## **Ekati Diamond Mine** 2013 Aquatic Effects Monitoring Program Part 3 – Statistical Report





# EKATI DIAMOND MINE 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

March 2014 Project #0211136-0001

Citation:

ERM Rescan. 2014. Ekati Diamond Mine: 2013 Aquatic Effects Monitoring Program Part 3 - Statistical Report. Prepared for Dominion Diamond Ekati Corporation by ERM Rescan: Yellowknife, Northwest Territories.

Prepared for:



Dominion Diamond Ekati Corporation

Prepared by:



ERM Rescan Yellowknife, Northwest Territories

# **Table of Contents**



## **Table of Contents**

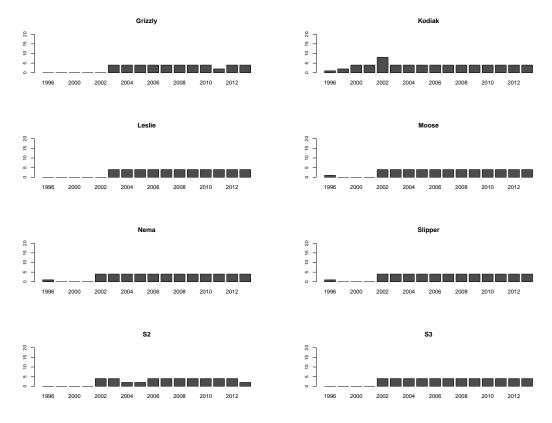
| Table | e of Cor | ntents   |          |                               | i     |
|-------|----------|----------|----------|-------------------------------|-------|
| 1.    | Koala    | a Waters | shed and | Lac de Gras                   | 1-1   |
|       | 1.1      | Water    | Quality  |                               | 1-1   |
|       |          | 1.1.1    | General  | Physical Variables and Anions | 1-1   |
|       |          |          | 1.1.1.1  | рН                            | 1-1   |
|       |          |          | 1.1.1.2  | Total Alkalinity              | 1-19  |
|       |          |          | 1.1.1.3  | Water Hardness                | 1-37  |
|       |          |          | 1.1.1.4  | Chloride                      | 1-55  |
|       |          |          | 1.1.1.5  | Sulphate                      | 1-70  |
|       |          |          | 1.1.1.6  | Potassium                     | 1-88  |
|       |          | 1.1.2    | Nutrient | s                             | 1-106 |
|       |          |          | 1.1.2.1  | Total Ammonia-N               | 1-106 |
|       |          |          | 1.1.2.2  | Nitrite-N                     | 1-123 |
|       |          |          | 1.1.2.3  | Nitrate-N                     | 1-138 |
|       |          |          | 1.1.2.4  | Total Phosphate-P             | 1-154 |
|       |          |          | 1.1.2.5  | Total Organic Carbon          | 1-172 |
|       |          | 1.1.3    | Metals 1 | I-190                         |       |
|       |          |          | 1.1.3.1  | Total Antimony                | 1-190 |
|       |          |          | 1.1.3.2  | Total Arsenic                 | 1-206 |
|       |          |          | 1.1.3.3  | Total Barium                  | 1-224 |
|       |          |          | 1.1.3.4  | Total Boron                   | 1-242 |
|       |          |          | 1.1.3.5  | Total Cadmium                 | 1-260 |
|       |          |          | 1.1.3.6  | Total Molybdenum              | 1-269 |
|       |          |          | 1.1.3.7  | Total Nickel                  | 1-284 |
|       |          |          | 1.1.3.8  | Total Selenium                | 1-302 |
|       |          |          | 1.1.3.9  | Total Strontium               | 1-317 |
|       |          |          | 1.1.3.10 | Total Uranium                 | 1-335 |
|       |          |          | 1.1.3.11 | Total Vanadium                | 1-353 |

|    | 1.2  | Phyto       | plankton |                               | 1-368 |
|----|------|-------------|----------|-------------------------------|-------|
|    |      | 1.2.1       | Chlorop  | hyll- <i>a</i>                | 1-368 |
|    |      | 1.2.2       | Density  |                               | 1-374 |
|    | 1.3  | Zooplankton |          |                               | 1-380 |
|    |      | 1.3.1       | Biomas   | 8                             | 1-380 |
|    |      | 1.3.2       | Density  |                               | 1-386 |
|    | 1.4  | Lake I      | Benthos  |                               | 1-392 |
|    |      | 1.4.1       | Density  |                               | 1-392 |
|    | 1.5  | Strear      | m Bentho | 3                             | 1-398 |
|    |      | 1.5.1       | Density  |                               | 1-398 |
| 2. | King | -Cujo W     | 2-1      |                               |       |
|    | 2.1  | Water       | Quality  |                               | 2-1   |
|    |      | 2.1.1       | General  | Physical Variables and Anions | 2-1   |
|    |      |             | 2.1.1.1  | рН                            | 2-1   |
|    |      |             | 2.1.1.2  | Total Alkalinity              | 2-18  |
|    |      |             | 2.1.1.3  | Water Hardness                | 2-35  |
|    |      |             | 2.1.1.4  | Chloride                      | 2-52  |
|    |      |             | 2.1.1.5  | Sulphate                      | 2-64  |
|    |      |             | 2.1.1.6  | Potassium                     | 2-81  |
|    |      | 2.1.2       | Nutrient | S                             | 2-99  |
|    |      |             | 2.1.2.1  | Total Ammonia-N               | 2-99  |
|    |      |             | 2.1.2.2  | Nitrite-N                     | 2-114 |
|    |      |             | 2.1.2.3  | Nitrate-N                     | 2-120 |
|    |      |             | 2.1.2.4  | Total Phosphate-P             | 2-134 |
|    |      |             | 2.1.2.5  | Total Organic Carbon          | 2-149 |
|    |      | 2.1.3       | Metals 2 | 2-164                         |       |
|    |      |             | 2.1.3.1  | Total Antimony                | 2-164 |
|    |      |             | 2.1.3.2  | Total Arsenic                 | 2-174 |
|    |      |             | 2.1.3.3  | Total Barium                  | 2-190 |
|    |      |             | 2.1.3.4  | Total Boron                   | 2-206 |
|    |      |             | 2.1.3.5  | Total Cadmium                 | 2-220 |

|     |        | 2.1.3.6   | Total Copper     | 2-226 |
|-----|--------|-----------|------------------|-------|
|     |        | 2.1.3.7   | Total Molybdenum | 2-242 |
|     |        | 2.1.3.8   | Total Nickel     | 2-255 |
|     |        | 2.1.3.9   | Total Selenium   | 2-272 |
|     |        | 2.1.3.10  | Total Strontium  | 2-284 |
|     |        | 2.1.3.11  | Total Uranium    | 2-301 |
|     |        | 2.1.3.12  | Total Vanadium   | 2-317 |
| 2.2 | Phytop | blankton  |                  | 2-327 |
|     | 2.2.1  | Chloroph  | nyll-a           | 2-327 |
|     | 2.2.2  | Density   |                  | 2-333 |
| 2.3 | Zoopla | ankton    |                  | 2-339 |
|     | 2.3.1  | Biomass   |                  | 2-339 |
|     | 2.3.2  | Density   |                  | 2-344 |
| 2.4 | Lake E | Benthos   |                  | 2-349 |
|     | 2.4.1  | Density   |                  | 2-349 |
| 2.5 | Stream | n Benthos |                  | 2-354 |
|     | 2.5.1  | Density   |                  | 2-354 |

# 1. Koala Watershed and Lac de Gras




# Analysis of April pH in Lakes of the Koala Watershed and Lac de Gras

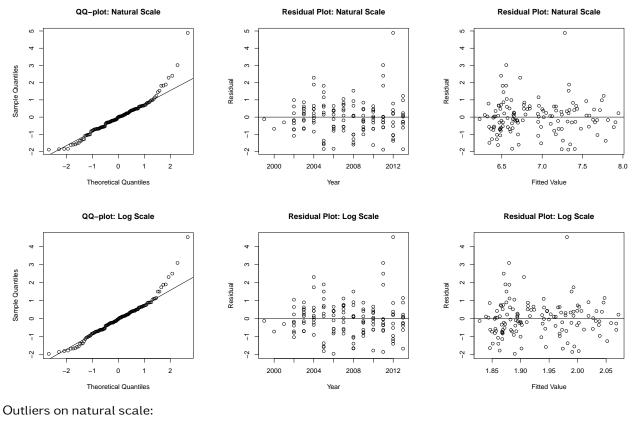
January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



| -   | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 79  | Kodiak  | 2012 | 8.30   | 7.28   | 4.89        |
| 238 | Vulture | 2011 | 7.18   | 6.56   | 3.02        |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 79  | Kodiak  | 2012 | 8.30   | 1.98   | 4.53        |
| 238 | Vulture | 2011 | 7.18   | 1.88   | 3.10        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 7.22E-113     | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2654.44    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

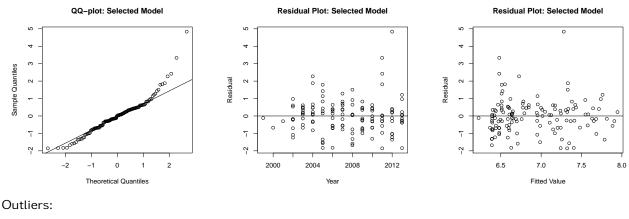
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.63       | 4.00 | 0.96    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.009        | 0.000        | 0.991        | Ref. Model 3 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC reveals that the reference lakes are best modeled with a common slope and intercept, contrasts suggest reference lakes share only a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



| -   | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 79  | Kodiak  | 2012 | 8.30   | 7.28   | 4.84        |
| 238 | Vulture | 2011 | 7.18   | 6.48   | 3.34        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

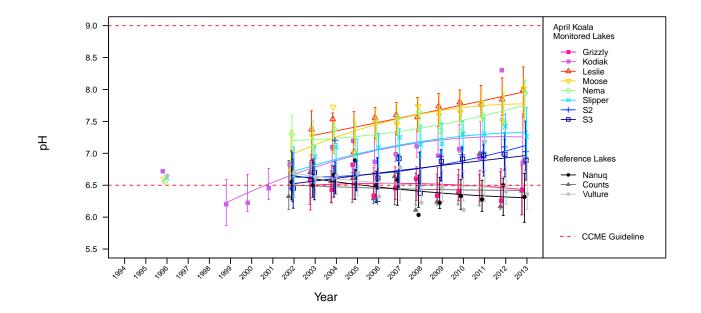
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.33        | 2.00 | 0.85    |
| Kodiak  | 9.41        | 2.00 | 0.01    |
| Leslie  | 8.44        | 2.00 | 0.01    |
| Moose   | 11.83       | 2.00 | 0.00    |
| Nema    | 6.35        | 2.00 | 0.04    |
| Slipper | 7.83        | 2.00 | 0.02    |
| S2      | 5.46        | 2.00 | 0.07    |
| S3      | 4.64        | 2.00 | 0.10    |

• Conclusions:

All monitored lakes except Grizzly, S2, and S3 show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0730    |
| Monitored Lake    | Grizzly         | 0.0210    |
| Monitored Lake    | Kodiak          | 0.5010    |
| Monitored Lake    | Leslie          | 0.6970    |
| Monitored Lake    | Moose           | 0.5710    |
| Monitored Lake    | Nema            | 0.5190    |
| Monitored Lake    | S2              | 0.3210    |
| Monitored Lake    | S3              | 0.4850    |
| Monitored Lake    | Slipper         | 0.6990    |

#### • Conclusions:

Model fit for S2 and S3 is weak. Model fit for the reference lakes and Grizzly Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

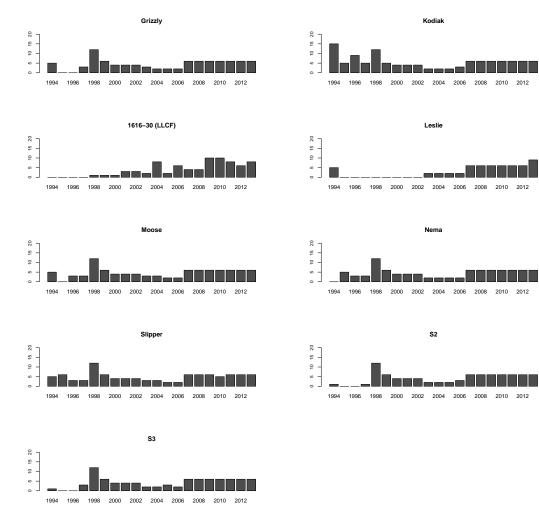
The estimated minimum detectable difference in mean pH for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 6.43E+00 | 6.44E+00 | 2.01E-01 | 6.04E+00 | 6.83E+00 | 5.87E-01       |
| Kodiak  | 6.85E+00 | 7.26E+00 | 1.84E-01 | 6.90E+00 | 7.62E+00 | 5.37E-01       |
| Leslie  | 7.99E+00 | 7.96E+00 | 2.01E-01 | 7.57E+00 | 8.35E+00 | 5.87E-01       |
| Moose   | 8.02E+00 | 7.78E+00 | 1.96E-01 | 7.39E+00 | 8.16E+00 | 5.74E-01       |
| Nema    | 7.94E+00 | 7.75E+00 | 1.96E-01 | 7.37E+00 | 8.14E+00 | 5.74E-01       |
| Slipper | 7.26E+00 | 7.33E+00 | 1.96E-01 | 6.94E+00 | 7.71E+00 | 5.74E-01       |
| S2      | 7.03E+00 | 7.12E+00 | 1.96E-01 | 6.74E+00 | 7.50E+00 | 5.74E-01       |
| S3      | 6.89E+00 | 6.97E+00 | 1.96E-01 | 6.58E+00 | 7.35E+00 | 5.74E-01       |
| Nanuq   | 6.31E+00 | 6.30E+00 | 1.96E-01 | 5.92E+00 | 6.69E+00 |                |
| Counts  | 6.41E+00 | 6.42E+00 | 1.96E-01 | 6.03E+00 | 6.80E+00 |                |
| Vulture | 6.36E+00 | 6.50E+00 | 1.96E-01 | 6.12E+00 | 6.89E+00 |                |

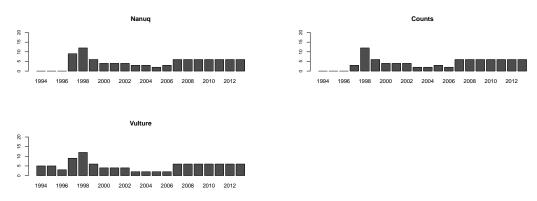
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*  |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|----------------------------------------------|
| pН        | April | Koala     | Lake          | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regressior | #2 shared<br>slopes | 6.5/9            | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August pH in Lakes of the Koala Watershed and Lac de Gras

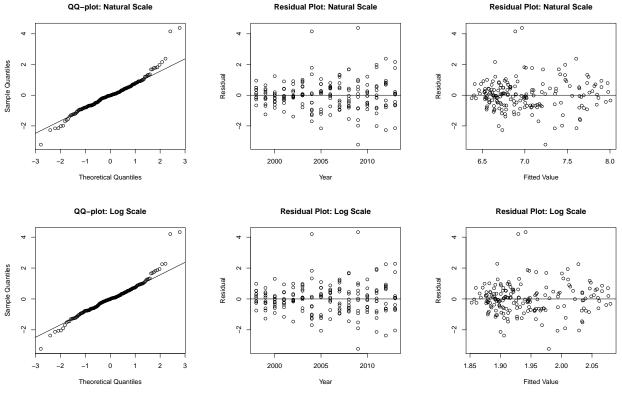
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | Kodiak  | 2009 | 7.51   | 6.97   | 4.39        |
| 171 | S2      | 2004 | 7.40   | 6.89   | 4.16        |
| 216 | Slipper | 2009 | 6.84   | 7.24   | -3.22       |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | Kodiak  | 2009 | 7.51   | 1.94   | 4.33        |
| 171 | S2      | 2004 | 7.40   | 1.93   | 4.20        |
| 216 | Slipper | 2009 | 6.84   | 1.98   | -3.23       |

AIC weights and model comparison:

|   |              | Un-transformed Model | Log-transformed Model | Best Model            |
|---|--------------|----------------------|-----------------------|-----------------------|
| A | kaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

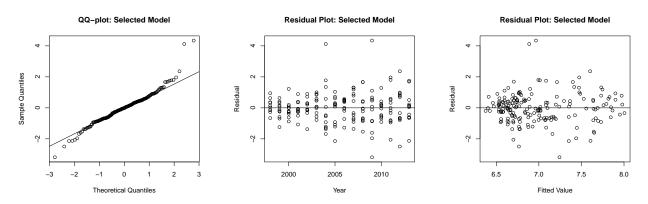
• Results:

| Chi-squared | DF   | P-value |  |
|-------------|------|---------|--|
| 3.34        | 6.00 | 0.76    |  |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.013        | 0.000        | 0.987        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | Kodiak  | 2009 | 7.51   | 6.97   | 4.34        |
| 171 | S2      | 2004 | 7.40   | 6.89   | 4.12        |
| 216 | Slipper | 2009 | 6.84   | 7.24   | -3.19       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

## 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 10.2214     | 3  | 0.0168  |
| Kodiak         | 100.7790    | 3  | 0.0000  |
| 1616-30 (LLCF) | 147.9983    | 3  | 0.0000  |
| Leslie         | 545.2542    | 3  | 0.0000  |
| Moose          | 587.1466    | 3  | 0.0000  |
| Nema           | 352.8599    | 3  | 0.0000  |
| Slipper        | 203.0259    | 3  | 0.0000  |
| S2             | 53.8350     | 3  | 0.0000  |
| S3             | 27.0433     | 3  | 0.0000  |
|                |             |    |         |

• Conclusions:

All monitored lakes show significant deviations from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

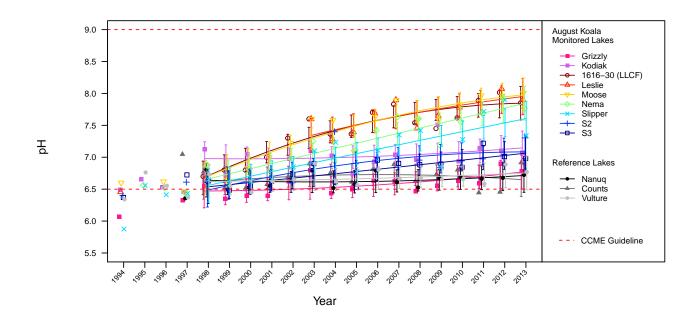
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 3.8028      | 2  | 0.1494  |
| Kodiak         | 0.8584      | 2  | 0.6510  |
| 1616-30 (LLCF) | 108.5130    | 2  | 0.0000  |
| Leslie         | 17.7650     | 2  | 0.0001  |
| Moose          | 109.7457    | 2  | 0.0000  |
| Nema           | 89.2983     | 2  | 0.0000  |
| Slipper        | 67.1831     | 2  | 0.0000  |
| S2             | 21.2636     | 2  | 0.0000  |
| S3             | 14.4155     | 2  | 0.0007  |

• Conclusions:

When allowing for differences in intercept, all monitored lakes except Grizzly and Kodiak lakes show significant deviations from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0400    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.8530    |
| Monitored Lake    | Grizzly         | 0.3920    |
| Monitored Lake    | Kodiak          | 0.1020    |
| Monitored Lake    | Leslie          | 0.5950    |
| Monitored Lake    | Moose           | 0.8400    |
| Monitored Lake    | Nema            | 0.8310    |
| Monitored Lake    | S2              | 0.5350    |
| Monitored Lake    | S3              | 0.6450    |
| Monitored Lake    | Slipper         | 0.6830    |
|                   |                 |           |

• Conclusions:

Model fit for reference lakes and Grizzly Lake is weak. Model fit for Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

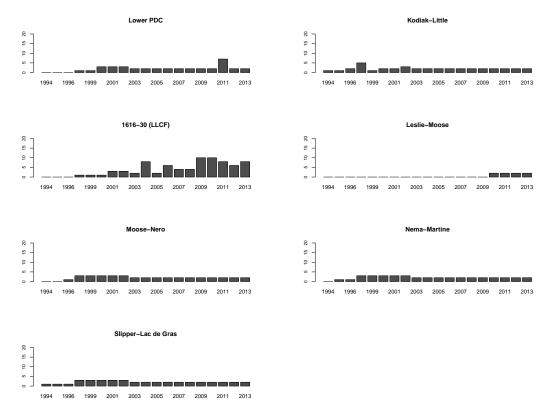
The estimated minimum detectable difference in mean pH for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 6.78E+00 | 6.77E+00 | 1.34E-01 | 6.50E+00 | 7.03E+00 | 3.93E-01       |
| Kodiak         | 7.07E+00 | 7.15E+00 | 1.34E-01 | 6.88E+00 | 7.41E+00 | 3.93E-01       |
| Leslie         | 7.90E+00 | 7.95E+00 | 1.45E-01 | 7.67E+00 | 8.24E+00 | 4.24E-01       |
| 1616-30 (LLCF) | 7.85E+00 | 7.85E+00 | 1.34E-01 | 7.58E+00 | 8.11E+00 | 3.93E-01       |
| Moose          | 8.01E+00 | 7.98E+00 | 1.34E-01 | 7.72E+00 | 8.24E+00 | 3.93E-01       |
| Nema           | 7.77E+00 | 7.84E+00 | 1.34E-01 | 7.58E+00 | 8.11E+00 | 3.93E-01       |
| Slipper        | 7.34E+00 | 7.61E+00 | 1.34E-01 | 7.34E+00 | 7.87E+00 | 3.93E-01       |
| S2             | 7.30E+00 | 7.09E+00 | 1.34E-01 | 6.82E+00 | 7.35E+00 | 3.93E-01       |
| S3             | 6.98E+00 | 7.06E+00 | 1.34E-01 | 6.80E+00 | 7.33E+00 | 3.93E-01       |
| Nanuq          | 6.72E+00 | 6.71E+00 | 1.34E-01 | 6.45E+00 | 6.98E+00 |                |
| Counts         | 6.92E+00 | 6.65E+00 | 1.34E-01 | 6.39E+00 | 6.91E+00 |                |
| Vulture        | 6.77E+00 | 6.75E+00 | 1.34E-01 | 6.49E+00 | 7.02E+00 |                |

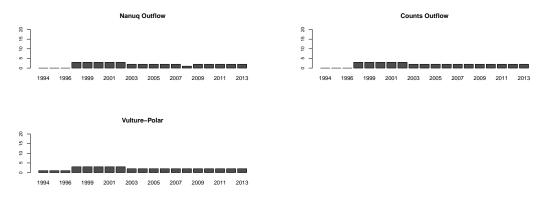
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup>                               |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------|
| рН        | August | Koala     | Lake          | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | 6.5/9            | Grizzly<br>Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August pH in Koala Watershed Streams

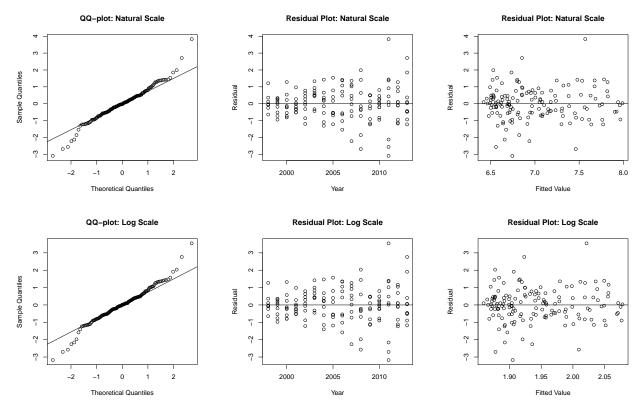
#### January 20, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|     | Lake                | Year | Impute | Fitted | Std. Resid. |
|-----|---------------------|------|--------|--------|-------------|
| 38  | Counts Outflow      | 2011 | 6.28   | 6.74   | -3.09       |
| 178 | Slipper-Lac de Gras | 2011 | 8.15   | 7.57   | 3.83        |

Outliers on log scale:

|     | Lake                | Year | Impute | Fitted | Std. Resid. |
|-----|---------------------|------|--------|--------|-------------|
| 38  | Counts Outflow      | 2011 | 6.28   | 1.91   | -3.17       |
| 178 | Slipper-Lac de Gras | 2011 | 8.15   | 2.02   | 3.55        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

## 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 19.81       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |  |  |
|-------------|------|---------|--|--|
| 19.36       | 4.00 | 0.00    |  |  |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.040        | 0.000        | 0.960        | Ref. Model 3 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled with a common slope and intercept, contrasts suggest that slopes and intercepts differ among reference streams. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 5.9782      | 2  | 0.0503  |
| Kodiak-Little       | 3.7611      | 2  | 0.1525  |
| Leslie-Moose        | 0.7933      | 2  | 0.6726  |
| 1616-30 (LLCF)      | 71.9694     | 2  | 0.0000  |
| Moose-Nero          | 48.5790     | 2  | 0.0000  |
| Nema-Martine        | 49.7481     | 2  | 0.0000  |
| Slipper-Lac de Gras | 48.9924     | 2  | 0.0000  |
|                     |             |    |         |

#### • Conclusions:

Lower PDC, 1616-30 (LLCF), Moose-Nero, Nema-Martine, and Slipper-Lac de Gras show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each remaining monitored stream compared to the slope of each reference stream (reference model 1b).

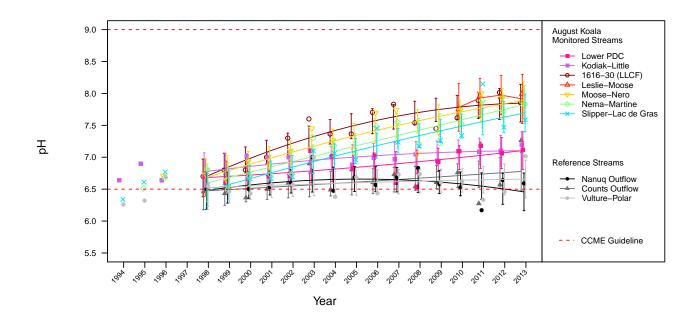
• Results:

|                                       | Chi-squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
|                                       |             |    |         |
| Lower PDC-vs-Nanuq Outflow            | 36.0380     | 3  | 0.0000  |
| Lower PDC-vs-Counts Outflow           | 21.8891     | 3  | 0.0001  |
| Lower PDC-vs-Vulture-Polar            | 27.8250     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 21.3230     | 3  | 0.0001  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 11.7877     | 3  | 0.0081  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 15.3728     | 3  | 0.0015  |
| Moose-Nero-vs-Nanuq Outflow           | 248.6353    | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 208.7290    | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 229.8579    | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 190.1085    | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 151.3557    | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 171.0901    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 150.4199    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 114.8538    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 133.0685    | 3  | 0.0000  |

• Conclusions:

All remaining monitored streams show significant deviation from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Reference Stream | Counts Outflow      | 0.1680    |
| Reference Stream | Nanuq Outflow       | 0.1410    |
| Reference Stream | Vulture-Polar       | 0.0470    |
| Monitored Stream | 1616-30 (LLCF)      | 0.8530    |
| Monitored Stream | Kodiak-Little       | 0.5130    |
| Monitored Stream | Leslie-Moose        | 0.7090    |
| Monitored Stream | Lower PDC           | 0.3740    |
| Monitored Stream | Moose-Nero          | 0.7620    |
| Monitored Stream | Nema-Martine        | 0.8170    |
| Monitored Stream | Slipper-Lac de Gras | 0.7840    |

Conclusions:

Model fit for Lower PDC is weak. Model fit for Counts Outflow, Nanuq Outflow, and Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

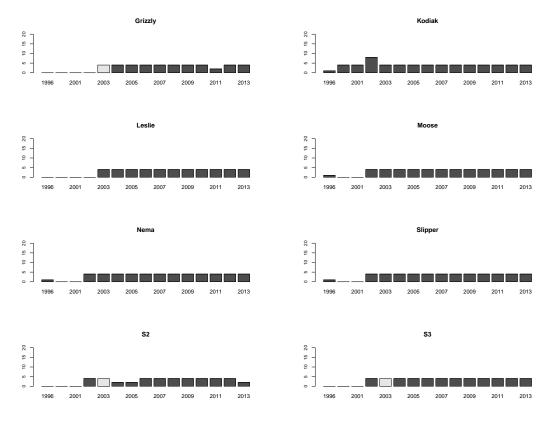
The estimated minimum detectable difference in mean pH for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 7.12E+00 | 7.10E+00 | 1.51E-01 | 6.81E+00 | 7.40E+00 | 4.41E-01       |
| Kodiak-Little       | 7.20E+00 | 7.10E+00 | 1.51E-01 | 6.81E+00 | 7.40E+00 | 4.41E-01       |
| Leslie-Moose        | 8.00E+00 | 7.91E+00 | 1.96E-01 | 7.53E+00 | 8.30E+00 | 5.74E-01       |
| 1616-30 (LLCF)      | 7.85E+00 | 7.85E+00 | 1.51E-01 | 7.55E+00 | 8.14E+00 | 4.41E-01       |
| Moose-Nero          | 7.82E+00 | 7.89E+00 | 1.51E-01 | 7.60E+00 | 8.19E+00 | 4.41E-01       |
| Nema-Martine        | 7.83E+00 | 7.83E+00 | 1.51E-01 | 7.53E+00 | 8.12E+00 | 4.41E-01       |
| Slipper-Lac de Gras | 7.58E+00 | 7.70E+00 | 1.51E-01 | 7.40E+00 | 7.99E+00 | 4.41E-01       |
| Nanuq Outflow       | 6.59E+00 | 6.46E+00 | 1.51E-01 | 6.16E+00 | 6.75E+00 |                |
| Counts Outflow      | 7.27E+00 | 6.78E+00 | 1.51E-01 | 6.48E+00 | 7.07E+00 |                |
| Vulture-Polar       | 7.02E+00 | 6.66E+00 | 1.51E-01 | 6.36E+00 | 6.95E+00 |                |

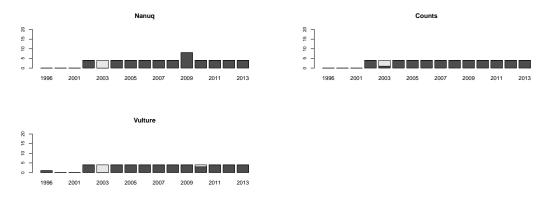
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                                         |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|
| pН        | August | Koala     | Stream        | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | 6.5/9            | Lower PDC<br>1616-30<br>(LLCF)<br>Moose-<br>Nero,<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


## Analysis of April Total Alkalinity in Lakes of the Koala Watershed and Lac de Gras

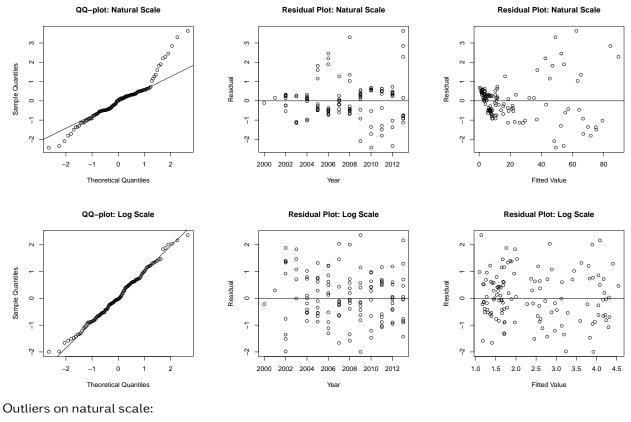
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 64.35  | 49.06  | 3.29        |
| 160 | Nema | 2013 | 79.30  | 62.46  | 3.63        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 2.94E-200     | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 798.28     | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

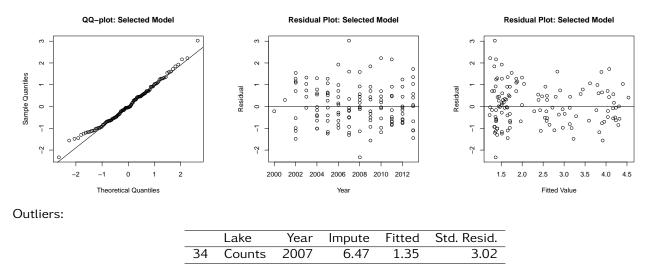
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.21       | 4.00 | 0.70    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

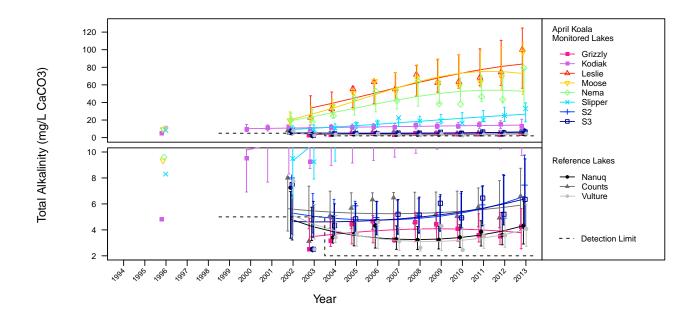
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 2.93        | 2.00 | 0.23    |
| Kodiak  | 3.13        | 2.00 | 0.21    |
| Leslie  | 17.42       | 2.00 | 0.00    |
| Moose   | 34.46       | 2.00 | 0.00    |
| Nema    | 22.86       | 2.00 | 0.00    |
| Slipper | 20.50       | 2.00 | 0.00    |
| S2      | 1.43        | 2.00 | 0.49    |
| S3      | 2.84        | 2.00 | 0.24    |

• Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0950    |
| Monitored Lake    | Grizzly         | 0.1200    |
| Monitored Lake    | Kodiak          | 0.6170    |
| Monitored Lake    | Leslie          | 0.7230    |
| Monitored Lake    | Moose           | 0.8540    |
| Monitored Lake    | Nema            | 0.6260    |
| Monitored Lake    | S2              | 0.1290    |
| Monitored Lake    | S3              | 0.1660    |
| Monitored Lake    | Slipper         | 0.8220    |

#### • Conclusions:

Model fit for reference lakes, Grizzly, S2, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

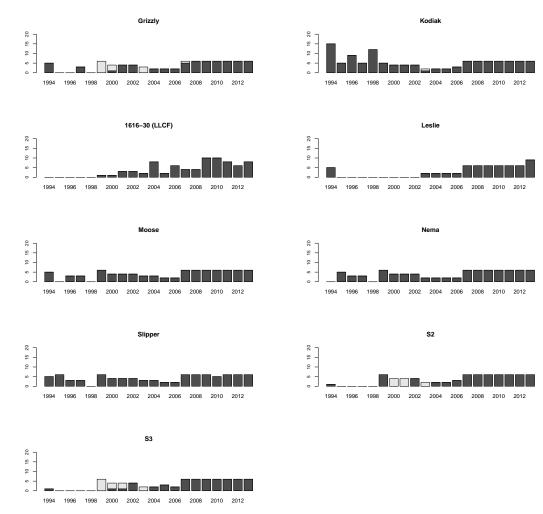
The estimated minimum detectable difference in mean total alkalinity for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 4.22E+00 | 3.79E+00 | 7.70E-01 | 2.54E+00 | 5.64E+00 | 2.25E+00       |
| Kodiak  | 1.32E+01 | 1.43E+01 | 2.78E+00 | 9.72E+00 | 2.09E+01 | 8.15E+00       |
| Leslie  | 1.00E+02 | 8.37E+01 | 1.70E+01 | 5.62E+01 | 1.25E+02 | 4.98E+01       |
| Moose   | 9.75E+01 | 7.29E+01 | 1.47E+01 | 4.92E+01 | 1.08E+02 | 4.29E+01       |
| Nema    | 7.93E+01 | 5.27E+01 | 1.06E+01 | 3.56E+01 | 7.82E+01 | 3.10E+01       |
| Slipper | 3.29E+01 | 2.67E+01 | 5.36E+00 | 1.80E+01 | 3.95E+01 | 1.57E+01       |
| S2      | 7.45E+00 | 6.58E+00 | 1.32E+00 | 4.44E+00 | 9.76E+00 | 3.87E+00       |
| S3      | 6.35E+00 | 6.39E+00 | 1.28E+00 | 4.31E+00 | 9.47E+00 | 3.76E+00       |
| Nanuq   | 4.33E+00 | 4.31E+00 | 8.67E-01 | 2.91E+00 | 6.40E+00 |                |
| Counts  | 6.60E+00 | 5.90E+00 | 1.19E+00 | 3.98E+00 | 8.75E+00 |                |
| Vulture | 4.08E+00 | 4.02E+00 | 8.09E-01 | 2.71E+00 | 5.97E+00 |                |
|         |          |          |          |          |          |                |

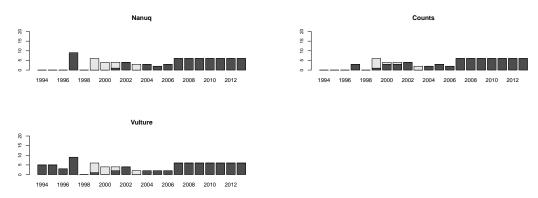
## 8 Final Summary Table

| Parameter  | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Alkalinity | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressioi | #2 shared<br>slopes | NA               | Leslie<br>Moose<br>Nema<br>Slipper          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Total Alkalinity in Lakes of the Koala Watershed and Lac de Gras

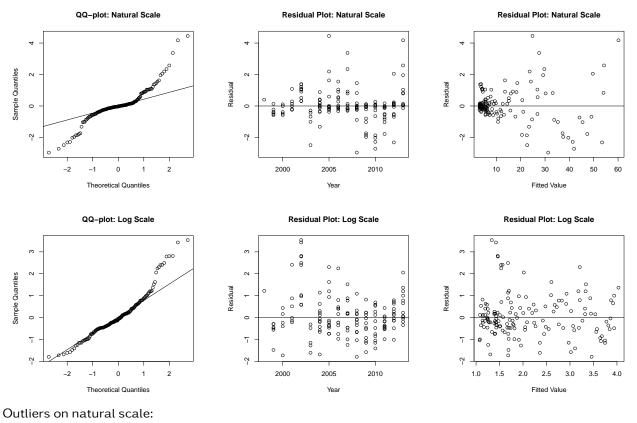
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

10-60% of data in Counts, Nanuq, Vulture, Grizzly, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

#### 2 **Initial Model Fit**



|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 92  | Leslie | 2005 | 36.80  | 24.86  | 4.45        |
| 100 | Leslie | 2013 | 71.34  | 60.16  | 4.18        |

2007

36.62

27.59

114

Moose

3.37

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 129 | Nanuq   | 2002 | 7.00   | 1.33   | 3.54        |
| 229 | Vulture | 2002 | 7.50   | 1.42   | 3.43        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

The natural and log-transformed models show dependence on year. The log-transformed model best meets the assumptions of normality and equal variance. AIC also reveals that the data is best modeled after log transformation. Proceeding with analysis using log transformed model. Results of statistical tests should be interpreted with caution.

#### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 12.98       | 6.00 | 0.04    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

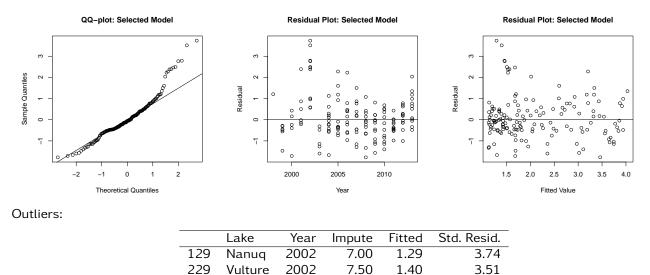
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.95        | 4.00 | 0.57    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.070        | 0.875        | 0.056        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

The model shows dependence on year. Results of statistical tests should be interpreted with caution.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

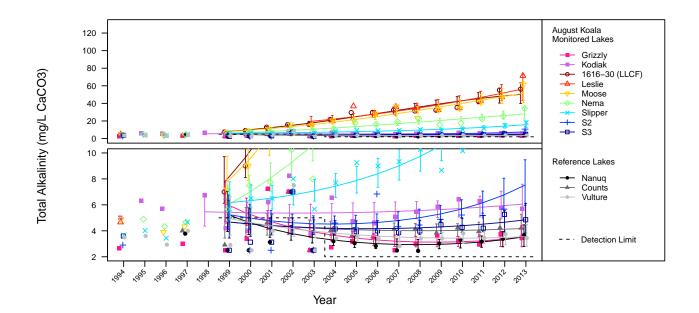
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 2.7638      | 2  | 0.2511  |
| Kodiak         | 6.6359      | 2  | 0.0362  |
| 1616-30 (LLCF) | 154.4577    | 2  | 0.0000  |
| Leslie         | 35.5200     | 2  | 0.0000  |
| Moose          | 153.4617    | 2  | 0.0000  |
| Nema           | 108.3328    | 2  | 0.0000  |
| Slipper        | 47.1485     | 2  | 0.0000  |
| S2             | 12.7049     | 2  | 0.0017  |
| S3             | 2.4683      | 2  | 0.2911  |

• Conclusions:

All monitored lakes except Grizzly Lake and S3 show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.2510    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.9620    |
| Monitored Lake    | Grizzly         | 0.2900    |
| Monitored Lake    | Kodiak          | 0.0350    |
| Monitored Lake    | Leslie          | 0.7700    |
| Monitored Lake    | Moose           | 0.9450    |
| Monitored Lake    | Nema            | 0.8900    |
| Monitored Lake    | S2              | 0.2220    |
| Monitored Lake    | S3              | 0.1400    |
| Monitored Lake    | Slipper         | 0.8640    |
|                   |                 |           |

• Conclusions:

Model fit for reference lakes, Grizzly Lake, S2, and S3 is weak Model fit for Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

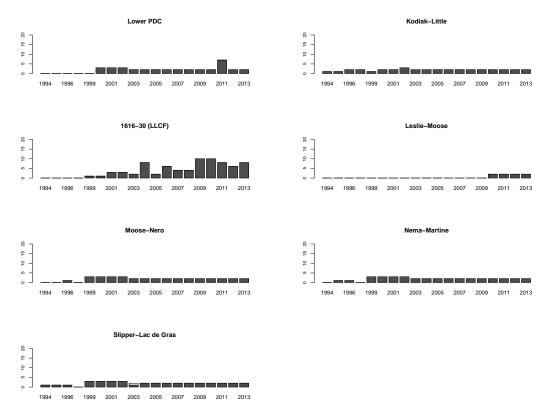
The estimated minimum detectable difference in mean total alkalinity for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 3.47E+00 | 3.50E+00 | 4.16E-01 | 2.77E+00 | 4.42E+00 | 1.22E+00       |
| Kodiak         | 5.70E+00 | 6.05E+00 | 6.97E-01 | 4.83E+00 | 7.59E+00 | 2.04E+00       |
| Leslie         | 7.13E+01 | 5.64E+01 | 7.42E+00 | 4.35E+01 | 7.30E+01 | 2.17E+01       |
| 1616-30 (LLCF) | 5.62E+01 | 5.03E+01 | 5.92E+00 | 3.99E+01 | 6.33E+01 | 1.73E+01       |
| Moose          | 6.11E+01 | 5.15E+01 | 6.06E+00 | 4.08E+01 | 6.48E+01 | 1.77E+01       |
| Nema           | 3.45E+01 | 2.80E+01 | 3.30E+00 | 2.22E+01 | 3.53E+01 | 9.66E+00       |
| Slipper        | 1.81E+01 | 1.58E+01 | 1.86E+00 | 1.26E+01 | 1.99E+01 | 5.45E+00       |
| S2             | 1.07E+01 | 7.51E+00 | 8.89E-01 | 5.96E+00 | 9.47E+00 | 2.60E+00       |
| S3             | 4.85E+00 | 4.84E+00 | 5.78E-01 | 3.83E+00 | 6.12E+00 | 1.69E+00       |
| Nanuq          | 3.67E+00 | 3.53E+00 | 4.21E-01 | 2.80E+00 | 4.46E+00 |                |
| Counts         | 4.22E+00 | 4.17E+00 | 4.99E-01 | 3.30E+00 | 5.27E+00 |                |
| Vulture        | 3.43E+00 | 3.55E+00 | 4.23E-01 | 2.81E+00 | 4.48E+00 |                |

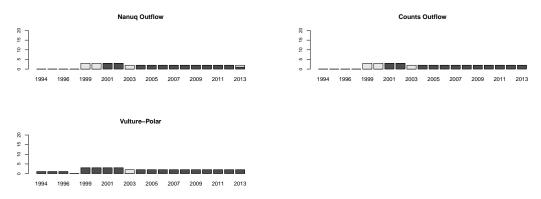
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                          |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|----------------------------------------------------------------------|
| Alkalinity | August | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Alkalinity in Koala Watershed Streams

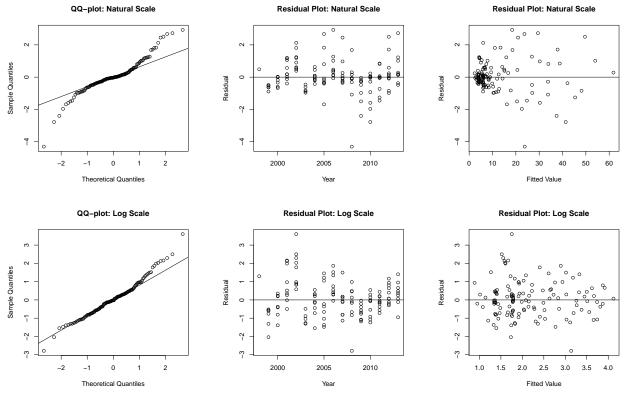
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Counts Outflow and Nanuq Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 115 | Moose-Nero | 2008 | 14.35  | 23.80  | -4.30       |

Outliers on log scale:

|    | Lake          | Year | Impute | Fitted | Std. Resid. |
|----|---------------|------|--------|--------|-------------|
| 49 | Kodiak-Little | 2002 | 10.67  | 1.75   | 3.60        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year or fitted value. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using the log transformed model. Results should be interpreted with caution.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 21.29       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

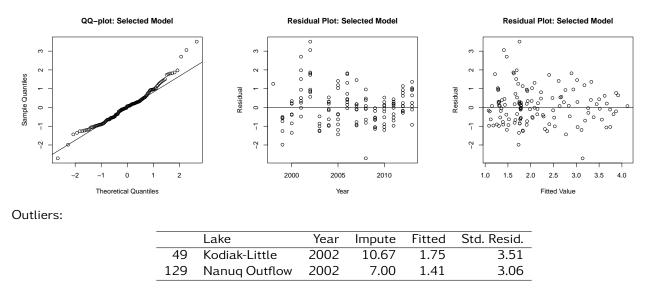
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 7.81        | 4.00 | 0.10    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.483        | 0.512        | 0.005        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



Conclusion:

The model shows dependence on year or fitted value. Results should be interpreted with caution.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

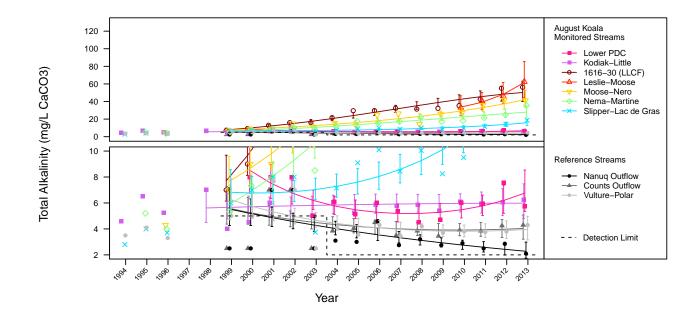
• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 4.6479      | 2  | 0.0979  |
| Kodiak-Little       | 15.8211     | 2  | 0.0004  |
| Leslie-Moose        | 7.0959      | 2  | 0.0288  |
| 1616-30 (LLCF)      | 207.0005    | 2  | 0.0000  |
| Moose-Nero          | 172.6826    | 2  | 0.0000  |
| Nema-Martine        | 152.8541    | 2  | 0.0000  |
| Slipper-Lac de Gras | 65.7619     | 2  | 0.0000  |

• Conclusions:

All monitored streams except Lower PDC show significant deviation from the common slope of reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.2990    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.9620    |
| Monitored Stream    | Kodiak-Little       | 0.0100    |
| Monitored Stream    | Leslie-Moose        | 0.9860    |
| Monitored Stream    | Lower PDC           | 0.5830    |
| Monitored Stream    | Moose-Nero          | 0.8690    |
| Monitored Stream    | Nema-Martine        | 0.9140    |
| Monitored Stream    | Slipper-Lac de Gras | 0.6320    |
|                     |                     |           |

#### • Conclusions:

Model fit for reference streams is weak. Model fit for Kodiak-Little is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

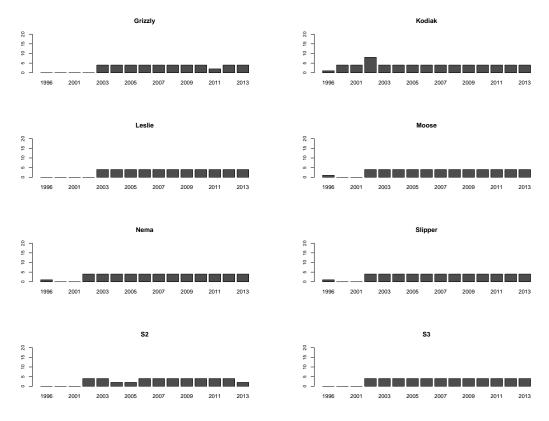
The estimated minimum detectable difference in mean total alkalinity for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 5.75E+00 | 6.76E+00 | 8.05E-01 | 5.35E+00 | 8.54E+00 | 2.36E+00       |
| Kodiak-Little       | 6.25E+00 | 5.99E+00 | 6.78E-01 | 4.79E+00 | 7.47E+00 | 1.98E+00       |
| Leslie-Moose        | 6.25E+01 | 6.17E+01 | 1.02E+01 | 4.46E+01 | 8.54E+01 | 3.00E+01       |
| 1616-30 (LLCF)      | 5.62E+01 | 5.03E+01 | 5.83E+00 | 4.00E+01 | 6.31E+01 | 1.71E+01       |
| Moose-Nero          | 4.13E+01 | 4.21E+01 | 4.89E+00 | 3.36E+01 | 5.29E+01 | 1.43E+01       |
| Nema-Martine        | 3.55E+01 | 2.79E+01 | 3.24E+00 | 2.22E+01 | 3.51E+01 | 9.48E+00       |
| Slipper-Lac de Gras | 1.86E+01 | 1.58E+01 | 1.84E+00 | 1.26E+01 | 1.99E+01 | 5.38E+00       |
| Nanuq Outflow       | 2.10E+00 | 2.28E+00 | 3.12E-01 | 1.74E+00 | 2.98E+00 |                |
| Counts Outflow      | 4.30E+00 | 4.04E+00 | 4.72E-01 | 3.21E+00 | 5.08E+00 |                |
| Vulture-Polar       | 4.30E+00 | 3.96E+00 | 4.61E-01 | 3.15E+00 | 4.98E+00 |                |

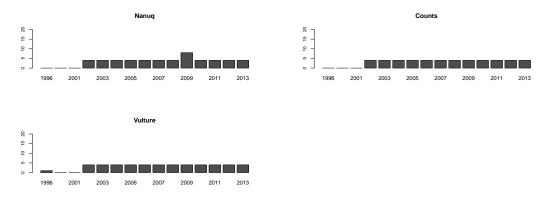
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                                                                    |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Alkalinity | August | Koala     | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | Kodiak-<br>Little<br>Leslie-<br>Moose<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Hardness in Lakes of the Koala Watershed and Lac de Gras

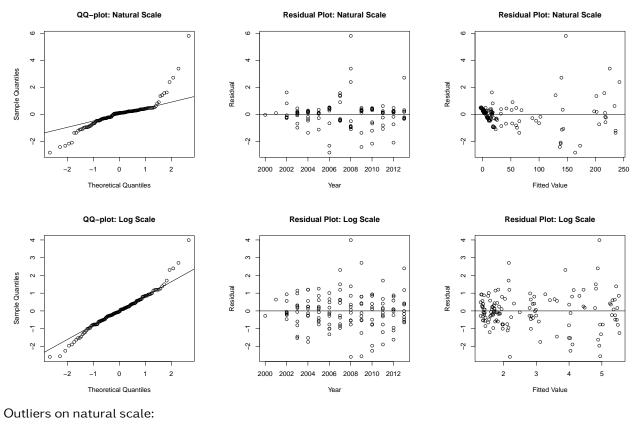
January 20, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 276.25 | 225.14 | 3.38        |
| 155 | Nema  | 2008 | 235.00 | 147.29 | 5.81        |

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 235.00 | 4.92   | 3.99        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 1.03E-271     | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 767.55     | 6.00 | 0.00    |

#### • Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

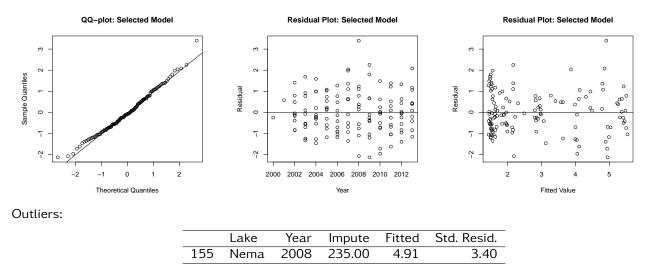
#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.11       | 4.00 | 1.00    |

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

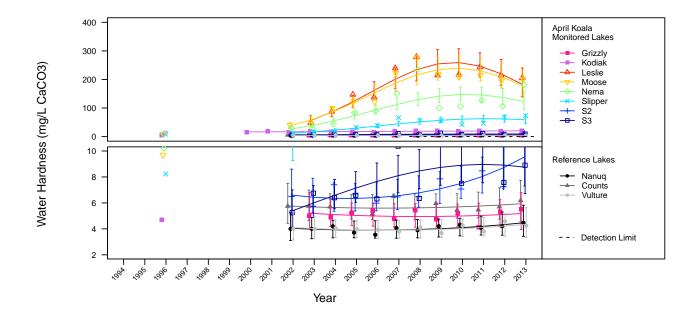
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.13        | 2.00 | 0.94    |
| Kodiak  | 0.41        | 2.00 | 0.81    |
| Leslie  | 52.88       | 2.00 | 0.00    |
| Moose   | 63.65       | 2.00 | 0.00    |
| Nema    | 56.58       | 2.00 | 0.00    |
| Slipper | 53.39       | 2.00 | 0.00    |
| S2      | 2.02        | 2.00 | 0.36    |
| S3      | 4.88        | 2.00 | 0.09    |

• Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0300    |
| Monitored Lake    | Grizzly         | 0.0380    |
| Monitored Lake    | Kodiak          | 0.4110    |
| Monitored Lake    | Leslie          | 0.9200    |
| Monitored Lake    | Moose           | 0.9360    |
| Monitored Lake    | Nema            | 0.7790    |
| Monitored Lake    | S2              | 0.6490    |
| Monitored Lake    | S3              | 0.4400    |
| Monitored Lake    | Slipper         | 0.8700    |

#### • Conclusions:

Model fit for Kodiak and S3 is weak. Model fit for reference lakes and Grizzly lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

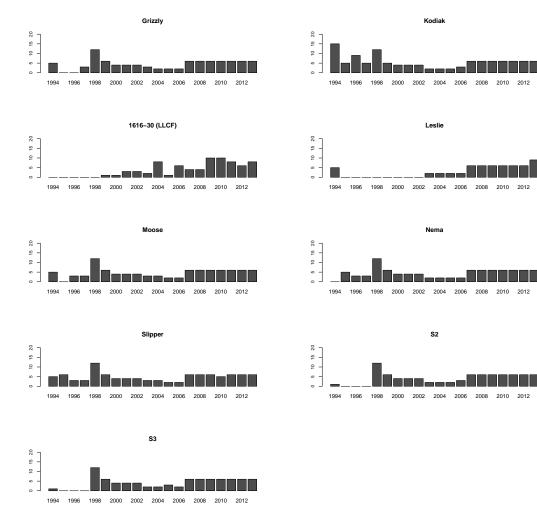
The estimated minimum detectable difference in mean hardness for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 5.51E+00 | 5.18E+00 | 7.17E-01 | 3.95E+00 | 6.79E+00 | 2.10E+00       |
| Kodiak  | 2.00E+01 | 2.04E+01 | 2.64E+00 | 1.58E+01 | 2.62E+01 | 7.73E+00       |
| Leslie  | 2.05E+02 | 1.83E+02 | 2.53E+01 | 1.40E+02 | 2.40E+02 | 7.41E+01       |
| Moose   | 2.01E+02 | 1.78E+02 | 2.41E+01 | 1.37E+02 | 2.32E+02 | 7.06E+01       |
| Nema    | 1.80E+02 | 1.23E+02 | 1.66E+01 | 9.41E+01 | 1.60E+02 | 4.86E+01       |
| Slipper | 7.35E+01 | 5.88E+01 | 7.97E+00 | 4.51E+01 | 7.67E+01 | 2.33E+01       |
| S2      | 1.08E+01 | 9.53E+00 | 1.29E+00 | 7.31E+00 | 1.24E+01 | 3.78E+00       |
| S3      | 8.90E+00 | 8.76E+00 | 1.19E+00 | 6.72E+00 | 1.14E+01 | 3.47E+00       |
| Nanuq   | 4.46E+00 | 4.47E+00 | 6.05E-01 | 3.43E+00 | 5.83E+00 |                |
| Counts  | 6.18E+00 | 5.93E+00 | 8.03E-01 | 4.55E+00 | 7.74E+00 |                |
| Vulture | 4.25E+00 | 4.34E+00 | 5.88E-01 | 3.33E+00 | 5.67E+00 |                |
| vullule | 7.2JL+00 | 4.J+L+00 | J.00L-01 | J.JJL+00 | J.07L+00 |                |

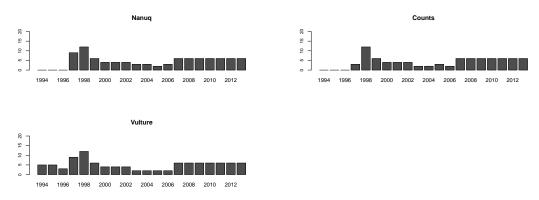
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Hardness  | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | Leslie<br>Moose<br>Nema<br>Slipper                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Hardness in Lakes of the Koala Watershed and Lac de Gras

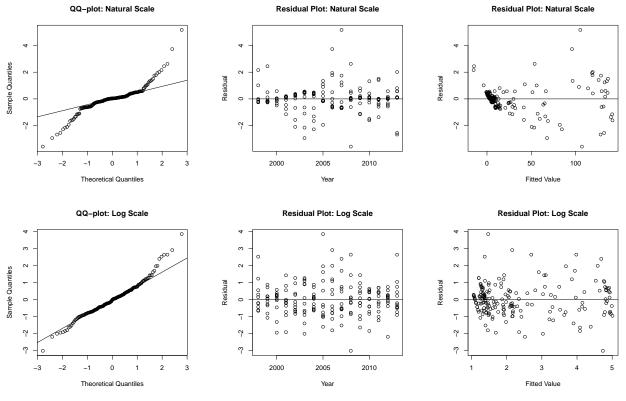
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 113 | Moose | 2006 | 130.50 | 95.93  | 3.73        |
| 114 | Moose | 2007 | 153.17 | 105.26 | 5.17        |
| 115 | Moose | 2008 | 73.92  | 107.03 | -3.57       |

Outliers on log scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 73.92  | 4.73   | -3.03       |
| 132 | Nanuq | 2005 | 7.57   | 1.47   | 3.86        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

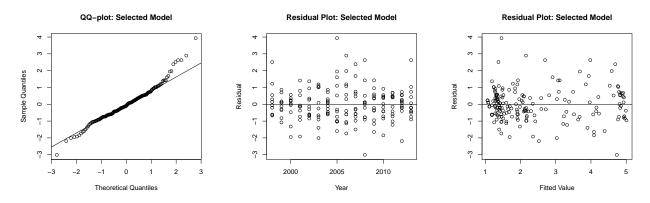
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.24        | 6.00 | 0.90    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.007        | 0.000        | 0.993        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 73.92  | 4.73   | -3.01       |
| 132 | Nanuq | 2005 | 7.57   | 1.46   | 3.93        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 14.6533     | 3  | 0.0021  |
| Kodiak         | 290.9355    | 3  | 0.0000  |
| 1616-30 (LLCF) | 1177.8722   | 3  | 0.0000  |
| Leslie         | 4517.1550   | 3  | 0.0000  |
| Moose          | 4508.9380   | 3  | 0.0000  |
| Nema           | 2758.3194   | 3  | 0.0000  |
| Slipper        | 1301.8006   | 3  | 0.0000  |
| S2             | 347.9525    | 3  | 0.0000  |
| S3             | 138.5502    | 3  | 0.0000  |
|                |             |    |         |

• Conclusions:

All monitored lakes show significant deviations from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

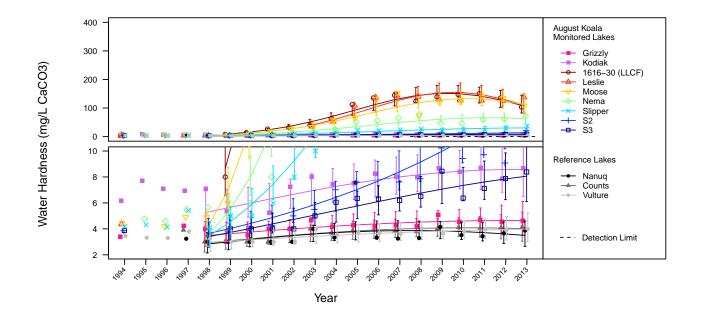
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.1476      | 2  | 0.9289  |
| Kodiak         | 2.4942      | 2  | 0.2873  |
| 1616-30 (LLCF) | 468.3298    | 2  | 0.0000  |
| Leslie         | 69.7826     | 2  | 0.0000  |
| Moose          | 604.1530    | 2  | 0.0000  |
| Nema           | 418.9827    | 2  | 0.0000  |
| Slipper        | 208.6540    | 2  | 0.0000  |
| S2             | 62.0235     | 2  | 0.0000  |
| S3             | 18.7527     | 2  | 0.0001  |

• Conclusions:

When allowing for differences in intercept, all monitored lakes except Grizzly and Kodiak lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.3470    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.9810    |
| Monitored Lake    | Grizzly         | 0.5890    |
| Monitored Lake    | Kodiak          | 0.5610    |
| Monitored Lake    | Leslie          | 0.8440    |
| Monitored Lake    | Moose           | 0.9680    |
| Monitored Lake    | Nema            | 0.9200    |
| Monitored Lake    | S2              | 0.7820    |
| Monitored Lake    | S3              | 0.9010    |
| Monitored Lake    | Slipper         | 0.9370    |
|                   |                 |           |

• Conclusions:

Model fit for reference lakes is weak. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

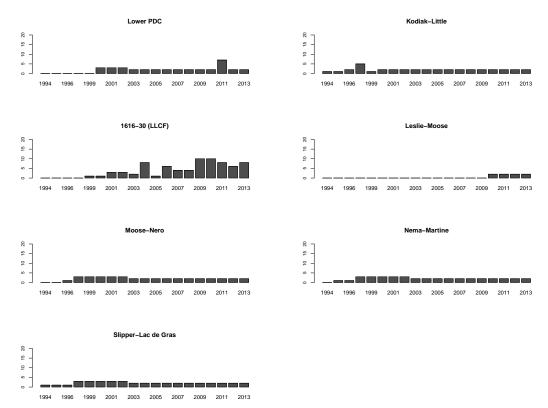
The estimated minimum detectable difference in mean hardness for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 4.64E+00 | 4.64E+00 | 6.54E-01 | 3.52E+00 | 6.12E+00 | 1.91E+00       |
| Kodiak         | 8.67E+00 | 8.58E+00 | 1.21E+00 | 6.51E+00 | 1.13E+01 | 3.54E+00       |
| Leslie         | 1.38E+02 | 1.11E+02 | 1.70E+01 | 8.18E+01 | 1.50E+02 | 4.98E+01       |
| 1616-30 (LLCF) | 1.03E+02 | 1.10E+02 | 1.57E+01 | 8.28E+01 | 1.45E+02 | 4.59E+01       |
| Moose          | 1.08E+02 | 1.12E+02 | 1.58E+01 | 8.52E+01 | 1.48E+02 | 4.63E+01       |
| Nema           | 7.17E+01 | 6.27E+01 | 8.84E+00 | 4.76E+01 | 8.26E+01 | 2.59E+01       |
| Slipper        | 3.66E+01 | 3.06E+01 | 4.32E+00 | 2.32E+01 | 4.04E+01 | 1.26E+01       |
| S2             | 2.17E+01 | 1.38E+01 | 1.95E+00 | 1.05E+01 | 1.82E+01 | 5.71E+00       |
| S3             | 8.39E+00 | 8.06E+00 | 1.14E+00 | 6.11E+00 | 1.06E+01 | 3.32E+00       |
| Nanuq          | 3.87E+00 | 3.50E+00 | 4.93E-01 | 2.65E+00 | 4.61E+00 |                |
| Counts         | 4.15E+00 | 4.02E+00 | 5.67E-01 | 3.05E+00 | 5.30E+00 |                |
| Vulture        | 4.00E+00 | 3.98E+00 | 5.61E-01 | 3.02E+00 | 5.24E+00 |                |

## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------|
| Hardness  | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | Grizzly<br>Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Hardness in Koala Watershed Streams

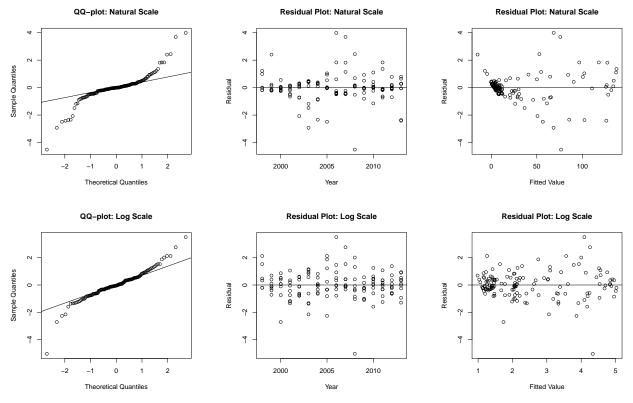
### January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 106.50 | 68.49  | 3.99        |
| 114 | Moose-Nero | 2007 | 111.00 | 75.79  | 3.69        |
| 115 | Moose-Nero | 2008 | 33.55  | 76.60  | -4.52       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 106.50 | 4.09   | 3.50        |
| 115 | Moose-Nero | 2008 | 33.55  | 4.34   | -5.03       |

AIC weights and model comparison:

| _ |               | Un-transformed Model | Log-transformed Model | Best Model            |
|---|---------------|----------------------|-----------------------|-----------------------|
|   | Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 121.66      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 97.29       | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.997        | 0.000        | 0.003        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 2.8778      | 2  | 0.2372  |
| Kodiak-Little       | 6.5737      | 2  | 0.0374  |
| Leslie-Moose        | 0.6358      | 2  | 0.7277  |
| 1616-30 (LLCF)      | 450.6162    | 2  | 0.0000  |
| Moose-Nero          | 236.4361    | 2  | 0.0000  |
| Nema-Martine        | 212.0540    | 2  | 0.0000  |
| Slipper-Lac de Gras | 110.3163    | 2  | 0.0000  |

#### • Conclusions:

All monitored streams except Lower PDC and Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

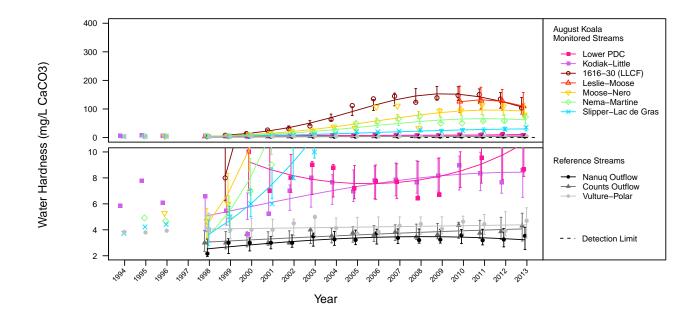
#### • Results:

|                                       | Chi squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
|                                       | Chi-squared |    |         |
| Kodiak-Little-vs-Nanuq Outflow        | 191.1030    | 3  | 0.0000  |
| Kodiak-Little-vs-Counts Outflow       | 138.8210    | 3  | 0.0000  |
| Kodiak-Little-vs-Vulture-Polar        | 85.2663     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 89.9604     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 84.5710     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 95.0635     | 3  | 0.0000  |
| Moose-Nero-vs-Nanuq Outflow           | 2010.8959   | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 1844.6738   | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 1664.6992   | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 1565.4662   | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 1421.4549   | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 1269.2251   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 753.9824    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 652.7145    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 552.9304    | 3  | 0.0000  |
|                                       |             |    |         |

• Conclusions:

All remaining monitored streams show significant deviations from the slopes of individual reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Name         | R-squared                                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Counts Outflow      | 0.5660                                                                                                                                         |
| Nanuq Outflow       | 0.6320                                                                                                                                         |
| Vulture-Polar       | 0.0880                                                                                                                                         |
| 1616-30 (LLCF)      | 0.9820                                                                                                                                         |
| Kodiak-Little       | 0.5430                                                                                                                                         |
| Leslie-Moose        | 0.9700                                                                                                                                         |
| Lower PDC           | 0.3230                                                                                                                                         |
| Moose-Nero          | 0.9080                                                                                                                                         |
| Nema-Martine        | 0.9410                                                                                                                                         |
| Slipper-Lac de Gras | 0.9510                                                                                                                                         |
|                     | Counts Outflow<br>Nanuq Outflow<br>Vulture-Polar<br>1616-30 (LLCF)<br>Kodiak-Little<br>Leslie-Moose<br>Lower PDC<br>Moose-Nero<br>Nema-Martine |

• Conclusions:

Model fit for Lower PDC is weak. Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

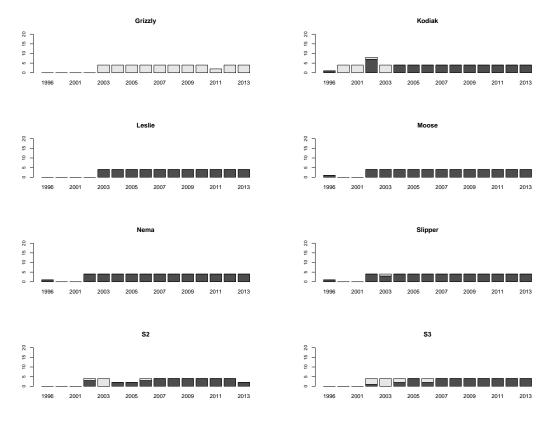
The estimated minimum detectable difference in mean hardness for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 8.66E+00 | 1.07E+01 | 1.48E+00 | 8.12E+00 | 1.40E+01 | 4.33E+00       |
| Kodiak-Little       | 8.59E+00 | 8.44E+00 | 1.12E+00 | 6.50E+00 | 1.10E+01 | 3.28E+00       |
| Leslie-Moose        | 1.10E+02 | 1.10E+02 | 2.03E+01 | 7.67E+01 | 1.58E+02 | 5.94E+01       |
| 1616-30 (LLCF)      | 1.03E+02 | 1.07E+02 | 1.46E+01 | 8.22E+01 | 1.40E+02 | 4.26E+01       |
| Moose-Nero          | 7.98E+01 | 9.27E+01 | 1.23E+01 | 7.14E+01 | 1.20E+02 | 3.61E+01       |
| Nema-Martine        | 7.22E+01 | 6.21E+01 | 8.26E+00 | 4.78E+01 | 8.06E+01 | 2.42E+01       |
| Slipper-Lac de Gras | 3.55E+01 | 3.03E+01 | 4.03E+00 | 2.33E+01 | 3.93E+01 | 1.18E+01       |
| Nanuq Outflow       | 3.54E+00 | 3.23E+00 | 4.30E-01 | 2.49E+00 | 4.19E+00 |                |
| Counts Outflow      | 4.30E+00 | 4.07E+00 | 5.41E-01 | 3.13E+00 | 5.28E+00 |                |
| Vulture-Polar       | 4.70E+00 | 4.39E+00 | 5.84E-01 | 3.38E+00 | 5.70E+00 |                |

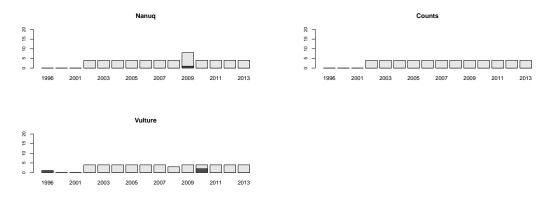
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                                                |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------|
| Hardness  | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Kodiak-<br>Little<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Chloride in Lakes of the Koala Watershed and Lac de Gras

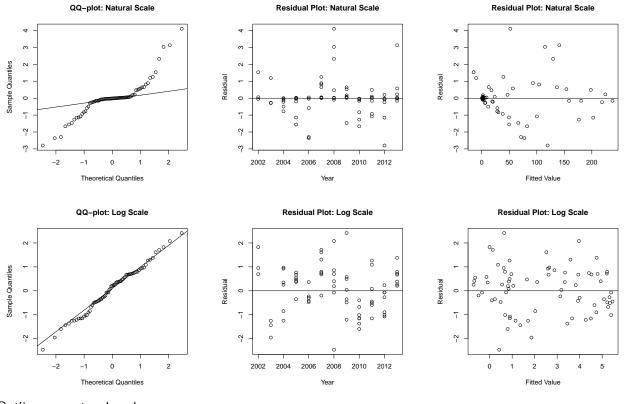
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and Grizzly lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Kodiak, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



Outliers on natural scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 150.50 | 114.82 | 3.04        |
| 155 | Nema  | 2008 | 100.22 | 51.96  | 4.11        |
| 160 | Nema  | 2013 | 177.75 | 140.94 | 3.14        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 3.75E-139     | 1.00E+00  | log model  |

Conclusion:

The log transformed model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best after log transformation. Proceeding with analysis using the log transformed model.

