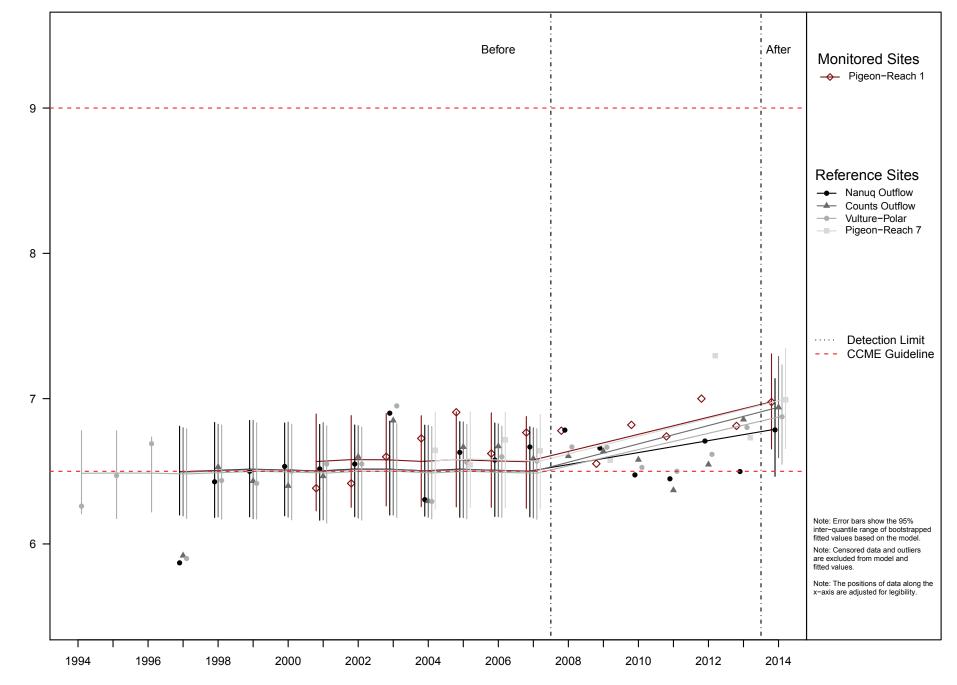
Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	261	14208	<.0001
##	site	4	261	2	0.044
##	period	1	13	3	0.088
##	<pre>site:period</pre>	4	261	1	0.619

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.13	-0.32	0.05	not sig.
Counts Outflow	0.03	-0.16	0.22	not sig.
Vulture-Polar	-0.02	-0.21	0.16	not sig.
Pigeon-Reach 7	0.01	-0.18	0.19	not sig.

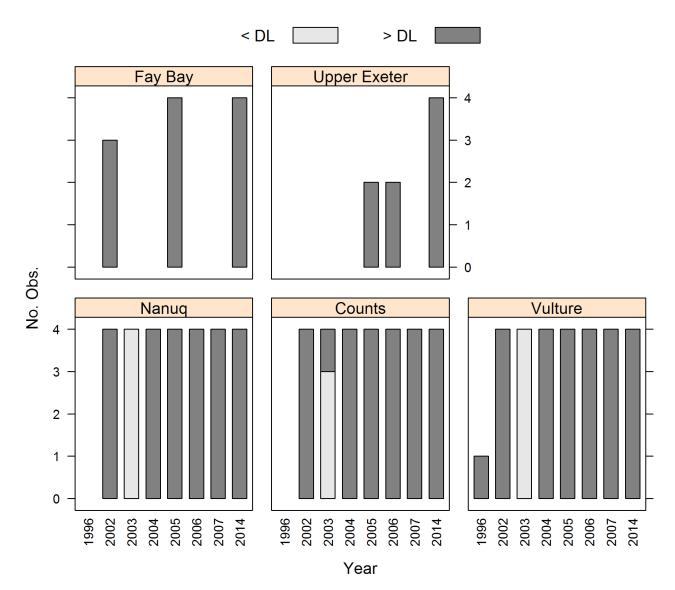

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

pH at the Pigeon-Reach 1 site were not significantly (p = 0.619) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Alkalinity Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

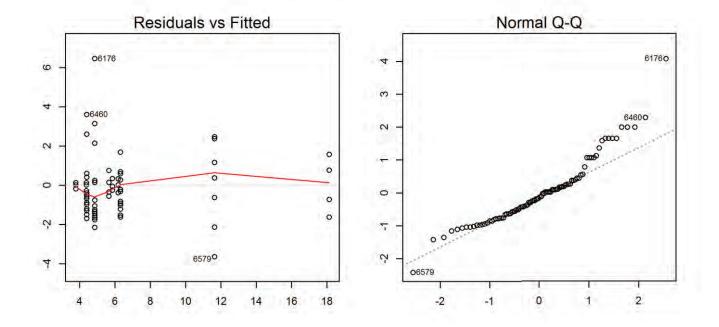
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

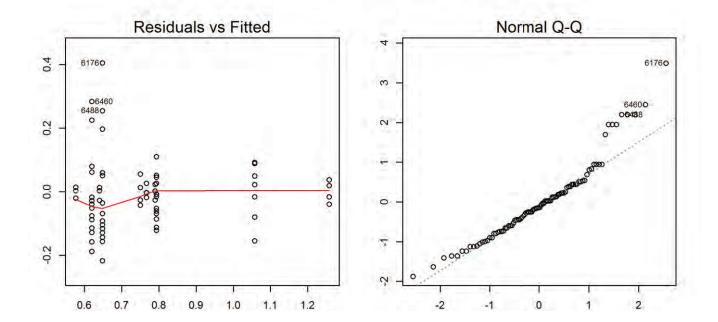
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
##
          site year month season
## 6504 Counts 2003 April winter
## 6505 Counts 2003 April winter
## 6506 Counts 2003 April winter
## 6507 Counts 2003 April winter
## 6514 Nanuq 2003 April winter
         Nanug 2003 April winter
## 6515
## 6516
         Nanuq 2003 April winter
## 6517
         Nanuq 2003 April winter
## 6525 Vulture 2003 April winter
## 6526 Vulture 2003 April winter
## 6527 Vulture 2003 April winter
## 6528 Vulture 2003 April winter
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

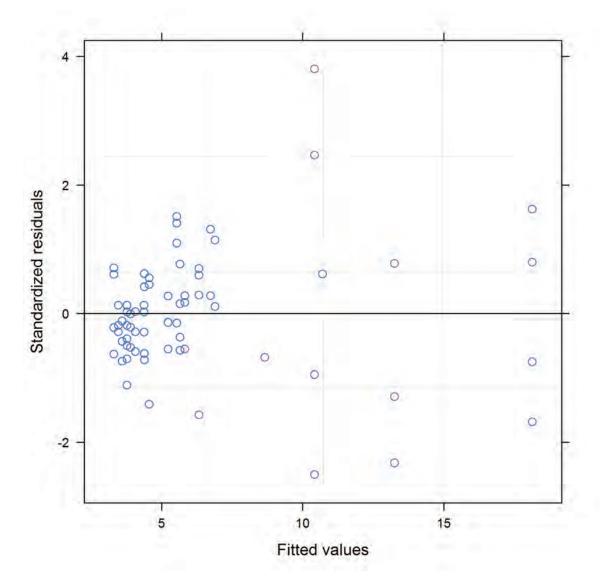
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.62	0.81	0.79
Log-10	0.12	0.68	0.65

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	329.31	-155.66		
LME	10	268.36	-124.18	62.95	2.11×10 ⁻¹⁵

Conclusion:

The most appropriate model for Total Alkalinity at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	71	38	<.0001
##	site	3	71	239	<.0001
##	period	1	5	0	0.99
##	site:period	3	71	41	<.0001

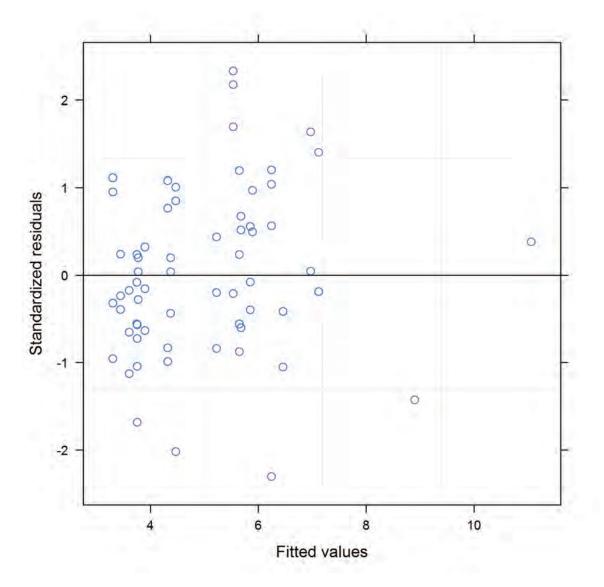
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-7.84	-9.43	-6.26	sig.
Counts	-7.89	-9.44	-6.31	sig.
Vulture	-7.4	-9.02	-5.77	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total alkalinity concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	306.22	-144.11		
LME	10	201.12	-90.56	107.1	0

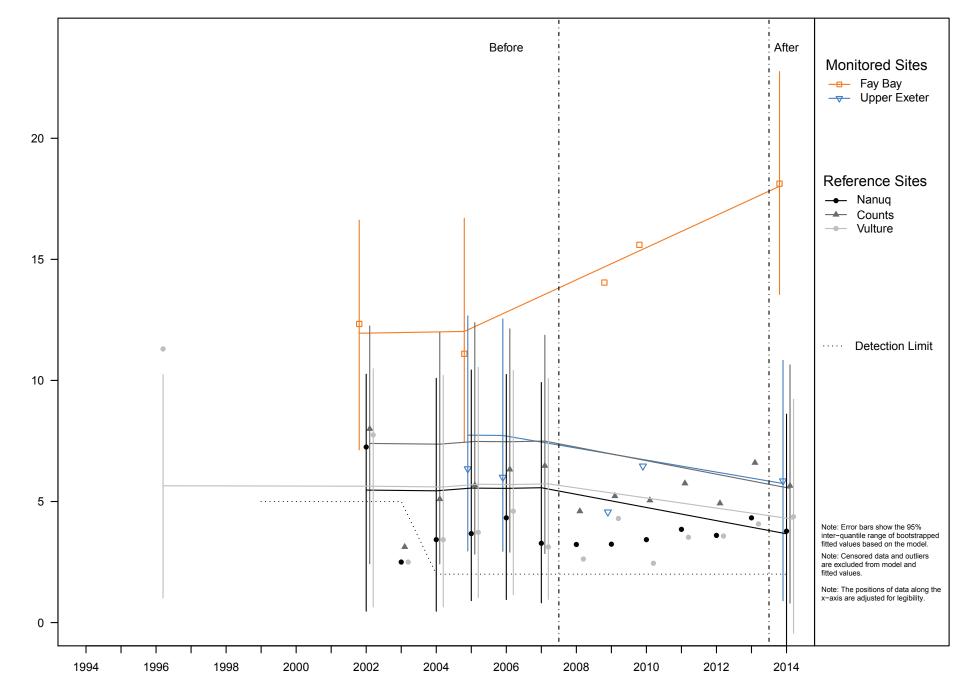
Conclusion:

The most appropriate model for Total Alkalinity at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	68	28	<.0001
##	site	3	68	55	<.0001
##	period	1	5	0	0.64
##	<pre>site:period</pre>	3	68	0	0.69

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.06	-1.08	1.22	not sig.
Counts	0.01	-1.13	1.13	not sig.
Vulture	0.52	-0.61	1.63	not sig.

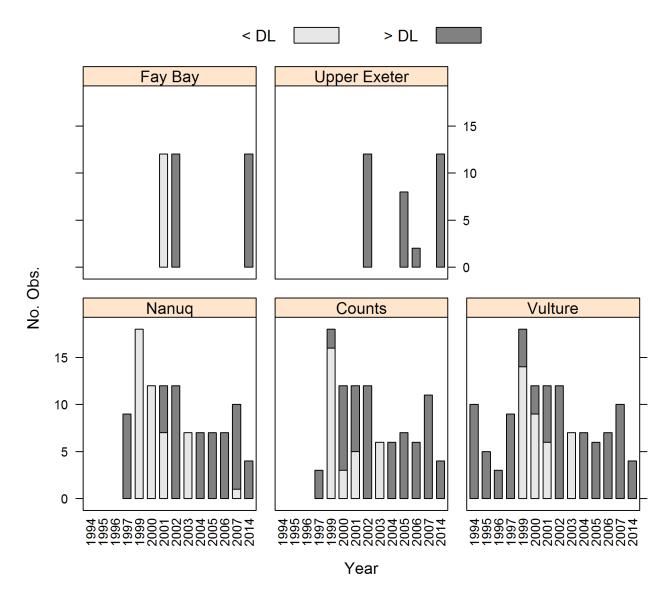

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total alkalinity concentrations at the Upper Exeter site were not significantly (p = 0.693) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Alkalinity Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

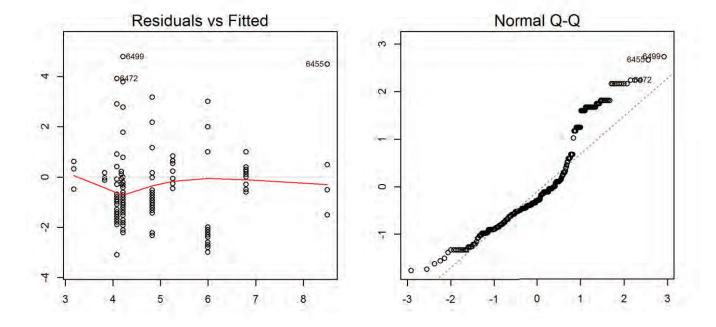
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

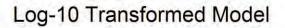
The following observations were excluded:

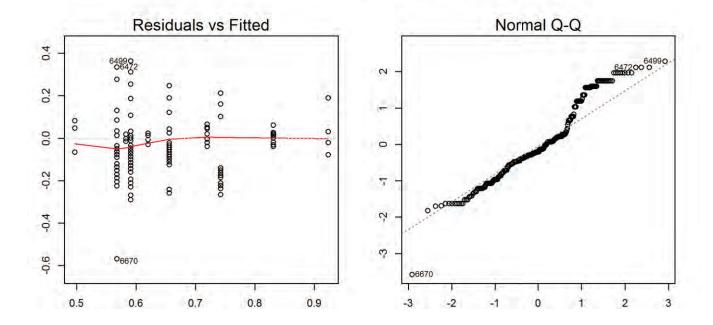
##		site	year	month	season
##	6291	Counts	1999	July	summer
##	6292	Counts	1999	July	summer
##	6293	Counts	1999	July	summer
##	6294	Counts	1999	July	summer
##	6295	Counts	1999	July	summer
##	6296	Counts	1999	July	summer
##	6297	Counts	1999	August	summer
##	6298	Counts	1999	August	summer
##	6299	Counts	1999	August	summer
##	6300	Counts	1999	August	summer
##	6301	Counts	1999	August	summer
##	6302	Counts	1999	August	summer
##	6303	Counts	1999	September	summer
##	6304	Counts	1999	September	summer
##	6305	Counts	1999	September	summer
##	6306	Counts	1999	September	summer
##	6307	Counts	1999	September	summer
##	6308	Counts	1999	September	summer
##	6309	Nanuq	1999	July	summer
##	6310	Nanuq	1999	July	summer
##	6311	Nanuq	1999	July	summer
##	6312	Nanuq	1999	July	summer
##	6313	Nanuq	1999	July	summer
##	6314	Nanuq	1999	July	summer
##	6315	Nanuq	1999	August	summer
##	6316	Nanuq	1999	August	summer
##	6317	Nanuq	1999	August	summer
##	6318	Nanuq	1999	August	summer
##	6319	Nanuq	1999	August	summer
##	6320	Nanuq	1999	August	summer
##	6321	Nanuq	1999	September	summer
##	6322	Nanuq	1999	September	summer
##	6323	Nanuq	1999	September	summer
##	6324	Nanuq	1999	September	summer
##	6325	Nanuq	1999	September	summer
##	6326	Nanuq	1999	September	summer
##	6327	Vulture	1999	July	summer
##	6328	Vulture	1999	July	summer
##	6329	Vulture	1999	July	summer
##	6330	Vulture	1999	July	summer
##	6331	Vulture	1999	July	summer
##	6332	Vulture	1999	July	summer

##	6333	Vulture	1999	August	summer
##	6334	Vulture	1999	August	summer
##	6335	Vulture	1999	August	summer
##	6336	Vulture	1999	August	summer
##	6337	Vulture	1999	August	summer
##	6338	Vulture	1999	August	summer
##	6339	Vulture	1999	September	summer
##	6340	Vulture	1999	September	summer
##	6341	Vulture	1999	September	summer
##	6342	Vulture	1999	September	summer
##	6343	Vulture	1999	September	summer
##	6344	Vulture	1999	September	summer
##	6357	Nanuq	2000	July	summer
##	6358	Nanuq	2000	July	summer
##	6359	Nanuq	2000	July	summer
##	6360	Nanuq	2000	July	summer
##	6361	Nanuq	2000	August	summer
##	6362	Nanuq	2000	August	summer
##	6363	Nanuq	2000	August	summer
##	6364	Nanuq	2000	August	summer
##	6365	Nanuq	2000	September	summer
##	6366	Nanuq	2000	September	summer
##	6367	Nanuq	2000	September	summer
##	6368	Nanuq	2000	September	summer
##	6369	Vulture	2000	July	summer
##	6370	Vulture	2000	July	summer
##	6371	Vulture	2000	July	summer
##	6372	Vulture	2000	July	summer
##	6373	Vulture	2000	August	summer
##	6374	Vulture	2000	August	summer
##	6375	Vulture	2000	August	summer
##	6376	Vulture	2000	August	summer
##	6377	Vulture	2000	September	summer
##	6378	Vulture	2000	September	summer
##		Vulture		September	summer
##		Vulture	2000	•	summer
##	6393	Fay Bay	2001	July	
##	6394	Fay Bay	2001	July	
##	6395	Fay Bay	2001	July	summer
##	6396	Fay Bay	2001	July	summer
##	6397	Fay Bay	2001	August	summer
##	6398	Fay Bay	2001	August	summer
##	6399	Fay Bay	2001	August	summer
##	6400	Fay Bay	2001	August	summer
##	6401	Fay Bay		September	summer
##	6402	Fay Bay		September	summer
##	6403	Fay Bay		September	summer
##	6404	Fay Bay		September	summer
##	6508	Counts		July	
##	6509	Counts	2003	July	summer


##	6510	Counts	2003	August	summer
##	6511	Counts	2003	August	summer
##	6512	Counts	2003	September	summer
##	6513	Counts	2003	September	summer
##	6518	Nanuq	2003	July	summer
##	6519	Nanuq	2003	July	summer
##	6520	Nanuq	2003	August	summer
##	6521	Nanuq	2003	August	summer
##	6522	Nanuq	2003	August	summer
##	6523	Nanuq	2003	September	summer
##	6524	Nanuq	2003	September	summer
##	6529	Vulture	2003	July	summer
##	6530	Vulture	2003	July	summer
##	6531	Vulture	2003	July	summer
##	6532	Vulture	2003	August	summer
##	6533	Vulture	2003	August	summer
##	6534	Vulture	2003	September	summer
##	6535	Vulture	2003	September	summer

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

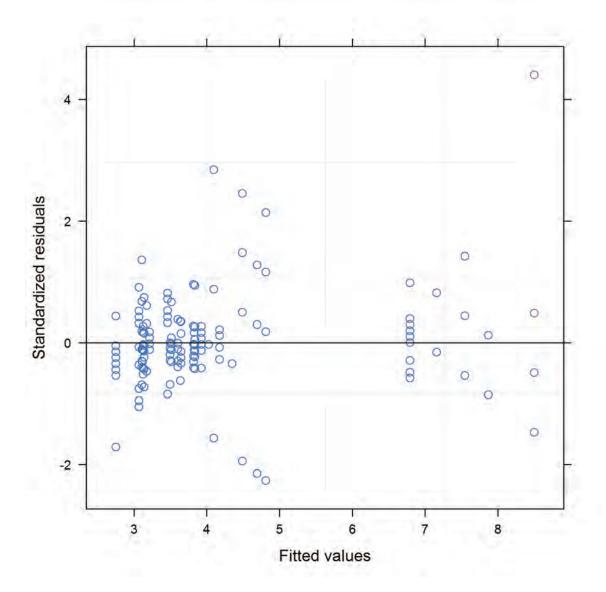
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.77	0.27	0.25
Log-10	0.16	0.25	0.23

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	996.3	-489.15		
LME	10	771	-375.5	227.29	0

Conclusion:

The most appropriate model for Total Alkalinity at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	232	115	<.0001
##	site	3	232	21	<.0001
##	period	1	10	0	0.781
##	site:period	3	232	5	0.002

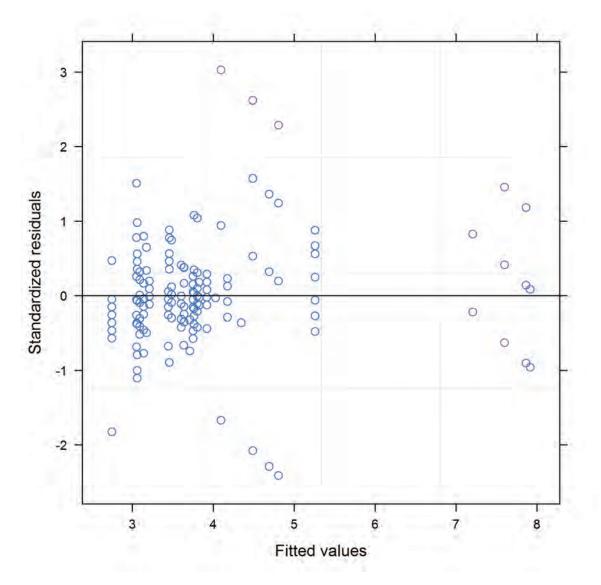
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-2.27	-3.6	-0.94	sig.
Counts	-1.98	-3.25	-0.66	sig.
Vulture	-2.01	-3.31	-0.74	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total alkalinity concentrations at the Fay Bay site were significantly (p = 0.002) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	1054.15	-518.07		
LME	10	770.18	-375.09	285.96	0

Conclusion:

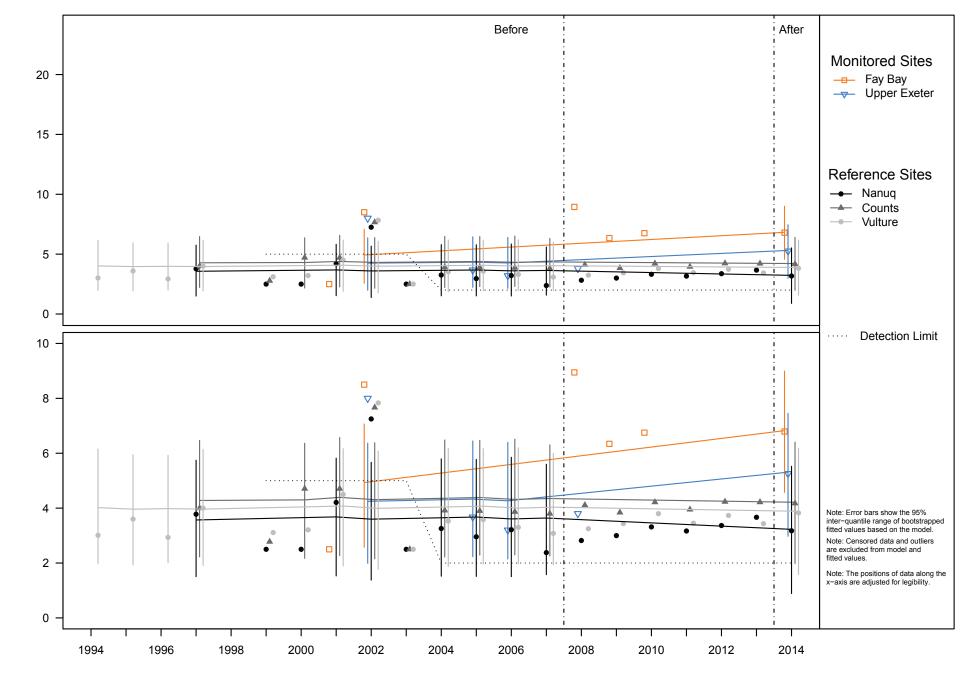
The most appropriate model for Total Alkalinity at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	242	108	<.0001
##	site	3	242	9	<.0001
##	period	1	10	0	0.872
##	<pre>site:period</pre>	3	242	3	0.057

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-1.43	-2.63	-0.22	sig.
Counts	-1.14	-2.33	0.04	not sig.
Vulture	-1.17	-2.34	0	not sig.

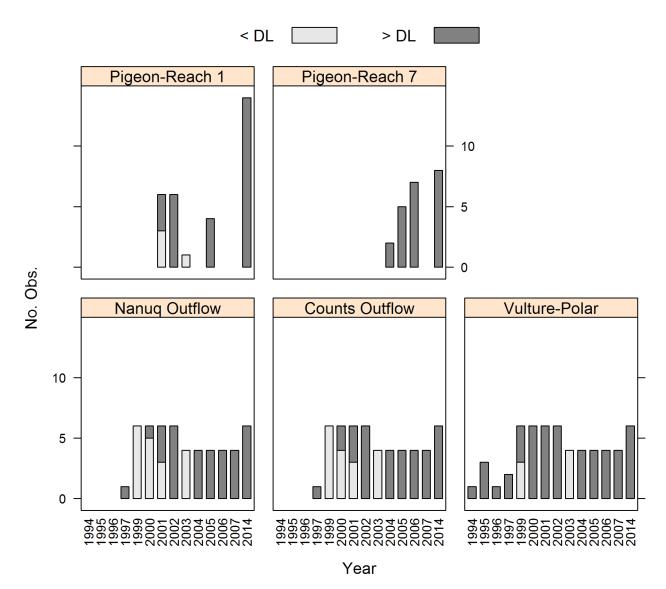

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total alkalinity concentrations at the Upper Exeter site were not significantly (p = 0.057) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Alkalinity Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

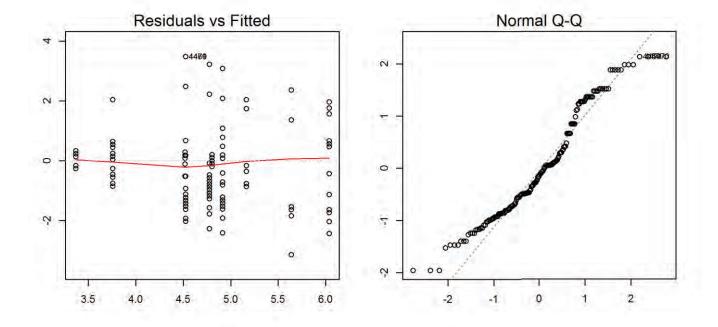
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

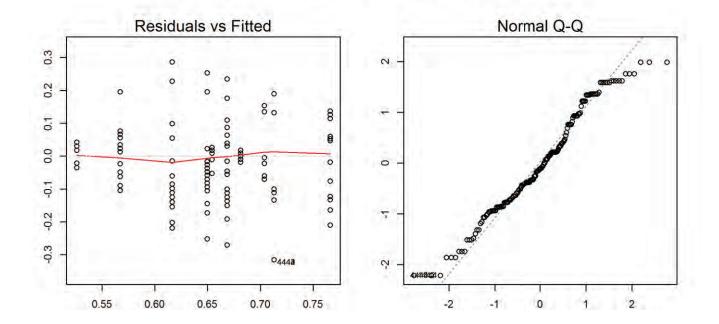
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


##			site	year	month	season
## ##	4368	Counts	Outflow	1999	August	
## ##	4369	Counts	Outflow	1999	August	summer
## ##	4370	Counts	Outflow	1999	August	summer
## ##	4370	Counts	Outflow	1999	September	summer
## ##	4371	Counts	Outflow	1999	September	summer
## ##					•	summer
	4373	Counts	Outflow	1999	September	summer
##	4377	Nanuq	Outflow	1999	August	summer
##	4378	Nanuq	Outflow	1999	August	summer
##	4379	Nanuq	Outflow	1999	August	summer
##	4380	Nanuq	Outflow	1999	September	summer
##	4381	Nanuq	Outflow	1999	September	summer
##	4382	Nanuq	Outflow	1999	September	summer
##	4395	Counts	Outflow	2000	August	summer
##	4396	Counts	Outflow	2000	August	summer
##	4397	Counts	Outflow	2000	August	summer
##	4398	Counts	Outflow	2000	September	summer
##	4399	Counts	Outflow	2000	September	summer
##	4400	Counts	Outflow	2000	September	summer
##	4404	Nanuq	Outflow	2000	August	summer
##	4405	Nanuq	Outflow	2000	August	summer
##	4406	Nanuq	Outflow	2000	August	summer
##	4407	Nanuq	Outflow	2000	September	summer
##	4408	Nanuq	Outflow	2000	September	summer
##	4409	Nanuq	Outflow	2000	September	summer
##	4492	Counts	Outflow	2003	August	summer
##	4493	Counts	Outflow	2003	August	summer
##	4494	Counts	Outflow	2003	September	summer
##	4495	Counts	Outflow	2003	September	summer
##	4498	Nanuq	Outflow	2003	August	summer
##	4499	Nanuq	Outflow	2003	August	summer
##	4500	Nanuq	Outflow	2003	September	summer
##	4501	Nanuq	Outflow	2003	September	summer
##	4503	Pigeon	-Reach 1	2003	September	summer
##	4506	Vultur	re-Polar	2003	August	summer
##	4507	Vultur	re-Polar	2003	August	summer
##	4508	Vultur	re-Polar	2003	September	summer
##	4509	Vultur	re-Polar	2003	September	summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

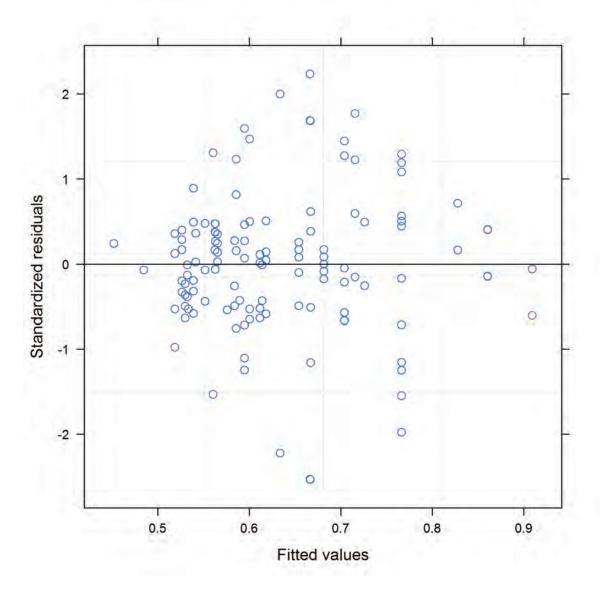
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.66	0.12	0.08
Log-10	0.15	0.13	0.08

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Pigeon-Reach 1 Monitoring Location


Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-116.69	69.34		
LME	12	-198.51	111.26	83.83	0

Conclusion:

_

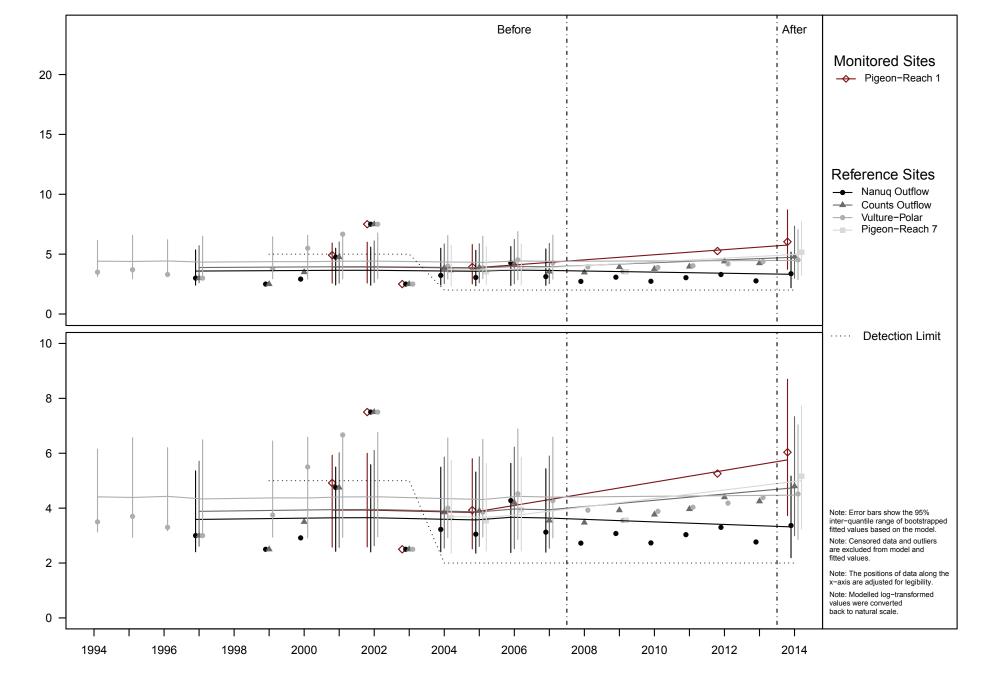
The most appropriate model for Total Alkalinity at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	154	333	<.0001
##	site	4	154	4	0.002
##	period	1	11	0	0.524
##	<pre>site:period</pre>	4	154	4	0.007

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.21	-0.33	-0.08	sig.
Counts Outflow	-0.09	-0.2	0.03	not sig.
Vulture-Polar	-0.16	-0.28	-0.05	sig.
Pigeon-Reach 7	-0.04	-0.16	0.08	not sig.

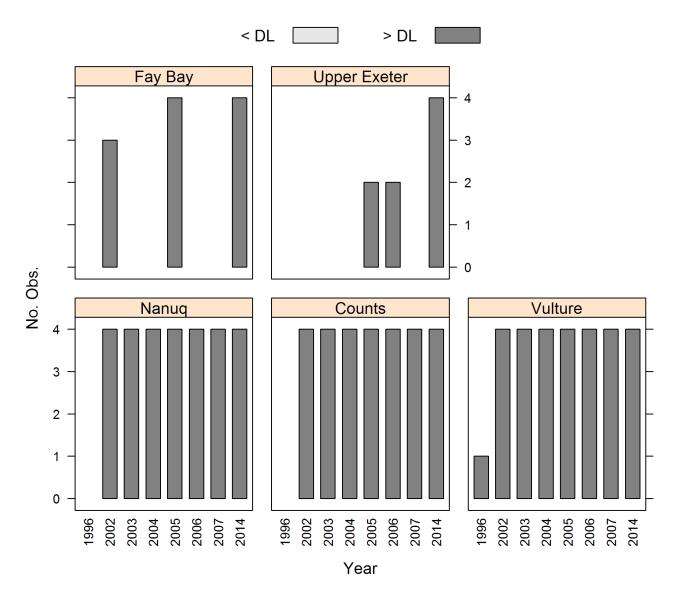

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total alkalinity concentrations at the Pigeon-Reach 1 site were significantly (p = 0.007) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Water Hardness Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

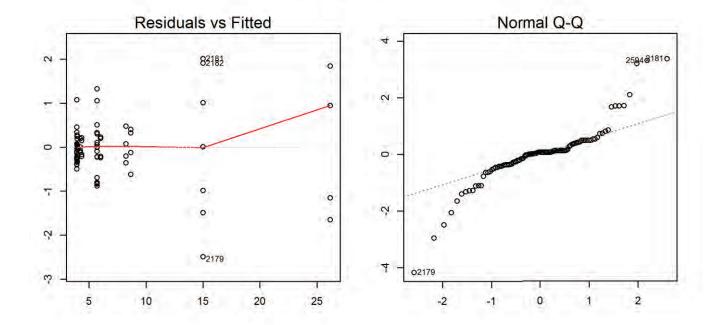
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

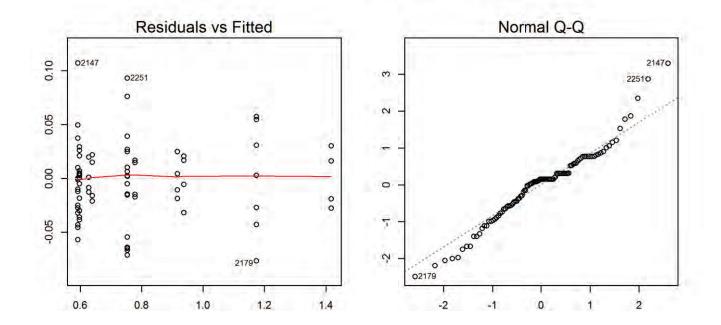
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
1776 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

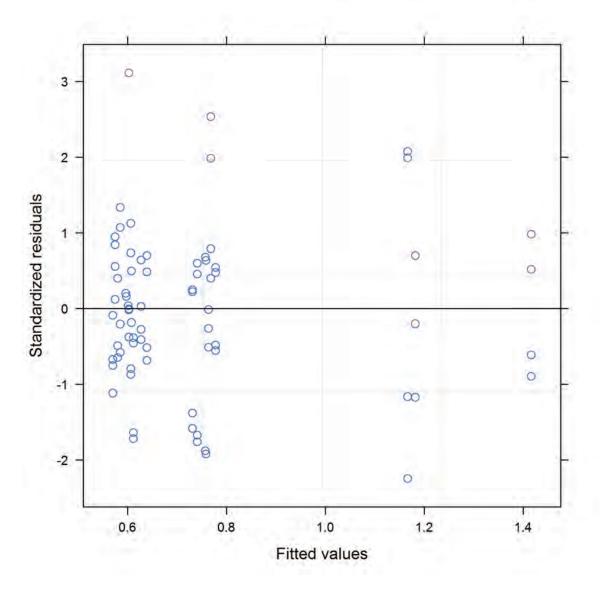
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.64	0.98	0.98
Log-10	0.03	0.98	0.98

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-307.44	162.72		
LME	10	-313.54	166.77	8.1	0

Conclusion:

The most appropriate model for Water Hardness at the Fay Bay monitoring site was the LME with a year term for interannual variation (p = 0.004).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	82	10752	<.0001
##	site	3	82	1271	<.0001
##	period	1	5	14	0.013
##	<pre>site:period</pre>	3	82	29	<.0001

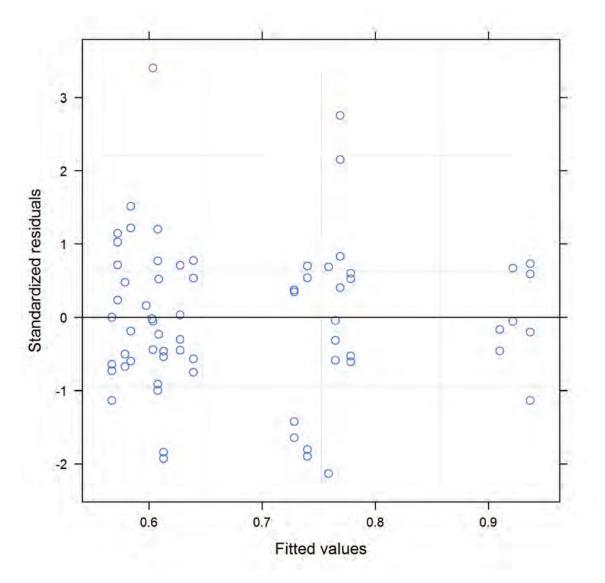
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.19	-0.24	-0.14	sig.
Counts	-0.21	-0.26	-0.16	sig.
Vulture	-0.21	-0.26	-0.15	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Water hardness concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-307.07	162.54		
LME	10	-316.83	168.41	11.75	6.08×10 ⁻⁴

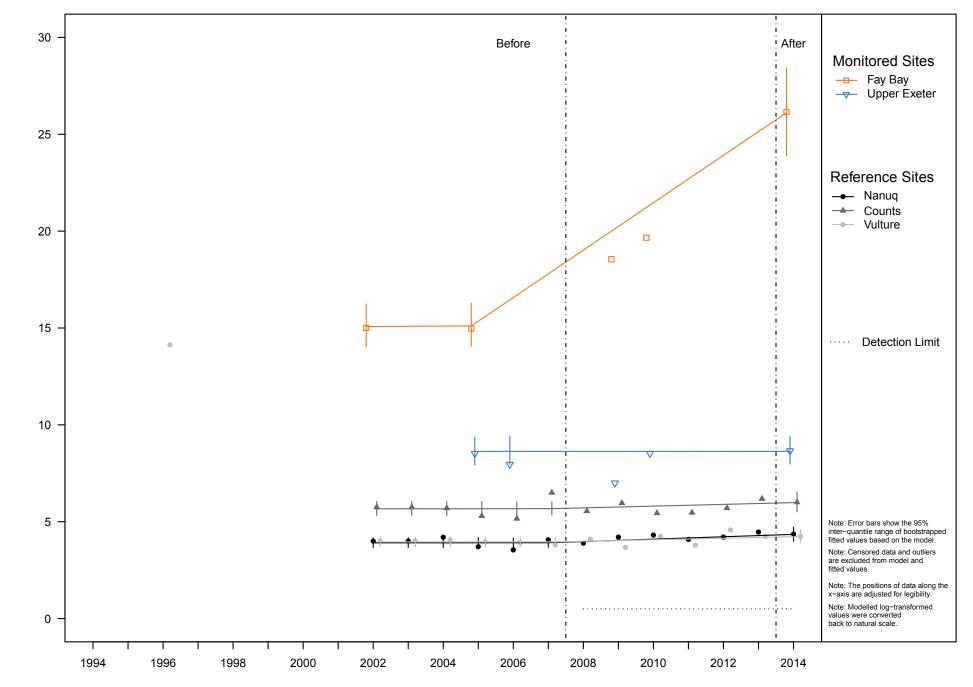
Conclusion:

The most appropriate model for Water Hardness at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	8812	<.0001
##	site	3	79	404	<.0001
##	period	1	5	2	0.21
##	<pre>site:period</pre>	3	79	1	0.36

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.04	0	0.09	not sig.
Counts	0.02	-0.03	0.07	not sig.
Vulture	0.03	-0.02	0.08	not sig.

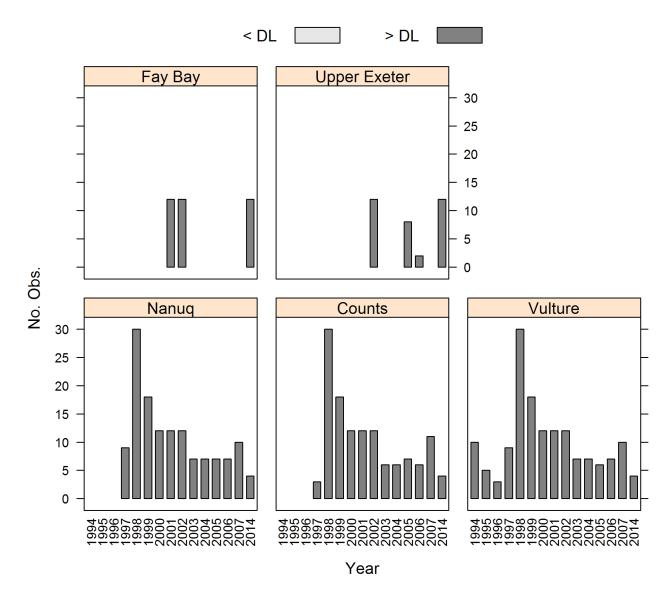

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Water hardness concentrations at the Upper Exeter site were not significantly (p = 0.36) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Water Hardness Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

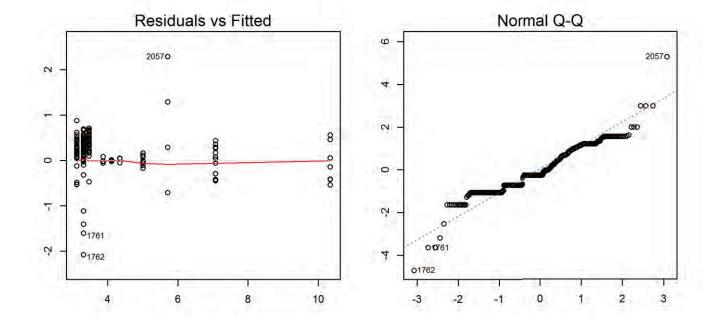
January 21, 2014

1 Censored Data

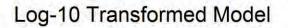
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

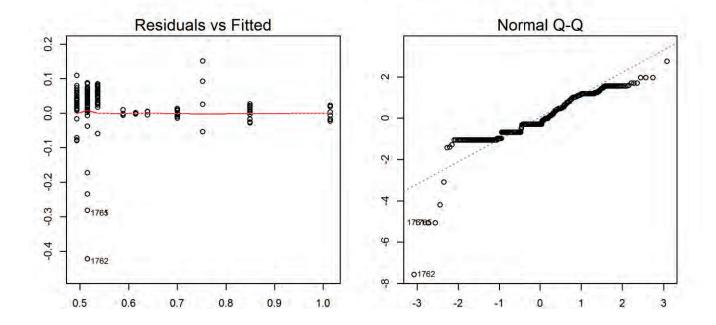
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
2099 Vulture 2002 August summer
2190 Nanuq 2005 August summer

3 Initial Model Fit

Natural Scale Model

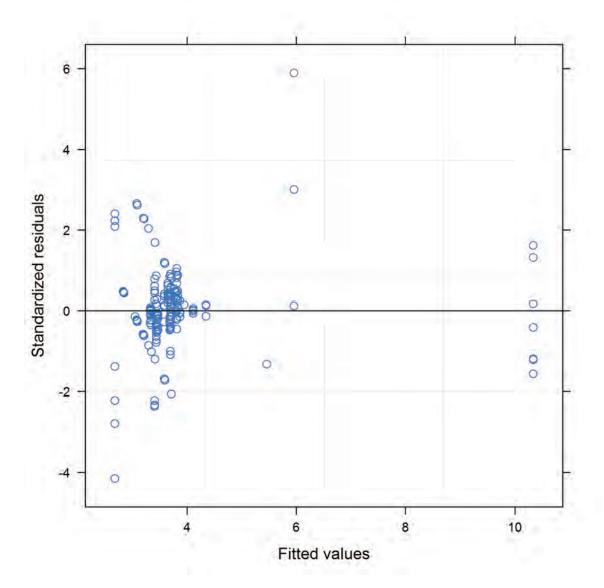
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.44	0.9	0.9
Log-10	0.06	0.8	0.79

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	597.24	-289.62		
LME	10	399.02	-189.51	200.22	0

Conclusion:

_

The most appropriate model for Water Hardness at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	427	1655	<.0001
##	site	3	427	806	<.0001
##	period	1	13	37	<.0001
##	site:period	3	427	183	<.0001

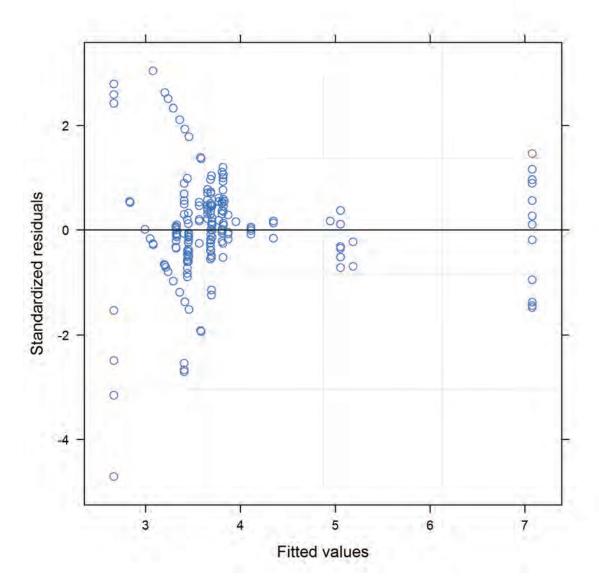
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-3.86	-4.28	-3.43	sig.
Counts	-3.75	-4.17	-3.32	sig.
Vulture	-3.86	-4.29	-3.43	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Water hardness concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	501.75	-241.87		
LME	10	283.61	-131.8	220.14	0

Conclusion:

The most appropriate model for Water Hardness at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

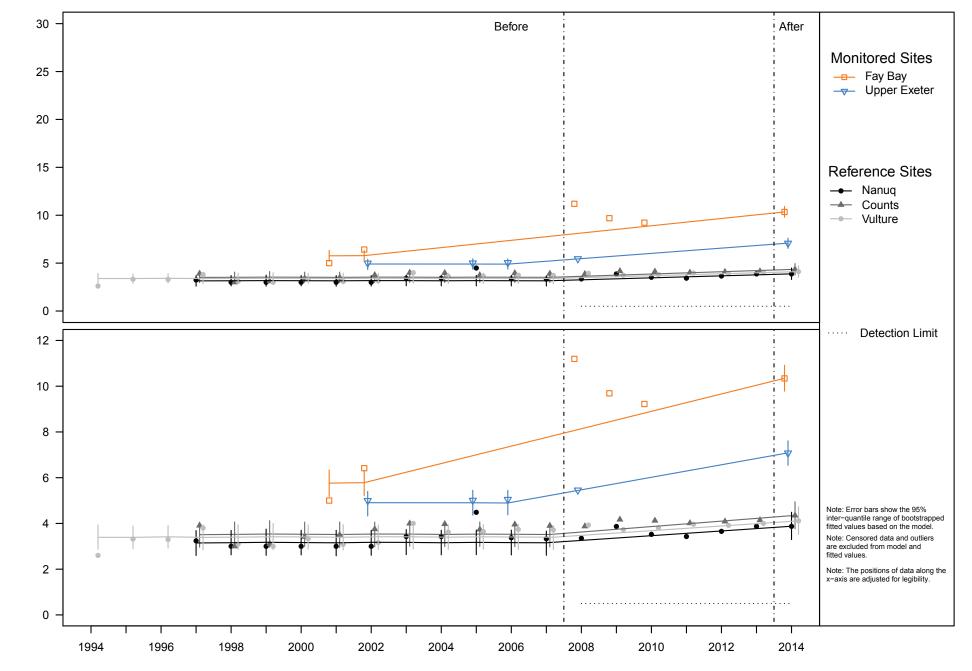
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	425	1681	<.0001
##	site	3	425	340	<.0001
##	period	1	13	14	0.0026
##	site:period	3	425	33	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-1.47	-1.84	-1.1	sig.
Counts	-1.36	-1.72	-1	sig.
Vulture	-1.48	-1.85	-1.08	sig.

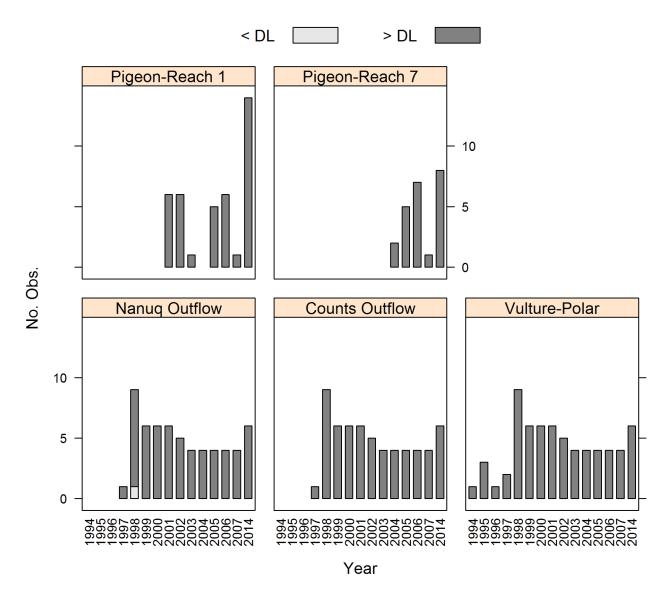

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Water hardness concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Water Hardness Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

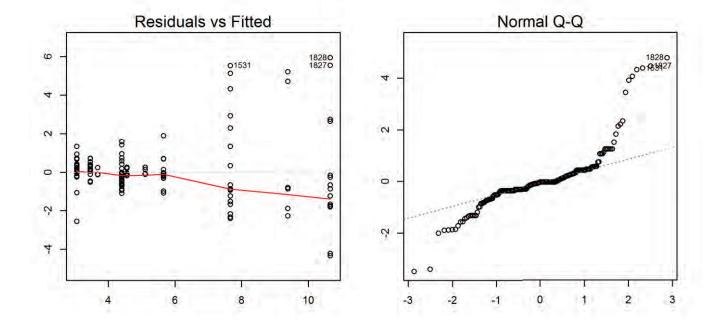
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.

No outliers were identified.

3 Initial Model Fit

Natural Scale Model

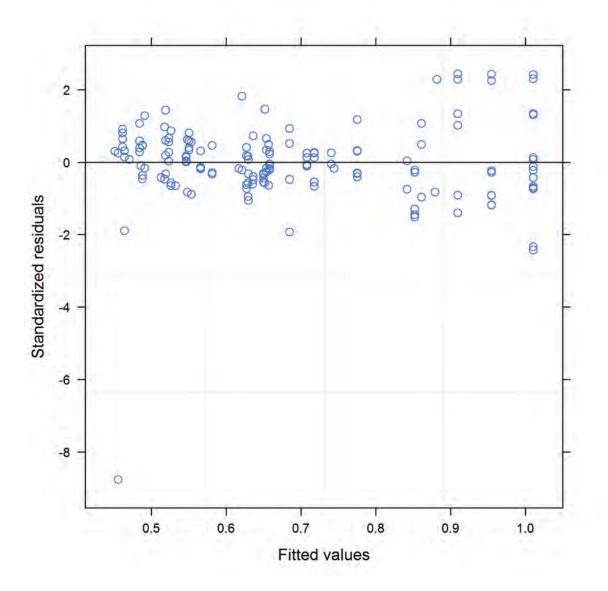
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.29	0.74	0.73
Log-10	0.09	0.77	0.76

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-417.25	219.62		
LME	12	-422.6	223.3	7.35	0.01

Conclusion:

The most appropriate model for water hardness at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p = 0.007).

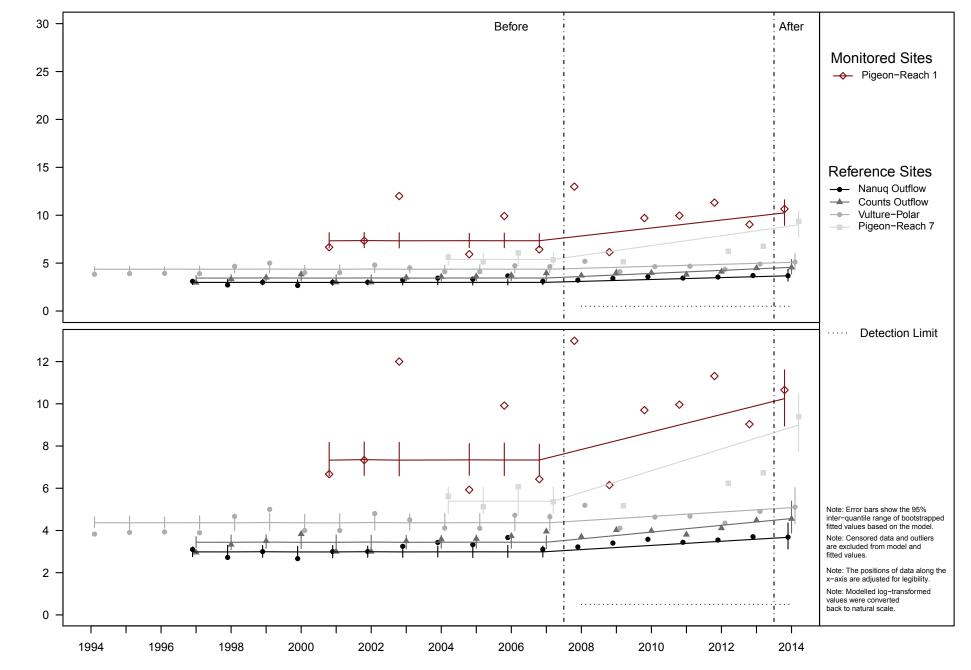
Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	222	4525	<.0001
##	site	4	222	145	<.0001
##	period	1	13	17	0.0011
##	<pre>site:period</pre>	4	222	2	0.0439

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.05	-0.15	0.04	not sig.
Counts Outflow	-0.02	-0.12	0.07	not sig.
Vulture-Polar	-0.08	-0.17	0.01	not sig.
Pigeon-Reach 7	0.08	-0.02	0.17	not sig.

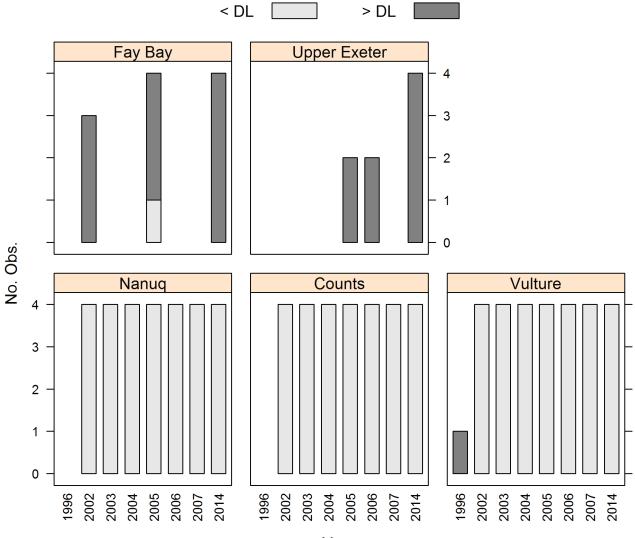

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Water hardness concentrations at the Pigeon-Reach 1 site were significantly (p = 0.044) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

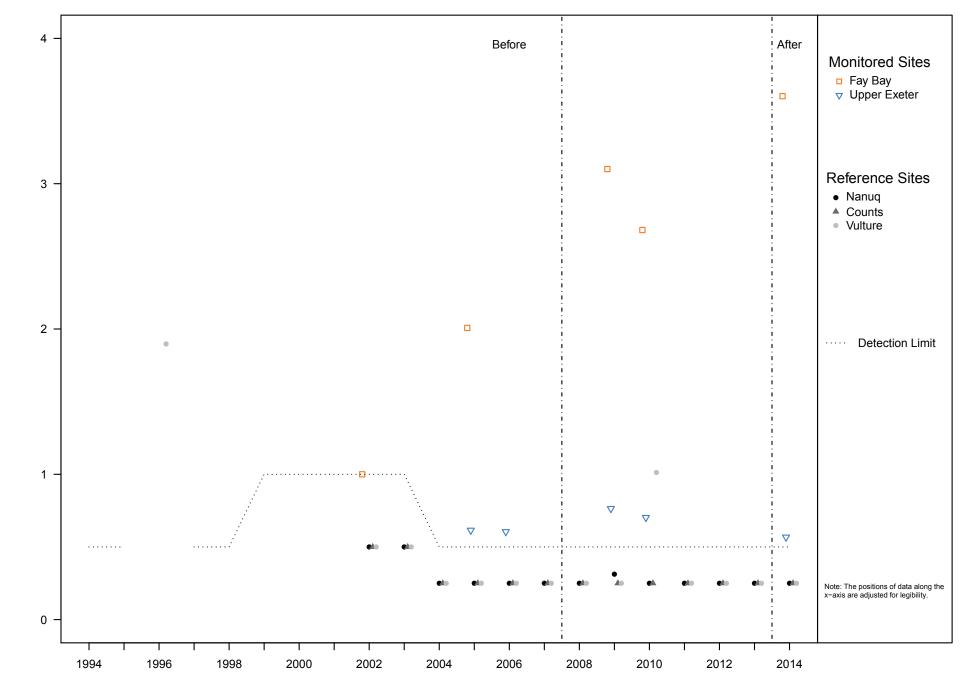
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Chloride Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

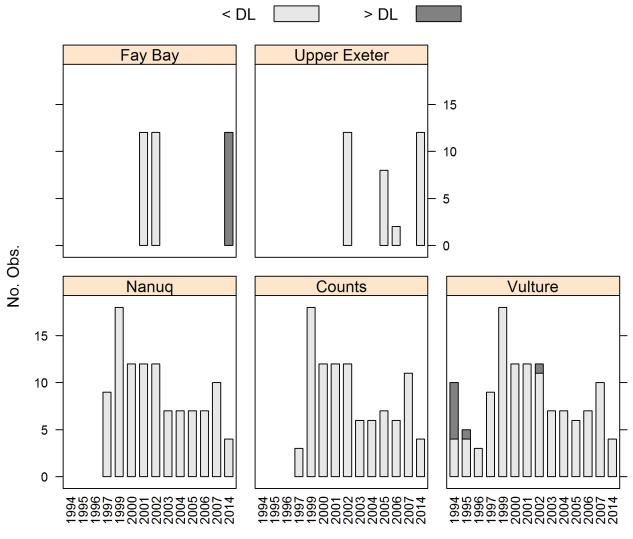
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Chloride water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

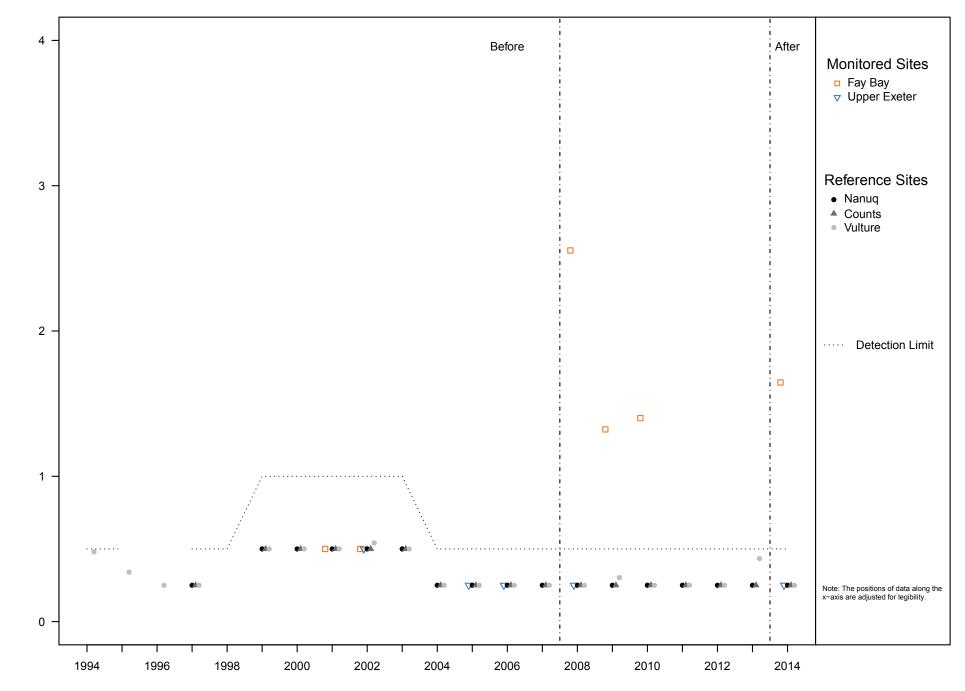

Chloride Concentration (mg/L)

Analysis of Summer Chloride Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

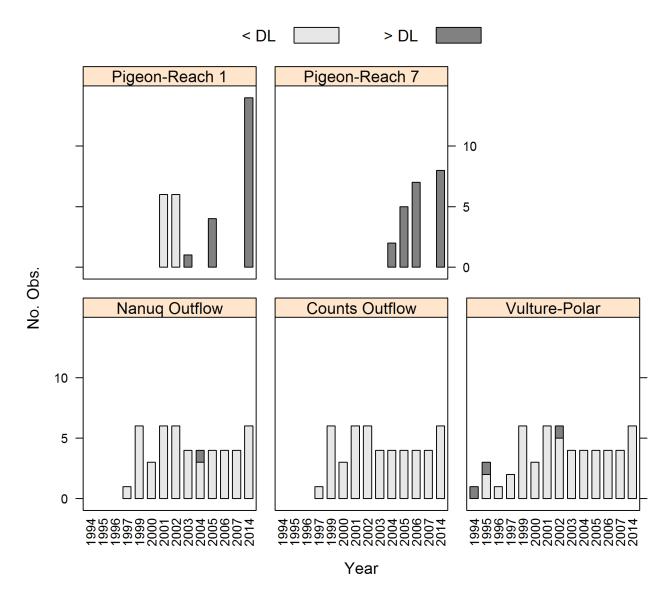


Year

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Chloride water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Chloride Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

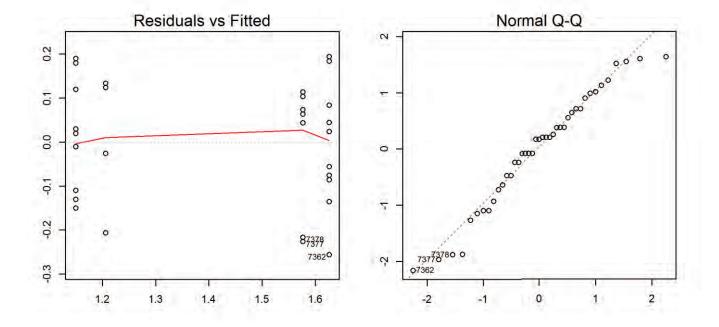
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:

шш					ما جا به بر ا	
##	6700	14.7.	site	year	month	season
##	6780		re-Polar	1994	August	summer
##	6781		re-Polar	1995	July	summer
##	6782		re-Polar	1995	August	summer
##	6783		re-Polar	1995	September	summer
##	6785		re-Polar	1996	August	summer
##	6786		Outflow	1997	September	summer
##	6787		Outflow	1997	September	summer
##	6788		re-Polar	1997	July	summer
##	6789		re-Polar	1997	September	summer
##	6832	Counts	Outflow	1999	August	summer
##	6833	Counts	Outflow	1999	August	summer
##	6834	Counts	Outflow	1999	August	summer
##	6835	Counts	Outflow	1999	September	summer
##	6836	Counts	Outflow	1999	September	summer
##	6837	Counts	Outflow	1999	September	summer
##	6841	Nanuq	Outflow	1999	August	summer
##	6842	Nanuq	Outflow	1999	August	summer
##	6843	Nanuq	Outflow	1999	August	summer
##	6844	Nanuq	Outflow	1999	September	summer
##	6845	Nanuq	Outflow	1999	September	summer
##	6846	Nanuq	Outflow	1999	September	summer
##	6850	Vultu	re-Polar	1999	August	summer
##	6851	Vultur	re-Polar	1999	August	summer
##	6852	Vultur	re-Polar	1999	August	summer
##	6853	Vultur	re-Polar	1999	September	summer
##	6854	Vultur	re-Polar	1999	September	summer
##	6855	Vultur	re-Polar	1999	September	summer
##	6862	Counts	Outflow	2000	September	summer
##	6863	Counts	Outflow	2000	September	summer
##	6864	Counts	Outflow	2000	September	summer
##	6871	Nanuq	Outflow	2000	September	summer
##	6872	Nanuq	Outflow	2000	September	summer
##	6873	Nanuq	Outflow	2000	September	summer
##	6880	Vultur	re-Polar	2000	September	summer
##	6881	Vultur	re-Polar	2000	September	summer
##	6882	Vultur	re-Polar	2000	September	summer
##	6885	Counts	Outflow	2001	August	summer
##	6886	Counts	Outflow	2001	August	summer
##	6887	Counts	Outflow	2001	August	summer
##	6888	Counts	Outflow	2001	September	summer
##	6889	Counts	Outflow	2001	September	summer
##	6890	Counts	Outflow	2001	September	summer

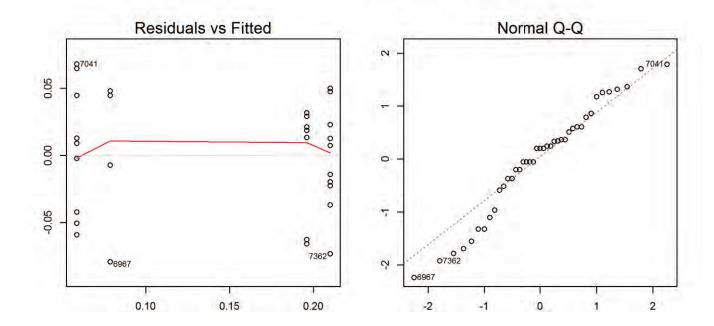
## 6	894 Nar	nuq Outflo	DW 2	2001	August	summer
## 6	895 Nar	nuq Outflo	DW 2	2001	August	summer
## 6	896 Nar	nuq Outflo	DW 2	2001	August	summer
## 6	897 Nar	nuq Outflo	DW 2	2001	September	summer
## 6	898 Nar	nuq Outflo	DW 2	2001	September	summer
## 6	899 Nar	nuq Outflo	2 wo	2001	September	summer
## 6	903 Pige	eon-Reach	1 2	2001	August	summer
## 6	904 Pige	eon-Reach	1 2	2001	August	summer
## 6	905 Pige	eon-Reach	1 2	2001	August	summer
## 6	906 Pige	eon-Reach	1 2	2001	September	summer
## 6	907 Pige	eon-Reach	1 2	2001	September	summer
## 6	908 Pige	eon-Reach	1 2	2001	September	summer
## 6	912 Vu]	lture-Pola	ar 2	2001	August	summer
## 6	913 Vu]	lture-Pola	ar 2	2001	August	summer
## 6	914 Vu]	lture-Pola	ar 2	2001	August	summer
## 6	915 Vu]	lture-Pola	ar 2	2001	September	summer
## 6	916 Vu]	lture-Pola	ar 2	2001	September	summer
## 6	917 Vu]	lture-Pola	ar 2	2001	September	summer
## 6	921 Cour	nts Outflo	2 wo	2002	August	summer
## 6	922 Cour	nts Outflo	2 wo	2002	August	summer
## 6	923 Cour	nts Outflo	DW 2	2002	August	summer
## 6	924 Cour	nts Outflo	DW 2	2002	September	summer
## 6	925 Cour	nts Outflo	DW 2	2002	September	summer
## 6	926 Cour	nts Outflo	DW 2	2002	September	summer
## 6	930 Nar	nuq Outflo	DW 2	2002	August	summer
## 6	931 Nar	nuq Outflo	DW 2	2002	August	summer
## 6	932 Nar	nuq Outflo	DW 2	2002	August	summer
## 6	933 Nar	nuq Outflo	DW 2	2002	September	summer
## 6	934 Nar	nuq Outflo	DW 2	2002	September	summer
## 6	935 Nar	nuq Outflo	DW 2	2002	September	summer
## 6	939 Pige	eon-Reach	1 2	2002	August	summer
## 6	940 Pige	eon-Reach	1 2	2002	August	summer
## 6	941 Pige	eon-Reach	1 2	2002	August	summer
## 6	942 Pige	eon-Reach	1 2	2002	September	summer
## 6	-			2002	September	summer
## 6	944 Pige	eon-Reach	1 2	2002	September	summer
		lture-Pola		2002	August	summer
## 6		lture-Pola		2002	August	summer
## 6		lture-Pola		2002	August	summer
## 6		lture-Pola		2002	September	summer
		lture-Pola		2002	September	summer
## 6		lture-Pola		2002	September	summer
		nts Outflo		2003	August	summer
	957 Cour			2003	August	summer
	958 Cour			2003	September	summer
	959 Cour			2003	September	summer
		nuq Outflo		2003	August	summer
## 6		nuq Outflo		2003	August	summer
## 6		nuq Outflo		2003	September	summer
## 6	965 Nar	nuq Outflo	DW 2	2003	September	summer

##	6970	Vulture-Polar	2003	August	summer
##	6971	Vulture-Polar	2003	August	summer
##	6972	Vulture-Polar	2003	September	summer
##	6973	Vulture-Polar	2003	September	summer
##	6976	Counts Outflow	2004	August	summer
##	6977	Counts Outflow	2004	August	summer
##	6978	Counts Outflow	2004	September	summer
##	6979	Counts Outflow	2004	September	summer
##	6982	Nanuq Outflow	2004	August	summer
##	6983	Nanuq Outflow	2004	August	summer
##	6984	Nanuq Outflow	2004	September	summer
##	6985	Nanuq Outflow	2004	September	summer
##	7006	Vulture-Polar	2004	August	summer
##	7007	Vulture-Polar	2004	August	summer
##	7008	Vulture-Polar	2004	September	summer
##	7009	Vulture-Polar	2004	September	summer
##	7012	Counts Outflow	2005	August	summer
##	7013	Counts Outflow	2005	August	summer
##	7014	Counts Outflow	2005	September	summer
##	7015	Counts Outflow	2005	September	summer
## ##	7018	Nanuq Outflow	2005	August	summer
	7019	Nanuq Outflow	2005	August	summer
## ##	7020	Nanuq Outflow	2005	September	summer
## ##	7021	Nanuq Outflow	2005	September	summer
## ##	7048	Vulture-Polar	2005	August	summer
## ##	7049	Vulture-Polar	2005	August	summer
## ##	7050	Vulture-Polar	2005	September	summer
## ##	7051	Vulture-Polar	2005	September	summer
## ##	7054 7055	Counts Outflow Counts Outflow	2006 2006	August	summer
## ##	7055	Counts Outflow	2006	August September	summer
## ##	7057	Counts Outflow	2006	September	summer
## ##	7060	Nanuq Outflow	2006		summer
## ##	7061	Nanuq Outflow	2006	August	summer
	7061	Nanuq Outflow	2006	August September	summer
## ##		•			summer
## ##	7063	Nanuq Outflow Vulture-Polar	2006	September	summer
## ##	7087	Vulture-Polar	2006	August	summer
## ##	7088	Vulture-Polar	2006	August	summer
## ##	7089 7090	Vulture-Polar	2006	September	summer
## ##		Counts Outflow	2006	September	summer
## ##	7092		2007	August	summer
## ##	7093	Counts Outflow Counts Outflow	2007	August September	summer
## ##	7094		2007		summer
## ##	7095	Counts Outflow	2007	September	summer
## ##	7097	Nanuq Outflow	2007	August	summer
## ##	7098	Nanuq Outflow	2007	August	summer
## ##	7099	Nanuq Outflow	2007	September	summer
## ##	7100	Nanuq Outflow Vulture-Polar	2007	September	summer
## ##	7122		2007	August	summer
##	7123	Vulture-Polar	2007	August	summer


```
## 7124 Vulture-Polar 2007 September summer
## 7125 Vulture-Polar 2007 September summer
## 7345 Counts Outflow 2014
                                 July summer
## 7346 Counts Outflow 2014
                                 July summer
## 7347 Counts Outflow 2014
                               August summer
## 7348 Counts Outflow 2014
                               August summer
## 7349 Counts Outflow 2014 September summer
## 7350 Counts Outflow 2014 September summer
## 7353 Nanug Outflow 2014
                                 July summer
## 7354 Nanug Outflow 2014
                                 July summer
## 7355 Nanuq Outflow 2014
                               August summer
## 7356 Nanuq Outflow 2014
                              August summer
## 7357 Nanuq Outflow 2014 September summer
## 7358 Nanuq Outflow 2014 September summer
## 7387 Vulture-Polar 2014
                                 July summer
## 7388 Vulture-Polar 2014
                                 July summer
## 7389 Vulture-Polar 2014
                               August summer
## 7390 Vulture-Polar 2014
                               August summer
## 7391 Vulture-Polar 2014 September summer
## 7392 Vulture-Polar 2014 September summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

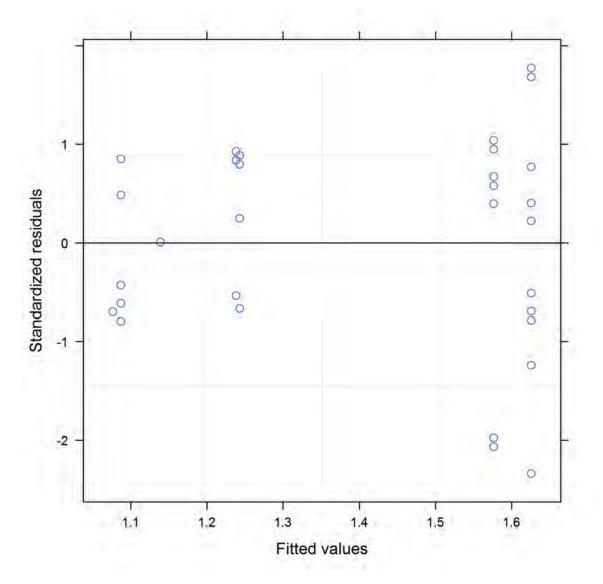
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.12	0.78	0.77
Log-10	0.04	0.78	0.76

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Pigeon-Reach 1 Monitoring Location


Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	5	-31.2	20.6		
LME	6	-34.37	23.18	5.16	0.02

Conclusion:

_

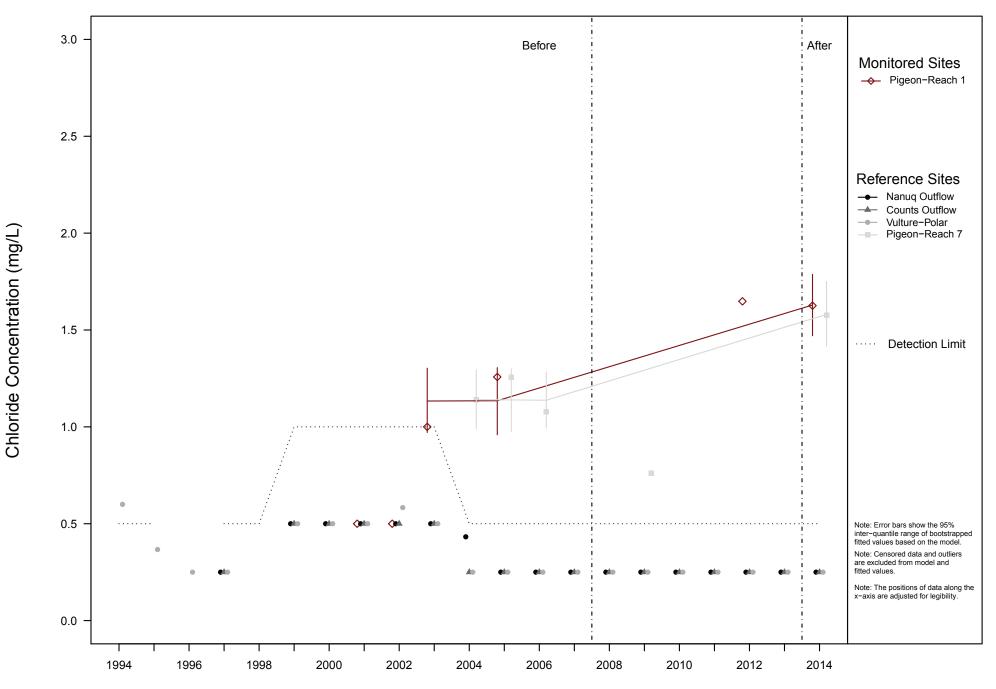
The most appropriate model for Chloride at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p = 0.023).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	34	653	<.0001
##	site	1	34	2	0.212
##	period	1	3	17	0.027
##	<pre>site:period</pre>	1	34	0	0.518

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	NA	NA	NA	NA
Counts Outflow	NA	NA	NA	NA
Vulture-Polar	NA	NA	NA	NA
Pigeon-Reach 7	-0.05	-0.22	0.11	not sig.

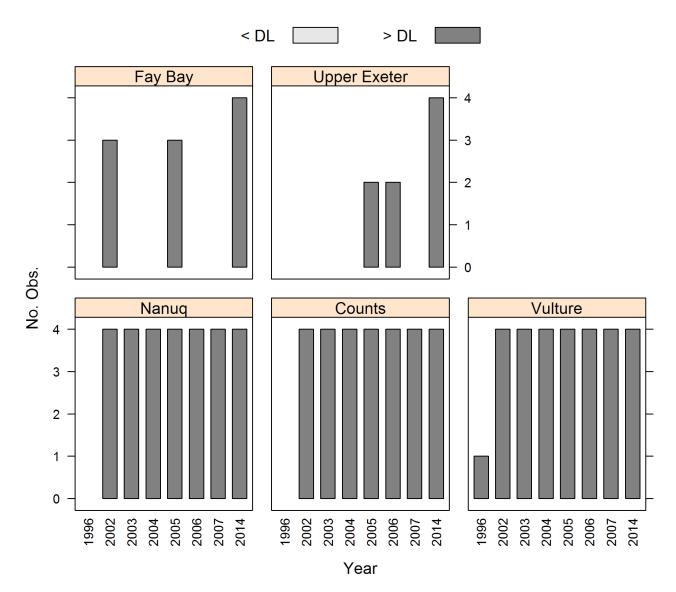

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Chloride concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.518) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Winter Sulphate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

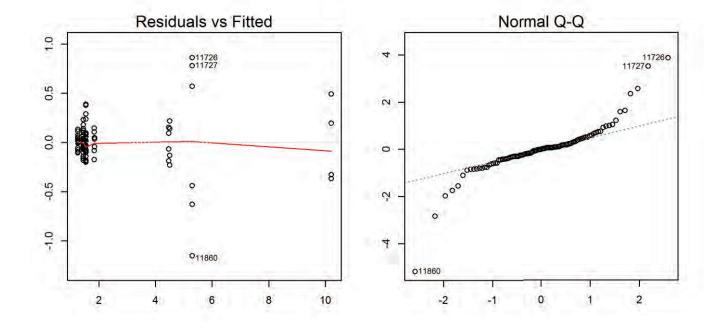
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

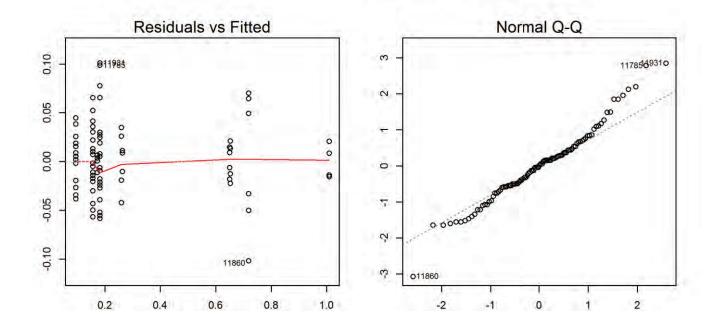
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


site year month season
11456 Vulture 1996 April winter

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

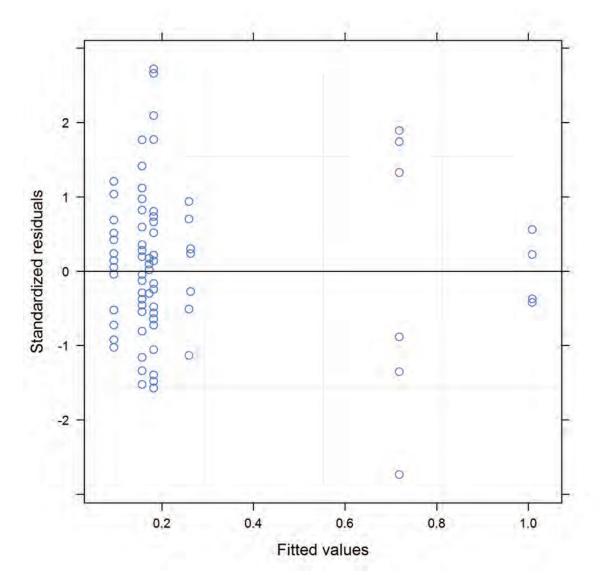
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.24	0.99	0.99
Log-10	0.04	0.98	0.98

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-287.46	152.73		
LME	10	-287.99	154	2.53	0.11

Conclusion:

The most appropriate model for sulphate at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.111).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	86		
##		numDF	F-value	p-value
##	(Intercept)	1	3579	<.0001
##	site	3	1019	<.0001
##	period	1	144	<.0001
##	<pre>site:period</pre>	3	20	<.0001

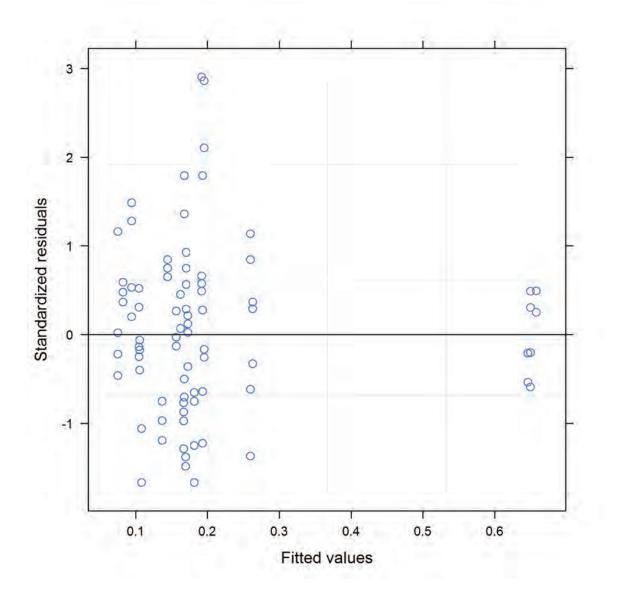
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.18	-0.25	-0.12	sig.
Counts	-0.21	-0.27	-0.15	sig.
Vulture	-0.21	-0.27	-0.15	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Sulphate concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-297.75	157.88		
LME	10	-303.17	161.58	7.41	0.01

Conclusion:

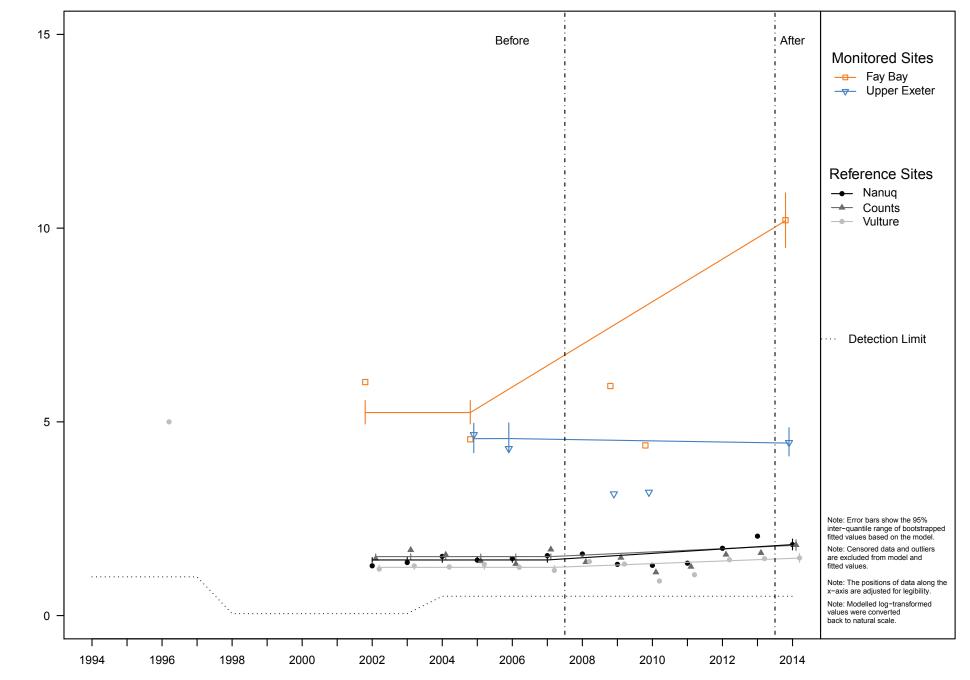
The most appropriate model for sulphate at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p = 0.006).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	830	<.0001
##	site	3	79	570	<.0001
##	period	1	5	14	0.0132
##	<pre>site:period</pre>	3	79	6	0.0011

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.11	0.06	0.17	sig.
Counts	0.09	0.03	0.14	sig.
Vulture	0.09	0.03	0.14	sig.

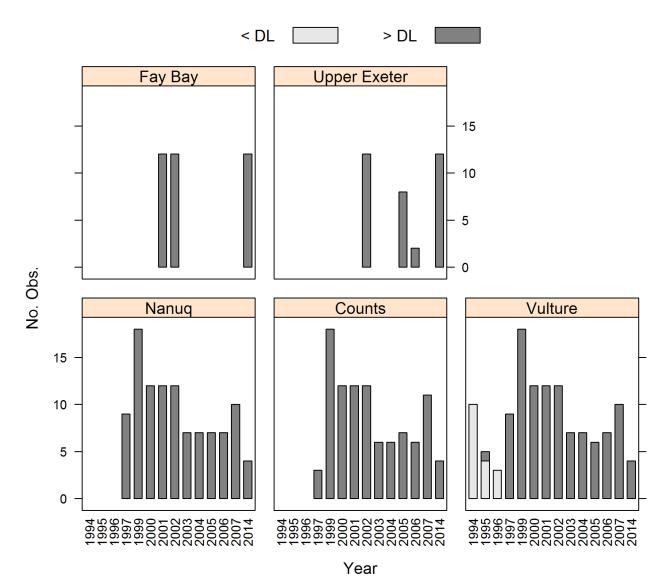

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Sulphate concentrations at the Upper Exeter site were significantly (p = 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


Sulphate Concentration (mg/L)

Analysis of Summer Sulphate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

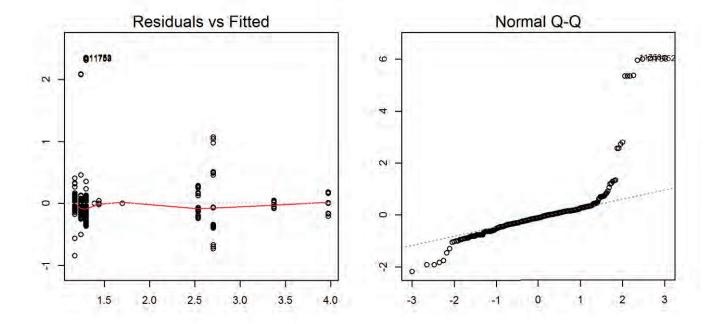
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

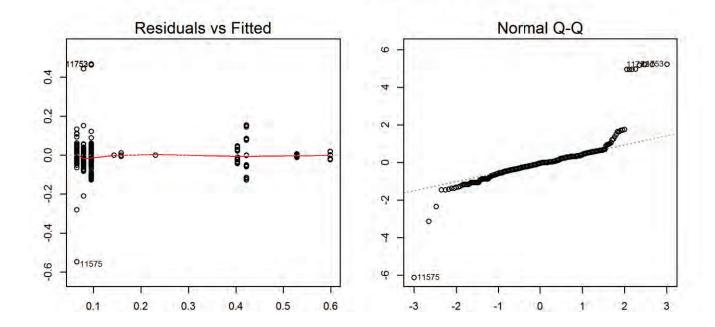
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
##
            site year
                      month season
## 11441 Vulture 1994
                       July summer
## 11442 Vulture 1994 July summer
## 11443 Vulture 1994
                       July summer
## 11444 Vulture 1994
                       July summer
## 11445 Vulture 1994
                       July summer
## 11446 Vulture 1994 August summer
## 11447 Vulture 1994 August summer
## 11448 Vulture 1994 August summer
## 11449 Vulture 1994 August summer
## 11450 Vulture 1994 August summer
## 11451 Vulture 1995 August summer
## 11452 Vulture 1995 August summer
## 11453 Vulture 1995 August summer
## 11454 Vulture 1995 August summer
## 11455 Vulture 1995 August summer
## 11457 Vulture 1996 August summer
## 11458 Vulture 1996 August summer
## 11459 Vulture 1996 August summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

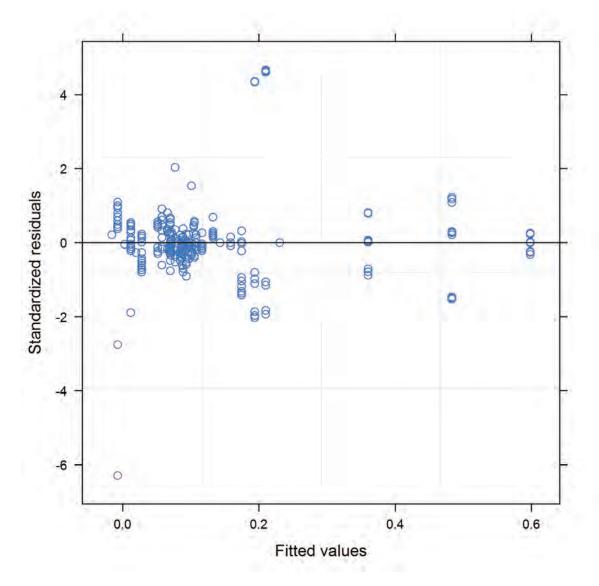
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.39	0.78	0.77
Log-10	0.09	0.75	0.74

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р	
GLS	9	-592.86	305.43			
LME	10	-710.7	365.35	119.83	0	

Conclusion:

_

The most appropriate model for sulphate at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	325	52	<.0001
##	site	3	325	158	<.0001
##	period	1	9	6	0.0371
##	<pre>site:period</pre>	3	325	5	0.0023

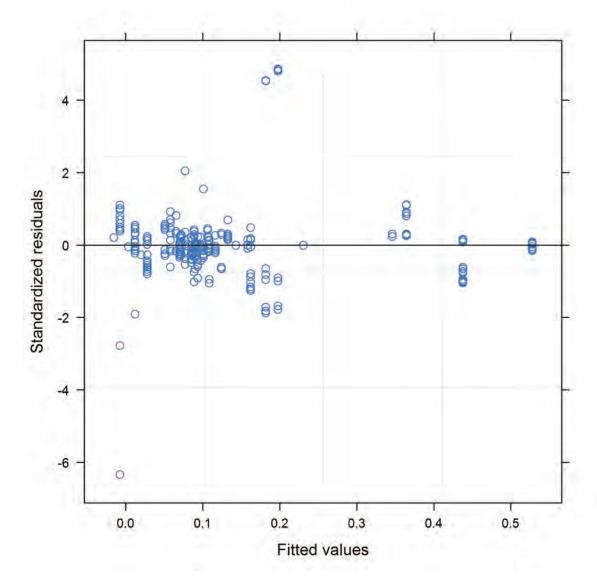
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.09	-0.19	0	sig.
Counts	-0.15	-0.24	-0.05	sig.
Vulture	-0.15	-0.24	-0.06	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Sulphate concentrations at the Fay Bay site were significantly (p = 0.002) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-607.74	312.87		
LME	10	-710.74	365.37	105	0

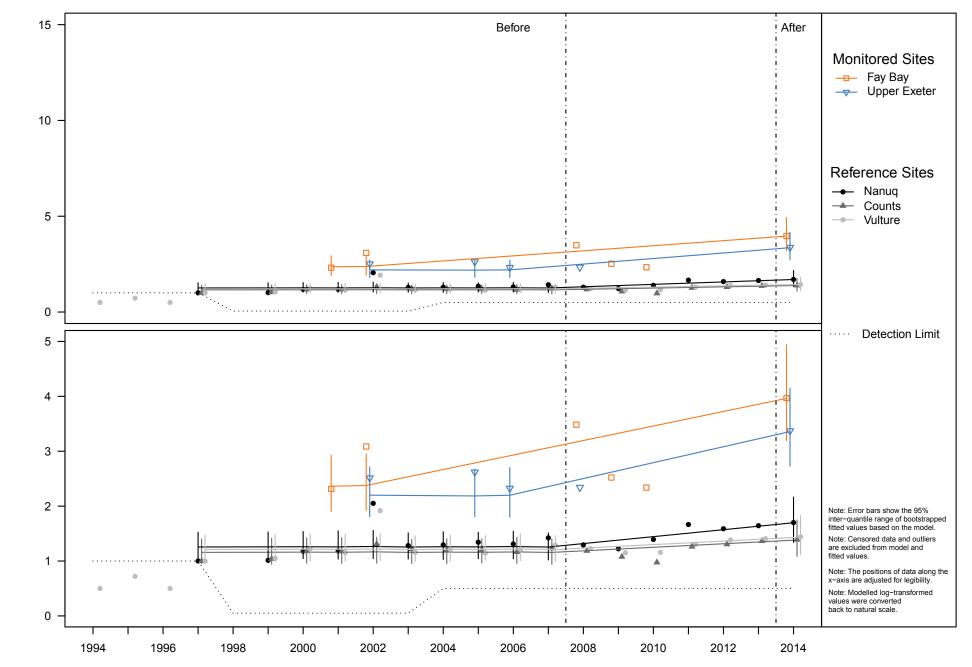
Conclusion:

The most appropriate model for sulphate at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	323	55	<.0001
##	site	3	323	116	<.0001
##	period	1	9	5	0.050
##	<pre>site:period</pre>	3	323	3	0.044

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.06	-0.15	0.04	not sig.
Counts	-0.11	-0.2	-0.02	sig.
Vulture	-0.11	-0.2	-0.02	sig.

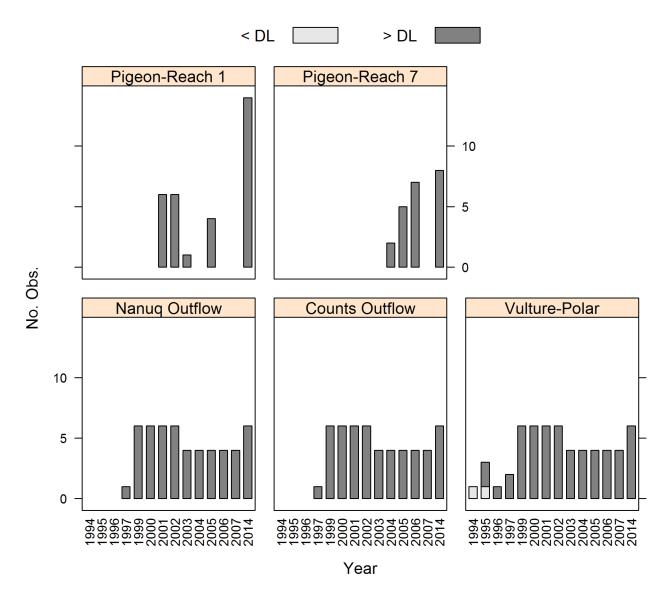

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Sulphate concentrations at the Upper Exeter site were significantly (p = 0.044) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Sulphate Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

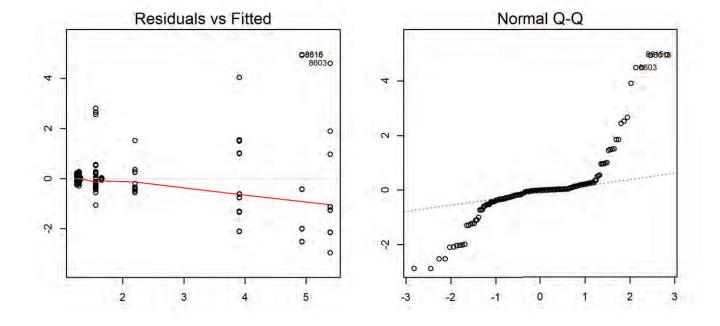
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

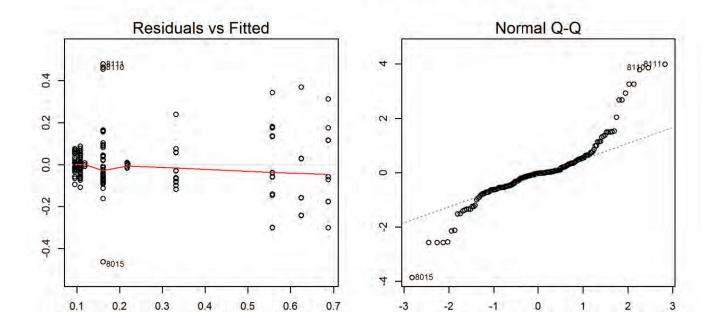
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


site year month season
8012 Vulture-Polar 1994 August summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

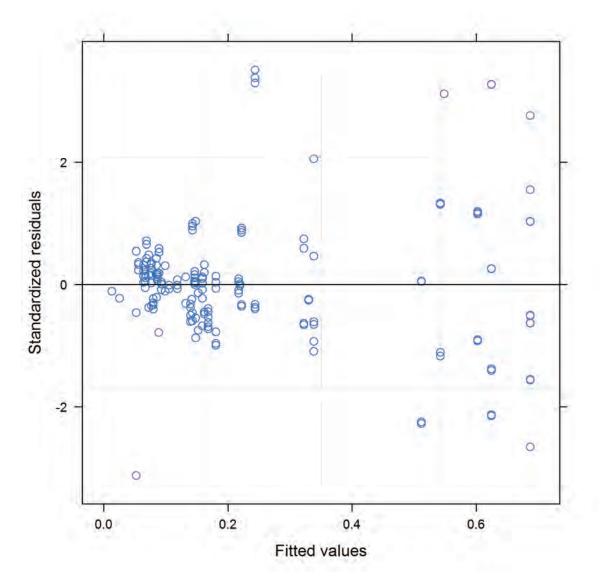
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.07	0.61	0.59
Log-10	0.12	0.73	0.72

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-228.81	125.41		
LME	12	-239.33	131.67	12.52	4.03×10 ⁻⁴

Conclusion:

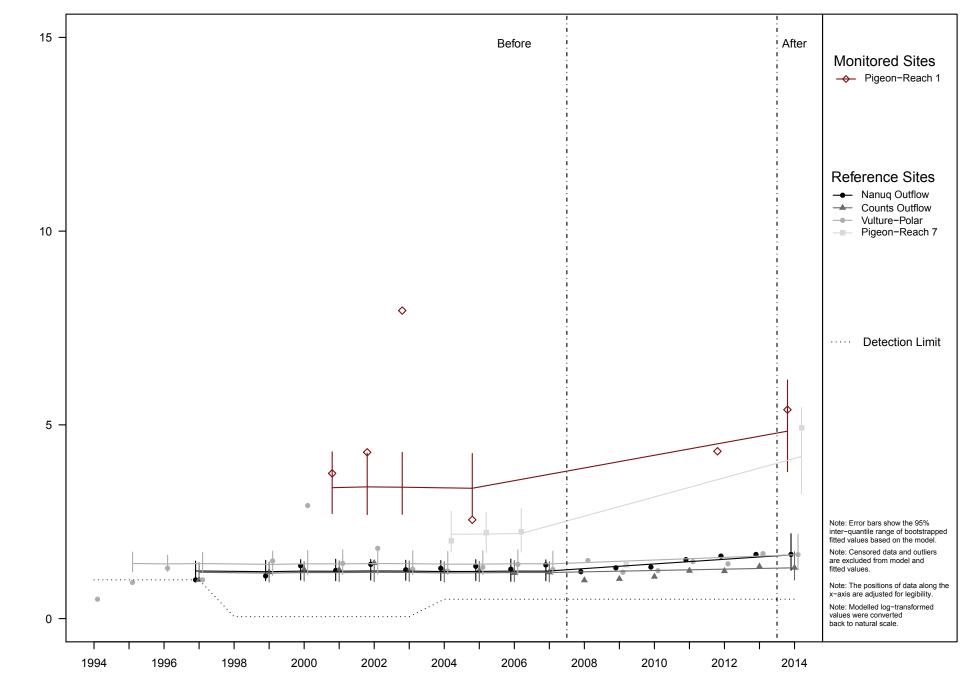
The most appropriate model for sulphate at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	190	91	<.0001
##	site	4	190	105	<.0001
##	period	1	11	4	0.0662
##	<pre>site:period</pre>	4	190	3	0.0098

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.02	-0.15	0.11	not sig.
Counts Outflow	-0.11	-0.24	0.01	not sig.
Vulture-Polar	-0.09	-0.22	0.03	not sig.
Pigeon-Reach 7	0.13	0	0.26	not sig.

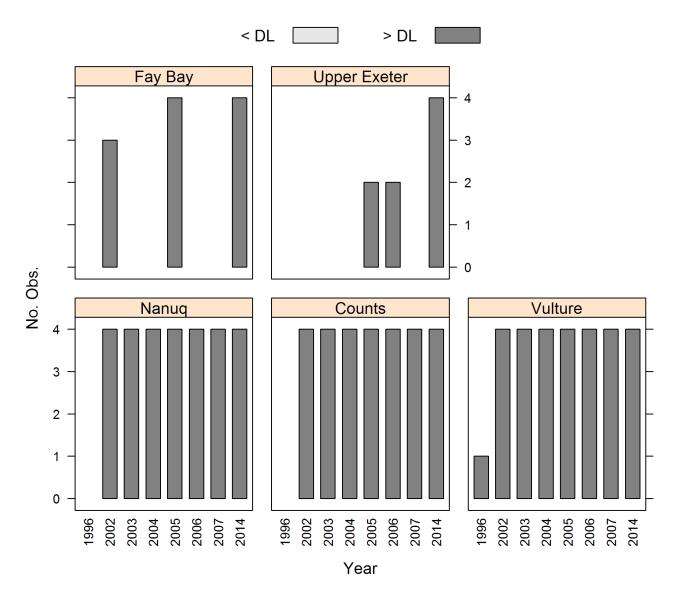

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Sulphate concentrations at the Pigeon-Reach 1 site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


Sulphate Concentration (mg/L)

Analysis of Winter Total Potassium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

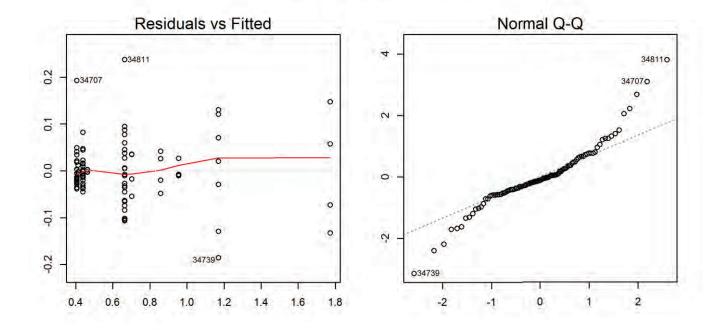
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

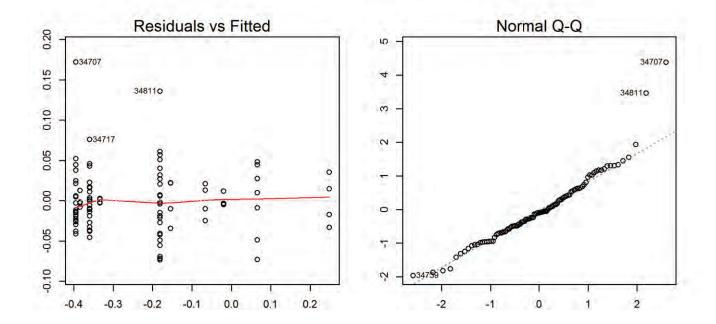
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
34336 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

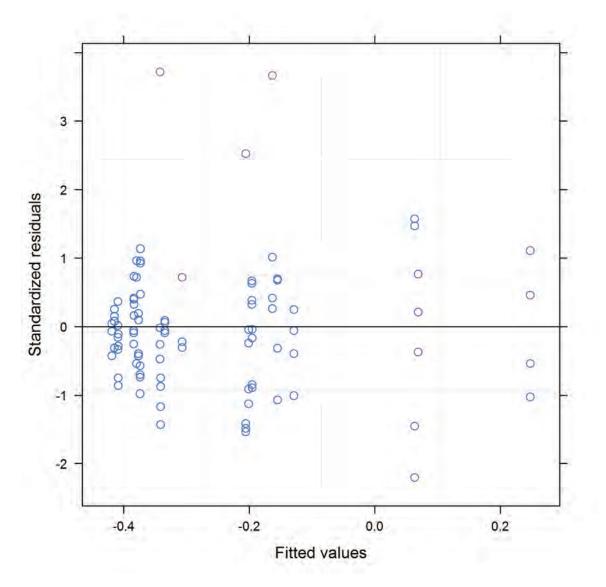
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.06	0.96	0.96
Log-10	0.04	0.95	0.95

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-272.89	145.45		
LME	10	-302	161	31.1	2.45×10 ⁻⁸

Conclusion:

The most appropriate model for total potassium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	82	465	<.0001
##	site	3	82	794	<.0001
##	period	1	5	2	0.23
##	<pre>site:period</pre>	3	82	13	<.0001

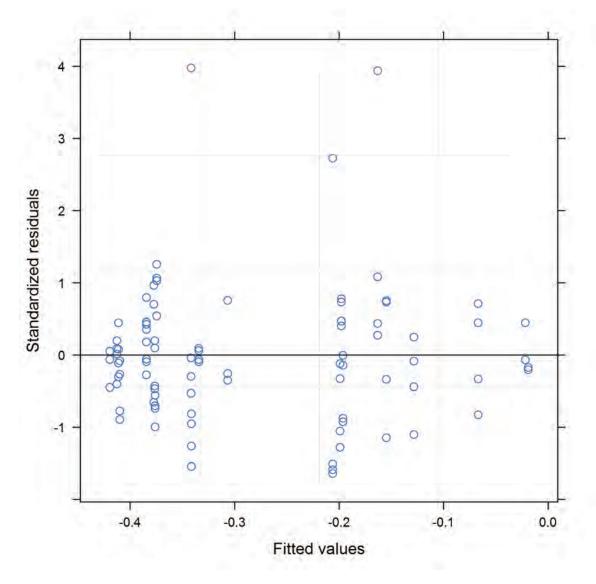
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.15	-0.21	-0.1	sig.
Counts	-0.14	-0.19	-0.08	sig.
Vulture	-0.14	-0.19	-0.08	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total potassium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-268.42	143.21		
LME	10	-301.96	160.98	35.54	2.5×10 ⁻⁹

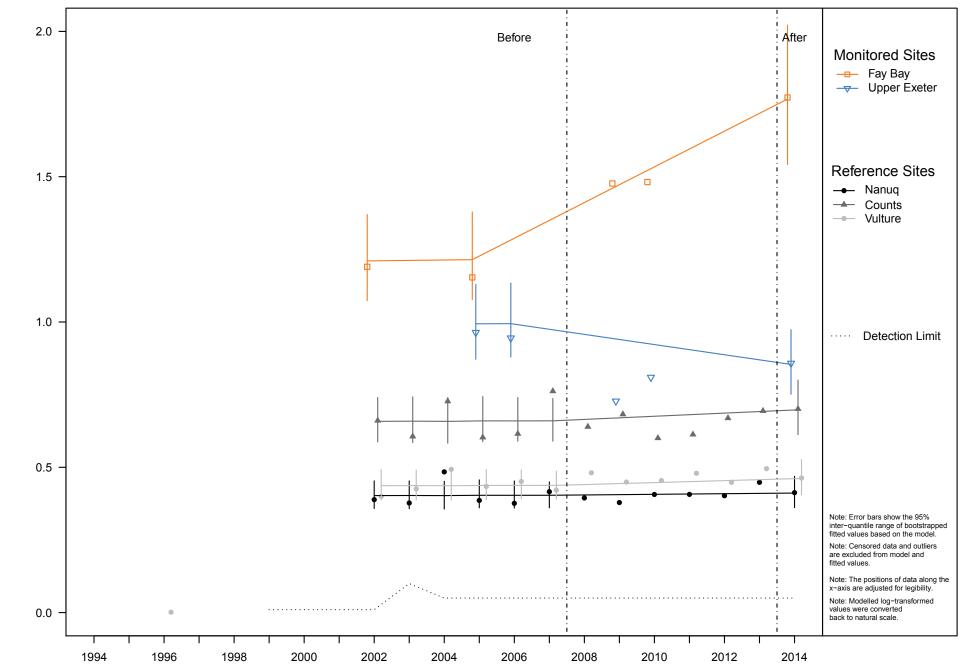
Conclusion:

The most appropriate model for total potassium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	555	<.0001
##	site	3	79	456	<.0001
##	period	1	5	0	0.8264
##	<pre>site:period</pre>	3	79	4	0.0062

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.07	0.02	0.12	sig.
Counts	0.09	0.03	0.14	sig.
Vulture	0.09	0.04	0.14	sig.

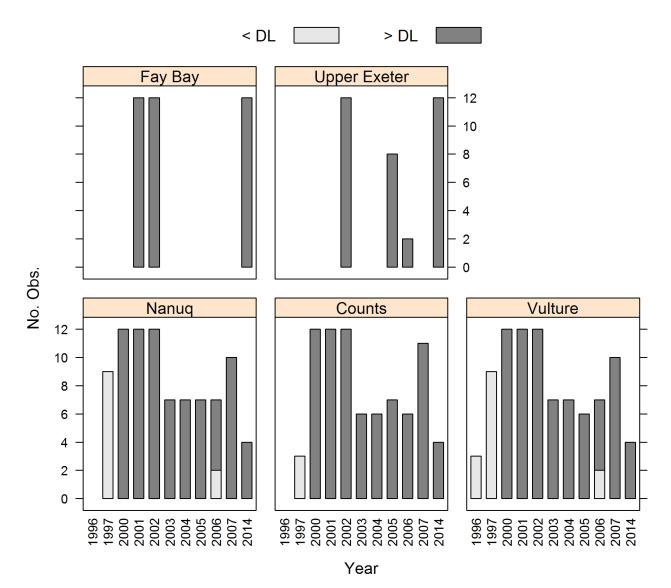

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total potassium concentrations at the Upper Exeter site were significantly (p = 0.006) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Summer Total Potassium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

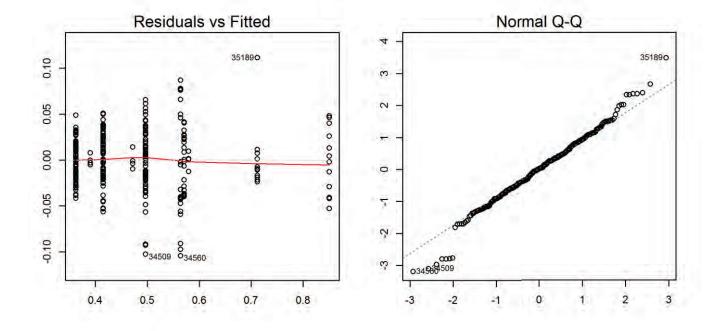
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

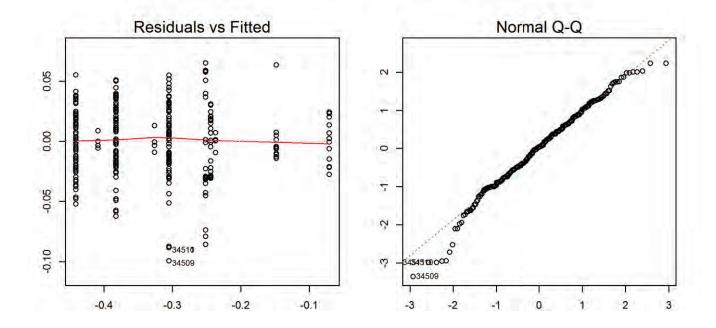
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


##		site	year	month	season
##	34337	Vulture	1996	August	summer
##	34338	Vulture	1996	August	summer
##	34339	Vulture	1996	August	summer
##	34340	Counts	1997	August	summer
##	34341	Counts	1997	August	summer
##	34342	Counts	1997	August	summer
##	34343	Nanuq	1997	August	summer
##	34344	Nanuq	1997	August	summer
##	34345	Nanuq	1997	August	summer
##	34346	Nanuq	1997	August	summer
##	34347	Nanuq	1997	August	summer
##	34348	Nanuq	1997	August	summer
##	34349	Nanuq	1997	August	summer
##	34350	Nanuq	1997	August	summer
##	34351	Nanuq	1997	August	summer
##	34352	Vulture	1997	August	summer
##	34353	Vulture	1997	August	summer
##	34354	Vulture	1997	August	summer
##	34355	Vulture	1997	August	summer
##	34356	Vulture	1997	August	summer
##	34357	Vulture	1997	August	summer
##	34358	Vulture	1997	August	summer
##	34359	Vulture	1997	August	summer
##	34360	Vulture	1997	August	summer
##	34793	Nanuq	2006	September	summer
##	34794	Nanuq	2006	September	summer
##	34808	Vulture	2006	September	summer
##	34809	Vulture	2006	September	summer

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

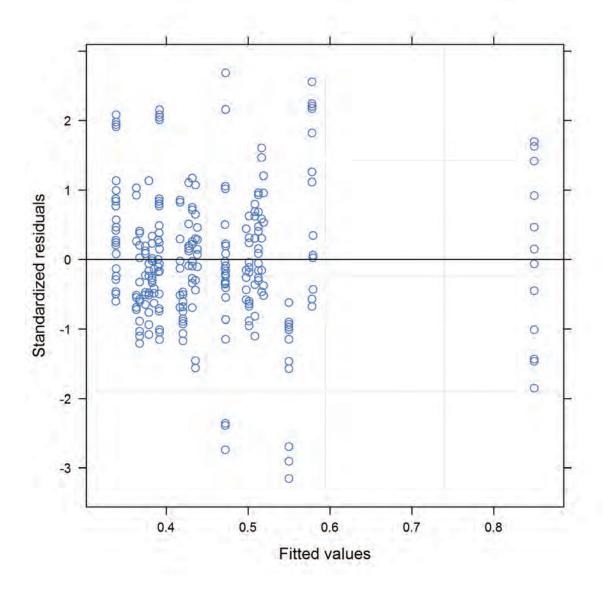
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.03	0.93	0.92
Log-10	0.03	0.91	0.91

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-967.89	492.94		
LME	10	-1031.08	525.54	65.19	6.66×10 ⁻¹⁶

Conclusion:

The most appropriate model for Total Potassium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	248	4794	<.0001
##	site	3	248	732	<.0001
##	period	1	7	42	3e-04
##	<pre>site:period</pre>	3	248	93	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.25	-0.28	-0.21	sig.
Counts	-0.19	-0.23	-0.16	sig.
Vulture	-0.22	-0.26	-0.18	sig.

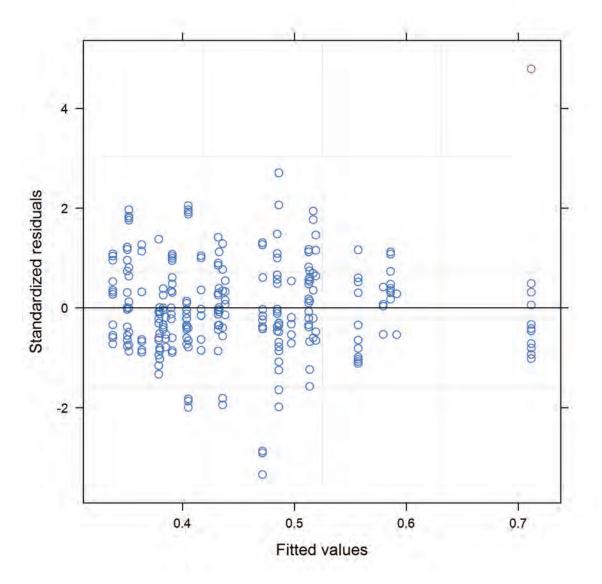
A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total potassium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:


 Model
 D.F.
 AIC
 log(Like.)
 L. Ratio
 p

 GLS
 9
 -1039.49
 528.74

 LME
 10
 -1122.28
 571.14
 84.79
 0

Conclusion:

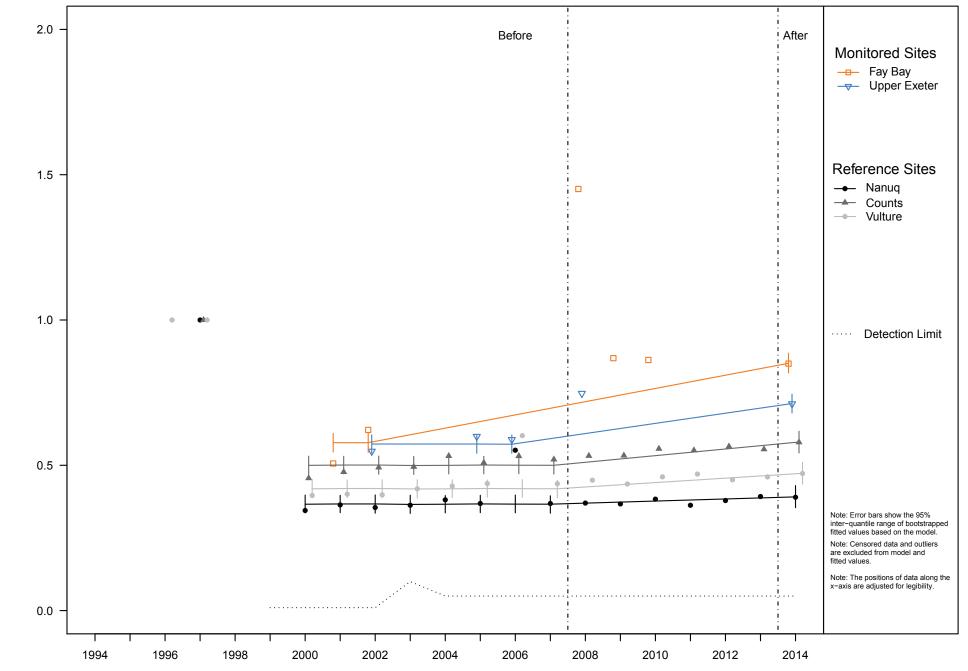
The most appropriate model for Total Potassium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	246	5229	<.0001
##	site	3	246	844	<.0001
##	period	1	7	18	0.0039
##	site:period	3	246	24	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.12	-0.15	-0.09	sig.
Counts	-0.06	-0.09	-0.03	sig.
Vulture	-0.09	-0.12	-0.06	sig.

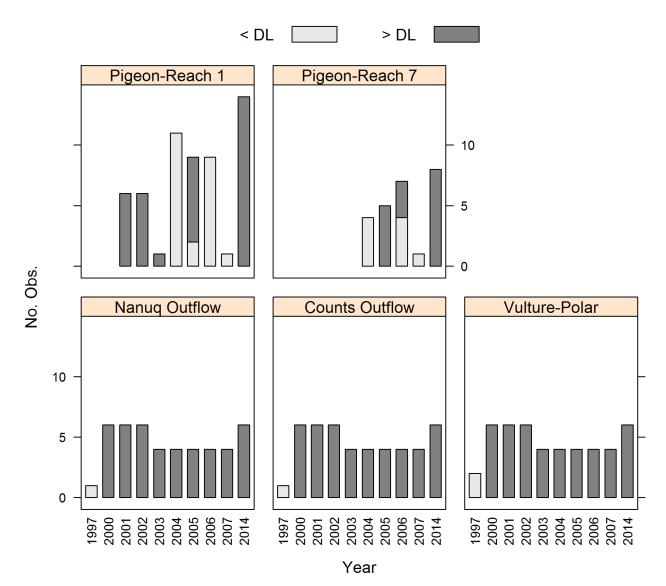

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total potassium concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



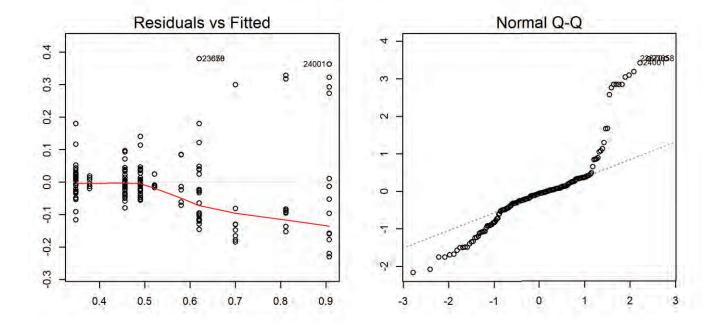
Analysis of Summer Total Potassium Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

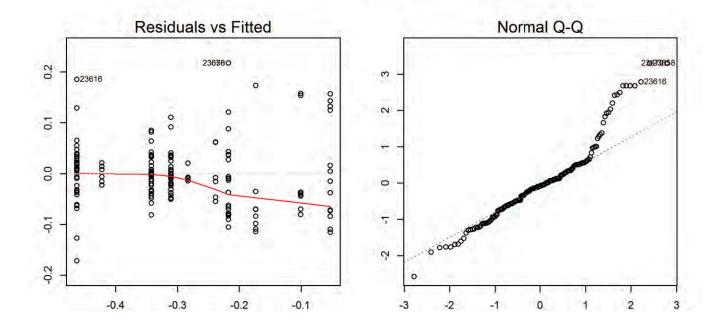
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:


##			t o		month	60060P
	22440	si		year	month	season
##	23418	Counts Outfl		1997	September	summer
##	23419	Nanuq Outfl		1997	September	summer
##	23420	Vulture-Pol		1997	July	summer
##	23421	Vulture-Pol	ar	1997	September	summer
##	23621	Pigeon-Reach	1	2004	July	summer
##	23622	Pigeon-Reach	1	2004	July	summer
##	23623	Pigeon-Reach	1	2004	July	summer
##	23624	Pigeon-Reach	1	2004	July	summer
##	23625	Pigeon-Reach	1	2004	August	summer
##	23626	Pigeon-Reach	1	2004	August	summer
##	23627	Pigeon-Reach	1	2004	August	summer
##	23628	Pigeon-Reach	1	2004	August	summer
##	23629	Pigeon-Reach	1	2004	September	summer
##	23630	Pigeon-Reach	1	2004	September	summer
##	23631	Pigeon-Reach	1	2004	September	summer
##	23632	Pigeon-Reach	7	2004	July	summer
##	23633	Pigeon-Reach	7	2004	July	summer
##	23634	Pigeon-Reach	7	2004	July	summer
##	23635	Pigeon-Reach	7	2004	July	summer
##	23699	Pigeon-Reach	1	2006	July	summer
##	23700	Pigeon-Reach	1	2006	July	summer
##	23701	Pigeon-Reach	1	2006	July	summer
##	23702	Pigeon-Reach	1	2006	August	summer
##	23703	Pigeon-Reach	1	2006	August	summer
##	23704	Pigeon-Reach	1	2006	August	summer
##	23705	Pigeon-Reach	1	2006	September	summer
##	23706	Pigeon-Reach	1	2006	September	summer
##	23707	Pigeon-Reach	1	2006	September	summer
##	23738	Pigeon-Reach	1	2007	July	summer
##	23752	Pigeon-Reach	7	2007	July	summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

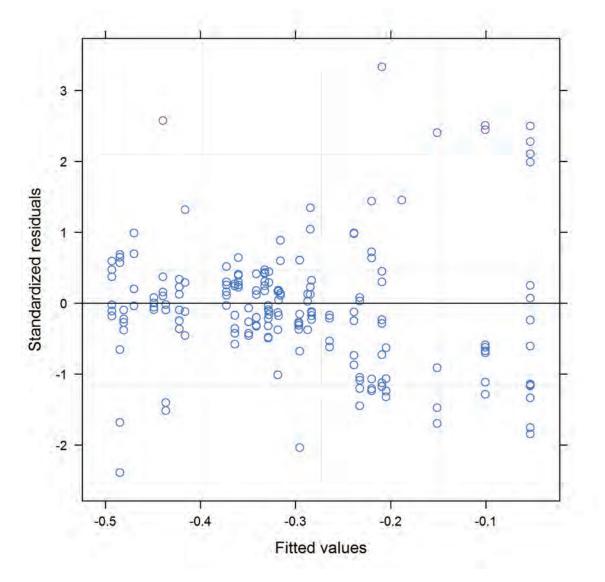
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.11	0.69	0.68
Log-10	0.07	0.77	0.76

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-406.12	214.06		
LME	12	-418.38	221.19	14.26	1.59×10^{-4}

Conclusion:

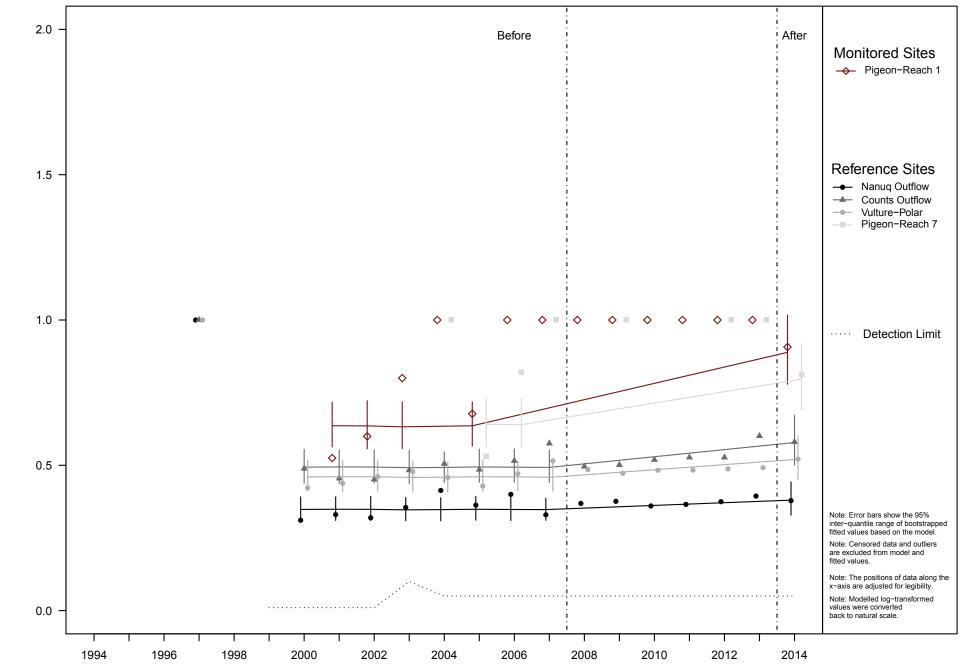
The most appropriate model for total potassium at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	171	775	<.0001
##	site	4	171	117	<.0001
##	period	1	7	6	0.044
##	site:period	4	171	3	0.020

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.11	-0.18	-0.04	sig.
Counts Outflow	-0.08	-0.14	-0.01	sig.
Vulture-Polar	-0.09	-0.16	-0.02	sig.
Pigeon-Reach 7	-0.05	-0.12	0.02	not sig.

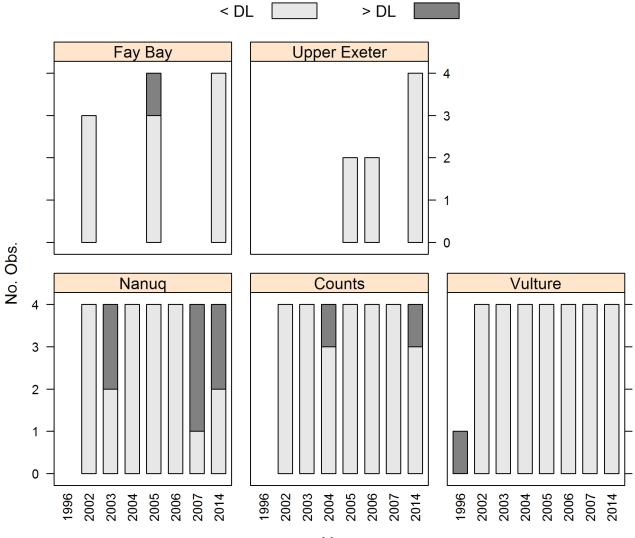

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total potassium concentrations at the Pigeon-Reach 1 site were significantly (p = 0.02) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

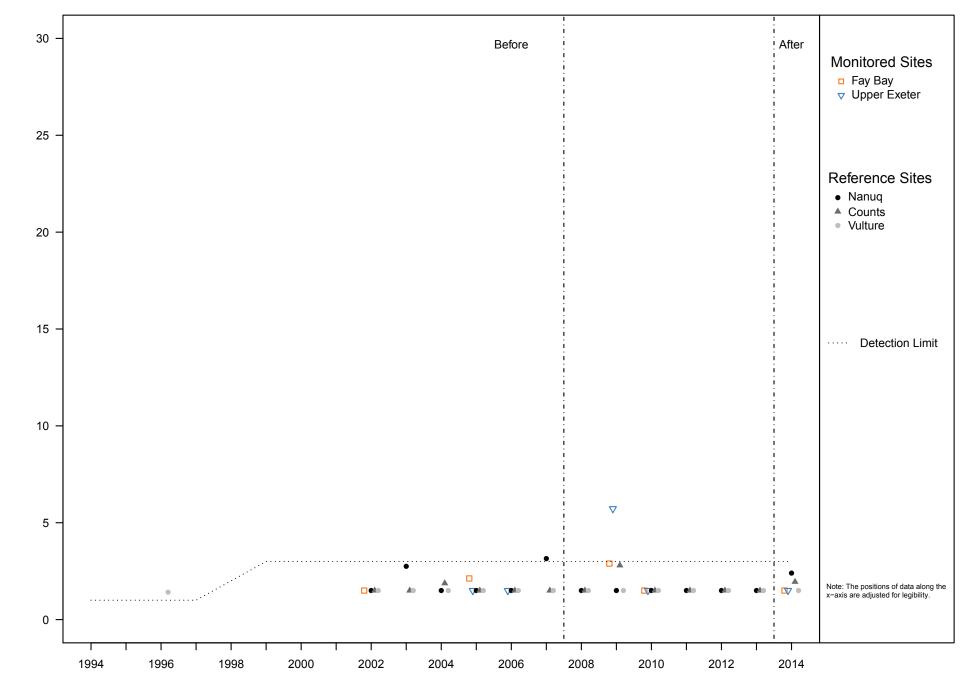
Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Winter Total Suspended Solids Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

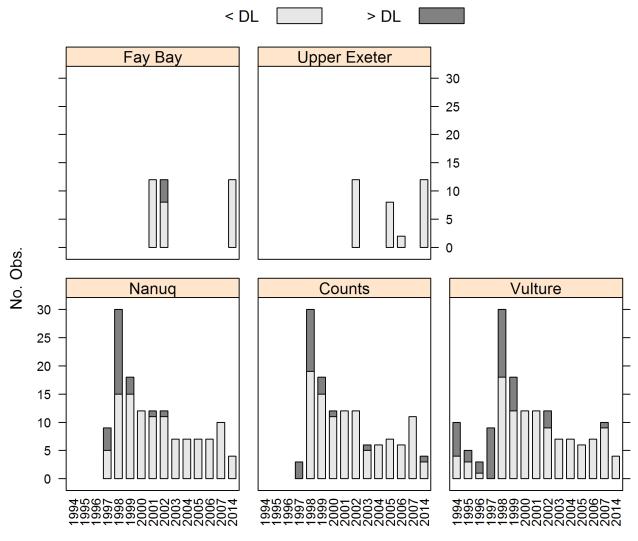
January 21, 2015


1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Conclusion:

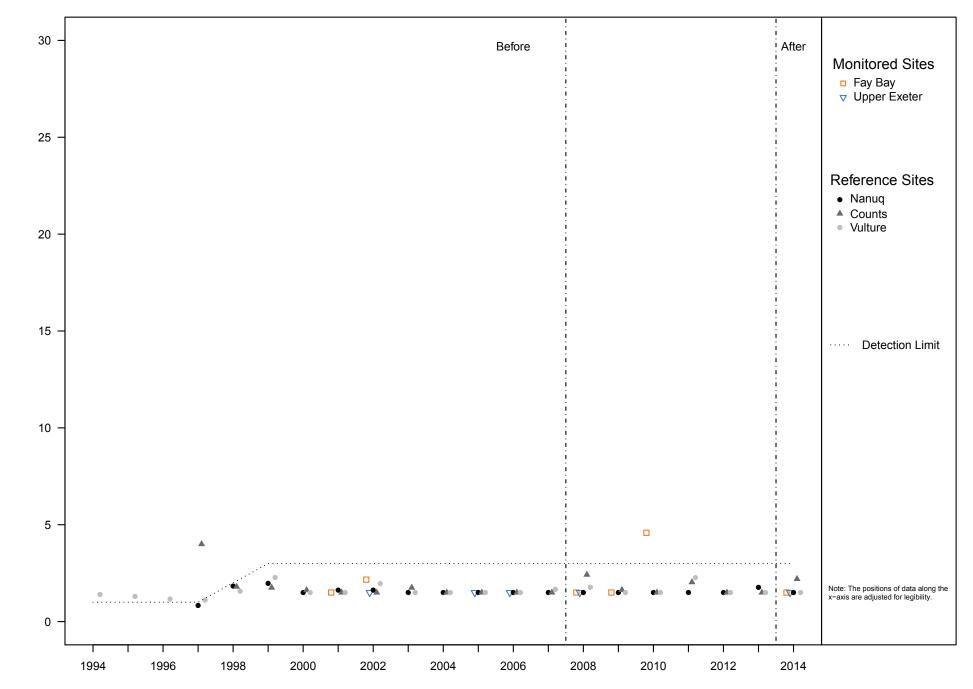
TSS water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Suspended Solids Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

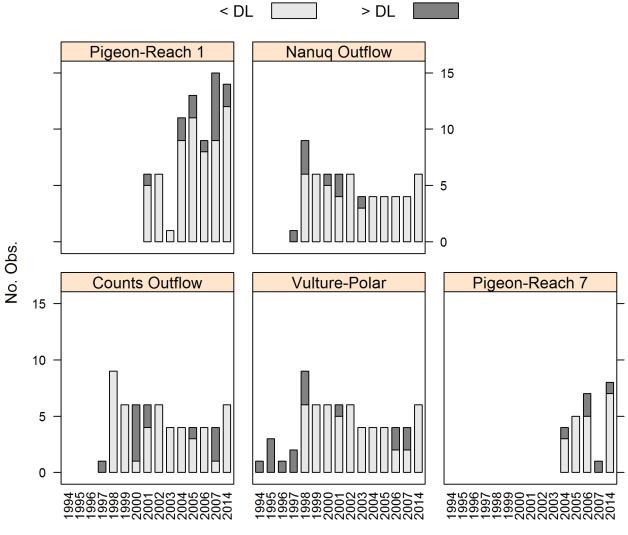
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

TSS water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Suspended Sediment Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

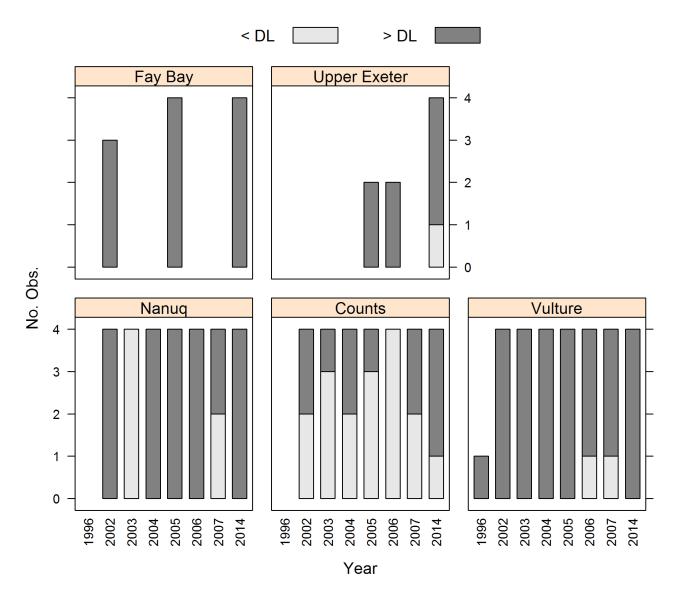
1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

TSS water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



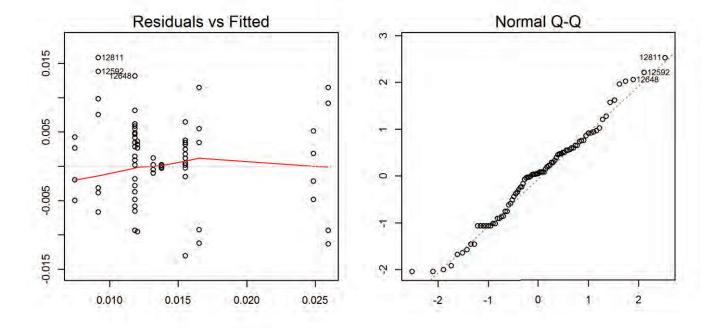
Analysis of Winter Total Ammonia Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

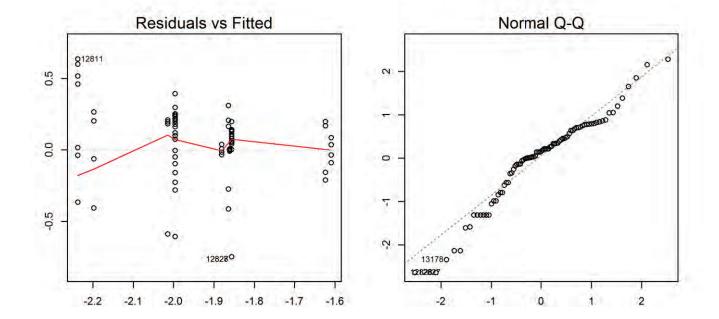
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:


```
##
           site year month season
## 12664 Counts 2003 April winter
## 12665 Counts 2003 April winter
## 12666 Counts 2003 April winter
## 12667 Counts 2003 April winter
## 12674 Nanuq 2003 April winter
## 12675 Nanug 2003 April winter
## 12676 Nanuq 2003 April winter
## 12677 Nanug 2003 April winter
## 12728 Counts 2005 April winter
## 12729 Counts 2005 April winter
## 12730 Counts 2005 April winter
## 12731 Counts 2005 April winter
## 12774 Counts 2006 April winter
## 12775 Counts 2006 April winter
## 12776 Counts 2006 April winter
## 12777 Counts 2006 April winter
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
12685 Vulture 2003 April winter
12741 Fay Bay 2005 April winter
12742 Fay Bay 2005 April winter

3 Initial Model Fit

Natural Scale Model

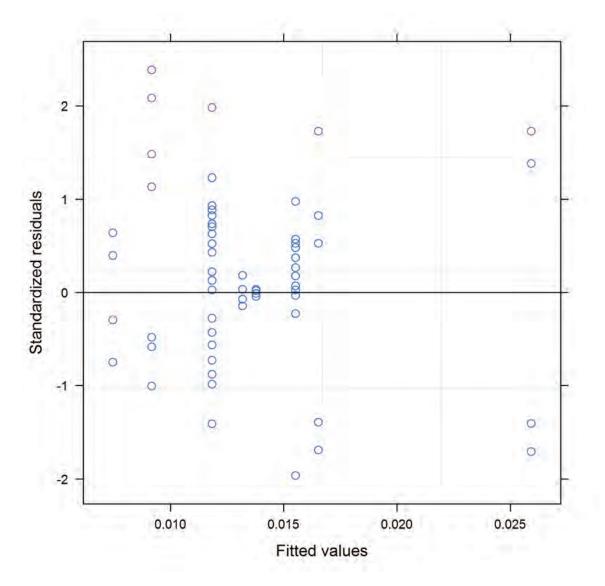
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.01	0.35	0.27
Log-10	0.29	0.28	0.19

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-462.57	240.28		
LME	10	-462.1	241.05	1.53	0.22

Conclusion:

The most appropriate model for total ammonia-N at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.216).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 6	59		
##		numDF	F-value	p-value
##	(Intercept)	1	312	<.0001
##	site	3	7	0.0003
##	period	1	0	0.5279
##	<pre>site:period</pre>	3	2	0.2104

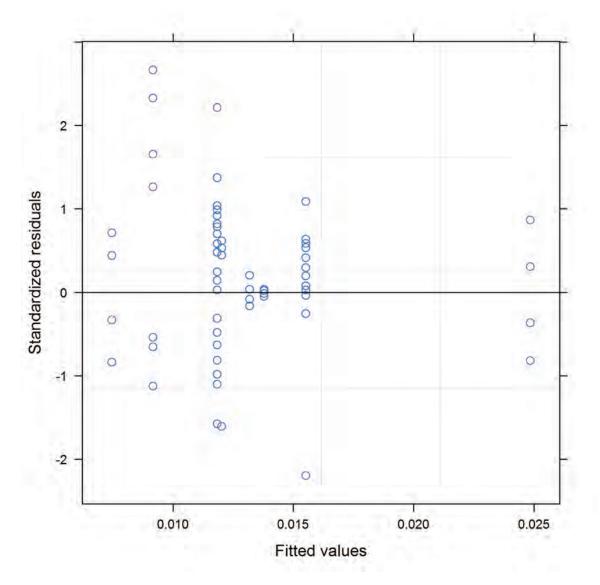
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.01	-0.02	3.1210^{-4}	not sig.
Counts	-0.01	-0.02	5.8810^{-4}	not sig.
Vulture	-0.01	-0.02	0	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total ammonia-N concentrations at the Fay Bay site were not significantly (p = 0.21) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-470.61	244.3		
LME	10	-469.24	244.62	0.63	0.43

Conclusion:

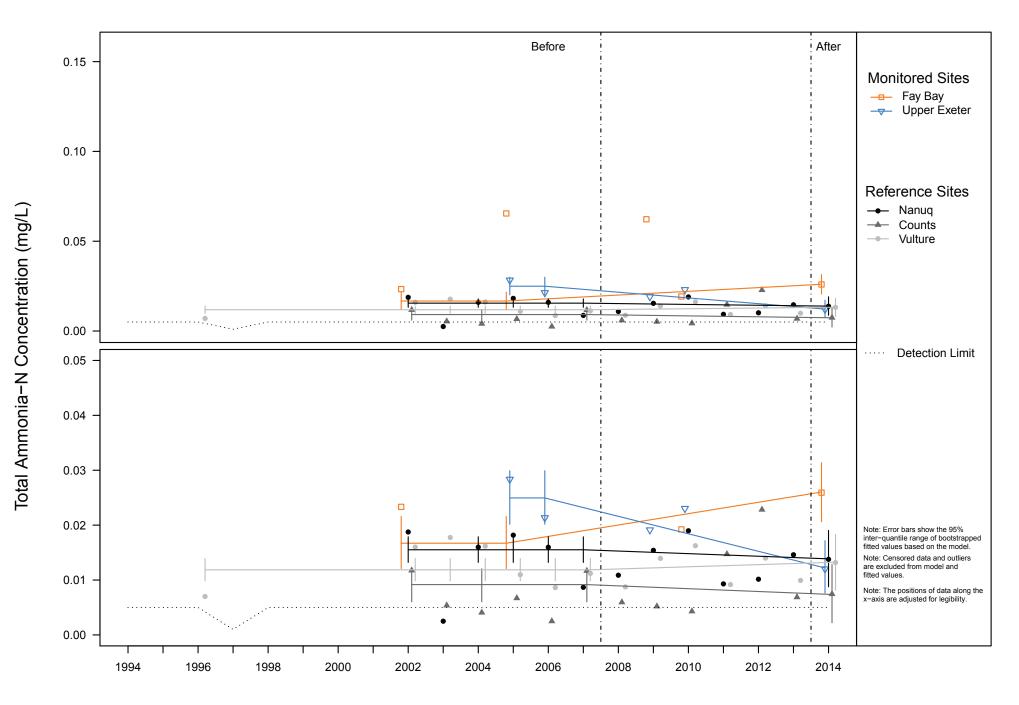
The most appropriate model for total ammonia-N at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.427).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 6	58		
##		numDF	F-value	p-value
##	(Intercept)	1	365	<.0001
##	site	3	6	0.0007
##	period	1	2	0.1210
##	<pre>site:period</pre>	3	3	0.0648

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.01	4.8610^{-4}	0.02	sig.
Counts	0.01	2.910^{-4}	0.02	sig.
Vulture	0.01	0	0.02	sig.

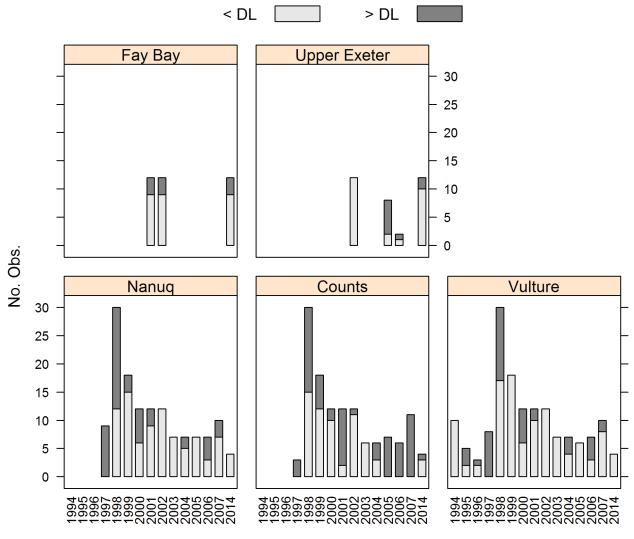

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total ammonia-N concentrations at the Upper Exeter site were not significantly (p = 0.065) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

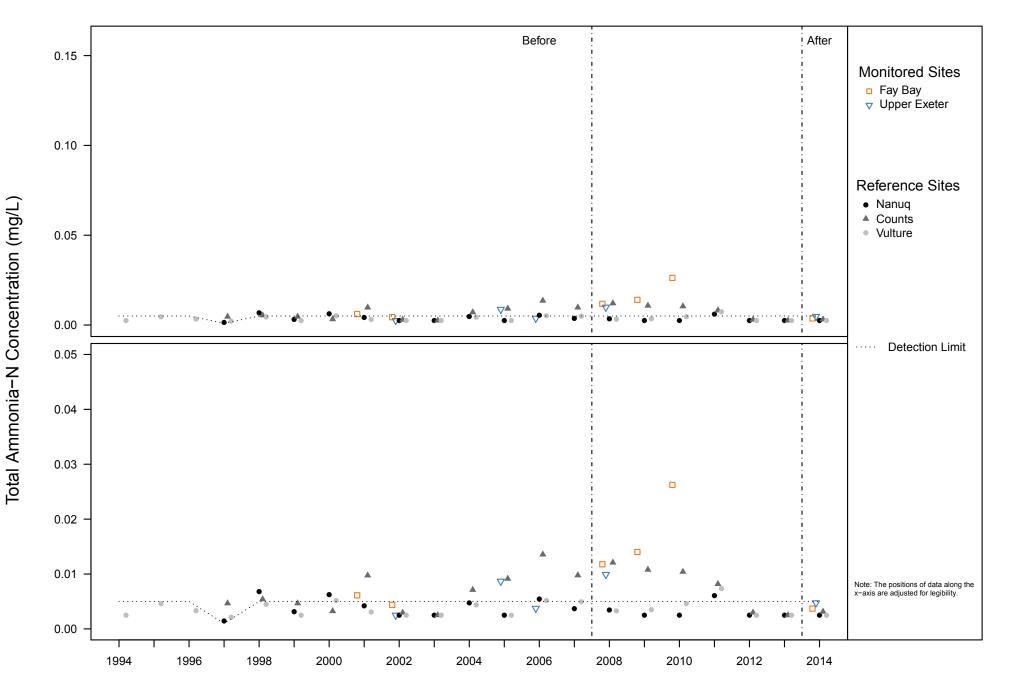
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Suspended Solids Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

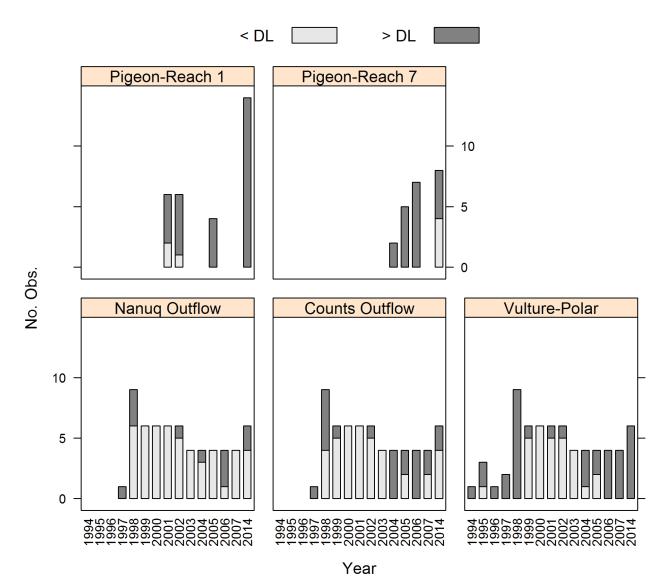
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

AmmoniaN water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.


DOMINION DIAMOND EKATI CORPORATION

Analysis of Summer Total Ammonia Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

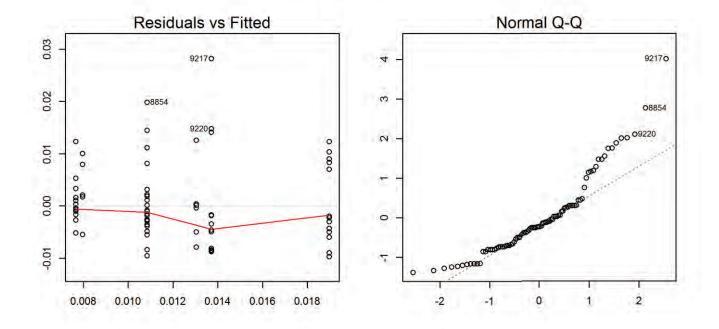
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:

##			site	year	month	season
##		Counts	Outflow	1997	September	summer
##	8635	Nanuq	Outflow	1997	September	summer
##	8642	Counts	Outflow	1998	July	summer
##	8643	Counts	Outflow	1998	July	summer
##	8644	Counts	Outflow	1998	July	summer
##	8645	Counts	Outflow	1998	August	summer
##	8646	Counts	Outflow	1998	August	summer
##	8647	Counts	Outflow	1998	August	summer
##	8648	Counts	Outflow	1998	September	summer
##	8649	Counts	Outflow	1998	September	summer
##	8650	Counts	Outflow	1998	September	summer
##	8655	Nanuq	Outflow	1998	July	summer
##	8656	Nanuq	Outflow	1998	July	summer
##	8657	Nanuq	Outflow	1998	July	summer
##	8658	Nanuq	Outflow	1998	August	summer
##	8659	Nanuq	Outflow	1998	August	summer
##	8660	Nanuq	Outflow	1998	August	summer
##	8661	Nanuq	Outflow	1998	September	summer
##	8662	Nanuq	Outflow	1998	September	summer
##	8663	Nanuq	Outflow	1998	September	summer
##	8680	Counts	Outflow	1999	August	summer
##	8681	Counts	Outflow	1999	August	summer
##	8682	Counts	Outflow	1999	August	summer
##	8683	Counts	Outflow	1999	September	summer
##	8684	Counts	Outflow	1999	September	summer
##	8685	Counts	Outflow	1999	September	summer
##	8689	Nanuq	Outflow	1999	August	summer
##	8690	Nanuq	Outflow	1999	August	summer
##	8691	Nanuq	Outflow	1999	August	summer
##	8692	Nanuq	Outflow	1999	September	summer
##	8693	Nanuq	Outflow	1999	September	summer
##	8694	Nanuq	Outflow	1999	September	summer
##	8698	Vultur	re-Polar	1999	August	summer
##	8699	Vultur	re-Polar	1999	August	summer
##	8700	Vultur	re-Polar	1999	August	summer
##	8701	Vultur	re-Polar	1999	September	summer
##	8702	Vultur	re-Polar	1999	September	summer
##	8703	Vultur	re-Polar	1999	September	summer
##	8707	Counts	Outflow	2000	August	summer
##	8708	Counts	Outflow	2000	August	summer
##	8709	Counts	Outflow	2000	August	summer
##	8710	Counts	Outflow	2000	September	summer

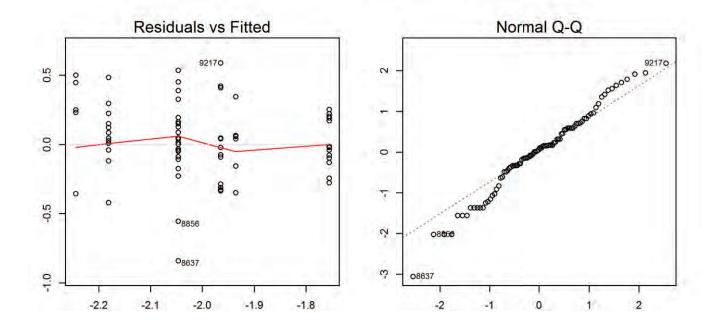
##	8711	Counts	Outflow	2000	September	summer
##	8712	Counts	Outflow	2000	September	summer
##	8716	Nanuq	Outflow	2000	August	summer
##	8717	Nanuq	Outflow	2000	August	summer
##	8718	Nanuq		2000	August	summer
##	8719	Nanuq		2000	September	summer
##	8720	Nanuq	Outflow	2000	September	summer
##	8721	Nanuq	Outflow	2000	September	summer
##	8725		re-Polar	2000	August	summer
##	8726		re-Polar	2000	August	summer
##	8727		re-Polar	2000	August	summer
##	8728		re-Polar	2000	September	summer
##	8729		re-Polar	2000	September	summer
##	8730	Vultur	re-Polar	2000	September	summer
##	8733	Counts	Outflow	2001	August	summer
##	8734	Counts	Outflow	2001	August	summer
##	8735	Counts	Outflow	2001	August	summer
##	8736	Counts	Outflow	2001	September	summer
##	8737	Counts	Outflow	2001	September	summer
##	8738	Counts	Outflow	2001	September	summer
##	8742	Nanuq	Outflow	2001	August	summer
##	8743	Nanuq	Outflow	2001	August	summer
##	8744	Nanuq	Outflow	2001	August	summer
##	8745	Nanuq	Outflow	2001	September	summer
##	8746	Nanuq	Outflow	2001	September	summer
##	8747	Nanuq	Outflow	2001	September	summer
##	8760	Vultur	re-Polar	2001	August	summer
##	8761	Vultur	re-Polar	2001	August	summer
##	8762	Vultur	re-Polar	2001	August	summer
##	8763	Vultur	re-Polar	2001	September	summer
##	8764	Vultur	re-Polar	2001	September	summer
##	8765	Vultur	re-Polar	2001	September	summer
##	8769	Counts	Outflow	2002	August	summer
##	8770	Counts	Outflow	2002	August	summer
##	8771	Counts	Outflow	2002	August	summer
##	8772	Counts	Outflow	2002	September	summer
##	8773	Counts	Outflow	2002	September	summer
##	8774	Counts	Outflow	2002	September	summer
##	8778	Nanuq	Outflow	2002	August	summer
##	8779	Nanuq	Outflow	2002	August	summer
##	8780	Nanuq	Outflow	2002	August	summer
##	8781	Nanuq	Outflow	2002	September	summer
##	8782	Nanuq	Outflow	2002	September	summer
##	8783	Nanuq	Outflow	2002	September	summer
##	8796	-	re-Polar	2002	August	summer
##	8797	Vultur	re-Polar	2002	August	summer
##	8798	Vultur	re-Polar	2002	August	summer
##	8799	Vultur	re-Polar	2002	September	summer
##	8800	Vultur	re-Polar	2002	September	summer
##	8801	Vultur	re-Polar	2002	September	summer

##	8804	Counts	Outflow	2003	August	summer
##	8805	Counts	Outflow	2003	August	summer
##	8806	Counts	Outflow	2003	September	summer
##	8807	Counts	Outflow	2003	September	summer
##	8810	Nanuq	Outflow	2003	August	summer
##	8811	Nanuq	Outflow	2003	August	summer
##	8812	Nanuq	Outflow	2003	September	summer
##	8813	Nanuq	Outflow	2003	September	summer
##	8818		re-Polar	2003	August	summer
##	8819		re-Polar	2003	August	summer
##	8820		re-Polar	2003	September	summer
##	8821		re-Polar	2003	September	summer
##	8824	Counts	Outflow	2004	August	summer
##	8825	Counts	Outflow	2004	August	summer
##	8826	Counts	Outflow	2004	September	summer
##	8827	Counts	Outflow	2004	September	summer
##	8830	Nanuq	Outflow	2004	August	summer
##	8831	Nanuq	Outflow	2004	August	summer
##	8832	Nanuq	Outflow	2004	September	summer
##	8833	Nanuq	Outflow	2004	September	summer
##	8860	Counts	Outflow	2005	August	summer
##	8861	Counts	Outflow	2005	August	summer
##	8862	Counts	Outflow	2005	September	summer
##	8863	Counts	Outflow	2005	September	summer
##	8866	Nanuq	Outflow	2005	August	summer
##	8867	Nanuq	Outflow	2005	August	summer
##	8868	Nanuq	Outflow	2005	September	summer
##	8869	Nanuq	Outflow	2005	September	summer
##	8902	Counts	Outflow	2006	August	summer
##	8903	Counts	Outflow	2006	August	summer
##	8904	Counts	Outflow	2006	September	summer
##	8905	Counts	Outflow	2006	September	summer
##	8908	Nanuq	Outflow	2006	August	summer
##	8909	Nanuq	Outflow	2006	August	summer
##	8910		Outflow		September	
##	8911	Nanuq	Outflow	2006	September	summer
##	8940	Counts	Outflow	2007	August	summer
##	8941	Counts	Outflow	2007	August	summer
##	8942	Counts	Outflow	2007	September	summer
##	8943	Counts	Outflow	2007	September	summer
##	8945	Nanuq		2007	August	summer
##	8946	Nanuq		2007	August	summer
##	8947	Nanuq	Outflow	2007	September	summer
##	8948	Nanuq	Outflow	2007	September	summer
##	9193	Counts	Outflow	2014	July	summer
##	9194	Counts	Outflow	2014	July	
##		Counts		2014	August	
##	9196	Counts		2014	August	summer
##	9197	Counts		2014		summer
##	9198	Counts	Outflow	2014	September	summer


9201 Nanuq Outflow 2014 July summer ## 9202 Nanuq Outflow 2014 July summer ## 9203 Nanuq Outflow 2014 August summer ## 9204 Nanuq Outflow 2014 August summer ## 9205 Nanuq Outflow 2014 September summer ## 9206 Nanuq Outflow 2014 September summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

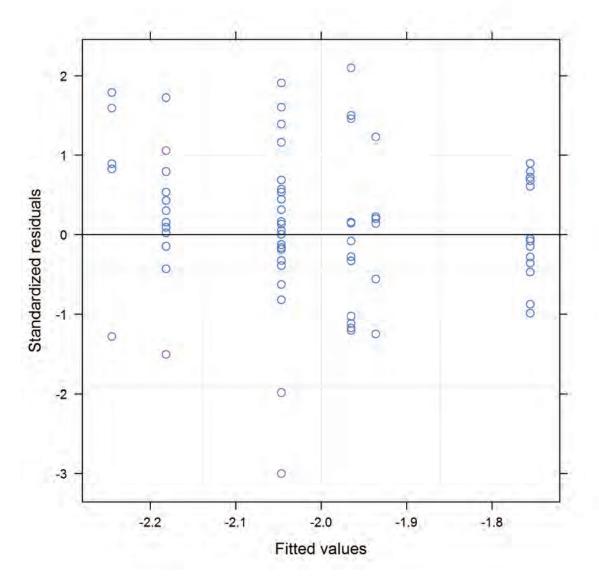
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²	
Natural	0.01	0.21	0.17	
Log-10	0.28	0.23	0.18	

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	7	53.65	-19.82		
LME	8	55.36	-19.68	0.29	0.59

Conclusion:

The most appropriate model for total ammonia-N at the Pigeon-Reach 1 monitoring site was the simpler GLS model without a year term (p = 0.59).

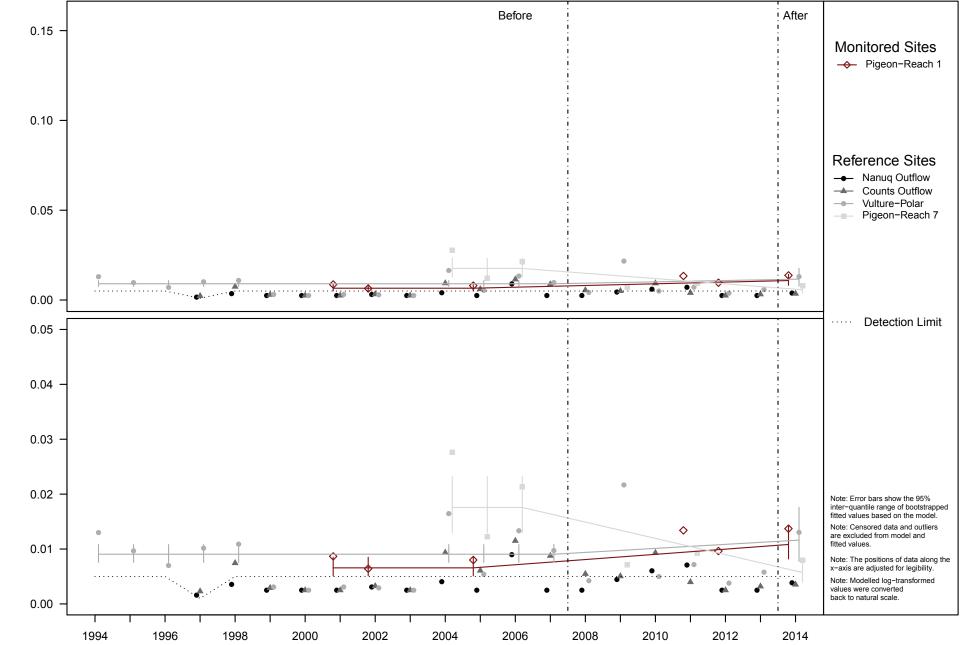
Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	34		
##		numDF	F-value	p-value
##	(Intercept)	1	4712	<.0001
##	site	2	2	0.1759
##	period	1	0	0.7873
##	<pre>site:period</pre>	2	10	0.0001

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	NA	NA	NA	NA
Counts Outflow	NA	NA	NA	NA
Vulture-Polar	-0.11	-0.43	0.21	not sig.
Pigeon-Reach 7	-0.71	-1.03	-0.39	sig.

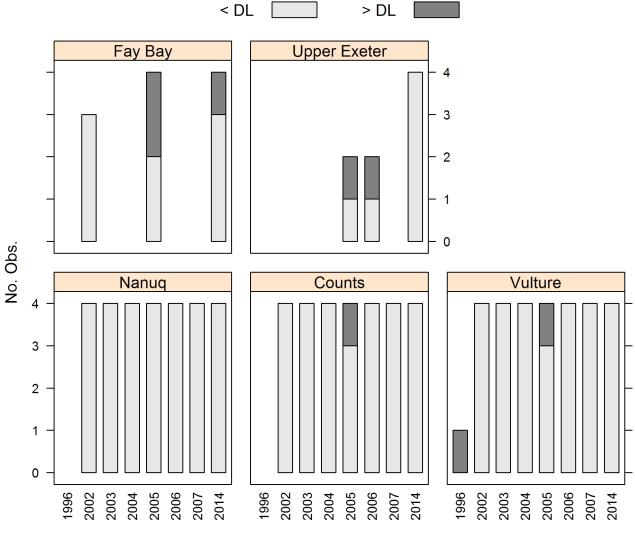

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total ammonia-N concentrations at the Pigeon-Reach 1 site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

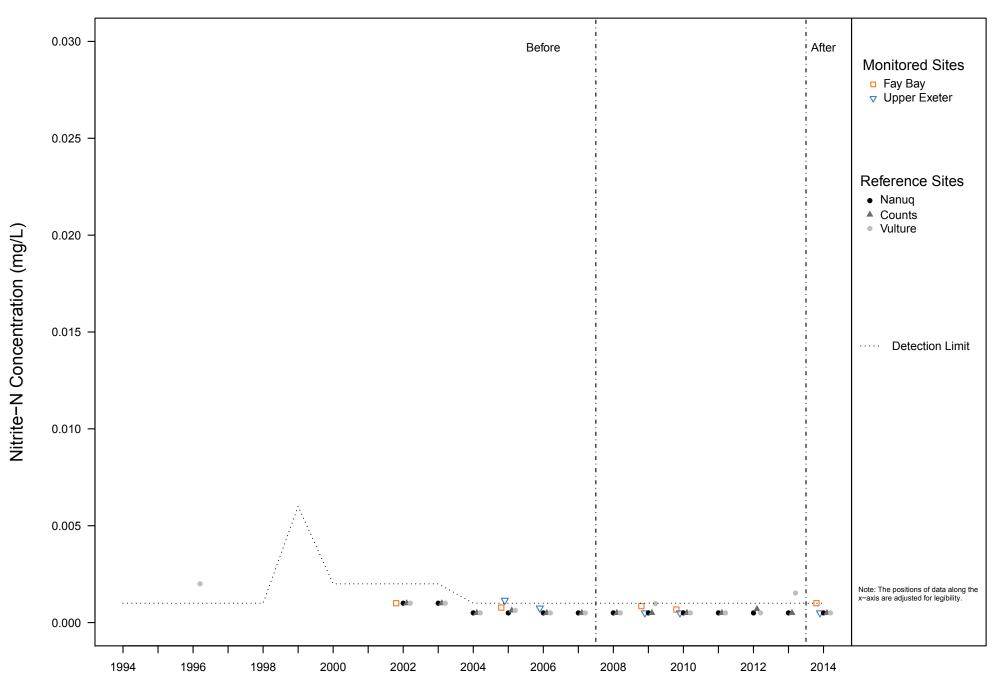
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Nitrite Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

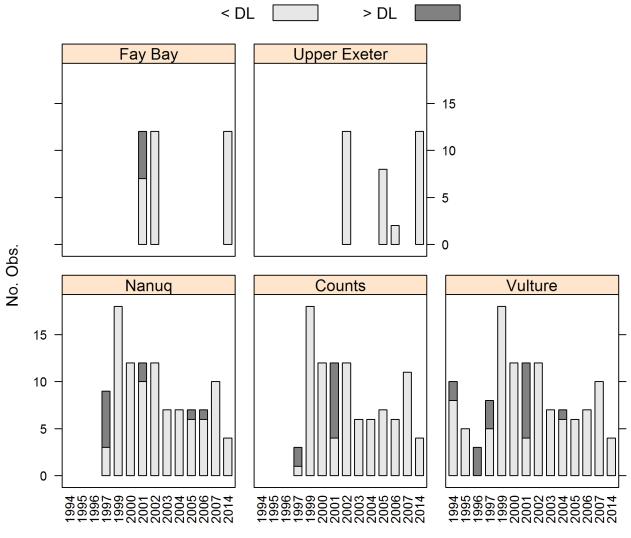
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

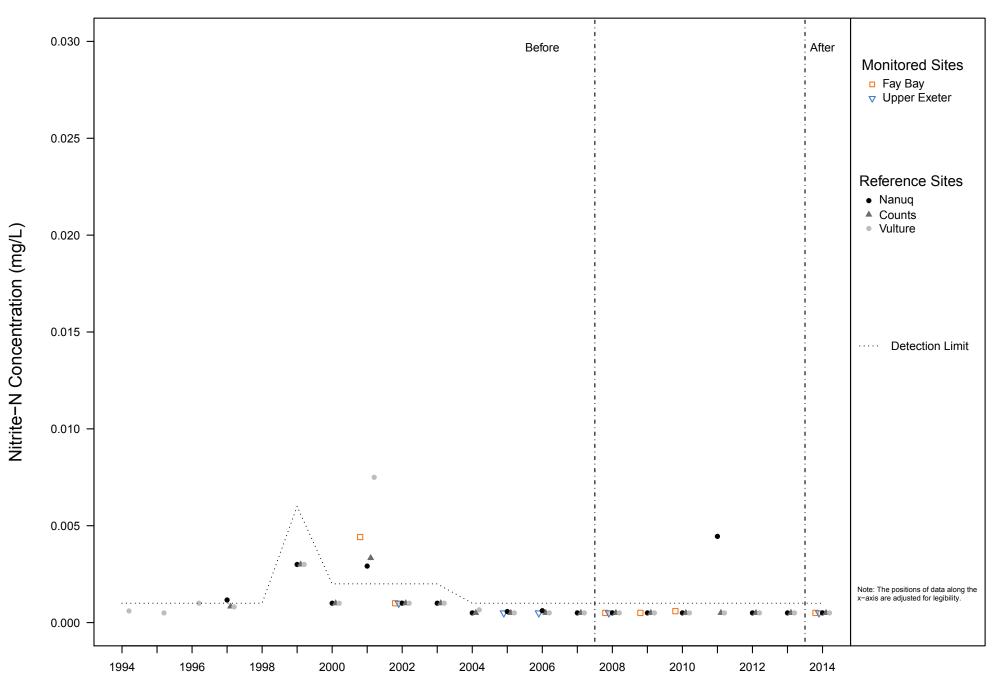
NitriteN water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Nitrite Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

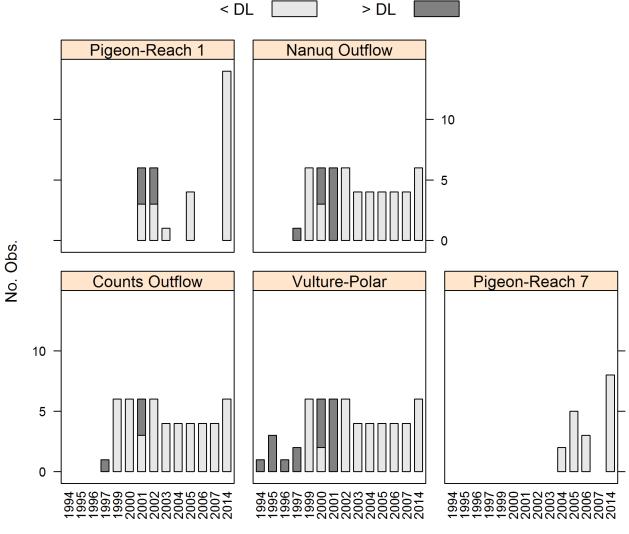
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

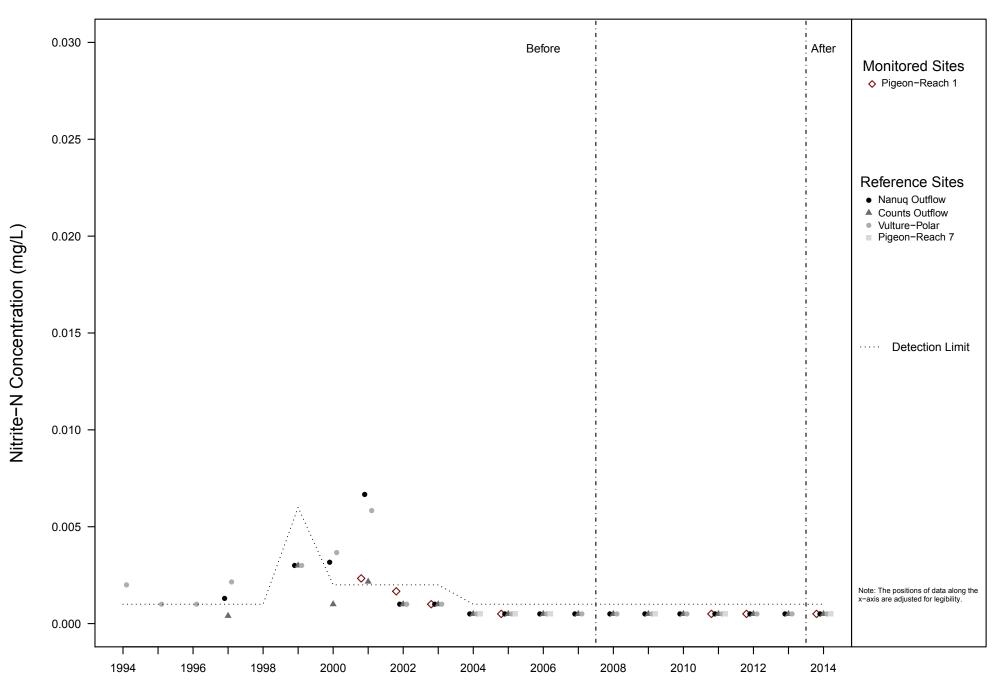
NitriteN water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Nitrite Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

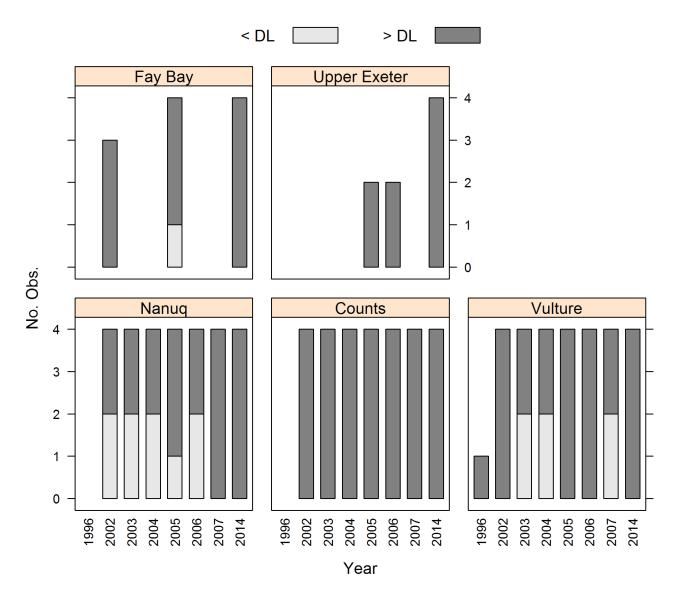
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

NitriteN water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Winter Nitrate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

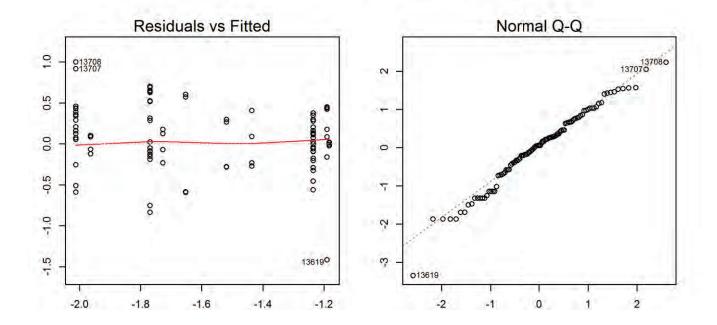
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:

```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
13216 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

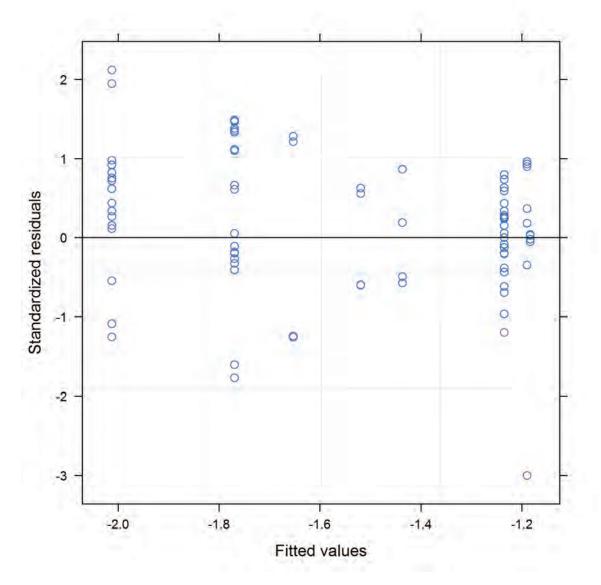
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.03	0.4	0.34
Log-10	0.46	0.35	0.29

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	150.74	-66.37		
LME	10	151.95	-65.97	0.79	0.38

Conclusion:

The most appropriate model for nitrate-N at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.375).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	37		
##		numDF	F-value	p-value
##	(Intercept)	1	1097	<.0001
##	site	3	14	<.0001
##	period	1	1	0.40
##	<pre>site:period</pre>	3	1	0.28

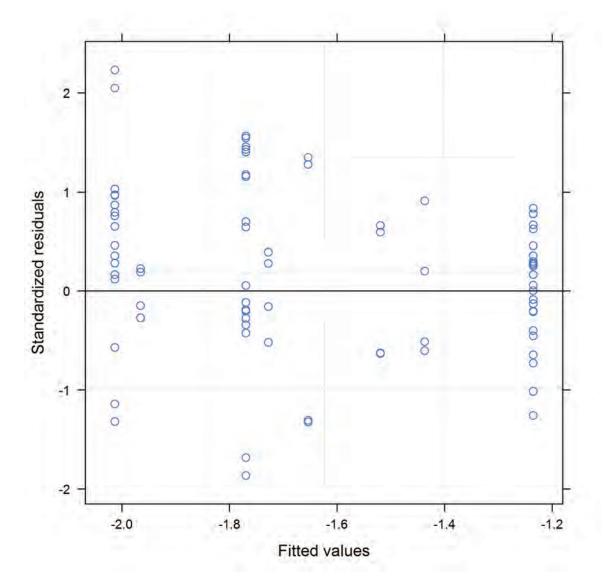
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.49	-0.29	1.26	not sig.
Counts	-0.21	-0.98	0.57	not sig.
Vulture	0.11	-0.66	0.88	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Nitrate-N concentrations at the Fay Bay site were not significantly (p = 0.278) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	137.49	-59.75		
LME	10	138.36	-59.18	1.13	0.29

Conclusion:

The most appropriate model for nitrate-N at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.287).

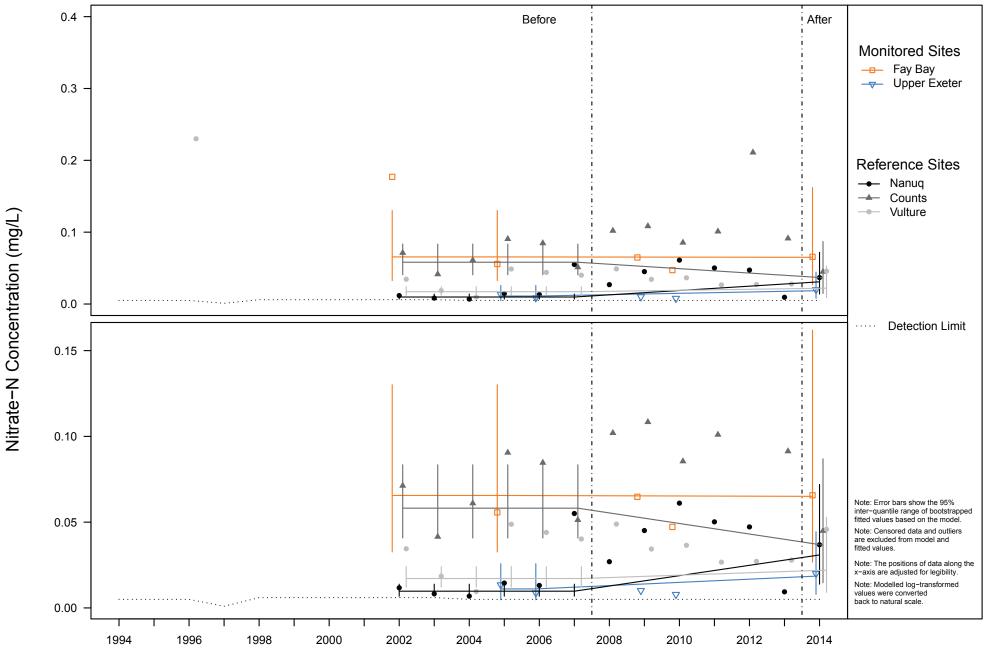
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	84		
##		numDF	F-value	p-value
##	(Intercept)	1	1285	<.0001
##	site	3	12	<.0001
##	period	1	1	0.23
##	<pre>site:period</pre>	3	1	0.24

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.26	-0.53	1.05	not sig.
Counts	-0.44	-1.23	0.35	not sig.
Vulture	-0.12	-0.91	0.67	not sig.

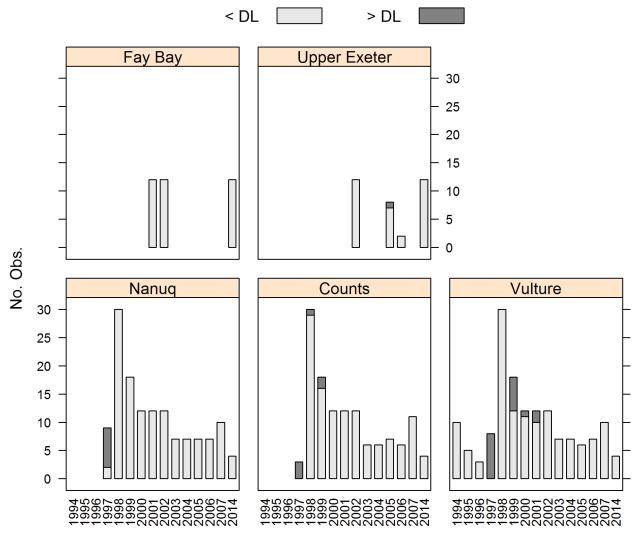

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Nitrate-N concentrations at the Upper Exeter site were not significantly (p = 0.243) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

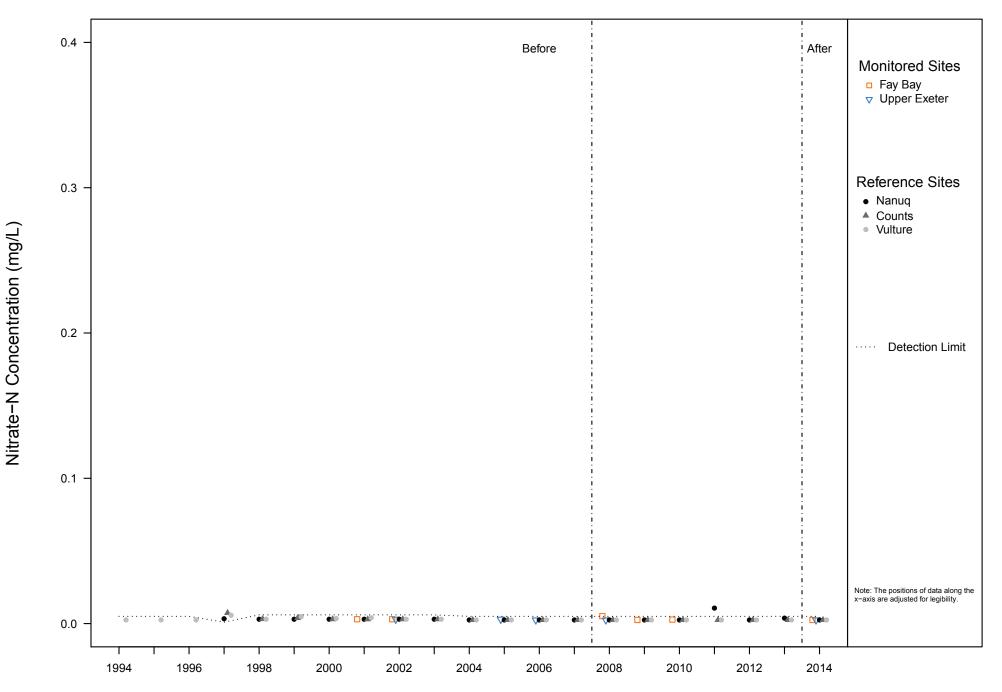
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Nitrate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2015

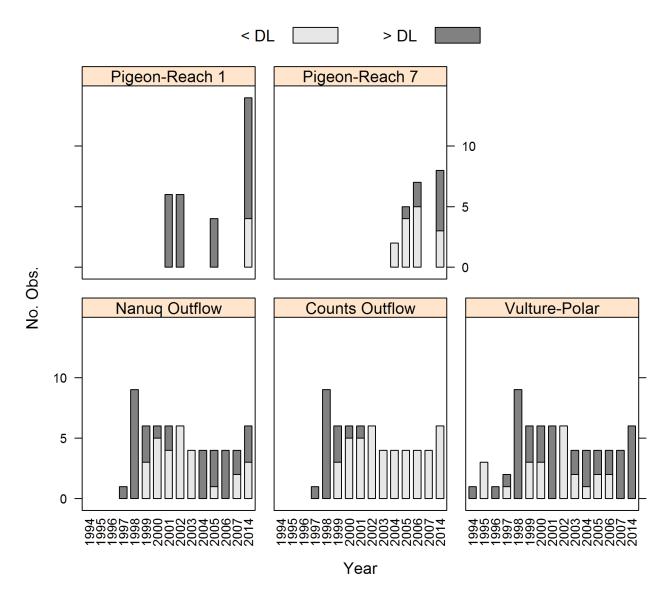
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Year

Conclusion:

NitrateN water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Nitrate Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

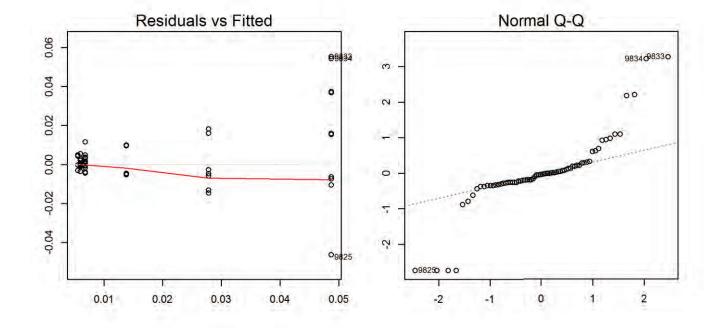
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:

щщ					ماحمو	
##	0244	\ <i>\</i>].t	site	year	month	season
##	9244	Vulture		1994	August	summer
##	9245	Vulture		1995	July	summer
##	9246	Vulture		1995	August	summer
##	9247	Vulture		1995	September	summer
##	9249	Vulture		1996	August	summer
##	9250	Counts C		1997	September	summer
##	9251	Nanuq C		1997	September	summer
##	9252	Vulture		1997	July	summer
##	9253	Vulture		1997	September	summer
##	9258	Counts C	Dutflow	1998	July	summer
##	9259	Counts C	Dutflow	1998	July	summer
##	9260	Counts C	Dutflow	1998	July	summer
##	9261	Counts C	Dutflow	1998	August	summer
##	9262	Counts C	Dutflow	1998	August	summer
##	9263	Counts C	Dutflow	1998	August	summer
##	9264	Counts C	Dutflow	1998	September	summer
##	9265	Counts C	Dutflow	1998	September	summer
##	9266	Counts C	Dutflow	1998	September	summer
##	9271	Nanuq C	Dutflow	1998	July	summer
##	9272	Nanuq C	Dutflow	1998	July	summer
##	9273	Nanuq C	Dutflow	1998	July	summer
##	9274	Nanuq (Dutflow	1998	August	summer
##	9275	Nanuq C	Dutflow	1998	August	summer
##	9276	Nanuq C	Dutflow	1998	August	summer
##	9277	Nanuq C	Dutflow	1998	September	summer
##	9278	Nanuq C	Dutflow	1998	September	summer
##	9279	Nanuq C	Dutflow	1998	September	summer
##	9284	Vulture	e-Polar	1998	July	summer
##	9285	Vulture	e-Polar	1998	July	summer
##	9286	Vulture	e-Polar	1998	July	summer
##	9287	Vulture	e-Polar	1998	August	summer
##	9288	Vulture	e-Polar	1998	August	summer
##	9289	Vulture	e-Polar	1998	August	summer
##	9290	Vulture	e-Polar	1998	September	summer
##	9291	Vulture	e-Polar	1998	September	summer
##	9292	Vulture	e-Polar	1998	September	summer
##	9296	Counts C	Dutflow	1999	August	summer
##	9297	Counts C	Dutflow	1999	August	summer
##	9298	Counts C	Dutflow	1999	August	summer
##	9299	Counts C	Dutflow	1999	September	summer
##	9300	Counts C	Dutflow	1999	September	summer
##	9301	Counts C	Dutflow	1999	September	summer

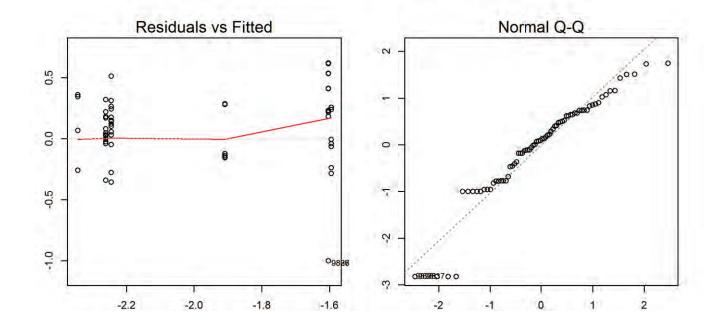
щщ	0205	Mairie	0+ (1	1000	A 1	
	9305	Nanuq		1999	August	summer
	9306	Nanuq		1999	August	summer
	9307	Nanuq		1999	August	summer
	9308	Nanuq	Outflow	1999	September	summer
	9309	Nanuq	Outflow	1999	September	summer
	9310	Nanuq	Outflow	1999	September	summer
	9314		re-Polar	1999	August	summer
	9315		re-Polar	1999	August	summer
	9316		re-Polar	1999	August	summer
	9317		re-Polar	1999	September	summer
	9318		re-Polar	1999	September	summer
	9319		re-Polar	1999	September	summer
	9323	Counts	Outflow	2000	August	summer
	9324	Counts	Outflow	2000	August	summer
	9325	Counts	Outflow	2000	August	summer
	9326	Counts	Outflow	2000	September	summer
	9327	Counts	Outflow	2000	September	summer
	9328	Counts	Outflow	2000	September	summer
	9332	Nanuq	Outflow	2000	August	summer
	9333	Nanuq	Outflow	2000	August	summer
	9334	Nanuq	Outflow	2000	August	summer
	9335	Nanuq	Outflow	2000	September	summer
	9336	Nanuq	Outflow	2000	September	summer
	9337	Nanuq		2000	September	summer
	9341		re-Polar	2000	August	summer
	9342		re-Polar	2000	August	summer
	9343		re-Polar	2000	August	summer
	9344		re-Polar	2000	September	summer
	9345		re-Polar	2000	September	summer
	9346		re-Polar	2000	September	summer
	9349	Counts	Outflow	2001	August	summer
	9350	Counts	Outflow	2001	August	summer
	9351	Counts	Outflow	2001	August	summer
	9352	Counts	Outflow	2001	September	summer
					September	summer
			Outflow		September	summer
	9358	•	Outflow	2001	August	summer
	9359	•	Outflow	2001	August	summer
	9360		Outflow	2001	August	summer
	9361	Nanuq		2001	September	summer
	9362	Nanuq		2001	September	summer
	9363	-	Outflow	2001	September	summer
	9367	0	-Reach 1	2001	August	summer
	9368	Pigeon		2001	August	summer
	9369	Pigeon		2001	August	summer
	9370	-	-Reach 1	2001	September	summer
	9371	Pigeon		2001	September	summer
	9372	Pigeon		2001	September	summer
	9376		re-Polar	2001	August	summer
##	9377	Vultu	re-Polar	2001	August	summer

##	9378	Vulture-Polar	2001	August	summer
##	9379	Vulture-Polar	2001	September	summer
##	9380	Vulture-Polar	2001	September	summer
##	9381	Vulture-Polar	2001	September	summer
##	9385	Counts Outflow	2002	August	summer
##	9386	Counts Outflow	2002	August	summer
##	9387	Counts Outflow	2002	August	summer
##	9388	Counts Outflow	2002	September	summer
##	9389	Counts Outflow	2002	September	summer
##	9390	Counts Outflow	2002	September	summer
##	9394	Nanuq Outflow	2002	August	summer
##	9395	Nanuq Outflow	2002	August	summer
##	9396	Nanuq Outflow	2002	August	summer
##	9397	Nanuq Outflow	2002	September	summer
##	9398	Nanuq Outflow	2002	September	summer
##	9399	Nanuq Outflow	2002	September	summer
##	9412	Vulture-Polar	2002	August	summer
##	9413	Vulture-Polar	2002	August	summer
##	9414	Vulture-Polar	2002	August	summer
##	9415	Vulture-Polar	2002	September	summer
##	9416	Vulture-Polar	2002	September	summer
##	9417	Vulture-Polar	2002	September	summer
##	9420	Counts Outflow	2003	August	summer
##	9421	Counts Outflow	2003	August	summer
##	9422	Counts Outflow	2003	September	summer
##	9423	Counts Outflow	2003	September	summer
##	9426	Nanuq Outflow	2003	August	summer
##	9427	Nanuq Outflow	2003	August	summer
##	9428	Nanuq Outflow	2003	September	summer
##	9429	Nanuq Outflow	2003	September	summer
##	9440	Counts Outflow	2004	August	summer
##	9441	Counts Outflow	2004	August	summer
##	9442	Counts Outflow	2004	September	summer
##	9443	Counts Outflow	2004	September	summer
	9464	Pigeon-Reach 7	2004	July	summer
##	9466	Pigeon-Reach 7	2004	July	summer
##	9476	Counts Outflow	2005	August	summer
##	9477	Counts Outflow	2005	August	summer
##	9478	Counts Outflow	2005	September	summer
##	9479	Counts Outflow	2005	September	summer
##	9505	Pigeon-Reach 7	2005	August	summer
##	9506	Pigeon-Reach 7	2005	August	summer
##	9507	Pigeon-Reach 7	2005	August	summer
##	9508	Pigeon-Reach 7	2005	September	summer
##	9509	Pigeon-Reach 7	2005	September	summer
##	9518	Counts Outflow	2006	August	summer
##	9519		2006	August	summer
##	9520	Counts Outflow	2006	September	summer
##	9521	Counts Outflow	2006	September	summer
##	9542	Pigeon-Reach 7	2006	July	summer


```
## 9543 Pigeon-Reach 7 2006
                                 July summer
## 9544 Pigeon-Reach 7 2006
                                 July summer
## 9545 Pigeon-Reach 7 2006
                                 July summer
## 9546 Pigeon-Reach 7 2006
                               August summer
## 9547 Pigeon-Reach 7 2006
                               August summer
## 9548 Pigeon-Reach 7 2006 September summer
## 9556 Counts Outflow 2007
                               August summer
## 9557 Counts Outflow 2007
                               August summer
## 9558 Counts Outflow 2007 September summer
## 9559 Counts Outflow 2007 September summer
## 9809 Counts Outflow 2014
                                 July summer
## 9810 Counts Outflow 2014
                                 July summer
## 9811 Counts Outflow 2014
                               August summer
## 9812 Counts Outflow 2014
                               August summer
## 9813 Counts Outflow 2014 September summer
## 9814 Counts Outflow 2014 September summer
## 9841 Pigeon-Reach 7 2014
                                 July summer
## 9842 Pigeon-Reach 7 2014
                                 July summer
## 9843 Pigeon-Reach 7 2014
                               August summer
## 9844 Pigeon-Reach 7 2014
                               August summer
## 9845 Pigeon-Reach 7 2014 September summer
## 9846 Pigeon-Reach 7 2014 September summer
## 9847 Pigeon-Reach 7 2014
                              October summer
## 9848 Pigeon-Reach 7 2014
                              October summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

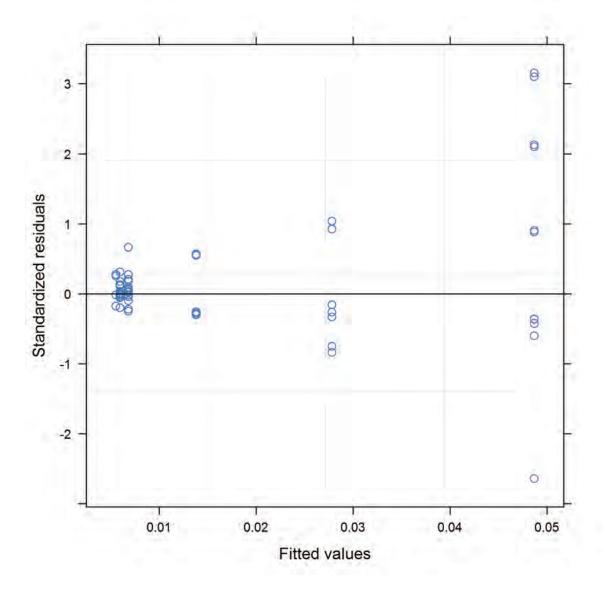
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.02	0.5	0.46
Log-10	0.37	0.44	0.39

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	7	-318.3	166.15		
LME	8	-316.3	166.15	2.57×10 ⁻⁸	1

Conclusion:

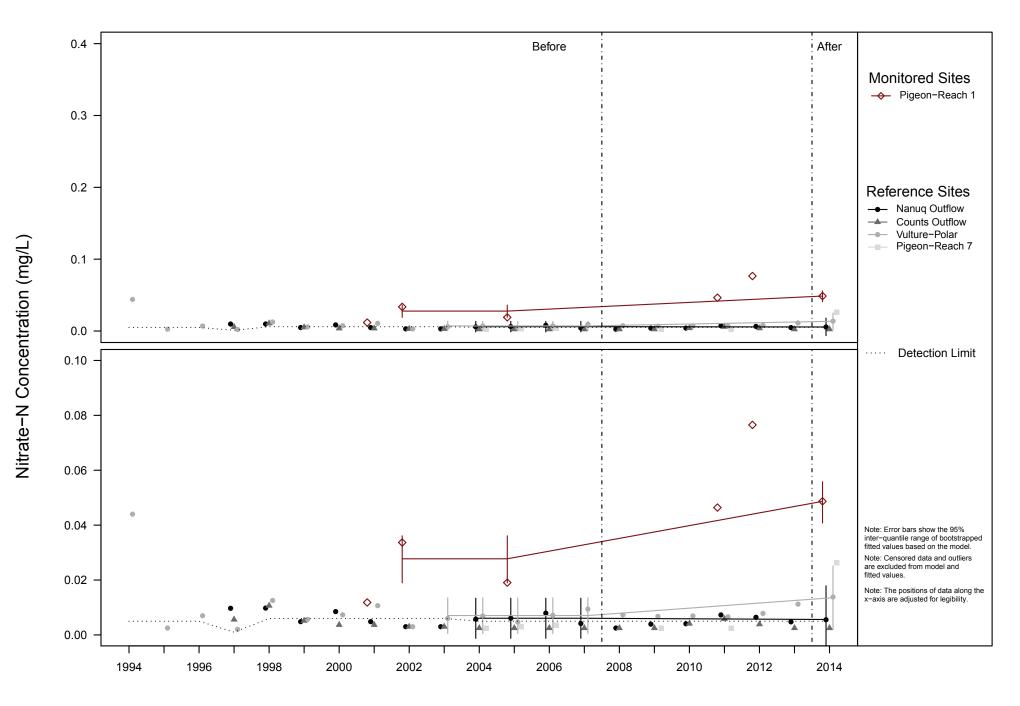
The most appropriate model for nitrate-N at the Pigeon-Reach 1 monitoring site was the simpler GLS model without a year term (p = 1).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 6	56		
##		numDF	F-value	p-value
##	(Intercept)	1	77	<.0001
##	site	2	28	<.0001
##	period	1	5	0.028
##	<pre>site:period</pre>	2	2	0.148

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.02	-0.04	8.28×10 ⁻⁴	not sig.
Counts Outflow	NA	NA	NA	NA
Vulture-Polar	-0.01	-0.04	0.01	not sig.
Pigeon-Reach 7	NA	NA	NA	NA


A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Nitrate-N concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.148) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

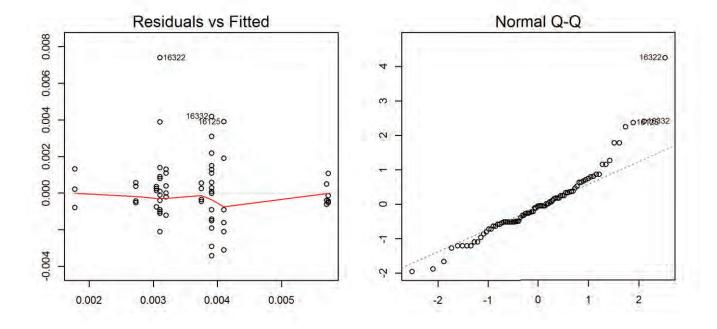
Analysis of Winter Total Phosphate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 21, 2014

1 Censored Data

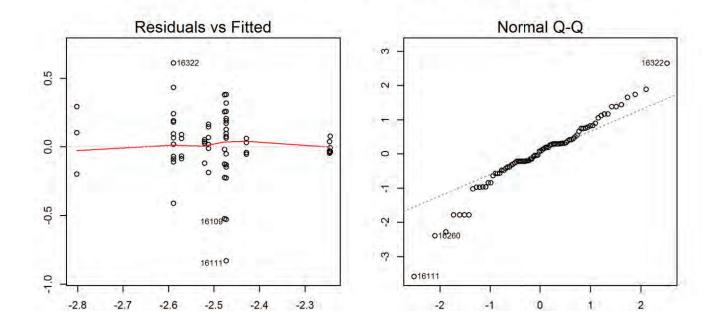
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

The following observations were excluded:


шш		cit c		ما خ مر م	
##			-	month	season
##	16194	Nanuq	2003	April	winter
##	16195	Nanuq	2003	April	winter
##	16196	Nanuq	2003	April	winter
##	16197	Nanuq	2003	April	winter
##	16205	Vulture	2003	April	winter
##	16206	Vulture	2003	April	winter
##	16207	Vulture	2003	April	winter
##	16208	Vulture	2003	April	winter
##	16226	Nanuq	2004	April	winter
##	16227	Nanuq	2004	April	winter
##	16228	Nanuq	2004	April	winter
##	16229	Nanuq	2004	April	winter
##	16263	Nanuq	2005	April	winter
##	16264	Nanuq	2005	April	winter
##	16265	Nanuq	2005	April	winter
##	16266	Nanuq	2005	April	winter
##	16304	Nanuq	2006	April	winter
##	16305	Nanuq	2006	April	winter
##	16306	Nanuq	2006	April	winter
##	16307	Nanuq	2006	April	winter

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

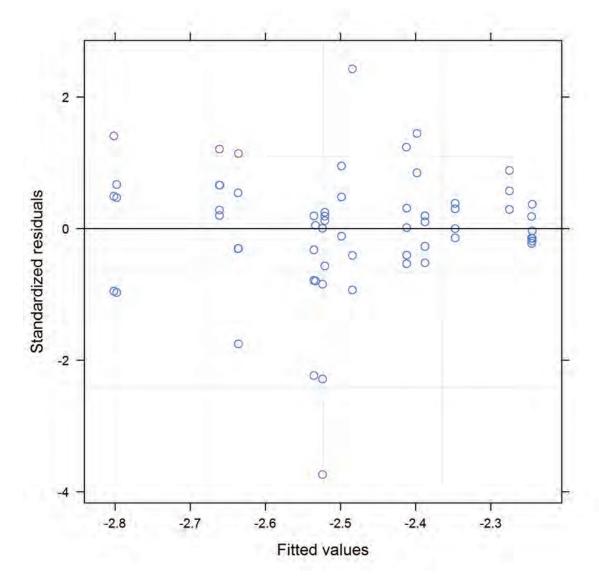
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0	0.21	0.12
Log-10	0.24	0.21	0.12

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	35.63	-8.82		
LME	10	25.06	-2.53	12.57	3.92×10 ⁻⁴

Conclusion:

The most appropriate model for total phosphate-P at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	62	1395	<.0001
##	site	3	62	7	0.0003
##	period	1	6	0	0.9270
##	<pre>site:period</pre>	3	62	2	0.0778

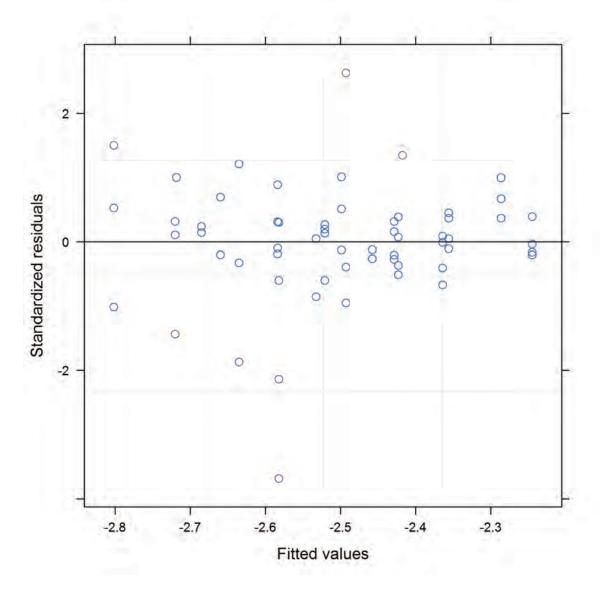
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.04	-0.4	0.34	not sig.
Counts	0.13	-0.22	0.47	not sig.
Vulture	-0.29	-0.63	0.05	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphate-P concentrations at the Fay Bay site were not significantly (p = 0.078) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	27.87	-4.93		
LME	10	16.82	1.59	13.05	3.04×10 ⁻⁴

Conclusion:

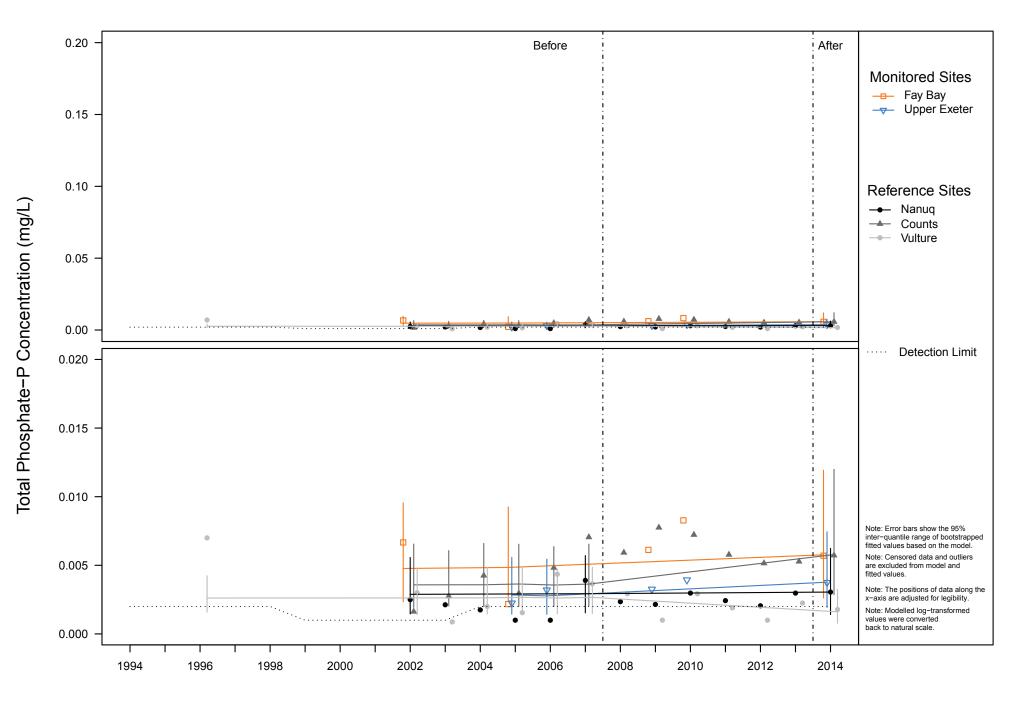
The most appropriate model for total phosphate-P at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	59	1672	<.0001
##	site	3	59	5	0.0059
##	period	1	6	0	0.9251
##	<pre>site:period</pre>	3	59	3	0.0472

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.12	-0.49	0.27	not sig.
Counts	0.08	-0.26	0.44	not sig.
Vulture	-0.34	-0.68	0.01	not sig.