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

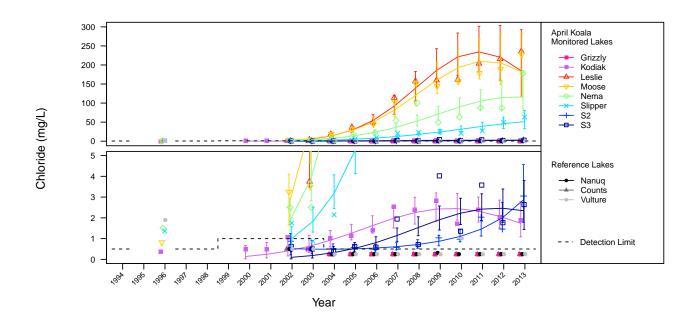
• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Kodiak  | 12.3872     | 2  | 0.0020  |
| Leslie  | 173.1326    | 2  | 0.0000  |
| Moose   | 258.7252    | 2  | 0.0000  |
| Nema    | 230.1024    | 2  | 0.0000  |
| Slipper | 196.9059    | 2  | 0.0000  |
| S2      | 35.0210     | 2  | 0.0000  |
| S3      | 30.4006     | 2  | 0.0000  |

• Conclusions:

All monitored lakes show significant deviations from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Kodiak    | 0.7780    |
| Monitored Lake | Leslie    | 0.9670    |
| Monitored Lake | Moose     | 0.9700    |
| Monitored Lake | Nema      | 0.9350    |
| Monitored Lake | S2        | 0.8750    |
| Monitored Lake | S3        | 0.6860    |
| Monitored Lake | Slipper   | 0.9180    |
|                |           |           |

• Conclusions:

Models provide a good fit for all monitored lakes.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

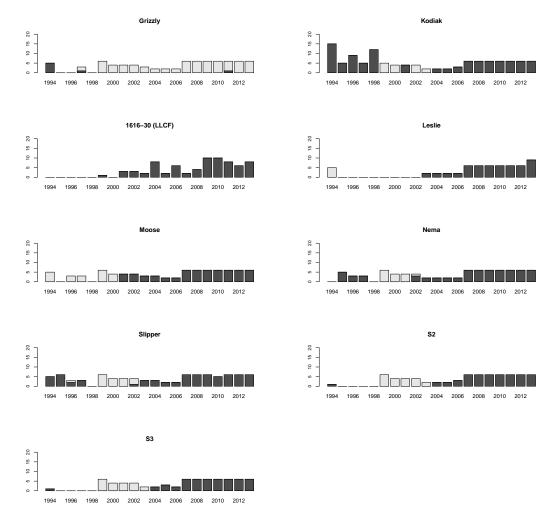
The estimated minimum detectable difference in mean chloride for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Kodiak  | 1.89E+00 | 1.74E+00 | 4.17E-01 | 1.09E+00 | 2.78E+00 | 1.22E+00       |
| Leslie  | 2.36E+02 | 1.85E+02 | 4.34E+01 | 1.16E+02 | 2.93E+02 | 1.27E+02       |
| Moose   | 2.27E+02 | 1.82E+02 | 4.15E+01 | 1.16E+02 | 2.85E+02 | 1.22E+02       |
| Nema    | 1.78E+02 | 1.16E+02 | 2.65E+01 | 7.42E+01 | 1.82E+02 | 7.76E+01       |
| Slipper | 6.33E+01 | 5.14E+01 | 1.17E+01 | 3.29E+01 | 8.04E+01 | 3.43E+01       |
| S2      | 3.05E+00 | 2.86E+00 | 6.83E-01 | 1.79E+00 | 4.56E+00 | 2.00E+00       |
| S3      | 2.64E+00 | 2.34E+00 | 5.79E-01 | 1.44E+00 | 3.80E+00 | 1.70E+00       |
| Nanuq   | 2.50E-01 |          |          |          |          |                |
| Counts  | 2.50E-01 |          |          |          |          |                |
| Vulture | 2.50E-01 |          |          |          |          |                |

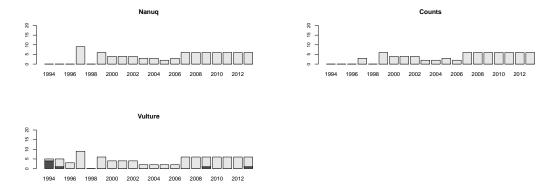
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed         | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*           |
|-----------|-------|-----------|---------------|----------|---------------------------------------|-----------------------------|---------------------|----------------------|------------------|-------------------------------------------------------|
| Chloride  | April | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Nanuq<br>Vulture | log e                       | Tobit<br>regression | #1a slope<br>of zero | NA               | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Chloride in Lakes of the Koala Watershed and Lac de Gras

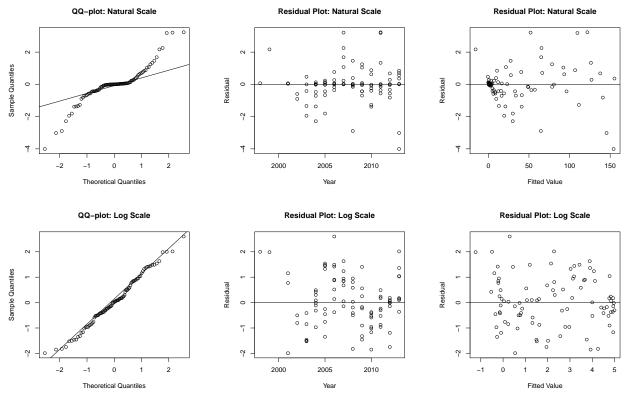
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and Grizzly lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Kodiak, Moose, Nema, Slipper, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 18  | 1616-30 (LLCF) | 2011 | 146.12 | 121.96 | 3.23        |
| 20  | 1616-30 (LLCF) | 2013 | 124.25 | 154.21 | -4.01       |
| 114 | Moose          | 2007 | 75.97  | 51.96  | 3.21        |
| 118 | Moose          | 2011 | 133.50 | 109.67 | 3.19        |
| 120 | Moose          | 2013 | 123.00 | 145.55 | -3.02       |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

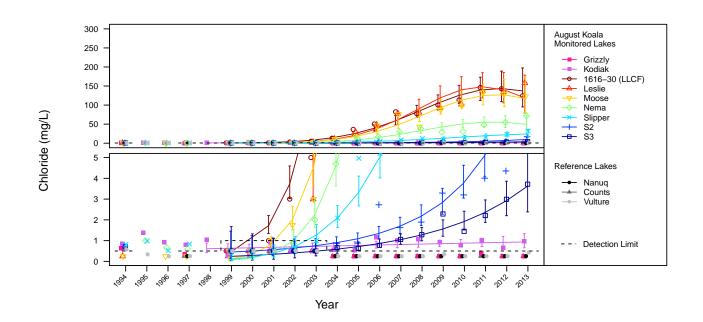
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Kodiak         | 3.4041      | 2  | 0.1823  |
| 1616-30 (LLCF) | 653.2933    | 2  | 0.0000  |
| Leslie         | 195.1716    | 2  | 0.0000  |
| Moose          | 477.5056    | 2  | 0.0000  |
| Nema           | 242.0179    | 2  | 0.0000  |
| Slipper        | 160.0848    | 2  | 0.0000  |
| S2             | 96.3569     | 2  | 0.0000  |
| S3             | 46.1471     | 2  | 0.0000  |

• Conclusions:

All monitored lakes except Kodiak Lake shows significant deviation from a slope of zero.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.9770    |
| Monitored Lake | Kodiak         | 0.1300    |
| Monitored Lake | Leslie         | 0.9560    |
| Monitored Lake | Moose          | 0.9550    |
| Monitored Lake | Nema           | 0.9100    |
| Monitored Lake | S2             | 0.9060    |
| Monitored Lake | S3             | 0.8930    |
| Monitored Lake | Slipper        | 0.9190    |

• Conclusions:

Model fit for Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

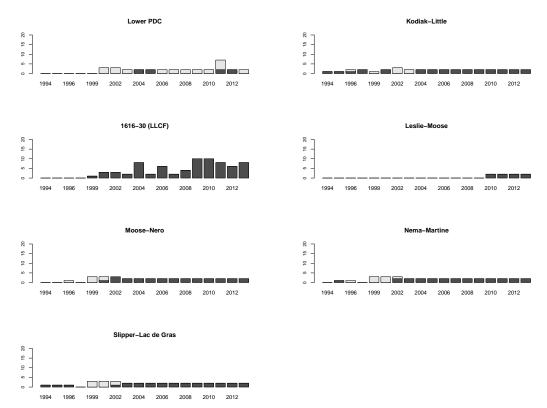
The estimated minimum detectable difference in mean chloride for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Kodiak         | 9.73E-01 | 9.35E-01 | 1.71E-01 | 6.53E-01 | 1.34E+00 | 5.00E-01       |
| Leslie         | 1.58E+02 | 1.19E+02 | 2.47E+01 | 7.93E+01 | 1.79E+02 | 7.22E+01       |
| 1616-30 (LLCF) | 1.24E+02 | 1.37E+02 | 2.55E+01 | 9.53E+01 | 1.97E+02 | 7.46E+01       |
| Moose          | 1.23E+02 | 1.17E+02 | 2.29E+01 | 8.00E+01 | 1.72E+02 | 6.71E+01       |
| Nema           | 7.17E+01 | 4.95E+01 | 1.00E+01 | 3.33E+01 | 7.35E+01 | 2.93E+01       |
| Slipper        | 3.20E+01 | 2.41E+01 | 4.93E+00 | 1.62E+01 | 3.60E+01 | 1.44E+01       |
| S2             | 1.70E+01 | 9.83E+00 | 1.97E+00 | 6.64E+00 | 1.46E+01 | 5.77E+00       |
| S3             | 3.72E+00 | 3.62E+00 | 7.70E-01 | 2.38E+00 | 5.49E+00 | 2.25E+00       |
| Nanuq          | 2.50E-01 |          |          |          |          |                |
| Counts         | 2.50E-01 |          |          |          |          |                |
| Vulture        | 4.33E-01 |          |          |          |          |                |

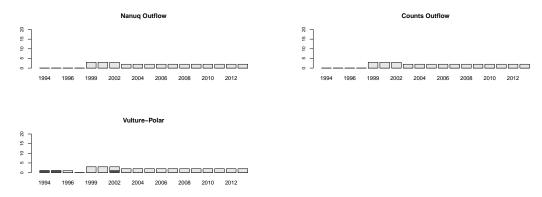
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed         | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                      |
|-----------|--------|-----------|---------------|----------|---------------------------------------|-----------------------------|---------------------|----------------------|------------------|------------------------------------------------------------------|
| Chloride  | August | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Nanuq<br>Vulture | log e                       | Tobit<br>regression | #1a slope<br>of zero | NA               | 1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Chloride in Koala Watershed Streams

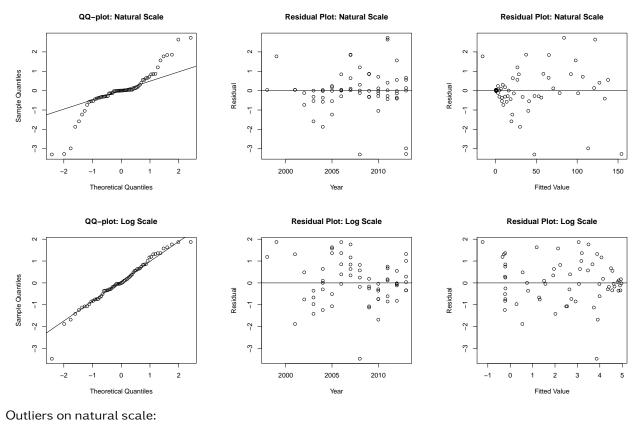
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts, Nanuq, and Vulture streams and the Lower PDC was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Kodiak-Little, Moose-Nero, Nema-Martine, and Slipper-Lac de Gras was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



|     | Lake           |      |        |        | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 20  | 1616-30 (LLCF) | 2013 | 124.25 | 154.21 | -3.27       |
| 115 | Moose-Nero     | 2008 | 17.40  | 47.60  | -3.29       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 115 | Moose-Nero | 2008 | 17.40  | 3.86   | -3.47       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year and fitted value. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using the log transformed model. Results should be interpreted with caution.

## 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

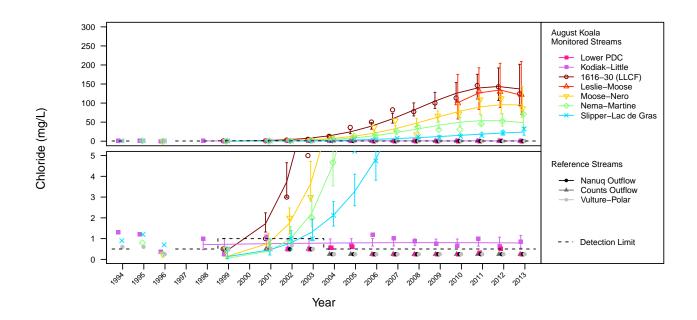
• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Kodiak-Little       | 0.2534      | 2  | 0.8810  |
| Leslie-Moose        | 0.5451      | 2  | 0.7614  |
| 1616-30 (LLCF)      | 580.7143    | 2  | 0.0000  |
| Moose-Nero          | 306.3878    | 2  | 0.0000  |
| Nema-Martine        | 213.7386    | 2  | 0.0000  |
| Slipper-Lac de Gras | 126.9371    | 2  | 0.0000  |

• Conclusions:

All monitored streams except Kodiak-Little and Leslie-Moose show significant deviation from a slope of zero.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Lake Type      | Lake Name           | R-squared |
|----------------|---------------------|-----------|
| Monitored Lake | 1616-30 (LLCF)      | 0.9770    |
| Monitored Lake | Kodiak-Little       | 0.0510    |
| Monitored Lake | Leslie-Moose        | 0.9480    |
| Monitored Lake | Moose-Nero          | 0.9360    |
| Monitored Lake | Nema-Martine        | 0.9100    |
| Monitored Lake | Slipper-Lac de Gras | 0.9320    |

• Conclusions:

Model fit for Kodiak-Little is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

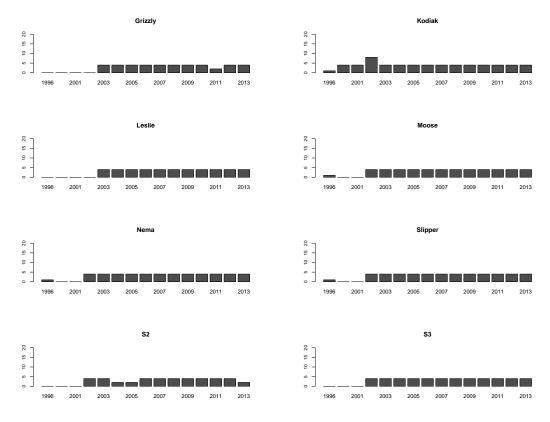
The estimated minimum detectable difference in mean chloride for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 2.50E-01 |          |          |          |          |                |
| Kodiak-Little       | 8.60E-01 | 7.91E-01 | 1.53E-01 | 5.41E-01 | 1.16E+00 | 4.48E-01       |
| Leslie-Moose        | 1.22E+02 | 1.21E+02 | 3.39E+01 | 6.95E+01 | 2.09E+02 | 9.92E+01       |
| 1616-30 (LLCF)      | 1.24E+02 | 1.37E+02 | 2.70E+01 | 9.32E+01 | 2.02E+02 | 7.91E+01       |
| Moose-Nero          | 8.62E+01 | 9.50E+01 | 1.99E+01 | 6.30E+01 | 1.43E+02 | 5.83E+01       |
| Nema-Martine        | 7.11E+01 | 4.86E+01 | 1.04E+01 | 3.19E+01 | 7.39E+01 | 3.05E+01       |
| Slipper-Lac de Gras | 3.20E+01 | 2.39E+01 | 5.20E+00 | 1.56E+01 | 3.66E+01 | 1.52E+01       |
| Nanuq Outflow       | 2.50E-01 |          |          |          |          |                |
| Counts Outflow      | 2.50E-01 |          |          |          |          |                |
| Vulture-Polar       | 2.50E-01 |          |          |          |          |                |

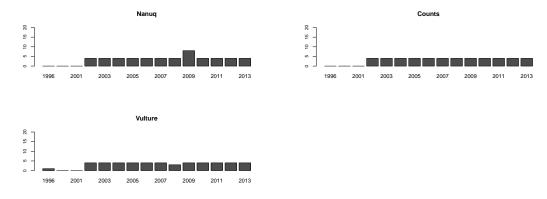
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                           | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------------------------------------|
| Chloride  | August | Koala     | Stream        | Water    | Counts<br>Outflow<br>Lower PDC<br>Nanuq<br>Outflow<br>Vulture-<br>Polar | log e                       | Tobit<br>regression | #1a slope<br>of zero | NA               | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Sulphate in Lakes of the Koala Watershed and Lac de Gras

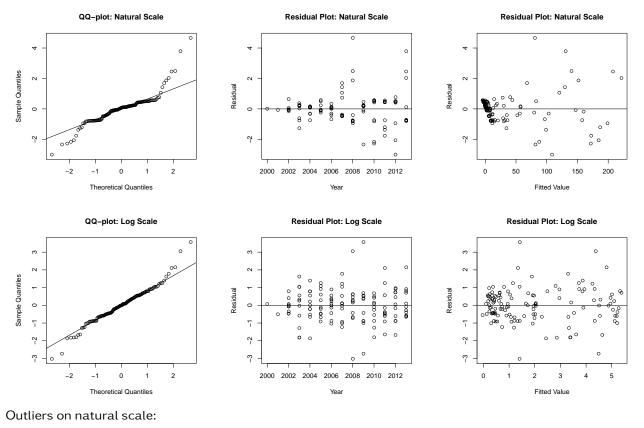
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

## 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 124.75 | 80.74  | 4.67        |
| 159 | Nema | 2012 | 80.32  | 108.63 | -3.00       |
| 160 | Nema | 2013 | 166.50 | 130.74 | 3.79        |

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 124.75 | 4.38   | 3.05        |
| 195 | S3   | 2008 | 2.62   | 1.41   | -3.02       |
| 196 | S3   | 2009 | 6.96   | 1.42   | 3.57        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 1.17E-237     | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 141.87     | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

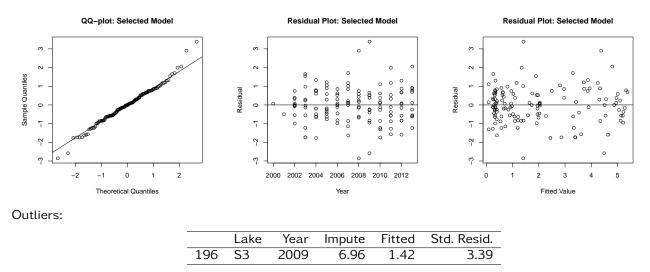
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.53       | 4.00 | 0.82    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.558        | 0.000        | 0.442        | Indistinguishable support for 1 & 3; choose Model 3. |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using a common slope and intercept, contrasts suggest that intercepts differ among reference lakes. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes).

### 3.4 Assess Fit of Reduced Model



No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

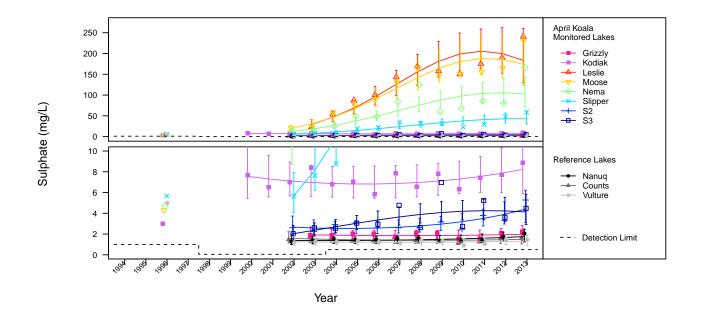
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.08        | 2.00 | 0.96    |
| Kodiak  | 0.12        | 2.00 | 0.94    |
| Leslie  | 85.36       | 2.00 | 0.00    |
| Moose   | 97.94       | 2.00 | 0.00    |
| Nema    | 88.91       | 2.00 | 0.00    |
| Slipper | 77.48       | 2.00 | 0.00    |
| S2      | 3.76        | 2.00 | 0.15    |
| S3      | 10.17       | 2.00 | 0.01    |

• Conclusions:

Leslie, Moose, Nema, Slipper, and S3 show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0580    |
| Monitored Lake    | Grizzly         | 0.0280    |
| Monitored Lake    | Kodiak          | 0.2510    |
| Monitored Lake    | Leslie          | 0.9250    |
| Monitored Lake    | Moose           | 0.9440    |
| Monitored Lake    | Nema            | 0.8370    |
| Monitored Lake    | S2              | 0.6350    |
| Monitored Lake    | S3              | 0.4650    |
| Monitored Lake    | Slipper         | 0.8710    |

#### • Conclusions:

Model fit for Kodiak and S3 is weak. Model fit for reference lakes and Grizzly Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

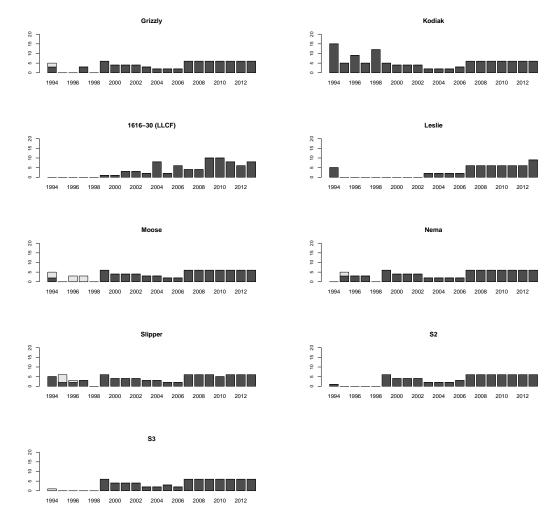
The estimated minimum detectable difference in mean sulphate for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 2.24E+00 | 1.97E+00 | 3.54E-01 | 1.39E+00 | 2.80E+00 | 1.03E+00       |
| Kodiak  | 8.85E+00 | 8.23E+00 | 1.40E+00 | 5.90E+00 | 1.15E+01 | 4.09E+00       |
| Leslie  | 2.41E+02 | 1.83E+02 | 3.29E+01 | 1.29E+02 | 2.61E+02 | 9.61E+01       |
| Moose   | 2.31E+02 | 1.74E+02 | 3.06E+01 | 1.23E+02 | 2.45E+02 | 8.95E+01       |
| Nema    | 1.66E+02 | 1.03E+02 | 1.81E+01 | 7.27E+01 | 1.45E+02 | 5.29E+01       |
| Slipper | 5.86E+01 | 4.33E+01 | 7.63E+00 | 3.07E+01 | 6.12E+01 | 2.23E+01       |
| S2      | 5.28E+00 | 4.40E+00 | 7.75E-01 | 3.11E+00 | 6.21E+00 | 2.27E+00       |
| S3      | 4.47E+00 | 4.13E+00 | 7.29E-01 | 2.93E+00 | 5.84E+00 | 2.13E+00       |
| Nanuq   | 2.05E+00 | 1.75E+00 | 3.09E-01 | 1.24E+00 | 2.48E+00 |                |
| Counts  | 1.62E+00 | 1.49E+00 | 2.62E-01 | 1.05E+00 | 2.10E+00 |                |
| Vulture | 1.47E+00 | 1.32E+00 | 2.32E-01 | 9.33E-01 | 1.86E+00 |                |
|         |          |          |          |          |          |                |

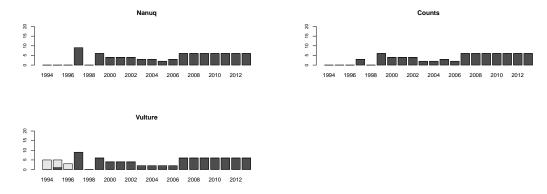
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                           | Reference<br>Model       | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|-----------------------------------------|--------------------------|------------------|---------------------------------------------------------|
| Sulphate  | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressio | #2 shared<br>slopes<br>า | NA               | Leslie<br>Moose<br>Nema<br>Slipper S3                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Sulphate in Lakes of the Koala Watershed and Lac de Gras

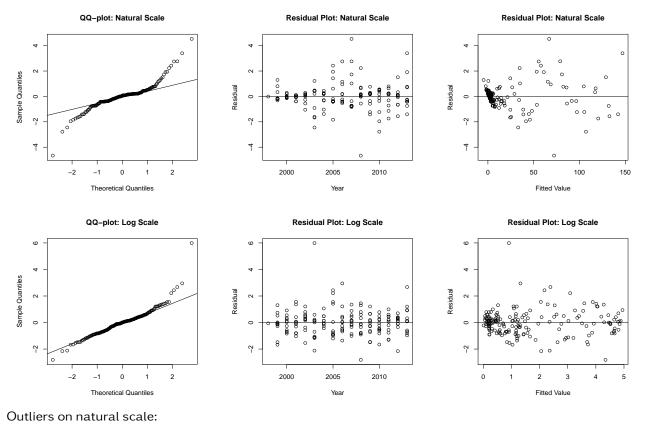
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




## 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake    | Year    | Impute | Fitted | Std. Resid. |
|----|---------|---------|--------|--------|-------------|
| 10 | 0 Lesli | e 2013  | 164.89 | 146.97 | 3.40        |
| 11 | 4 Moos  | se 2007 | 90.82  | 66.91  | 4.53        |
| 11 | 5 Moos  | se 2008 | 47.62  | 72.20  | -4.66       |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 190 | S3   | 2003 | 6.88   | 0.91   | 5.99        |

AIC weights and model comparison:

| - |               | Un-transformed Model | Log-transformed Model | Best Model            |
|---|---------------|----------------------|-----------------------|-----------------------|
| - | Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

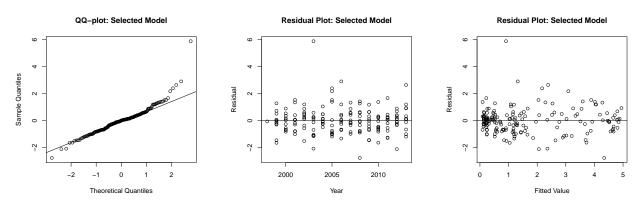
• Results:

| Chi-squared | DF   | P-value |  |
|-------------|------|---------|--|
| 5.52        | 6.00 | 0.48    |  |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.036        | 0.000        | 0.964        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 190 | S3   | 2003 | 6.88   | 0.91   | 5.89        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

## 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 32.1490     | 3  | 0.0000  |
| Kodiak         | 323.0941    | 3  | 0.0000  |
| 1616-30 (LLCF) | 150.4182    | 3  | 0.0000  |
| Leslie         | 4712.9668   | 3  | 0.0000  |
| Moose          | 4651.2005   | 3  | 0.0000  |
| Nema           | 3078.9111   | 3  | 0.0000  |
| Slipper        | 1572.4430   | 3  | 0.0000  |
| S2             | 528.1146    | 3  | 0.0000  |
| S3             | 299.6988    | 3  | 0.0000  |
|                |             |    |         |

#### • Conclusions:

All monitored lakes show significant deviations from the common slope of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

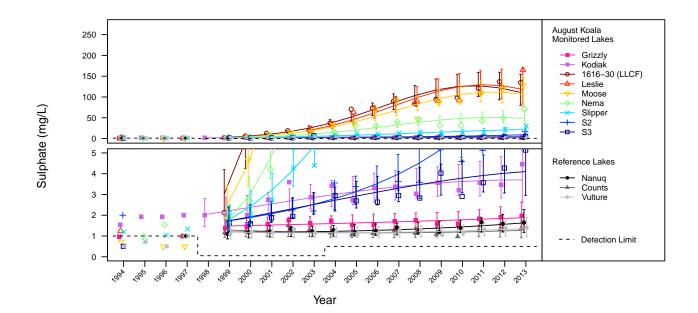
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.6147      | 2  | 0.7354  |
| Kodiak         | 9.2700      | 2  | 0.0097  |
| 1616-30 (LLCF) | 610.3853    | 2  | 0.0000  |
| Leslie         | 97.2382     | 2  | 0.0000  |
| Moose          | 538.6558    | 2  | 0.0000  |
| Nema           | 417.9783    | 2  | 0.0000  |
| Slipper        | 211.1920    | 2  | 0.0000  |
| S2             | 83.0881     | 2  | 0.0000  |
| S3             | 21.0422     | 2  | 0.0000  |

• Conclusions:

When allowing for differences in intercept, all monitored lakes except Grizzly Lake show significant deviations from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name       | R-squared                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------|
| (more than one) | 0.2320                                                                                        |
| 1616-30 (LLCF)  | 0.9740                                                                                        |
| Grizzly         | 0.5520                                                                                        |
| Kodiak          | 0.7100                                                                                        |
| Leslie          | 0.8920                                                                                        |
| Moose           | 0.9640                                                                                        |
| Nema            | 0.9480                                                                                        |
| S2              | 0.7760                                                                                        |
| S3              | 0.4520                                                                                        |
| Slipper         | 0.9240                                                                                        |
|                 | (more than one)<br>1616-30 (LLCF)<br>Grizzly<br>Kodiak<br>Leslie<br>Moose<br>Nema<br>S2<br>S3 |

• Conclusions:

Model fit for reference lakes and S3 is weak. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

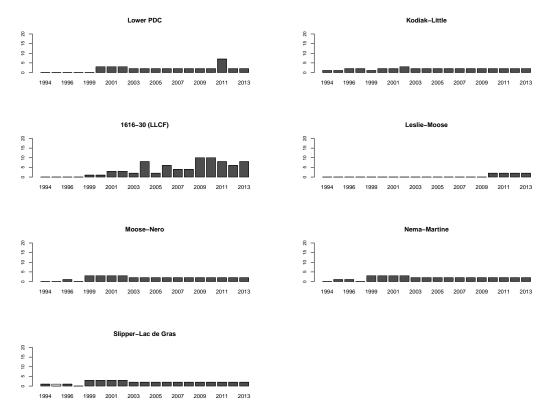
The estimated minimum detectable difference in mean sulphate for each monitored lake in 2013. Reference lakes are shown for comparison.

| Observed | Fitted                                                                                       |                                                                                                                                                      | Lower                                                                                                                                                                                                                                | Upper                                                                                                                                                                                                                                                                                                                | Min. Det. Diff                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1.88E+00                                                                                     | SE Fit<br>3.17E-01                                                                                                                                   | 1.35E+00                                                                                                                                                                                                                             | 2.61E+00                                                                                                                                                                                                                                                                                                             | 9.27E-01                                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                                              |                                                                                                                                                      |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.46E+00 | 3.70E+00                                                                                     | 6.14E-01                                                                                                                                             | 2.68E+00                                                                                                                                                                                                                             | 5.12E+00                                                                                                                                                                                                                                                                                                             | 1.80E+00                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.65E+02 | 1.18E+02                                                                                     | 2.15E+01                                                                                                                                             | 8.30E+01                                                                                                                                                                                                                             | 1.69E+02                                                                                                                                                                                                                                                                                                             | 6.30E+01                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.35E+02 | 1.11E+02                                                                                     | 1.87E+01                                                                                                                                             | 7.98E+01                                                                                                                                                                                                                             | 1.55E+02                                                                                                                                                                                                                                                                                                             | 5.48E+01                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.28E+02 | 1.06E+02                                                                                     | 1.79E+01                                                                                                                                             | 7.64E+01                                                                                                                                                                                                                             | 1.48E+02                                                                                                                                                                                                                                                                                                             | 5.25E+01                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.11E+01 | 4.88E+01                                                                                     | 8.24E+00                                                                                                                                             | 3.51E+01                                                                                                                                                                                                                             | 6.80E+01                                                                                                                                                                                                                                                                                                             | 2.41E+01                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.04E+01 | 2.19E+01                                                                                     | 3.70E+00                                                                                                                                             | 1.57E+01                                                                                                                                                                                                                             | 3.05E+01                                                                                                                                                                                                                                                                                                             | 1.08E+01                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.71E+01 | 9.16E+00                                                                                     | 1.54E+00                                                                                                                                             | 6.58E+00                                                                                                                                                                                                                             | 1.27E+01                                                                                                                                                                                                                                                                                                             | 4.52E+00                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.14E+00 | 4.10E+00                                                                                     | 6.92E-01                                                                                                                                             | 2.95E+00                                                                                                                                                                                                                             | 5.71E+00                                                                                                                                                                                                                                                                                                             | 2.03E+00                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.64E+00 | 1.63E+00                                                                                     | 2.75E-01                                                                                                                                             | 1.17E+00                                                                                                                                                                                                                             | 2.27E+00                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.36E+00 | 1.27E+00                                                                                     | 2.15E-01                                                                                                                                             | 9.15E-01                                                                                                                                                                                                                             | 1.77E+00                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.41E+00 | 1.36E+00                                                                                     | 2.30E-01                                                                                                                                             | 9.79E-01                                                                                                                                                                                                                             | 1.90E+00                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | 65E+02<br>35E+02<br>28E+02<br>7.11E+01<br>3.04E+01<br>71E+01<br>5.14E+00<br>64E+00<br>36E+00 | A.46E+003.70E+0065E+021.18E+0235E+021.11E+0228E+021.06E+027.11E+014.88E+013.04E+012.19E+0171E+019.16E+005.14E+004.10E+0064E+001.63E+0036E+001.27E+00 | A.46E+003.70E+006.14E-0165E+021.18E+022.15E+0135E+021.11E+021.87E+0128E+021.06E+021.79E+017.11E+014.88E+018.24E+003.04E+012.19E+013.70E+0071E+019.16E+001.54E+005.14E+004.10E+006.92E-0164E+001.63E+002.75E-0136E+001.27E+002.15E-01 | A.46E+003.70E+006.14E-012.68E+0065E+021.18E+022.15E+018.30E+0135E+021.11E+021.87E+017.98E+0128E+021.06E+021.79E+017.64E+017.11E+014.88E+018.24E+003.51E+013.04E+012.19E+013.70E+001.57E+0171E+019.16E+001.54E+006.58E+006.14E+004.10E+006.92E-012.95E+0064E+001.63E+002.75E-011.17E+0036E+001.27E+002.15E-019.15E-01 | A.46E+003.70E+006.14E-012.68E+005.12E+0065E+021.18E+022.15E+018.30E+011.69E+0235E+021.11E+021.87E+017.98E+011.55E+0228E+021.06E+021.79E+017.64E+011.48E+0211E+014.88E+018.24E+003.51E+016.80E+013.04E+012.19E+013.70E+001.57E+013.05E+0171E+019.16E+001.54E+006.58E+001.27E+015.14E+004.10E+006.92E-012.95E+005.71E+0064E+001.63E+002.75E-011.17E+002.27E+0036E+001.27E+002.15E-019.15E-011.77E+00 |

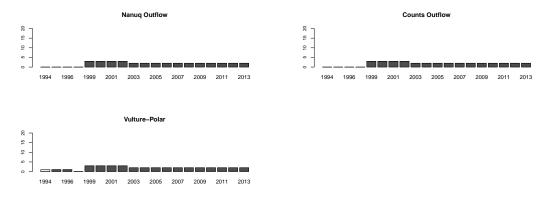
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------|
| Sulphate  | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | Grizzly<br>Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Sulphate in Koala Watershed Streams

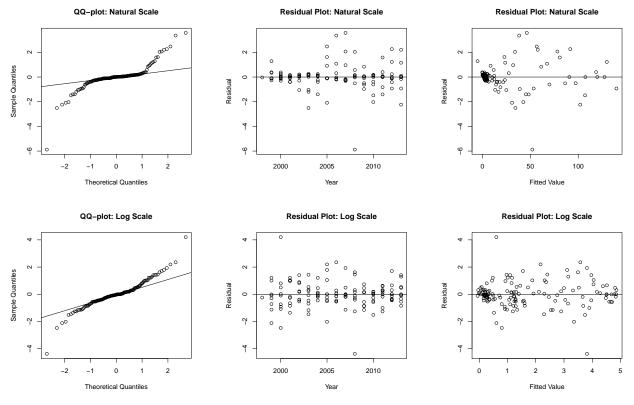
### January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




## 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 57.30  | 38.31  | 3.36        |
| 114 | Moose-Nero | 2007 | 66.50  | 46.28  | 3.58        |
| 115 | Moose-Nero | 2008 | 18.85  | 52.08  | -5.88       |

Outliers on log scale:

|     | Lake          | Year | Impute | Fitted | Std. Resid. |
|-----|---------------|------|--------|--------|-------------|
| 115 | Moose-Nero    | 2008 | 18.85  | 3.81   | -4.38       |
| 187 | Vulture-Polar | 2000 | 4.24   | 0.60   | 4.20        |

AIC weights and model comparison:

|        |        | Un-transformed Model | Log-transformed Model | Best Model            |
|--------|--------|----------------------|-----------------------|-----------------------|
| Akaike | Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 131.91      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 131.62      | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.489        | 0.000        | 0.511        | Indistinguishable support for 3 & 1; choose Model 3. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 10.2069     | 2  | 0.0061  |
| Kodiak-Little       | 3.6349      | 2  | 0.1624  |
| Leslie-Moose        | 0.1658      | 2  | 0.9205  |
| 1616-30 (LLCF)      | 429.2966    | 2  | 0.0000  |
| Moose-Nero          | 244.0870    | 2  | 0.0000  |
| Nema-Martine        | 217.6053    | 2  | 0.0000  |
| Slipper-Lac de Gras | 111.3862    | 2  | 0.0000  |

#### • Conclusions:

All monitored streams except Kodiak-Little and Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