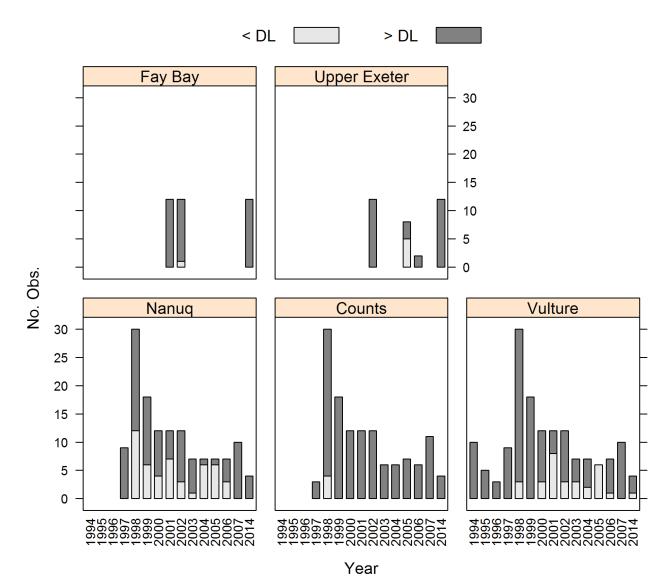

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Phosphate-P concentrations at the Upper Exeter site were significantly (p = 0.047) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Phosphate Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

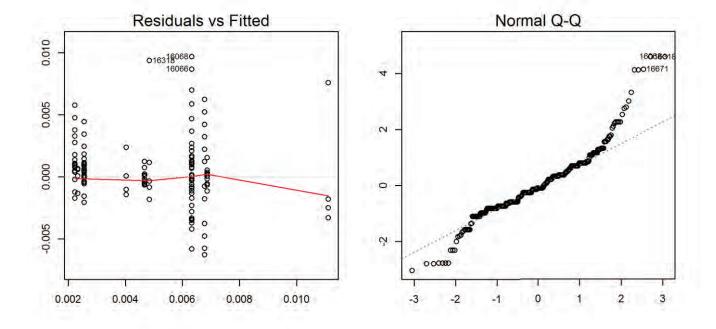
January 21, 2014

1 Censored Data

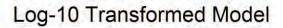
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

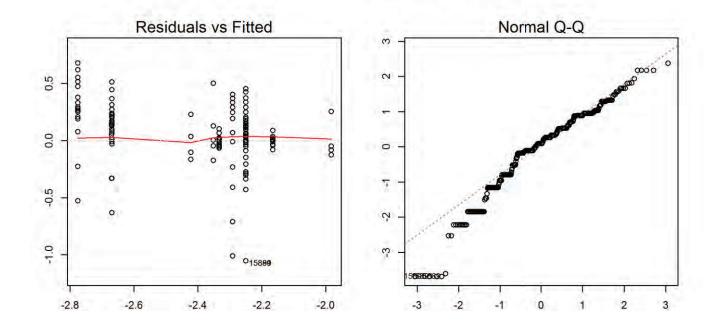
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


##		site	year	month	season
##	16097	Vulture	2001	July	summer
##	16098	Vulture	2001	July	summer
##	16099	Vulture	2001	July	summer
##	16100	Vulture	2001	July	summer
##	16101	Vulture	2001	August	summer
##	16102	Vulture	2001	August	summer
##	16103	Vulture	2001	August	summer
##	16104	Vulture	2001	August	summer
##	16105	Vulture	2001	September	summer
##	16106	Vulture	2001	September	summer
##	16107	Vulture	2001	September	summer
##	16108	Vulture	2001	September	summer
##	16230	Nanuq	2004	July	summer
##	16231	Nanuq	2004	July	summer
##	16232	Nanuq	2004	August	summer
##	16233	Nanuq	2004	August	summer
##	16234	Nanuq	2004	August	summer
##	16235	Nanuq	2004	September	summer
##	16236	Nanuq	2004	September	summer
##	16267	Nanuq	2005	July	summer
##	16268	Nanuq	2005	July	summer
##	16269	Nanuq	2005	August	summer
##	16270	Nanuq	2005	August	summer
##	16271	Nanuq	2005	September	summer
##	16272	Nanuq	2005	September	summer
##	16273	Nanuq	2005	September	summer
##	16276	Upper Exeter	2005	July	summer
##	16277	Upper Exeter	2005	July	summer
##	16278	Upper Exeter	2005	July	summer
##	16279	Upper Exeter	2005	August	summer
##	16280	Upper Exeter	2005	August	summer
##	16281	Upper Exeter	2005	August	summer
##	16282	Upper Exeter	2005	September	summer
##	16283	Upper Exeter	2005	September	summer
##	16288	Vulture	2005	July	summer
##	16289	Vulture	2005	July	summer
##	16290	Vulture	2005	August	summer
##	16291	Vulture	2005	August	summer
##	16292	Vulture	2005	September	summer
##	16293	Vulture	2005	September	summer

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
15951 Vulture 1998 July summer

3 Initial Model Fit

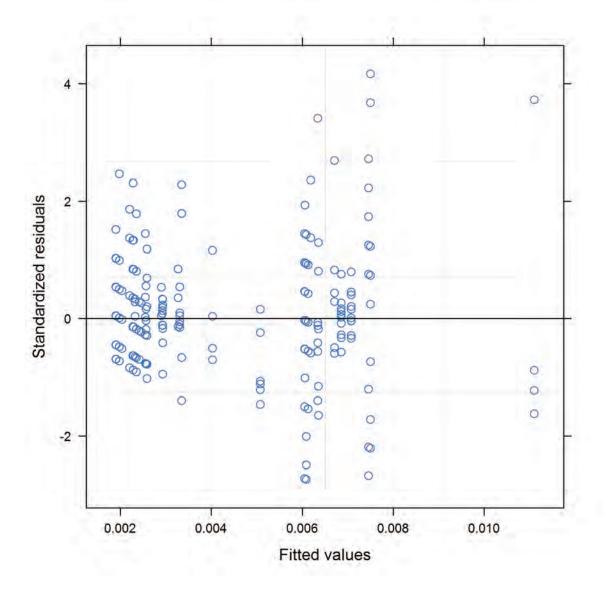
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0	0.48	0.47
Log-10	0.29	0.41	0.39

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-3834.34	1926.17		
LME	10	-3846.12	1933.06	13.79	2.05×10 ⁻⁴

Conclusion:

The most appropriate model for total phosphate-P at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	396	326	<.0001
##	site	3	396	119	<.0001
##	period	1	13	3	0.1243
##	site:period	3	396	5	0.0027

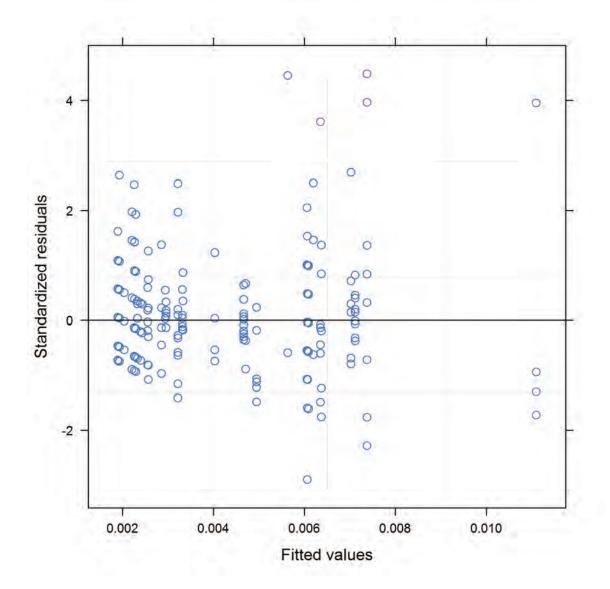
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0	0	0	not sig.
Counts	0	0	0.01	sig.
Vulture	-8.04×10-4	0	0	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphate-P concentrations at the Fay Bay site were significantly (p = 0.003) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-3784.88	1901.44		
LME	10	-3797.13	1908.56	14.25	1.6×10 ⁻⁴

Conclusion:

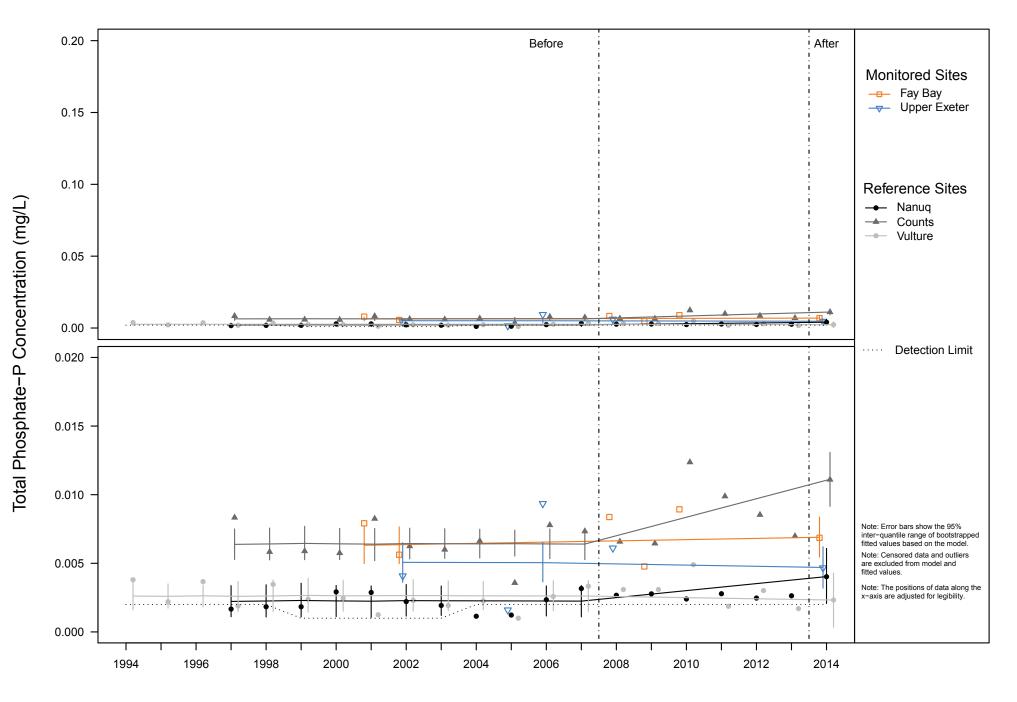
The most appropriate model for total phosphate-P at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	386	291	<.0001
##	site	3	386	124	<.0001
##	period	1	13	2	0.1923
##	<pre>site:period</pre>	3	386	6	0.0003

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0	-3.64×10 ⁻⁴	0	not sig.
Counts	0.01	0	0.01	sig.
Vulture	7.2710^{-5}	0	0	not sig.

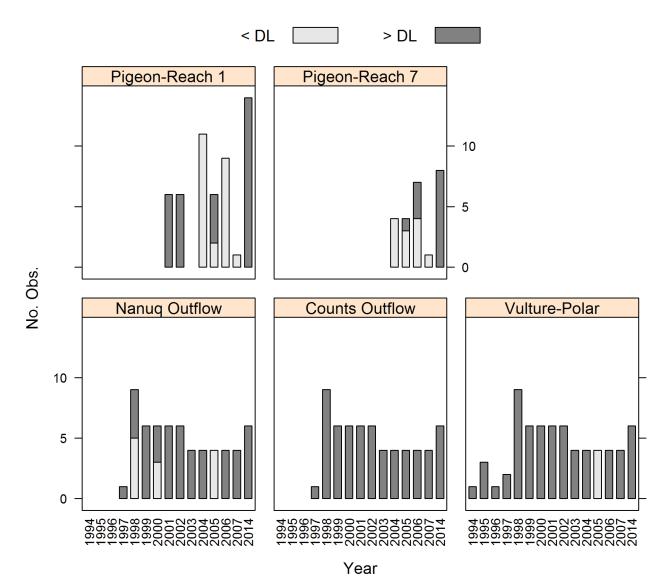

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphate-P concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


DOMINION DIAMOND EKATI CORPORATION

Analysis of Summer Total Phosphate Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

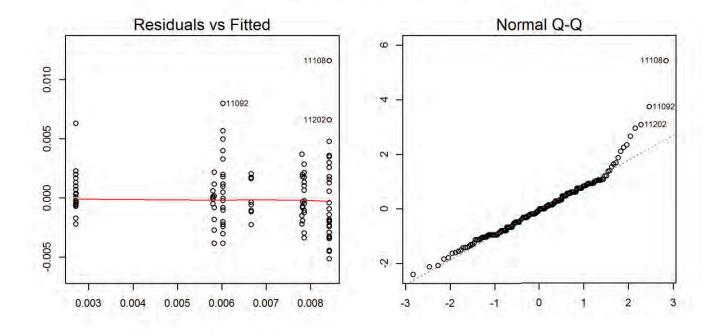
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

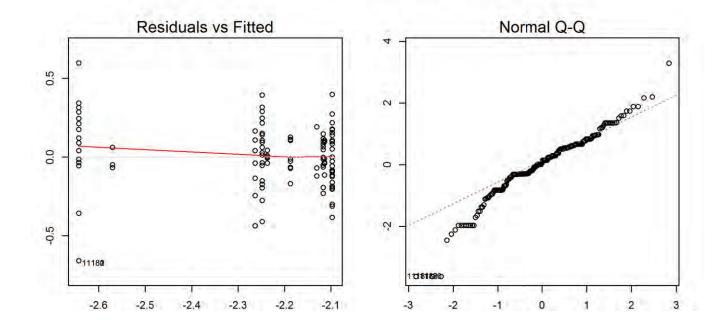
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


##		site	year	month	season
##	11301	Pigeon-Reach 1	2004	July	summer
##	11302	Pigeon-Reach 1	2004	July	summer
##	11303	Pigeon-Reach 1	2004	July	summer
##	11304	Pigeon-Reach 1	2004	July	summer
##	11305	Pigeon-Reach 1	2004	August	summer
##	11306	Pigeon-Reach 1	2004	August	summer
##	11307	Pigeon-Reach 1	2004	August	summer
##	11308	Pigeon-Reach 1	2004	August	summer
##	11309	Pigeon-Reach 1	2004	September	summer
##	11310	Pigeon-Reach 1	2004	September	summer
##	11311	Pigeon-Reach 1	2004	September	summer
##	11312	Pigeon-Reach 7	2004	July	summer
##	11313	Pigeon-Reach 7	2004	July	summer
##	11314	Pigeon-Reach 7	2004	July	summer
##	11315	Pigeon-Reach 7	2004	July	summer
##	11330	Nanuq Outflow	2005	August	summer
##	11331	Nanuq Outflow	2005	August	summer
##	11332	Nanuq Outflow	2005	September	summer
##	11333	Nanuq Outflow	2005	September	summer
##	11353	Pigeon-Reach 7	2005	August	summer
##	11354	Pigeon-Reach 7	2005	August	summer
##	11356	Pigeon-Reach 7	2005	September	summer
##	11357	Pigeon-Reach 7	2005	September	summer
##	11360	Vulture-Polar	2005	August	summer
##	11361	Vulture-Polar	2005	August	summer
##	11362	Vulture-Polar	2005	September	summer
##	11363	Vulture-Polar	2005	September	summer
##	11379	Pigeon-Reach 1	2006	July	summer
##	11380	Pigeon-Reach 1	2006	July	summer
##	11381	Pigeon-Reach 1	2006	July	summer
##	11382	Pigeon-Reach 1	2006	August	summer
##	11383	Pigeon-Reach 1	2006	August	summer
##	11384	Pigeon-Reach 1	2006	August	summer
##	11385	Pigeon-Reach 1	2006	September	summer
##	11386	Pigeon-Reach 1	2006	September	summer
##	11387	Pigeon-Reach 1	2006	September	summer
##	11418	Pigeon-Reach 1	2007	July	summer
##	11432	Pigeon-Reach 7	2007	July	summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
11338 Pigeon-Reach 1 2005 July summer
11350 Pigeon-Reach 1 2005 September summer
11392 Pigeon-Reach 7 2006 July summer
11394 Pigeon-Reach 7 2006 August summer
11395 Pigeon-Reach 7 2006 August summer

3 Initial Model Fit

Natural Scale Model

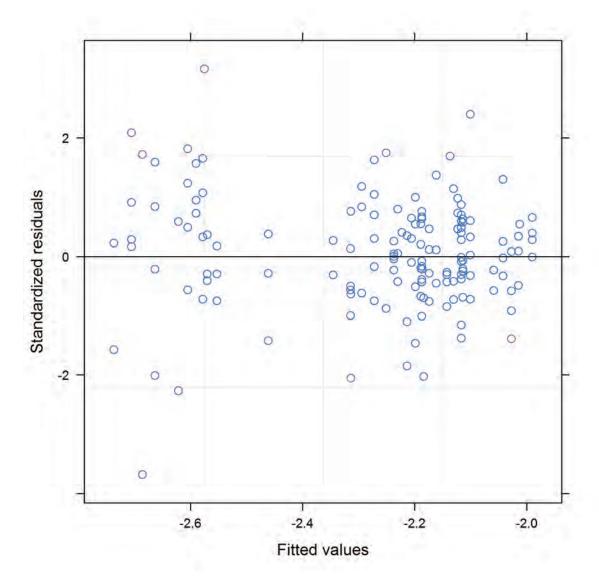
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0	0.51	0.49
Log-10	0.18	0.58	0.56

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-68.04	45.02		
LME	12	-84.24	54.12	18.2	1.98×10^{-5}

Conclusion:

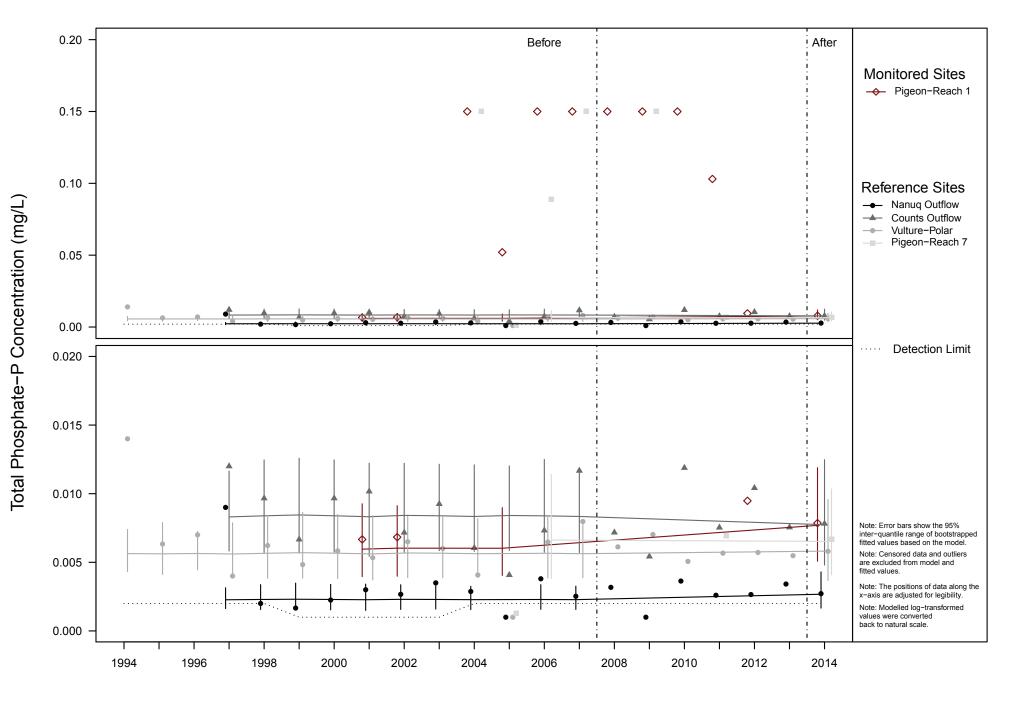
The most appropriate model for total phosphate-P at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	196	5263	<.0001
##	site	4	196	84	<.0001
##	period	1	13	0	0.74
##	<pre>site:period</pre>	4	196	1	0.61

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.04	-0.22	0.15	not sig.
Counts Outflow	-0.14	-0.33	0.04	not sig.
Vulture-Polar	-0.1	-0.29	0.1	not sig.
Pigeon-Reach 7	-0.11	-0.38	0.15	not sig.

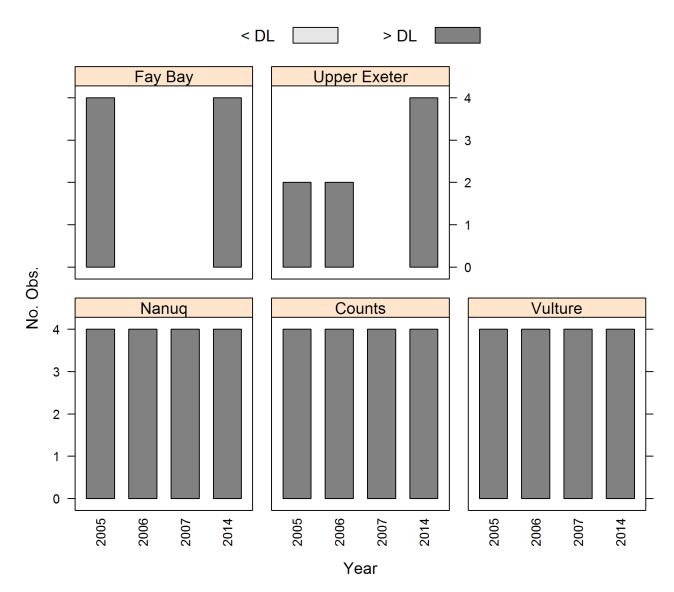

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphate-P concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.615) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Organic Carbon Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

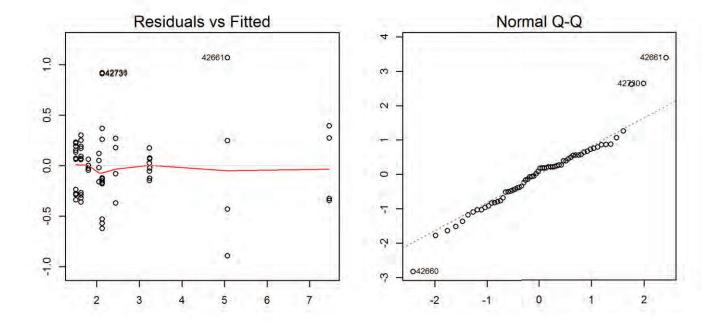
January 23, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

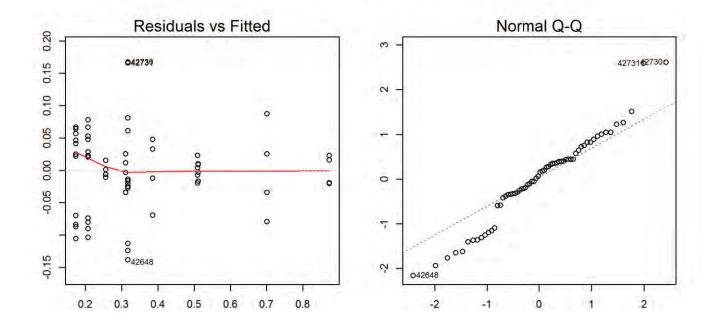
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

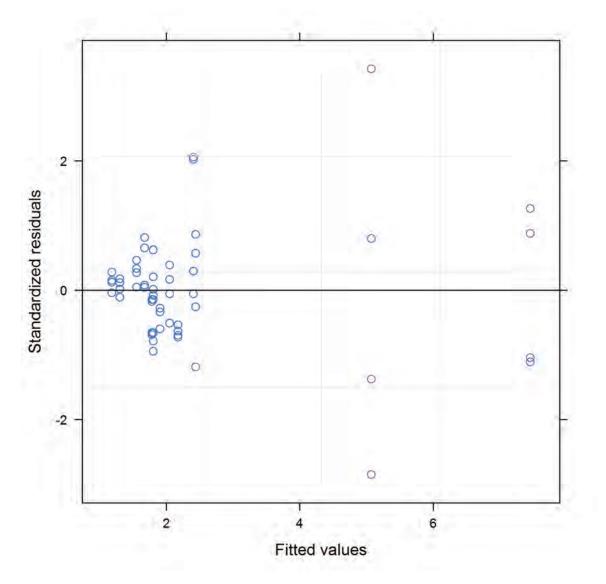
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.36	0.96	0.95
Log-10	0.07	0.91	0.9

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

 Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	76.73	-29.36		
LME	10	64.03	-22.02	14.7	1.26×10-4

Conclusion:

The most appropriate model for total organic carbon at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	46	217	<.0001
##	site	3	46	431	<.0001
##	period	1	2	3	0.24
##	site:period	3	46	16	<.0001

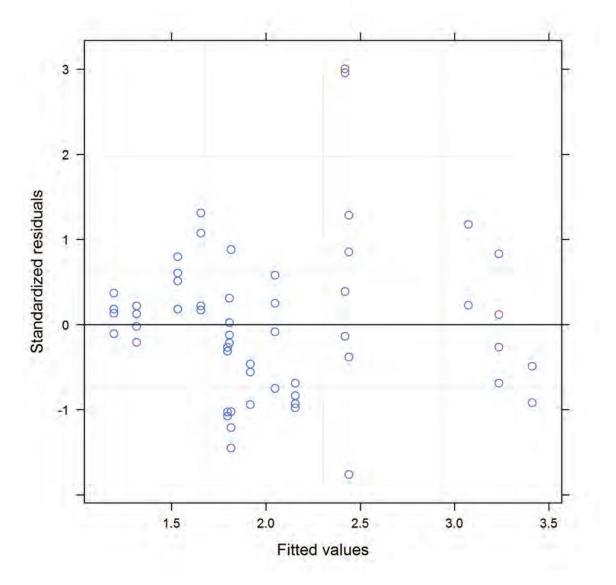
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-1.52	-2.08	-0.97	sig.
Counts	-1.75	-2.32	-1.19	sig.
Vulture	-1.88	-2.46	-1.32	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	55.19	-18.6		
LME	10	27.59	-3.8	29.6	5.31×10 ⁻⁸

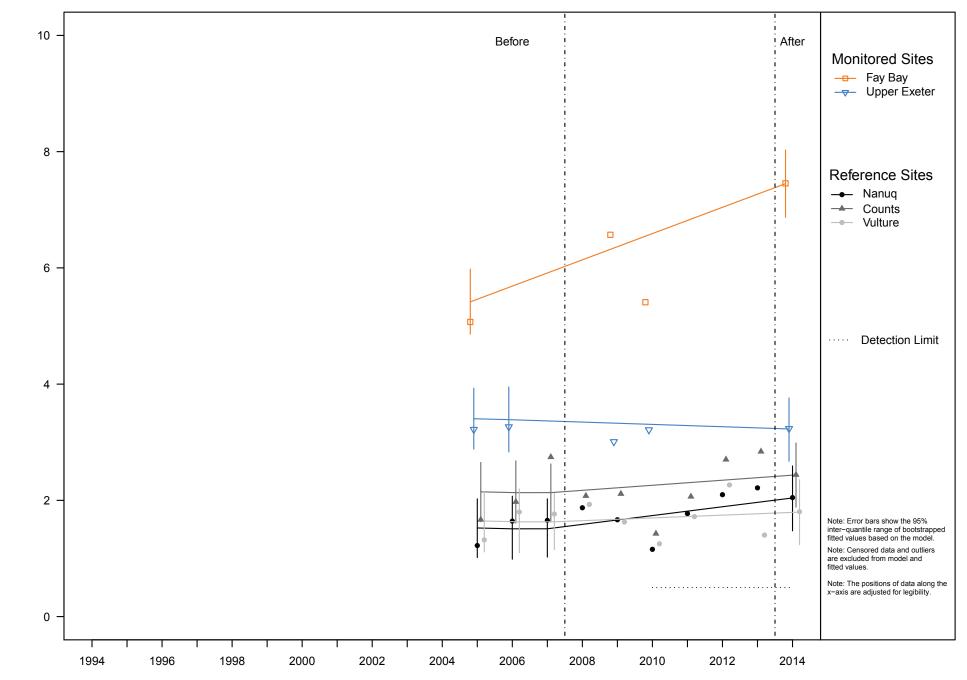
Conclusion:

The most appropriate model for total organic carbon at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	46	168	<.0001
##	site	3	46	120	<.0001
##	period	1	2	0	0.5538
##	<pre>site:period</pre>	3	46	4	0.0076

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.69	0.33	1.06	sig.
Counts	0.46	0.09	0.83	sig.
Vulture	0.33	-0.06	0.72	not sig.

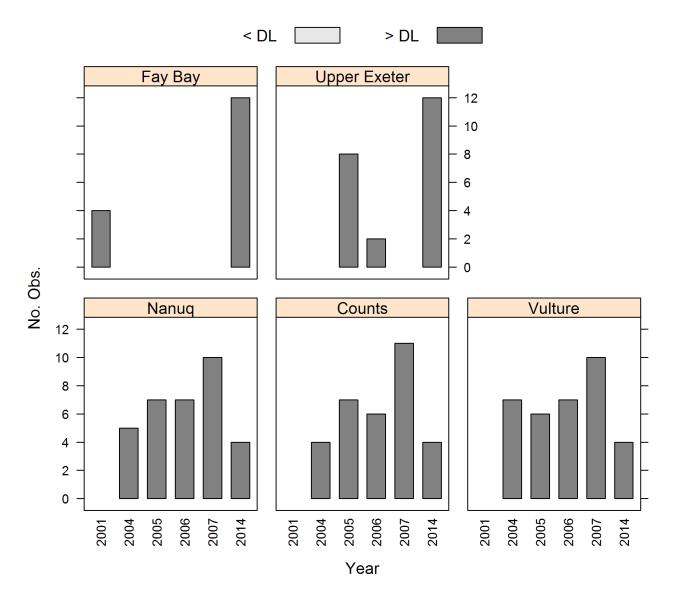

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Upper Exeter site were significantly (p = 0.008) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Organic Carbon Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

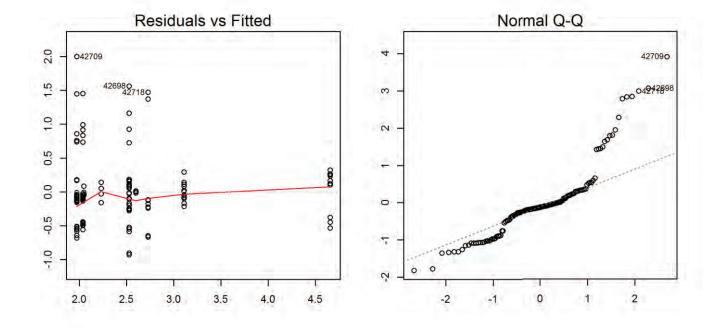
January 23, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

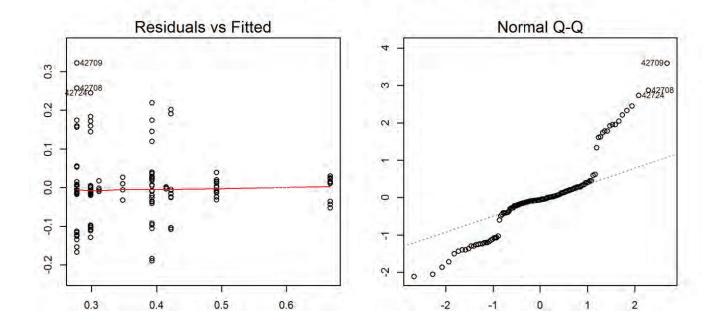
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
42473 Fay Bay 2001 July summer
42474 Fay Bay 2001 July summer
42475 Fay Bay 2001 July summer
42476 Fay Bay 2001 July summer

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.52	0.69	0.68
Log-10	0.09	0.62	0.6

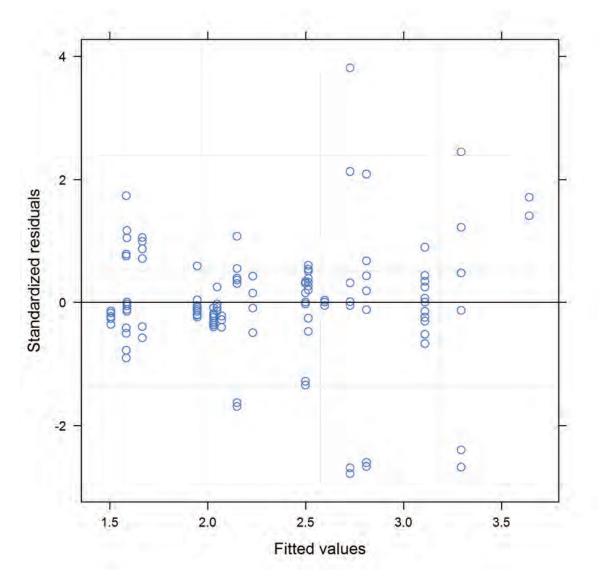
Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location

The BACI modeling analysis was not conducted on the Fay Bay data because insufficient observations were available for the analysis due to censoring or outliers.

4.2 Upper Exeter Monitoring Location


Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р	
GLS	9	216.27	-99.14			
LME	10	119.11	-49.56	99.16	0	

Conclusion:

_

The most appropriate model for total organic carbon at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

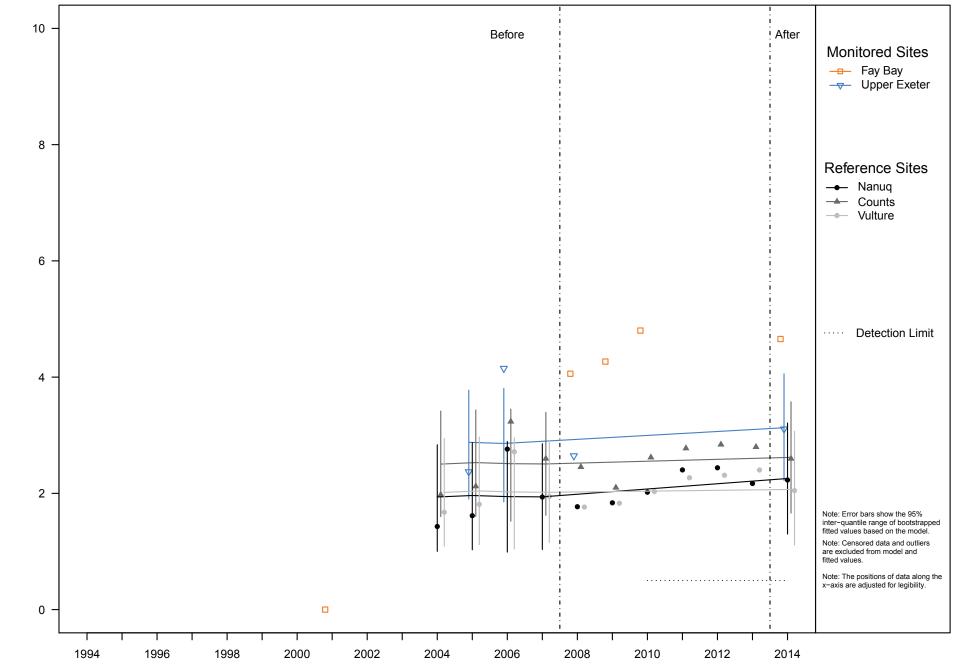
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	110	83	<.0001
##	site	3	110	42	<.0001
##	period	1	3	0	0.80
##	<pre>site:period</pre>	3	110	1	0.64

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.04	-0.42	0.49	not sig.
Counts	-0.16	-0.6	0.28	not sig.
Vulture	-0.23	-0.66	0.2	not sig.

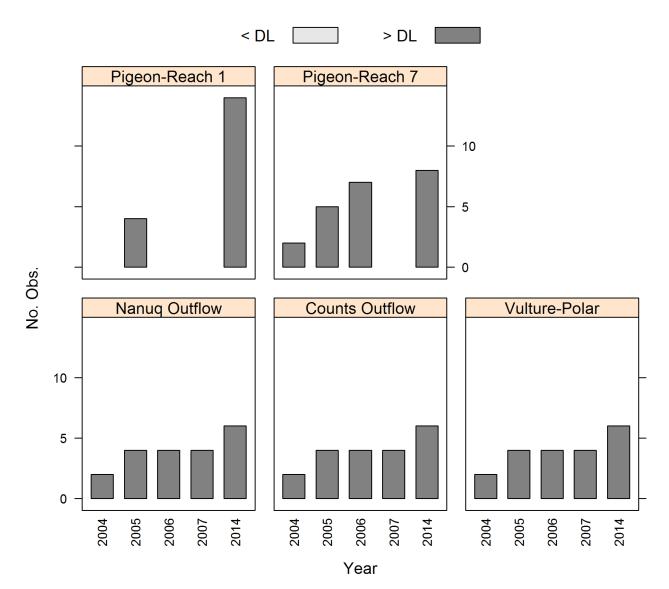

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Upper Exeter site were not significantly (p = 0.641) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


Total Organic Carbon Concentration (mg/L)

Analysis of Summer Total Organic Carbon Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

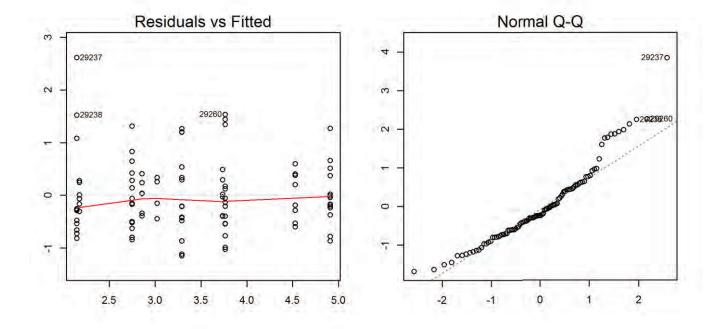
January 23, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

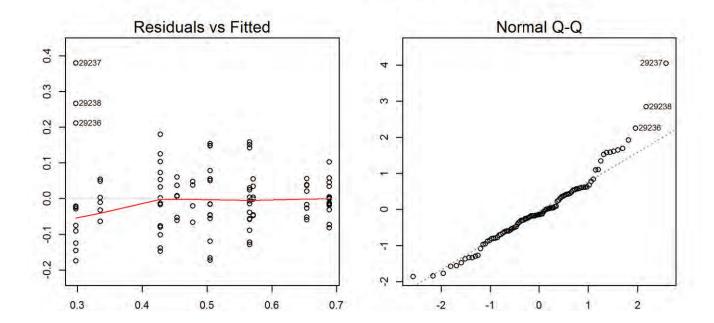
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

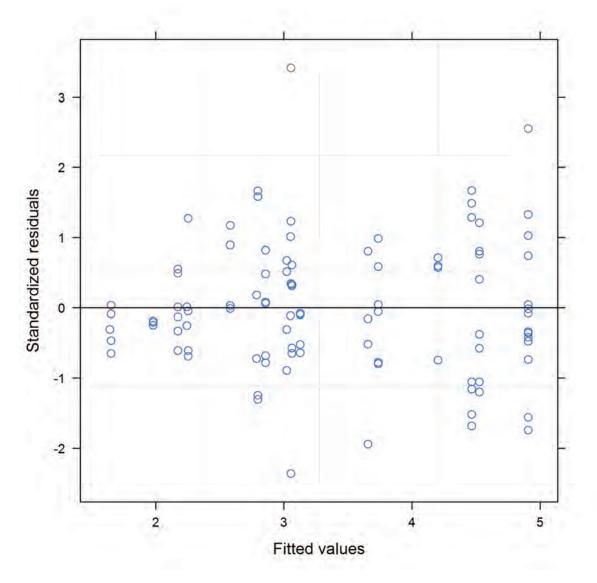
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.7	0.65	0.62
Log-10	0.1	0.65	0.62

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Mod	el D.F	F. AIC	log(Like.)	L. Ratio	р
GLS	11	236.48	-107.24		
LME	12	185.81	-80.9	52.67	3.94×10 ⁻¹³

Conclusion:

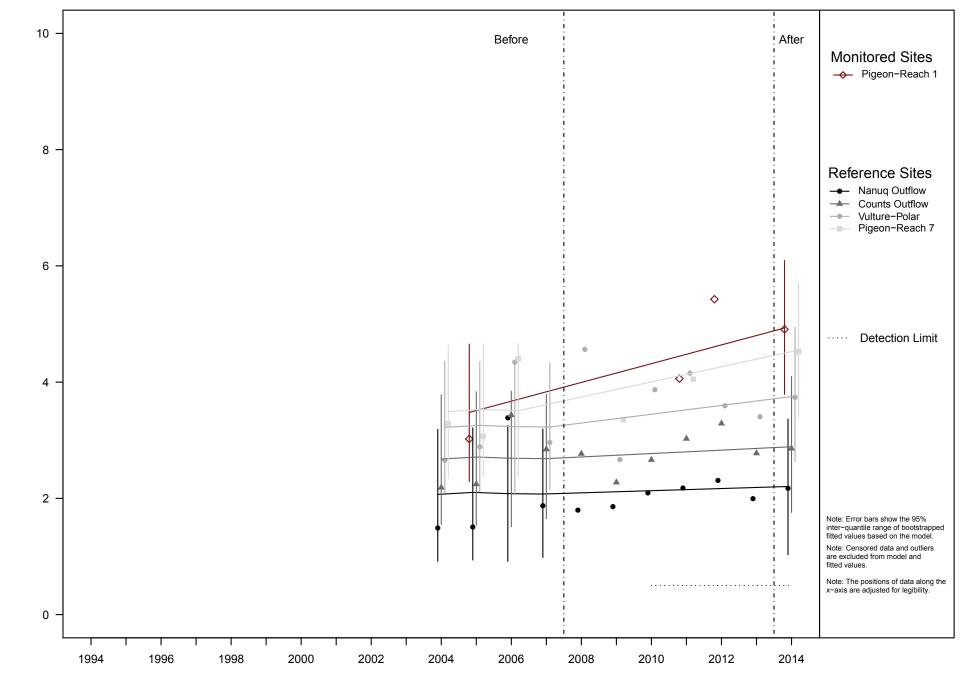
The most appropriate model for total organic carbon at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	87	100	<.0001
##	site	4	87	54	<.0001
##	period	1	3	1	0.4954
##	<pre>site:period</pre>	4	87	5	0.0016

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-1.36	-2.12	-0.63	sig.
Counts Outflow	-1.28	-2.03	-0.54	sig.
Vulture-Polar	-0.95	-1.71	-0.18	sig.
Pigeon-Reach 7	-0.42	-1.14	0.31	not sig.

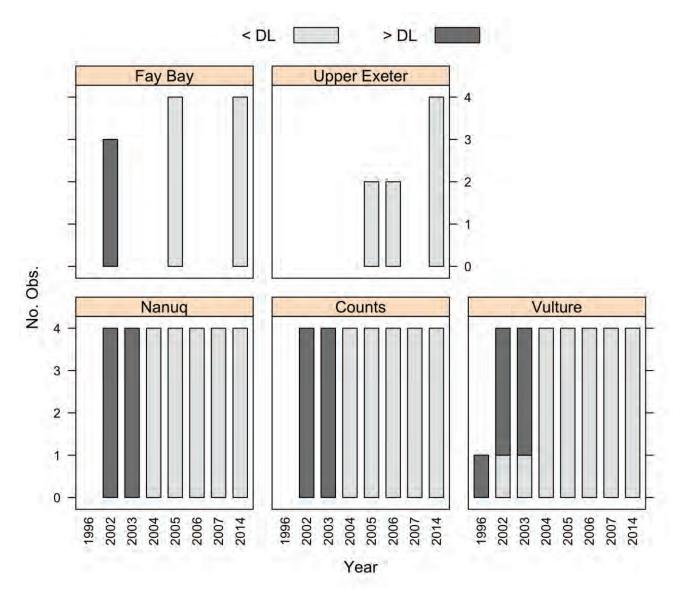

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Pigeon-Reach 1 site were significantly (p = 0.002) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

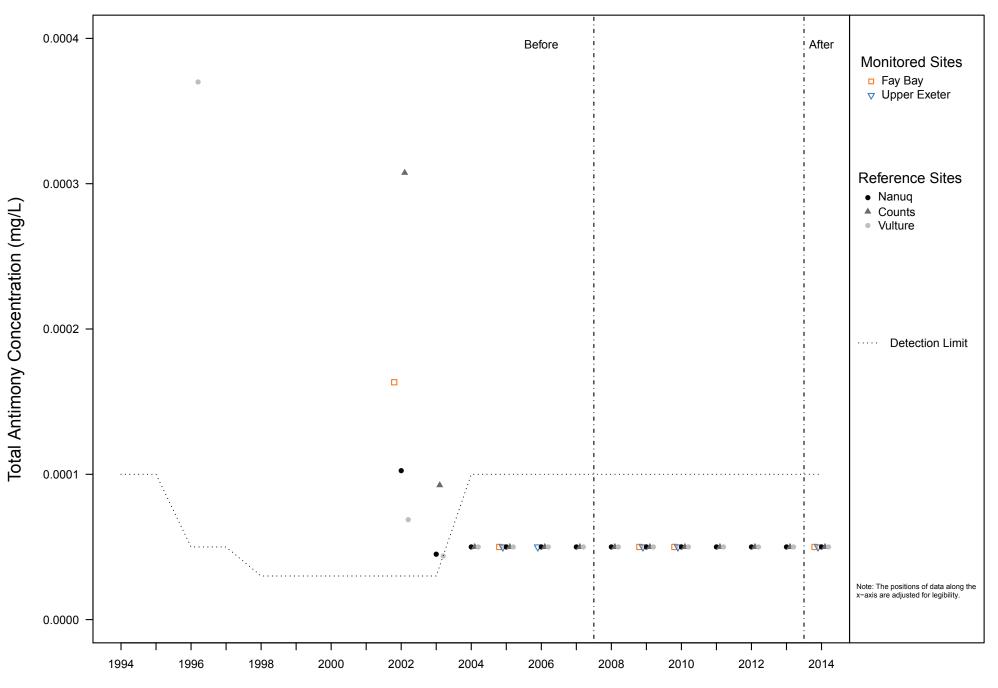
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Antimony Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 23, 2015

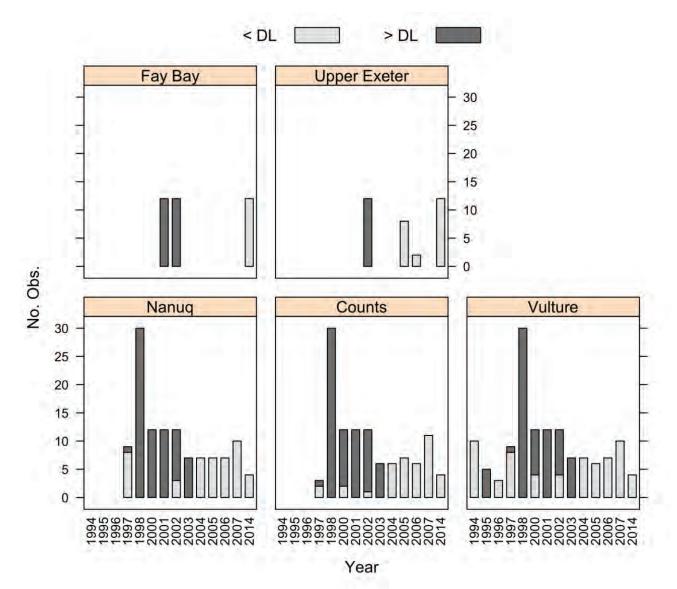
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

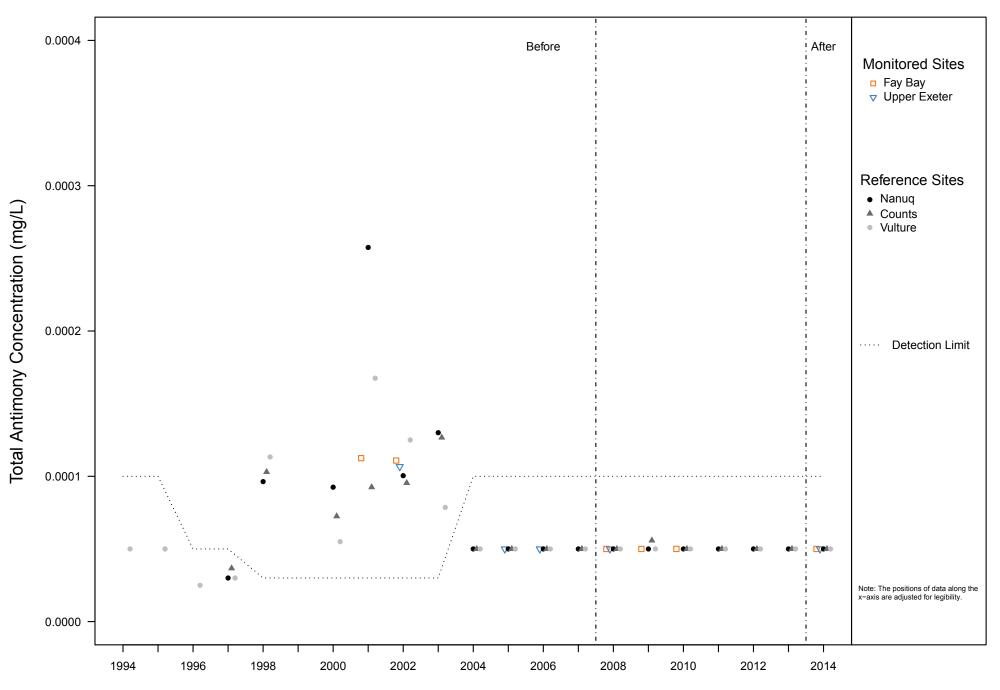
Antimony water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Antimony Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 23, 2015

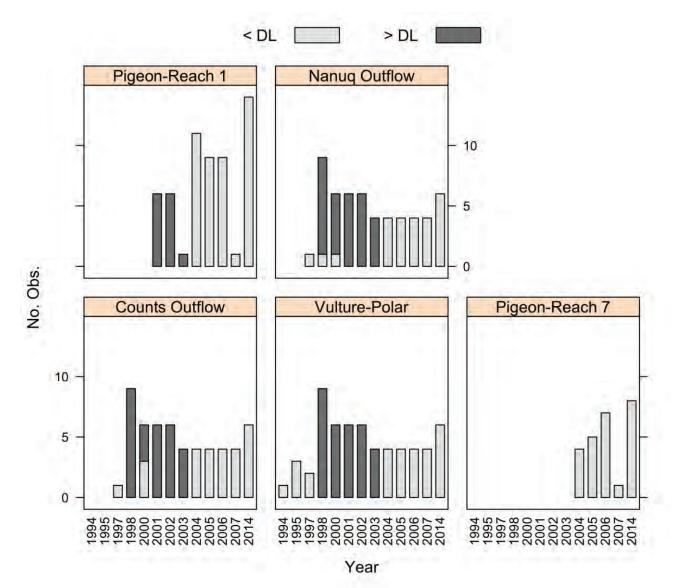
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

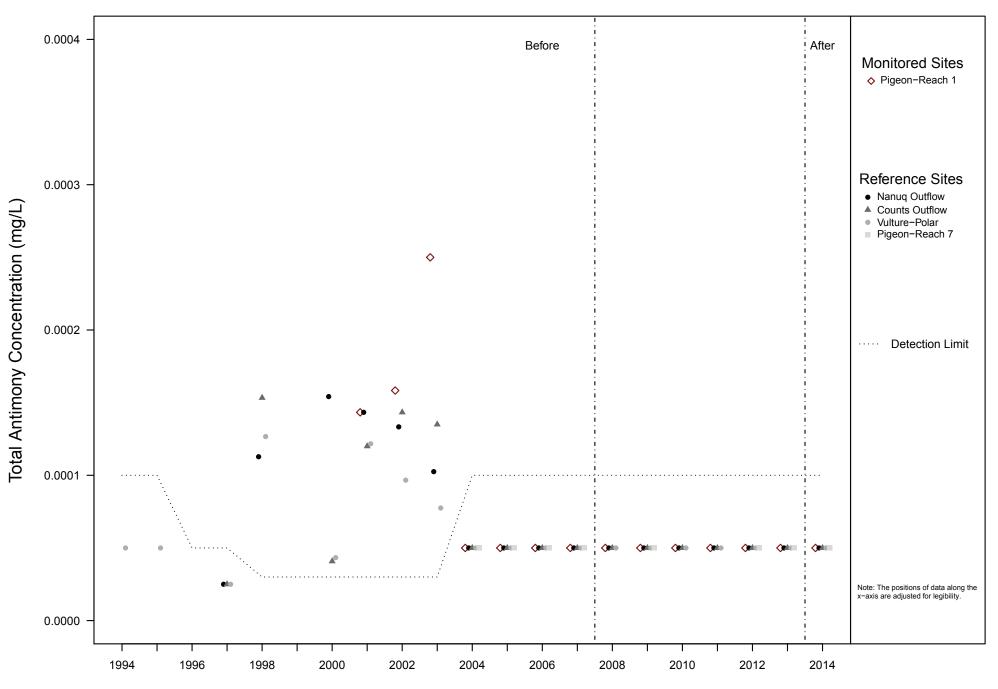
Antimony water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Summer Total Antimony Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 23, 2015

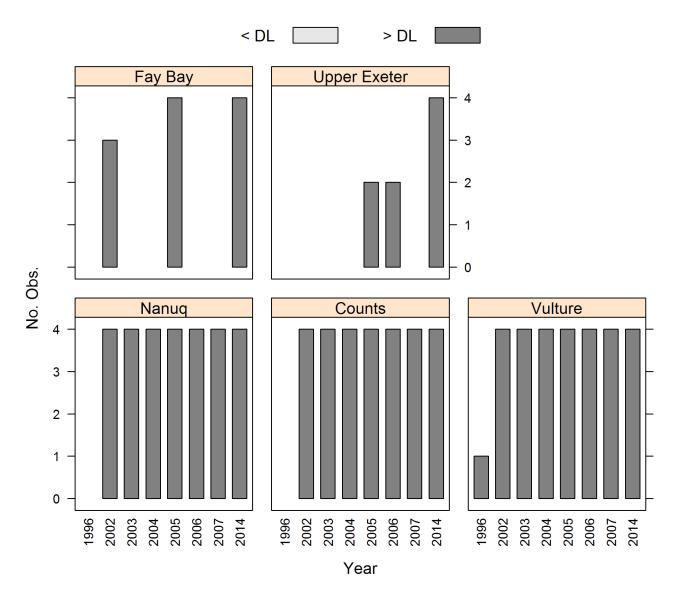
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Antimony water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Winter Total Arsenic Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

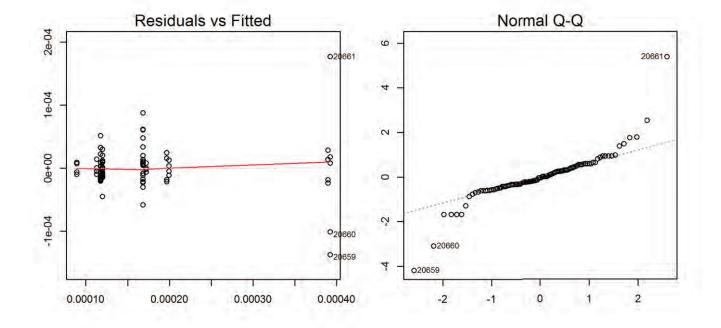
January 21, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

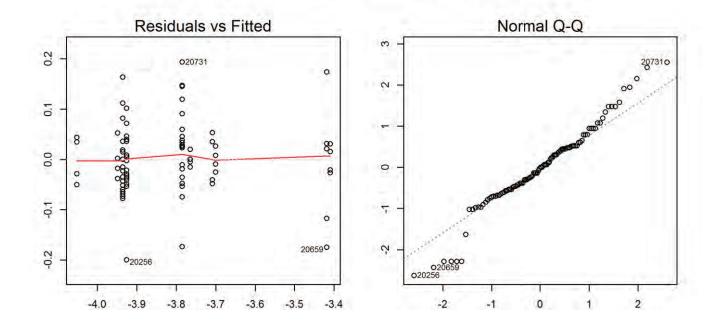
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

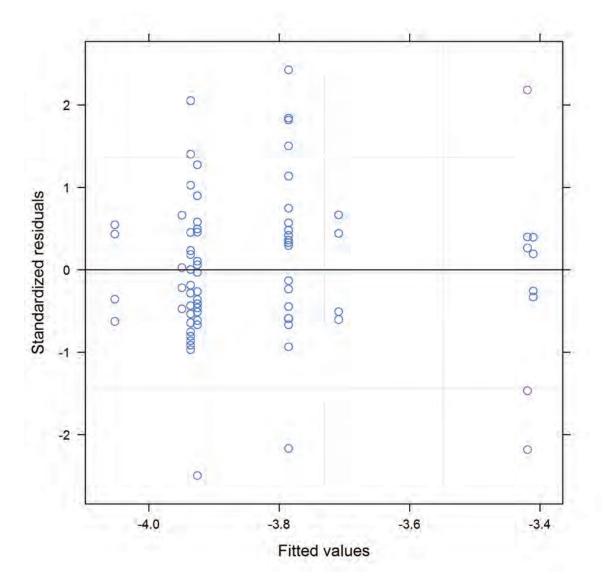
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	3.54×10 ⁻⁵	0.86	0.84
Log-10	0.08	0.83	0.82

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-159.99	89		
LME	10	-160.23	90.12	2.24	0.13

Conclusion:

The most appropriate model for Total Arsenic at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.134).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	88		
##		numDF	F-value	p-value
##	(Intercept)	1	220926	<.0001
##	site	3	140	<.0001
##	period	1	0	0.50
##	<pre>site:period</pre>	3	3	0.02

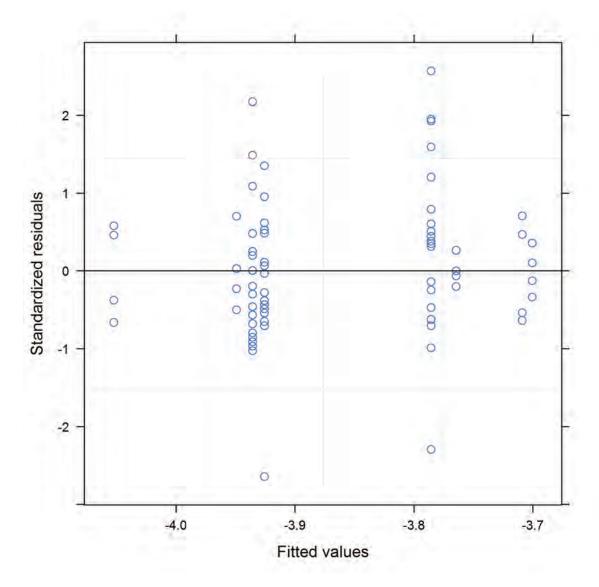
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.13	-0.26	0.01	not sig.
Counts	0.07	-0.06	0.2	not sig.
Vulture	-0.03	-0.16	0.1	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Arsenic concentrations at the Fay Bay site were significantly (p = 0.02) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-163.68	90.84		
LME	10	-164.36	92.18	2.68	0.1

Conclusion:

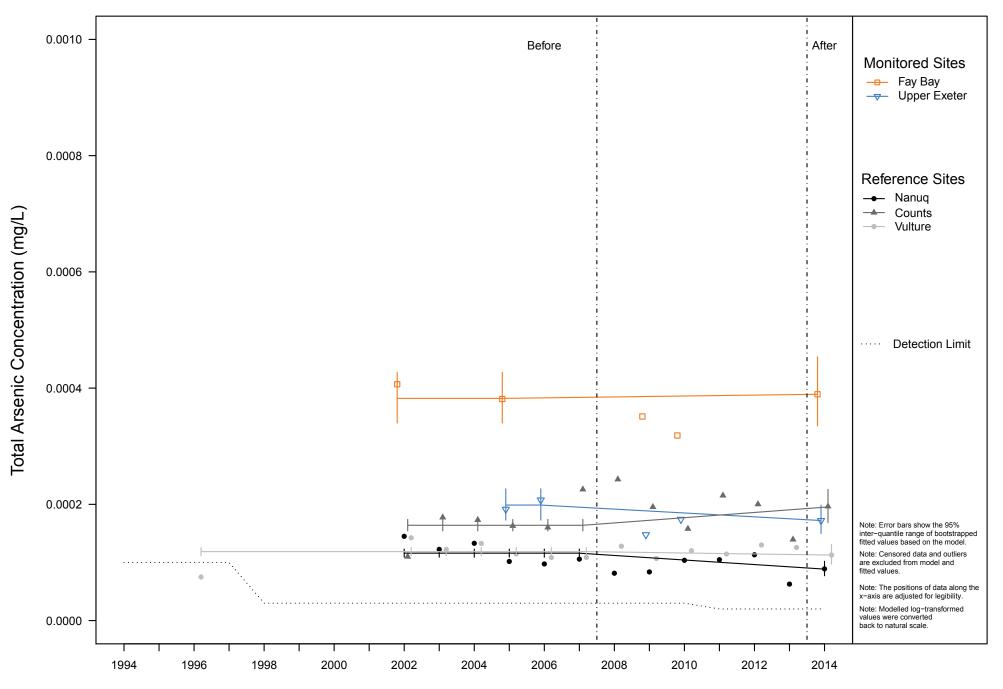
The most appropriate model for Total Arsenic at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.102).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	85		
##		numDF	F-value	p-value
##	(Intercept)	1	245250	<.0001
##	site	3	41	<.0001
##	period	1	2	0.194
##	<pre>site:period</pre>	3	4	0.011

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.05	-0.19	0.08	not sig.
Counts	0.14	0.01	0.27	sig.
Vulture	0.04	-0.09	0.17	not sig.