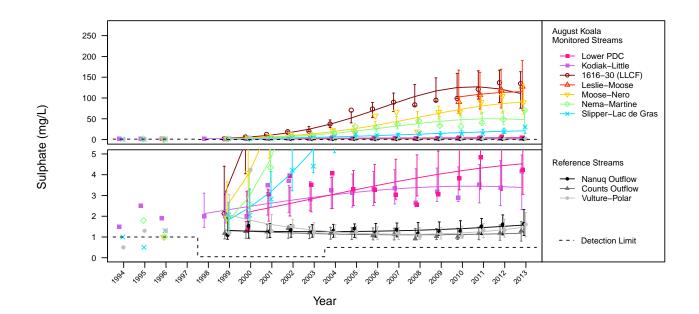
#### • Results:

|                                       | Chi-squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
| Lower PDC-vs-Nanuq Outflow            | 157.6151    | 3  | 0.0000  |
| Lower PDC-vs-Counts Outflow           | 216.0399    | 3  | 0.0000  |
| Lower PDC-vs-Vulture-Polar            | 179.0016    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 96.9049     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 112.0015    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 133.1475    | 3  | 0.0000  |
| Moose-Nero-vs-Nanuq Outflow           | 1826.0330   | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 2018.9842   | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 1901.3183   | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 1445.4744   | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 1617.4694   | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 1519.2558   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 704.4776    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 827.1429    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 756.3031    | 3  | 0.0000  |
|                                       |             |    |         |

• Conclusions:

All remaining monitored streams show significant deviations from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Name         | R-squared                                                                                                                                      |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Counts Outflow      | 0.2760                                                                                                                                         |
| Nanuq Outflow       | 0.3870                                                                                                                                         |
| Vulture-Polar       | 0.2950                                                                                                                                         |
| 1616-30 (LLCF)      | 0.9740                                                                                                                                         |
| Kodiak-Little       | 0.4990                                                                                                                                         |
| Leslie-Moose        | 0.2230                                                                                                                                         |
| Lower PDC           | 0.4080                                                                                                                                         |
| Moose-Nero          | 0.9060                                                                                                                                         |
| Nema-Martine        | 0.9500                                                                                                                                         |
| Slipper-Lac de Gras | 0.9210                                                                                                                                         |
|                     | Counts Outflow<br>Nanuq Outflow<br>Vulture-Polar<br>1616-30 (LLCF)<br>Kodiak-Little<br>Leslie-Moose<br>Lower PDC<br>Moose-Nero<br>Nema-Martine |

• Conclusions:

Model fit for Counts Outflow, Nanuq outflow, Vulture-Polar, Kodiak-Little, Leslie-Moose, and Lower PDC is weak. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

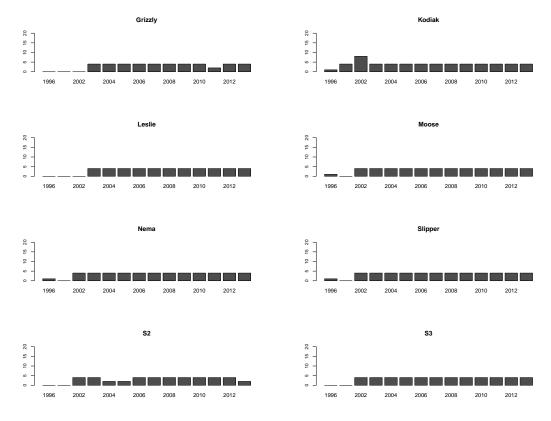
The estimated minimum detectable difference in mean sulphate for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 4.23E+00 | 4.53E+00 | 9.07E-01 | 3.06E+00 | 6.71E+00 | 2.66E+00       |
| Kodiak-Little       | 4.17E+00 | 3.39E+00 | 6.55E-01 | 2.32E+00 | 4.95E+00 | 1.92E+00       |
| Leslie-Moose        | 1.27E+02 | 1.15E+02 | 2.94E+01 | 7.00E+01 | 1.90E+02 | 8.59E+01       |
| 1616-30 (LLCF)      | 1.35E+02 | 1.11E+02 | 2.18E+01 | 7.54E+01 | 1.63E+02 | 6.39E+01       |
| Moose-Nero          | 8.95E+01 | 9.02E+01 | 1.78E+01 | 6.13E+01 | 1.33E+02 | 5.20E+01       |
| Nema-Martine        | 7.02E+01 | 4.79E+01 | 9.43E+00 | 3.25E+01 | 7.04E+01 | 2.76E+01       |
| Slipper-Lac de Gras | 3.03E+01 | 2.11E+01 | 4.17E+00 | 1.44E+01 | 3.11E+01 | 1.22E+01       |
| Nanuq Outflow       | 1.63E+00 | 1.58E+00 | 3.11E-01 | 1.07E+00 | 2.32E+00 |                |
| Counts Outflow      | 1.29E+00 | 1.18E+00 | 2.33E-01 | 8.02E-01 | 1.74E+00 |                |
| Vulture-Polar       | 1.60E+00 | 1.48E+00 | 2.92E-01 | 1.01E+00 | 2.18E+00 |                |

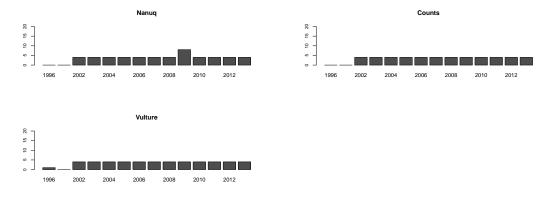
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                                        |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|----------------------------------------------------------------------------------------------------|
| Sulphate  | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Lower PDC<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Potassium in Lakes of the Koala Watershed and Lac de Gras

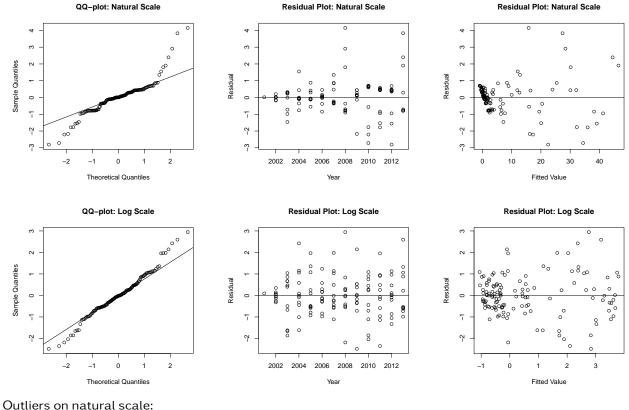
January 20, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

## 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

#### 2 **Initial Model Fit**



|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 23.93  | 15.79  | 4.15        |
| 160 | Nema | 2013 | 34.90  | 27.39  | 3.83        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 4.37E-149     | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

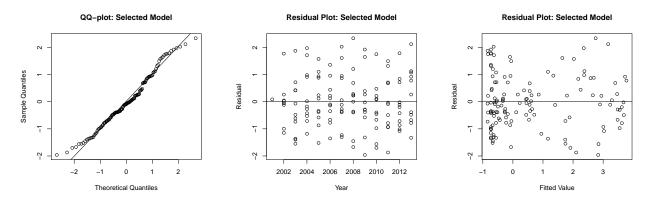
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.25       | 6.00 | 0.97    |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

## 3.3 Assess Fit of Reduced Model



#### Outliers:

#### None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

## 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.05        | 3.00 | 1.00    |
| Kodiak  | 7.36        | 3.00 | 0.06    |
| Leslie  | 75.10       | 3.00 | 0.00    |
| Moose   | 78.86       | 3.00 | 0.00    |
| Nema    | 73.15       | 3.00 | 0.00    |
| Slipper | 58.45       | 3.00 | 0.00    |
| S2      | 4.06        | 3.00 | 0.26    |
| S3      | 3.43        | 3.00 | 0.33    |
| -       |             |      |         |

• Conclusions:

All monitored lakes except Grizzly Lake, Kodiak Lake, S2, and S3 show significant deviation from the common slope of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

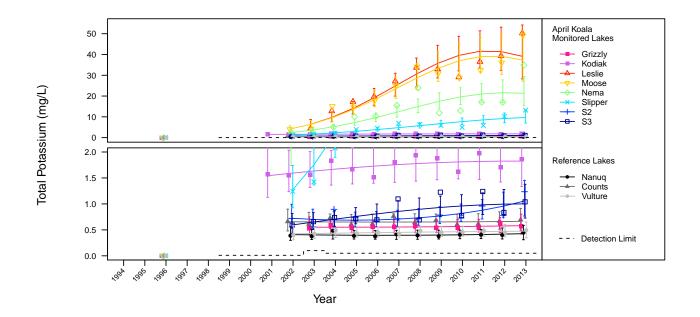
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.00        | 2.00 | 1.00    |
| Kodiak  | 0.16        | 2.00 | 0.92    |
| Leslie  | 61.13       | 2.00 | 0.00    |
| Moose   | 74.92       | 2.00 | 0.00    |
| Nema    | 71.66       | 2.00 | 0.00    |
| Slipper | 57.92       | 2.00 | 0.00    |
| S2      | 2.00        | 2.00 | 0.37    |
| S3      | 3.43        | 2.00 | 0.18    |

• Conclusions:

When allowing for differences in intercept, Leslie, Moose, Nema and Slipper lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0070    |
| Monitored Lake    | Grizzly         | 0.1310    |
| Monitored Lake    | Kodiak          | 0.3750    |
| Monitored Lake    | Leslie          | 0.9030    |
| Monitored Lake    | Moose           | 0.9170    |
| Monitored Lake    | Nema            | 0.8410    |
| Monitored Lake    | S2              | 0.5110    |
| Monitored Lake    | S3              | 0.4890    |
| Monitored Lake    | Slipper         | 0.8720    |

#### • Conclusions:

Model fit for Kodiak and S3 is weak. Model fit for reference lakes and Grizzly lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

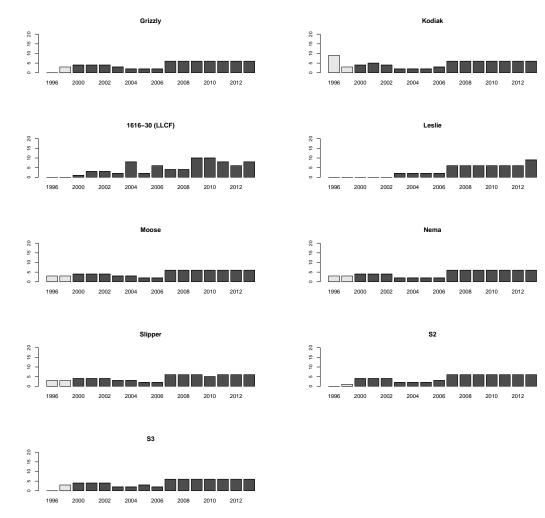
The estimated minimum detectable difference in mean potassium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 5.72E-01 | 5.80E-01 | 9.64E-02 | 4.19E-01 | 8.04E-01 | 2.82E-01       |
| Kodiak  | 1.86E+00 | 1.82E+00 | 2.92E-01 | 1.33E+00 | 2.50E+00 | 8.55E-01       |
| Leslie  | 5.02E+01 | 3.91E+01 | 6.50E+00 | 2.82E+01 | 5.42E+01 | 1.90E+01       |
| Moose   | 4.92E+01 | 3.73E+01 | 6.09E+00 | 2.71E+01 | 5.14E+01 | 1.78E+01       |
| Nema    | 3.49E+01 | 2.13E+01 | 3.48E+00 | 1.55E+01 | 2.93E+01 | 1.02E+01       |
| Slipper | 1.32E+01 | 9.67E+00 | 1.58E+00 | 7.02E+00 | 1.33E+01 | 4.62E+00       |
| S2      | 1.23E+00 | 1.06E+00 | 1.72E-01 | 7.67E-01 | 1.45E+00 | 5.04E-01       |
| S3      | 1.04E+00 | 1.00E+00 | 1.63E-01 | 7.27E-01 | 1.38E+00 | 4.78E-01       |
| Nanuq   | 4.48E-01 | 4.26E-01 | 6.96E-02 | 3.10E-01 | 5.87E-01 |                |
| Counts  | 6.94E-01 | 6.64E-01 | 1.08E-01 | 4.82E-01 | 9.14E-01 |                |
| Vulture | 4.95E-01 | 4.74E-01 | 7.74E-02 | 3.44E-01 | 6.53E-01 |                |
|         |          |          |          |          |          |                |

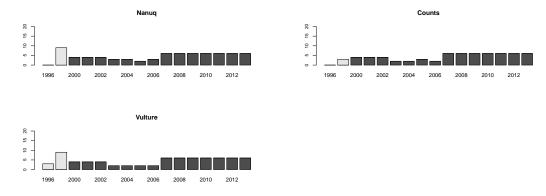
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------|
| Potassium | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressior | #3 shared<br>intercept<br>& slope | NA               | Leslie<br>Moose<br>Nema<br>Slipper          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Potassium in Lakes of the Koala Watershed and Lac de Gras

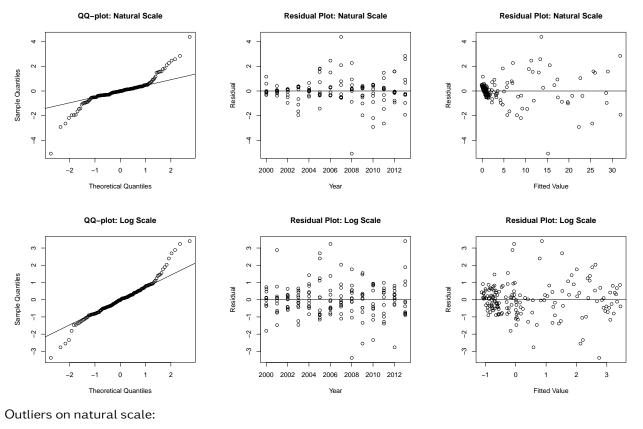
March 4, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

## 1.1 Monitored




## 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



| _ |     | Lake  | Year | Impute | Fitted | Std. Resid. |
|---|-----|-------|------|--------|--------|-------------|
|   | 114 | Moose | 2007 | 18.33  | 13.65  | 4.38        |
|   | 115 | Moose | 2008 | 9.77   | 15.19  | -5.07       |

Outliers on log scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 9.77   | 2.75   | -3.37       |
| 173 | S2    | 2006 | 1.49   | -0.05  | 3.24        |
| 180 | S2    | 2013 | 3.79   | 0.86   | 3.40        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 42.66       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

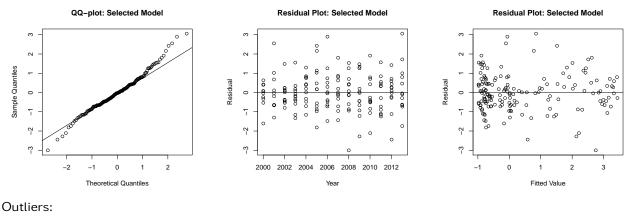
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.07        | 4.00 | 0.90    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 115 | Moose | 2008 | 9.77   | 2.75   | -3.00       |
| 180 | S2    | 2013 | 3.79   | 0.85   | 3.06        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

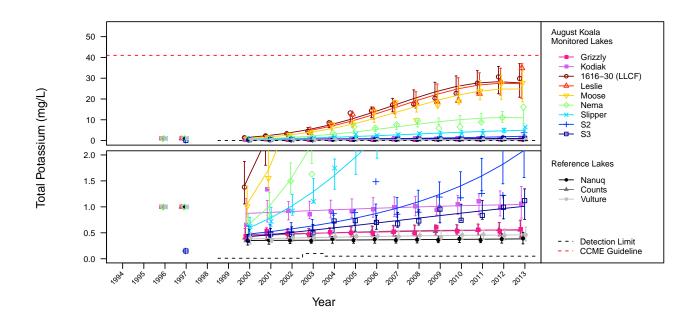
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.0453      | 2  | 0.9776  |
| Kodiak         | 0.0137      | 2  | 0.9932  |
| 1616-30 (LLCF) | 104.2175    | 2  | 0.0000  |
| Leslie         | 107.5316    | 2  | 0.0000  |
| Moose          | 399.7189    | 2  | 0.0000  |
| Nema           | 317.8521    | 2  | 0.0000  |
| Slipper        | 160.5418    | 2  | 0.0000  |
| S2             | 70.7630     | 2  | 0.0000  |
| S3             | 20.1334     | 2  | 0.0000  |

• Conclusions:

All monitored lakes except Grizzly and Kodiak Lake show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1200    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.9850    |
| Monitored Lake    | Grizzly         | 0.4910    |
| Monitored Lake    | Kodiak          | 0.1420    |
| Monitored Lake    | Leslie          | 0.9010    |
| Monitored Lake    | Moose           | 0.9590    |
| Monitored Lake    | Nema            | 0.9200    |
| Monitored Lake    | S2              | 0.7390    |
| Monitored Lake    | S3              | 0.8630    |
| Monitored Lake    | Slipper         | 0.9220    |
|                   |                 |           |

• Conclusions:

Model fit for Grizzly lake is weak. Model fit for reference lakes and Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

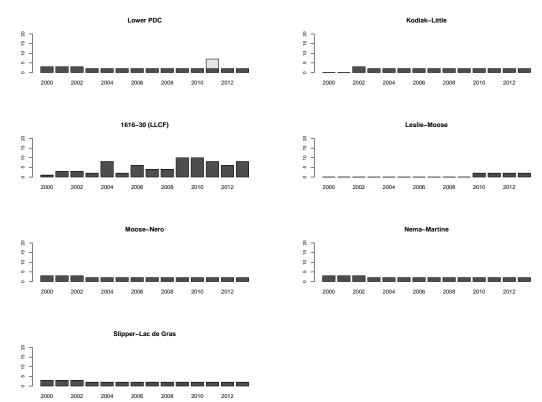
The estimated minimum detectable difference in mean potassium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 5.72E-01 | 5.61E-01 | 8.21E-02 | 4.21E-01 | 7.48E-01 | 2.40E-01       |
| Kodiak         | 1.06E+00 | 1.05E+00 | 1.53E-01 | 7.85E-01 | 1.39E+00 | 4.48E-01       |
| Leslie         | 3.49E+01 | 2.73E+01 | 4.22E+00 | 2.02E+01 | 3.70E+01 | 1.23E+01       |
| 1616-30 (LLCF) | 2.98E+01 | 2.78E+01 | 4.06E+00 | 2.08E+01 | 3.70E+01 | 1.19E+01       |
| Moose          | 2.77E+01 | 2.48E+01 | 3.63E+00 | 1.86E+01 | 3.30E+01 | 1.06E+01       |
| Nema           | 1.61E+01 | 1.10E+01 | 1.60E+00 | 8.23E+00 | 1.46E+01 | 4.70E+00       |
| Slipper        | 6.50E+00 | 4.95E+00 | 7.24E-01 | 3.72E+00 | 6.59E+00 | 2.12E+00       |
| S2             | 3.79E+00 | 2.08E+00 | 3.05E-01 | 1.56E+00 | 2.78E+00 | 8.92E-01       |
| S3             | 1.12E+00 | 1.01E+00 | 1.48E-01 | 7.59E-01 | 1.35E+00 | 4.33E-01       |
| Nanuq          | 3.93E-01 | 3.83E-01 | 5.60E-02 | 2.87E-01 | 5.10E-01 |                |
| Counts         | 5.55E-01 | 5.50E-01 | 8.05E-02 | 4.13E-01 | 7.33E-01 |                |
| Vulture        | 4.60E-01 | 4.60E-01 | 6.73E-02 | 3.45E-01 | 6.12E-01 |                |

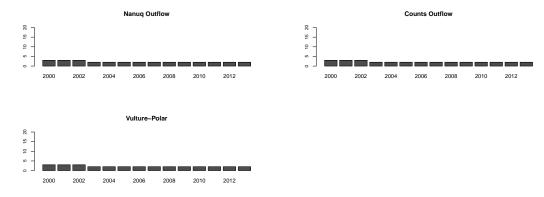
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                      |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|------------------------------------------------------------------|
| Potassium | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | 1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Potassium in Koala Watershed Streams

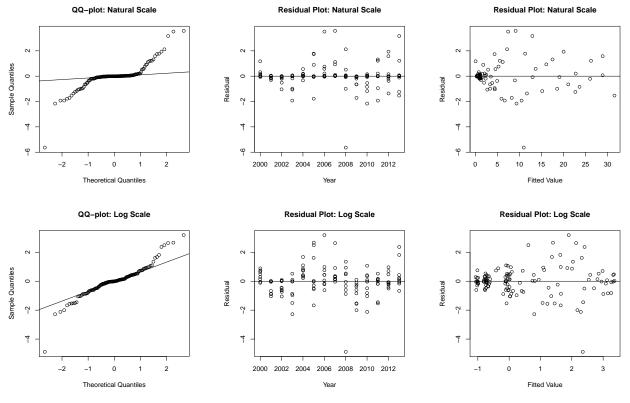
### January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Lower PDC was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake         | Year | Impute | Fitted | Std. Resid. |
|-----|--------------|------|--------|--------|-------------|
| 113 | Moose-Nero   | 2006 | 11.40  | 7.44   | 3.52        |
| 114 | Moose-Nero   | 2007 | 13.15  | 9.13   | 3.57        |
| 115 | Moose-Nero   | 2008 | 4.64   | 10.98  | -5.64       |
| 160 | Nema-Martine | 2013 | 16.50  | 12.94  | 3.17        |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 11.40  | 1.90   | 3.19        |
| 115 | Moose-Nero | 2008 | 4.64   | 2.35   | -4.88       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

The natural and log transformed models show dependence on year and fitted value. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using the log transformed model. Results should be interpreted with caution.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 30.12       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

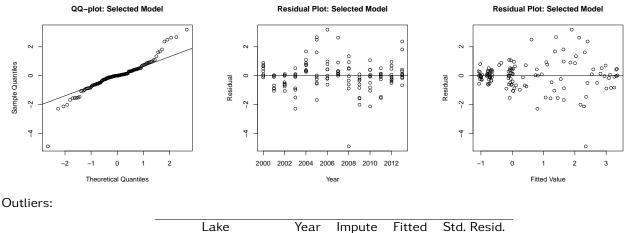
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.16        | 4.00 | 1.00    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.019        | 0.981        | 0.000        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



 Lake
 Year
 Impute
 Fitted
 Std. Resid.

 113
 Moose-Nero
 2006
 11.40
 1.90
 3.19

 115
 Moose-Nero
 2008
 4.64
 2.35
 -4.88

Conclusion:

The reduced model shows dependence on year. Results should be interpreted with caution.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

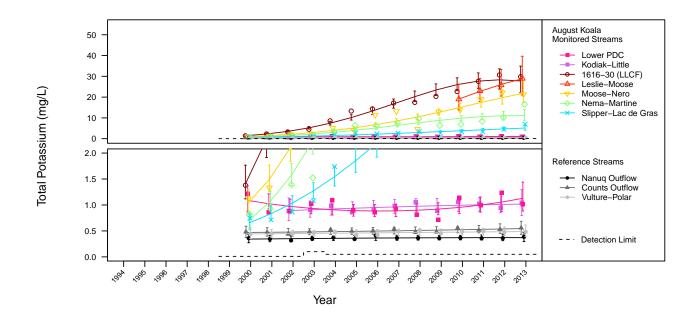
• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 2.4973      | 2  | 0.2869  |
| Kodiak-Little       | 0.0713      | 2  | 0.9650  |
| Leslie-Moose        | 2.9037      | 2  | 0.2341  |
| 1616-30 (LLCF)      | 332.8490    | 2  | 0.0000  |
| Moose-Nero          | 323.0714    | 2  | 0.0000  |
| Nema-Martine        | 277.2374    | 2  | 0.0000  |
| Slipper-Lac de Gras | 139.6492    | 2  | 0.0000  |

• Conclusions:

All monitored streams except Kodiak-Little, Lower PDC, and Leslie-Moose show significant deviation from the common slope of reference streams.

# 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Name         | R-squared                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------|
| (more than one)     | 0.8950                                                                                                        |
| 1616-30 (LLCF)      | 0.9850                                                                                                        |
| Kodiak-Little       | 0.3470                                                                                                        |
| Leslie-Moose        | 0.9970                                                                                                        |
| Lower PDC           | 0.2600                                                                                                        |
| Moose-Nero          | 0.9020                                                                                                        |
| Nema-Martine        | 0.9190                                                                                                        |
| Slipper-Lac de Gras | 0.9100                                                                                                        |
|                     | (more than one)<br>1616-30 (LLCF)<br>Kodiak-Little<br>Leslie-Moose<br>Lower PDC<br>Moose-Nero<br>Nema-Martine |

#### • Conclusions:

Model fit for Kodiak-Little and Lower PDC is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

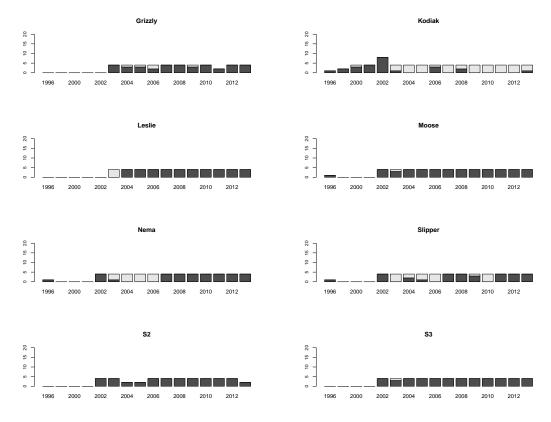
The estimated minimum detectable difference in mean potassium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | <u> </u> | <b>-</b> | 0F F.    |          |          |                |
|---------------------|----------|----------|----------|----------|----------|----------------|
|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
| Lower PDC           | 1.01E+00 | 1.13E+00 | 1.40E-01 | 8.84E-01 | 1.44E+00 | 4.11E-01       |
| Kodiak-Little       | 1.04E+00 | 1.02E+00 | 1.25E-01 | 7.98E-01 | 1.29E+00 | 3.67E-01       |
| Leslie-Moose        | 2.89E+01 | 2.88E+01 | 4.69E+00 | 2.10E+01 | 3.97E+01 | 1.37E+01       |
| 1616-30 (LLCF)      | 2.98E+01 | 2.78E+01 | 3.24E+00 | 2.21E+01 | 3.49E+01 | 9.49E+00       |
| Moose-Nero          | 2.13E+01 | 2.19E+01 | 2.55E+00 | 1.74E+01 | 2.75E+01 | 7.48E+00       |
| Nema-Martine        | 1.65E+01 | 1.11E+01 | 1.30E+00 | 8.84E+00 | 1.40E+01 | 3.79E+00       |
| Slipper-Lac de Gras | 6.94E+00 | 5.12E+00 | 5.97E-01 | 4.07E+00 | 6.43E+00 | 1.75E+00       |
| Nanuq Outflow       | 3.86E-01 | 3.71E-01 | 4.33E-02 | 2.95E-01 | 4.66E-01 |                |
| Counts Outflow      | 5.58E-01 | 5.45E-01 | 6.36E-02 | 4.34E-01 | 6.85E-01 |                |
| Vulture-Polar       | 4.82E-01 | 4.89E-01 | 5.70E-02 | 3.89E-01 | 6.14E-01 |                |

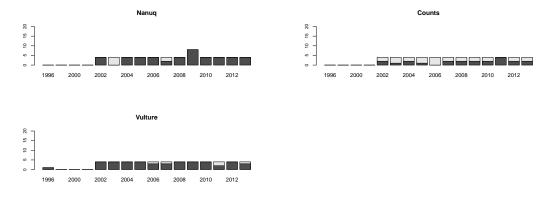
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------------------------------------------------|
| Potassium | August | Koala     | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Ammonia-N in Lakes of the Koala Watershed and Lac de Gras

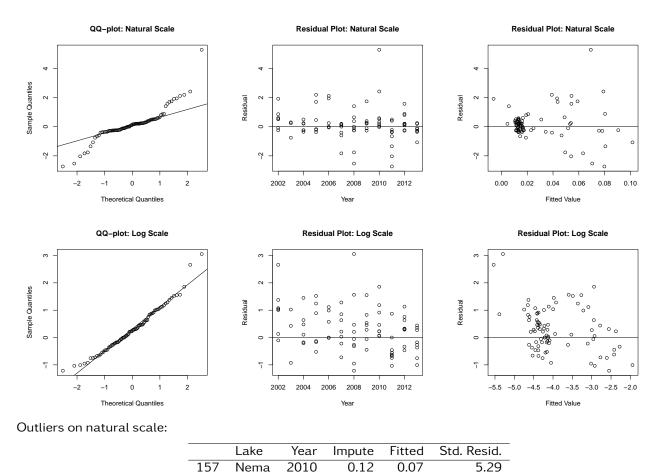
January 9, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Kodiak Lake was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Counts, Nanuq, Grizzly, Nema, and Slipper lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 215 | Slipper | 2008 | 0.02   | -5.29  | 3.06        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 2.00E-107 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 108192.32  | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 108744.96  | 4.00 | 0.00    |

#### • Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.895        | 0.105        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Grizzly | 1.1149      | 2  | 0.5727  |
| Leslie  | 24.1879     | 2  | 0.0000  |
| Moose   | 6.2010      | 2  | 0.0450  |
| Nema    | 68.6440     | 2  | 0.0000  |
| Slipper | 15.3835     | 2  | 0.0005  |
| S2      | 1.7796      | 2  | 0.4107  |
| S3      | 0.1438      | 2  | 0.9306  |
|         |             |    |         |

#### • Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

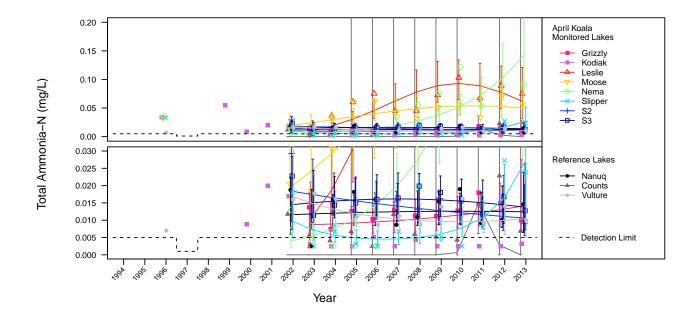
• Results:

|                    | Chi-squared | DF | P-value |
|--------------------|-------------|----|---------|
| Leslie-vs-Nanuq    | 64.9313     | 3  | 0.0000  |
| Leslie-vs-Counts   | 33002.4286  | 3  | 0.0000  |
| Leslie-vs-Vulture  | 76.0592     | 3  | 0.0000  |
| Moose-vs-Nanuq     | 43.4026     | 3  | 0.0000  |
| Moose-vs-Counts    | 57614.2999  | 3  | 0.0000  |
| Moose-vs-Vulture   | 50.9104     | 3  | 0.0000  |
| Nema-vs-Nanuq      | 48.3029     | 3  | 0.0000  |
| Nema-vs-Counts     | 56663.5906  | 3  | 0.0000  |
| Nema-vs-Vulture    | 57.9909     | 3  | 0.0000  |
| Slipper-vs-Nanuq   | 12.7700     | 3  | 0.0052  |
| Slipper-vs-Counts  | 55582.3290  | 3  | 0.0000  |
| Slipper-vs-Vulture | 11.2487     | 3  | 0.0105  |

• Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviations from the slopes of individual reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.5000    |
| Reference Lake | Nanuq     | 0.0060    |
| Reference Lake | Vulture   | 0.4060    |
| Monitored Lake | Grizzly   | 0.3680    |
| Monitored Lake | Leslie    | 0.5810    |
| Monitored Lake | Moose     | 0.5470    |
| Monitored Lake | Nema      | 0.6040    |
| Monitored Lake | S2        | 0.3560    |
| Monitored Lake | S3        | 0.0700    |
| Monitored Lake | Slipper   | 0.3790    |
|                |           |           |

• Conclusions:

Model fit for Vulture, Grizzly, Slipper and S2 is weak. Model fit for Nanuq and S3 Lake is poor.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

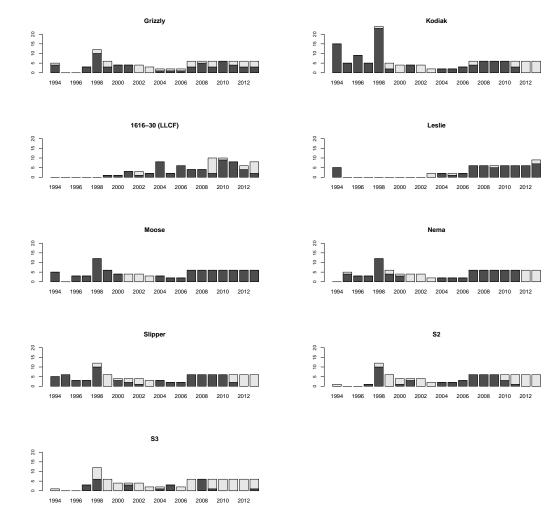
The estimated minimum detectable difference in mean total ammonia-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower     | Upper     | Min. Det. Diff |
|---------|----------|----------|----------|-----------|-----------|----------------|
| Grizzly | 9.97e-03 | 1.40e-02 | 4.82e-03 | 7.13e-03  | 2.75e-02  | 1.41e-02       |
| Kodiak  | 3.25e-03 | NA       | NA       | NA        | NA        | NA             |
| Leslie  | 7.54e-02 | 6.19e-02 | 2.12e-02 | 3.16e-02  | 1.21e-01  | 6.20e-02       |
| Moose   | 5.63e-02 | 4.99e-02 | 1.65e-02 | 2.60e-02  | 9.56e-02  | 4.84e-02       |
| Nema    | 9.09e-02 | 1.43e-01 | 4.75e-02 | 7.45e-02  | 2.74e-01  | 1.39e-01       |
| Slipper | 2.39e-02 | 2.70e-02 | 9.05e-03 | 1.40e-02  | 5.21e-02  | 2.65e-02       |
| S2      | 9.00e-03 | 1.06e-02 | 3.52e-03 | 5.54e-03  | 2.03e-02  | 1.03e-02       |
| S3      | 1.27e-02 | 1.38e-02 | 4.57e-03 | 7.19e-03  | 2.64e-02  | 1.34e-02       |
| Nanuq   | 1.46e-02 | 1.24e-02 | 4.13e-03 | 6.49e-03  | 2.39e-02  | NA             |
| Counts  | 6.88e-03 | 4.25e-06 | 6.84e-04 | 3.62e-143 | 4.98e+131 | NA             |
| Vulture | 9.92e-03 | 1.05e-02 | 4.02e-03 | 4.94e-03  | 2.22e-02  | NA             |

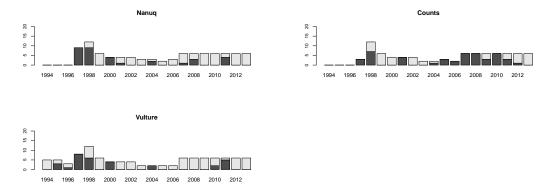
# 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|---------------------------------------------|------------------|---------------------------------------------------------|
| AmmoniaN  | April | Koala     | Lake          | Water    | Kodiak                        | log e                       | Tobit<br>regressio | #1b<br>separate<br>n intercepts<br>& slopes | NA               | Leslie<br>Moose<br>Nema<br>Slipper                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Ammonia-N in Lakes of the Koala Watershed and Lac de Gras

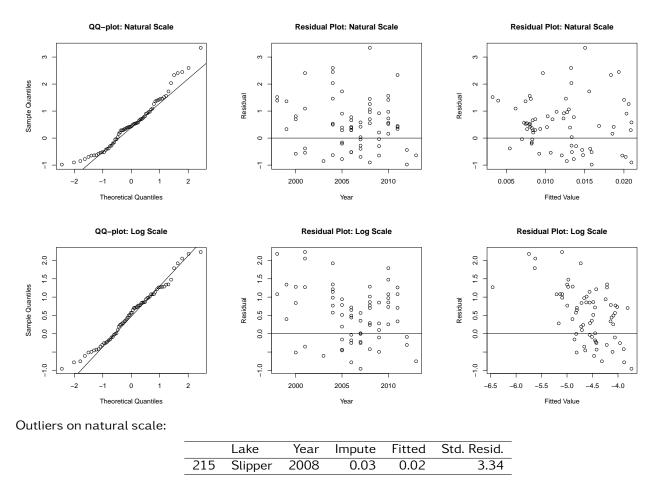
January 9, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Nanuq, Vulture, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data inGrizzly, Kodiak, Leslie, Moose, Nema, Slipper, and S2 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

# 3 Comparisons within Reference Lakes

Two of three reference lakes were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.9047      | 2  | 0.6361  |
| Kodiak         | 2.4251      | 2  | 0.2974  |
| 1616-30 (LLCF) | 2.9341      | 2  | 0.2306  |
| Leslie         | 4.7056      | 2  | 0.0951  |
| Moose          | 12.5990     | 2  | 0.0018  |
| Nema           | 4.5802      | 2  | 0.1013  |
| Slipper        | 11.5367     | 2  | 0.0031  |
| S2             | 2.0386      | 2  | 0.3608  |

• Conclusions:

Moose and Slipper lakes show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