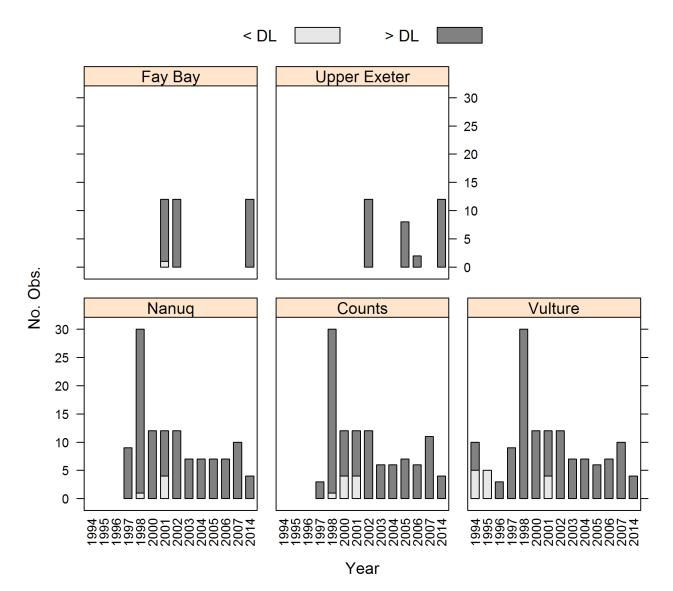

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Arsenic concentrations at the Upper Exeter site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Arsenic Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

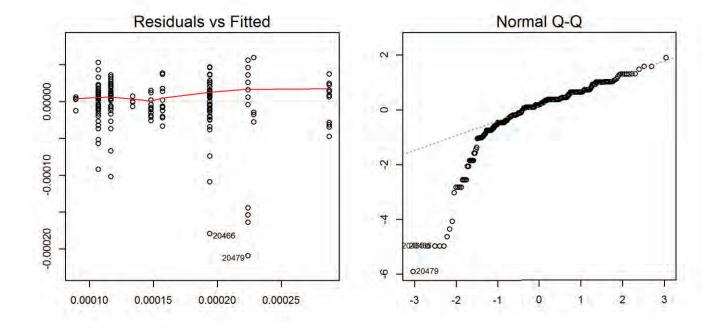
January 20, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

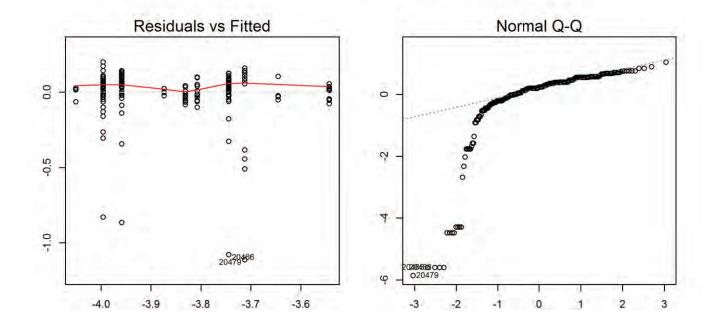
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


site year month season
20251 Vulture 1995 August summer
20252 Vulture 1995 August summer
20253 Vulture 1995 August summer
20255 Vulture 1995 August summer
20255 Vulture 1995 August summer

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
20425 Counts 2000 July summer
20426 Counts 2000 July summer
20427 Counts 2000 July summer
20428 Counts 2000 July summer

3 Initial Model Fit

Natural Scale Model

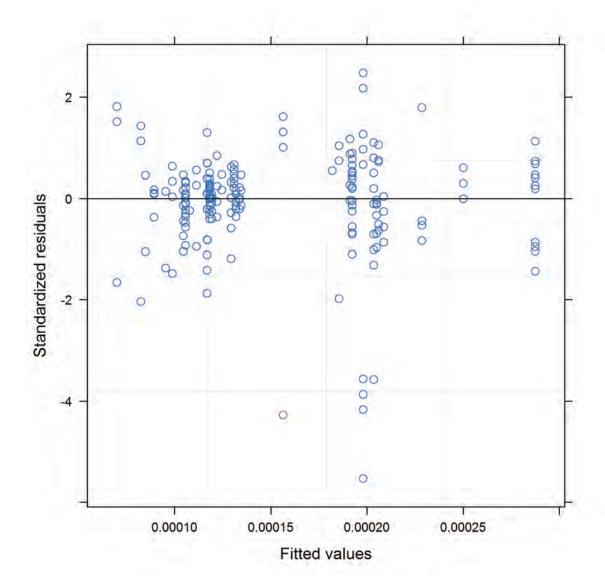
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	3.62×10 ⁻⁵	0.64	0.63
Log-10	0.19	0.3	0.28

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-6610.31	3314.15		
LME	10	-6677.27	3348.64	68.96	1.11×10^{-16}

Conclusion:

The most appropriate model for Total Arsenic at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	368	646	<.0001
##	site	3	368	236	<.0001
##	period	1	11	2	0.1756
##	<pre>site:period</pre>	3	368	4	0.0071

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-7.02×10 ⁻⁵	-1.12×10 ⁻⁴	-2.92×10 ⁻⁵	sig.
Counts	-1.76×10 ⁻⁵	-5.73×10 ⁻⁵	2.29×10 ⁻⁵	not sig.
Vulture	-3.83×10 ⁻⁵	-8.13×10 ⁻⁵	2.52×10 ⁻⁶	not sig.

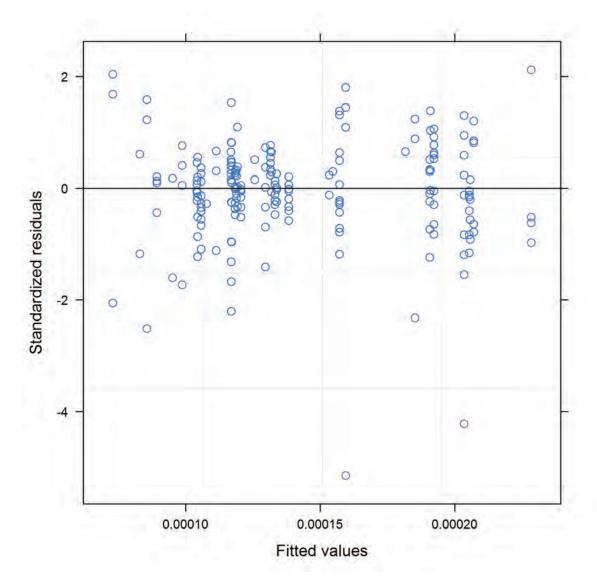
A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Arsenic concentrations at the Fay Bay site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:


 Model
 D.F.
 AIC
 log(Like.)
 L. Ratio
 p

 GLS
 9
 -6691.87
 3354.93

 LME
 10
 -6762.49
 3391.25
 72.62
 0

Conclusion:

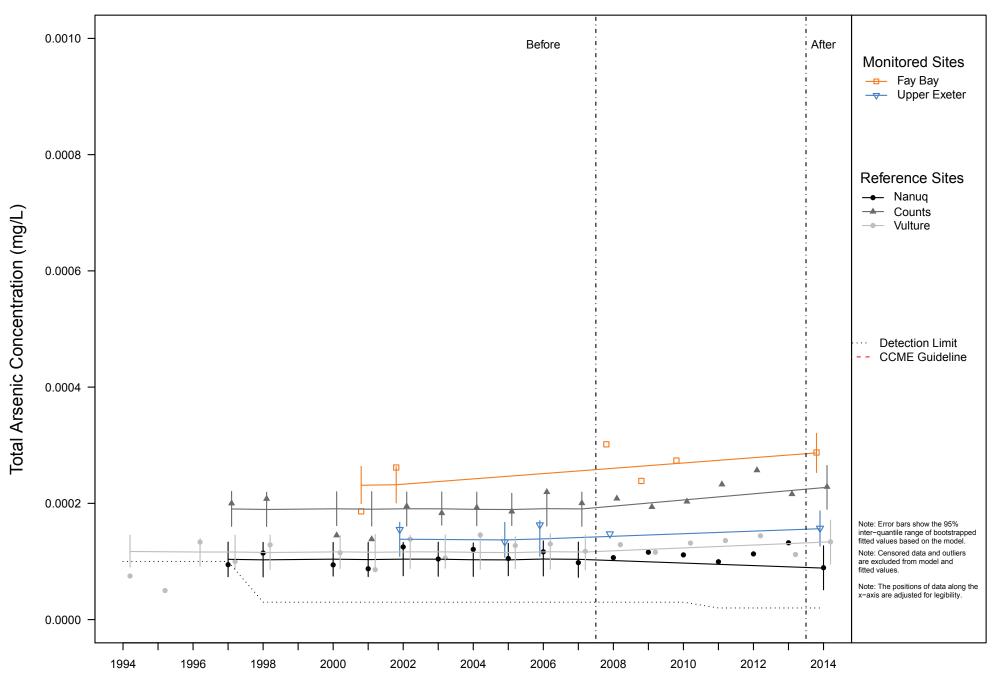
The most appropriate model for Total Arsenic at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	366	619	<.0001
##	site	3	366	207	<.0001
##	period	1	11	1	0.434
##	<pre>site:period</pre>	3	366	2	0.072

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-3.38×10 ⁻⁵	-6.82×10 ⁻⁵	1.39×10 ⁻⁷	not sig.
Counts	1.89×10 ⁻⁵	-1.48×10 ⁻⁵	5.27×10 ⁻⁵	not sig.
Vulture	-1.92×10 ⁻⁶	-3.61×10 ⁻⁵	3.11×10 ⁻⁵	not sig.

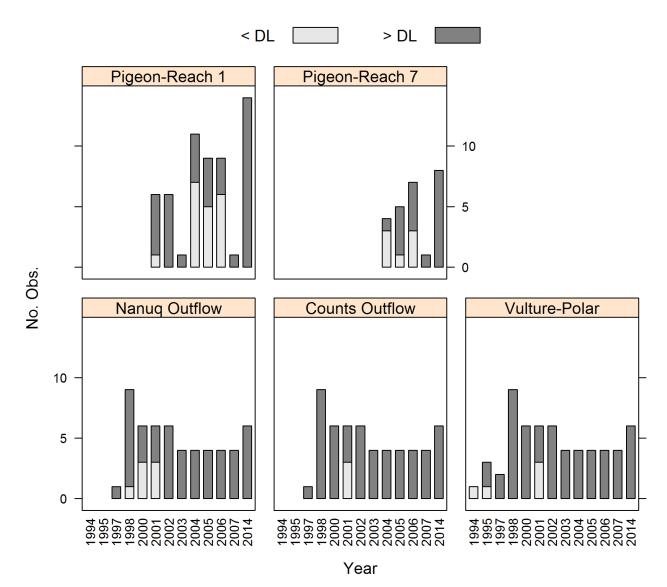

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Arsenic concentrations at the Upper Exeter site were not significantly (p = 0.07) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Arsenic Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

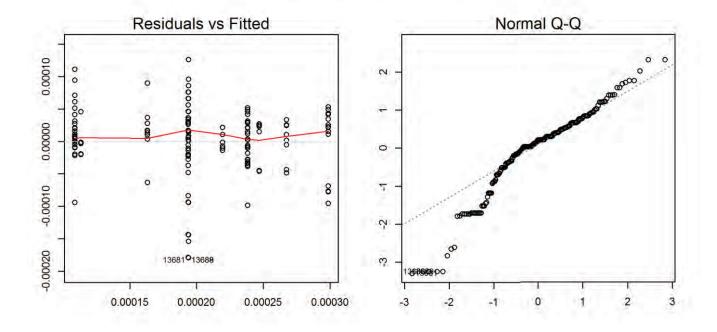
January 20, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

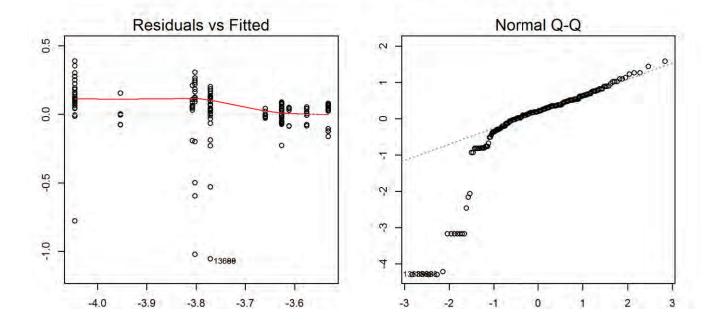
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
##
                   site year
                                 month season
## 13556 Vulture-Polar 1994
                                August summer
## 13765 Pigeon-Reach 1 2004
                                  July summer
## 13766 Pigeon-Reach 1 2004
                                  July summer
## 13767 Pigeon-Reach 1 2004
                                  July summer
## 13768 Pigeon-Reach 1 2004
                                  July summer
## 13769 Pigeon-Reach 1 2004
                                August summer
## 13770 Pigeon-Reach 1 2004
                                August summer
## 13771 Pigeon-Reach 1 2004
                                August summer
## 13772 Pigeon-Reach 1 2004
                                August summer
## 13773 Pigeon-Reach 1 2004 September summer
## 13774 Pigeon-Reach 1 2004 September summer
## 13775 Pigeon-Reach 1 2004 September summer
## 13776 Pigeon-Reach 7 2004
                                  July summer
## 13777 Pigeon-Reach 7 2004
                                  July summer
## 13778 Pigeon-Reach 7 2004
                                  July summer
## 13779 Pigeon-Reach 7 2004
                                  July summer
## 13843 Pigeon-Reach 1 2006
                                  July summer
## 13844 Pigeon-Reach 1 2006
                                  July summer
## 13845 Pigeon-Reach 1 2006
                                  July summer
## 13846 Pigeon-Reach 1 2006
                                August summer
## 13847 Pigeon-Reach 1 2006
                                August summer
## 13848 Pigeon-Reach 1 2006
                                August summer
## 13849 Pigeon-Reach 1 2006 September summer
## 13850 Pigeon-Reach 1 2006 September summer
## 13851 Pigeon-Reach 1 2006 September summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## site year month season
## 13557 Vulture-Polar 1995 July summer
## 13661 Counts Outflow 2001 August summer
## 13662 Counts Outflow 2001 August summer
## 13663 Counts Outflow 2001 August summer
## 13868 Counts Outflow 2007 August summer
## 13869 Counts Outflow 2007 August summer
```

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

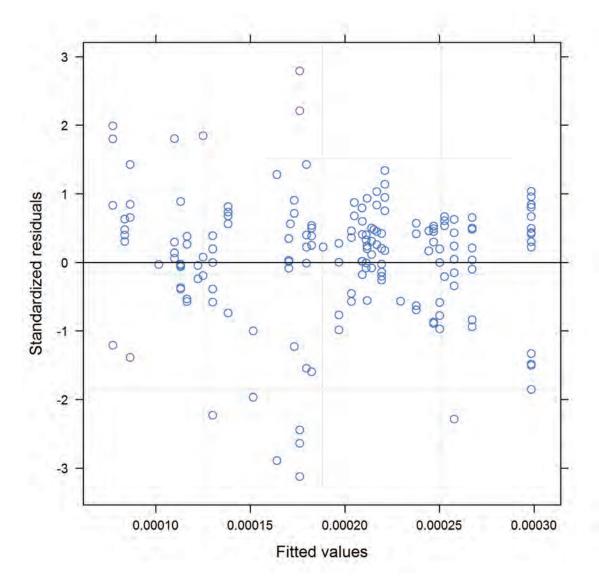
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	5.56×10 ⁻⁵	0.52	0.5
Log-10	0.25	0.32	0.29

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Pigeon-Reach 1 Monitoring Location


Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-3436.14	1729.07		
LME	12	-3450.93	1737.46	16.79	4.18×10 ⁻⁵

Conclusion:

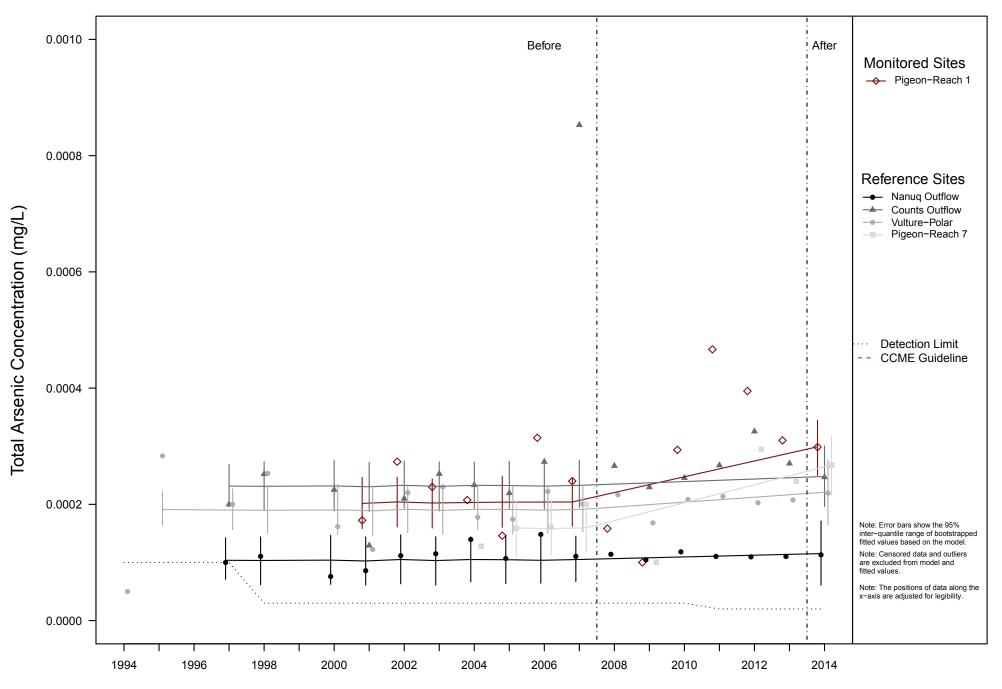
_

The most appropriate model for Total Arsenic at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	198	451	<.0001
##	site	4	198	49	<.0001
##	period	1	10	4	0.0899
##	<pre>site:period</pre>	4	198	5	0.0014

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-8.66×10 ⁻⁵	-1.46×10 ⁻⁴	-3.13×10 ⁻⁵	sig.
Counts Outflow	-8.07×10 ⁻⁵	-1.39×10 ⁻⁴	-2.44×10 ⁻⁵	sig.
Vulture-Polar	-6.73×10 ⁻⁵	-1.26×10 ⁻⁴	-1.27×10 ⁻⁵	sig.
Pigeon-Reach 7	1.28×10^{-5}	-4.64×10 ⁻⁵	7.14×10 ⁻⁵	not sig.

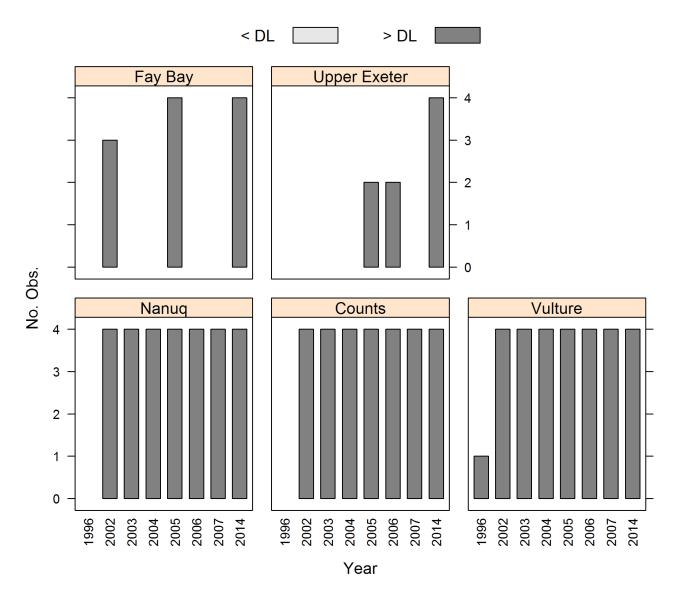

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total Arsenic concentrations at the Pigeon-Reach 1site were significantly (p = 0) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Winter Total Barium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

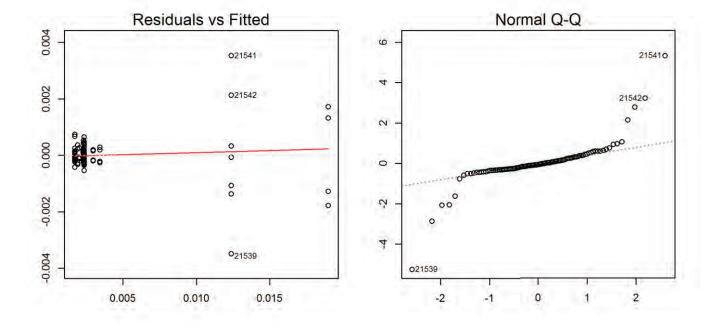
January 26, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

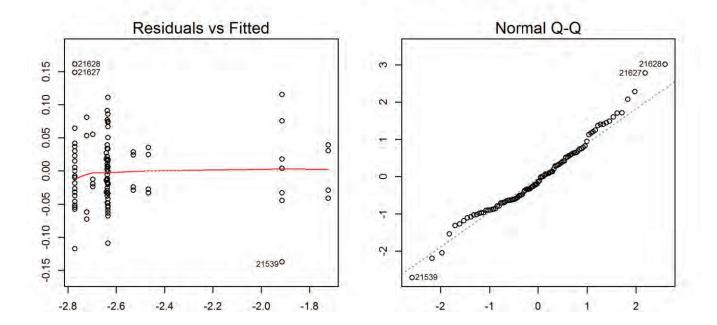
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
21136 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

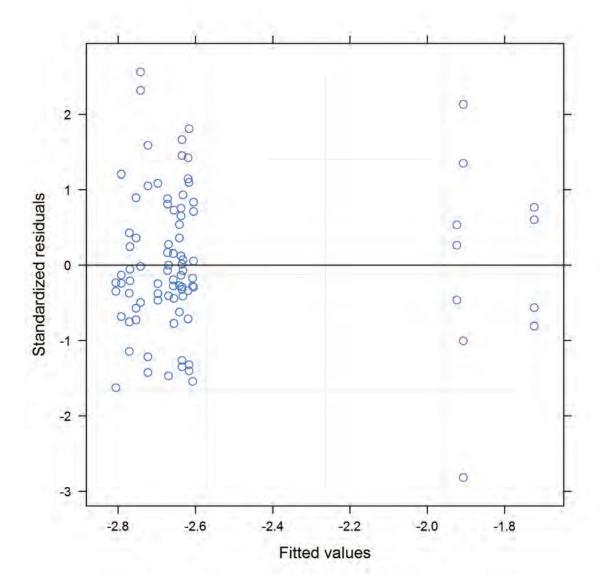
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	7.1510^{-4}	0.97	0.97
Log-10	0.05	0.96	0.96

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-220.15	119.08		
LME	10	-226.27	123.13	8.12	0

Conclusion:

The most appropriate model for total barium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p = 0.004).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	82	51033	<.0001
##	site	3	82	802	<.0001
##	period	1	5	1	0.34
##	<pre>site:period</pre>	3	82	14	<.0001

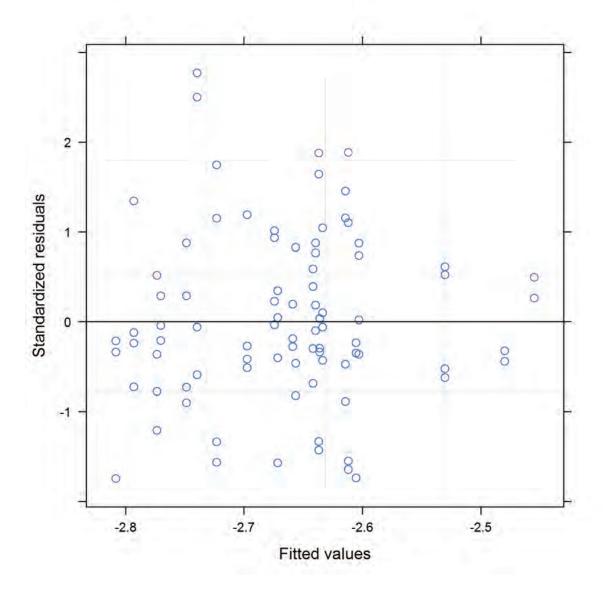
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.15	-0.24	-0.07	sig.
Counts	-0.26	-0.35	-0.18	sig.
Vulture	-0.21	-0.29	-0.12	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total barium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-222.25	120.12		
LME	10	-231.97	125.99	11.73	6.17×10 ⁻⁴

Conclusion:

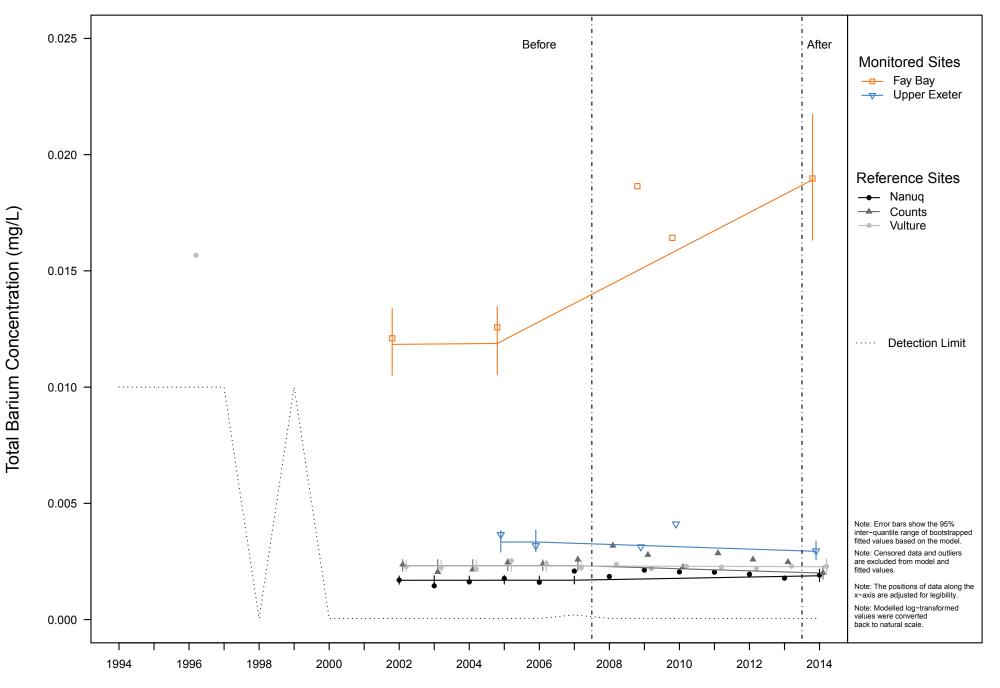
The most appropriate model for total barium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	50681	<.0001
##	site	3	79	77	<.0001
##	period	1	5	0	0.721
##	<pre>site:period</pre>	3	79	4	0.013

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.1	0.02	0.18	sig.
Counts	-0.01	-0.1	0.07	not sig.
Vulture	0.05	-0.03	0.13	not sig.

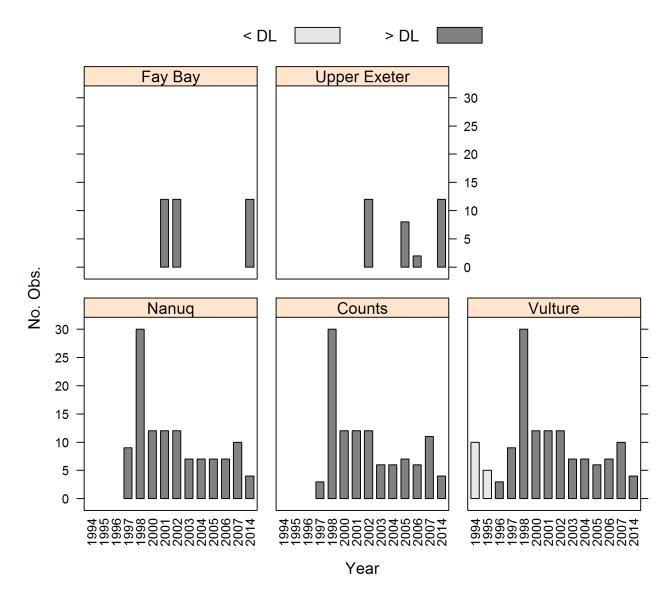

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total barium concentrations at the Upper Exeter site were significantly (p = 0.013) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Barium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

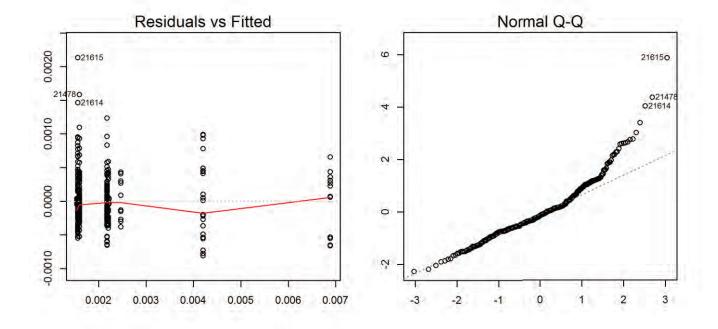
January 26, 2014

1 Censored Data

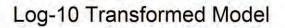
The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

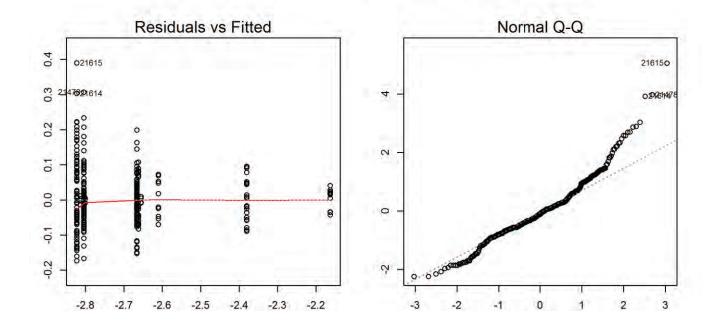
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
##
            site year
                      month season
## 21121 Vulture 1994
                       July summer
## 21122 Vulture 1994 July summer
## 21123 Vulture 1994
                       July summer
## 21124 Vulture 1994
                       July summer
## 21125 Vulture 1994
                       July summer
## 21126 Vulture 1994 August summer
## 21127 Vulture 1994 August summer
## 21128 Vulture 1994 August summer
## 21129 Vulture 1994 August summer
## 21130 Vulture 1994 August summer
## 21131 Vulture 1995 August summer
## 21132 Vulture 1995 August summer
## 21133 Vulture 1995 August summer
## 21134 Vulture 1995 August summer
## 21135 Vulture 1995 August summer
```

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

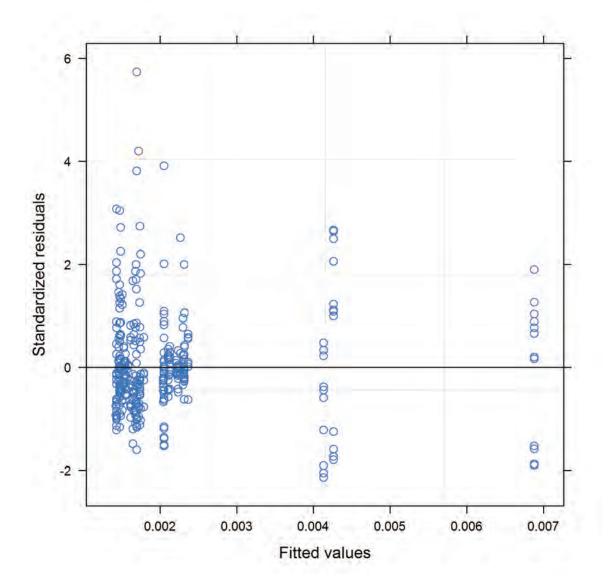
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	3.64×10 ⁻⁴	0.89	0.89
Log-10	0.08	0.79	0.78

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-4799.26	2408.63		
LME	10	-4823.7	2421.85	26.44	2.72×10 ⁻⁷

Conclusion:

_

The most appropriate model for total barium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	363	2375	<.0001
##	site	3	363	780	<.0001
##	period	1	10	38	1e-04
##	<pre>site:period</pre>	3	363	90	<.0001

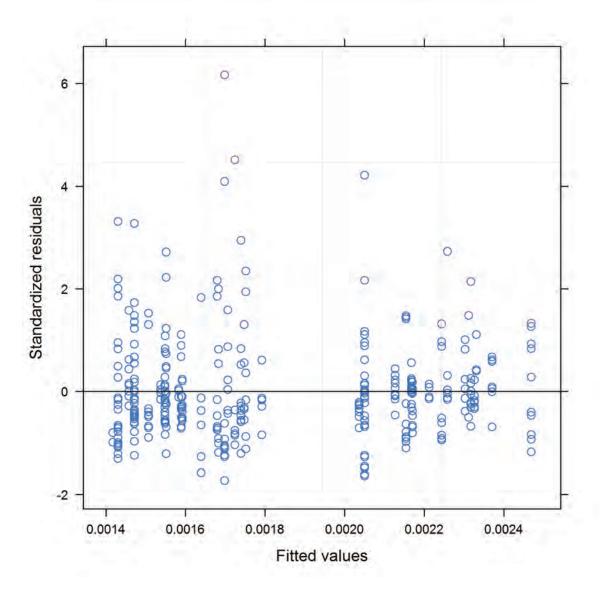
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.0027	-0.0031	-0.0023	sig.
Counts	-0.0027	-0.0031	-0.0023	sig.
Vulture	-0.0026	-0.0031	-0.0022	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total barium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-4822.86	2420.43		
LME	10	-4850.46	2435.23	29.6	5.31×10 ⁻⁸

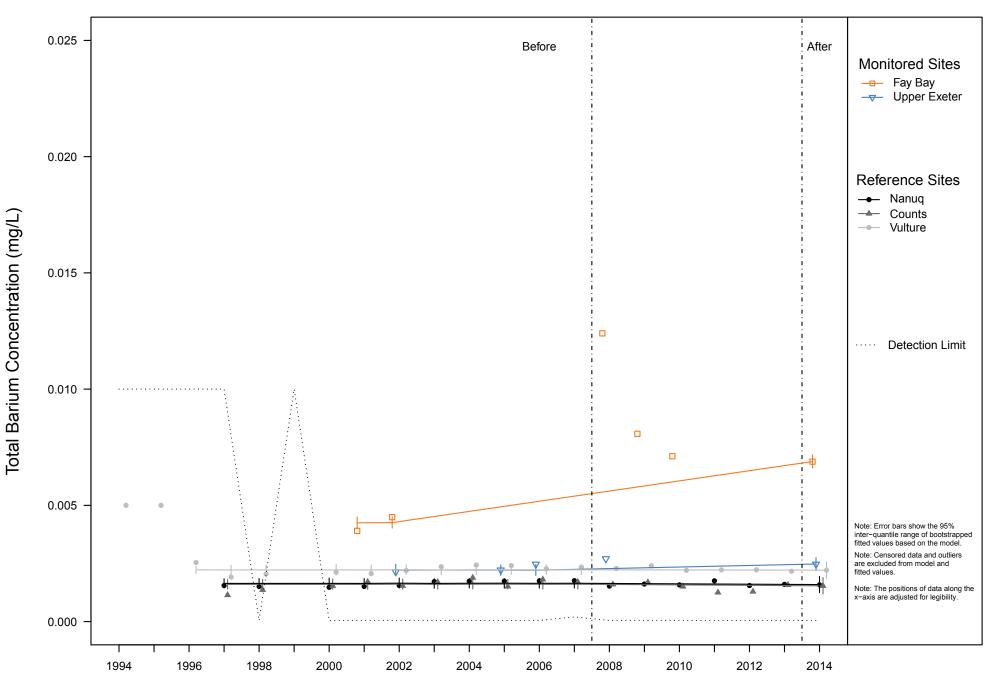
Conclusion:

The most appropriate model for total barium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	361	1893	<.0001
##	site	3	361	106	<.0001
##	period	1	10	0	0.66
##	<pre>site:period</pre>	3	361	1	0.26

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-3.23×10 ⁻⁴	-7.44×10 ⁻⁴	8.78×10 ⁻⁵	not sig.
Counts	-3.27×10 ⁻⁴	-7.16×10 ⁻⁴	7×10 ⁻⁵	not sig.
Vulture	-2.71×10 ⁻⁴	-6.71×10 ⁻⁴	1.58×10^{-4}	not sig.

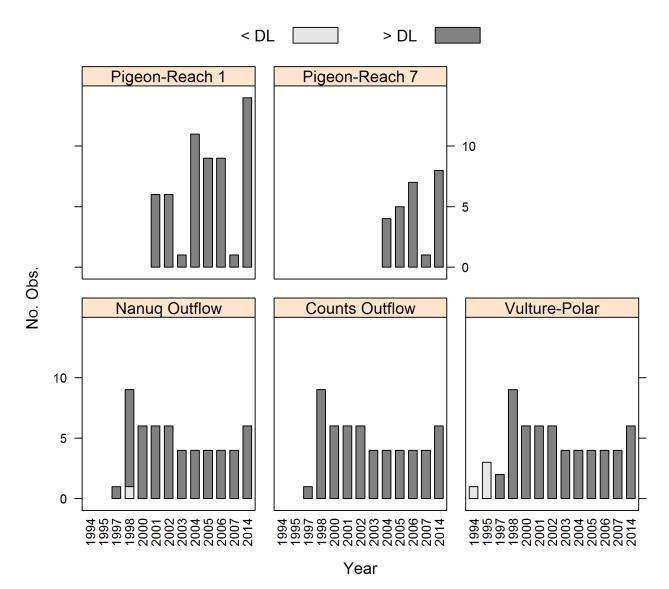

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total barium concentrations at the Upper Exeter site were not significantly (p = 0.255) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Barium Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

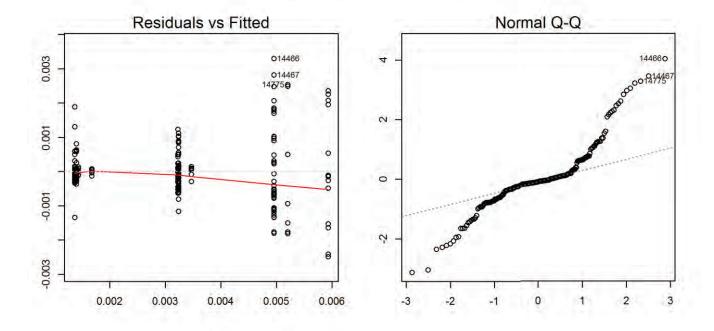
January 26, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

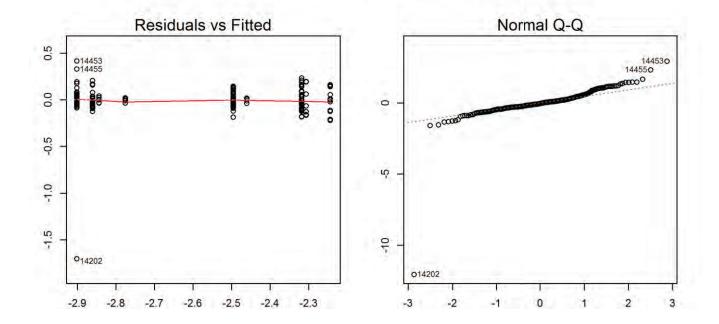
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## site year month season
## 14172 Vulture-Polar 1994 August summer
## 14173 Vulture-Polar 1995 July summer
## 14174 Vulture-Polar 1995 August summer
## 14175 Vulture-Polar 1995 September summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

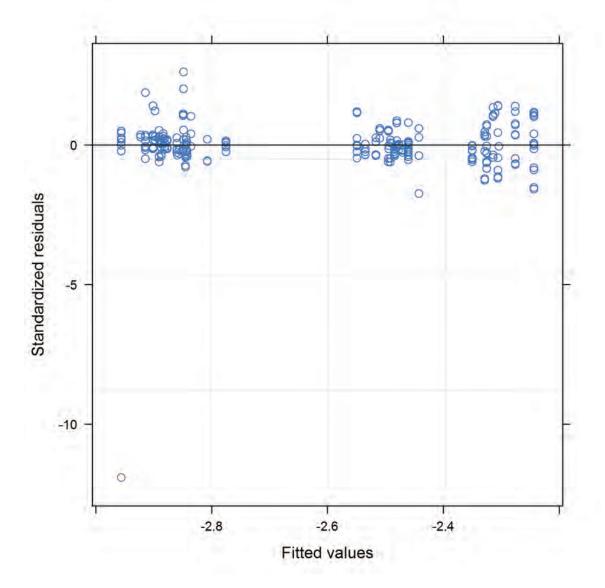
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	8.24×10 ⁻⁴	0.79	0.78
Log-10	0.14	0.76	0.75

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-198.74	110.37		
LME	12	-203.01	113.51	6.27	0.01

Conclusion:

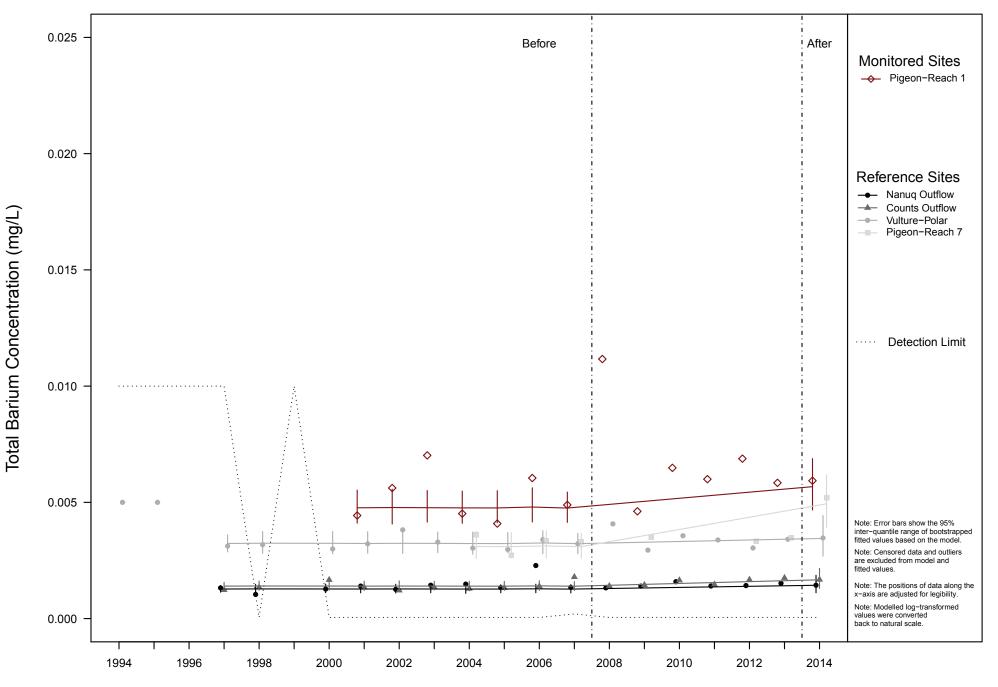
The most appropriate model for total barium at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p = 0.012).

Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	226	31455	<.0001
##	site	4	226	166	<.0001
##	period	1	9	3	0.097
##	<pre>site:period</pre>	4	226	1	0.296

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.03	-0.18	0.11	not sig.
Counts Outflow	-2.4410^{-4}	-0.15	0.14	not sig.
Vulture-Polar	-0.05	-0.2	0.09	not sig.
Pigeon-Reach 7	0.12	-0.02	0.26	not sig.

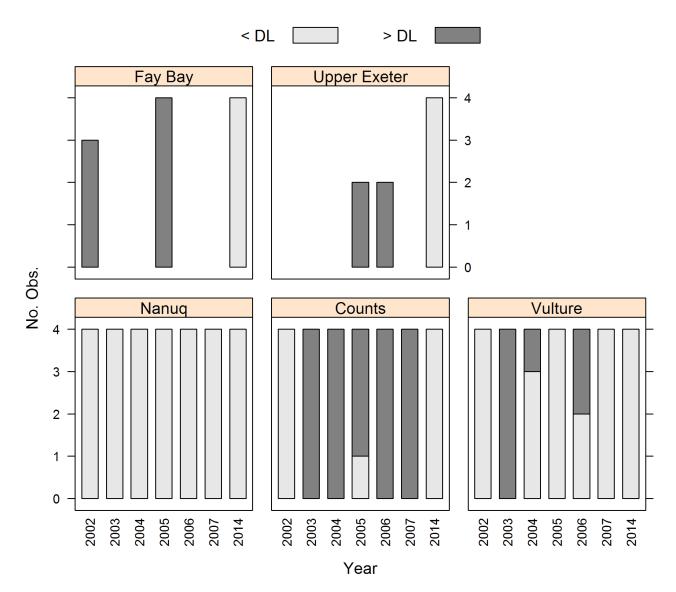

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total barium concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.296) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

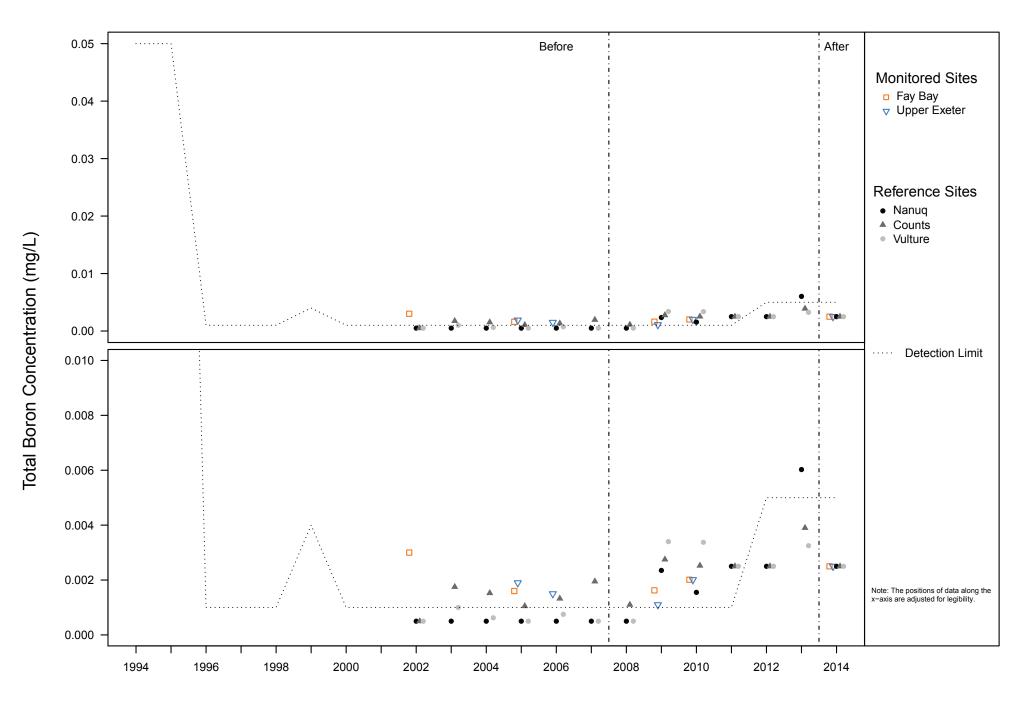
Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



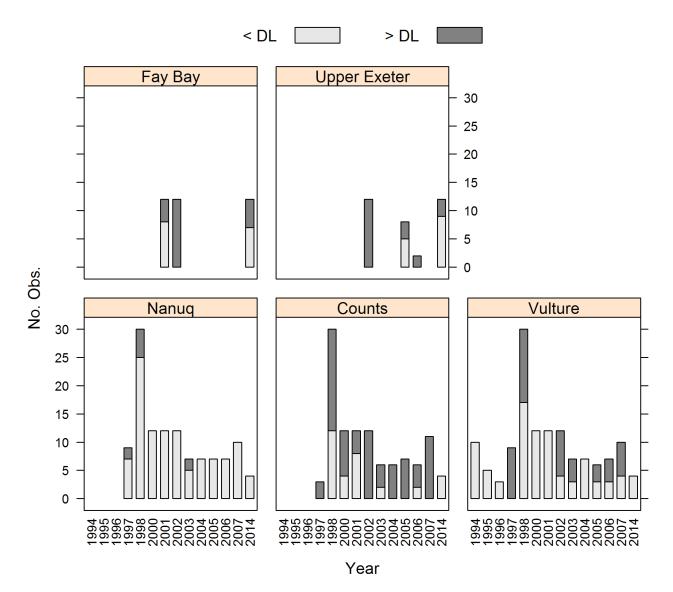
Analysis of Winter Total Boron Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2015

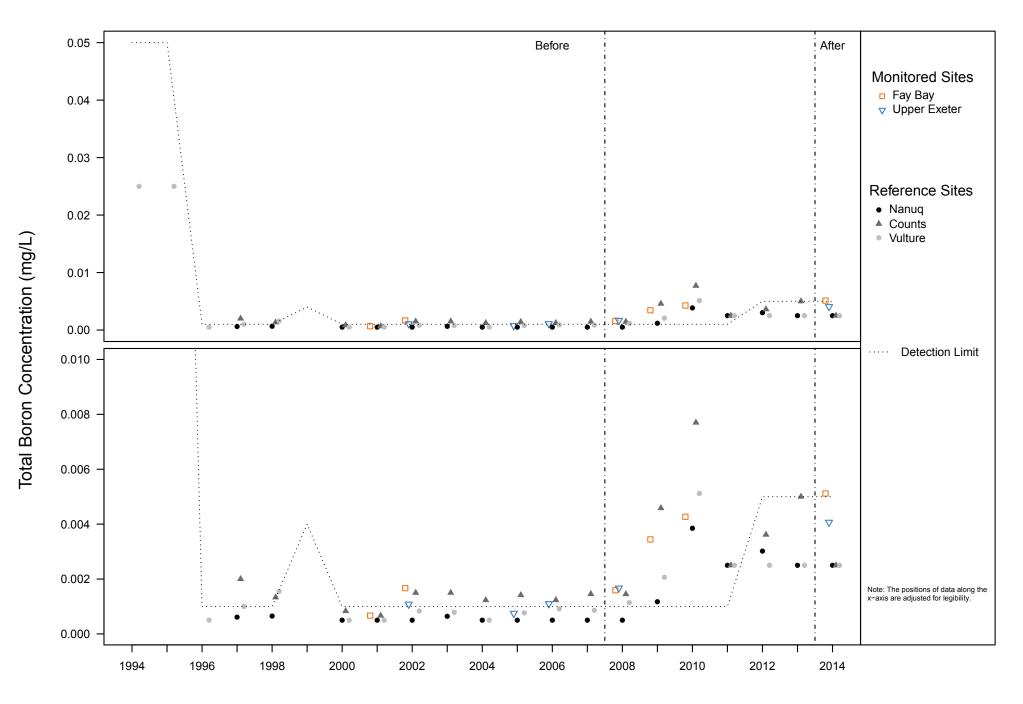

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Conclusion:

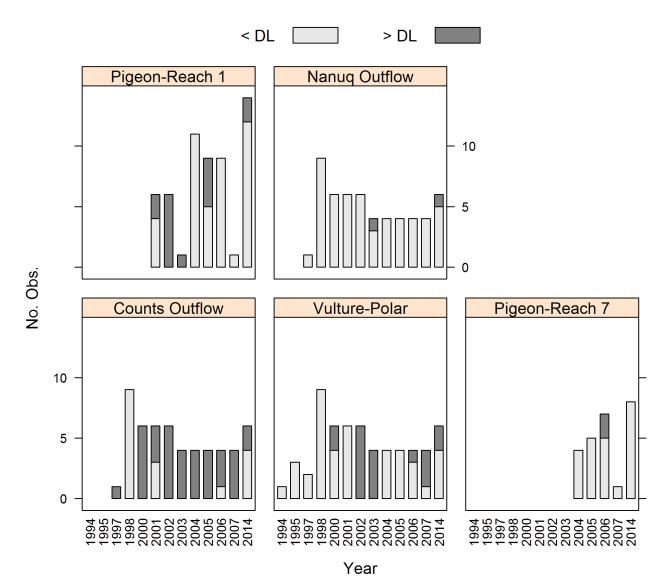

Boron water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Boron Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

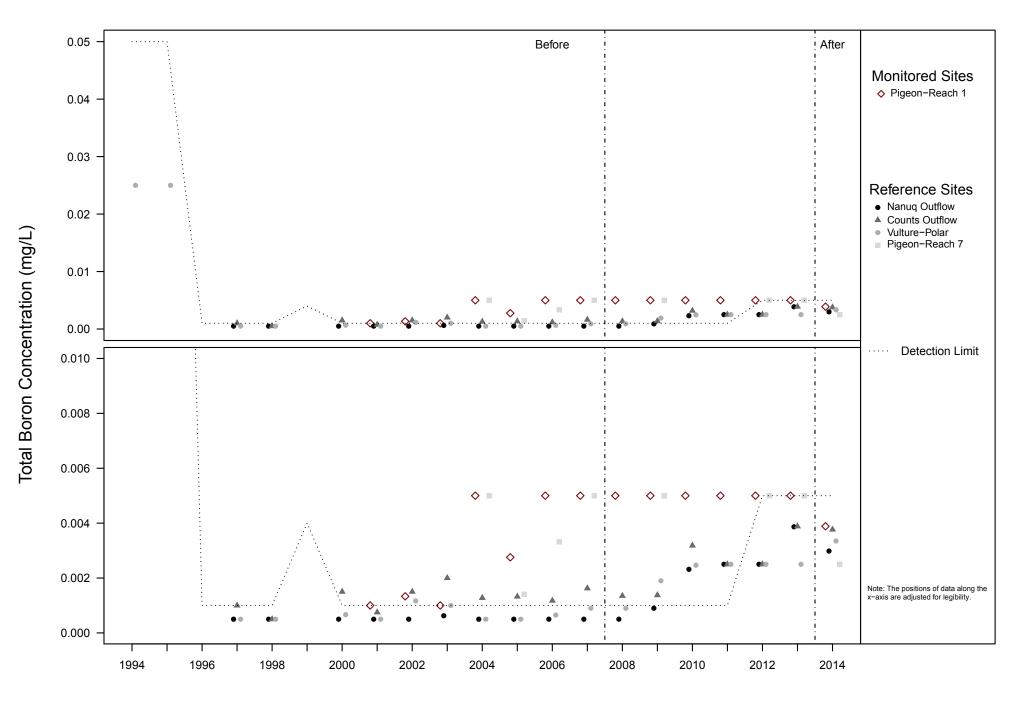

January 26, 2015

1 Censored Data

Conclusion:

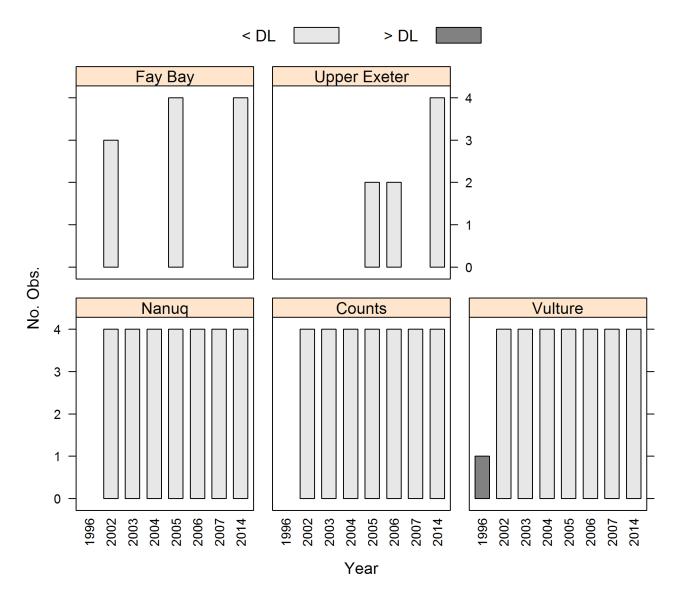

Boron water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Boron Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

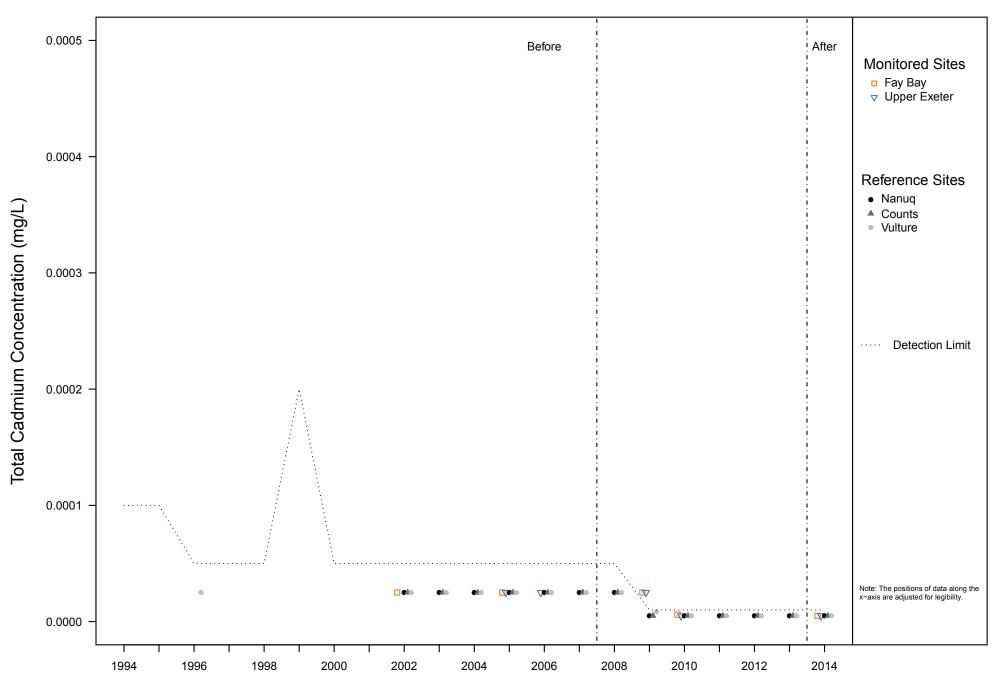

January 26, 2015

1 Censored Data

Conclusion:

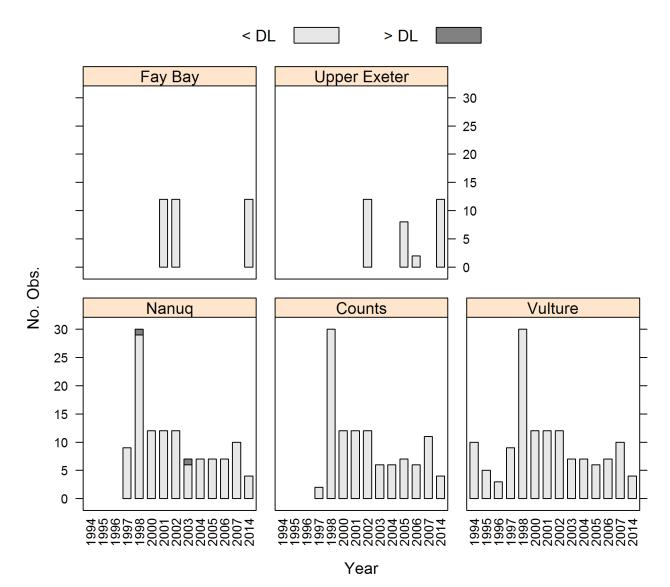

Boron water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Winter Total Cadmium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

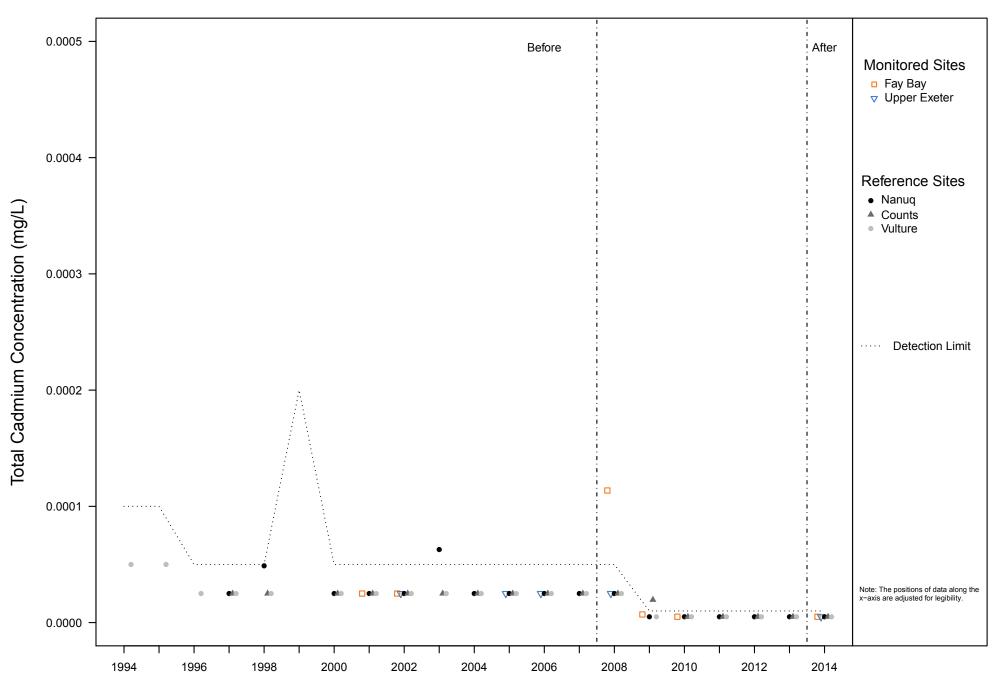

January 26, 2015

1 Censored Data

Conclusion:

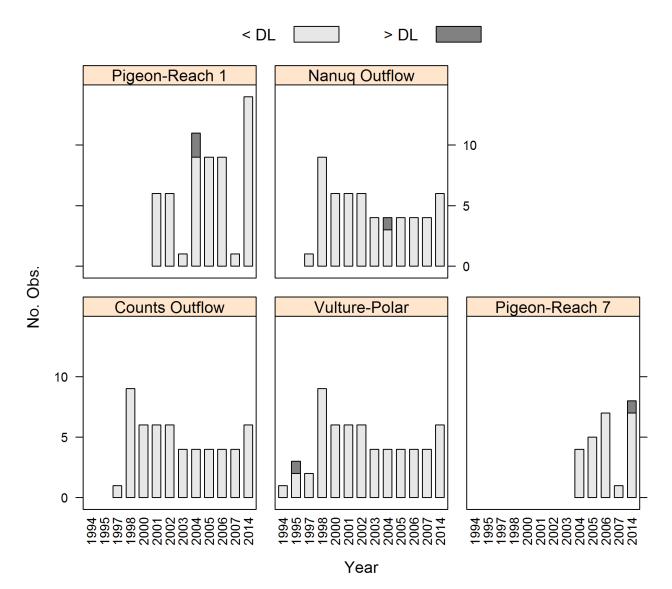

Cadmium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Cadmium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

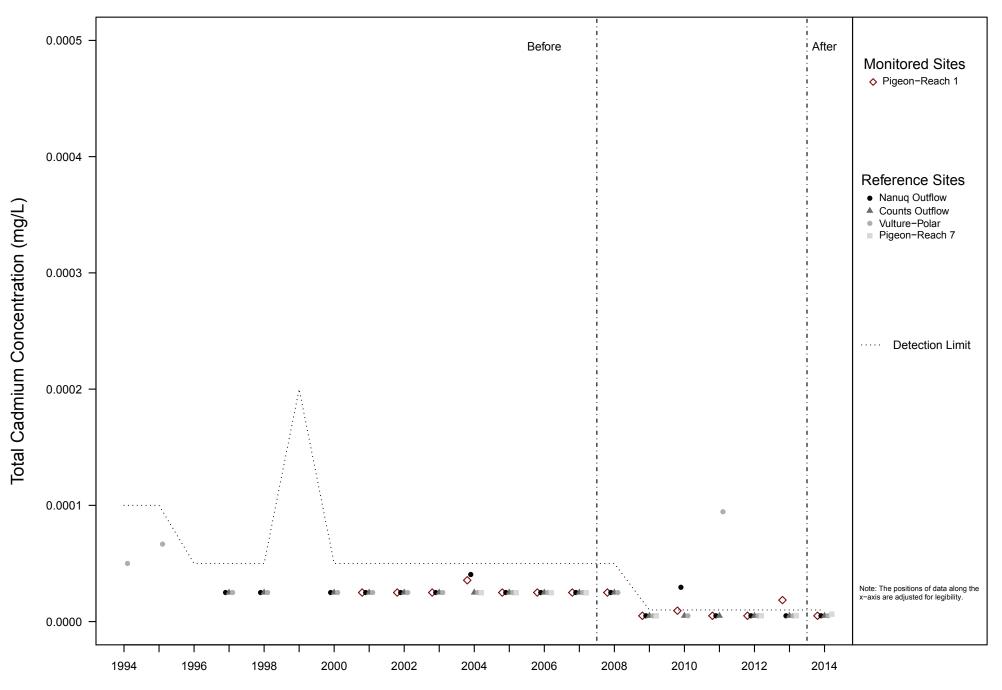

January 26, 2015

1 Censored Data

Conclusion:

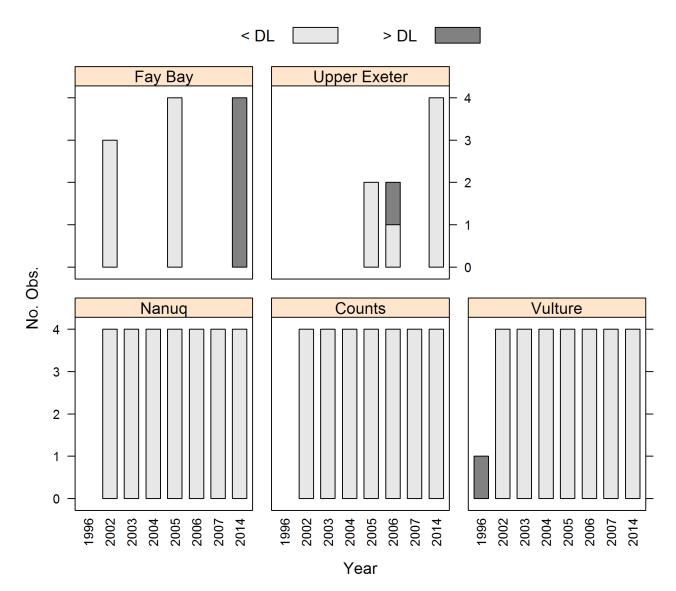

Cadmium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Cadmium Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

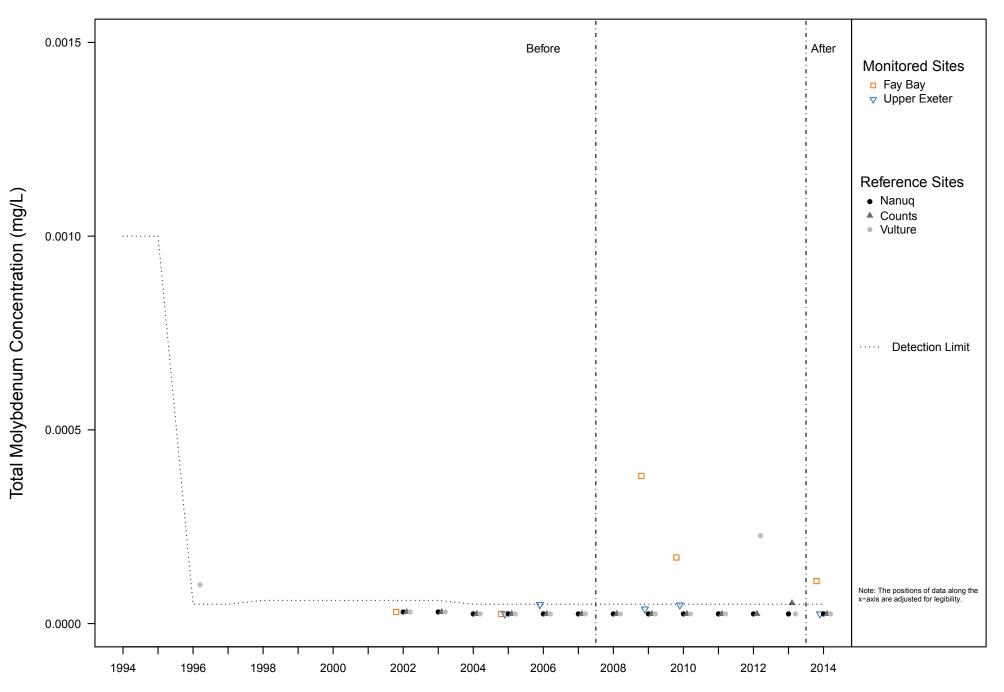

January 26, 2015

1 Censored Data

Conclusion:

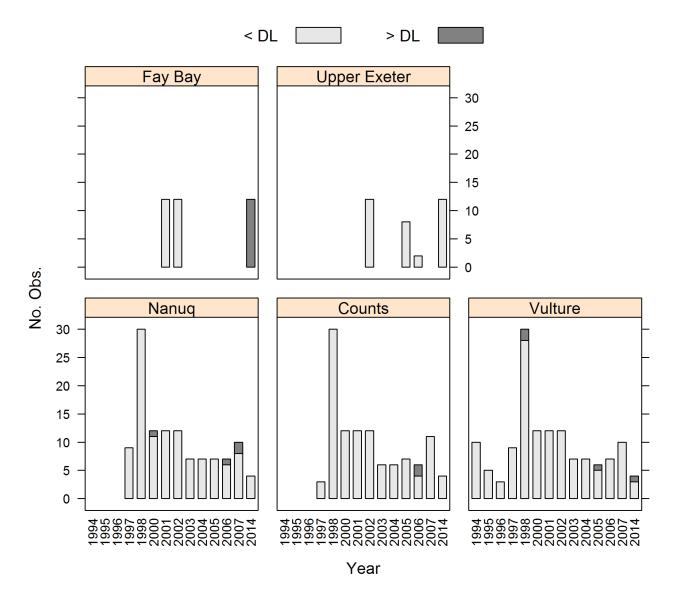

Cadmium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Winter Total Molybdenum Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed


January 26, 2014

1 Censored Data

Conclusion:

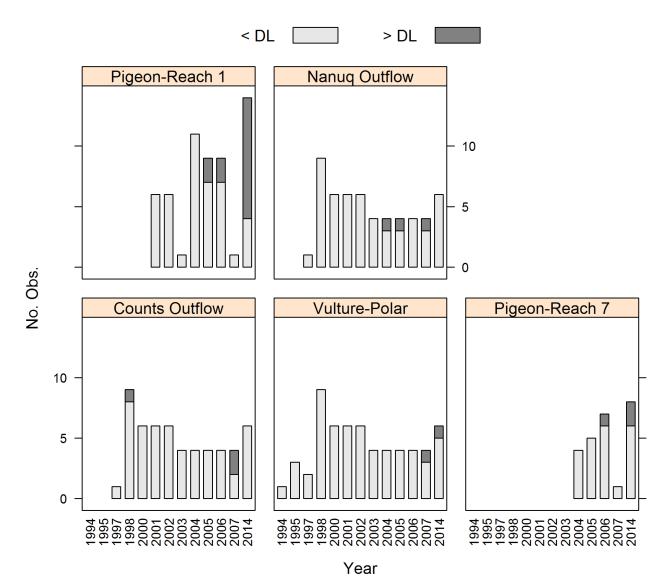

Molybdenum water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Molybdenum Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

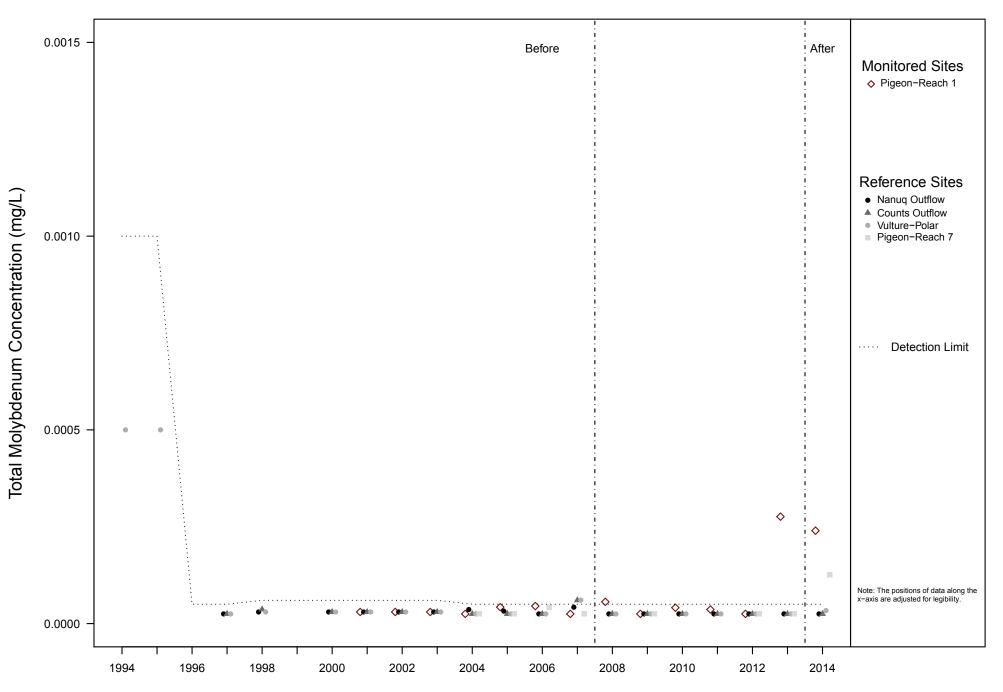
January 26, 2014

1 Censored Data

Conclusion:

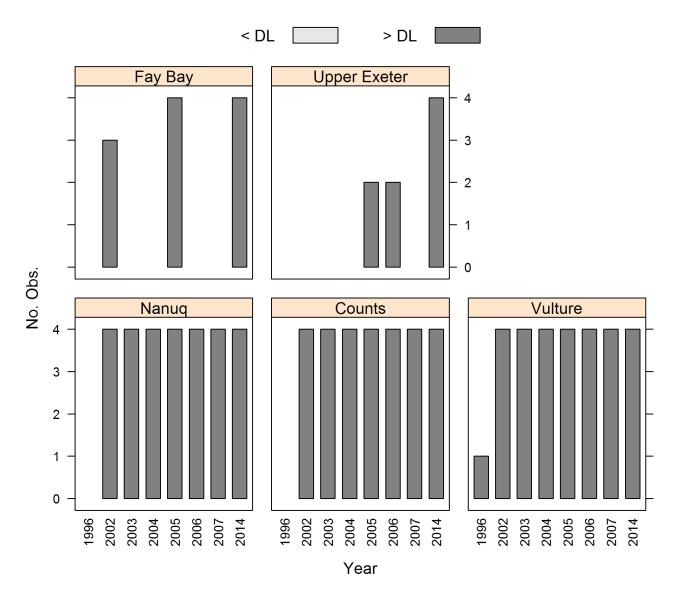

Molybdenum water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Molybdenum Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed


January 26, 2015

1 Censored Data

Conclusion:

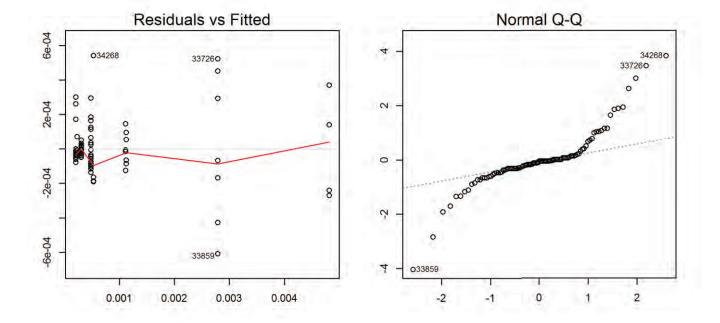

Molybdenum water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Winter Total Nickel Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

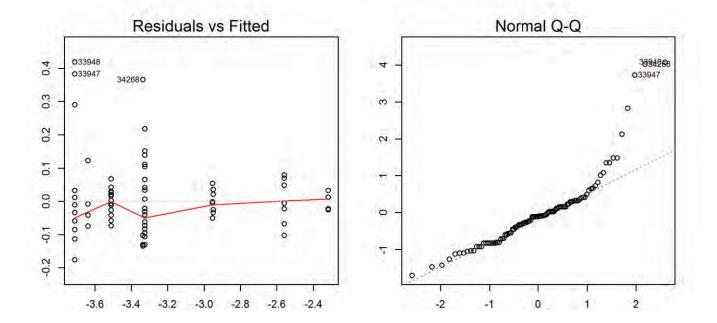
1 Censored Data

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
33456 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

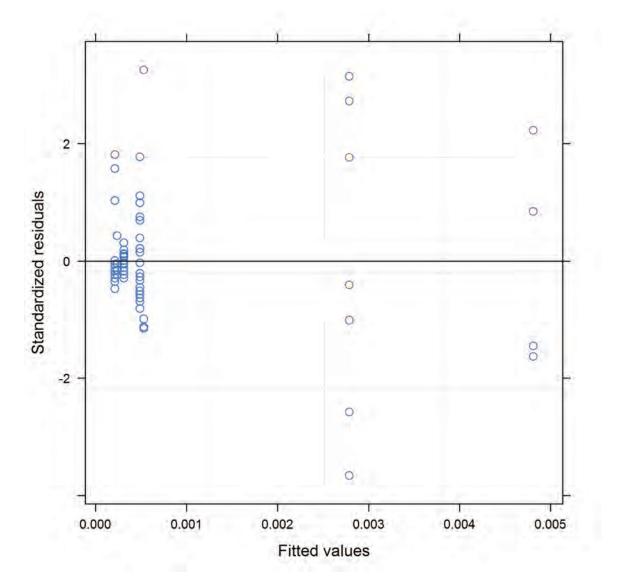
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.63×10^{-4}	0.98	0.98
Log-10	0.1	0.93	0.93

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-1232.42	625.21		
LME	10	-1232.72	626.36	2.3	0.13

Conclusion:

The most appropriate model for total nickel at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.129).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	87		
##		numDF	F-value	p-value
##	(Intercept)	1	1718	<.0001
##	site	3	1206	<.0001
##	period	1	82	<.0001
##	<pre>site:period</pre>	3	99	<.0001

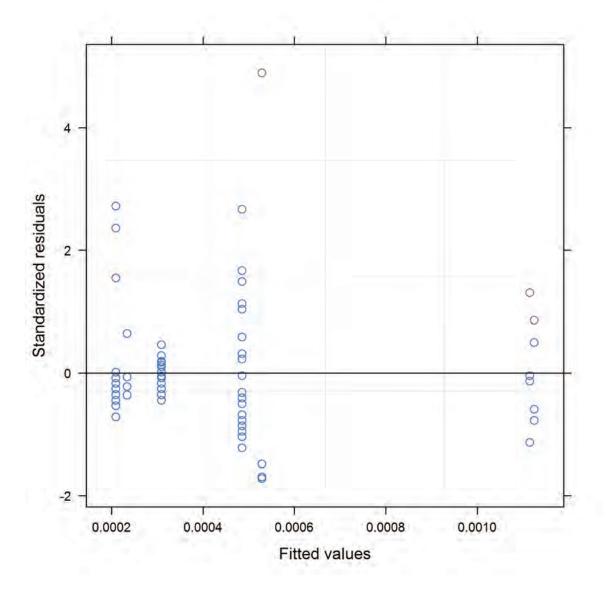
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.0020	-0.0023	-0.0017	sig.
Counts	-0.0020	-0.0023	-0.0017	sig.
Vulture	-0.0020	-0.0023	-0.0018	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-1257.78	637.89		
LME	10	-1255.87	637.94	0.09	0.76

Conclusion:

The most appropriate model for total nickel at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.758).

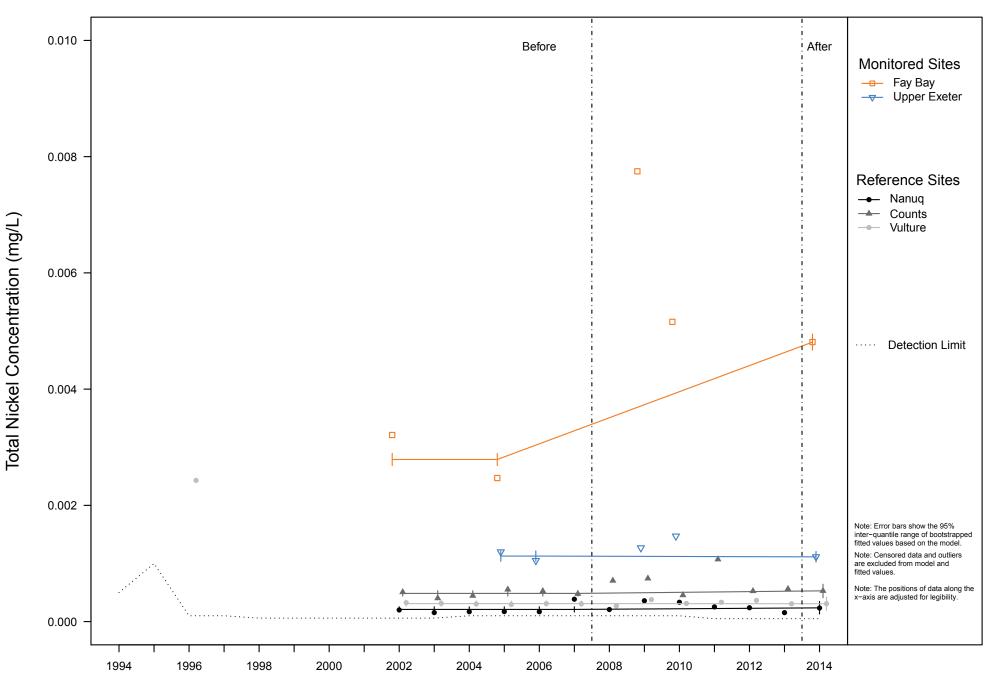
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 8	34		
##		numDF	F-value	p-value
##	(Intercept)	1	1240	<.0001
##	site	3	153	<.0001
##	period	1	0	0.58
##	<pre>site:period</pre>	3	0	0.93

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

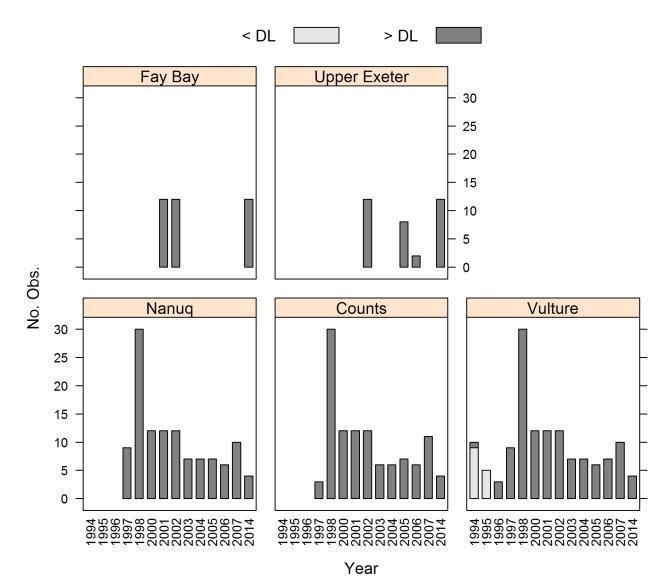
Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	3.48×10 ⁻⁵	-1.61×10 ⁻⁴	2.3×10 ⁻⁴	not sig.
Counts	5.4×10^{-5}	-1.41×10-4	2.49×10 ⁻⁴	not sig.
Vulture	9.75×10 ⁻⁶	-1.86×10 ⁻⁴	2.05×10 ⁻⁴	not sig.


A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Upper Exeter site were not significantly (p = 0.935) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

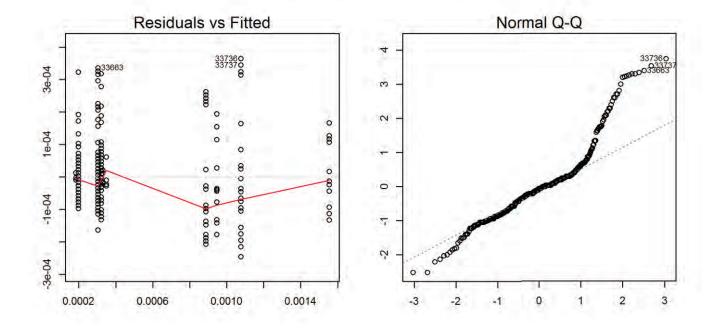

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

Analysis of Summer Total Nickel Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

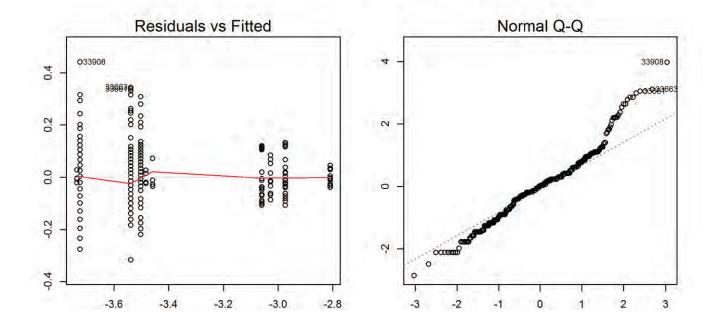
1 Censored Data

The following observations were excluded:


```
##
            site year
                      month season
## 33441 Vulture 1994
                       July summer
                      July summer
## 33442 Vulture 1994
## 33443 Vulture 1994
                       July summer
## 33444 Vulture 1994
                       July summer
## 33445 Vulture 1994
                       July summer
## 33446 Vulture 1994 August summer
## 33447 Vulture 1994 August summer
## 33448 Vulture 1994 August summer
## 33449 Vulture 1994 August summer
## 33450 Vulture 1994 August summer
## 33451 Vulture 1995 August summer
## 33452 Vulture 1995 August summer
## 33453 Vulture 1995 August summer
## 33454 Vulture 1995 August summer
## 33455 Vulture 1995 August summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
33788 Counts 2003 July summer
33888 Vulture 2005 July summer

3 Initial Model Fit

Natural Scale Model

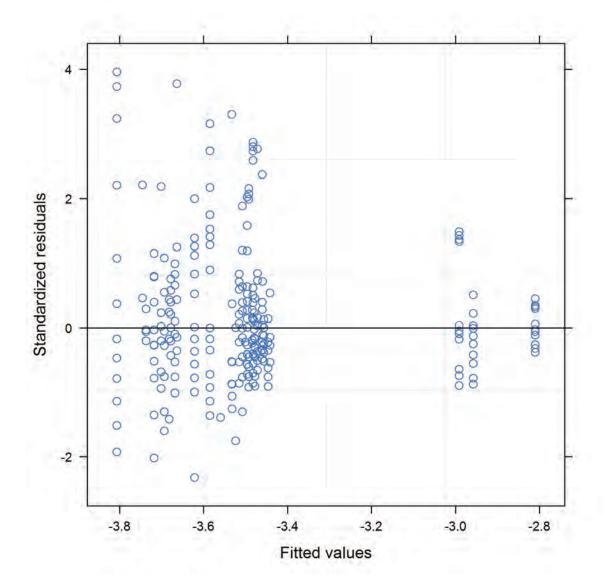
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	9.95×10 ⁻⁵	0.91	0.91
Log-10	0.11	0.84	0.83

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-516.48	267.24		
LME	10	-588.6	304.3	74.13	0

Conclusion:

The most appropriate model for total nickel at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	360	57038	<.0001
##	site	3	360	432	<.0001
##	period	1	10	2	0.1579
##	<pre>site:period</pre>	3	360	5	0.0016

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.22	-0.34	-0.1	sig.
Counts	-0.13	-0.25	-0.01	sig.
Vulture	-0.19	-0.31	-0.06	sig.

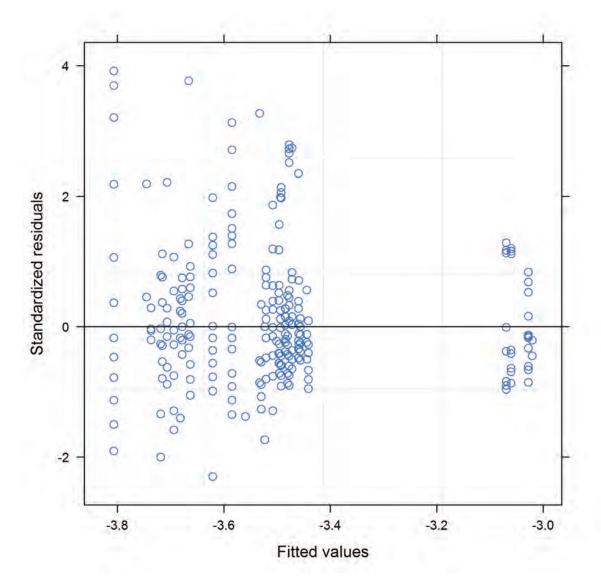
A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Fay Bay site were significantly (p = 0.002) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:


 Model
 D.F.
 AIC
 log(Like.)
 L. Ratio
 p

 GLS
 9
 -506.87
 262.44

 LME
 10
 -577.79
 298.9
 72.92
 0

Conclusion:

The most appropriate model for total nickel at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	358	57155	<.0001
##	site	3	358	314	<.0001
##	period	1	10	0	0.70
##	<pre>site:period</pre>	3	358	1	0.61

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

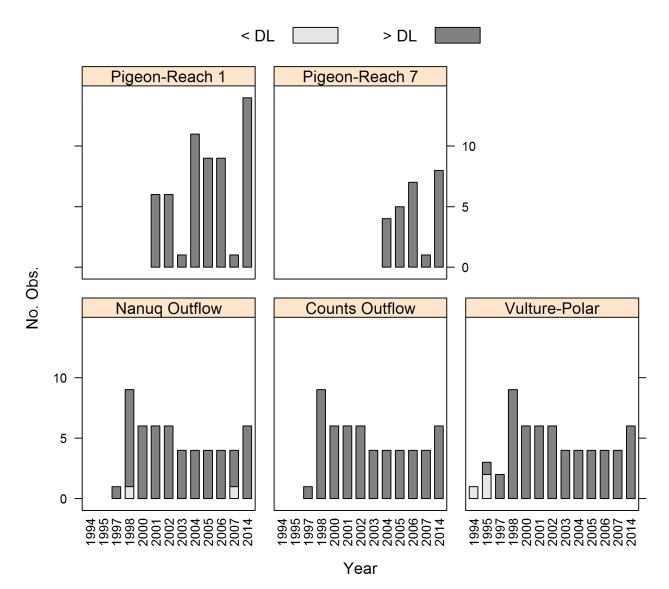
Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.06	-0.19	0.06	not sig.
Counts	0.03	-0.1	0.16	not sig.
Vulture	-0.03	-0.16	0.09	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Upper Exeter site were not significantly (p = 0.607) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

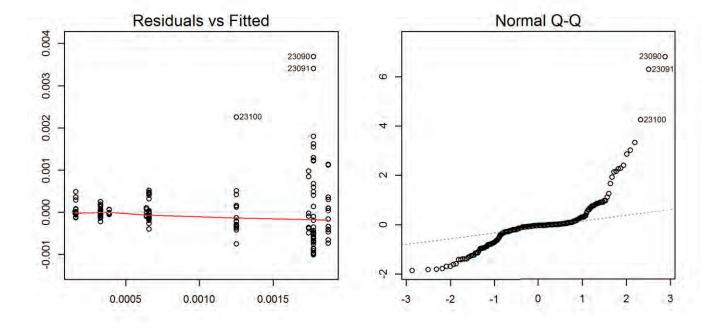

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

Analysis of Summer Total Nickel Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

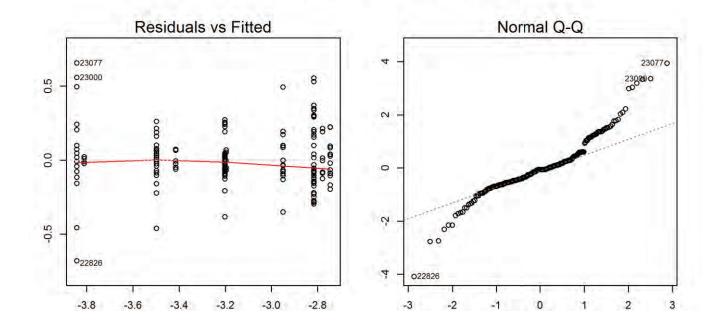
1 Censored Data

The following observations were excluded:


```
## site year month season
## 22796 Vulture-Polar 1994 August summer
## 22797 Vulture-Polar 1995 July summer
## 22798 Vulture-Polar 1995 August summer
## 22799 Vulture-Polar 1995 September summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

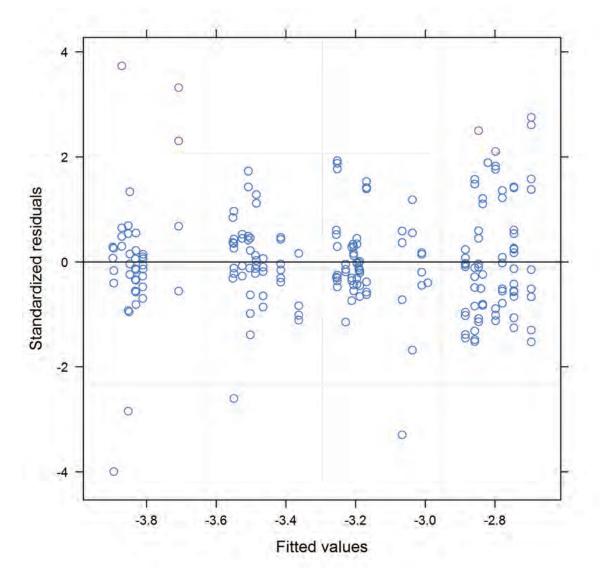
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	5.48×10^{-4}	0.59	0.58
Log-10	0.17	0.85	0.84

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-120.53	71.26		
LME	12	-138.22	81.11	19.69	9.11×10 ⁻⁶

Conclusion:

The most appropriate model for total nickel at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

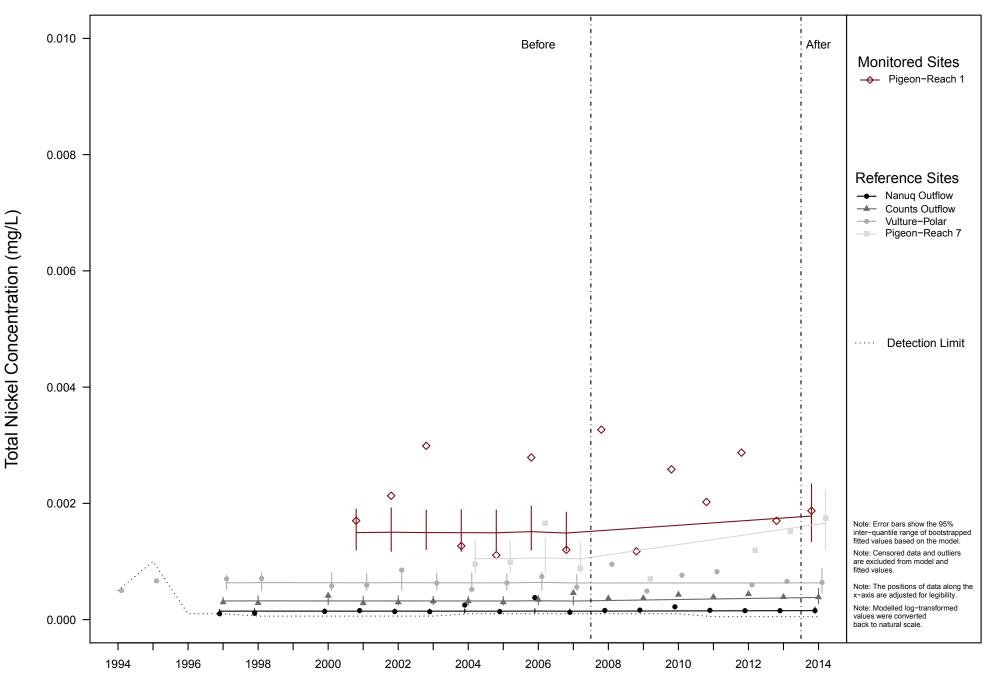
Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	226	22679	<.0001
##	site	4	226	311	<.0001
##	period	1	9	1	0.31
##	site:period	4	226	1	0.30

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

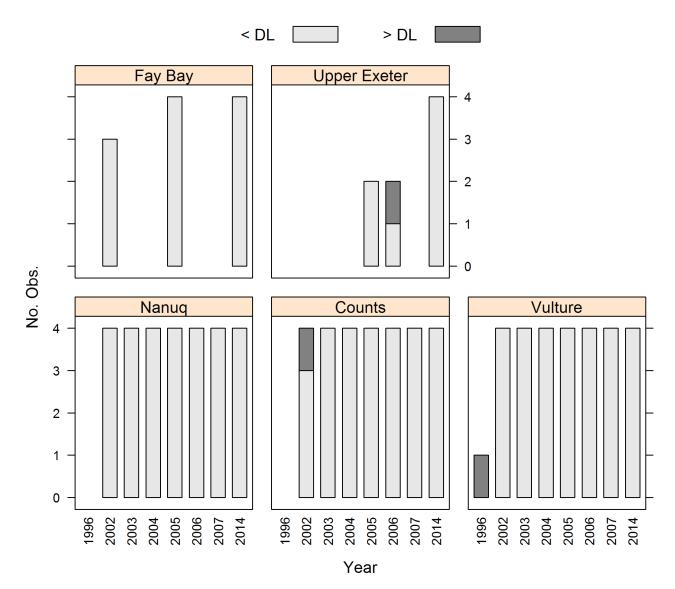
Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.05	-0.22	0.11	not sig.
Counts Outflow	0	-0.17	0.16	not sig.
Vulture-Polar	-0.08	-0.25	0.08	not sig.
Pigeon-Reach 7	0.12	-0.05	0.28	not sig.


A BACI contrast is identified as *significant* if the confidence interval does not include 0.

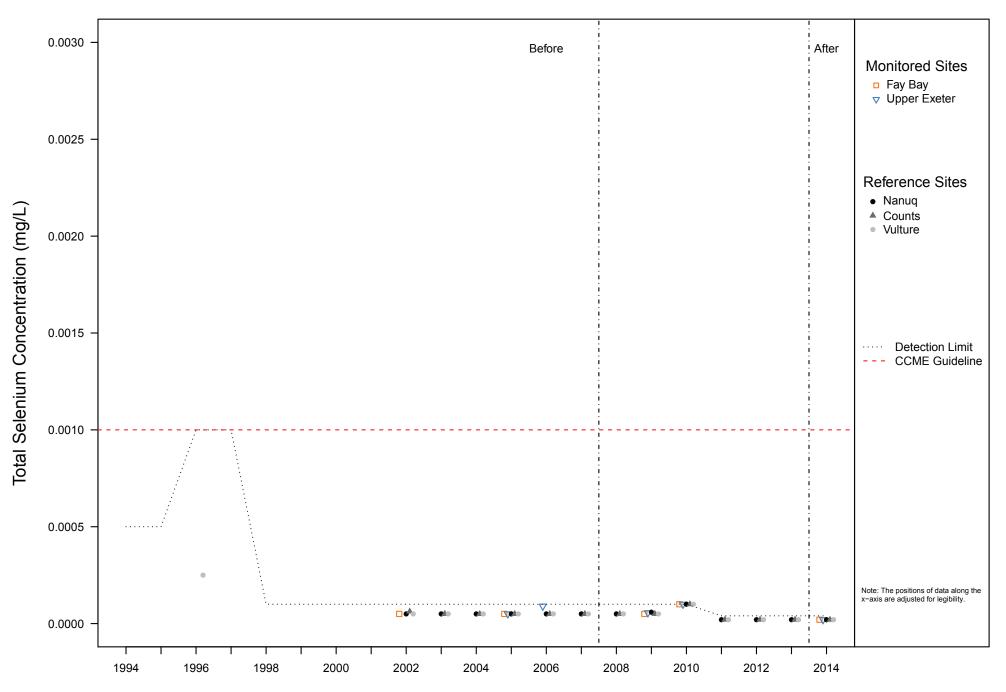
Conclusion:

Total nickel concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.301) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

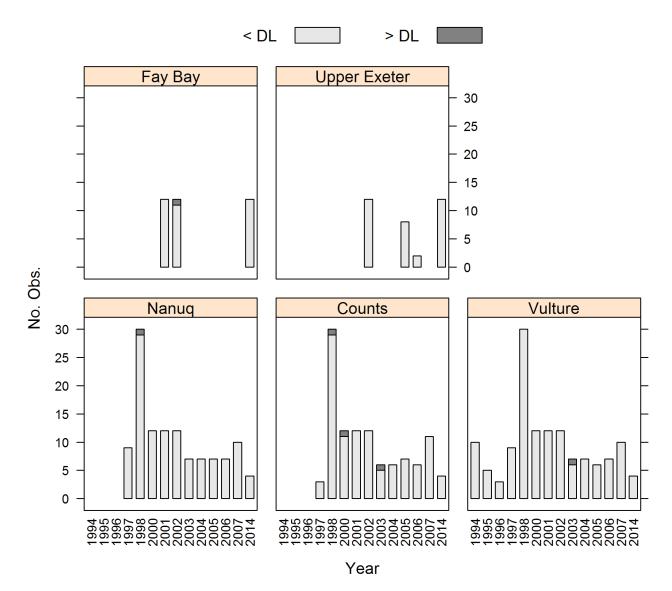

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

Analysis of Winter Total Selenium Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

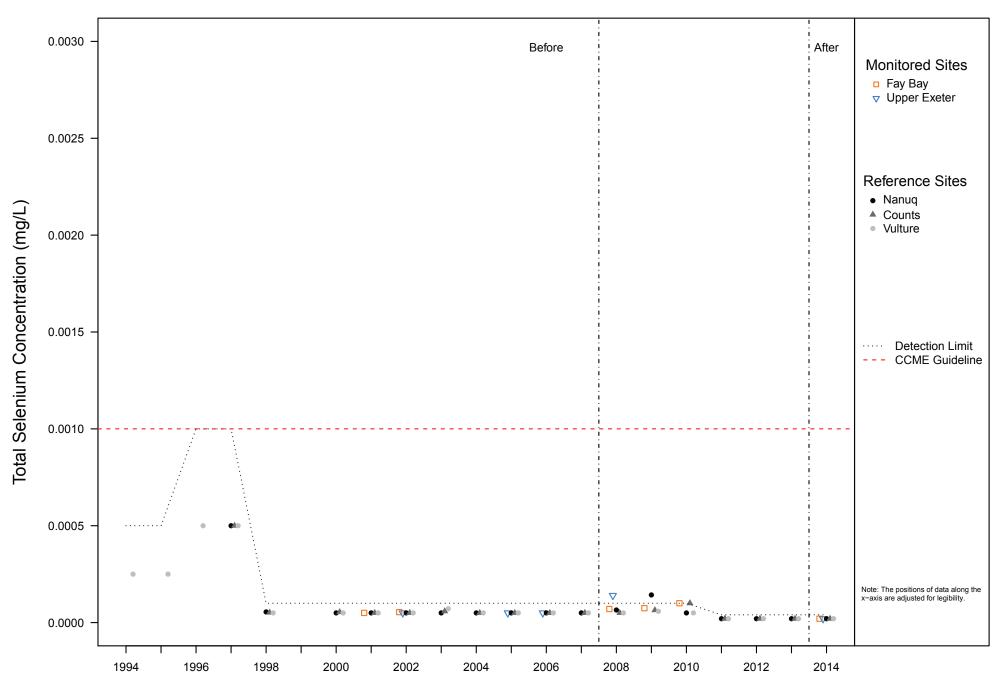

January 26, 2015

1 Censored Data

Conclusion:

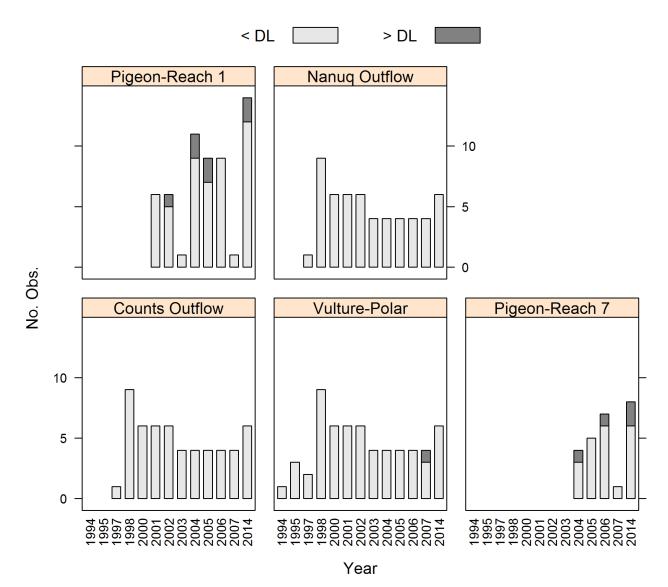

Selenium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Selenium Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

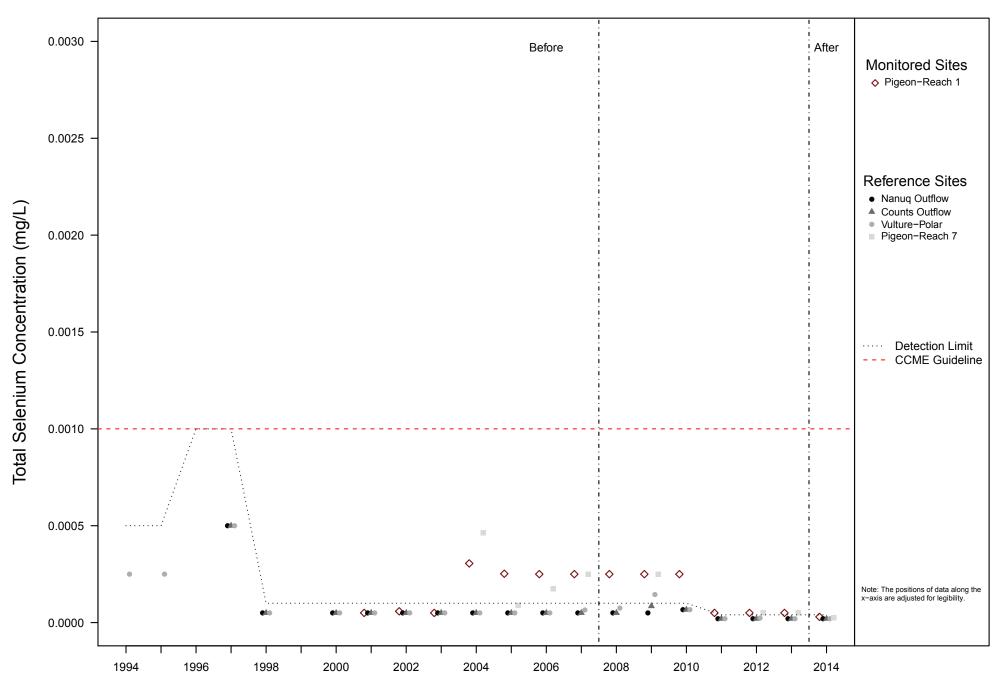

January 26, 2015

1 Censored Data

Conclusion:

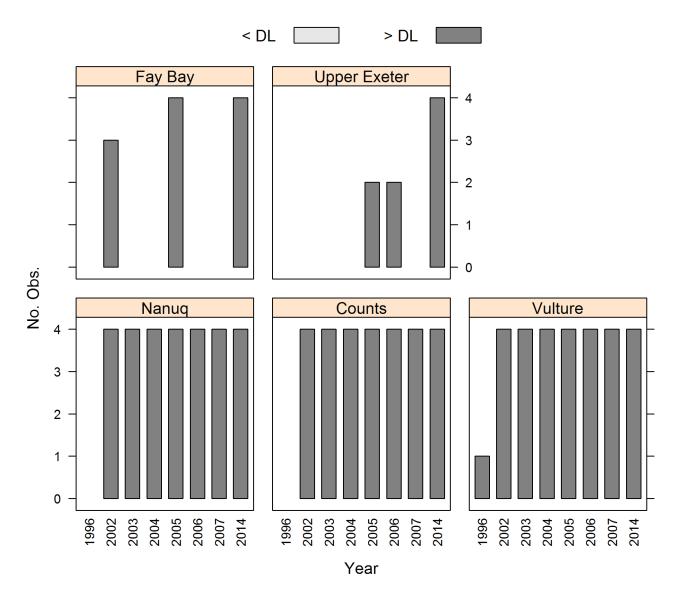

Selenium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Summer Total Selenium Water Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed


January 26, 2015

1 Censored Data

Conclusion:

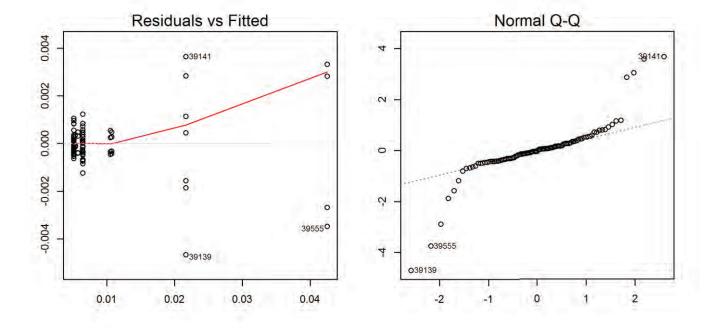

Selenium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.

Analysis of Winter Total Stronitum Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

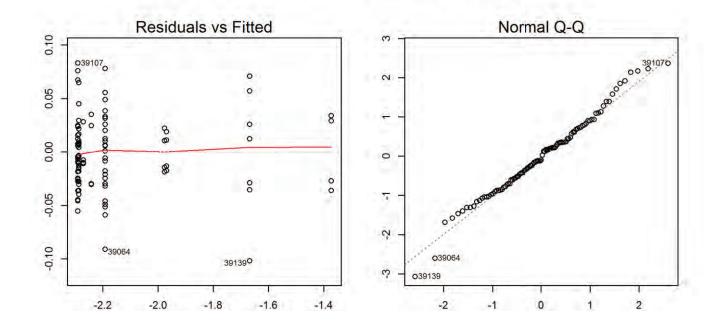
1 Censored Data

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
38736 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

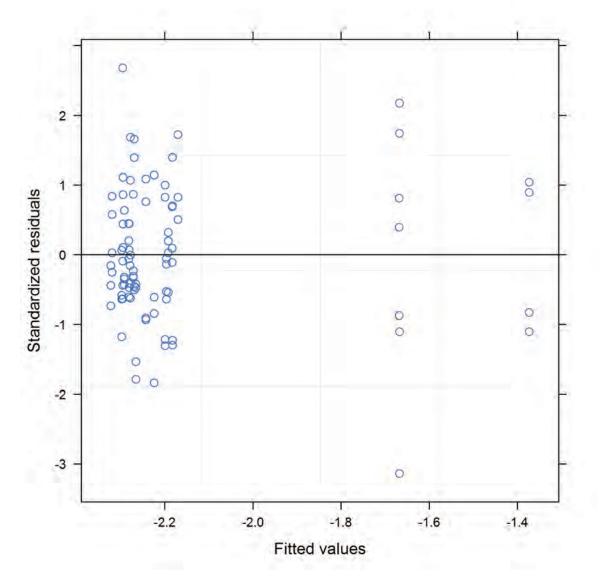
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²	
Natural	0	0.98	0.98	
Log-10	0.04	0.98	0.98	

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-293.17	155.58		
LME	10	-303.27	161.63	12.1	5.04×10^{-4}

Conclusion:

The most appropriate model for total strontium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	82	67490	<.0001
##	site	3	82	1311	<.0001
##	period	1	5	10	0.025
##	<pre>site:period</pre>	3	82	50	<.0001

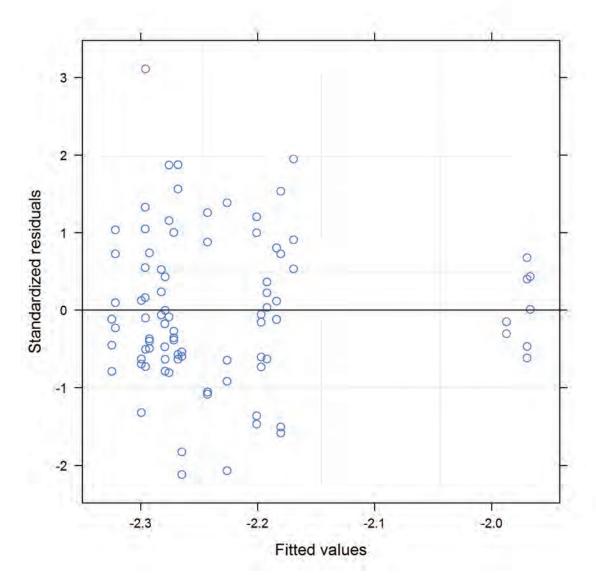
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.26	-0.31	-0.2	sig.
Counts	-0.3	-0.36	-0.25	sig.
Vulture	-0.29	-0.34	-0.23	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total strontium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-298.21	158.11		
LME	10	-315	167.5	18.79	1.46×10^{-5}

Conclusion:

The most appropriate model for total strontium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

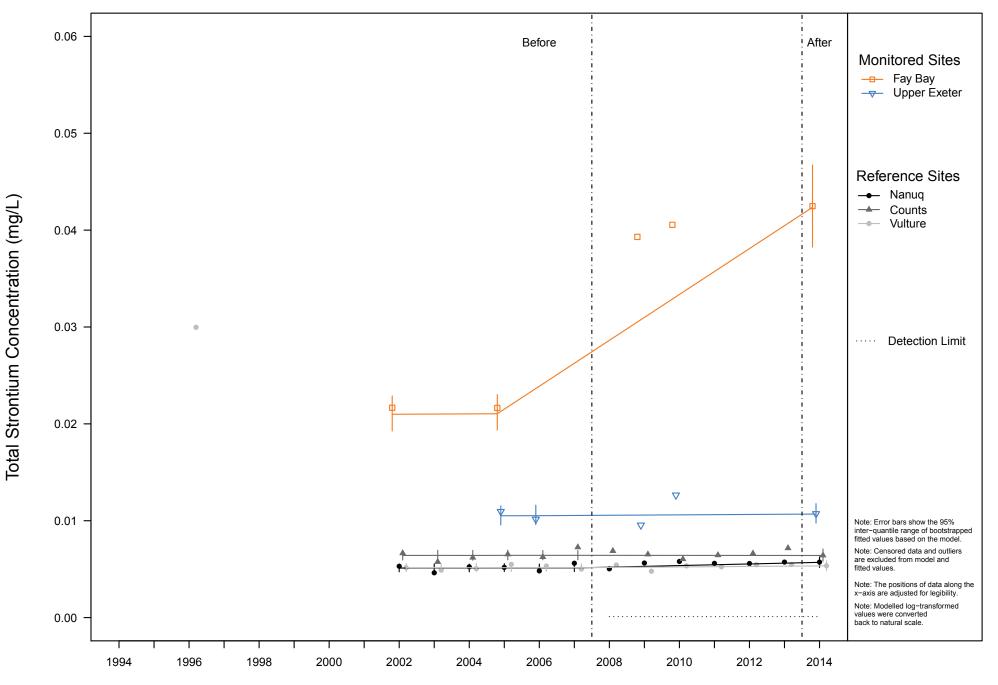
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	79	68307	<.0001
##	site	3	79	274	<.0001
##	period	1	5	1	0.45
##	<pre>site:period</pre>	3	79	2	0.15

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

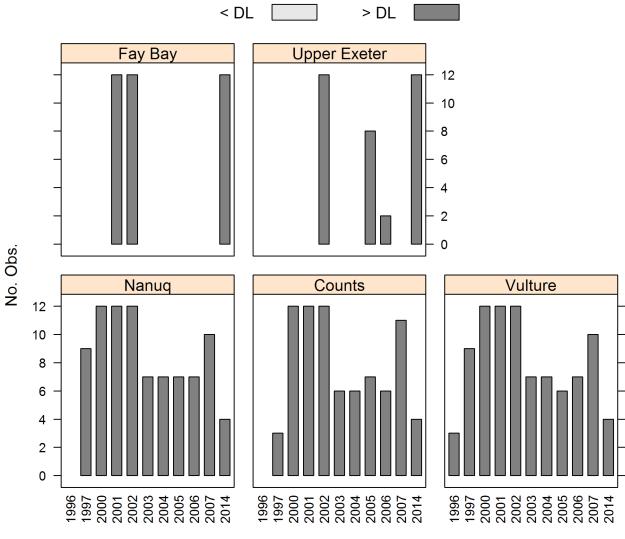
Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	0.04	-0.01	0.09	not sig.
Counts	-0.01	-0.06	0.04	not sig.
Vulture	0.01	-0.04	0.06	not sig.


A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total strontium concentrations at the Upper Exeter site were not significantly (p = 0.149) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary


The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

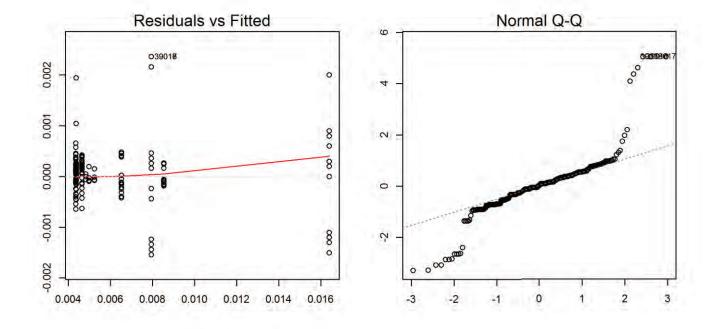
Analysis of Summer Total Strontium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

1 Censored Data

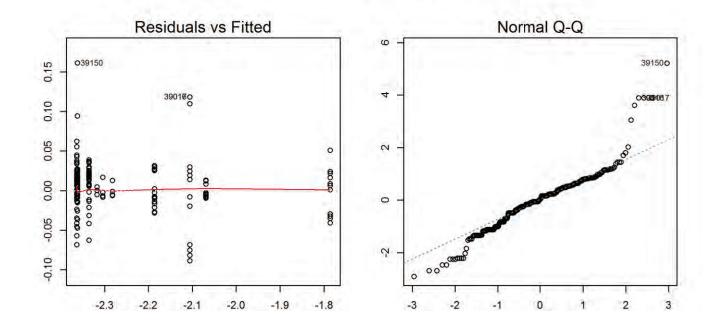
Year

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

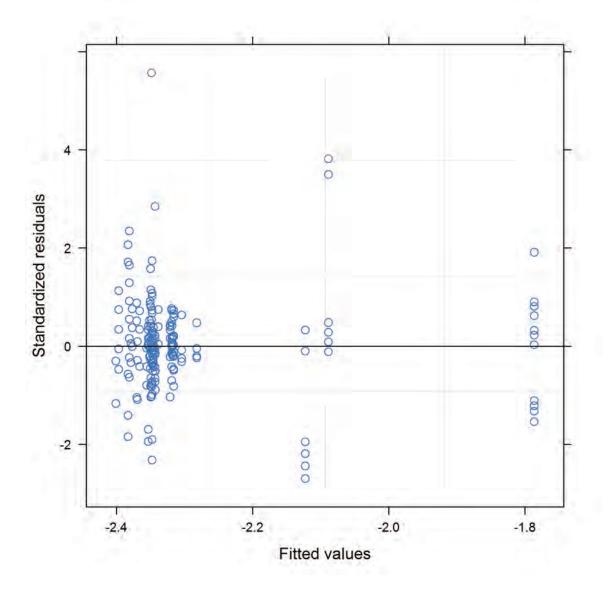
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	4.78×10 ⁻⁴	0.96	0.96
Log-10	0.03	0.95	0.95

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-1100.31	559.16		
LME	10	-1183.59	601.79	85.28	0

Conclusion:

_

The most appropriate model for total strontium at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	274	124174	<.0001
##	site	3	274	1185	<.0001
##	period	1	9	49	1e-04
##	<pre>site:period</pre>	3	274	154	<.0001

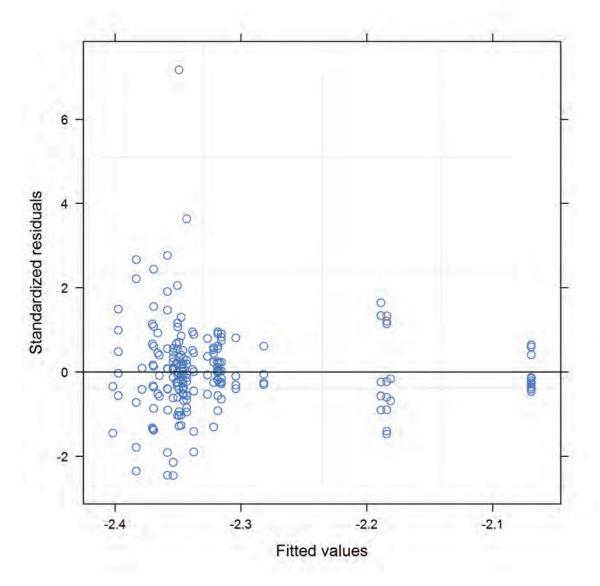
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.26	-0.3	-0.23	sig.
Counts	-0.27	-0.31	-0.24	sig.
Vulture	-0.27	-0.3	-0.24	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total strontium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-1213.6	615.8		
LME	10	-1311.5	665.75	99.9	0

Conclusion:

The most appropriate model for total strontium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	272	146613	<.0001
##	site	3	272	605	<.0001
##	period	1	9	15	0.0034
##	<pre>site:period</pre>	3	272	19	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-0.07	-0.1	-0.05	sig.
Counts	-0.08	-0.1	-0.05	sig.
Vulture	-0.08	-0.1	-0.05	sig.

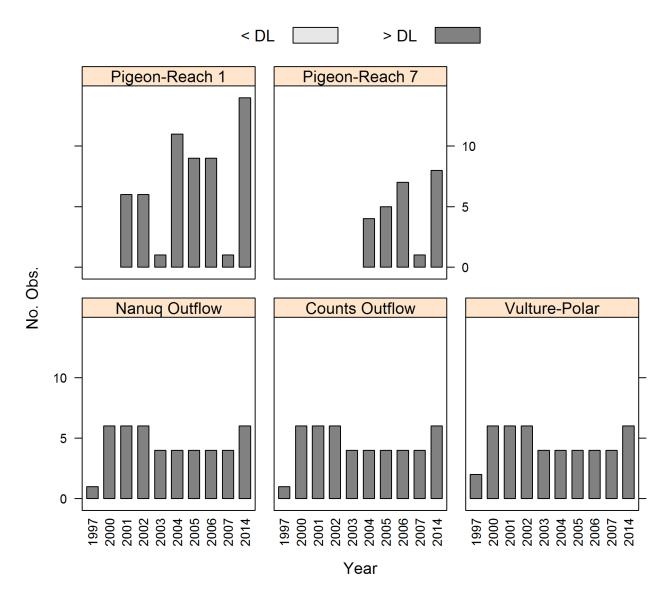
A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total strontium concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Strontium Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

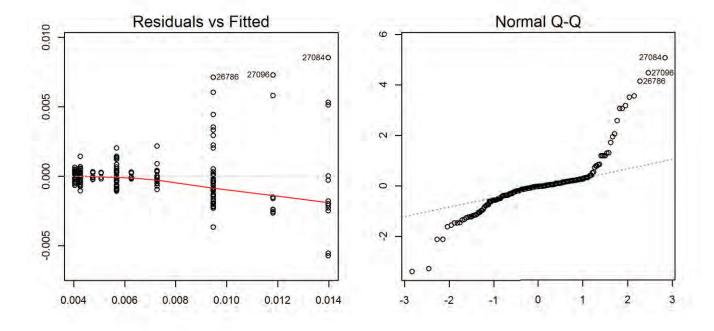
January 26, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

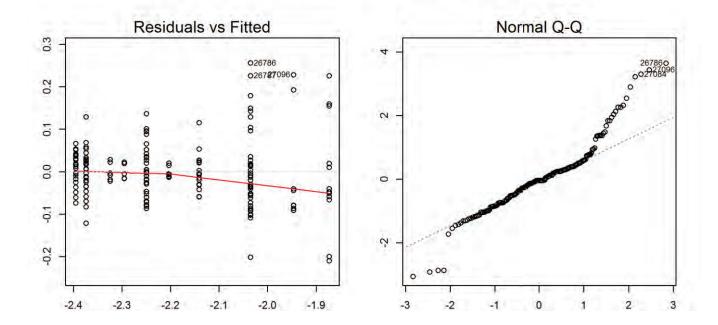
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

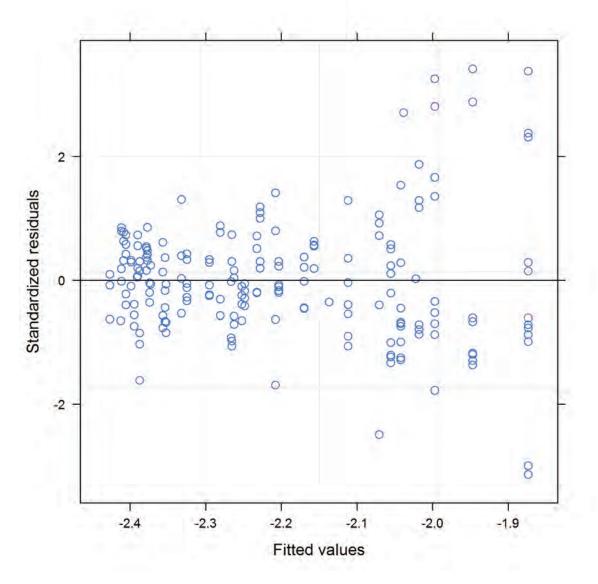
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0	0.75	0.74
Log-10	0.07	0.85	0.85

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	11	-460.86	241.43		
LME	12	-473.68	248.84	14.82	1.18×10^{-4}

Conclusion:

The most appropriate model for total strontium at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

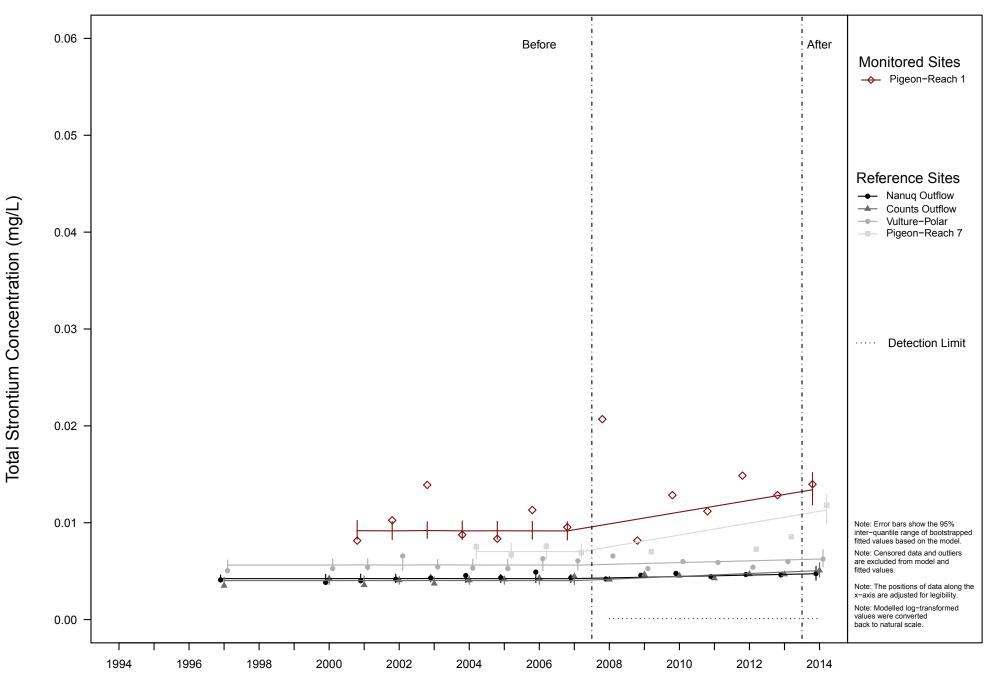
Plot of Standardized Residuals and Fitted Values for Pigeon-Reach 1 Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	200	50965	<.0001
##	site	4	200	256	<.0001
##	period	1	8	15	0.0045
##	<pre>site:period</pre>	4	200	6	0.0001

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.12	-0.19	-0.04	sig.
Counts Outflow	-0.07	-0.14	0.01	not sig.
Vulture-Polar	-0.12	-0.19	-0.05	sig.
Pigeon-Reach 7	0.04	-0.03	0.11	not sig.

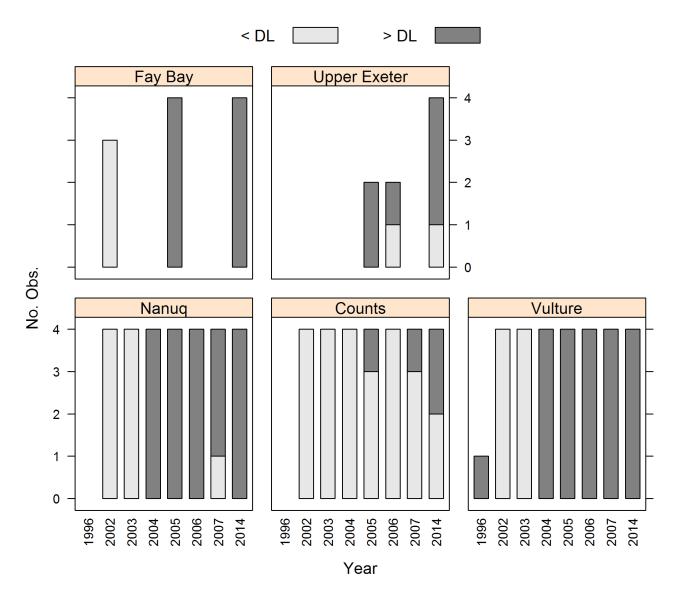

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total strontium concentrations at the Pigeon-Reach 1 site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Uranium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

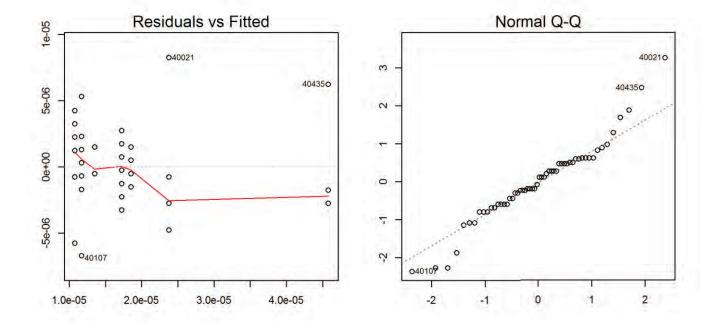
January 26, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

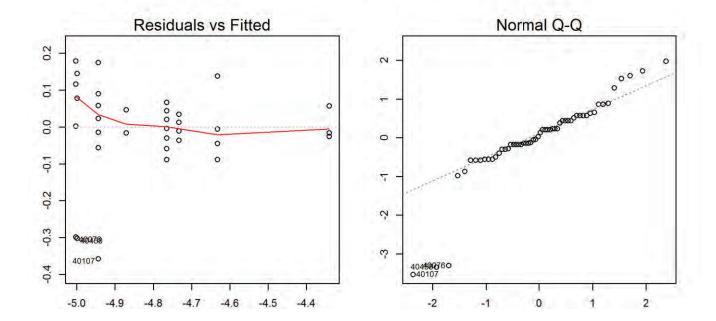
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


site year month season ## 39869 Counts 2002 April winter ## 39870 Counts 2002 April winter ## 39871 Counts 2002 April winter ## 39872 Counts 2002 April winter ## 39885 Fay Bay 2002 April winter ## 39886 Fay Bay 2002 April winter ## 39887 Fay Bay 2002 April winter ## 39900 Nanuq 2002 April winter ## 39901 Nanug 2002 April winter ## 39902 Nanug 2002 April winter ## 39903 Nanug 2002 April winter ## 39928 Vulture 2002 April winter ## 39929 Vulture 2002 April winter ## 39930 Vulture 2002 April winter ## 39931 Vulture 2002 April winter ## 39944 Counts 2003 April winter ## 39945 Counts 2003 April winter ## 39946 Counts 2003 April winter ## 39947 Counts 2003 April winter ## 39954 Nanug 2003 April winter Nanug 2003 April winter ## 39955 ## 39956 Nanuq 2003 April winter Nanug 2003 April winter ## 39957 ## 39965 Vulture 2003 April winter ## 39966 Vulture 2003 April winter ## 39967 Vulture 2003 April winter ## 39968 Vulture 2003 April winter ## 39976 Counts 2004 April winter ## 39977 Counts 2004 April winter ## 39978 Counts 2004 April winter ## 39979 Counts 2004 April winter ## 40008 Counts 2005 April winter ## 40009 Counts 2005 April winter ## 40010 Counts 2005 April winter ## 40011 Counts 2005 April winter ## 40054 Counts 2006 April winter ## 40055 Counts 2006 April winter Counts 2006 April winter ## 40056 ## 40057 Counts 2006 April winter ## 40090 Counts 2007 April winter ## 40091 Counts 2007 April winter ## 40092 Counts 2007 April winter ## 40093 Counts 2007 April winter
40425 Counts 2014 April winter
40426 Counts 2014 April winter
40427 Counts 2014 April winter
40428 Counts 2014 April winter

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


site year month season
39616 Vulture 1996 April winter

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

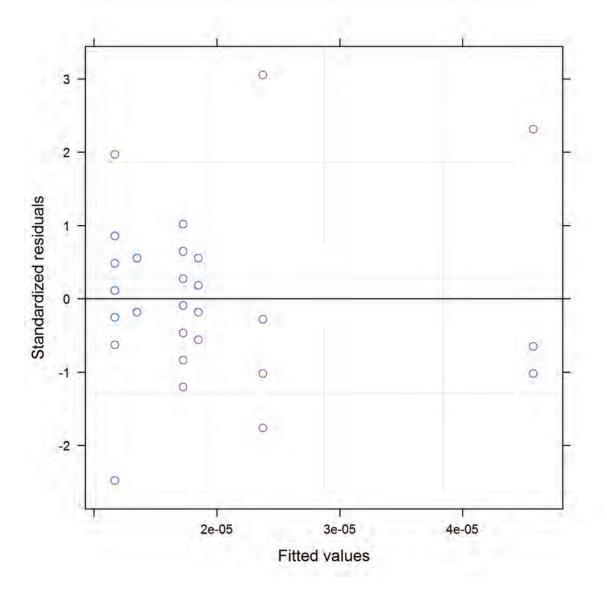
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	2.92×10 ⁻⁶	0.91	0.9
Log-10	0.1	0.76	0.72

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	7	-932.82	473.41		
LME	8	-932.83	474.41	2	0.16

Conclusion:

_

The most appropriate model for total uranium at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.157).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 4	42		
##		numDF	F-value	p-value
##	(Intercept)	1	2160	<.0001
##	site	2	203	<.0001
##	period	1	47	<.0001
##	<pre>site:period</pre>	2	44	<.0001

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	-2.02×10 ⁻⁵	-2.51×10 ⁻⁵	-1.53×10 ⁻⁵	sig.
Counts	NA	NA	NA	NA
Vulture	-2.07×10 ⁻⁵	-2.57×10 ⁻⁵	-1.58×10 ⁻⁵	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total uranium concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	7	-939.99	476.99		
LME	8	-945.52	480.76	7.53	0.01

Conclusion:

The most appropriate model for total uranium at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p = 0.006).