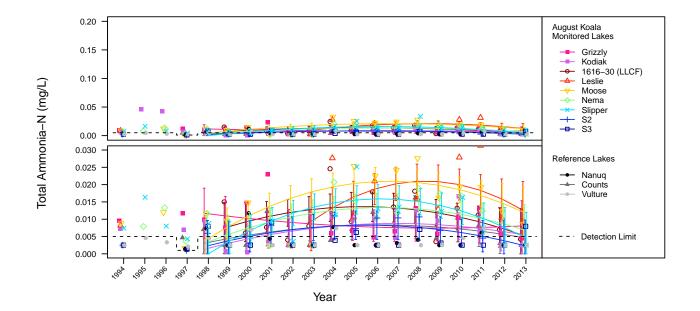
• Results:

|                   | Chi-squared | DF | P-value |
|-------------------|-------------|----|---------|
| Moose-vs-Counts   | 24.8499     | 3  | 0.0000  |
| Slipper-vs-Counts | 6.7890      | 3  | 0.0789  |

• Conclusions:

Moose Lake shows significant deviation from the slope of the reference lake.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake TypeLake NameR-squaredReference LakeCounts0.1430Monitored Lake1616-30 (LLCF)0.1740Monitored LakeGrizzly0.0660Monitored LakeKodiak0.2140Monitored LakeLeslie0.1820Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900Monitored LakeSlipper0.3150 |                |                |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------|
| Monitored Lake1616-30 (LLCF)0.1740Monitored LakeGrizzly0.0660Monitored LakeKodiak0.2140Monitored LakeLeslie0.1820Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                 | Lake Type      | Lake Name      | R-squared |
| Monitored LakeGrizzly0.0660Monitored LakeKodiak0.2140Monitored LakeLeslie0.1820Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                                                   | Reference Lake | Counts         | 0.1430    |
| Monitored LakeKodiak0.2140Monitored LakeLeslie0.1820Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                                                                              | Monitored Lake | 1616-30 (LLCF) | 0.1740    |
| Monitored LakeLeslie0.1820Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                                                                                                        | Monitored Lake | Grizzly        | 0.0660    |
| Monitored LakeMoose0.2940Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                                                                                                                                  | Monitored Lake | Kodiak         | 0.2140    |
| Monitored LakeNema0.2210Monitored LakeS20.3900                                                                                                                                                                                                                           | Monitored Lake | Leslie         | 0.1820    |
| Monitored Lake S2 0.3900                                                                                                                                                                                                                                                 | Monitored Lake | Moose          | 0.2940    |
|                                                                                                                                                                                                                                                                          | Monitored Lake | Nema           | 0.2210    |
| Monitored Lake Slipper 0.3150                                                                                                                                                                                                                                            | Monitored Lake | S2             | 0.3900    |
|                                                                                                                                                                                                                                                                          | Monitored Lake | Slipper        | 0.3150    |

#### • Conclusions:

Model fit for Kodiak, Moose, Nema, Slipper, and S2 is weak. Model fit for Counts, 1616-30 (LLCF), Grizzly, and Leslie Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

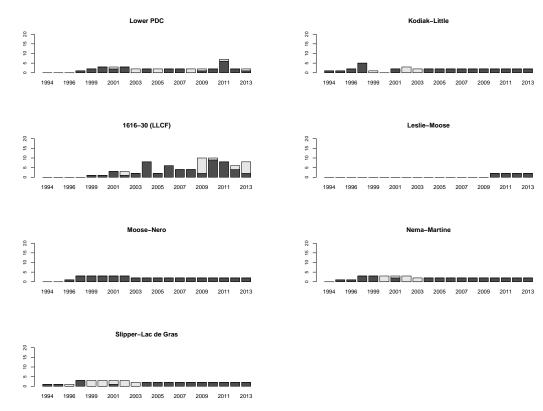
The estimated minimum detectable difference in mean total ammonia-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 4.57e-03 | 8.05e-03 | 3.71e-03 | 7.76e-04 | 1.53e-02 | 1.09e-02       |
| Kodiak         | 2.50e-03 | 5.54e-03 | 3.78e-03 | 0.00e+00 | 1.30e-02 | 1.11e-02       |
| Leslie         | 9.52e-03 | 1.26e-02 | 4.23e-03 | 4.34e-03 | 2.09e-02 | 1.24e-02       |
| 1616-30 (LLCF) | 4.21e-03 | 5.60e-03 | 3.82e-03 | 0.00e+00 | 1.31e-02 | 1.12e-02       |
| Moose          | 8.53e-03 | 1.21e-02 | 3.69e-03 | 4.85e-03 | 1.93e-02 | 1.08e-02       |
| Nema           | 2.50e-03 | 6.88e-03 | 3.77e-03 | 0.00e+00 | 1.43e-02 | 1.10e-02       |
| Slipper        | 2.50e-03 | 4.57e-03 | 3.78e-03 | 0.00e+00 | 1.20e-02 | 1.11e-02       |
| S2             | 2.50e-03 | 2.34e-03 | 3.79e-03 | 0.00e+00 | 9.77e-03 | 1.11e-02       |
| Nanuq          | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.50e-03 | 4.80e-03 | 3.77e-03 | 0.00e+00 | 1.22e-02 | NA             |
| Vulture        | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |

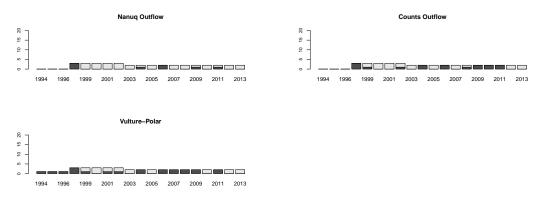
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------|---------------------------------------------|
| AmmoniaN  | August | Koala     | Lake          | Water    | Nanuq<br>Vulture S3           | none                        | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Moose                                       |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Ammonia-N in Koala Watershed Streams

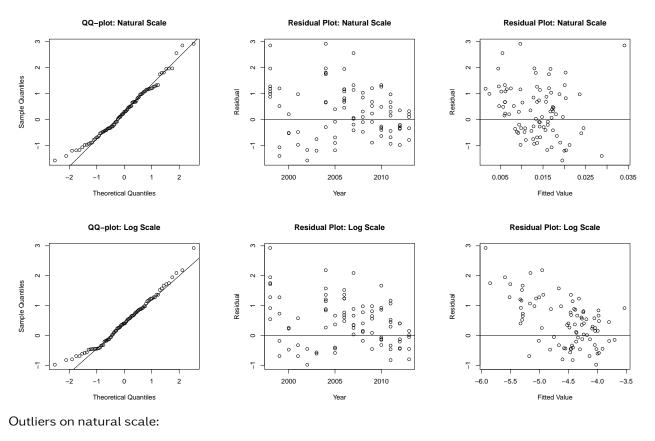
January 11, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Nanuq Outflow was less than the detection limit. This stream was excluded from further analyses. 10-60% of data in Counts Outflow, Vulture-Polar, 1616-30 (LLCF), Kodiak-Little, Lower PDC, Nema-Martine, and Slipper-Lac de Gras was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



None

#### Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year and fitted value. AIC reveals that the data is modeled best without transformation. Proceeding with analysis using the natural, untransformed model. Results should be interpreted with caution.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

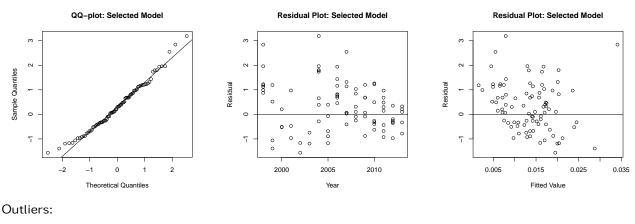
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.21        | 3.00 | 0.75    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.072        | 0.140        | 0.788        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



|     | Lake          | Year | Impute | Fitted | Std. Resid. |
|-----|---------------|------|--------|--------|-------------|
| 191 | Vulture-Polar | 2004 | 0.03   | 0.01   | 3.19        |

Conclusion:

Reduced model shows dependence on year and fitted value. Results should be interpreted with caution.

# 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 33.7896     | 3  | 0.0000  |
| Kodiak-Little       | 7.5908      | 3  | 0.0553  |
| Leslie-Moose        | 1.3926      | 3  | 0.7073  |
| 1616-30 (LLCF)      | 4.6226      | 3  | 0.2016  |
| Moose-Nero          | 36.7780     | 3  | 0.0000  |
| Nema-Martine        | 13.0459     | 3  | 0.0045  |
| Slipper-Lac de Gras | 12.4099     | 3  | 0.0061  |

#### • Conclusions:

All monitored streams except 1616-30 (LLCF) and Leslie-Moose show significant deviation from the common slope and intercept of reference streams.

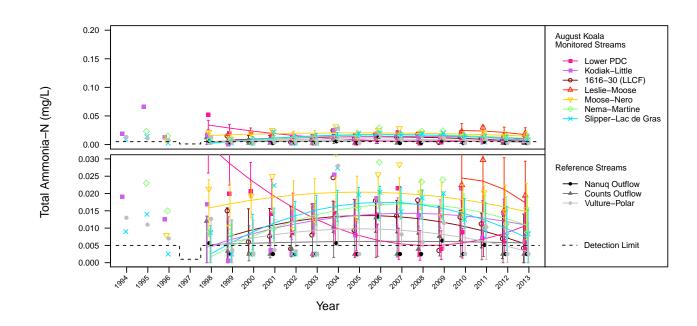
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 23.4551     | 2  | 0.0000  |
| Kodiak-Little       | 1.3483      | 2  | 0.5096  |
| Leslie-Moose        | 0.3611      | 2  | 0.8348  |
| 1616-30 (LLCF)      | 0.5591      | 2  | 0.7561  |
| Moose-Nero          | 0.1059      | 2  | 0.9484  |
| Nema-Martine        | 3.8874      | 2  | 0.1432  |
| Slipper-Lac de Gras | 3.2597      | 2  | 0.1960  |
|                     |             |    |         |

• Conclusions:

When allowing for differences in intercept, Lower PDC shows significant deviation from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.0380    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.1730    |
| Monitored Stream    | Kodiak-Little       | 0.1330    |
| Monitored Stream    | Leslie-Moose        | 0.2680    |
| Monitored Stream    | Lower PDC           | 0.5450    |
| Monitored Stream    | Moose-Nero          | 0.0740    |
| Monitored Stream    | Nema-Martine        | 0.3510    |
| Monitored Stream    | Slipper-Lac de Gras | 0.3230    |
|                     |                     |           |

#### • Conclusions:

Model fit for Leslie-Moose, Nema-Martine, and Slipper-Lac de Gras is weak. Model fit for reference streams, 1616-30 (LLCF), Kodiak-Little, and Moose-Nero is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

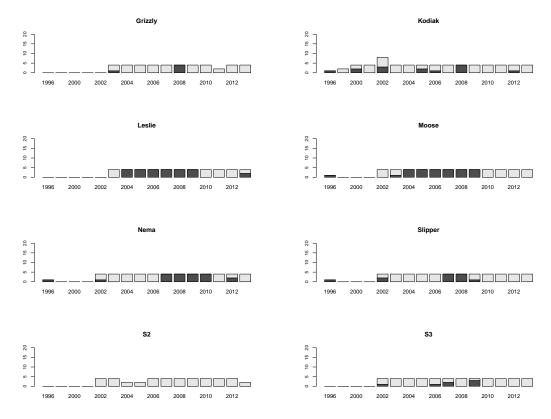
The estimated minimum detectable difference in mean total ammonia-N for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 3.95e-03 | 1.07e-02 | 4.19e-03 | 2.48e-03 | 1.89e-02 | 1.23e-02       |
| Kodiak-Little       | 6.05e-03 | 1.10e-02 | 4.17e-03 | 2.78e-03 | 1.91e-02 | 1.22e-02       |
| Leslie-Moose        | 1.94e-02 | 1.74e-02 | 6.11e-03 | 5.38e-03 | 2.93e-02 | 1.79e-02       |
| 1616-30 (LLCF)      | 4.21e-03 | 5.59e-03 | 4.31e-03 | 0.00e+00 | 1.40e-02 | 1.26e-02       |
| Moose-Nero          | 1.54e-02 | 1.48e-02 | 4.17e-03 | 6.59e-03 | 2.29e-02 | 1.22e-02       |
| Nema-Martine        | 8.75e-03 | 1.08e-02 | 4.17e-03 | 2.65e-03 | 1.90e-02 | 1.22e-02       |
| Slipper-Lac de Gras | 8.35e-03 | 7.06e-03 | 4.17e-03 | 0.00e+00 | 1.52e-02 | 1.22e-02       |
| Nanuq Outflow       | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 2.50e-03 | 5.70e-03 | 4.25e-03 | 0.00e+00 | 1.40e-02 | NA             |
| Vulture-Polar       | 2.50e-03 | 3.18e-03 | 4.26e-03 | 0.00e+00 | 1.15e-02 | NA             |

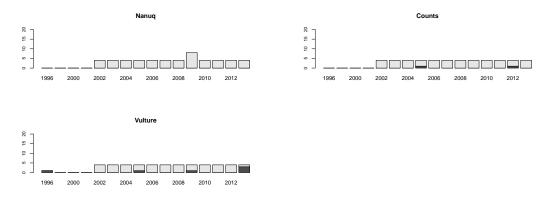
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                   |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|-------------------------------------------------------------------------------|
| AmmoniaN  | August | Koala     | Stream        | Water    | Nanuq<br>Outflow              | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope | NA               | Lower PDC<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Nitrite-N in Lakes of the Koala Watershed and Lac de Gras

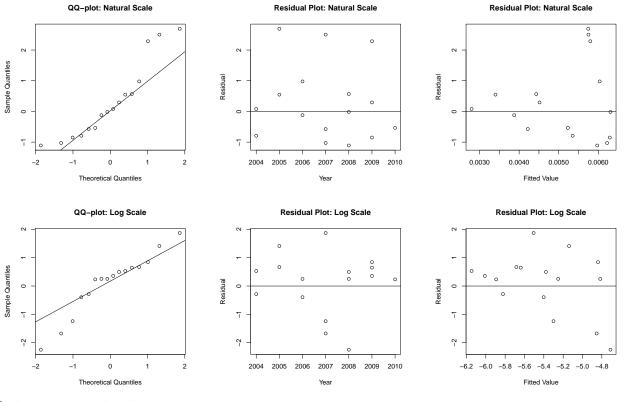
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Leslie, Moose, and Nema Lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 3.90E-24  | natural model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

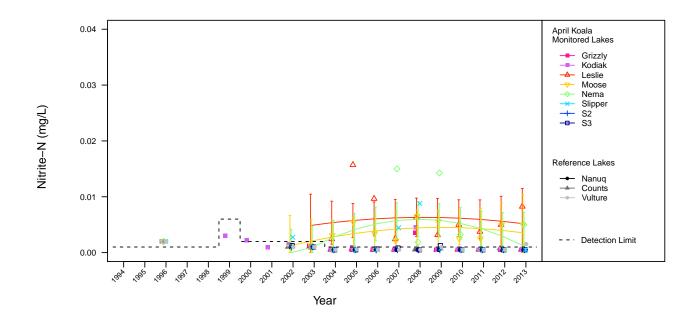
• Results:

|        | Chi-squared | DF | P-value |
|--------|-------------|----|---------|
| Leslie | 0.1627      | 2  | 0.9219  |
| Moose  | 0.8567      | 2  | 0.6516  |
| Nema   | 4.0886      | 2  | 0.1295  |

#### • Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Leslie    | 0.0140    |
| Monitored Lake | Moose     | 0.3250    |
| Monitored Lake | Nema      | 0.1860    |

• Conclusions:

Model fit for Moose Lake is weak. Model fit for Leslie and Nema lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

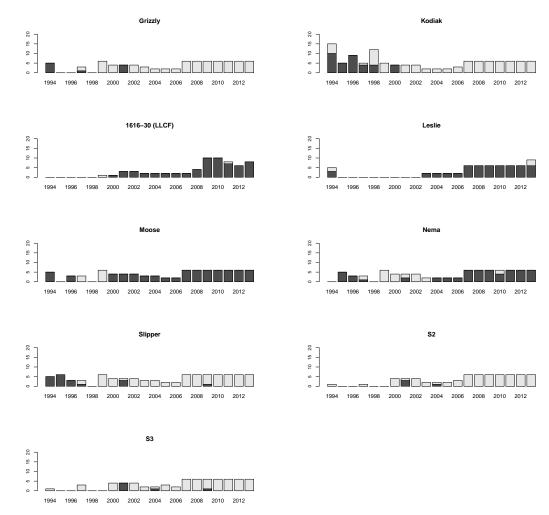
The estimated minimum detectable difference in mean nitrite-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|-------|----------|----------------|
| Grizzly | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| Kodiak  | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| Leslie  | 8.25e-03 | 5.20e-03 | 3.21e-03 | 0e+00 | 1.15e-02 | 9.39e-03       |
| Moose   | 5.00e-03 | 3.56e-03 | 3.50e-03 | 0e+00 | 1.04e-02 | 1.02e-02       |
| Nema    | 5.00e-03 | 1.17e-03 | 3.08e-03 | 0e+00 | 7.20e-03 | 9.01e-03       |
| Slipper | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| S2      | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| S3      | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| Nanuq   | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| Counts  | 5.00e-04 | NA       | NA       | NA    | NA       | NA             |
| Vulture | 1.52e-03 | NA       | NA       | NA    | NA       | NA             |

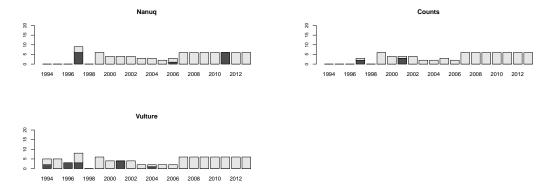
# 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                    | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| NitriteN  | April | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Kodiak<br>Nanuq S2<br>S3 Slipper<br>Vulture | none                        | Tobit<br>regressior | #1a slope<br>of zero | 0.06             | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrite-N in Lakes of the Koala Watershed and Lac de Gras

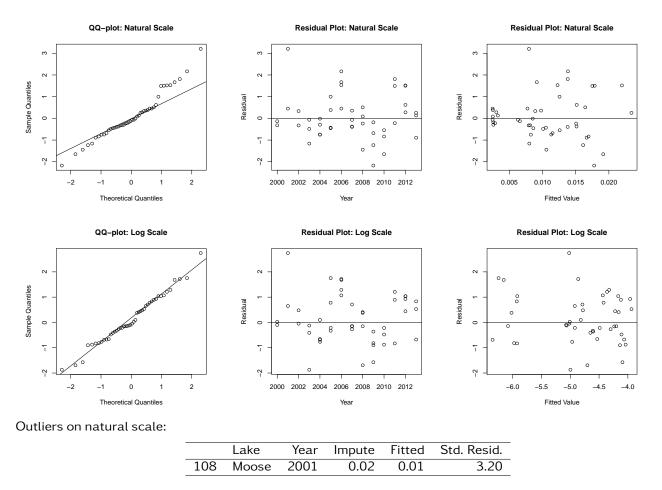
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Nema Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

# 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis uisng reference model 1a, comparing slopes of each monitored lake against a slope of 0.

### 4 Test Results for Monitored Lakes

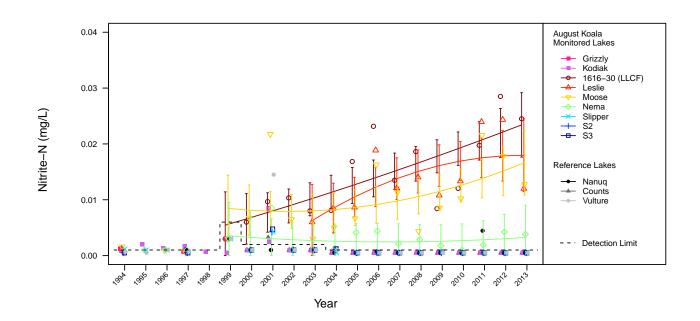
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-30 (LLCF) | 24.2595     | 2  | 0.0000  |
| Leslie         | 8.6977      | 2  | 0.0129  |
| Moose          | 6.2091      | 2  | 0.0448  |
| Nema           | 0.0826      | 2  | 0.9595  |

• Conclusions: Leslie and Moose lakes show significant deviation from a slope of zero.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.5890    |
| Monitored Lake | Leslie         | 0.4340    |
| Monitored Lake | Moose          | 0.2040    |
| Monitored Lake | Nema           | 0.0280    |

• Conclusions:

Model fit for Leslie Lake is weak. Model fit for Moose and Nema lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

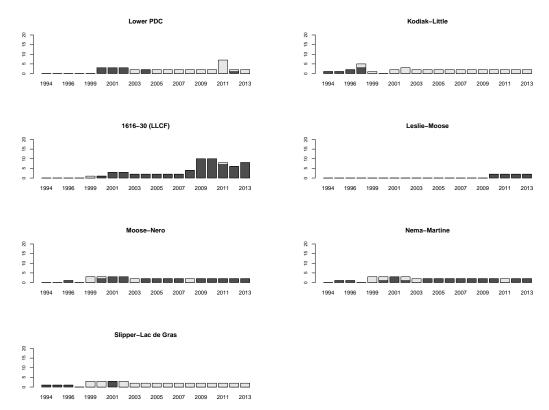
The estimated minimum detectable difference in mean nitrite-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Leslie         | 1.20e-02 | 1.80e-02 | 3.33e-03 | 1.14e-02 | 2.45e-02 | 9.73e-03       |
| 1616-30 (LLCF) | 2.45e-02 | 2.34e-02 | 2.94e-03 | 1.76e-02 | 2.92e-02 | 8.61e-03       |
| Moose          | 1.28e-02 | 1.66e-02 | 2.94e-03 | 1.09e-02 | 2.24e-02 | 8.61e-03       |
| Nema           | 3.82e-03 | 3.25e-03 | 2.94e-03 | 0.00e+00 | 9.02e-03 | 8.61e-03       |
| Nanuq          | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |

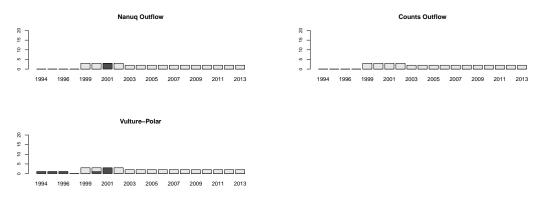
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                       | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|---------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| NitriteN  | August | Koala     | Lake          | Water    | Nanuq<br>Counts<br>Vulture<br>Grizzly<br>Kodiak<br>Slipper S2<br>S3 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.06             | 1616-30<br>(LLCF)<br>Leslie<br>Moose        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrite-N in Koala Watershed Streams

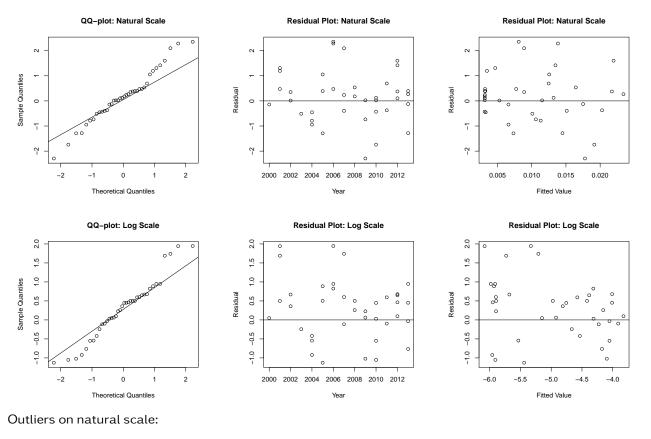
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, Vulture-Polar, Kodiak-Little, Lower PDC, and Slipper-Lac de Gras streams was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Moose-Nero and Nema-Martine was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| _ |               | Un-transformed Model | Log-transformed Model | Best Model           |
|---|---------------|----------------------|-----------------------|----------------------|
| _ | Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

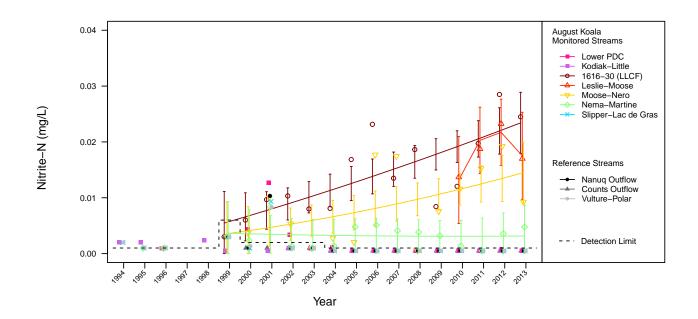
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Leslie-Moose   | 2.5374      | 2  | 0.2812  |
| 1616-30 (LLCF) | 26.8932     | 2  | 0.0000  |
| Moose-Nero     | 10.0838     | 2  | 0.0065  |
| Nema-Martine   | 0.0238      | 2  | 0.9882  |

#### • Conclusions:

1616-30 (LLCF) and Moose-Nero show significant deviations from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.5880    |
| Monitored Lake | Leslie-Moose   | 0.8900    |
| Monitored Lake | Moose-Nero     | 0.2890    |
| Monitored Lake | Nema-Martine   | 0.0070    |

• Conclusions:

Model fit for Moose-Nero is weak. Model fit for Nema-Martine is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

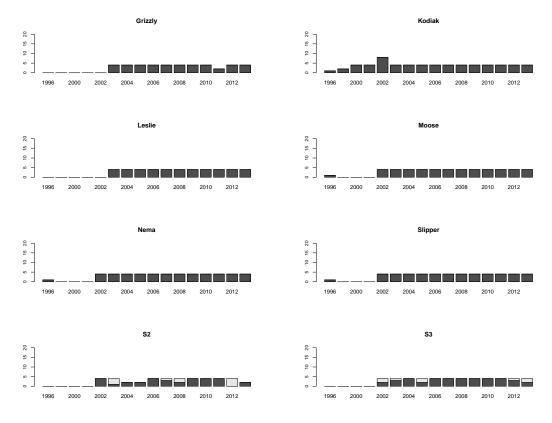
The estimated minimum detectable difference in mean nitrite-N for each monitored stream in 2013. Reference streams are shown for comparison.

|                       | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|-----------------------|----------|----------|----------|----------|----------|----------------|
| Leslie-Moose          | 1.70e-02 | 1.75e-02 | 3.98e-03 | 9.71e-03 | 2.53e-02 | 1.16e-02       |
| 1616-30 (LLCF)        | 2.45e-02 | 2.34e-02 | 2.79e-03 | 1.79e-02 | 2.89e-02 | 8.17e-03       |
| Moose-Nero            | 9.25e-03 | 1.45e-02 | 2.79e-03 | 9.03e-03 | 2.00e-02 | 8.17e-03       |
| Nema-Martine          | 4.75e-03 | 3.15e-03 | 2.79e-03 | 0.00e+00 | 8.62e-03 | 8.17e-03       |
| Nanuq Outflow         | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |
| <b>Counts Outflow</b> | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar         | 5.00e-04 | NA       | NA       | NA       | NA       | NA             |

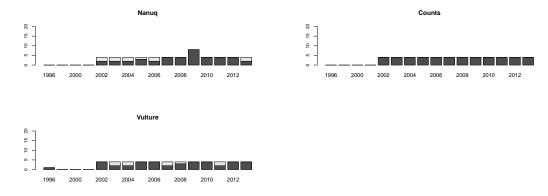
| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                                                              | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------|
| NitriteN  | August | Koala     | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar<br>Kodiak-<br>Little<br>Lower PDC<br>Slipper-<br>Lac de<br>Gras | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.06             | 1616-30<br>(LLCF)<br>Moose-<br>Nero                     |

# 8 Final Summary Table

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Nitrate-N in Lakes of the Koala Watershed and Lac de Gras

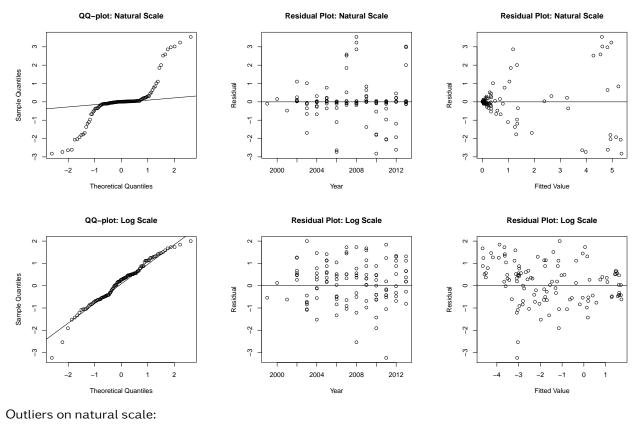
January 20, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Nanuq, Vulture, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Initial Model Fit



|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 95  | Leslie | 2008 | 6.17   | 4.97   | 3.23        |
| 115 | Moose  | 2008 | 5.92   | 4.60   | 3.54        |
| 120 | Moose  | 2013 | 5.74   | 4.62   | 3.02        |

Outliers on log scale:

|    | Lake    | Year | Impute | Fitted | Std. Resid. |
|----|---------|------|--------|--------|-------------|
| 58 | Grizzly | 2011 | 0.01   | -3.07  | -3.23       |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 3.94E-44      | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 14.09      | 6.00 | 0.03    |

#### • Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 12.91      | 4.00 | 0.01    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Grizzly | 0.2683      | 2  | 0.8744  |
| Kodiak  | 25.1978     | 2  | 0.0000  |
| Leslie  | 10.0252     | 2  | 0.0067  |
| Moose   | 11.9580     | 2  | 0.0025  |
| Nema    | 10.2289     | 2  | 0.0060  |
| Slipper | 13.0883     | 2  | 0.0014  |
| S2      | 1.2213      | 2  | 0.5430  |
| S3      | 21.0420     | 2  | 0.0000  |
|         |             |    |         |

• Conclusions:

Kodiak, Leslie, Moose, Nema, Slipper, and S3 show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

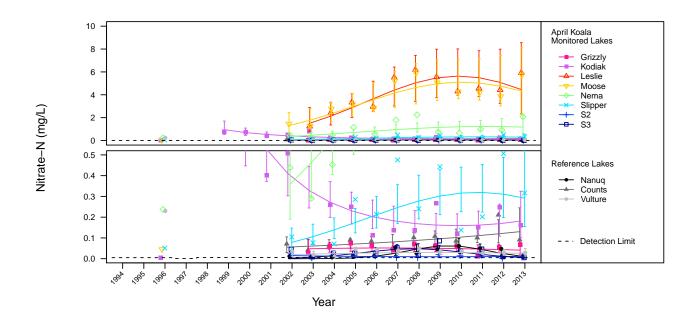
• Results:

|                    | Chi-squared | DF | P-value |
|--------------------|-------------|----|---------|
| Kodiak-vs-Nanuq    | 19.2921     | 3  | 0.0002  |
| Kodiak-vs-Counts   | 42.2501     | 3  | 0.0000  |
| Kodiak-vs-Vulture  | 141.9559    | 3  | 0.0000  |
| Leslie-vs-Nanuq    | 39.8439     | 3  | 0.0000  |
| Leslie-vs-Counts   | 422.8911    | 3  | 0.0000  |
| Leslie-vs-Vulture  | 647.7299    | 3  | 0.0000  |
| Moose-vs-Nanuq     | 40.0129     | 3  | 0.0000  |
| Moose-vs-Counts    | 436.0789    | 3  | 0.0000  |
| Moose-vs-Vulture   | 674.4815    | 3  | 0.0000  |
| Nema-vs-Nanuq      | 23.0277     | 3  | 0.0000  |
| Nema-vs-Counts     | 168.4749    | 3  | 0.0000  |
| Nema-vs-Vulture    | 342.4058    | 3  | 0.0000  |
| Slipper-vs-Nanuq   | 13.3719     | 3  | 0.0039  |
| Slipper-vs-Counts  | 28.4592     | 3  | 0.0000  |
| Slipper-vs-Vulture | 125.2804    | 3  | 0.0000  |
| S3-vs-Nanuq        | 8.5304      | 3  | 0.0362  |
| S3-vs-Counts       | 64.2841     | 3  | 0.0000  |
| S3-vs-Vulture      | 12.6326     | 3  | 0.0055  |

• Conclusions:

All of the remaining monitored lakes show significant deviations from the slopes of individual reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.4550    |
| Reference Lake | Nanuq     | 0.5890    |
| Reference Lake | Vulture   | 0.1520    |
| Monitored Lake | Grizzly   | 0.0160    |
| Monitored Lake | Kodiak    | 0.7160    |
| Monitored Lake | Leslie    | 0.8210    |
| Monitored Lake | Moose     | 0.8170    |
| Monitored Lake | Nema      | 0.4190    |
| Monitored Lake | S2        | 0.0460    |
| Monitored Lake | S3        | 0.5120    |
| Monitored Lake | Slipper   | 0.4870    |
|                |           |           |

• Conclusions:

Model fit for Counts, Nema, and Slipper lakes is weak. Model fit for Vulture, Grizzly, and S2 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

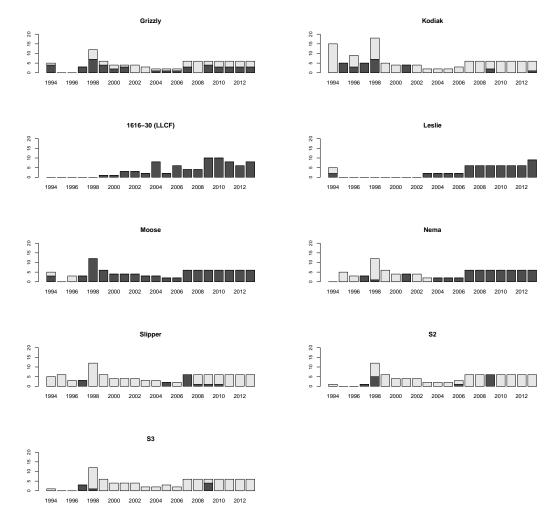
The estimated minimum detectable difference in mean nitrate-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 6.73e-02 | 4.13e-02 | 1.37e-02 | 2.15e-02 | 7.92e-02 | 4.02e-02       |
| Kodiak  | 1.61e-01 | 1.81e-01 | 5.39e-02 | 1.01e-01 | 3.25e-01 | 1.58e-01       |
| Leslie  | 5.92e+00 | 4.46e+00 | 1.48e+00 | 2.32e+00 | 8.55e+00 | 4.34e+00       |
| Moose   | 5.74e+00 | 4.31e+00 | 1.39e+00 | 2.29e+00 | 8.11e+00 | 4.07e+00       |
| Nema    | 2.08e+00 | 1.17e+00 | 3.78e-01 | 6.23e-01 | 2.21e+00 | 1.11e+00       |
| Slipper | 3.16e-01 | 2.92e-01 | 9.41e-02 | 1.55e-01 | 5.49e-01 | 2.75e-01       |
| S2      | 1.30e-02 | 1.11e-02 | 3.64e-03 | 5.80e-03 | 2.11e-02 | 1.06e-02       |
| S3      | 5.25e-03 | 5.09e-03 | 2.18e-03 | 2.20e-03 | 1.18e-02 | 6.39e-03       |
| Nanuq   | 9.38e-03 | 1.13e-02 | 4.82e-03 | 4.92e-03 | 2.61e-02 | NA             |
| Counts  | 9.13e-02 | 1.30e-01 | 4.20e-02 | 6.92e-02 | 2.45e-01 | NA             |
| Vulture | 2.78e-02 | 2.57e-02 | 8.51e-03 | 1.35e-02 | 4.92e-02 | NA             |
|         |          |          |          |          |          |                |

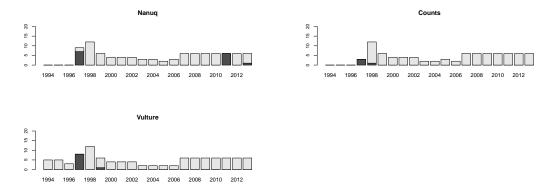
# 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|---------------------------------------------|------------------|---------------------------------------------------------|
| NitrateN  | April | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regressio | #1b<br>separate<br>n intercepts<br>& slopes | NA               | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper S3         |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrate-N in Lakes of the Koala Watershed and Lac de Gras

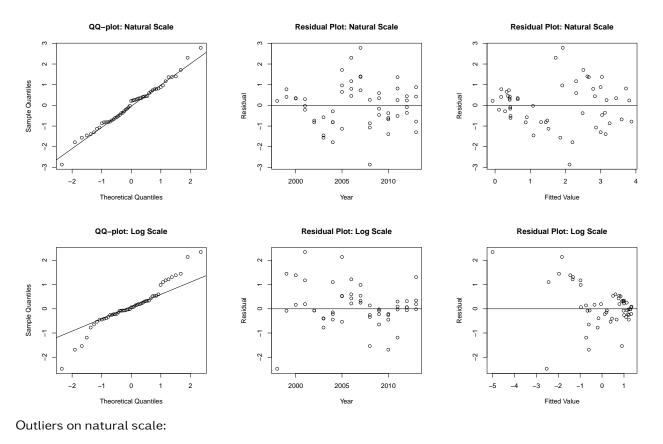
January 11, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Nema Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.059                | 0.941                 | Log-transformed Model |

Conclusion:

The natural and log-transformed models show dependence on year and fitted value. We are proceeding with the remaining analyses using the untransformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

# 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

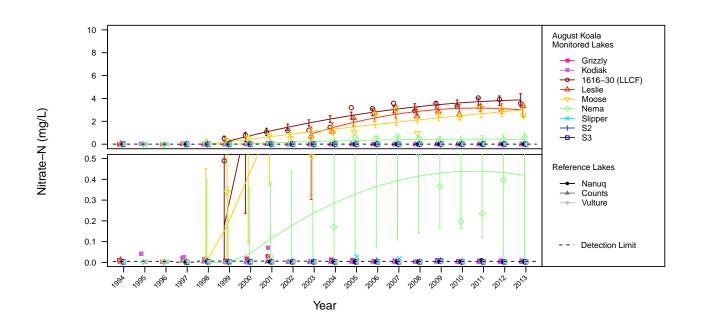
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-30 (LLCF) | 127.9736    | 2  | 0.0000  |
| Leslie         | 37.3608     | 2  | 0.0000  |
| Moose          | 89.0438     | 2  | 0.0000  |
| Nema           | 3.2340      | 2  | 0.1985  |

Conclusions:

Leslie and Moose lakes show significant deviations from a slope of zero.


# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.8950    |
| Monitored Lake | Leslie         | 0.7970    |
| Monitored Lake | Moose          | 0.7440    |
| Monitored Lake | Nema           | 0.5310    |

• Conclusions:

Models provide a good fit for all monitored lakes.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

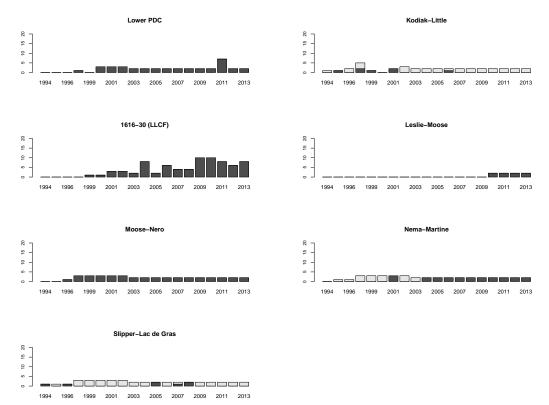
The estimated minimum detectable difference in mean nitrate-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Leslie         | 3.35e+00 | 3.00e+00 | 3.05e-01 | 2.40e+00 | 3.60e+00 | 8.93e-01       |
| 1616-30 (LLCF) | 3.56e+00 | 3.87e+00 | 2.73e-01 | 3.34e+00 | 4.41e+00 | 7.99e-01       |
| Moose          | 2.48e+00 | 3.00e+00 | 2.66e-01 | 2.48e+00 | 3.52e+00 | 7.80e-01       |
| Nema           | 5.91e-01 | 4.19e-01 | 2.66e-01 | 0.00e+00 | 9.42e-01 | 7.80e-01       |
| Nanuq          | 3.75e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                       | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model               | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|---------------------------------------------------------------------|-----------------------------|---------------------|----------------------------------|------------------|---------------------------------------------------------|
| NitrateN  | August | Koala     | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Grizzly<br>Kodiak<br>Slipper S2<br>S3 | none                        | Tobit<br>regression | #1a slope<br>of zero &<br>slopes | NA               | 1616-30<br>(LLCF)<br>Leslie<br>Moose                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrate-N in Koala Watershed Streams

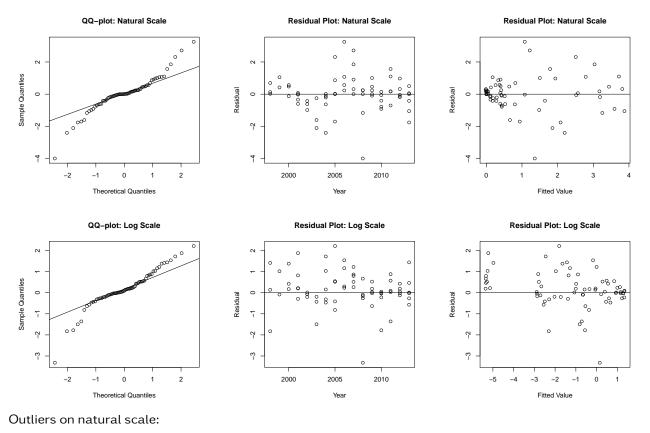
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, Kodiak-Little, and Slipper-Lac de Gras was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Nema-Martine and Vulture-Polar was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 2.04   | 1.08   | 3.26        |
| 115 | Moose-Nero | 2008 | 0.17   | 1.36   | -3.99       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 115 | Moose-Nero | 2008 | 0.17   | 0.15   | -3.32       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

Two of three reference streams were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

| Chi-squared | DF                                      | P-value                         |
|-------------|-----------------------------------------|---------------------------------|
| 29.1914     | 2                                       | 0.0000                          |
| 0.1493      | 2                                       | 0.9281                          |
| 18.6935     | 2                                       | 0.0001                          |
| 40.0347     | 2                                       | 0.0000                          |
| 83.3682     | 2                                       | 0.0000                          |
|             | 29.1914<br>0.1493<br>18.6935<br>40.0347 | 29.191420.1493218.6935240.03472 |

• Conclusions:

All monitored streams except Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

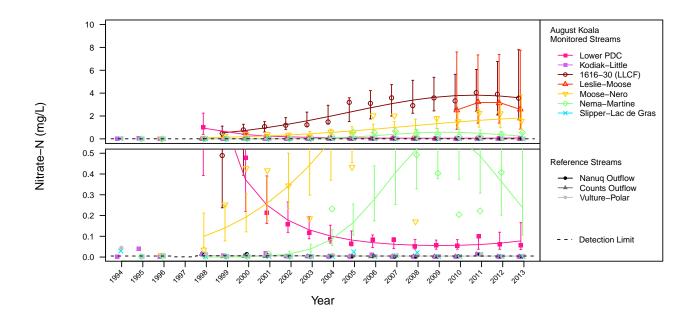
• Results:

|                                 | Chi-squared | DF | P-value |
|---------------------------------|-------------|----|---------|
| Lower PDC-vs-Vulture-Polar      | 203.5793    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar | 711.0341    | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar     | 483.2541    | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar   | 241.3735    | 3  | 0.0000  |

• Conclusions:

All remaining monitored streams show significant deviation from the slope of the individual reference stream.

# 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name    | R-squared |
|------------------|----------------|-----------|
| Reference Stream | Vulture-Polar  | 0.0470    |
| Monitored Stream | 1616-30 (LLCF) | 0.9470    |
| Monitored Stream | Leslie-Moose   | 0.9870    |
| Monitored Stream | Lower PDC      | 0.9320    |
| Monitored Stream | Moose-Nero     | 0.6100    |
| Monitored Stream | Nema-Martine   | 0.7880    |

#### • Conclusions:

Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

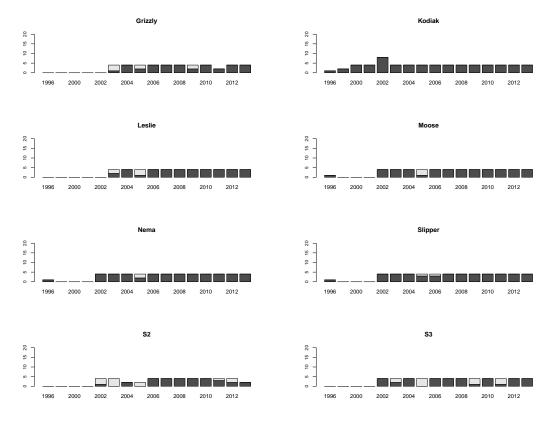
The estimated minimum detectable difference in mean nitrate-N for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 5.61e-02 | 7.78e-02 | 3.00e-02 | 3.65e-02 | 1.66e-01 | 8.78e-02       |
| Kodiak-Little       | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Leslie-Moose        | 2.58e+00 | 2.57e+00 | 1.45e+00 | 8.52e-01 | 7.75e+00 | 4.24e+00       |
| 1616-30 (LLCF)      | 3.56e+00 | 3.60e+00 | 1.42e+00 | 1.66e+00 | 7.80e+00 | 4.15e+00       |
| Moose-Nero          | 1.56e+00 | 1.82e+00 | 6.99e-01 | 8.57e-01 | 3.86e+00 | 2.05e+00       |
| Nema-Martine        | 5.50e-01 | 2.39e-01 | 9.89e-02 | 1.06e-01 | 5.38e-01 | 2.89e-01       |
| Slipper-Lac de Gras | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Nanuq Outflow       | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar       | 6.30e-03 | 4.81e-03 | 2.17e-03 | 1.99e-03 | 1.16e-02 | NA             |

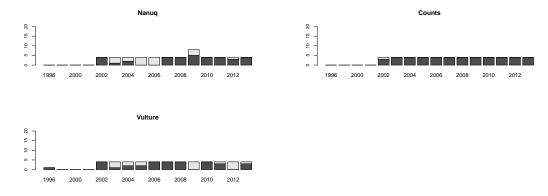
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                            | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup>              |
|-----------|--------|-----------|---------------|----------|------------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------|----------------------------------------------------------------------|
| NitrateN  | August | Koala     | Stream        | Water    | Counts<br>Outflow<br>Kodiak-<br>Little<br>Nanuq<br>Outflow<br>Slipper-<br>Lac de<br>Gras | log e                       | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Lower PDC<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine |

\* Monitored streams are contrasted a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Phosphate-P in Lakes of the Koala Watershed and Lac de Gras

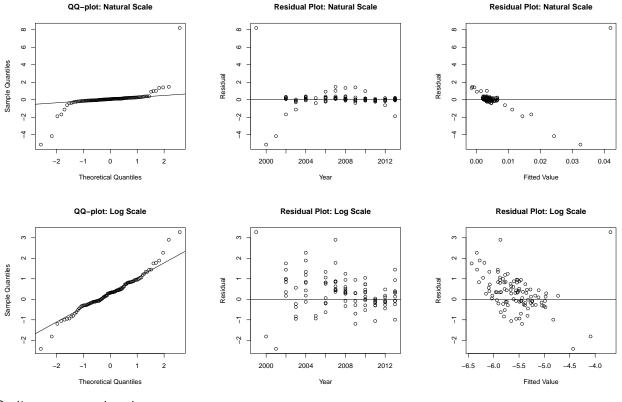
January 20, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Nanuq, Vulture, Grizzly, Leslie, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Initial Model Fit



Outliers on natural scale:

| _ |    | Lake   | Year | Impute | Fitted | Std. Resid. |
|---|----|--------|------|--------|--------|-------------|
| _ | 66 | Kodiak | 1999 | 0.08   | 0.04   | 8.22        |
|   | 67 | Kodiak | 2000 | 0.01   | 0.03   | -5.13       |
|   | 68 | Kodiak | 2001 | 0.00   | 0.02   | -4.16       |

Outliers on log scale:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 66 | Kodiak | 1999 | 0.08   | -3.70  | 3.28        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 9.25E-160 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 42.01      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 10.60      | 4.00 | 0.03    |

#### • Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.870        | 0.130        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

| Chi-squared | DF                                                                  | P-value                                            |
|-------------|---------------------------------------------------------------------|----------------------------------------------------|
| 6.1840      | 2                                                                   | 0.0454                                             |
| 32.7499     | 2                                                                   | 0.0000                                             |
| 7.7757      | 2                                                                   | 0.0205                                             |
| 6.6072      | 2                                                                   | 0.0368                                             |
| 0.8602      | 2                                                                   | 0.6504                                             |
| 1.7973      | 2                                                                   | 0.4071                                             |
| 7.3593      | 2                                                                   | 0.0252                                             |
| 0.4237      | 2                                                                   | 0.8091                                             |
|             | 6.1840<br>32.7499<br>7.7757<br>6.6072<br>0.8602<br>1.7973<br>7.3593 | 6.1840232.749927.775726.607220.860221.797327.35932 |

• Conclusions:

Grizzly, Kodiak, Leslie, Moose, and S2 show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

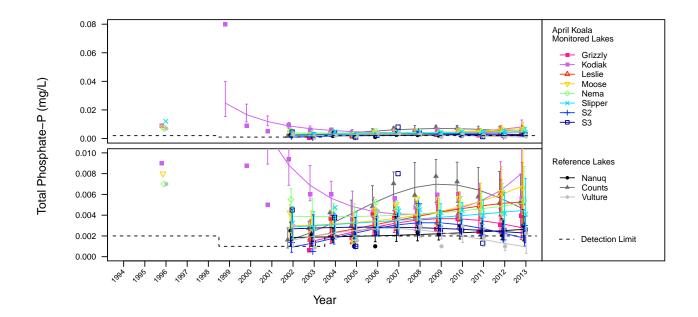
• Results:

|                    | Chi-squared | DF | P-value |
|--------------------|-------------|----|---------|
| Grizzly-vs-Nanuq   | 5.0110      | 3  | 0.1710  |
| Grizzly-vs-Counts  | 14.1153     | 3  | 0.0028  |
| Grizzly-vs-Vulture | 6.4359      | 3  | 0.0922  |
| Kodiak-vs-Nanuq    | 43.3490     | 3  | 0.0000  |
| Kodiak-vs-Counts   | 31.2822     | 3  | 0.0000  |
| Kodiak-vs-Vulture  | 43.6361     | 3  | 0.0000  |
| Leslie-vs-Nanuq    | 11.9812     | 3  | 0.0074  |
| Leslie-vs-Counts   | 6.5746      | 3  | 0.0868  |
| Leslie-vs-Vulture  | 12.6853     | 3  | 0.0054  |
| Moose-vs-Nanuq     | 18.5298     | 3  | 0.0003  |
| Moose-vs-Counts    | 6.5197      | 3  | 0.0889  |
| Moose-vs-Vulture   | 18.0775     | 3  | 0.0004  |
| S2-vs-Nanuq        | 4.3981      | 3  | 0.2216  |
| S2-vs-Counts       | 22.6502     | 3  | 0.0000  |
| S2-vs-Vulture      | 3.8755      | 3  | 0.2752  |
|                    |             |    |         |

• Conclusions:

Of the remaining monitored lakes, Kodiak, Leslie, and Moose show significant deviations from the slopes of individual reference lakes. However, the trend in Grizzly and S2 differs from the slope in only one reference lake (i.e. Counts Lake).

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.8850    |
| Reference Lake | Nanuq     | 0.0860    |
| Reference Lake | Vulture   | 0.2640    |
| Monitored Lake | Grizzly   | 0.3420    |
| Monitored Lake | Kodiak    | 0.5760    |
| Monitored Lake | Leslie    | 0.5770    |
| Monitored Lake | Moose     | 0.3810    |
| Monitored Lake | Nema      | 0.0960    |
| Monitored Lake | S2        | 0.3610    |
| Monitored Lake | S3        | 0.0260    |
| Monitored Lake | Slipper   | 0.2480    |
|                |           |           |

#### • Conclusions:

Model fit for Vulture, Grizzly, Moose, Slipper, and S2 is weak. Model fit for Nanuq, Nema and S3 Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

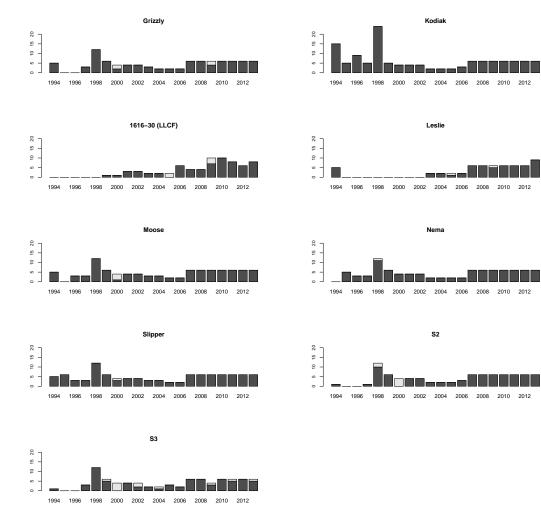
The estimated minimum detectable difference in mean total phosphate-P for each monitored lake in 2013. Reference lakes are shown for comparison.

|         |          | <b>E</b> |          | 1        | 11       |                |
|---------|----------|----------|----------|----------|----------|----------------|
|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
| Grizzly | 3.92e-03 | 2.81e-03 | 7.68e-04 | 1.64e-03 | 4.80e-03 | 2.25e-03       |
| Kodiak  | 5.62e-03 | 8.03e-03 | 1.96e-03 | 4.98e-03 | 1.29e-02 | 5.73e-03       |
| Leslie  | 5.15e-03 | 5.29e-03 | 1.45e-03 | 3.09e-03 | 9.05e-03 | 4.25e-03       |
| Moose   | 6.62e-03 | 6.82e-03 | 1.81e-03 | 4.06e-03 | 1.15e-02 | 5.29e-03       |
| Nema    | 5.43e-03 | 5.18e-03 | 1.37e-03 | 3.08e-03 | 8.70e-03 | 4.01e-03       |
| Slipper | 4.10e-03 | 4.47e-03 | 1.19e-03 | 2.66e-03 | 7.53e-03 | 3.48e-03       |
| S2      | 3.00e-03 | 1.79e-03 | 5.13e-04 | 1.02e-03 | 3.14e-03 | 1.50e-03       |
| S3      | 2.62e-03 | 2.28e-03 | 6.11e-04 | 1.35e-03 | 3.85e-03 | 1.79e-03       |
| Nanuq   | 2.97e-03 | 2.63e-03 | 7.31e-04 | 1.52e-03 | 4.53e-03 | NA             |
| Counts  | 5.28e-03 | 4.72e-03 | 1.26e-03 | 2.80e-03 | 7.97e-03 | NA             |
| Vulture | 2.25e-03 | 9.46e-04 | 5.30e-04 | 3.16e-04 | 2.83e-03 | NA             |
| -       |          |          |          |          |          |                |

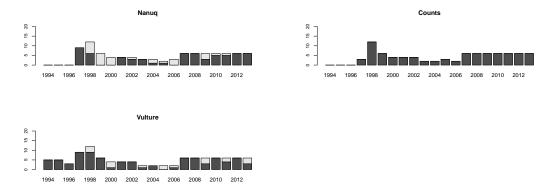
# 8 Final Summary Table

| Parameter  | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model                         | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|--------------------------------------------|------------------|---------------------------------------------|
| Phosphorus | April | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regressio | #1b<br>separate<br>nintercepts<br>& slopes | NA               | Kodiak<br>Leslie<br>Moose                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Phosphate-P in Lakes of the Koala Watershed and Lac de Gras

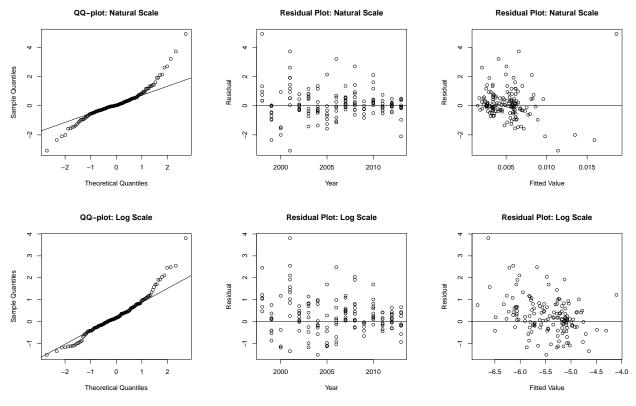
January 11, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Nanuq, Vulture, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



#### Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-30 (LLCF) | 2006 | 0.01   | 0.00   | 3.21        |
| 28 | Counts         | 2001 | 0.01   | 0.01   | 3.72        |
| 65 | Kodiak         | 1998 | 0.03   | 0.02   | 4.93        |
| 68 | Kodiak         | 2001 | 0.01   | 0.01   | -3.08       |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 128 | Nanuq | 2001 | 0.01   | -6.63  | 3.81        |

AIC weights and model comparison:

| - |               | Un-transformed Model | Log-transformed Model | Best Model           |
|---|---------------|----------------------|-----------------------|----------------------|
| _ | Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 91.56       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

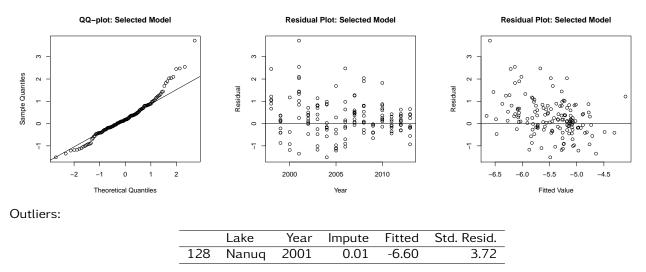
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.00        | 4.00 | 0.91    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.029        | 0.971        | 0.000        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

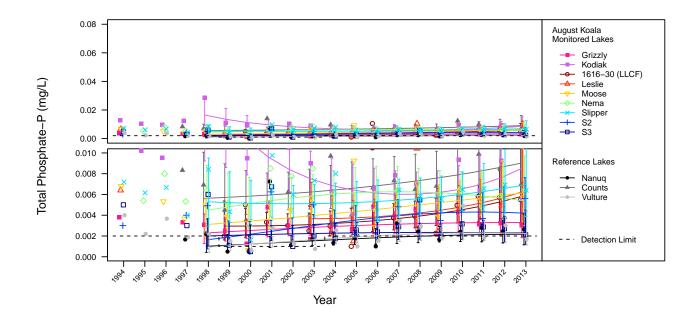
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.4511      | 2  | 0.7981  |
| Kodiak         | 12.2917     | 2  | 0.0021  |
| 1616-30 (LLCF) | 0.4771      | 2  | 0.7878  |
| Leslie         | 0.3112      | 2  | 0.8559  |
| Moose          | 0.0452      | 2  | 0.9777  |
| Nema           | 1.2926      | 2  | 0.5240  |
| Slipper        | 1.1110      | 2  | 0.5738  |
| S2             | 0.5068      | 2  | 0.7762  |
| S3             | 1.2820      | 2  | 0.5268  |

• Conclusions:

Kodiak lake shows significant deviation from the common slope of reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake TypeLake NameR-squaredPooled Ref. Lakes(more than one)0.6540Monitored Lake1616-30 (LLCF)0.1660Monitored LakeGrizzly0.1040Monitored LakeKodiak0.4890Monitored LakeLeslie0.1280Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeSlipper0.0500 |                   |                 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-----------|
| Monitored Lake1616-30 (LLCF)0.1660Monitored LakeGrizzly0.1040Monitored LakeKodiak0.4890Monitored LakeLeslie0.1280Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                       | Lake Type         | Lake Name       | R-squared |
| Monitored LakeGrizzly0.1040Monitored LakeKodiak0.4890Monitored LakeLeslie0.1280Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                         | Pooled Ref. Lakes | (more than one) | 0.6540    |
| Monitored LakeKodiak0.4890Monitored LakeLeslie0.1280Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                                                    | Monitored Lake    | 1616-30 (LLCF)  | 0.1660    |
| Monitored LakeLeslie0.1280Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                                                                              | Monitored Lake    | Grizzly         | 0.1040    |
| Monitored LakeMoose0.1270Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                                                                                                        | Monitored Lake    | Kodiak          | 0.4890    |
| Monitored LakeNema0.1340Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                                                                                                                                 | Monitored Lake    | Leslie          | 0.1280    |
| Monitored LakeS20.2390Monitored LakeS30.0100                                                                                                                                                                                                                                         | Monitored Lake    | Moose           | 0.1270    |
| Monitored Lake S3 0.0100                                                                                                                                                                                                                                                             | Monitored Lake    | Nema            | 0.1340    |
|                                                                                                                                                                                                                                                                                      | Monitored Lake    | S2              | 0.2390    |
| Monitored Lake Slipper 0.0500                                                                                                                                                                                                                                                        | Monitored Lake    | S3              | 0.0100    |
| · · ·                                                                                                                                                                                                                                                                                | Monitored Lake    | Slipper         | 0.0500    |

• Conclusions:

Model fit for Kodiak Lake and S2 is weak. Model fit for 616-30 (LLCF), Grizzly, Leslie, Moose, Nema, Slipper, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

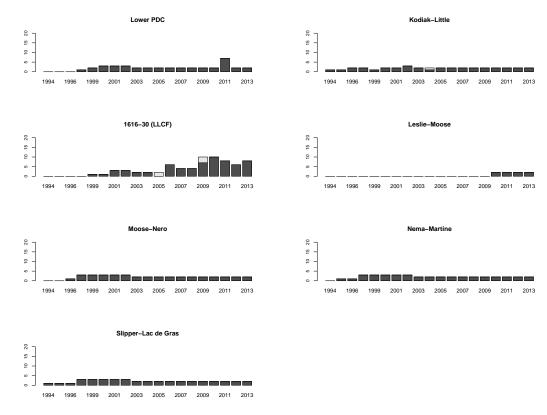
The estimated minimum detectable difference in mean total phosphate-P for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 3.02e-03 | 3.29e-03 | 9.81e-04 | 1.84e-03 | 5.90e-03 | 2.87e-03       |
| Kodiak         | 5.62e-03 | 8.53e-03 | 2.54e-03 | 4.77e-03 | 1.53e-02 | 7.42e-03       |
| Leslie         | 6.98e-03 | 6.26e-03 | 2.13e-03 | 3.21e-03 | 1.22e-02 | 6.24e-03       |
| 1616-30 (LLCF) | 5.49e-03 | 5.79e-03 | 1.77e-03 | 3.18e-03 | 1.05e-02 | 5.17e-03       |
| Moose          | 5.70e-03 | 6.16e-03 | 1.83e-03 | 3.44e-03 | 1.10e-02 | 5.35e-03       |
| Nema           | 6.40e-03 | 5.39e-03 | 1.62e-03 | 2.99e-03 | 9.72e-03 | 4.74e-03       |
| Slipper        | 6.42e-03 | 6.94e-03 | 2.06e-03 | 3.88e-03 | 1.24e-02 | 6.04e-03       |
| S2             | 5.62e-03 | 4.20e-03 | 1.28e-03 | 2.31e-03 | 7.62e-03 | 3.74e-03       |
| S3             | 2.12e-03 | 2.30e-03 | 7.84e-04 | 1.18e-03 | 4.48e-03 | 2.29e-03       |
| Nanuq          | 2.63e-03 | 2.17e-03 | 7.06e-04 | 1.15e-03 | 4.11e-03 | NA             |
| Counts         | 6.98e-03 | 9.02e-03 | 2.68e-03 | 5.04e-03 | 1.61e-02 | NA             |
| Vulture        | 1.70e-03 | 2.24e-03 | 7.71e-04 | 1.14e-03 | 4.40e-03 | NA             |

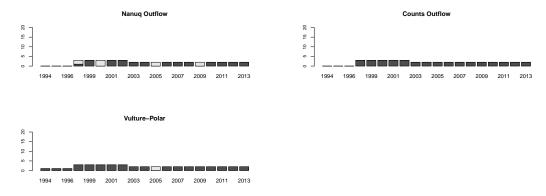
# 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------|
| Phosphorus | August | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared slopes   | NA               | Kodiak                                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Phosphate-P in Koala Watershed Streams

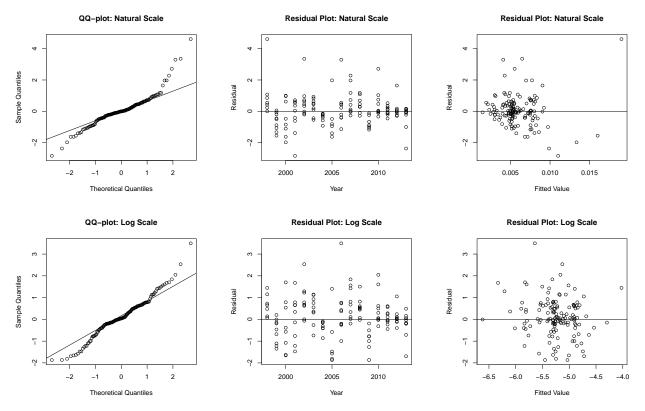
January 11, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Nanuq Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 13  | 1616-30 (LLCF) | 2006 | 0.01   | 0.00   | 3.29        |
| 45  | Kodiak-Little  | 1998 | 0.03   | 0.02   | 4.61        |
| 149 | Nema-Martine   | 2002 | 0.01   | 0.01   | 3.35        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-30 (LLCF) | 2006 | 0.01   | -5.64  | 3.49        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |  |
|-------------|------|---------|--|
| 114.51      | 6.00 | 0.00    |  |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 9.71        | 4.00 | 0.05    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.755        | 0.245        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 0.1632      | 2  | 0.9216  |
| Kodiak-Little       | 23.0357     | 2  | 0.0000  |
| Leslie-Moose        | 0.0946      | 2  | 0.9538  |
| 1616-30 (LLCF)      | 7.2535      | 2  | 0.0266  |
| Moose-Nero          | 3.4146      | 2  | 0.1814  |
| Nema-Martine        | 2.7815      | 2  | 0.2489  |
| Slipper-Lac de Gras | 0.8718      | 2  | 0.6467  |

• Conclusions:

Kodiak-Little and 1616-30 (LLCF) show significant deviation from a slope of zero.

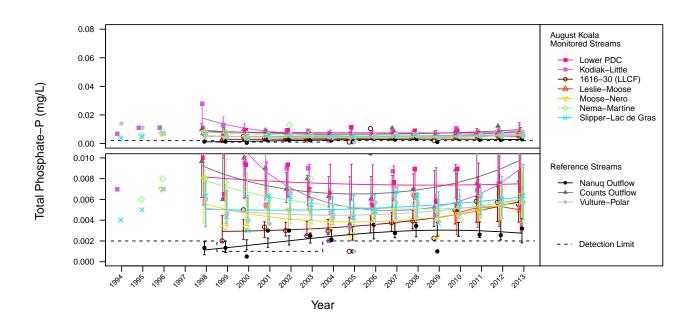
Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

• Results:

|                                  | Chi-squared | DF | P-value |
|----------------------------------|-------------|----|---------|
| Kodiak-Little-vs-Nanuq Outflow   | 119.4712    | 3  | 0.0000  |
| Kodiak-Little-vs-Counts Outflow  | 7.2320      | 3  | 0.0649  |
| Kodiak-Little-vs-Vulture-Polar   | 22.2422     | 3  | 0.0001  |
| 1616-30 (LLCF)-vs-Nanuq Outflow  | 17.3825     | 3  | 0.0006  |
| 1616-30 (LLCF)-vs-Counts Outflow | 40.8155     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar  | 7.6569      | 3  | 0.0537  |

• Conclusions:

Of the remaining streams, Kodiak-Little and 1616-30 (LLCF) show significant deviations from the slopes of individual reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Reference Stream | Counts Outflow      | 0.1880    |
| Reference Stream | Nanuq Outflow       | 0.2770    |
| Reference Stream | Vulture-Polar       | 0.0480    |
| Monitored Stream | 1616-30 (LLCF)      | 0.1680    |
| Monitored Stream | Kodiak-Little       | 0.4260    |
| Monitored Stream | Leslie-Moose        | 0.7980    |
| Monitored Stream | Lower PDC           | 0.0210    |
| Monitored Stream | Moose-Nero          | 0.1890    |
| Monitored Stream | Nema-Martine        | 0.1570    |
| Monitored Stream | Slipper-Lac de Gras | 0.1010    |

• Conclusions:

Model fit for Nanuq Outflow and Kodiak-Little is weak. Model fit for Counts Outflow, Vulture-Polar, 1616-30 (LLCF), Lower PDC, Moose-Nero, Nema-Martine, and Slipper-Lac de Gras is poor. Results of statistical tests and MDD should be interpreted with caution.



## 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

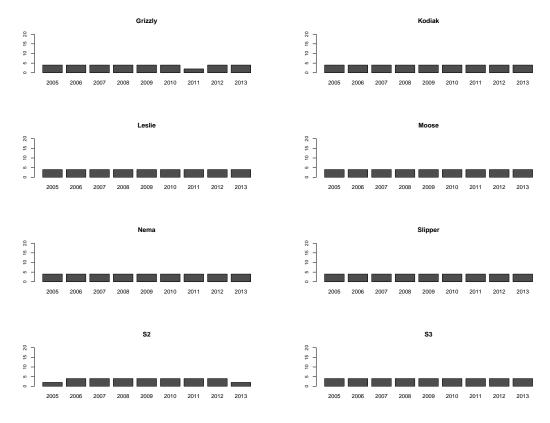
The estimated minimum detectable difference in mean total phpsphate-P for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | <u> </u> | -        |          |          |          |                |
|---------------------|----------|----------|----------|----------|----------|----------------|
|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
| Lower PDC           | 7.05e-03 | 7.50e-03 | 1.55e-03 | 5.00e-03 | 1.12e-02 | 4.54e-03       |
| Kodiak-Little       | 5.25e-03 | 8.89e-03 | 1.84e-03 | 5.93e-03 | 1.33e-02 | 5.38e-03       |
| Leslie-Moose        | 4.95e-03 | 5.00e-03 | 1.51e-03 | 2.76e-03 | 9.06e-03 | 4.43e-03       |
| 1616-30 (LLCF)      | 5.49e-03 | 5.78e-03 | 1.23e-03 | 3.81e-03 | 8.76e-03 | 3.59e-03       |
| Moose-Nero          | 6.40e-03 | 6.08e-03 | 1.26e-03 | 4.06e-03 | 9.12e-03 | 3.68e-03       |
| Nema-Martine        | 5.75e-03 | 5.67e-03 | 1.17e-03 | 3.78e-03 | 8.49e-03 | 3.43e-03       |
| Slipper-Lac de Gras | 6.35e-03 | 6.25e-03 | 1.29e-03 | 4.17e-03 | 9.37e-03 | 3.78e-03       |
| Nanuq Outflow       | 3.20e-03 | 2.75e-03 | 5.80e-04 | 1.82e-03 | 4.16e-03 | NA             |
| Counts Outflow      | 7.80e-03 | 9.73e-03 | 2.01e-03 | 6.49e-03 | 1.46e-02 | NA             |
| Vulture-Polar       | 5.75e-03 | 6.09e-03 | 1.26e-03 | 4.06e-03 | 9.13e-03 | NA             |

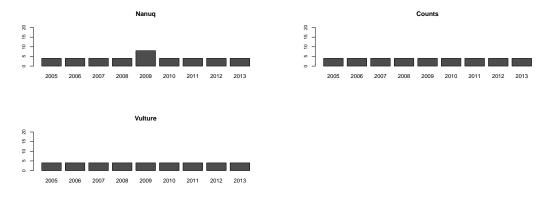
# 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------|---------------------------------------------|
| Phosphorus | August | Koala     | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Kodiak-<br>Little<br>1616-30<br>(LLCF)      |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Organic Carbon in Lakes of the Koala Watershed and Lac de Gras

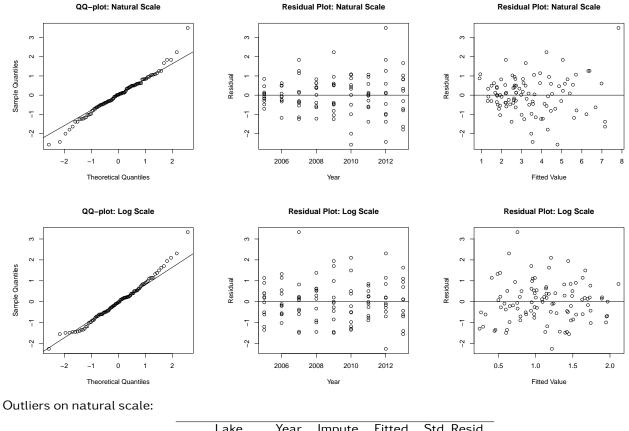
January 11, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Initial Model Fit



|    | Lake   | rear | impute | гщеа | Sta. Resia. |
|----|--------|------|--------|------|-------------|
| 79 | Kodiak | 2012 | 8.84   | 7.83 | 3.50        |

Outliers on log scale:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 34 | Counts | 2007 | 2.75   | 0.75   | 3.33        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 5.17E-57      | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

#### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 135.17     | 6.00 | 0.00    |

#### • Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 12.23      | 4.00 | 0.02    |

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 4.85        | 2.00 | 0.09    |
| Kodiak  | 11.32       | 2.00 | 0.00    |
| Leslie  | 16.10       | 2.00 | 0.00    |
| Moose   | 19.98       | 2.00 | 0.00    |
| Nema    | 15.13       | 2.00 | 0.00    |
| Slipper | 14.19       | 2.00 | 0.00    |
| S2      | 6.99        | 2.00 | 0.03    |
| S3      | 8.59        | 2.00 | 0.01    |

#### • Conclusions:

All monitored lakes except Grizzly Lake show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

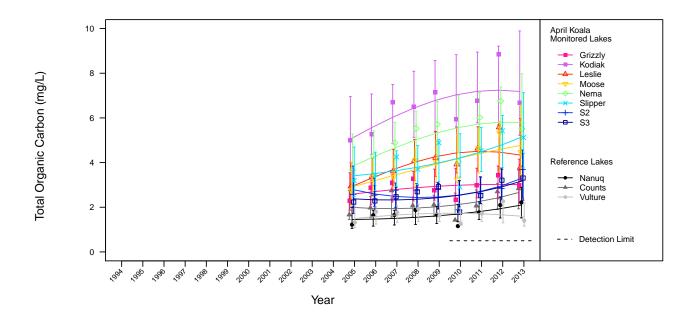
• Results:

|                    | Chi-squared | DF | P-value |
|--------------------|-------------|----|---------|
| Kodiak-vs-Nanuq    | 2.4734      | 3  | 0.4801  |
| Kodiak-vs-Counts   | 48.3189     | 3  | 0.0000  |
| Kodiak-vs-Vulture  | 78.4089     | 3  | 0.0000  |
| Leslie-vs-Nanuq    | 6.0717      | 3  | 0.1082  |
| Leslie-vs-Counts   | 130.4324    | 3  | 0.0000  |
| Leslie-vs-Vulture  | 20.4854     | 3  | 0.0001  |
| Moose-vs-Nanuq     | 2.4765      | 3  | 0.4796  |
| Moose-vs-Counts    | 154.1000    | 3  | 0.0000  |
| Moose-vs-Vulture   | 10.8187     | 3  | 0.0127  |
| Nema-vs-Nanuq      | 3.2811      | 3  | 0.3503  |
| Nema-vs-Counts     | 89.3689     | 3  | 0.0000  |
| Nema-vs-Vulture    | 40.0884     | 3  | 0.0000  |
| Slipper-vs-Nanuq   | 0.7405      | 3  | 0.8636  |
| Slipper-vs-Counts  | 127.7455    | 3  | 0.0000  |
| Slipper-vs-Vulture | 21.0808     | 3  | 0.0001  |
| S2-vs-Nanuq        | 3.8027      | 3  | 0.2836  |
| S2-vs-Counts       | 167.5984    | 3  | 0.0000  |
| S2-vs-Vulture      | 18.6291     | 3  | 0.0003  |
| S3-vs-Nanuq        | 0.7900      | 3  | 0.8518  |
| S3-vs-Counts       | 202.1348    | 3  | 0.0000  |
| S3-vs-Vulture      | 7.3317      | 3  | 0.0620  |

• Conclusions:

All of the remaining lakes except S3 show significant deviation from the slopes of individual reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.2280    |
| Reference Lake | Nanuq     | 0.3550    |
| Reference Lake | Vulture   | 0.0650    |
| Monitored Lake | Grizzly   | 0.1730    |
| Monitored Lake | Kodiak    | 0.5860    |
| Monitored Lake | Leslie    | 0.6900    |
| Monitored Lake | Moose     | 0.6790    |
| Monitored Lake | Nema      | 0.5440    |
| Monitored Lake | S2        | 0.3460    |
| Monitored Lake | S3        | 0.3320    |
| Monitored Lake | Slipper   | 0.4250    |
|                |           |           |

#### • Conclusions:

Model fit for Counts, Nanuq, Slipper, S2, and S3 is weak. Model fit for Vulture and Grizzly lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

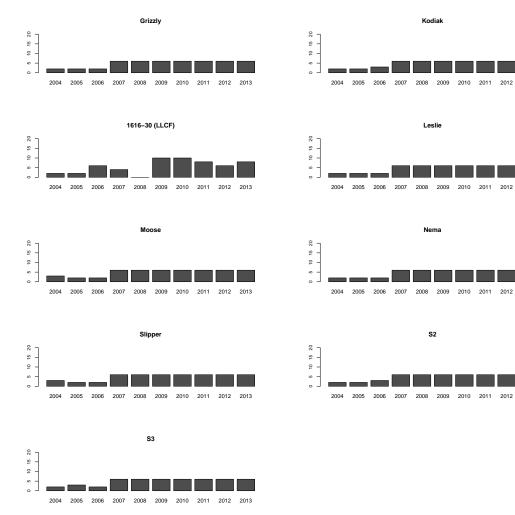
The estimated minimum detectable difference in mean total organic carbon for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 2.99E+00 | 3.02E+00 | 4.92E-01 | 2.19E+00 | 4.15E+00 | 1.44E+00       |
| Kodiak  | 6.68E+00 | 7.19E+00 | 1.17E+00 | 5.22E+00 | 9.89E+00 | 3.43E+00       |
| Leslie  | 3.78E+00 | 4.34E+00 | 7.08E-01 | 3.15E+00 | 5.97E+00 | 2.07E+00       |
| Moose   | 4.47E+00 | 4.77E+00 | 7.79E-01 | 3.47E+00 | 6.57E+00 | 2.28E+00       |
| Nema    | 5.50E+00 | 5.79E+00 | 9.46E-01 | 4.21E+00 | 7.98E+00 | 2.77E+00       |
| Slipper | 5.12E+00 | 5.18E+00 | 8.45E-01 | 3.76E+00 | 7.13E+00 | 2.47E+00       |
| S2      | 3.68E+00 | 3.31E+00 | 5.41E-01 | 2.41E+00 | 4.56E+00 | 1.58E+00       |
| S3      | 3.31E+00 | 3.19E+00 | 5.21E-01 | 2.32E+00 | 4.40E+00 | 1.52E+00       |
| Nanuq   | 2.21E+00 | 2.10E+00 | 3.43E-01 | 1.52E+00 | 2.89E+00 |                |
| Counts  | 2.84E+00 | 2.66E+00 | 4.34E-01 | 1.93E+00 | 3.66E+00 |                |
| Vulture | 1.40E+00 | 1.59E+00 | 2.60E-01 | 1.15E+00 | 2.19E+00 |                |
|         |          |          |          |          |          |                |

## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------------------------------|------------------|---------------------------------------------------------|
| тос       | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressior | #1b<br>separate<br>intercepts<br>n & slopes | NA               | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper S2         |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Organic Carbon in Lakes of the Koala Watershed and Lac de Gras

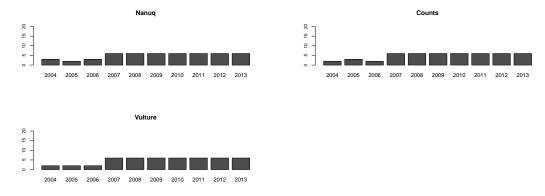
January 11, 2014

## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored

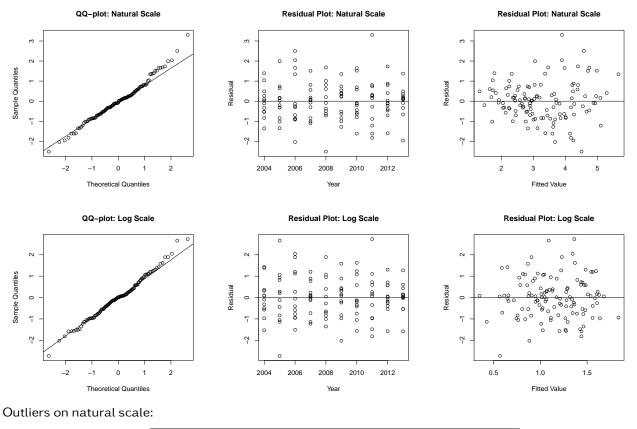



2013

2013

2013

2013


#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



|   |    | Lake           | Year | Impute | Fitted | Std. Resid. |
|---|----|----------------|------|--------|--------|-------------|
| - | 18 | 1616-30 (LLCF) | 2011 | 4.57   | 3.89   | 3.30        |

Outliers on log scale:

None

AIC weights and model comparison:

|           |     | Un-transformed Model | Log-transformed Model | Best Model            |
|-----------|-----|----------------------|-----------------------|-----------------------|
| Akaike We | ght | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 39.90       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 14.41       | 4.00 | 0.01    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 5.1718      | 2  | 0.0753  |
| Kodiak         | 6.3151      | 2  | 0.0425  |
| 1616-30 (LLCF) | 31.3465     | 2  | 0.0000  |
| Leslie         | 41.6787     | 2  | 0.0000  |
| Moose          | 19.2850     | 2  | 0.0001  |
| Nema           | 27.2242     | 2  | 0.0000  |
| Slipper        | 15.1068     | 2  | 0.0005  |
| S2             | 6.1415      | 2  | 0.0464  |
| S3             | 0.6382      | 2  | 0.7268  |
|                |             |    |         |

#### • Conclusions:

All lakes except Grizzly Lake and S3 show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

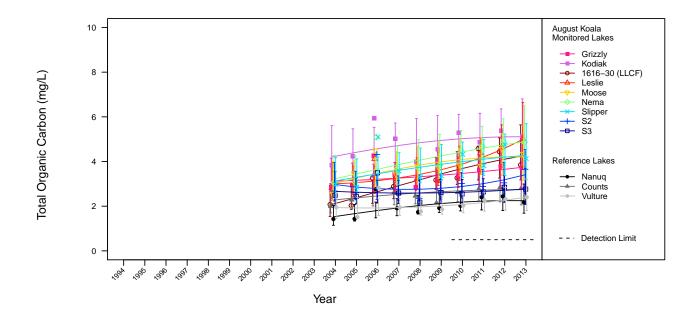
• Results:

|                           | Chi-squared | DF | P-value |
|---------------------------|-------------|----|---------|
| Kodiak-vs-Nanuq           | 189.9163    | 3  | 0.0000  |
| Kodiak-vs-Counts          | 66.3951     | 3  | 0.0000  |
| Kodiak-vs-Vulture         | 134.6414    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Nanuq   | 3.8274      | 3  | 0.2807  |
| 1616-30 (LLCF)-vs-Counts  | 11.2973     | 3  | 0.0102  |
| 1616-30 (LLCF)-vs-Vulture | 16.3980     | 3  | 0.0009  |
| Leslie-vs-Nanuq           | 47.9729     | 3  | 0.0000  |
| Leslie-vs-Counts          | 3.5975      | 3  | 0.3083  |
| Leslie-vs-Vulture         | 16.3096     | 3  | 0.0010  |
| Moose-vs-Nanuq            | 80.1726     | 3  | 0.0000  |
| Moose-vs-Counts           | 11.8776     | 3  | 0.0078  |
| Moose-vs-Vulture          | 50.9712     | 3  | 0.0000  |
| Nema-vs-Nanuq             | 82.3896     | 3  | 0.0000  |
| Nema-vs-Counts            | 11.8546     | 3  | 0.0079  |
| Nema-vs-Vulture           | 49.3653     | 3  | 0.0000  |
| Slipper-vs-Nanuq          | 85.8979     | 3  | 0.0000  |
| Slipper-vs-Counts         | 13.0511     | 3  | 0.0045  |
| Slipper-vs-Vulture        | 51.1306     | 3  | 0.0000  |
| S2-vs-Nanuq               | 74.7827     | 3  | 0.0000  |
| S2-vs-Counts              | 11.8326     | 3  | 0.0080  |
| S2-vs-Vulture             | 31.3203     | 3  | 0.0000  |

• Conclusions:

All remaining monitored lakes show significant deviations from the slopes of individual reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Reference Lake | Counts         | 0.1940    |
| Reference Lake | Nanuq          | 0.3900    |
| Reference Lake | Vulture        | 0.1970    |
| Monitored Lake | 1616-30 (LLCF) | 0.8040    |
| Monitored Lake | Grizzly        | 0.2150    |
| Monitored Lake | Kodiak         | 0.2370    |
| Monitored Lake | Leslie         | 0.7110    |
| Monitored Lake | Moose          | 0.4980    |
| Monitored Lake | Nema           | 0.5480    |
| Monitored Lake | S2             | 0.1450    |
| Monitored Lake | S3             | 0.0340    |
| Monitored Lake | Slipper        | 0.2940    |
|                |                |           |

#### • Conclusions:

Model fit for Nanuq, Grizzly, Kodiak, Moose, and Slipper is weak. Model fit for Counts, Vulture, S3, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

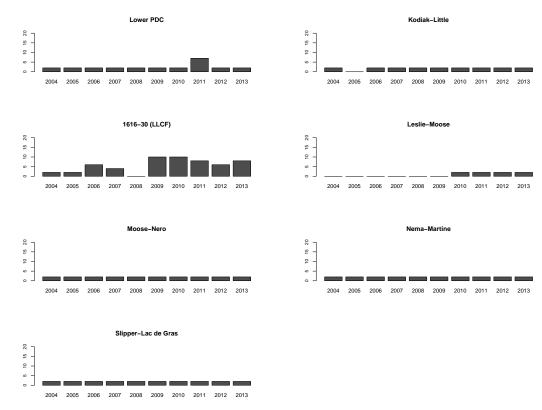
The estimated minimum detectable difference in mean total organic carbon for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 3.73E+00 | 3.74E+00 | 5.46E-01 | 2.81E+00 | 4.98E+00 | 1.60E+00       |
| Kodiak         | 5.13E+00 | 5.11E+00 | 7.47E-01 | 3.84E+00 | 6.80E+00 | 2.19E+00       |
| Leslie         | 5.01E+00 | 4.99E+00 | 7.29E-01 | 3.75E+00 | 6.64E+00 | 2.13E+00       |
| 1616-30 (LLCF) | 3.85E+00 | 4.23E+00 | 6.20E-01 | 3.18E+00 | 5.64E+00 | 1.81E+00       |
| Moose          | 4.34E+00 | 4.21E+00 | 6.15E-01 | 3.16E+00 | 5.60E+00 | 1.80E+00       |
| Nema           | 4.86E+00 | 4.89E+00 | 7.14E-01 | 3.67E+00 | 6.51E+00 | 2.09E+00       |
| Slipper        | 4.13E+00 | 4.28E+00 | 6.25E-01 | 3.21E+00 | 5.70E+00 | 1.83E+00       |
| S2             | 3.65E+00 | 3.41E+00 | 4.98E-01 | 2.56E+00 | 4.54E+00 | 1.46E+00       |
| S3             | 2.76E+00 | 2.77E+00 | 4.05E-01 | 2.08E+00 | 3.69E+00 | 1.19E+00       |
| Nanuq          | 2.17E+00 | 2.25E+00 | 3.28E-01 | 1.69E+00 | 2.99E+00 |                |
| Counts         | 2.80E+00 | 2.74E+00 | 4.01E-01 | 2.06E+00 | 3.65E+00 |                |
| Vulture        | 2.40E+00 | 2.40E+00 | 3.51E-01 | 1.80E+00 | 3.20E+00 |                |

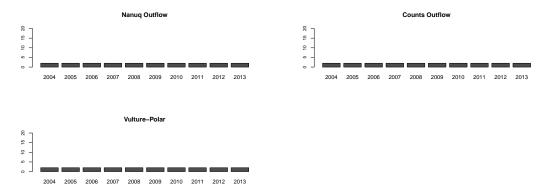
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                          |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|----------------------------------------------------------------------|
| тос       | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Organic Carbon in Koala Watershed Streams

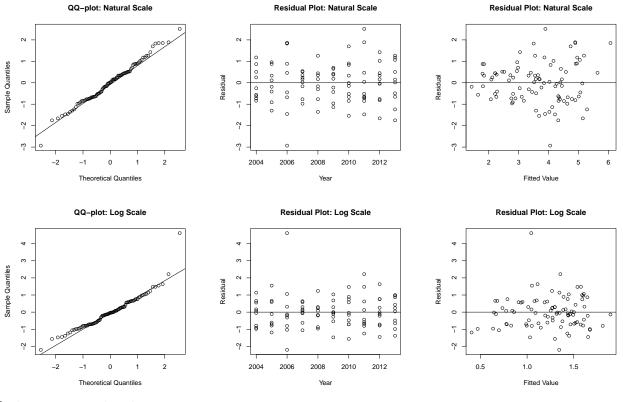
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

|     | Lake          | Year | Impute | Fitted | Std. Resid. |
|-----|---------------|------|--------|--------|-------------|
| 133 | Nanuq Outflow | 2006 | 4.00   | 1.04   | 4.62        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 20.52       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

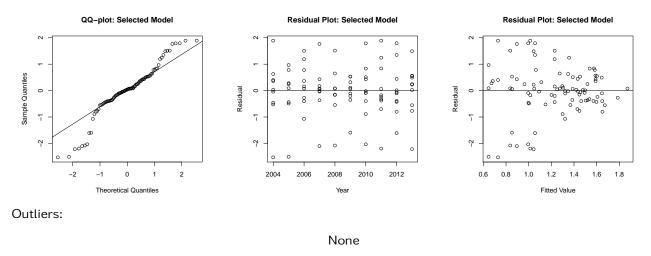
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 7.04        | 4.00 | 0.13    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

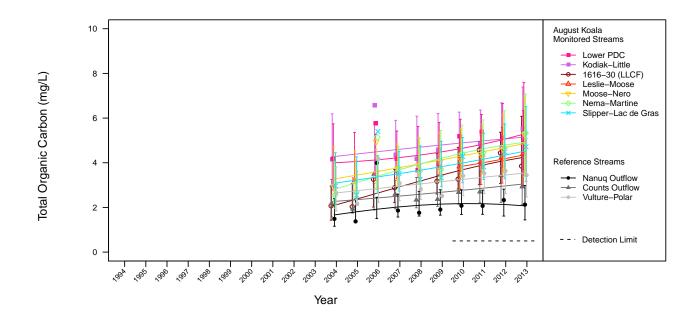
• Results:

|                     |             |    | Duralina |
|---------------------|-------------|----|----------|
|                     | Chi-squared | DF | P-value  |
| Lower PDC           | 0.4887      | 2  | 0.7832   |
| Kodiak-Little       | 0.3764      | 2  | 0.8285   |
| Leslie-Moose        | 0.1819      | 2  | 0.9131   |
| 1616-30 (LLCF)      | 2.2309      | 2  | 0.3278   |
| Moose-Nero          | 0.7950      | 2  | 0.6720   |
| Nema-Martine        | 3.8298      | 2  | 0.1474   |
| Slipper-Lac de Gras | 0.6962      | 2  | 0.7060   |

• Conclusions:

No significant deviations were found when comparing monitored streams to reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.0980    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.8050    |
| Monitored Stream    | Kodiak-Little       | 0.1460    |
| Monitored Stream    | Leslie-Moose        | 0.9240    |
| Monitored Stream    | Lower PDC           | 0.2470    |
| Monitored Stream    | Moose-Nero          | 0.5380    |
| Monitored Stream    | Nema-Martine        | 0.5840    |
| Monitored Stream    | Slipper-Lac de Gras | 0.3120    |
|                     |                     |           |

#### • Conclusions:

Model fit for Lower PDC and Slipper-Lac de Gras is weak. Model fit for reference streams and Kodiak-Little is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

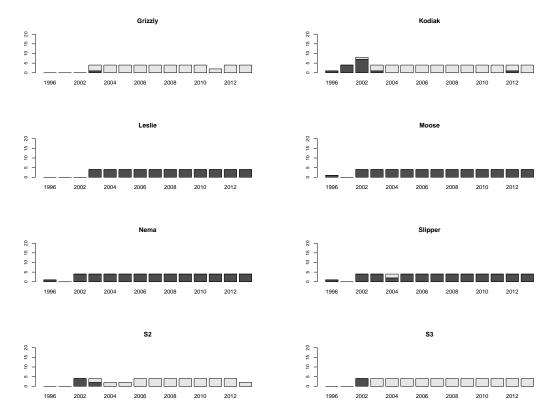
The estimated minimum detectable difference in mean total organic carbon for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 4.95E+00 | 5.28E+00 | 9.78E-01 | 3.67E+00 | 7.59E+00 | 2.86E+00       |
| Kodiak-Little       | 5.53E+00 | 5.14E+00 | 9.52E-01 | 3.58E+00 | 7.39E+00 | 2.78E+00       |
| Leslie-Moose        | 4.39E+00 | 4.35E+00 | 8.37E-01 | 2.98E+00 | 6.34E+00 | 2.45E+00       |
| 1616-30 (LLCF)      | 3.85E+00 | 4.23E+00 | 7.84E-01 | 2.94E+00 | 6.08E+00 | 2.29E+00       |
| Moose-Nero          | 5.28E+00 | 4.86E+00 | 9.00E-01 | 3.38E+00 | 6.99E+00 | 2.63E+00       |
| Nema-Martine        | 5.33E+00 | 4.92E+00 | 9.11E-01 | 3.42E+00 | 7.08E+00 | 2.67E+00       |
| Slipper-Lac de Gras | 4.71E+00 | 4.53E+00 | 8.38E-01 | 3.15E+00 | 6.51E+00 | 2.45E+00       |
| Nanuq Outflow       | 2.12E+00 | 2.07E+00 | 3.83E-01 | 1.44E+00 | 2.98E+00 |                |
| Counts Outflow      | 2.92E+00 | 3.04E+00 | 5.64E-01 | 2.12E+00 | 4.38E+00 |                |
| Vulture-Polar       | 3.45E+00 | 3.55E+00 | 6.57E-01 | 2.47E+00 | 5.10E+00 |                |

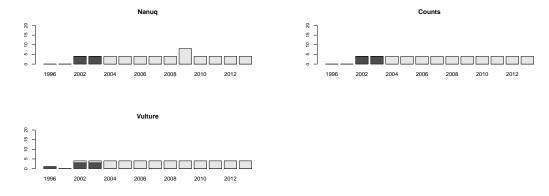
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| тос       | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                        |

\* Monitored streams are contrasted a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Antimony in Lakes of the Koala Watershed and Lac de Gras

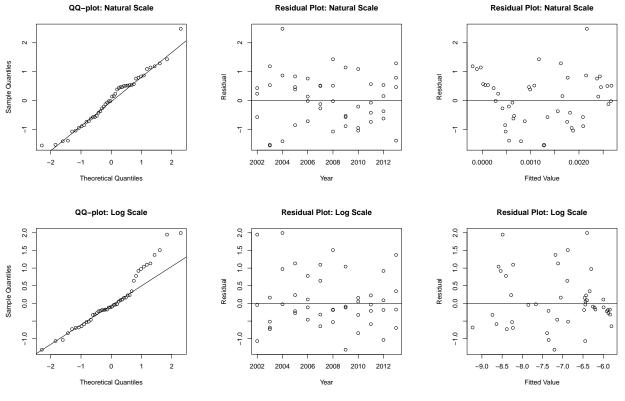
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. None of the remaining lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

#### 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 6.45E-143 | natural model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

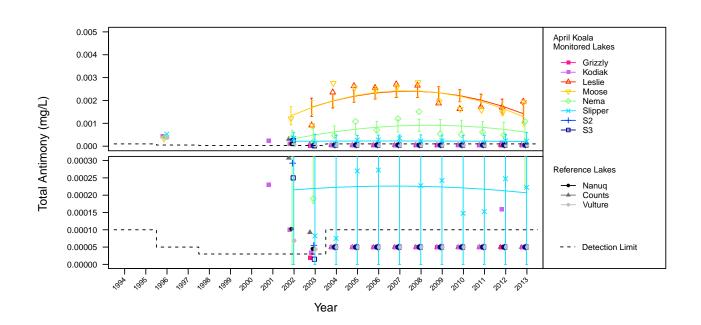
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Leslie  | 9.40        | 2.00 | 0.01    |
| Moose   | 13.13       | 2.00 | 0.00    |
| Nema    | 2.23        | 2.00 | 0.33    |
| Slipper | 0.01        | 2.00 | 1 00    |

• Conclusions:

Leslie and Moose lakes show significant deviation from a constant slope of zero.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Leslie    | 0.3380    |
| Monitored Lake | Moose     | 0.4170    |
| Monitored Lake | Nema      | 0.2380    |
| Monitored Lake | Slipper   | 0.0090    |

• Conclusions:

Model fit for Leslie, Moose, and Nema lakes is weak. Model fit for Slipper Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



#### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

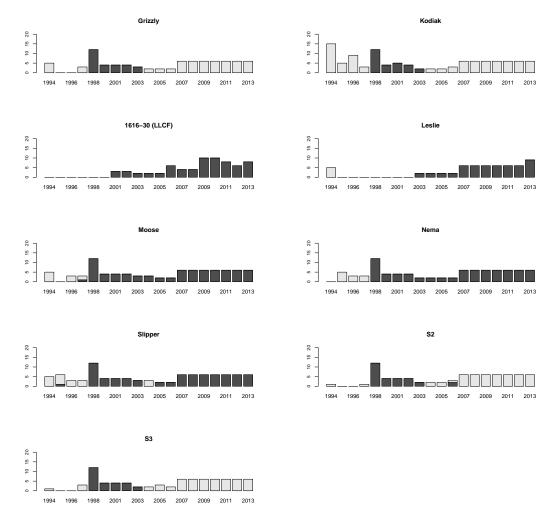
The estimated minimum detectable difference in mean total antimony for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak  | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Leslie  | 1.96e-03 | 1.42e-03 | 2.07e-04 | 1.02e-03 | 1.83e-03 | 6.07e-04       |
| Moose   | 1.93e-03 | 1.28e-03 | 2.03e-04 | 8.81e-04 | 1.68e-03 | 5.94e-04       |
| Nema    | 1.08e-03 | 6.20e-04 | 2.03e-04 | 2.22e-04 | 1.02e-03 | 5.94e-04       |
| Slipper | 2.23e-04 | 2.07e-04 | 2.03e-04 | 0.00e+00 | 6.05e-04 | 5.94e-04       |
| S2      | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| S3      | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq   | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts  | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |

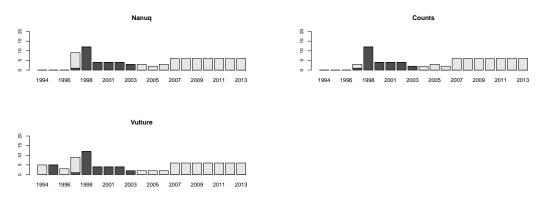
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                         | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------------------------------|-----------------------------|------------------------------------------|----------------------|------------------|---------------------------------------------------------|
| Antimony  | April | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Kodiak<br>Nanuq S2<br>S3 Vulture | none                        | linear<br>mixed<br>effects<br>regression | #1a slope<br>of zero | NA               | Leslie<br>Moose                                         |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Antimony in Lakes of the Koala Watershed and Lac de Gras

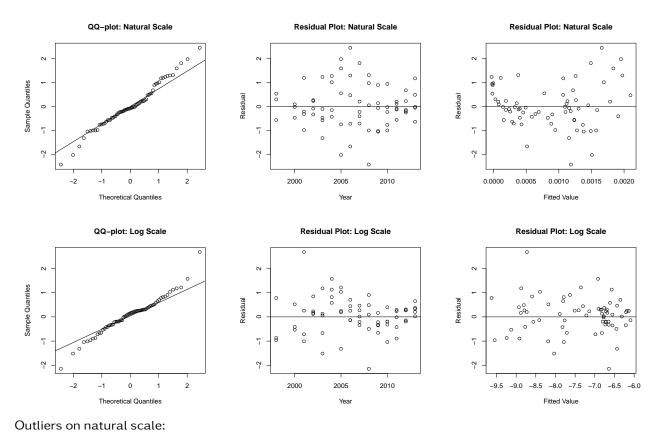
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. No other lakes showed greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis uisng reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

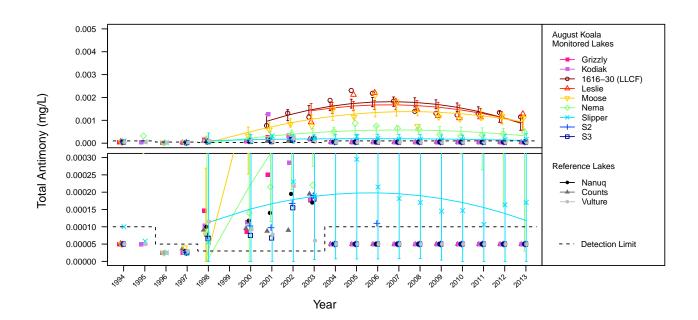
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-30 (LLCF) | 22.6610     | 2  | 0.0000  |
| Leslie         | 9.9509      | 2  | 0.0069  |
| Moose          | 12.1641     | 2  | 0.0023  |
| Nema           | 2.1828      | 2  | 0.3357  |
| Slipper        | 0.1225      | 2  | 0.9406  |

• Conclusions:

All monitored lakes except Nema and Slipper lakes show significant deviation from a slope of zero.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.4770    |
| Monitored Lake | Leslie         | 0.3170    |
| Monitored Lake | Moose          | 0.5940    |
| Monitored Lake | Nema           | 0.5290    |
| Monitored Lake | Slipper        | 0.1350    |

• Conclusions:

Model fit for 1616-30 (LLCF) and Leslie Lake is weak. Model fit for Slipper Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



#### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

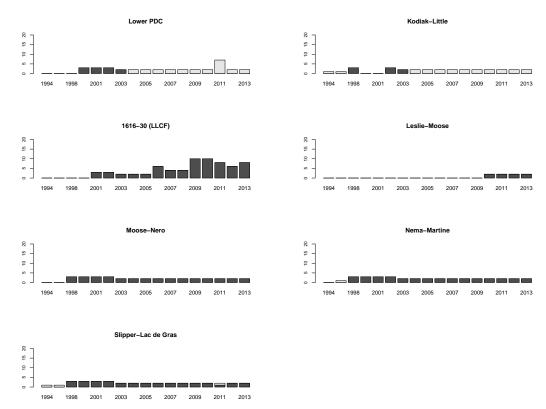
The estimated minimum detectable difference in mean total antimony for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Leslie         | 1.28e-03 | 9.00e-04 | 1.67e-04 | 5.73e-04 | 1.23e-03 | 4.88e-04       |
| 1616-30 (LLCF) | 1.15e-03 | 8.75e-04 | 1.59e-04 | 5.63e-04 | 1.19e-03 | 4.66e-04       |
| Moose          | 1.09e-03 | 9.28e-04 | 1.50e-04 | 6.33e-04 | 1.22e-03 | 4.40e-04       |
| Nema           | 4.82e-04 | 3.25e-04 | 1.50e-04 | 2.98e-05 | 6.20e-04 | 4.40e-04       |
| Slipper        | 1.70e-04 | 1.18e-04 | 1.50e-04 | 0.00e+00 | 4.13e-04 | 4.40e-04       |
| Nanuq          | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |

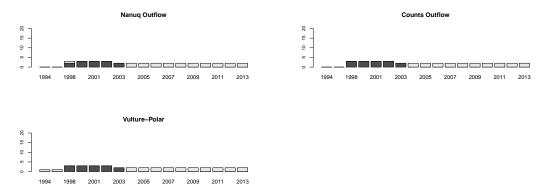
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                         | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------------------------------|-----------------------------|------------------------------------------|----------------------|------------------|---------------------------------------------|
| Antimony  | August | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Kodiak<br>Nanuq S2<br>S3 Vulture | none                        | linear<br>mixed<br>effects<br>regression | #1a slope<br>of zero | NA               | 1616-30<br>(LLCF)<br>Leslie<br>Moose        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Antimony in Koala Watershed Streams

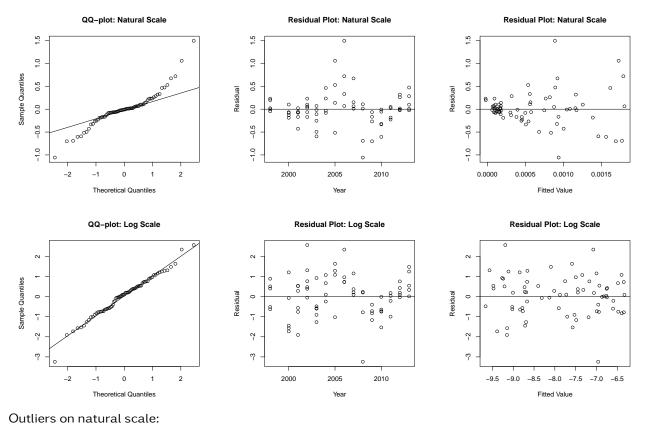
#### January 11, 2014


#### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Kodiak-Little, Lower PDC, and Nanuq Outflow was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Counts Outflow and Vulture-Polar was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

#### 2 Initial Model Fit



None

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 115 | Moose-Nero | 2008 | 0.00   | -6.96  | -3.24       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

## 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

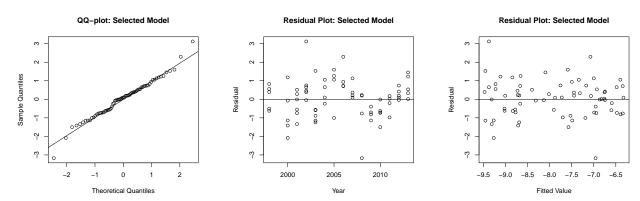
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.99        | 3.00 | 0.39    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.135        | 0.255        | 0.610        | Indistinguishable support for 3 & 2; choose Model 3. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 29  | Counts Outflow | 2002 | 0.00   | -9.38  | 3.12        |
| 115 | Moose-Nero     | 2008 | 0.00   | -6.96  | -3.17       |

Conclusion:

The reduced model shows dependence on year. Proceeding with remaining analyses using reference model 3. Results of statistical tests and MDD should be interpreted with caution.

#### 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Leslie-Moose        | 0.9759      | 3  | 0.8071  |
| 1616-30 (LLCF)      | 292.1293    | 3  | 0.0000  |
| Moose-Nero          | 153.6230    | 3  | 0.0000  |
| Nema-Martine        | 101.1409    | 3  | 0.0000  |
| Slipper-Lac de Gras | 25.1343     | 3  | 0.0000  |

• Conclusions:

All monitored streams except Leslie-Moose show significant deviation from the common slope and intercept of reference streams.

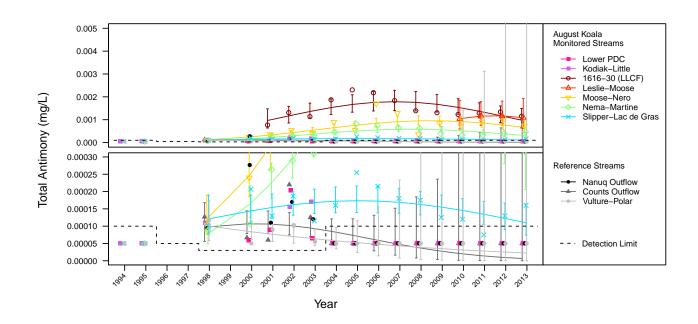
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Leslie-Moose        | 0.6582      | 2  | 0.7196  |
| 1616-30 (LLCF)      | 8.1756      | 2  | 0.0168  |
| Moose-Nero          | 31.4034     | 2  | 0.0000  |
| Nema-Martine        | 32.6935     | 2  | 0.0000  |
| Slipper-Lac de Gras | 4.0976      | 2  | 0.1289  |

• Conclusions:

When allowing for differences in intercept, all monitored streams except Leslie-Moose and Slipper-Lac de Gras show significant deviation from the common slope of reference streams.


#### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.5670    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.5320    |
| Monitored Stream    | Leslie-Moose        | 0.9710    |
| Monitored Stream    | Moose-Nero          | 0.7110    |
| Monitored Stream    | Nema-Martine        | 0.7870    |
| Monitored Stream    | Slipper-Lac de Gras | 0.2090    |

• Conclusions:

Model fit for Slipper-Lac de Gras is weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

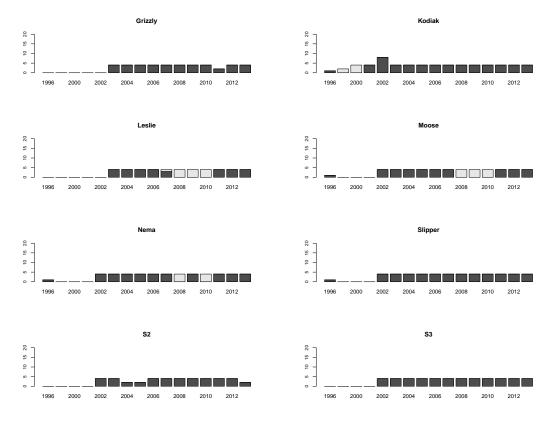
The estimated minimum detectable difference in mean total antimony for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak-Little       | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Leslie-Moose        | 1.09e-03 | 1.09e-03 | 3.17e-04 | 6.13e-04 | 1.92e-03 | 9.27e-04       |
| 1616-30 (LLCF)      | 1.15e-03 | 9.79e-04 | 2.11e-04 | 6.42e-04 | 1.49e-03 | 6.16e-04       |
| Moose-Nero          | 7.35e-04 | 6.65e-04 | 1.33e-04 | 4.50e-04 | 9.84e-04 | 3.89e-04       |
| Nema-Martine        | 4.75e-04 | 3.05e-04 | 6.09e-05 | 2.06e-04 | 4.51e-04 | 1.78e-04       |
| Slipper-Lac de Gras | 1.60e-04 | 1.10e-04 | 2.23e-05 | 7.40e-05 | 1.64e-04 | 6.52e-05       |
| Nanuq Outflow       | 5.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 5.00e-05 | 6.63e-06 | 1.69e-05 | 4.47e-08 | 9.83e-04 | NA             |
| Vulture-Polar       | 5.00e-05 | 2.26e-05 | 7.84e-05 | 2.53e-08 | 2.02e-02 | NA             |

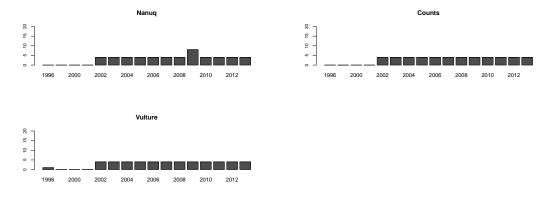
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                      | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|----------------------------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------|
| Antimony  | August | Koala     | Stream        | Water    | Kodiak-<br>Little<br>Lower PDC<br>Nanuq<br>Outflow | log e                       | Tobit<br>regression | #3 shared<br>intercept<br>& slope | NA               | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Arsenic in Lakes of the Koala Watershed and Lac de Gras

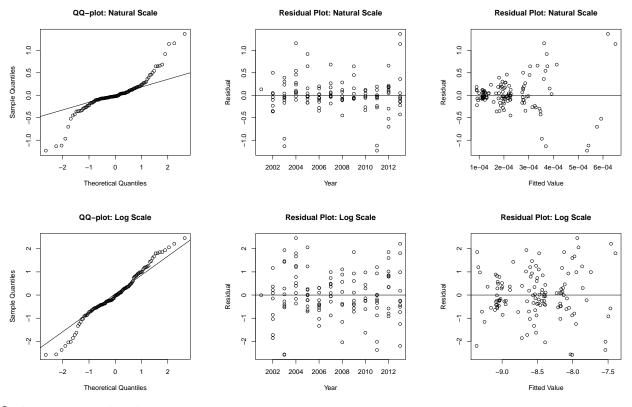
January 10, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

10-60% of data in Leslie, Moose, and Nema lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 0.00E+00  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 105.81     | 6.00 | 0.00    |

#### • Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 27.36      | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Grizzly | 0.2432      | 2  | 0.8855  |
| Kodiak  | 2.9988      | 2  | 0.2233  |
| Leslie  | 20.4752     | 2  | 0.0000  |
| Moose   | 20.5645     | 2  | 0.0000  |
| Nema    | 4.3127      | 2  | 0.1157  |
| Slipper | 3.6515      | 2  | 0.1611  |
| S2      | 3.5860      | 2  | 0.1665  |
| S3      | 2.4877      | 2  | 0.2883  |

#### • Conclusions:

Leslie and Moose lakes show significant deviation from a slope of zero.