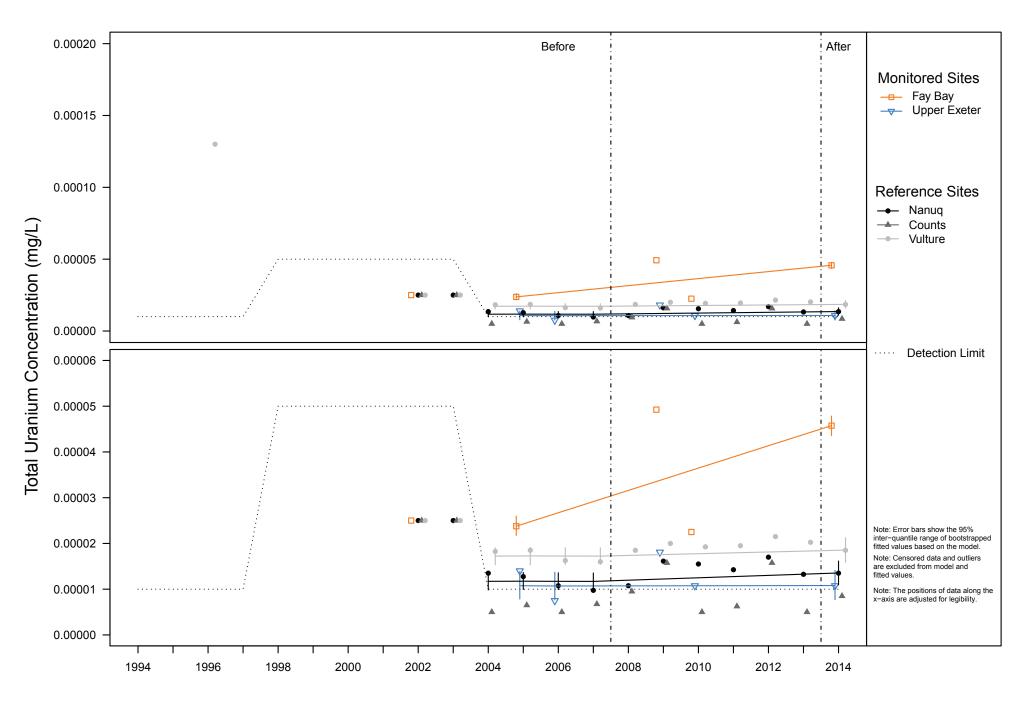
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	39	332	<.0001
##	site	2	39	46	<.0001
##	period	1	3	0	0.58
##	<pre>site:period</pre>	2	39	0	0.67

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq	1.74×10^{-6}	-2.19×10 ⁻⁶	5.61×10 ⁻⁶	not sig.
Counts	NA	NA	NA	NA
Vulture	1.17×10 ⁻⁶	-2.82×10 ⁻⁶	5.02×10 ⁻⁶	not sig.

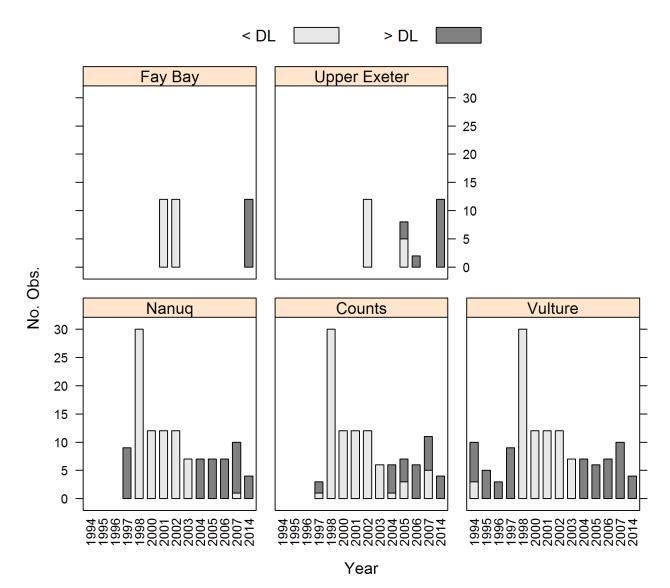

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total uranium concentrations at the Upper Exeter site were not significantly (p = 0.674) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

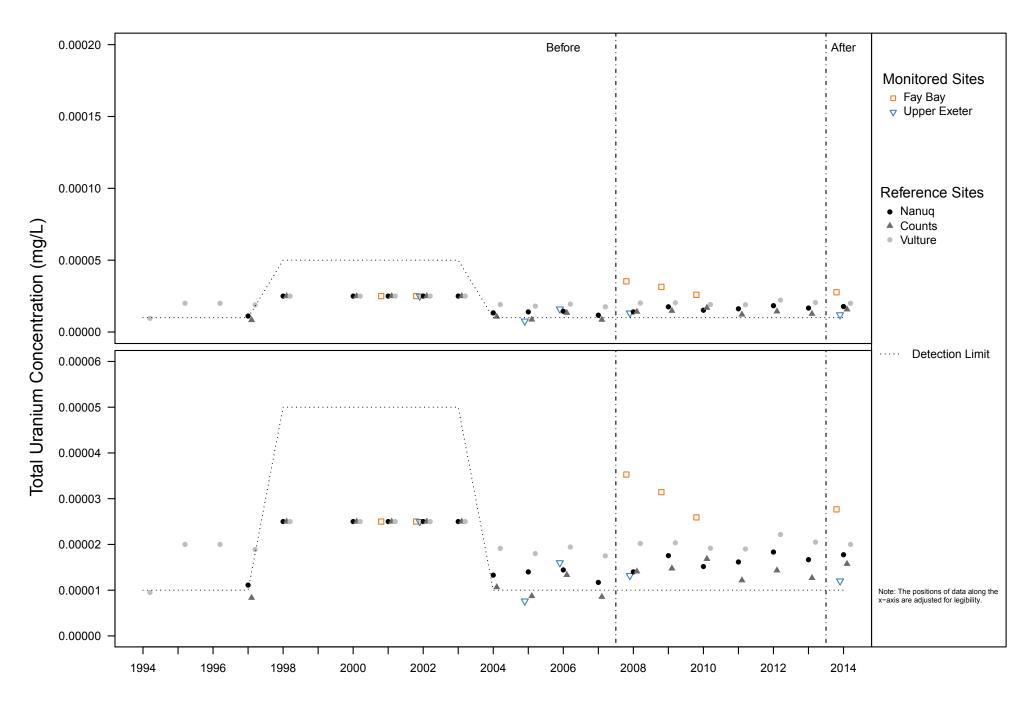
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Summer Total Uranium Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2015

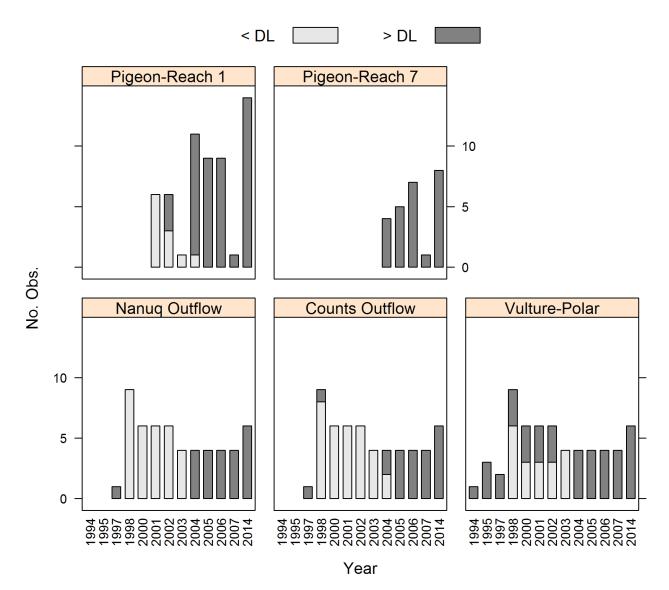
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Uranium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Uranium Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

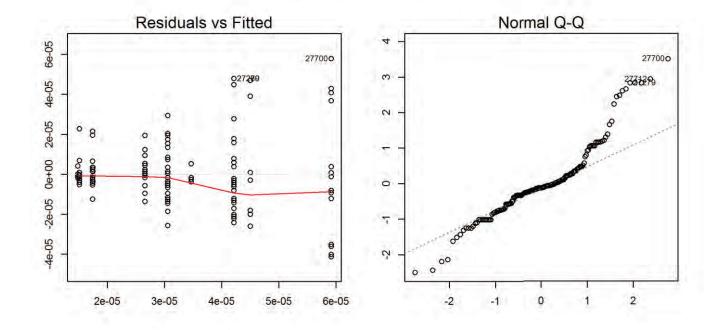
1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

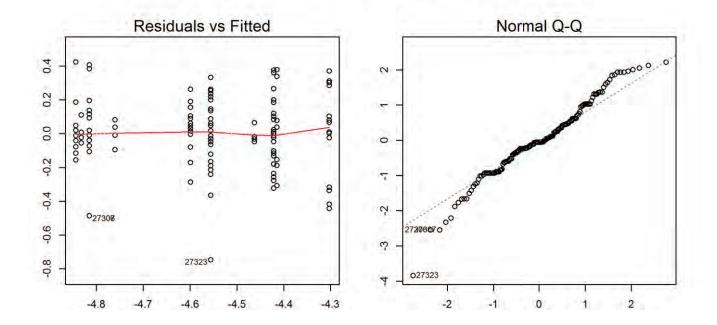
The following observations were excluded:

			• .			
##		. .	site	-	month	season
##		Counts	Outflow	1998	July	summer
##	27123	Counts	Outflow	1998	July	summer
##	27124	Counts	Outflow	1998	July	summer
##	27125	Counts	Outflow	1998	August	summer
##	27126	Counts	Outflow	1998	August	summer
##	27127	Counts	Outflow	1998	August	summer
##	27128	Counts	Outflow	1998	September	summer
##	27129	Counts	Outflow	1998	September	summer
##	27130	Counts	Outflow	1998	September	summer
##	27135	Nanuq	Outflow	1998	July	summer
##	27136	Nanuq	Outflow	1998	July	summer
##	27137	Nanuq	Outflow	1998	July	summer
##	27138	Nanuq	Outflow	1998	August	summer
##	27139	Nanuq	Outflow	1998	August	summer
##	27140	Nanuq	Outflow	1998	August	summer
##	27141	Nanuq	Outflow	1998	September	summer
##	27142	Nanuq	Outflow	1998	September	summer
##	27143	Nanuq	Outflow	1998	September	summer
##	27148	Vultur	re-Polar	1998	July	summer
##	27149	Vultur	re-Polar	1998	July	summer
##	27150	Vultur	re-Polar	1998	July	summer
##	27151	Vultur	re-Polar	1998	August	summer
##	27152	Vultur	re-Polar	1998	August	summer
##	27153	Vultur	re-Polar	1998	August	summer
##	27154	Vultur	re-Polar	1998	September	summer
##	27155	Vultur	re-Polar	1998	September	summer
##	27156	Vultur	re-Polar	1998	September	summer
##	27187	Counts	Outflow	2000	August	summer
##	27188	Counts	Outflow	2000	August	summer
##	27189	Counts	Outflow	2000	August	summer
##	27190	Counts	Outflow	2000	September	summer
##	27191	Counts	Outflow	2000	September	summer
##	27192	Counts	Outflow	2000	September	summer
##	27196	Nanuq	Outflow	2000	August	summer
##	27197	Nanuq	Outflow	2000	August	summer
##	27198	Nanuq	Outflow	2000	August	summer
##	27199	Nanuq	Outflow	2000	September	summer
##	27200	Nanuq	Outflow	2000	September	summer
##	27201	Nanuq	Outflow	2000	September	summer
##	27213	Counts	Outflow	2001	August	summer
##	27214	Counts	Outflow	2001	August	summer
##	27215	Counts	Outflow	2001	August	summer


```
## 27216 Counts Outflow 2001 September summer
## 27217 Counts Outflow 2001 September summer
## 27218 Counts Outflow 2001 September summer
## 27222
         Nanuq Outflow 2001
                                August summer
## 27223
         Nanuq Outflow 2001
                                August summer
## 27224
         Nanuq Outflow 2001
                                August summer
## 27225
          Nanug Outflow 2001 September summer
         Nanuq Outflow 2001 September summer
## 27226
## 27227
         Nanug Outflow 2001 September summer
## 27231 Pigeon-Reach 1 2001
                                August summer
## 27232 Pigeon-Reach 1 2001
                                August summer
## 27233 Pigeon-Reach 1 2001
                                August summer
## 27234 Pigeon-Reach 1 2001 September summer
## 27235 Pigeon-Reach 1 2001 September summer
## 27236 Pigeon-Reach 1 2001 September summer
## 27249 Counts Outflow 2002
                                August summer
## 27250 Counts Outflow 2002
                                August summer
## 27251 Counts Outflow 2002
                                August summer
## 27252 Counts Outflow 2002 September summer
## 27253 Counts Outflow 2002 September summer
## 27254 Counts Outflow 2002 September summer
         Nanuq Outflow 2002
## 27258
                                August summer
## 27259
         Nanuq Outflow 2002
                                August summer
## 27260
         Nanuq Outflow 2002
                                August summer
          Nanug Outflow 2002 September summer
## 27261
## 27262
         Nanug Outflow 2002 September summer
         Nanug Outflow 2002 September summer
## 27263
## 27284 Counts Outflow 2003
                                August summer
## 27285 Counts Outflow 2003
                                August summer
## 27286 Counts Outflow 2003 September summer
## 27287 Counts Outflow 2003 September summer
## 27290
         Nanuq Outflow 2003
                                August summer
## 27291
          Nanuq Outflow 2003
                                August summer
         Nanug Outflow 2003 September summer
## 27292
## 27293
         Nanuq Outflow 2003 September summer
## 27295 Pigeon-Reach 1 2003 September summer
## 27298
         Vulture-Polar 2003
                                August summer
## 27299
         Vulture-Polar 2003
                                August summer
         Vulture-Polar 2003 September summer
## 27300
## 27301 Vulture-Polar 2003 September summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

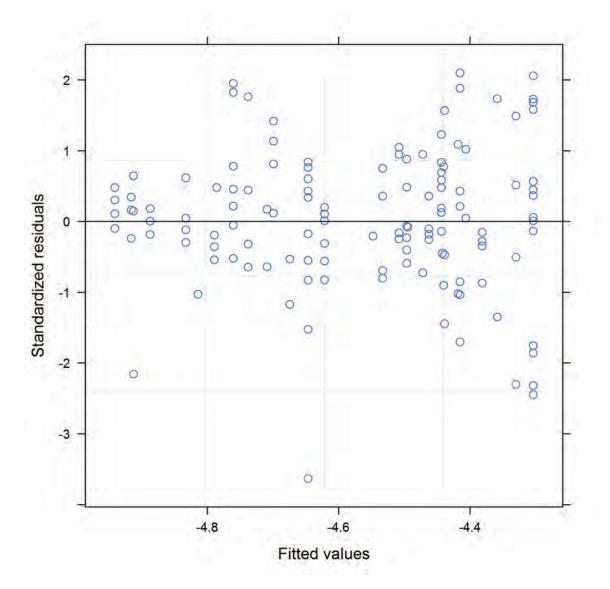
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1.71×10^{-5}	0.38	0.34
Log-10	0.2	0.46	0.42

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Pigeon-Reach 1 Monitoring Location

Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Мос	lel	D.F.	AIC	log(Like.)	L. Ratio	р
GLS		11	-16.72	19.36		
LMI	Ξ	12	-33.17	28.59	18.45	1.74×10 ⁻⁵

Conclusion:

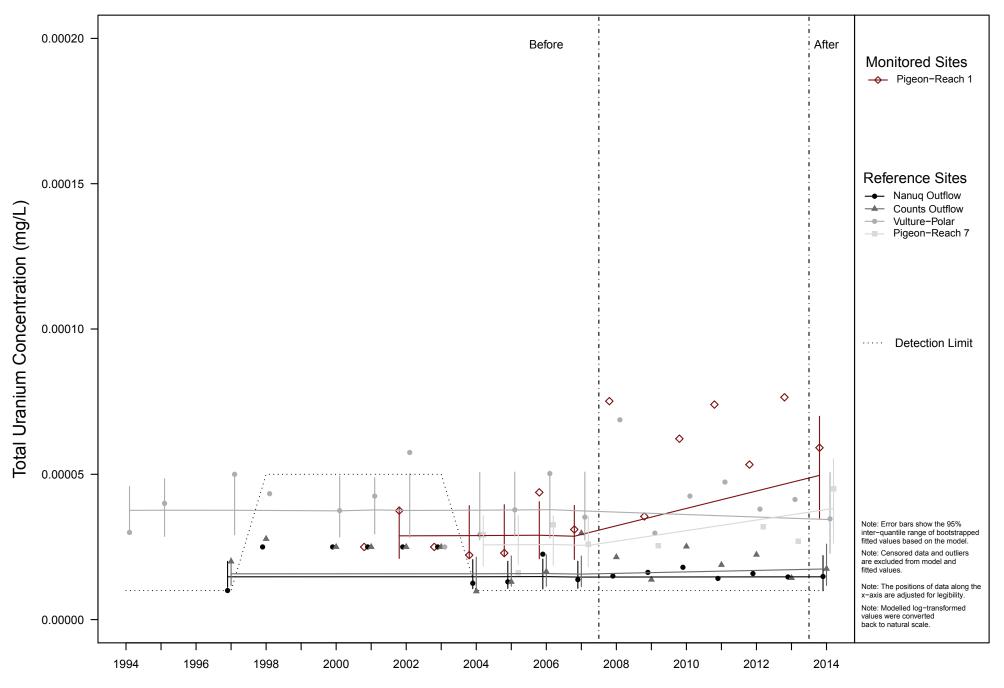
The most appropriate model for total uranium at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p < 0.001).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	148	21728	<.0001
##	site	4	148	29	<.0001
##	period	1	9	1	0.288
##	<pre>site:period</pre>	4	148	3	0.031

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	-0.23	-0.43	-0.04	sig.
Counts Outflow	-0.19	-0.39	0.01	not sig.
Vulture-Polar	-0.27	-0.46	-0.09	sig.
Pigeon-Reach 7	-0.06	-0.24	0.13	not sig.

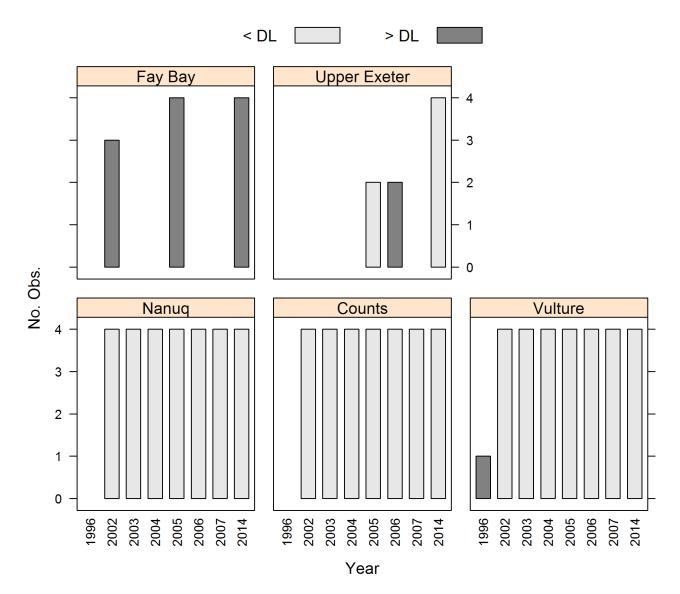

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total uranium concentrations at the Pigeon-Reach 1 site were significantly (p = 0.031) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

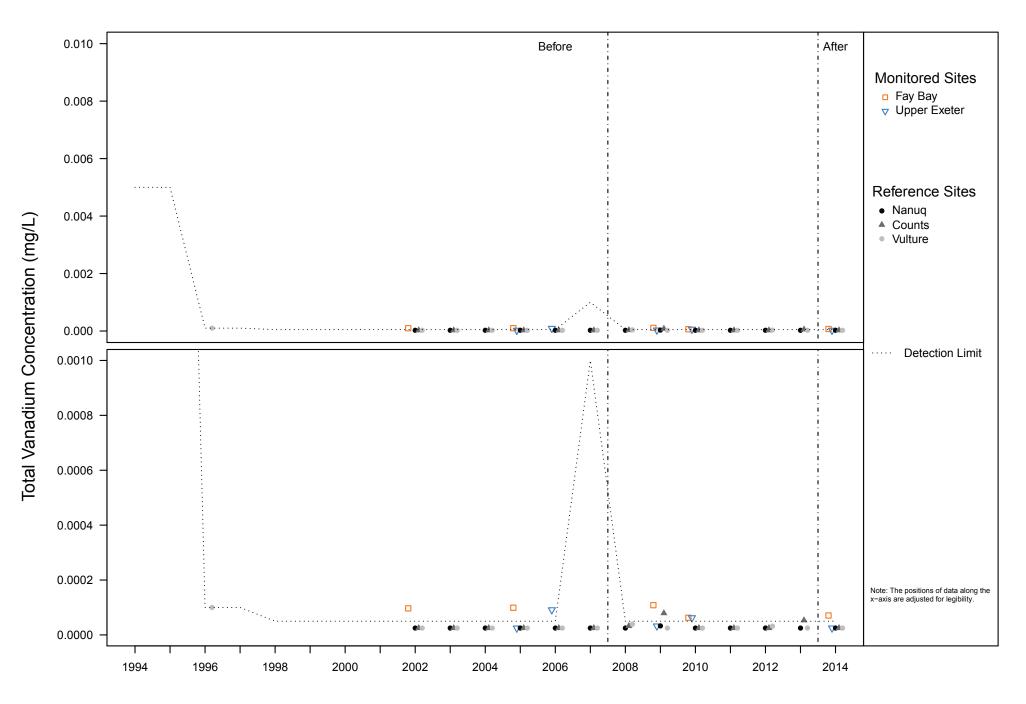
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Winter Total Vanadium Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2015

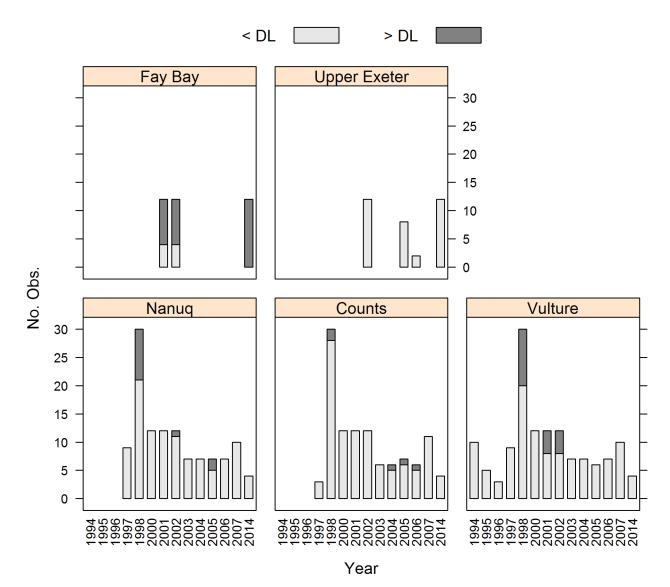
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

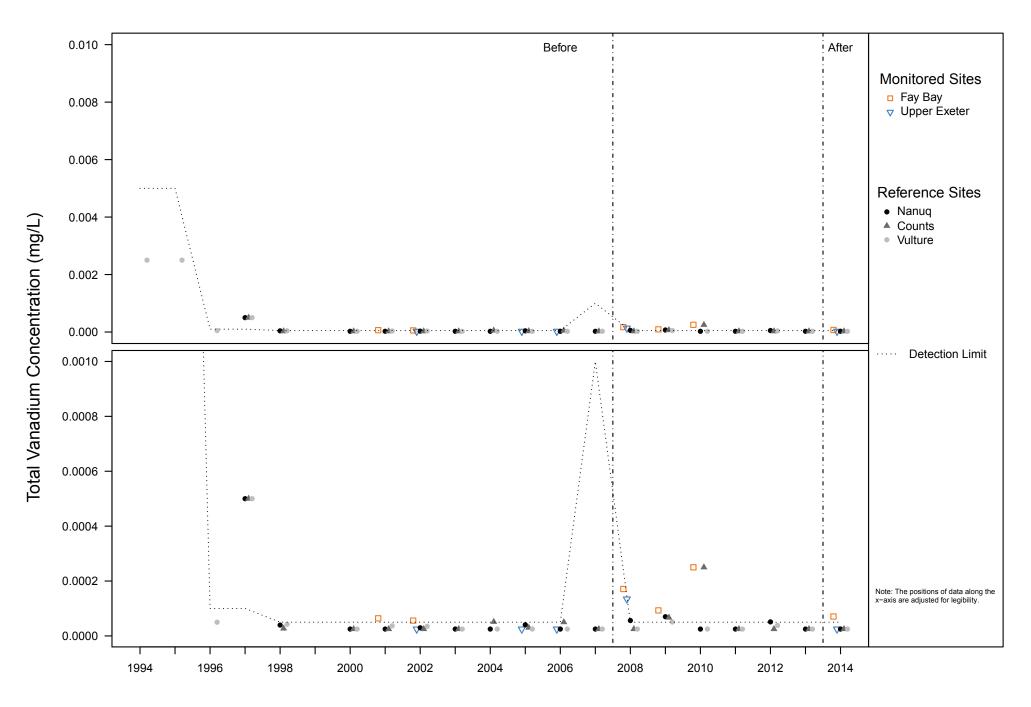
Vanadium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Vanadium Water Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2015

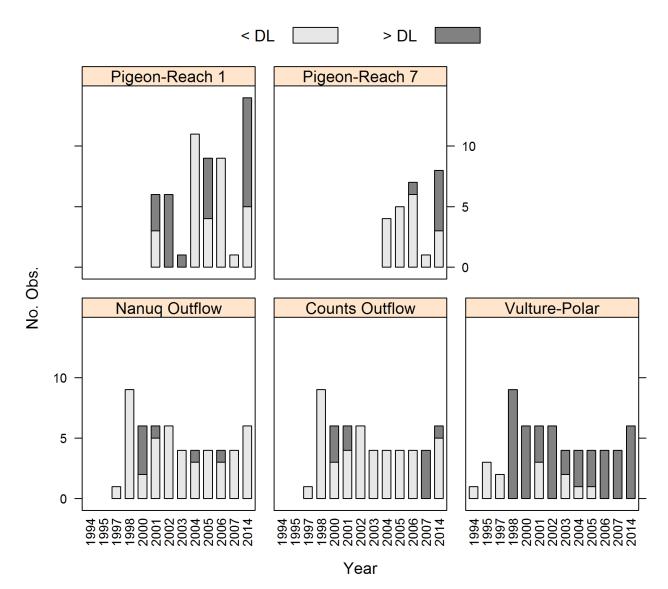
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Vanadium water concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Summer Total Vanadium Concentrations in Streams of the Pigeon-Fay and Upper Exeter Watershed

January 26, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

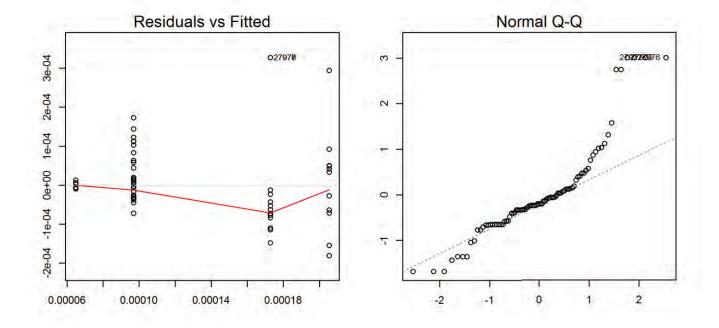
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:

##			cito	year	month	season
##	27724	Vu1+u	re-Polar	1994	August	summer
##	27725		re-Polar	1995	July	summer
##	27726		re-Polar	1995	August	summer
## ##	27727		re-Polar		September	
## ##	27730		Outflow	1995 1997	September	summer
					•	summer
## ##	27731		Outflow re-Polar	1997	September	summer
## ##	27732		re-Polar	1997 1997	July September	summer
##	27733				•	summer
##	27738	Counts	Outflow	1998	July	summer
##	27739	Counts	Outflow	1998	July	summer
##	27740	Counts	Outflow	1998	July	summer
##	27741	Counts	Outflow	1998	August	summer
##	27742	Counts	Outflow	1998	August	summer
##	27743	Counts	Outflow	1998	August	summer
##	27744	Counts	Outflow	1998	September	summer
##	27745	Counts	Outflow	1998	September	summer
##	27746	Counts	Outflow	1998	September	summer
##	27751	Nanuq	Outflow	1998	July	summer
##	27752	Nanuq	Outflow	1998	July	summer
##	27753	Nanuq	Outflow	1998	July	summer
##	27754	Nanuq	Outflow	1998	August	summer
##	27755	Nanuq	Outflow	1998	August	summer
##	27756	Nanuq	Outflow	1998	August	summer
##	27757	Nanuq	Outflow	1998	September	summer
##	27758	Nanuq	Outflow	1998	September	summer
##	27759	Nanuq	Outflow	1998	September	summer
##	27803	Counts	Outflow	2000	August	summer
##	27804	Counts	Outflow	2000	August	summer
##	27805	Counts	Outflow	2000	August	summer
##	27806	Counts	Outflow	2000	September	summer
##	27807	Counts	Outflow	2000	September	summer
##	27808	Counts	Outflow	2000	September	summer
##	27812	Nanuq	Outflow	2000	August	summer
##	27813	Nanuq	Outflow	2000	August	summer
##	27814	Nanuq	Outflow	2000	August	summer
##	27815	Nanuq	Outflow	2000	September	summer
##	27816	Nanuq	Outflow	2000	September	summer
##	27817	Nanuq	Outflow	2000	September	summer
##	27829	Counts	Outflow	2001	August	summer
##	27830	Counts	Outflow	2001	August	summer
##	27831	Counts	Outflow	2001	August	summer
##	27832	Counts	Outflow	2001	September	summer

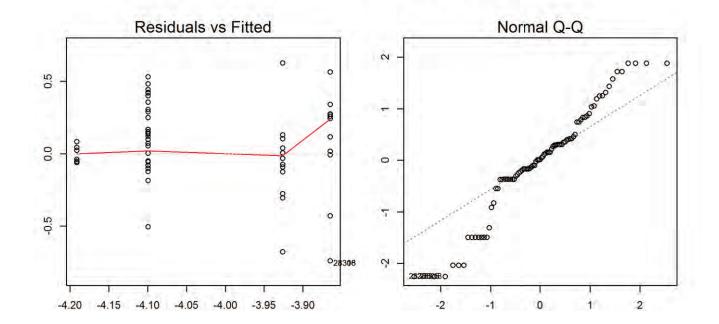
##	27833	Counts	Outflow	2001	September	summer
##	27834	Counts	Outflow	2001	September	summer
##	27838	Nanuq	Outflow	2001	August	summer
##	27839	Nanuq	Outflow	2001	August	summer
##	27840	Nanuq	Outflow	2001	August	summer
##	27841	Nanuq	Outflow	2001	September	summer
##	27842	Nanuq	Outflow	2001	September	summer
##	27843	Nanuq	Outflow	2001	September	summer
##	27865	Counts	Outflow	2002	August	summer
##	27866	Counts	Outflow	2002	August	summer
##	27867	Counts	Outflow	2002	August	summer
##	27868	Counts	Outflow	2002	September	summer
##	27869	Counts	Outflow	2002	September	summer
##	27870	Counts	Outflow	2002	September	summer
##	27874	Nanuq	Outflow	2002	August	summer
##	27875	Nanuq	Outflow	2002	August	summer
##	27876	Nanuq	Outflow	2002	August	summer
##	27877	Nanuq	Outflow	2002	September	summer
##	27878	Nanuq	Outflow	2002	September	summer
##	27879	Nanuq	Outflow	2002	September	summer
##	27900	Counts	Outflow	2003	August	summer
##	27901	Counts	Outflow	2003	August	summer
##	27902	Counts	Outflow	2003	September	summer
##	27903	Counts	Outflow	2003	September	summer
##	27906	Nanuq	Outflow	2003	August	summer
##	27907	Nanuq	Outflow	2003	August	summer
##	27908	Nanuq	Outflow	2003	September	summer
##	27909	Nanuq	Outflow	2003	September	summer
##	27920	Counts	Outflow	2004	August	summer
##	27921	Counts	Outflow	2004	August	summer
##	27922	Counts	Outflow	2004	September	summer
##	27923	Counts	Outflow	2004	September	summer
##	27926	Nanuq	Outflow	2004	August	summer
##	27927	Nanuq	Outflow	2004	August	summer
##	27928	Nanuq	Outflow	2004	September	summer
##	27929	Nanuq	Outflow	2004	September	summer
##	27933	Pigeon.	-Reach 1	2004	July	summer
##	27934	Pigeon	-Reach 1	2004	July	summer
##	27935	Pigeon	-Reach 1	2004	July	summer
##	27936	Pigeon	-Reach 1	2004	July	summer
##	27937	Pigeon	-Reach 1	2004	August	summer
##	27938	Pigeon	-Reach 1	2004	August	summer
##	27939	Pigeon	-Reach 1	2004	August	summer
##	27940	Pigeon	-Reach 1	2004	August	summer
##	27941	Pigeon		2004	September	summer
##	27942	Pigeon		2004	September	summer
##		Pigeon		2004	•	summer
##	27944	Pigeon		2004	July	summer
##	27945	Pigeon		2004	July	summer
##	27946	Pigeon		2004	July	summer
		0			,	

##	27947	Pigeon-Reach 7	2004	July	summer
##	27956	Counts Outflow	2005	August	summer
##	27957	Counts Outflow	2005	August	summer
##	27958	Counts Outflow	2005	September	summer
##	27959	Counts Outflow	2005	September	summer
##	27962	Nanuq Outflow	2005	August	summer
##	27963	Nanuq Outflow	2005	August	summer
##	27964	Nanuq Outflow	2005	September	summer
##	27965	Nanuq Outflow	2005	September	summer
##	27985	Pigeon-Reach 7	2005	August	summer
##	27986	Pigeon-Reach 7	2005	August	summer
##	27987	Pigeon-Reach 7	2005	August	summer
##	27988	Pigeon-Reach 7	2005	September	summer
##	27989	Pigeon-Reach 7	2005	September	summer
##	27998	Counts Outflow	2006	August	summer
##	27999	Counts Outflow	2006	August	summer
##	28000	Counts Outflow	2006	September	summer
##	28001	Counts Outflow	2006	September	summer
##	28004	Nanuq Outflow	2006	August	summer
##	28005	Nanuq Outflow	2006	August	summer
##	28006	Nanuq Outflow	2006	September	summer
##	28007	Nanuq Outflow	2006	September	summer
##	28011	Pigeon-Reach 1	2006	July	summer
##	28012	Pigeon-Reach 1	2006	July	summer
##	28013	Pigeon-Reach 1	2006	July	summer
##	28014	Pigeon-Reach 1	2006	August	summer
##	28015	Pigeon-Reach 1	2006	August	summer
##	28016	Pigeon-Reach 1	2006	August	summer
##	28017	Pigeon-Reach 1	2006	September	summer
##	28018	Pigeon-Reach 1	2006	September	summer
##	28019	Pigeon-Reach 1	2006	September	summer
##	28022	Pigeon-Reach 7	2006	July	summer
##	28023	Pigeon-Reach 7	2006	July	summer
##	28024	Pigeon-Reach 7	2006	July	summer
##		•	2006	July	
##	28026	Pigeon-Reach 7	2006	August	summer
##	28027	Pigeon-Reach 7	2006	August	summer
##	28028	Pigeon-Reach 7	2006	September	summer
##	28036	Counts Outflow	2007	August	summer
##	28037	Counts Outflow	2007	August	
##	28038	Counts Outflow	2007	September	summer
##	28039	Counts Outflow	2007	September	summer
##	28041	Nanuq Outflow	2007	August	summer
##	28042	Nanuq Outflow	2007	August	summer
##	28043	Nanuq Outflow	2007	September	summer
##	28044	Nanuq Outflow	2007	September	summer
##	28050	Pigeon-Reach 1	2007	July	
##		Pigeon-Reach 7	2007	July	
##		•		-	
## ##	28289 28290	Counts Outflow Counts Outflow	2014 2014	July July	


```
## 28291 Counts Outflow 2014
                                August summer
## 28292 Counts Outflow 2014
                                August summer
## 28293 Counts Outflow 2014 September summer
## 28294 Counts Outflow 2014 September summer
## 28297 Nanuq Outflow 2014
                                  July summer
## 28298 Nanuq Outflow 2014
                                  July summer
## 28299 Nanug Outflow 2014
                                August summer
## 28300 Nanuq Outflow 2014
                               August summer
## 28301 Nanug Outflow 2014 September summer
## 28302 Nanug Outflow 2014 September summer
## 28321 Pigeon-Reach 7 2014
                                  July summer
## 28322 Pigeon-Reach 7 2014
                                  July summer
## 28323 Pigeon-Reach 7 2014
                                August summer
## 28324 Pigeon-Reach 7 2014
                               August summer
## 28325 Pigeon-Reach 7 2014 September summer
## 28326 Pigeon-Reach 7 2014 September summer
## 28327 Pigeon-Reach 7 2014
                               October summer
## 28328 Pigeon-Reach 7 2014
                               October summer
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

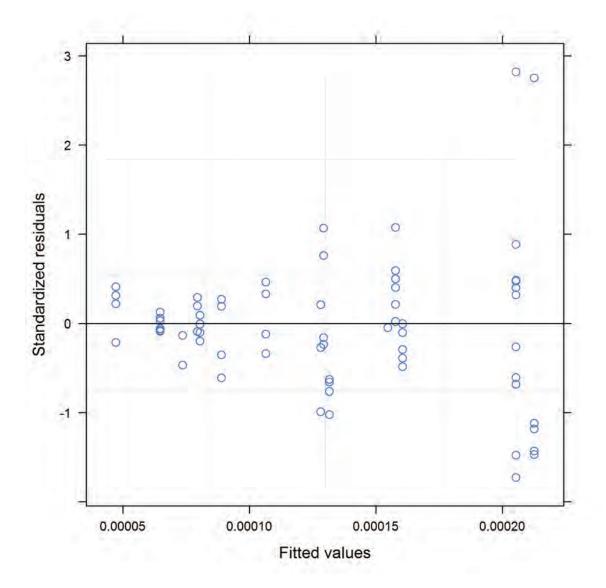
Model comparisons for log-transformed data:

Model	odel Residual SE		Adjusted R ²
Natural	1.11×10^{-4}	0.16	0.13
Log-10	0.34	0.09	0.06

Based on the summary statistics and examination of the residuals, the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Pigeon-Reach 1 Monitoring Location


Likelihood ratio test for model selection for the Pigeon-Reach 1 statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	5	-1284.72	647.36		
LME	6	-1287.06	649.53	4.34	0.04

Conclusion:

_

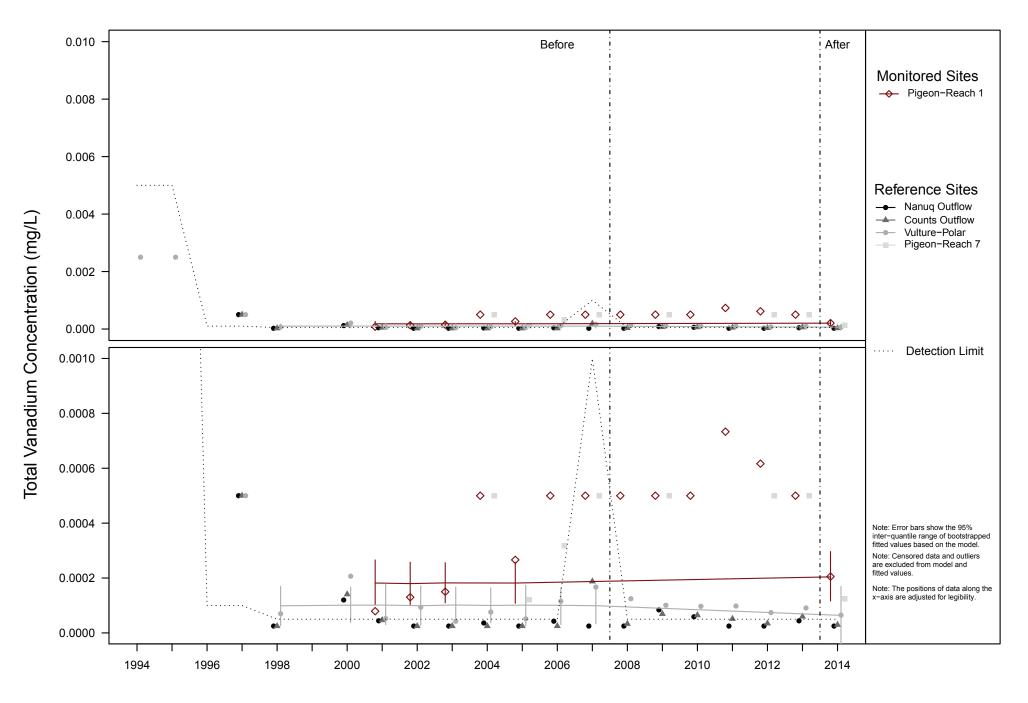
The most appropriate model for total vanadium at the Pigeon-Reach 1 monitoring site was the LME with a year term for interannual variation (p = 0.037).

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	77	43	<.0001
##	site	1	77	14	0.0003
##	period	1	8	0	0.9989
##	<pre>site:period</pre>	1	77	1	0.3205

Summary of BACI contrasts for changes between the *before* and *after* in Pigeon-Reach 1 by reference site, with 95% confidence intervals:

Pigeon-Reach 1 vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Nanuq Outflow	NA	NA	NA	NA
Counts Outflow	NA	NA	NA	NA
Vulture-Polar	-5.95×10 ⁻⁵	-1.74×10 ⁻⁵	5.52×10 ⁻⁵	not sig.
Pigeon-Reach 7	NA	NA	NA	NA

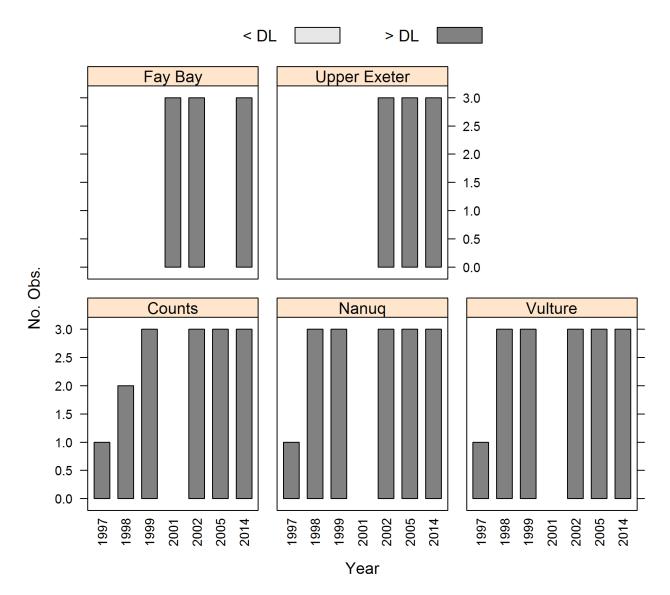

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total vanadium concentrations at the Pigeon-Reach 1 site were not significantly (p = 0.321) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Sediment Total Organic Carbon Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

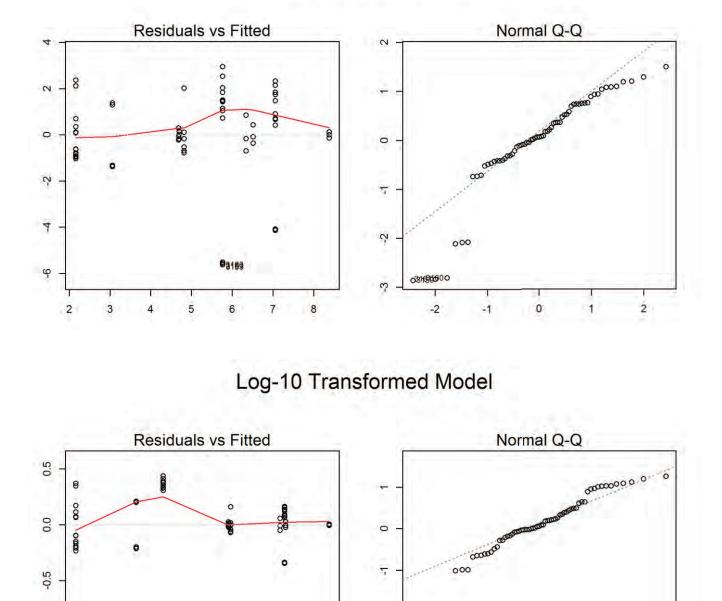
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.

No outliers were identified.

3 Initial Model Fit

2

ę

4

31600

-2

-1

31610

03159

Natural Scale Model

DOMINION DIAMOND EKATI CORPORATION

0.4

03160

03161

03159

0.6

0.7

0.8 0.9

0.5

-1.0

-1.5

0.3

2

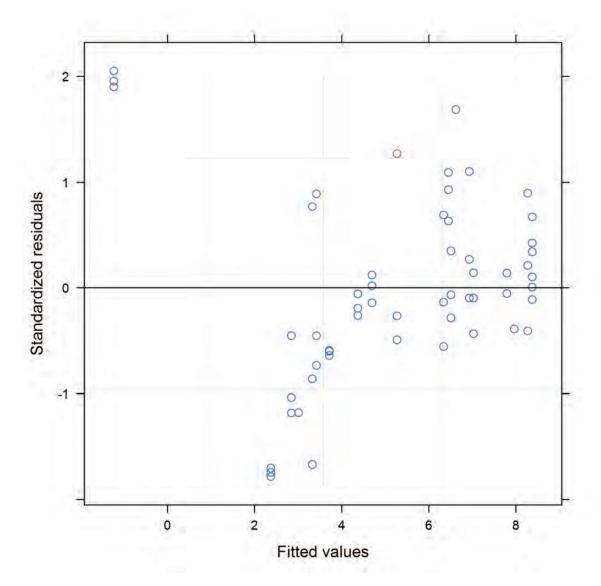
0 1

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²	
Natural	2.05	0.5	0.42	
Log-10	0.36	0.28	0.16	

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	240.89	-111.45		
LME	10	204.85	-92.43	38.04	6.92×10 ⁻¹⁰

Conclusion:

The most appropriate model for total organic carbon at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	43	44	<.0001
##	site	3	43	37	<.0001
##	period	1	5	0	0.5451
##	<pre>site:period</pre>	3	43	5	0.0055

Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-4.18	-6.88	-1.54	sig.
Nanuq	-0.79	-3.49	1.87	not sig.
Vulture	-0.87	-3.66	1.8	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Fay Bay site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	242.05	-112.02		
LME	10	203.26	-91.63	40.78	1.7×10 ⁻¹⁰

Conclusion:

The most appropriate model for total organic carbon at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

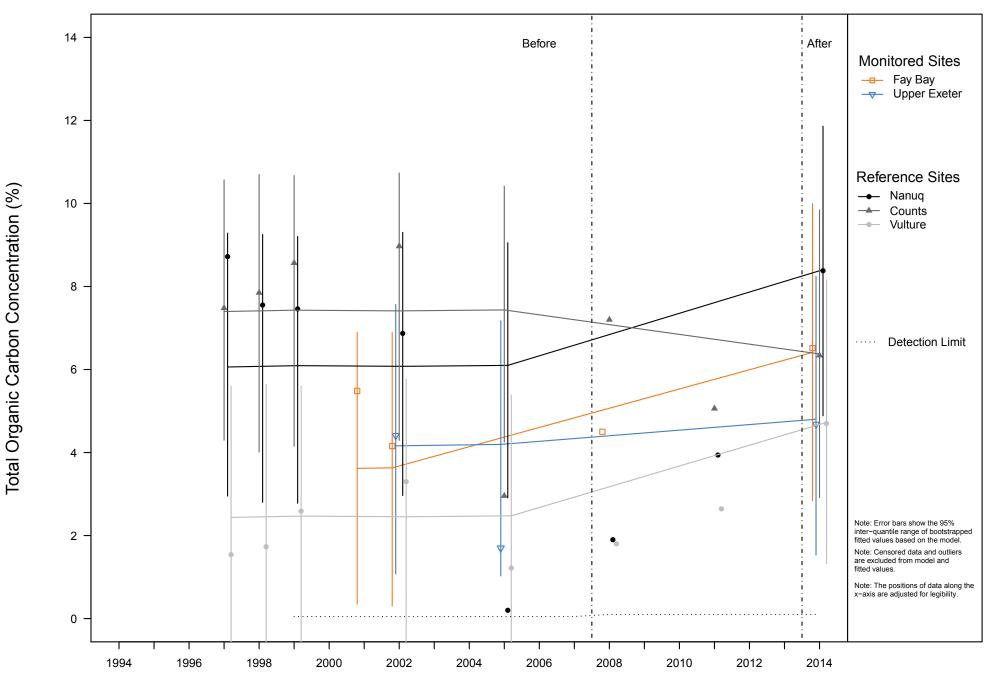
Results of the ANOVA test on the fixed effects of the model:

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	44	42	<.0001
##	site	3	44	38	<.0001
##	period	1	4	0	0.603
##	<pre>site:period</pre>	3	44	4	0.012

Computing bootstrap confidence intervals ...

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-1.36	-3.82	1.08	not sig.
Nanuq	2.03	-0.33	4.4	not sig.
Vulture	1.95	-0.39	4.32	not sig.

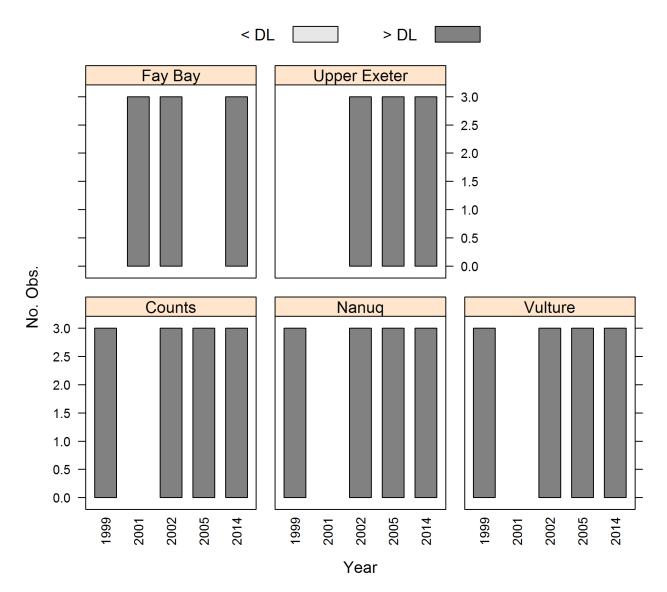

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total organic carbon concentrations at the Upper Exeter site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


```
DOMINION DIAMOND EKATI CORPORATION
```

Analysis of Sediment Available Phosphorus Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

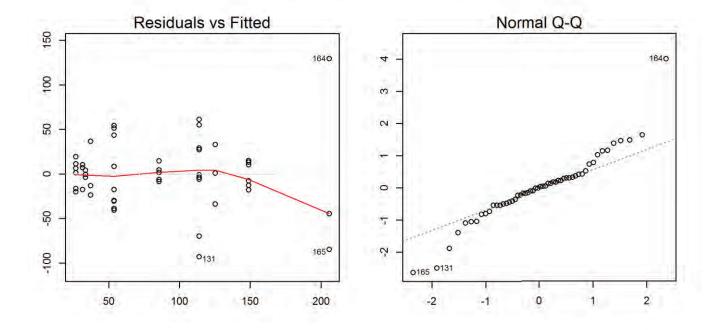
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

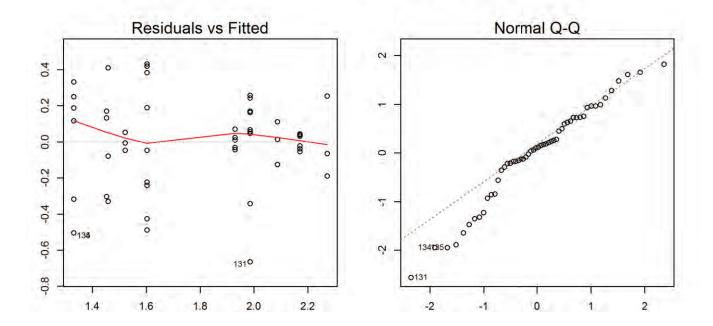
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

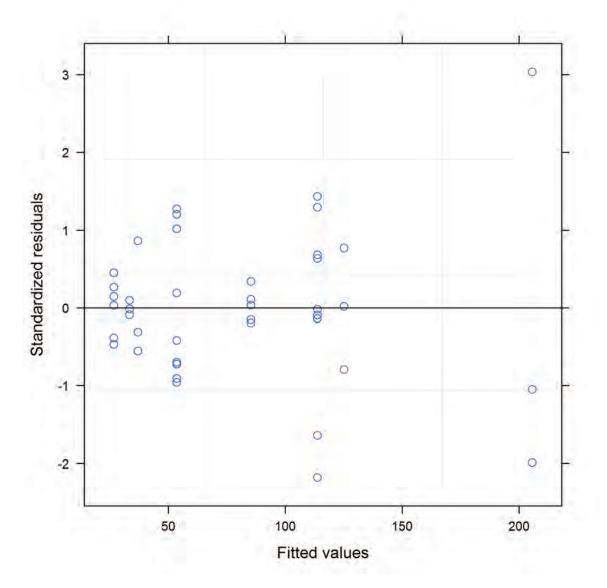
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	39.49	0.68	0.61
Log-10	0.28	0.62	0.54

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	413.4	-197.7		
LME	10	415.33	-197.66	0.08	0.78

Conclusion:

The most appropriate model for available phosphorus at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.783).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 3	37		
##		numDF	F-value	p-value
##	(Intercept)	1	147	<.0001
##	site	3	16	<.0001
##	period	1	4	0.043
##	<pre>site:period</pre>	3	3	0.057

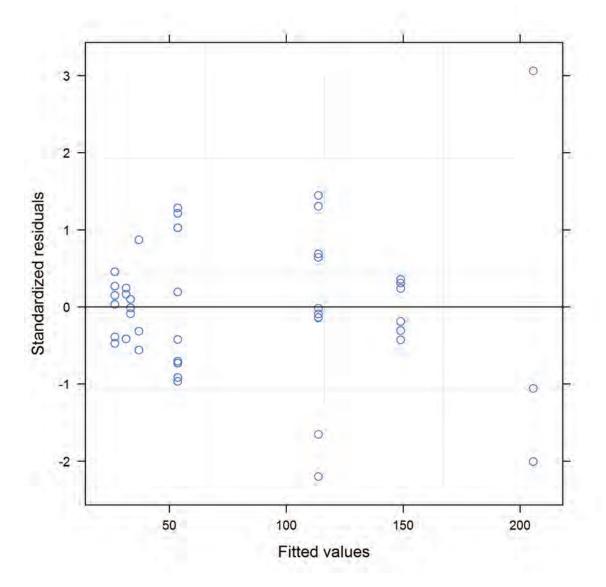
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	52.12	-31.75	135.99	not sig.
Nanuq	-33	-116.87	50.87	not sig.
Vulture	-56.43	-140.3	27.44	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Available phosphorus concentrations at the Fay Bay site were not significantly (p = 0.06) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	412.79	-197.39		
LME	10	414.69	-197.34	0.1	0.75

Conclusion:

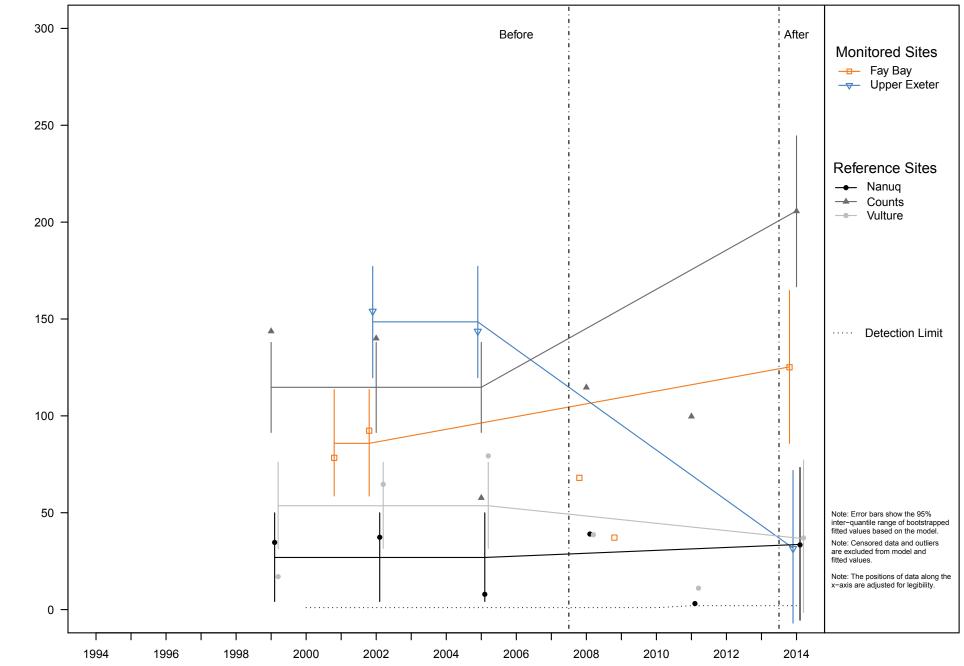
The most appropriate model for available phosphorus at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.75).

Results of the ANOVA test on the fixed effects of the model:

##	Denom. DF: 3	37		
##		numDF	F-value	p-value
##	(Intercept)	1	158	<.0001
##	site	3	17	<.0001
##	period	1	0	0.6898
##	<pre>site:period</pre>	3	9	0.0002

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	209.26	126.08	292.43	sig.
Nanuq	124.13	40.96	207.31	sig.
Vulture	100.7	17.52	183.88	sig.

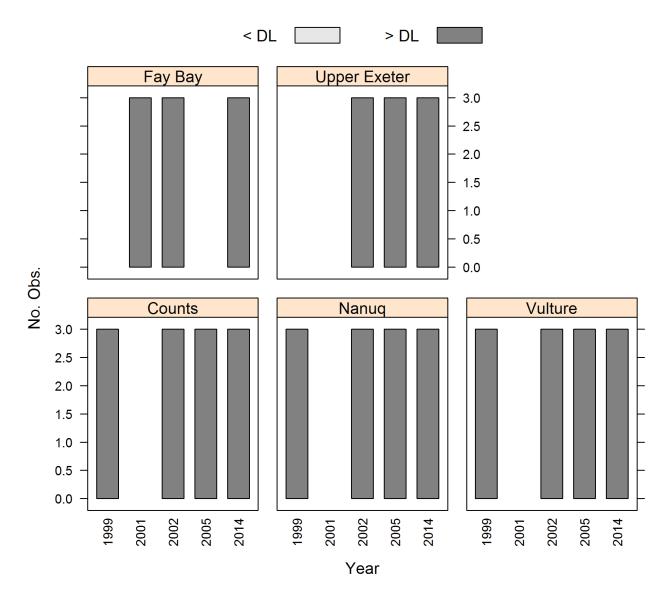

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Available phosphorus concentrations at the Upper Exeter site were significantly ($p = 1.59 \times 10^{-4}$) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Sediment Total Nitrogen Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

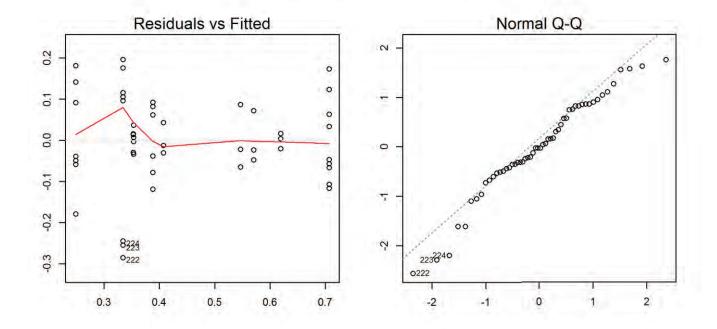
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

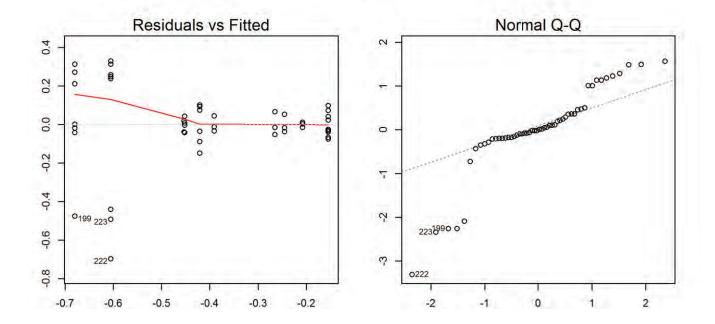
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

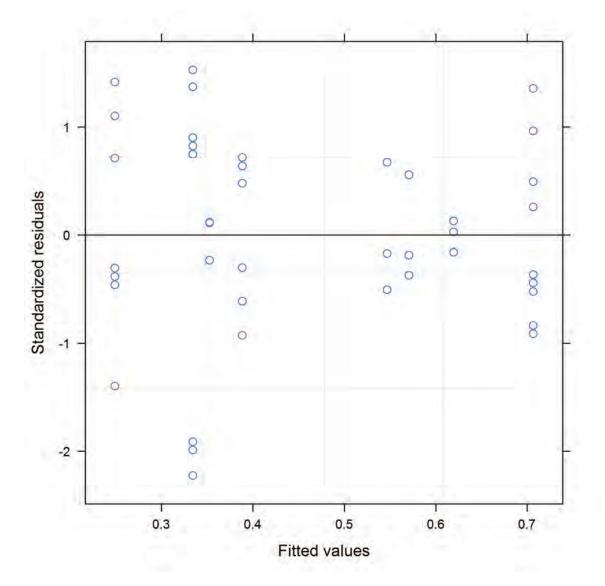
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.12	0.69	0.62
Log-10	0.22	0.46	0.35

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-16.38	17.19		
LME	10	-14.38	17.19	7.31×10^{-10}	1

Conclusion:

The most appropriate model for total nitrogen at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 1).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##	Denom. DF: 3	37		
##		numDF	F-value	p-value
##	(Intercept)	1	554	<.0001
##	site	3	19	<.0001
##	period	1	5	0.0258
##	<pre>site:period</pre>	3	5	0.0055

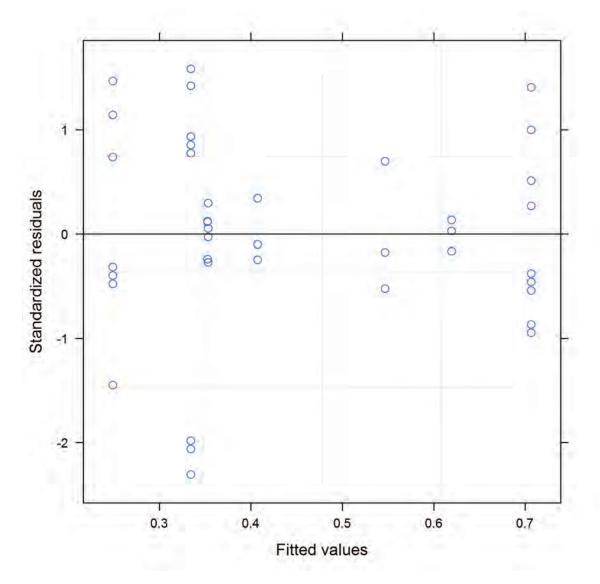
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.34	-0.59	-0.09	sig.
Nanuq	0.1	-0.15	0.35	not sig.
Vulture	-0.08	-0.33	0.17	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nitrogen concentrations at the Fay Bay site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р	
GLS	9	-19.1	18.55			
LME	10	-17.1	18.55	1.19×10 ⁻⁹	1	

Conclusion:

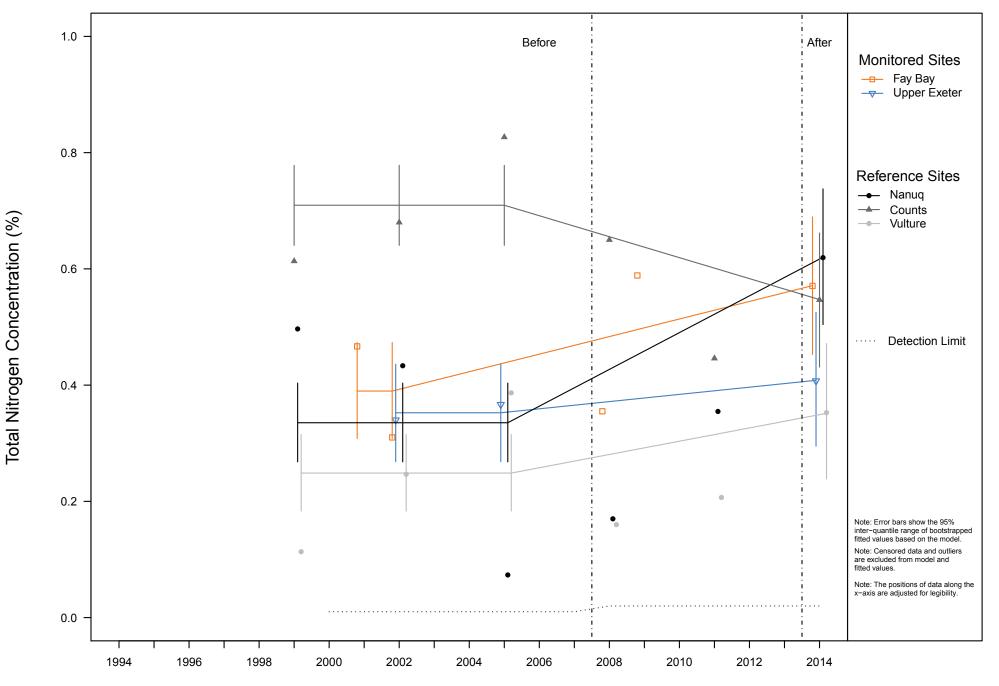
The most appropriate model for total nitrogen at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 1).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##	Denom. DF: 3	37		
##		numDF	F-value	p-value
##	(Intercept)	1	556	<.0001
##	site	3	22	<.0001
##	period	1	3	0.0963
##	<pre>site:period</pre>	3	5	0.0054

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.21	-0.46	0.03	not sig.
Nanuq	0.23	-0.01	0.47	not sig.
Vulture	0.05	-0.19	0.29	not sig.

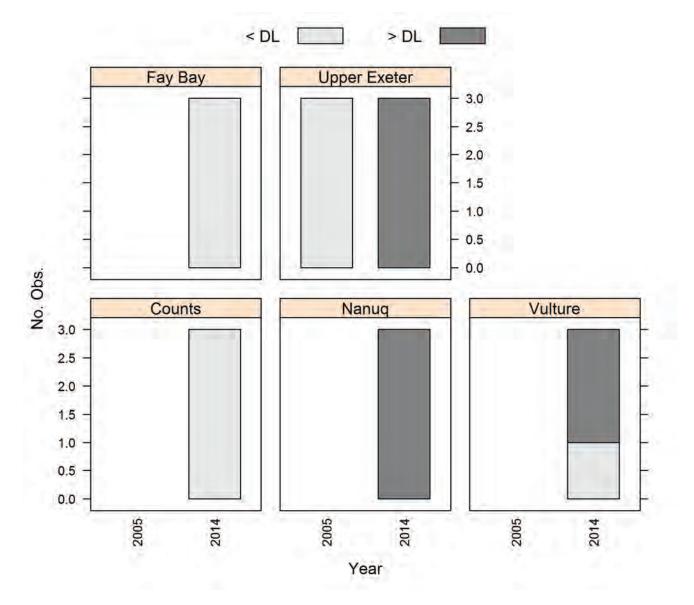

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nitrogen concentrations at the Upper Exeter site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

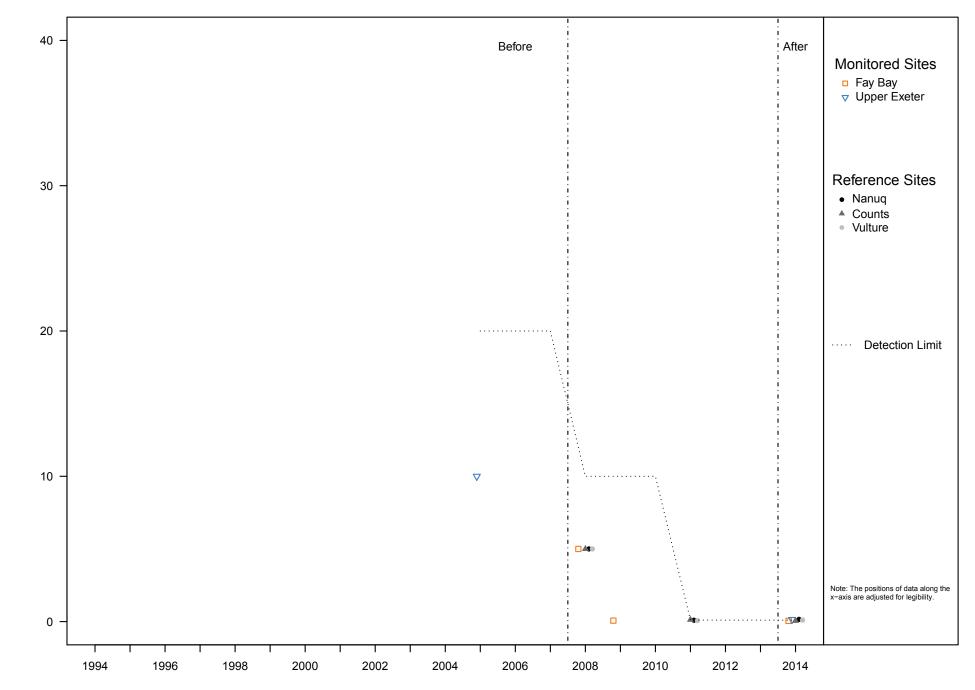
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


DOMINION DIAMOND EKATI CORPORATION

Analysis of Sediment Antimony Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 19, 2015

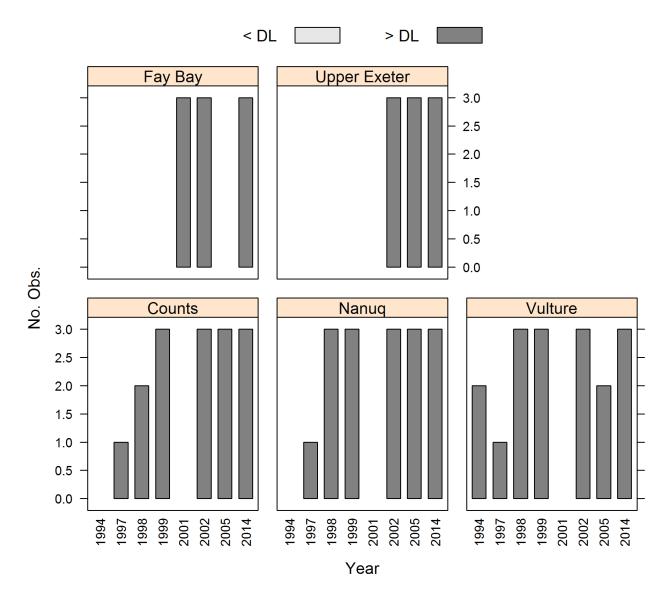
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion

Antimony sediment concentration statistical analyses were not conducted because of the censoring of observations. Below is a summary figure of all observations in the Pigeon watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Sediment Total Arsenic Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

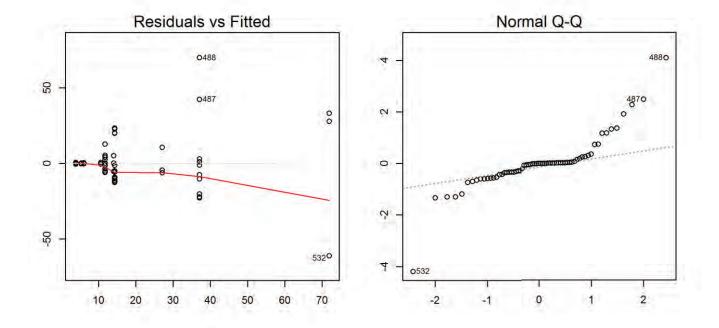
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

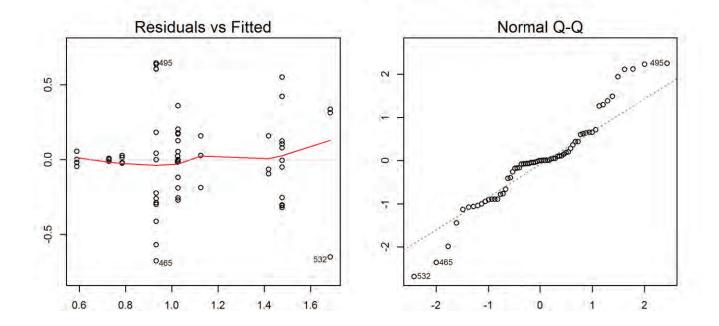
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

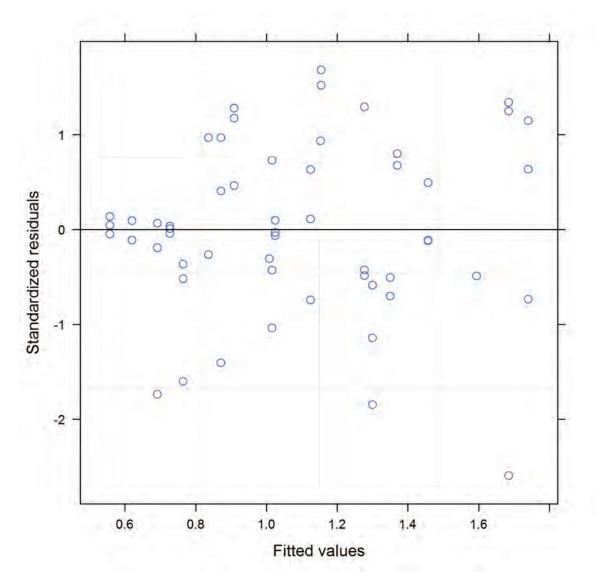
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	17.84	0.48	0.4
Log-10	0.3	0.55	0.48

Based on the summary statistics and examination of the residuals , the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	58.33	-20.17		
LME	10	48.27	-14.14	12.06	5.15×10^{-4}

Conclusion:

The most appropriate model for total arsenic at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	43	119	<.0001
##	site	3	43	15	<.0001
##	period	1	6	0	0.7936
##	<pre>site:period</pre>	3	43	9	0.0001

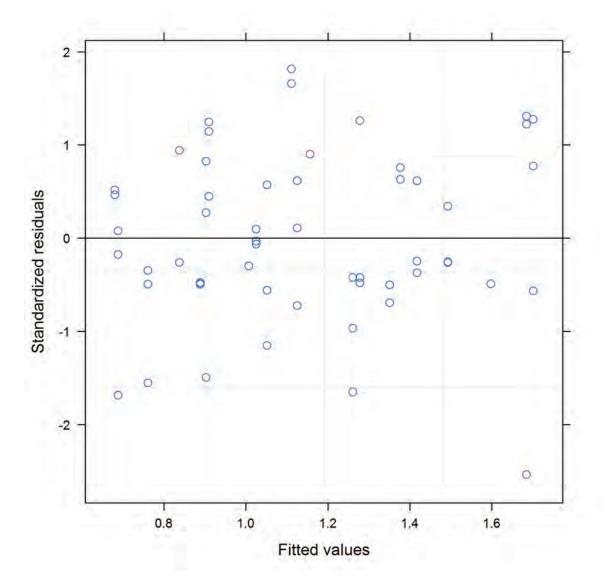
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.5	-1.01	0.03	not sig.
Nanuq	-0.16	-0.7	0.36	not sig.
Vulture	0.64	0.13	1.18	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total arsenic concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	58.68	-20.34		
LME	10	49.83	-14.92	10.85	9.89×10 ⁻⁴

Conclusion:

The most appropriate model for total arsenic at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

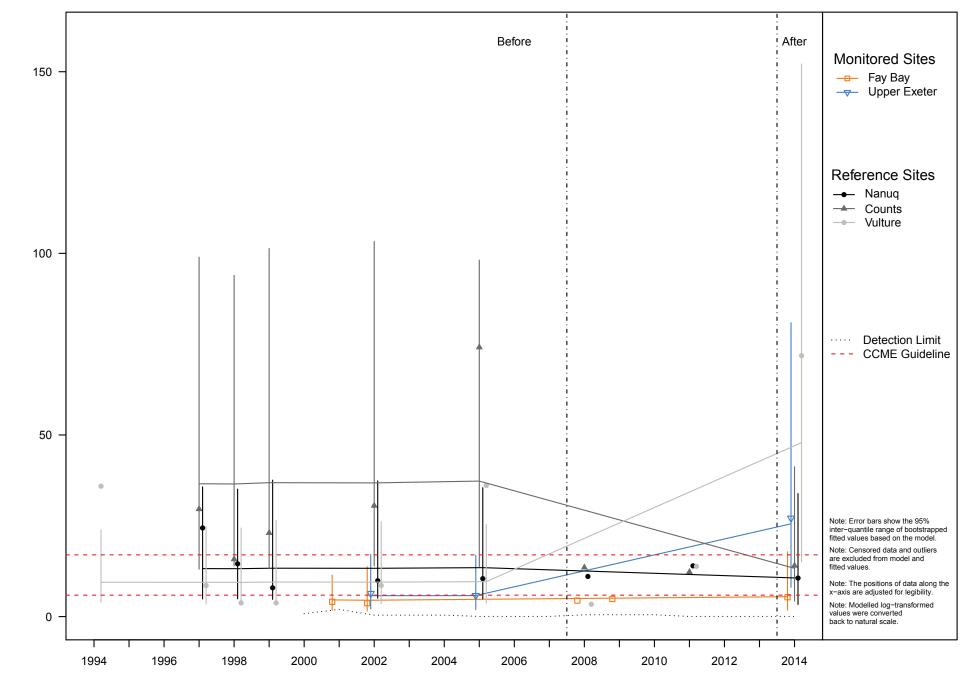
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	44	111	<.0001
##	site	3	44	9	0.0001
##	period	1	5	0	0.5526
##	<pre>site:period</pre>	3	44	11	<.0001

Computing bootstrap confidence intervals ...

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-1.11	-1.6	-0.61	sig.
Nanuq	-0.76	-1.27	-0.24	sig.
Vulture	0.04	-0.45	0.54	not sig.

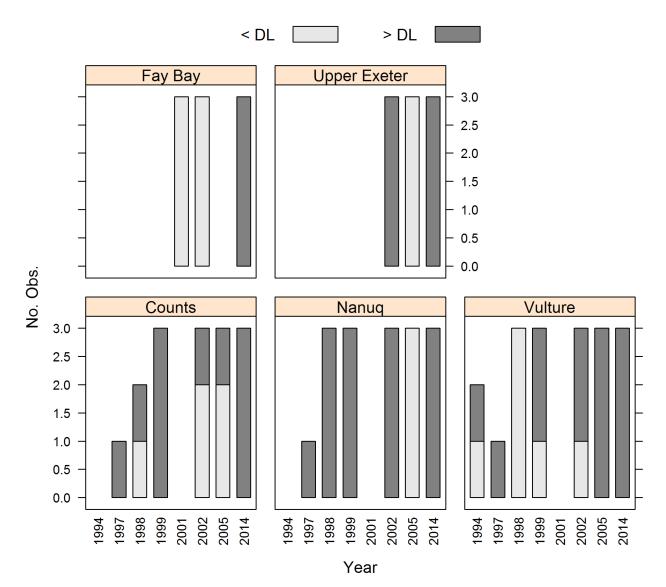

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total arsenic concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


Total Arsenic Concentration (mg/kg)

Analysis of Sediment Total Cadmium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

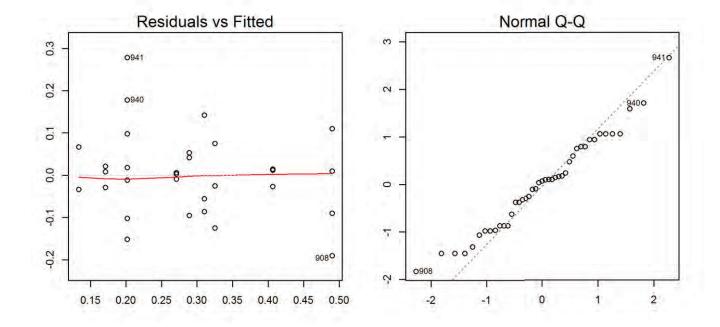
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

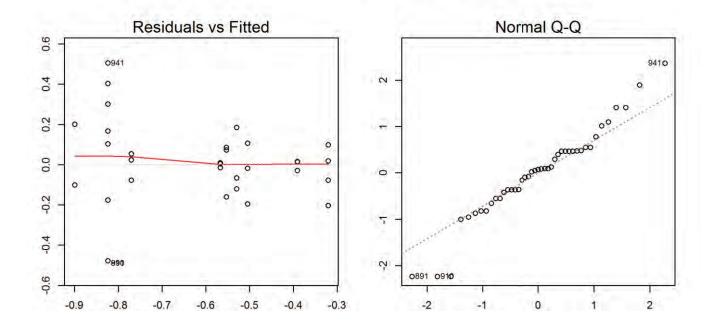
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


##		site	date	year	class
##	895	Vulture	1997-08-04	1997	ref
##	896	Counts	1998-08-04	1998	ref
##	897	Counts	1998-08-04	1998	ref
##	901	Vulture	1998-08-07	1998	ref
##	902	Vulture	1998-08-07	1998	ref
##	903	Vulture	1998-08-07	1998	ref
##	913	Fay Bay	2001-08-05	2001	monit
##	914	Fay Bay	2001-08-05	2001	monit
##	915	Fay Bay	2001-08-05	2001	monit
##	916	Counts	2002-08-07	2002	ref
##	917	Counts	2002-08-07	2002	ref
##	918	Counts	2002-08-07	2002	ref
##	919	Fay Bay	2002-08-08	2002	monit
##	920	Fay Bay	2002-08-08	2002	monit
##	921	Fay Bay	2002-08-08	2002	monit
##	931	Counts	2005-08-07	2005	ref
##	932	Counts	2005-08-07	2005	ref
##	933	Counts	2005-08-07	2005	ref
##	934	Nanuq	2005-08-01	2005	ref
##	935	Nanuq	2005-08-01	2005	ref
##	936	Nanuq	2005-08-01	2005	ref
##	937	Upper Exeter	2005-08-19	2005	monit
##	938	Upper Exeter	2005-08-19	2005	monit
##	939	Upper Exeter	2005-08-19	2005	monit

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

Model comparisons for log-transformed data:

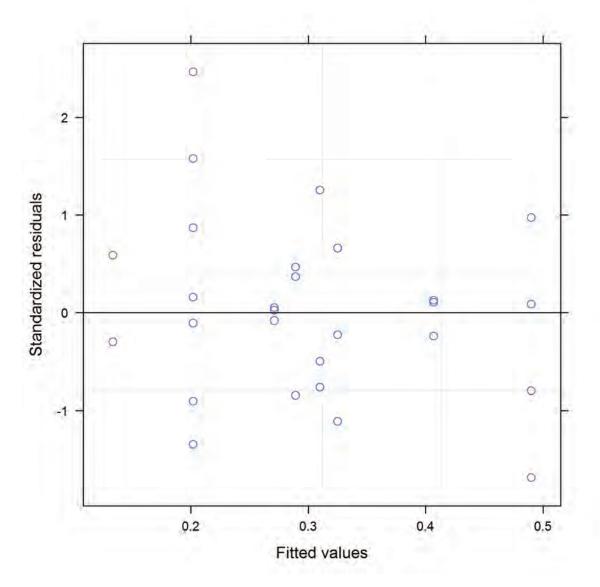
Model	Residual SE	R ²	Adjusted R ²
Natural	0.11	0.61	0.52
Log-10	0.22	0.52	0.41

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location

The BACI modeling analysis was not conducted on the Fay Bay data because insufficient observations were available for the analysis due to censoring or outliers.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-19.24	18.62		
LME	10	-18.65	19.32	1.4	0.24

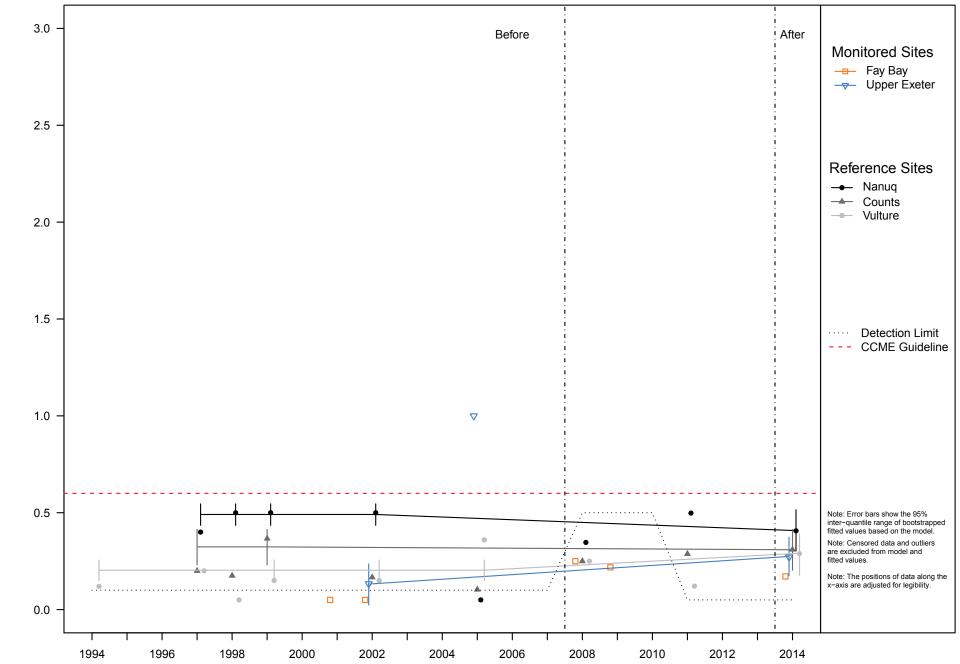
Conclusion:

The most appropriate model for total cadmium at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.236).

##	Denom. DF: 3	32		
##		numDF	F-value	p-value
##	(Intercept)	1	314	<.0001
##	site	3	14	<.0001
##	period	1	0	0.54
##	<pre>site:period</pre>	3	2	0.23

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.15	-0.41	0.1	not sig.
Nanuq	-0.22	-0.46	0.02	not sig.
Vulture	-0.05	-0.29	0.19	not sig.

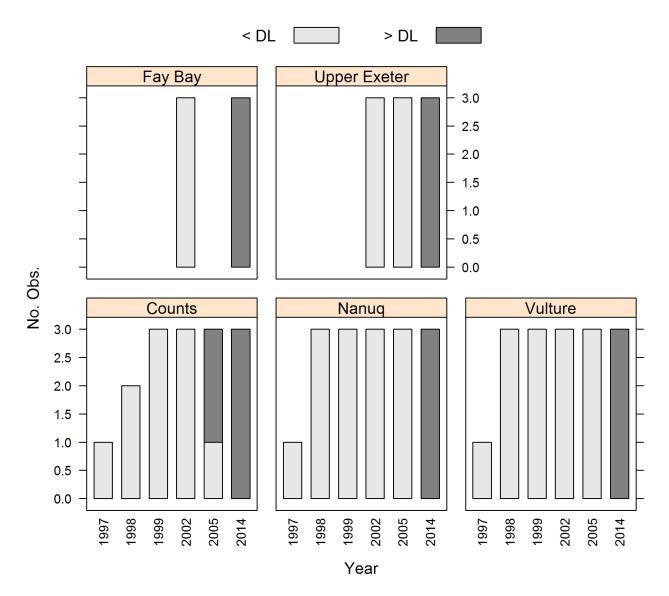

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total cadmium concentrations at the Upper Exeter site were not significantly (p = 0) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

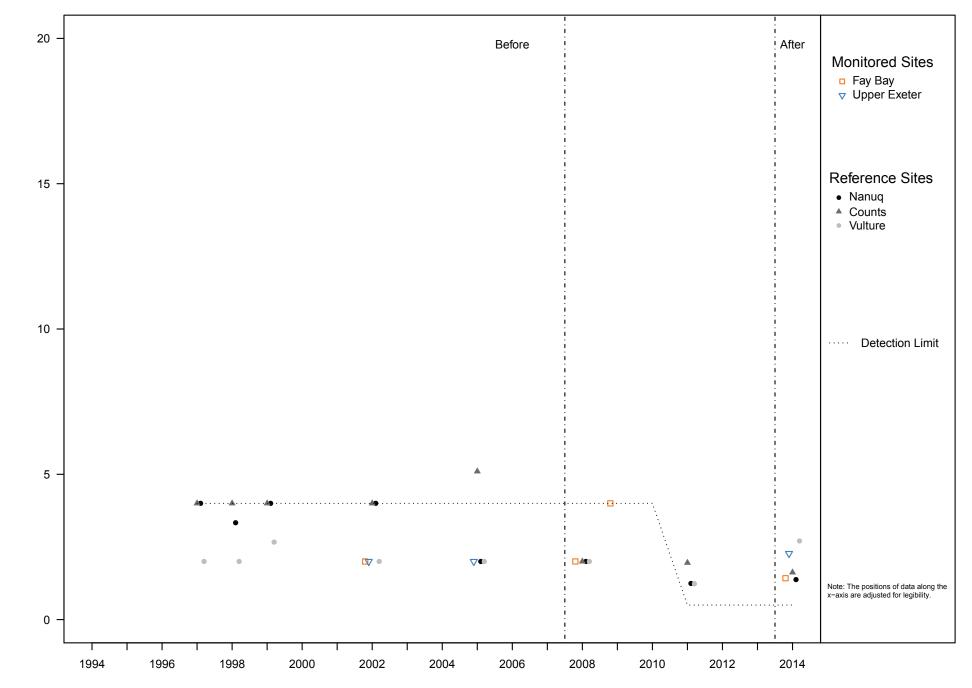
The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Sediment Molybdenum Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

February 5, 2015

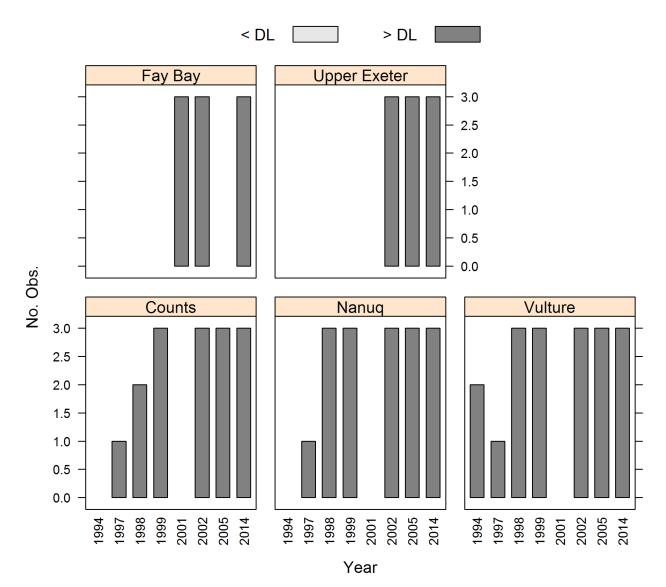
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Molybdenum sediment concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Sediment Total Nickel Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

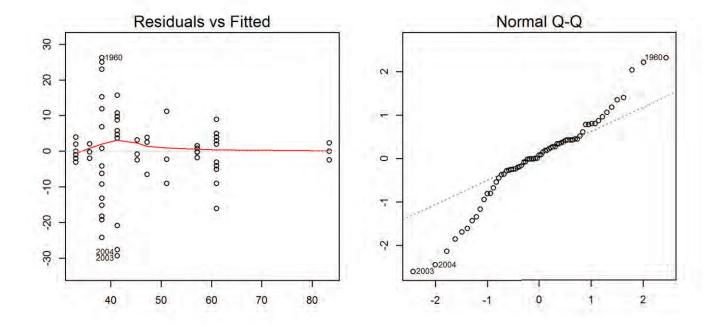
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

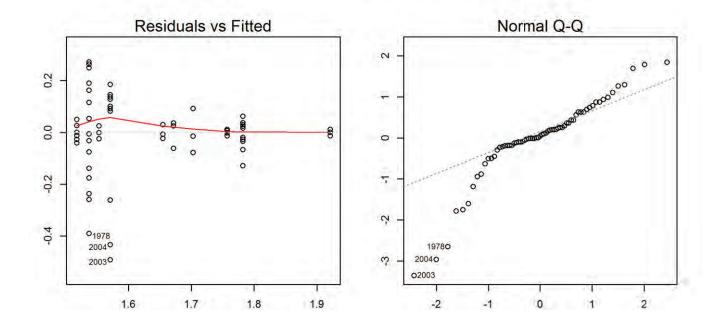
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

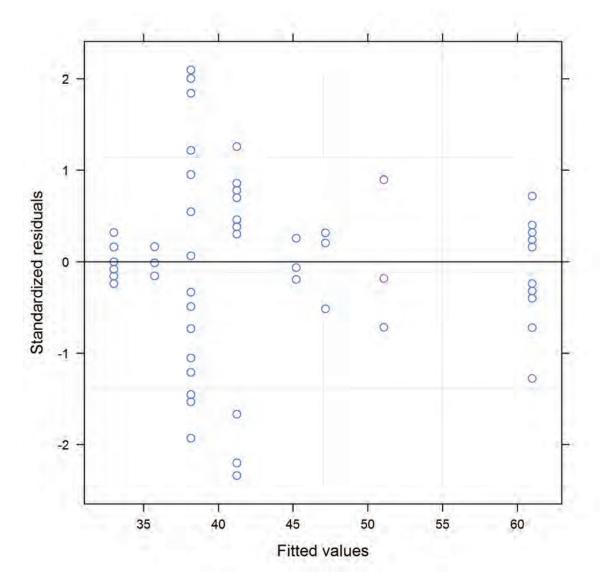
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	11.73	0.56	0.5
Log-10	0.15	0.41	0.31

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	426.52	-204.26		
LME	10	426.81	-203.4	1.71	0.19

Conclusion:

_

The most appropriate model for total nickel at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.191).

##	Denom. DF: !	50		
##		numDF	F-value	p-value
##	(Intercept)	1	731	<.0001
##	site	3	9	0.0001
##	period	1	0	0.8013
##	<pre>site:period</pre>	3	2	0.1777

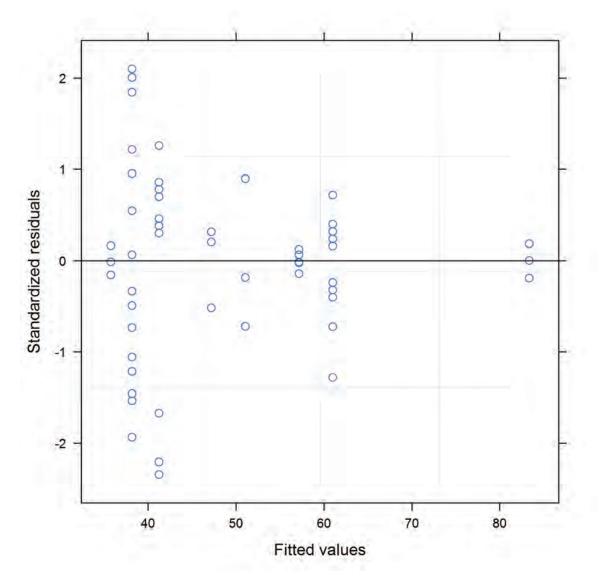
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-22.13	-46.2	1.93	not sig.
Nanuq	-17.71	-41.69	6.27	not sig.
Vulture	-3.19	-27.03	20.66	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Fay Bay site were not significantly (p = 0) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	426.31	-204.15		
LME	10	426.92	-203.46	1.39	0.24

Conclusion:

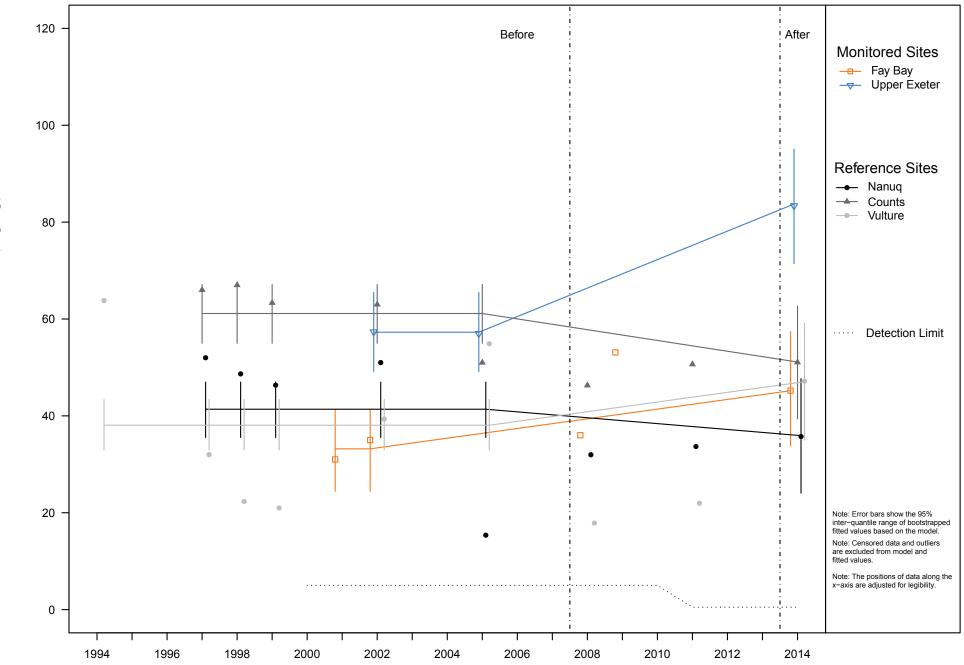
The most appropriate model for total nickel at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.239).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##	Denom. DF: !	50		
##		numDF	F-value	p-value
##	(Intercept)	1	889	<.0001
##	site	3	15	<.0001
##	period	1	1	0.328
##	<pre>site:period</pre>	3	4	0.017

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-36.13	-60.15	-12.12	sig.
Nanuq	-31.71	-55.63	-7.78	sig.
Vulture	-17.19	-40.98	6.61	not sig.

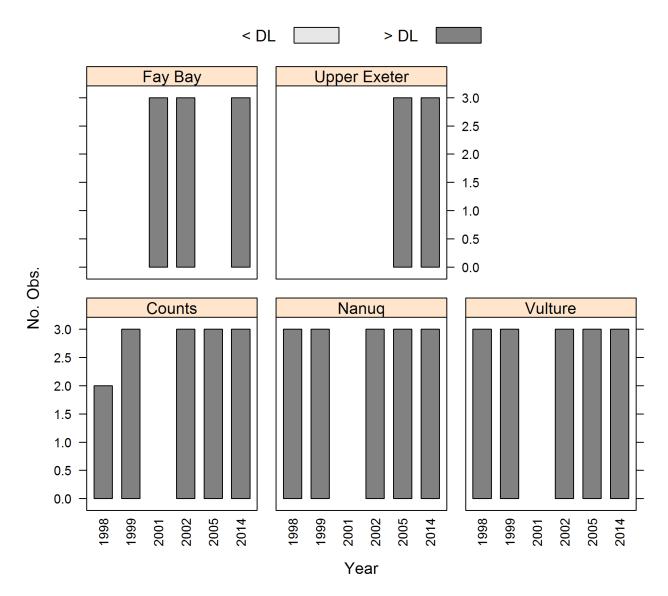

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total nickel concentrations at the Upper Exeter site were significantly (p = 0) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.


ERM | PROJ #0211136-0017 | REV B.1 | MARCH 2015

Analysis of Sediment Phosphorus Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

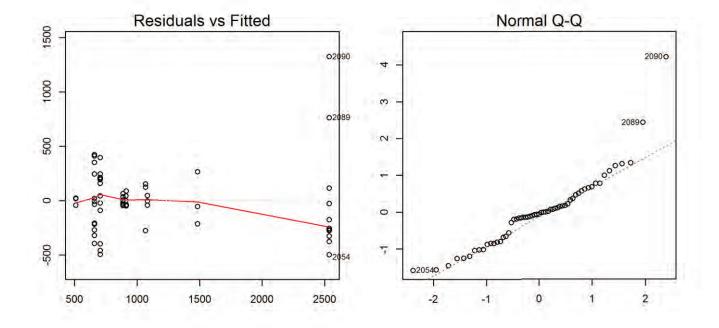
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

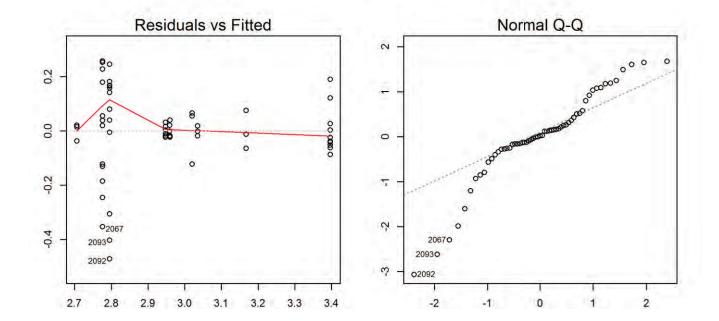
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

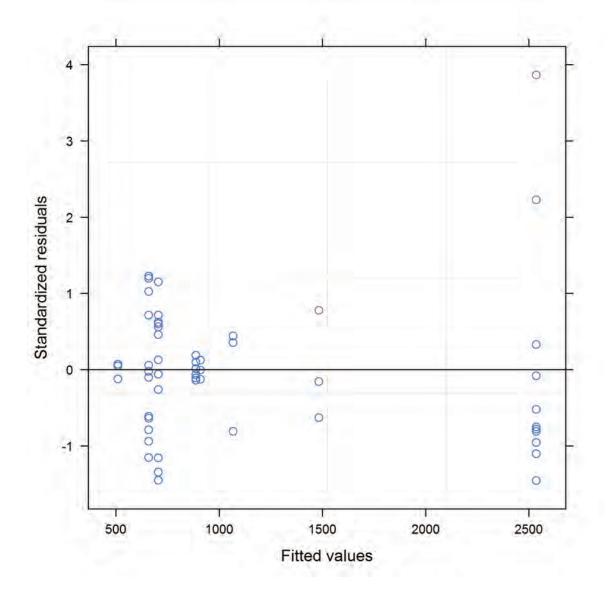
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	328.65	0.84	0.82
Log-10	0.16	0.72	0.66

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	684.51	-333.25		
LME	10	686.1	-333.05	0.41	0.52

Conclusion:

The most appropriate model for total phosphorus at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.524).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##	Denom. DF: 4	45		
##		numDF	F-value	p-value
##	(Intercept)	1	608	<.0001
##	site	3	72	<.0001
##	period	1	3	0.0693
##	<pre>site:period</pre>	3	8	0.0003

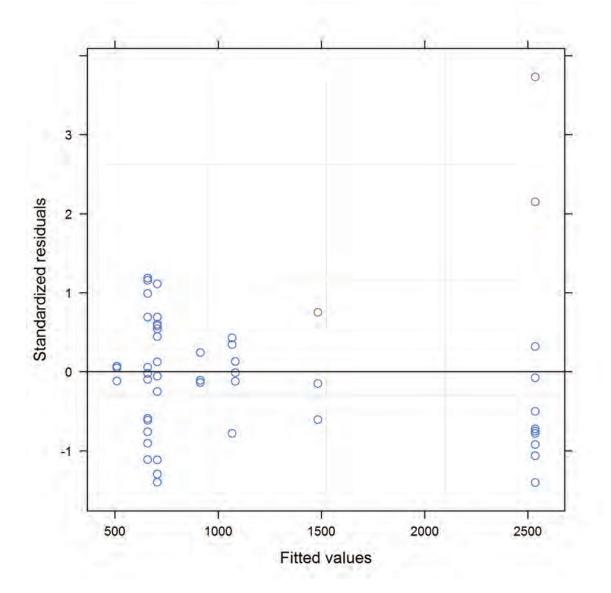
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-1075.86	-1738.94	-412.78	sig.
Nanuq	-219.25	-879.61	441.11	not sig.
Vulture	385.25	-275.11	1045.61	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphorus concentrations at the Fay Bay site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	643.2	-312.6		
LME	10	644.76	-312.38	0.44	0.51

Conclusion:

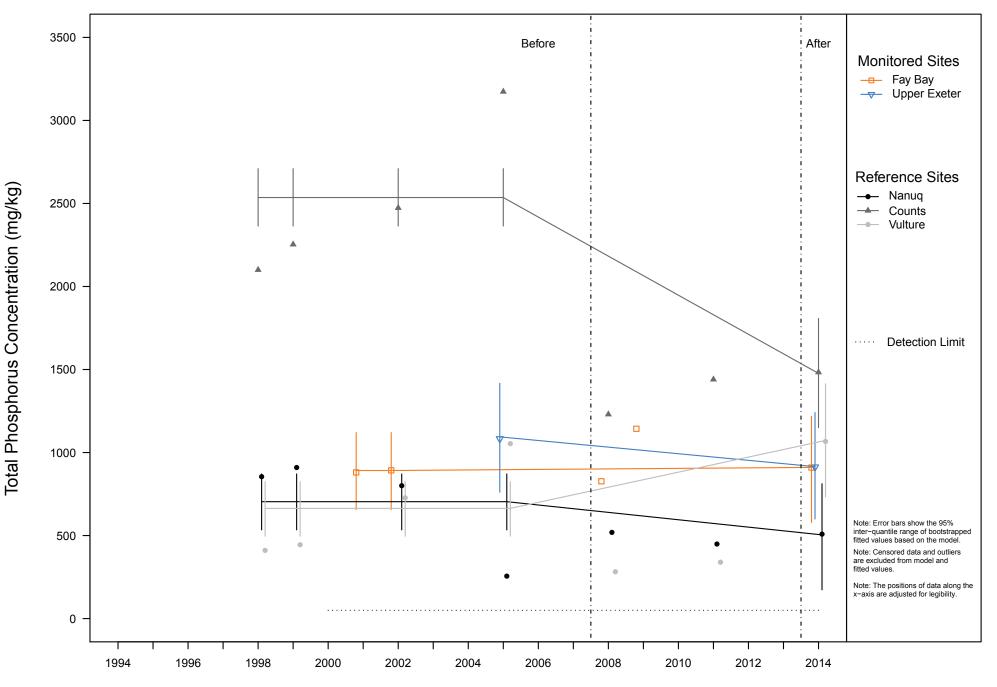
The most appropriate model for total phosphorus at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.508).

Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##	Denom. DF: 4	42		
##		numDF	F-value	p-value
##	(Intercept)	1	562	<.0001
##	site	3	66	<.0001
##	period	1	5	0.0384
##	<pre>site:period</pre>	3	7	0.0007

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-882.7	-1630	-135.4	sig.
Nanuq	-26.08	-770.78	718.62	not sig.
Vulture	578.42	-166.28	1323.12	not sig.

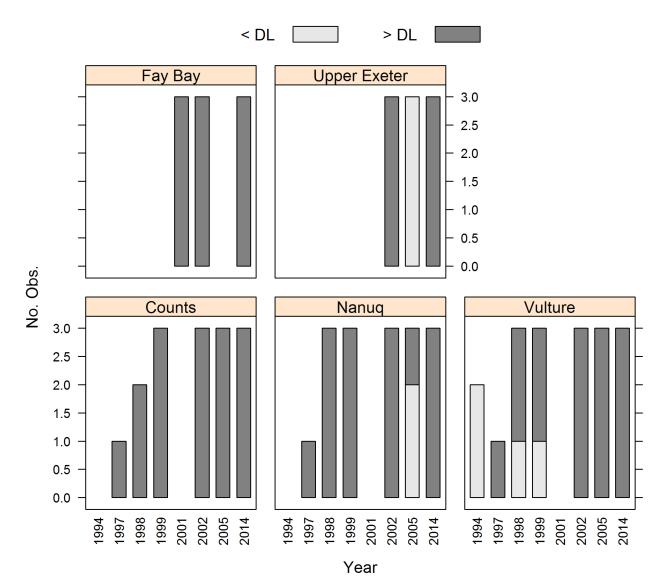

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total phosphorus concentrations at the Upper Exeter site were significantly (p < 0.001) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Sediment Total Selenium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

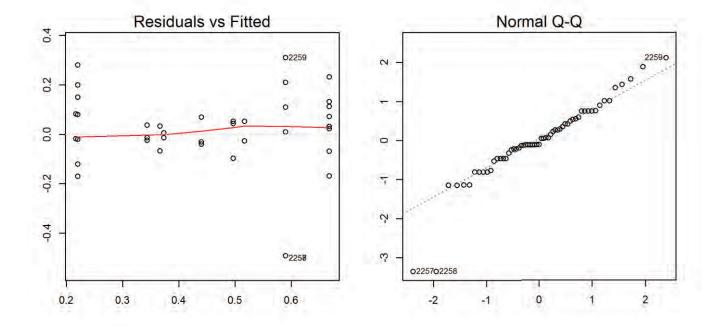
February 5, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

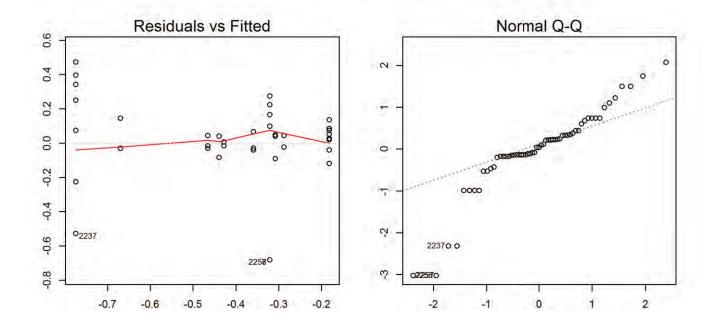
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
##
                site
                           date year class
## 2226
             Vulture 1994-07-01 1994
                                       ref
## 2227
             Vulture 1994-08-13 1994
                                       ref
## 2269
               Nanug 2005-08-01 2005
                                       ref
## 2270
               Nanug 2005-08-01 2005
                                       ref
## 2271
               Nanuq 2005-08-01 2005
                                       ref
## 2272 Upper Exeter 2005-08-19 2005 monit
## 2273 Upper Exeter 2005-08-19 2005 monit
## 2274 Upper Exeter 2005-08-19 2005 monit
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


```
## No outliers were identified.
```

3 Initial Model Fit

Natural Scale Model

Log-10 Transformed Model

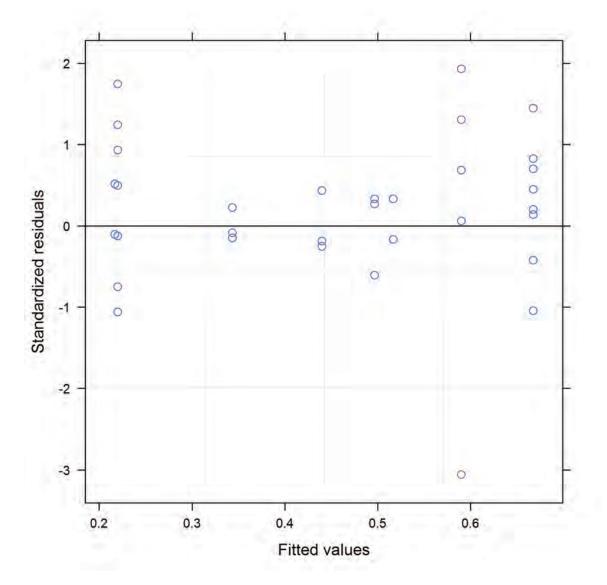
Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.15	0.61	0.54
Log-10	0.24	0.51	0.42

Based on the summary statistics and examination of the residuals , the untransformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling

4.1 Fay Bay Monitoring Location


Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-5.51	11.76		
LME	10	-3.58	11.79	0.07	0.79

Conclusion:

_

The most appropriate model for total selenium at the Fay Bay monitoring site was the simpler GLS model without a year term (p = 0.787).

##	Denom. DF: 4	45		
##		numDF	F-value	p-value
##	(Intercept)	1	404	<.0001
##	site	3	19	<.0001
##	period	1	0	0.6633
##	<pre>site:period</pre>	3	5	0.0073

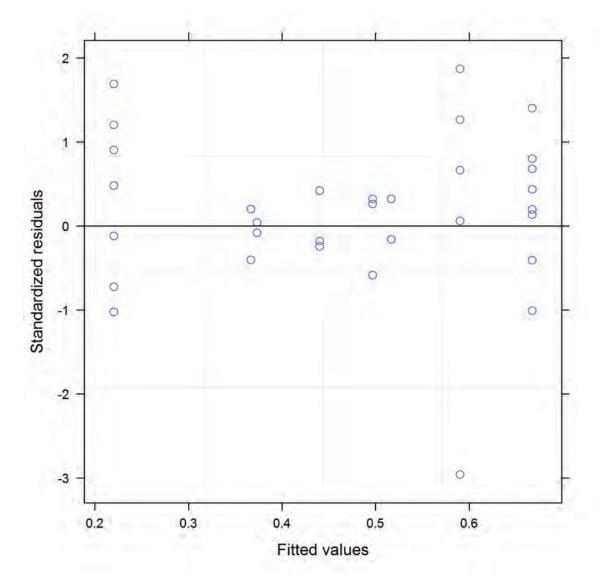
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.35	-0.66	-0.05	sig.
Nanuq	-0.2	-0.51	0.11	not sig.
Vulture	0.15	-0.16	0.46	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total selenium concentrations at the Fay Bay site were significantly (p = 0.007) different in the *after* period, according to the test on the BACI term (*site:period*). The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	-0.96	9.48		
LME	10	0.96	9.52	0.08	0.78

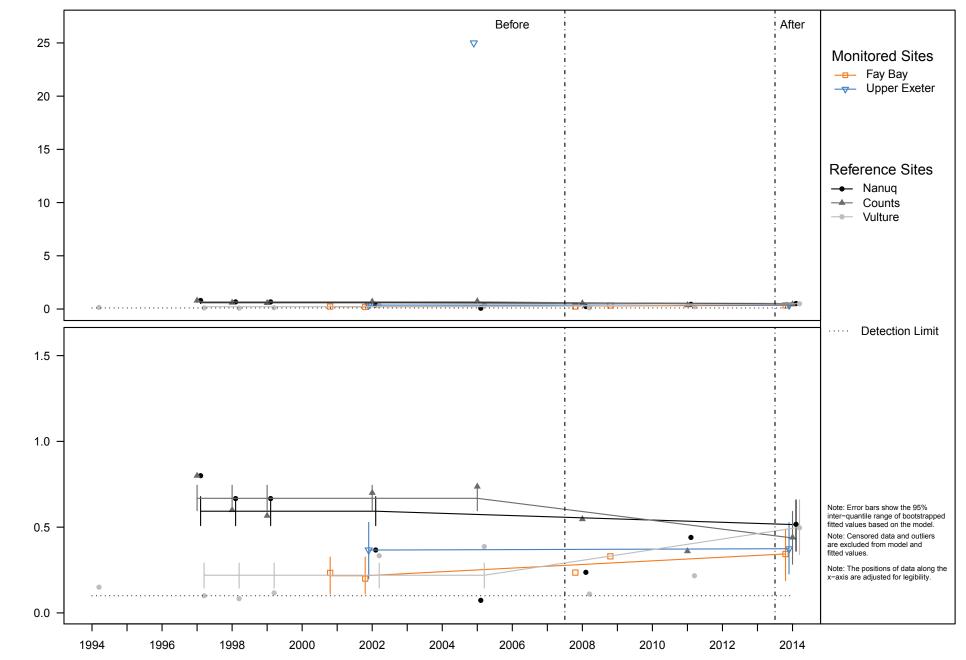
Conclusion:

The most appropriate model for total selenium at the Upper Exeter monitoring site was the simpler GLS model without a year term (p = 0.784).

##	Denom. DF: 4	42		
##		numDF	F-value	p-value
##	(Intercept)	1	397	<.0001
##	site	3	14	<.0001
##	period	1	0	0.950
##	<pre>site:period</pre>	3	4	0.015

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.23	-0.58	0.11	not sig.
Nanuq	-0.08	-0.43	0.27	not sig.
Vulture	0.27	-0.08	0.62	not sig.

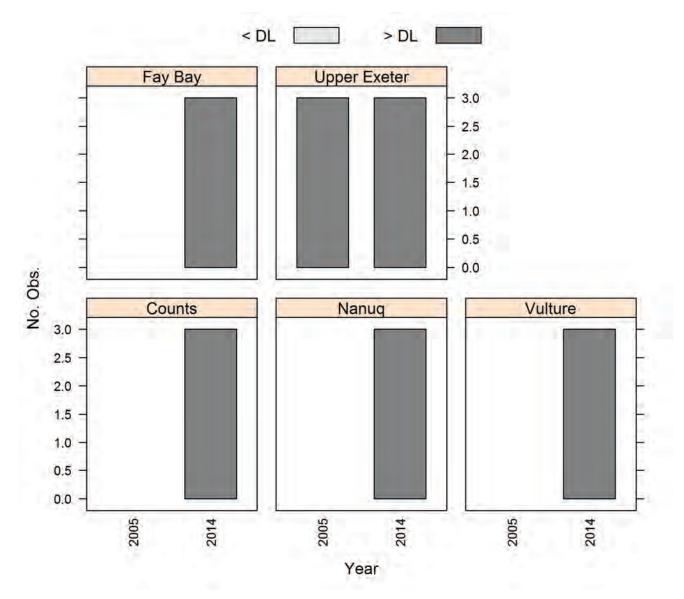

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Total selenium concentrations at the Upper Exeter site were significantly (p = 0.015) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. The BACI results should be interpreted with caution because at least 10% of the observations within one of the sites were below analytical detection limits.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Sediment Strontium Concentrations in Lakes of the Pigeon-Fay and Upper Exeter Watershed

January 19, 2015

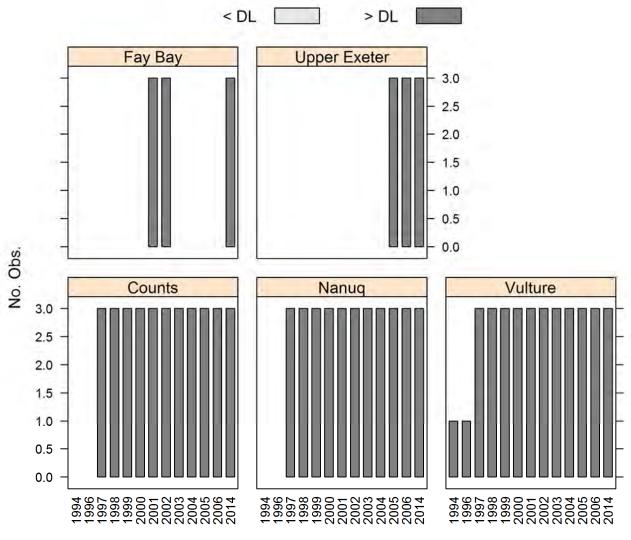
1 Censored Data


The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

Conclusion:

Strontium sediment concentration statistical analyses were not conducted because of the censoring or availability of observations. Below is a summary figure of all observations in the Pigeon-Fay and Upper Exeter Watershed watershed dataset. Mean observations for each site for each year are shown as symbols.



Analysis of Lake Chlorophyll *a* in Lakes of the Pigeon-Fay and Upper Exeter Watershed

February 10, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

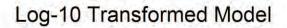
Year

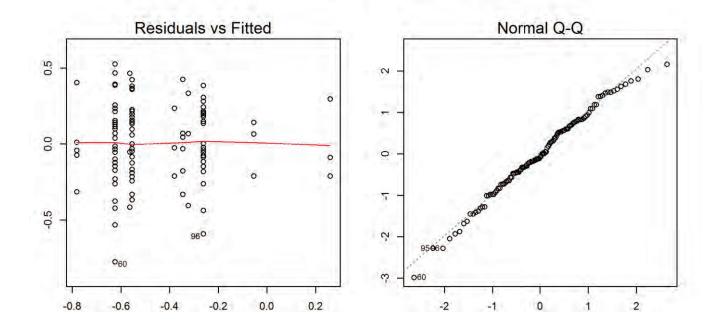
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:

```
## No censored data were identified.
```

2 Outliers


The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

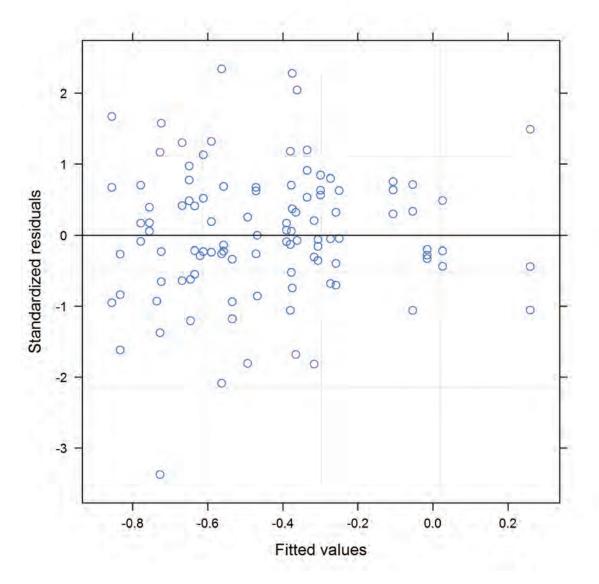
Natural Scale Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	0.3	0.53	0.49
Log-10	0.26	0.4	0.35

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	51.28	-16.64		
LME	10	18.18	0.91	35.1	3.12×10 ⁻⁹

Conclusion:

The most appropriate model for biomass at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	91	67	<.0001
##	site	3	91	28	<.0001
##	period	1	11	1	0.277
##	<pre>site:period</pre>	3	91	2	0.097

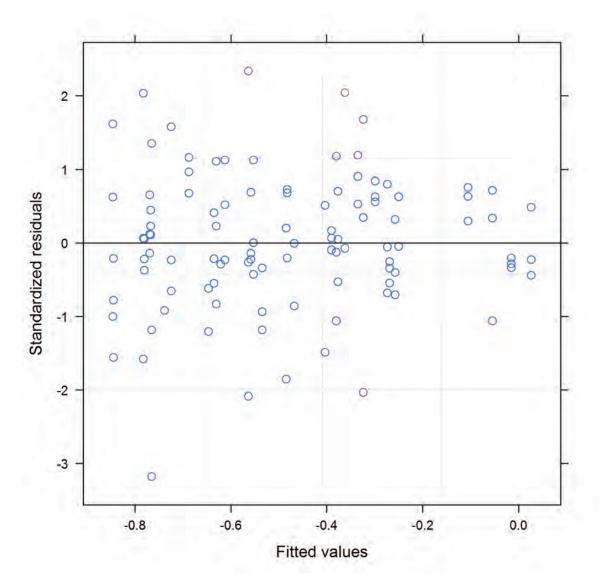
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.32	-0.71	0.05	not sig.
Nanuq	-0.47	-0.86	-0.09	sig.
Vulture	-0.37	-0.74	0.01	not sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Biomass at the Fay Bay site were not significantly (p = 0.1) different in the *after* period, according to the test on the BACI term (*site:period*). However, the ANOVA significance test and the results of the contrasts analysis return different conclusions. Differing conclusions like this case occur when the probabilities associated with the hypothesis test are close to alpha (0.05), and may indicate the evidence of a significant difference is not strong. The analysis should be interpreted with caution. Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	52.46	-17.23		
LME	10	18.57	0.71	35.88	2.09×10 ⁻⁹

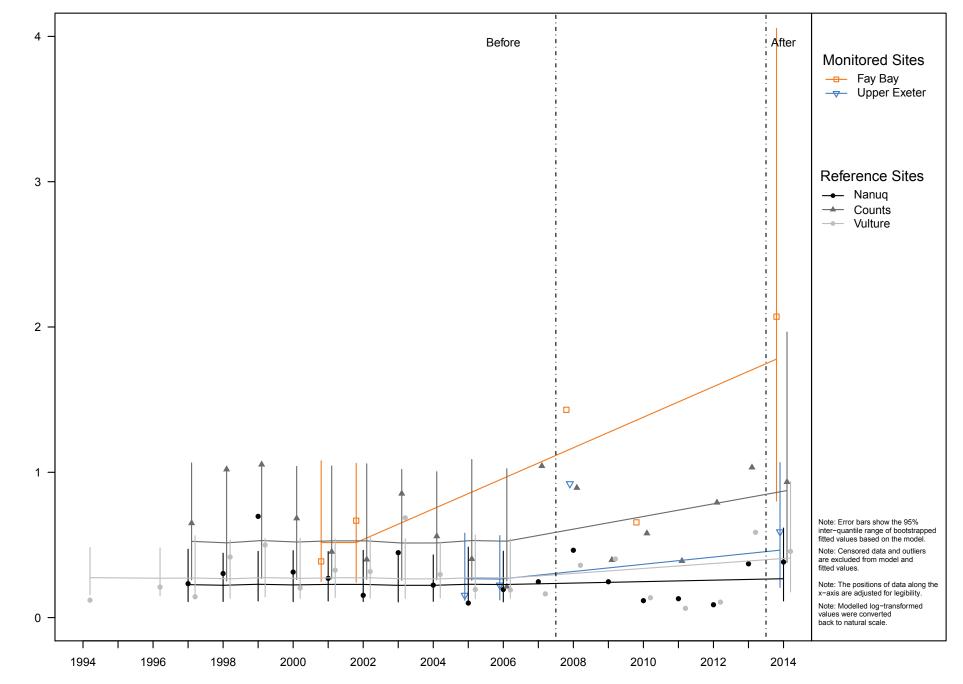
Conclusion:

The most appropriate model for biomass at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	91	72	<.0001
##	site	3	91	22	<.0001
##	period	1	11	1	0.40
##	site:period	3	91	0	0.77

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.03	-0.41	0.34	not sig.
Nanuq	-0.18	-0.56	0.21	not sig.
Vulture	-0.07	-0.44	0.3	not sig.

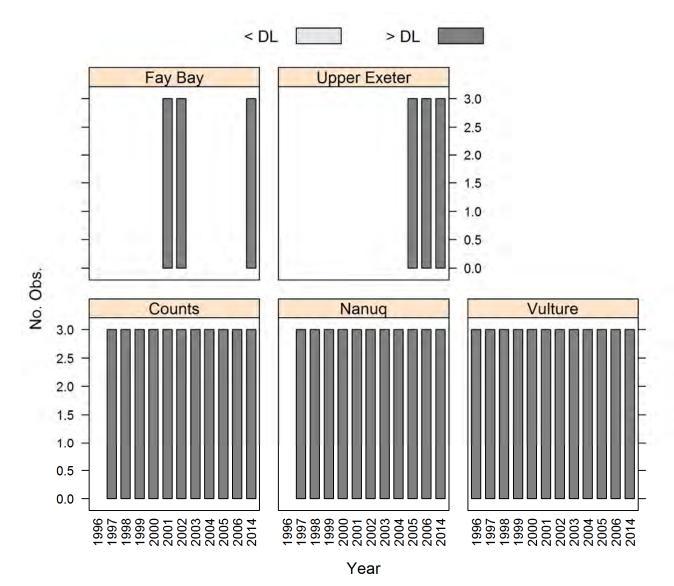

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Biomass at the Upper Exeter site were not significantly (p = 0.77) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.



Analysis of Lake Phytoplankton Density in Lakes of the Pigeon-Fay and Upper Exeter Watershed

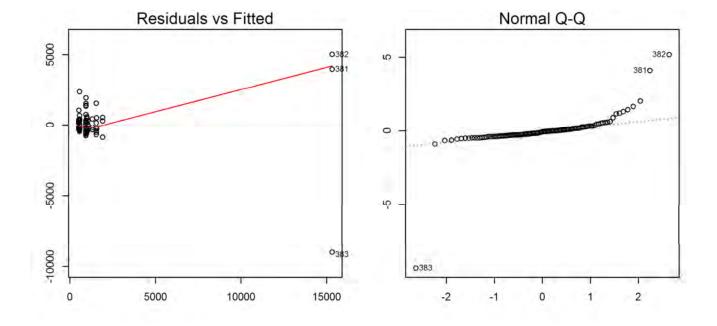
January 19, 2014

1 Censored Data

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (dark).

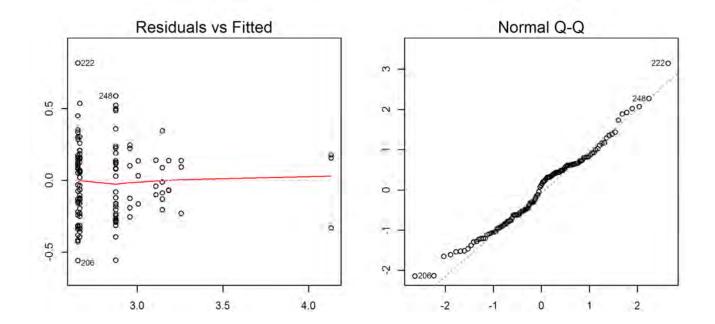
Observations at or below the analytical detection limit were considered censored. Data were excluded from the analysis if greater than 60% of observations from a site in a sampling year were censored. If more than 10% of observations from a site were censored, data were flagged to caution interpretation of results.

The following observations were excluded:


```
## No censored data were identified.
```

2 Outliers

The following is a summary of outliers identified (if any) in the analysis. If any outliers were identified, the values were excluded from all subsequent analyses.


No outliers were identified.

3 Initial Model Fit

Natural Scale Model

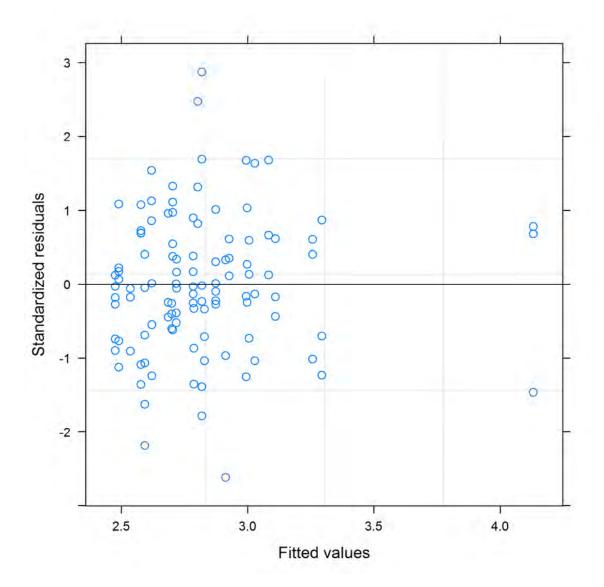
Log-10 Transformed Model

Model comparisons for log-transformed data:

Model	Residual SE	R ²	Adjusted R ²
Natural	1184.19	0.8	0.79
Log-10	0.26	0.54	0.5

Based on the summary statistics and examination of the residuals, the log-10 transformed data were selected for analysis.

4. Before-After Control-Impact Linear Modeling


4.1 Fay Bay Monitoring Location

Likelihood ratio test for model selection for the Fay Bay statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	55.15	-18.58		
LME	10	38.65	-9.33	18.5	1.710^{-5}

Conclusion:

The most appropriate model for Density at the Fay Bay monitoring site was the LME with a year term for interannual variation (p < 0.001).

Plot of Standardized Residuals and Fitted Values for Fay Bay Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	93	3199	<.0001
##	site	3	93	22	<.0001
##	period	1	10	9	0.0135
##	<pre>site:period</pre>	3	93	4	0.0065

Computing bootstrap confidence intervals ...

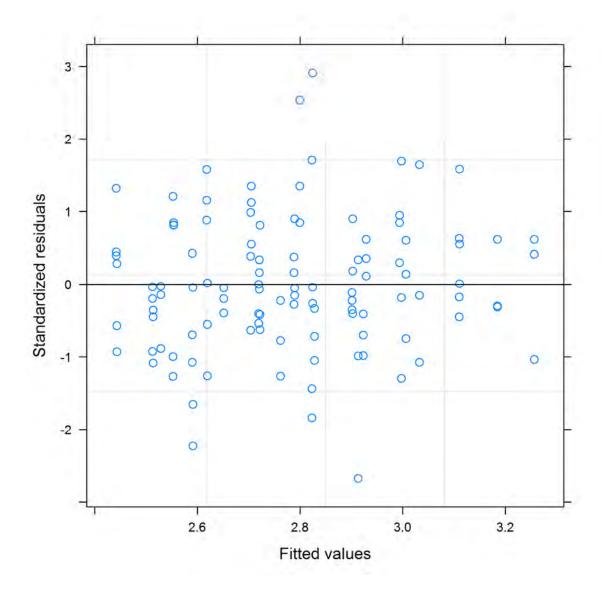
Summary of BACI contrasts for changes between the *before* and *after* in Fay Bay by reference site, with 95% confidence intervals:

Fay Bay vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	-0.66	-1.08	-0.26	sig.
Nanuq	-0.7	-1.13	-0.29	sig.
Vulture	-0.6	-1.03	-0.19	sig.

A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Density at the Fay Bay site were significantly (p = 0.01) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.


4.2 Upper Exeter Monitoring Location

Likelihood ratio test for model selection for the Upper Exeter statistical model:

Model	D.F.	AIC	log(Like.)	L. Ratio	р
GLS	9	53.87	-17.94		
LME	10	35.71	-7.86	20.16	7.1310^{-6}

Conclusion:

The most appropriate model for Density at the Upper Exeter monitoring site was the LME with a year term for interannual variation (p < 0.001).

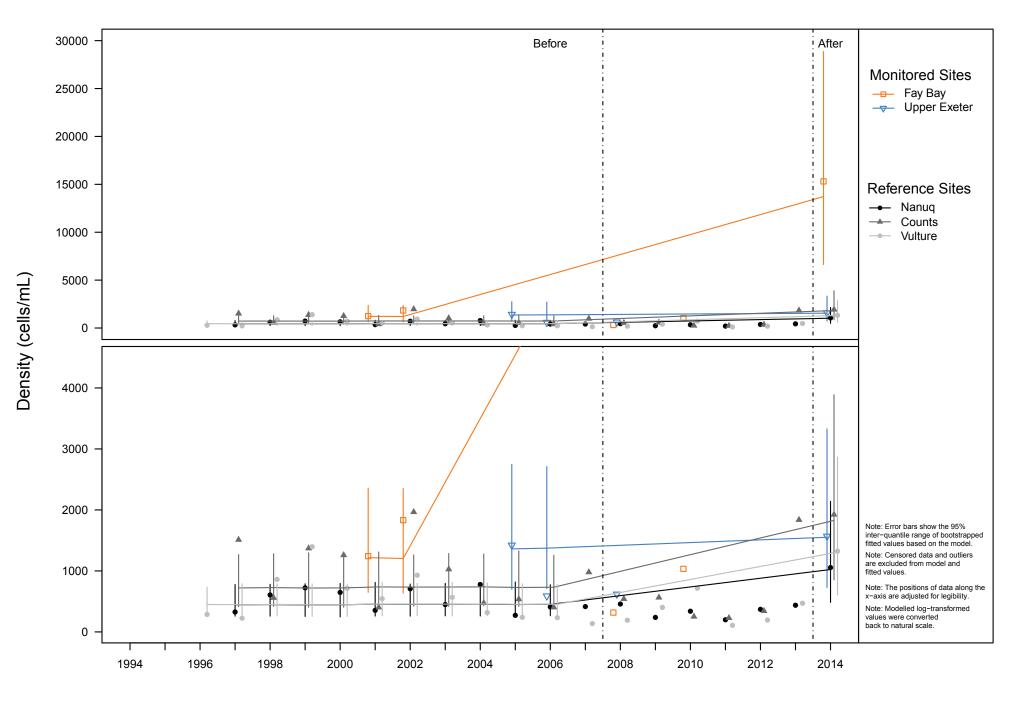
Plot of Standardized Residuals and Fitted Values for Upper Exeter Model.

##		numDF	denDF	F-value	p-value
##	(Intercept)	1	93	2894	<.0001
##	site	3	93	11	<.0001
##	period	1	10	3	0.095
##	<pre>site:period</pre>	3	93	1	0.260

Computing bootstrap confidence intervals ...

Summary of BACI contrasts for changes between the *before* and *after* in Upper Exeter by reference site, with 95% confidence intervals:

Upper Exeter vs:	Estimate	Lower C.I.	Upper C.I.	Significance
Counts	0.34	-0.06	0.74	not sig.
Nanuq	0.3	-0.12	0.72	not sig.
Vulture	0.41	-0.01	0.82	not sig.


A BACI contrast is identified as *significant* if the confidence interval does not include 0.

Conclusion:

Density at the Upper Exeter site were not significantly (p = 0.26) different in the *after* period, according to the test on the BACI term (*site:period*). Censoring was not likely an issue contributing a bias to the statistical analyses because the percentage of observations below analytical detection was less than 10%.

Model Summary

The overall performance of the model is compared against all of the observations in the Pigeon dataset in the plot below. Mean observations for each site for each year are shown as symbols, with the range of bootstrapped fitted values from the BACI analysis shown as lines and error bars.