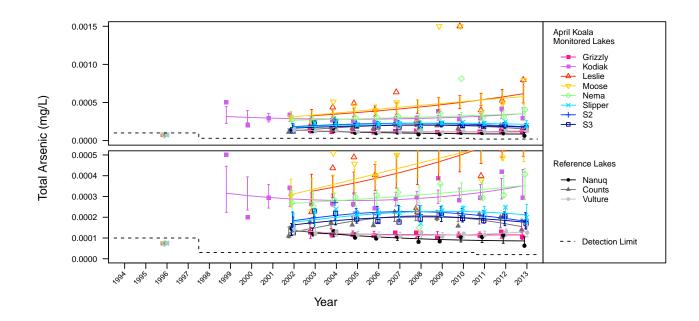
Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

• Results:

|                   | Chi-squared | DF | P-value |
|-------------------|-------------|----|---------|
| Leslie-vs-Nanuq   | 492.5487    | 3  | 0.0000  |
| Leslie-vs-Counts  | 195.8745    | 3  | 0.0000  |
| Leslie-vs-Vulture | 370.2797    | 3  | 0.0000  |
| Moose-vs-Nanuq    | 548.7301    | 3  | 0.0000  |
| Moose-vs-Counts   | 220.7667    | 3  | 0.0000  |
| Moose-vs-Vulture  | 419.8712    | 3  | 0.0000  |
|                   |             |    |         |

• Conclusions:

Leslie and Moose lakes show significant deviations from the slopes of individual reference lakes.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.5310    |
| Reference Lake | Nanuq     | 0.4850    |
| Reference Lake | Vulture   | 0.5260    |
| Monitored Lake | Grizzly   | 0.0970    |
| Monitored Lake | Kodiak    | 0.0950    |
| Monitored Lake | Leslie    | 0.1890    |
| Monitored Lake | Moose     | 0.1680    |
| Monitored Lake | Nema      | 0.0660    |
| Monitored Lake | S2        | 0.4170    |
| Monitored Lake | S3        | 0.1810    |
| Monitored Lake | Slipper   | 0.2330    |

• Conclusions:

Model fit for Nanuq, Slipper, and S2 is weak. Model fit for Gizzly, Kodiak, Leslie, Moose, Nema, and S3 Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

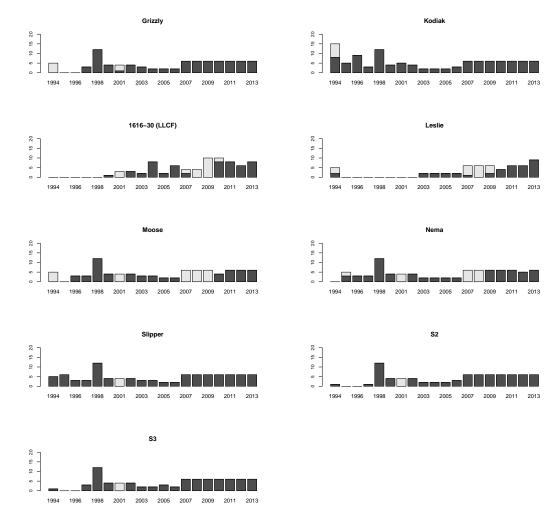
The estimated minimum detectable difference in mean total arsenic for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 1.07e-04 | 1.15e-04 | 1.26e-05 | 9.29e-05 | 1.43e-04 | 3.68e-05       |
| Kodiak  | 2.94e-04 | 3.51e-04 | 3.60e-05 | 2.87e-04 | 4.30e-04 | 1.05e-04       |
| Leslie  | 7.95e-04 | 6.14e-04 | 6.87e-05 | 4.93e-04 | 7.65e-04 | 2.01e-04       |
| Moose   | 7.94e-04 | 5.77e-04 | 6.20e-05 | 4.68e-04 | 7.13e-04 | 1.81e-04       |
| Nema    | 4.07e-04 | 3.53e-04 | 3.79e-05 | 2.86e-04 | 4.36e-04 | 1.11e-04       |
| Slipper | 1.99e-04 | 2.12e-04 | 2.25e-05 | 1.72e-04 | 2.61e-04 | 6.58e-05       |
| S2      | 1.86e-04 | 1.81e-04 | 1.92e-05 | 1.47e-04 | 2.23e-04 | 5.62e-05       |
| S3      | 1.69e-04 | 1.76e-04 | 1.86e-05 | 1.43e-04 | 2.16e-04 | 5.46e-05       |
| Nanuq   | 6.28e-05 | 8.60e-05 | 9.12e-06 | 6.99e-05 | 1.06e-04 | NA             |
| Counts  | 1.40e-04 | 1.55e-04 | 1.64e-05 | 1.26e-04 | 1.91e-04 | NA             |
| Vulture | 1.26e-04 | 1.30e-04 | 1.38e-05 | 1.06e-04 | 1.60e-04 | NA             |

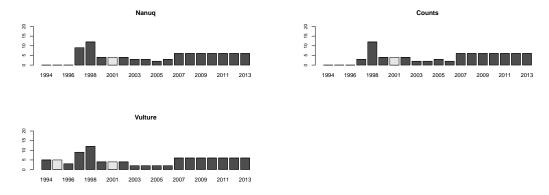
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------------------------------|------------------|---------------------------------------------------------|
| Arsenic   | April | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #1b<br>separate<br>n intercepts<br>& slopes | 0.005            | Leslie<br>Moose                                         |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Arsenic in Lakes of the Koala Watershed and Lac de Gras

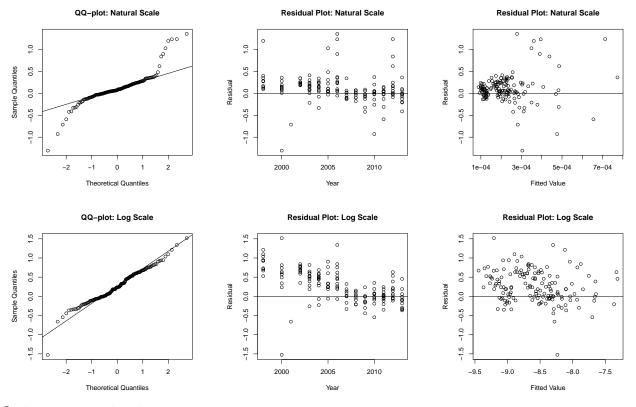
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in 1616-30 (LLCF), Leslie, Moose, and Nema lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year or fitted value. The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model". However, results of statistical analyses should be interpreted with caution.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

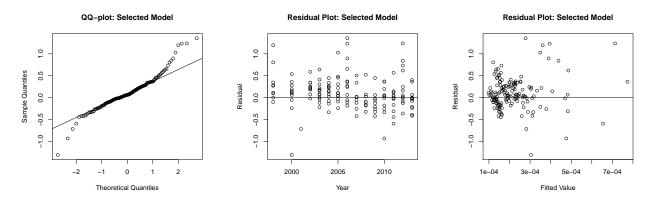
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 4.84        | 6.00 | 0.56    |

#### Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.011        | 0.585        | 0.404        | Indistinguishable support for 2 & 3; choose Model 3. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



#### Outliers:

#### None

#### Conclusion:

The reduced model shows dependence on year and fitted value. Results of statistical analyses should be interpreted with caution.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.4732      | 3  | 0.9247  |
| Kodiak         | 10.7258     | 3  | 0.0133  |
| 1616-30 (LLCF) | 61.7281     | 3  | 0.0000  |
| Leslie         | 27.1973     | 3  | 0.0000  |
| Moose          | 17.6562     | 3  | 0.0005  |
| Nema           | 5.7108      | 3  | 0.1266  |
| Slipper        | 9.9555      | 3  | 0.0189  |
| S2             | 1.8450      | 3  | 0.6052  |
| S3             | 0.6742      | 3  | 0.8792  |
|                |             |    |         |

• Conclusions:

All monitored lakes except Grizzly, Nema, S2, and S3 show significant deviation from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

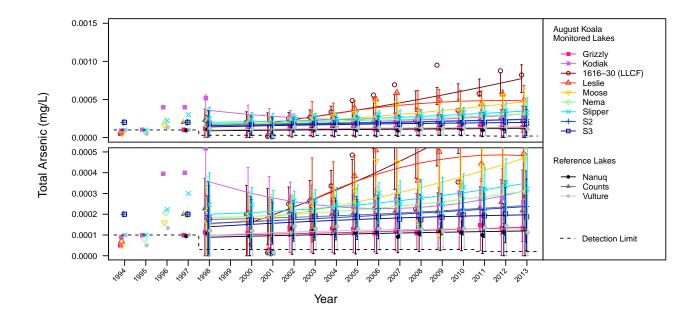
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.0018      | 2  | 0.9991  |
| Kodiak         | 1.1757      | 2  | 0.5555  |
| 1616-30 (LLCF) | 19.9681     | 2  | 0.0000  |
| Leslie         | 2.0161      | 2  | 0.3649  |
| Moose          | 4.6941      | 2  | 0.0957  |
| Nema           | 0.4809      | 2  | 0.7863  |
| Slipper        | 0.7483      | 2  | 0.6879  |
| S2             | 0.0868      | 2  | 0.9575  |
| S3             | 0.0149      | 2  | 0.9926  |

• Conclusions:

When allowing for differences in intercept 1616-30 (LLCF) shows significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name       | R-squared                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------|
| (more than one) | 0.0480                                                                                        |
| 1616-30 (LLCF)  | 0.5340                                                                                        |
| Grizzly         | 0.2050                                                                                        |
| Kodiak          | 0.2200                                                                                        |
| Leslie          | 0.4300                                                                                        |
| Moose           | 0.4220                                                                                        |
| Nema            | 0.2880                                                                                        |
| S2              | 0.2220                                                                                        |
| S3              | 0.1470                                                                                        |
| Slipper         | 0.3770                                                                                        |
|                 | (more than one)<br>1616-30 (LLCF)<br>Grizzly<br>Kodiak<br>Leslie<br>Moose<br>Nema<br>S2<br>S3 |

Conclusions:

Model fit for Grizzly, Kodiak, Leslie, Moose, Nema, Slipper, and S2 is weak. Model fit for S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

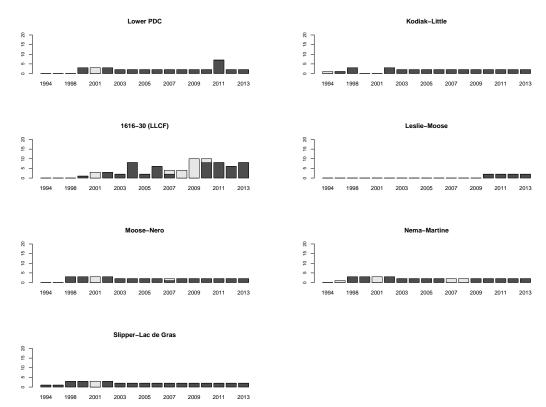
The estimated minimum detectable difference in mean total arsenic for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 1.33e-04 | 1.37e-04 | 8.79e-05 | 0.00e+00 | 3.09e-04 | 2.57e-04       |
| Kodiak         | 2.57e-04 | 3.11e-04 | 8.79e-05 | 1.39e-04 | 4.84e-04 | 2.57e-04       |
| Leslie         | 4.92e-04 | 4.83e-04 | 1.03e-04 | 2.80e-04 | 6.85e-04 | 3.03e-04       |
| 1616-30 (LLCF) | 8.21e-04 | 7.73e-04 | 9.27e-05 | 5.92e-04 | 9.55e-04 | 2.71e-04       |
| Moose          | 4.68e-04 | 4.70e-04 | 8.81e-05 | 2.97e-04 | 6.42e-04 | 2.58e-04       |
| Nema           | 3.09e-04 | 3.11e-04 | 8.80e-05 | 1.38e-04 | 4.83e-04 | 2.57e-04       |
| Slipper        | 3.22e-04 | 3.50e-04 | 8.79e-05 | 1.78e-04 | 5.22e-04 | 2.57e-04       |
| S2             | 2.37e-04 | 2.37e-04 | 8.79e-05 | 6.43e-05 | 4.09e-04 | 2.57e-04       |
| S3             | 1.88e-04 | 1.97e-04 | 8.79e-05 | 2.48e-05 | 3.69e-04 | 2.57e-04       |
| Nanuq          | 1.32e-04 | 1.19e-04 | 8.79e-05 | 0.00e+00 | 2.92e-04 | NA             |
| Counts         | 2.16e-04 | 2.41e-04 | 8.79e-05 | 6.91e-05 | 4.14e-04 | NA             |
| Vulture        | 1.12e-04 | 1.29e-04 | 8.79e-05 | 0.00e+00 | 3.01e-04 | NA             |

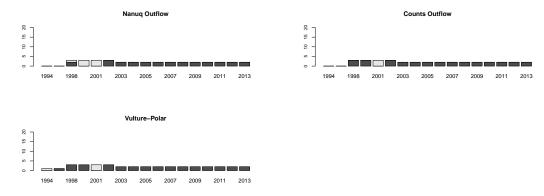
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*               |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|-----------------------------------------------------------|
| Arsenic   | August | Koala     | Lake          | Water    | none                          | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope | 0.005            | Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Slipper |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Arsenic in Koala Watershed Streams

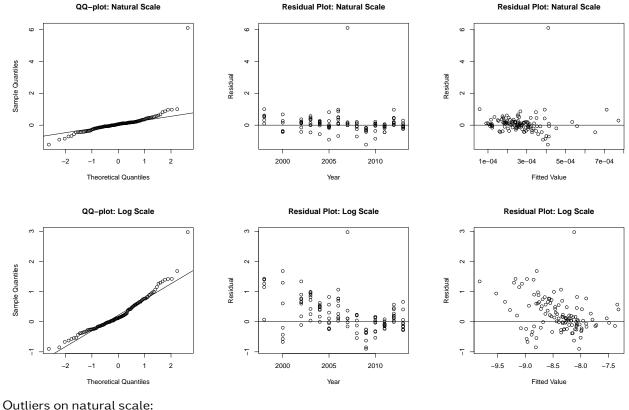
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in 1616-30 (LLCF), Moose-Nero, Nanuq Outflow, and Nema-Martine was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

#### 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 34 | Counts Outflow | 2007 | 0.00   | 0.00   | 6.11        |

Outliers on log scale:

None

#### AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

#### Conclusion:

The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 15.71       | 6.00 | 0.02    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

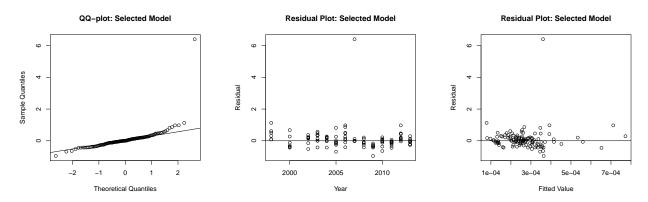
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.46        | 4.00 | 0.65    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.058        | 0.932        | 0.009        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 34 | Counts Outflow | 2007 | 0.00   | 0.00   | 6.41        |

Conclusion:

The reduced model shows dependence on year or fitted value. Results should be interpreted with caution.

### 4 Test Results for Monitored Streams

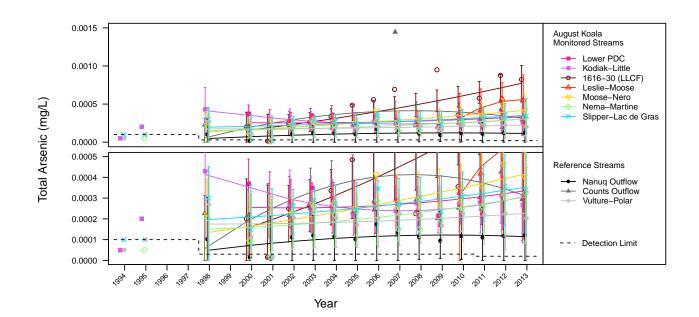
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 0.3520      | 2  | 0.8386  |
| Kodiak-Little       | 2.5040      | 2  | 0.2859  |
| Leslie-Moose        | 1.4326      | 2  | 0.4886  |
| 1616-30 (LLCF)      | 10.8284     | 2  | 0.0045  |
| Moose-Nero          | 1.3277      | 2  | 0.5149  |
| Nema-Martine        | 0.4940      | 2  | 0.7811  |
| Slipper-Lac de Gras | 0.4397      | 2  | 0.8026  |

• Conclusions:

1616-30 shows significant deviation from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.2430    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.5310    |
| Monitored Stream    | Kodiak-Little       | 0.7830    |
| Monitored Stream    | Leslie-Moose        | 0.9350    |
| Monitored Stream    | Lower PDC           | 0.0890    |
| Monitored Stream    | Moose-Nero          | 0.5670    |
| Monitored Stream    | Nema-Martine        | 0.3460    |
| Monitored Stream    | Slipper-Lac de Gras | 0.3140    |

• Conclusions:

Model fit for reference streams, 1616-30 (LLCF), Nema-Martine, and Slipper-Lac de Gras is weak. Model fit for Lower PDC is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total arsenic for each monitored stream in 2013. Reference streams are shown for comparison.

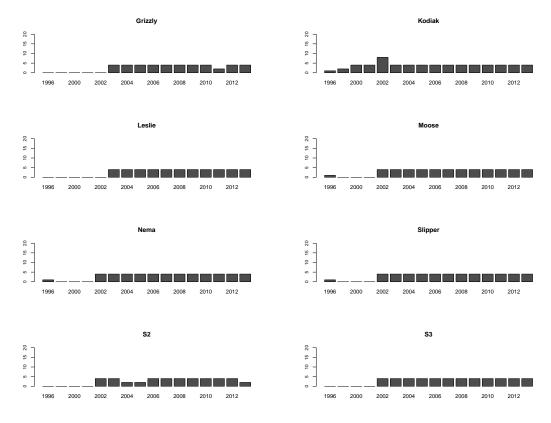
|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 2.99e-04 | 3.34e-04 | 1.18e-04 | 1.02e-04 | 5.67e-04 | 3.47e-04       |
| Kodiak-Little       | 2.64e-04 | 3.06e-04 | 1.13e-04 | 8.40e-05 | 5.28e-04 | 3.31e-04       |
| Leslie-Moose        | 5.48e-04 | 5.59e-04 | 1.65e-04 | 2.36e-04 | 8.83e-04 | 4.83e-04       |
| 1616-30 (LLCF)      | 8.21e-04 | 7.72e-04 | 1.19e-04 | 5.39e-04 | 1.01e-03 | 3.49e-04       |
| Moose-Nero          | 4.03e-04 | 4.15e-04 | 1.13e-04 | 1.94e-04 | 6.37e-04 | 3.31e-04       |
| Nema-Martine        | 3.25e-04 | 3.05e-04 | 1.13e-04 | 8.33e-05 | 5.26e-04 | 3.31e-04       |
| Slipper-Lac de Gras | 3.40e-04 | 3.52e-04 | 1.13e-04 | 1.31e-04 | 5.74e-04 | 3.31e-04       |
| Nanuq Outflow       | 1.21e-04 | 1.14e-04 | 1.13e-04 | 0.00e+00 | 3.36e-04 | NA             |
| Counts Outflow      | 2.94e-04 | 3.16e-04 | 1.13e-04 | 9.44e-05 | 5.37e-04 | NA             |
| Vulture-Polar       | 2.03e-04 | 2.27e-04 | 1.13e-04 | 5.39e-06 | 4.48e-04 | NA             |

\_

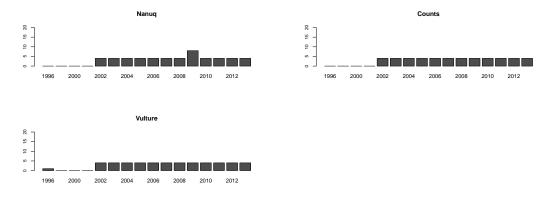
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------|
| Arsenic   | August | Koala     | Stream        | Water    | none                          | none                        | Tobit<br>regression | #2 shared slopes   | 0.005            | 1616-30<br>(LLCF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Barium in Lakes of the Koala Watershed and Lac de Gras

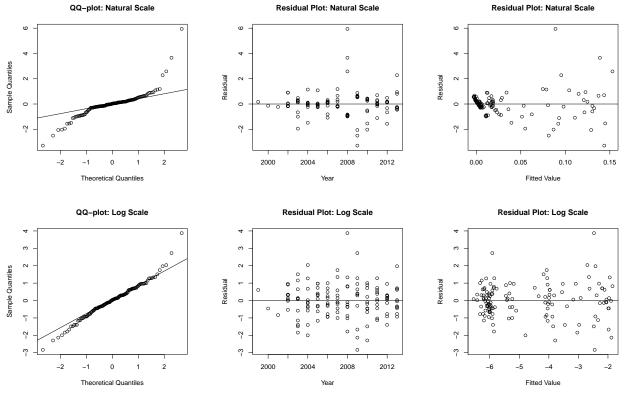
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



Outliers on natural scale:

|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 96  | Leslie | 2009 | 0.11   | 0.14   | -3.29       |
| 115 | Moose  | 2008 | 0.17   | 0.14   | 3.66        |
| 155 | Nema   | 2008 | 0.14   | 0.09   | 5.94        |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 0.14   | -2.47  | 3.88        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 9.23E-158 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 6490.43    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

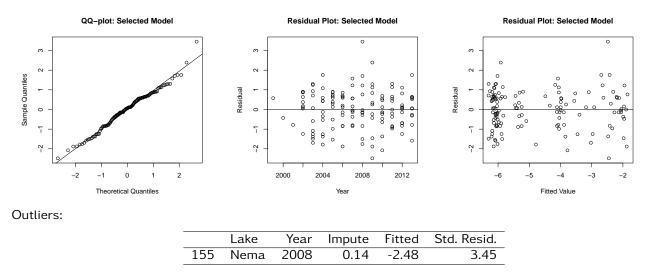
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.59       | 4.00 | 0.63    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

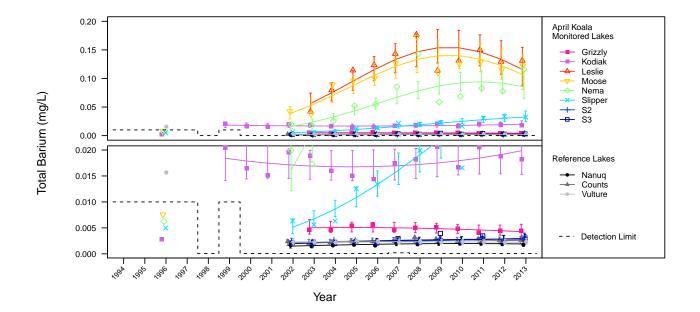
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 1.31        | 2.00 | 0.52    |
| Kodiak  | 0.92        | 2.00 | 0.63    |
| Leslie  | 18.13       | 2.00 | 0.00    |
| Moose   | 23.29       | 2.00 | 0.00    |
| Nema    | 52.96       | 2.00 | 0.00    |
| Slipper | 57.40       | 2.00 | 0.00    |
| S2      | 1.06        | 2.00 | 0.59    |
| S3      | 1.04        | 2.00 | 0.60    |

• Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1180    |
| Monitored Lake    | Grizzly         | 0.3830    |
| Monitored Lake    | Kodiak          | 0.1850    |
| Monitored Lake    | Leslie          | 0.7820    |
| Monitored Lake    | Moose           | 0.8420    |
| Monitored Lake    | Nema            | 0.7920    |
| Monitored Lake    | S2              | 0.3210    |
| Monitored Lake    | S3              | 0.3570    |
| Monitored Lake    | Slipper         | 0.8980    |

#### • Conclusions:

Model fit for Grizzly, S2, and S3 is weak. Model fit for reference lakes and Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

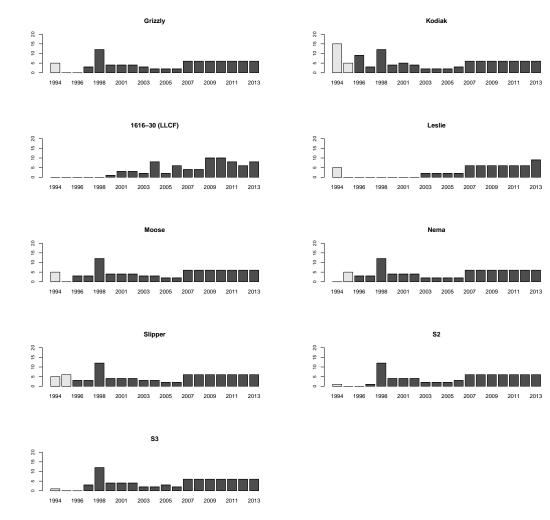
The estimated minimum detectable difference in mean total barium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 4.46e-03 | 4.28e-03 | 6.25e-04 | 3.21e-03 | 5.69e-03 | 1.83e-03       |
| Kodiak  | 1.82e-02 | 1.99e-02 | 2.67e-03 | 1.53e-02 | 2.59e-02 | 7.82e-03       |
| Leslie  | 1.31e-01 | 1.16e-01 | 1.69e-02 | 8.71e-02 | 1.54e-01 | 4.96e-02       |
| Moose   | 1.22e-01 | 1.07e-01 | 1.53e-02 | 8.06e-02 | 1.41e-01 | 4.47e-02       |
| Nema    | 1.16e-01 | 8.53e-02 | 1.22e-02 | 6.44e-02 | 1.13e-01 | 3.57e-02       |
| Slipper | 3.23e-02 | 3.25e-02 | 4.65e-03 | 2.46e-02 | 4.31e-02 | 1.36e-02       |
| S2      | 3.43e-03 | 3.01e-03 | 4.30e-04 | 2.27e-03 | 3.98e-03 | 1.26e-03       |
| S3      | 2.79e-03 | 2.83e-03 | 4.05e-04 | 2.14e-03 | 3.75e-03 | 1.19e-03       |
| Nanuq   | 1.78e-03 | 1.90e-03 | 2.72e-04 | 1.44e-03 | 2.52e-03 | NA             |
| Counts  | 2.48e-03 | 2.53e-03 | 3.62e-04 | 1.91e-03 | 3.35e-03 | NA             |
| Vulture | 2.30e-03 | 2.23e-03 | 3.18e-04 | 1.68e-03 | 2.95e-03 | NA             |

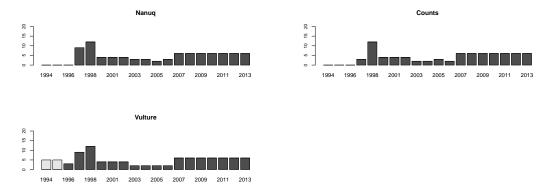
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                           | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|-----------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Barium    | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressio | #2 shared<br>slopes | 1                | Leslie<br>Moose<br>Nema<br>Slipper                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Barium in Lakes of the Koala Watershed and Lac de Gras

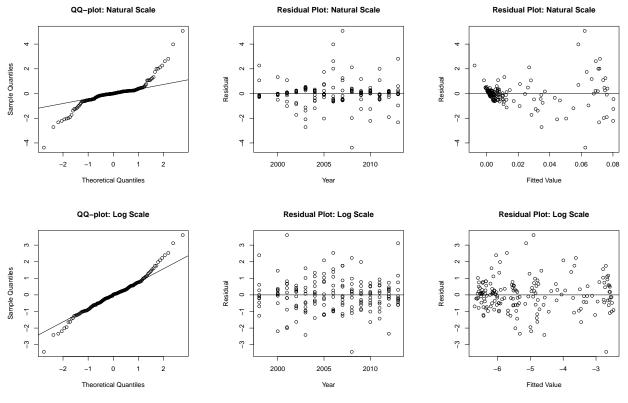
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 113 | Moose | 2006 | 0.08   | 0.06   | 3.98        |
| 114 | Moose | 2007 | 0.09   | 0.06   | 5.07        |
| 115 | Moose | 2008 | 0.04   | 0.06   | -4.38       |

Outliers on log scale:

|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 68  | Kodiak | 2001 | 0.01   | -4.90  | 3.60        |
| 115 | Moose  | 2008 | 0.04   | -2.69  | -3.43       |
| 180 | S2     | 2013 | 0.01   | -5.13  | 3.11        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 77.26       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

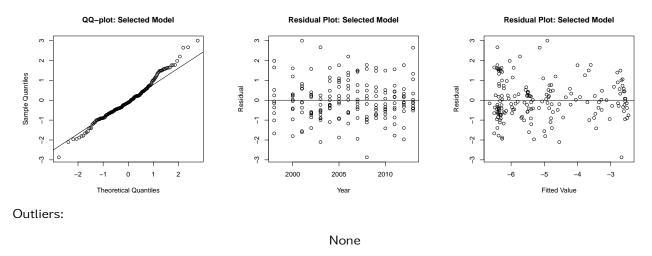
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.34        | 4.00 | 0.99    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

The reduced model shows dependence on year. Results of statistical analyses should be interpreted with caution.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

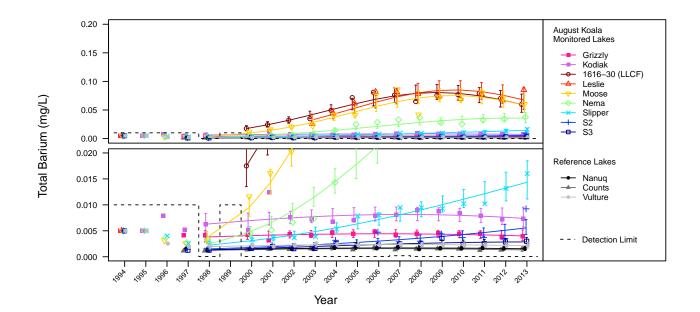
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.1156      | 2  | 0.9438  |
| Kodiak         | 0.1597      | 2  | 0.9232  |
| 1616-30 (LLCF) | 21.3776     | 2  | 0.0000  |
| Leslie         | 30.0135     | 2  | 0.0000  |
| Moose          | 261.9642    | 2  | 0.0000  |
| Nema           | 227.8341    | 2  | 0.0000  |
| Slipper        | 102.8393    | 2  | 0.0000  |
| S2             | 51.2972     | 2  | 0.0000  |
| S3             | 16.2030     | 2  | 0.0003  |

• Conclusions:

All monitored lakes except Grizzly and Kodiak lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name       | R-squared                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------|
| (more than one) | 0.0780                                                                                        |
| 1616-30 (LLCF)  | 0.9570                                                                                        |
| Grizzly         | 0.2090                                                                                        |
| Kodiak          | 0.1380                                                                                        |
| Leslie          | 0.7790                                                                                        |
| Moose           | 0.9450                                                                                        |
| Nema            | 0.9150                                                                                        |
| S2              | 0.7230                                                                                        |
| S3              | 0.7720                                                                                        |
| Slipper         | 0.9520                                                                                        |
|                 | (more than one)<br>1616-30 (LLCF)<br>Grizzly<br>Kodiak<br>Leslie<br>Moose<br>Nema<br>S2<br>S3 |

Conclusions:

Model fit for Grizzly Lake is weak. Model fit for reference lakes and Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

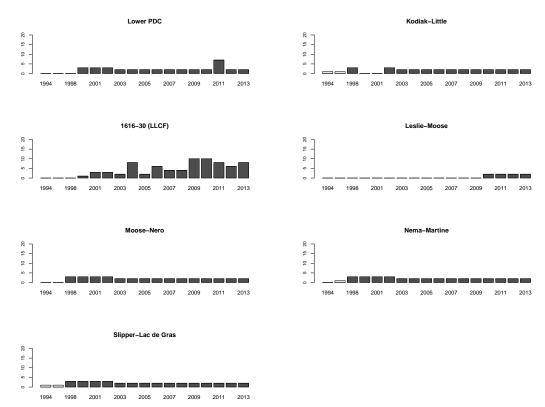
The estimated minimum detectable difference in mean total barium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 3.95e-03 | 4.02e-03 | 5.20e-04 | 3.12e-03 | 5.18e-03 | 1.52e-03       |
| Kodiak         | 7.29e-03 | 7.41e-03 | 9.59e-04 | 5.75e-03 | 9.55e-03 | 2.81e-03       |
| Leslie         | 8.51e-02 | 6.75e-02 | 9.62e-03 | 5.10e-02 | 8.92e-02 | 2.81e-02       |
| 1616-30 (LLCF) | 5.99e-02 | 5.98e-02 | 8.00e-03 | 4.60e-02 | 7.77e-02 | 2.34e-02       |
| Moose          | 6.02e-02 | 5.86e-02 | 7.59e-03 | 4.55e-02 | 7.56e-02 | 2.22e-02       |
| Nema           | 3.77e-02 | 3.56e-02 | 4.60e-03 | 2.76e-02 | 4.58e-02 | 1.35e-02       |
| Slipper        | 1.60e-02 | 1.43e-02 | 1.86e-03 | 1.11e-02 | 1.85e-02 | 5.43e-03       |
| S2             | 9.23e-03 | 5.55e-03 | 7.19e-04 | 4.31e-03 | 7.16e-03 | 2.10e-03       |
| S3             | 2.98e-03 | 2.86e-03 | 3.71e-04 | 2.22e-03 | 3.69e-03 | 1.09e-03       |
| Nanuq          | 1.60e-03 | 1.55e-03 | 2.00e-04 | 1.20e-03 | 1.99e-03 | NA             |
| Counts         | 1.58e-03 | 1.32e-03 | 1.71e-04 | 1.03e-03 | 1.71e-03 | NA             |
| Vulture        | 2.17e-03 | 2.13e-03 | 2.76e-04 | 1.65e-03 | 2.75e-03 | NA             |

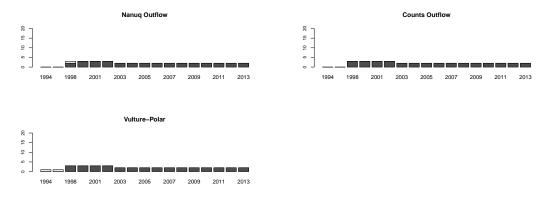
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                      |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|------------------------------------------------------------------|
| Barium    | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 1                | 1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Barium in Koala Watershed Streams

### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored



### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 0.06   | 0.04   | 4.72        |
| 114 | Moose-Nero | 2007 | 0.06   | 0.04   | 3.40        |
| 115 | Moose-Nero | 2008 | 0.02   | 0.04   | -4.63       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 0.06   | -3.24  | 3.11        |
| 115 | Moose-Nero | 2008 | 0.02   | -3.13  | -4.45       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 231.21      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 28.67       | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 3.1677      | 2  | 0.2052  |
| Kodiak-Little       | 2.7149      | 2  | 0.2573  |
| Leslie-Moose        | 1.2292      | 2  | 0.5409  |
| 1616-30 (LLCF)      | 124.7655    | 2  | 0.0000  |
| Moose-Nero          | 150.7147    | 2  | 0.0000  |
| Nema-Martine        | 166.6570    | 2  | 0.0000  |
| Slipper-Lac de Gras | 81.0391     | 2  | 0.0000  |

#### • Conclusions:

All monitored lakes except Lower PDC, Kodiak-Little, and Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

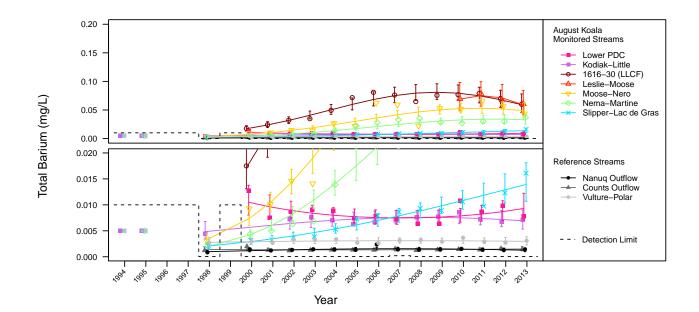
#### • Results:

|                                       | Chi-squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 156.9447    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 102.0902    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 52.7214     | 3  | 0.0000  |
| Moose-Nero-vs-Nanuq Outflow           | 2965.4784   | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 3008.0136   | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 1705.5306   | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 2095.3629   | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 2137.6494   | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 1096.0776   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 861.9491    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 878.0216    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 286.9687    | 3  | 0.0000  |
|                                       |             |    |         |

• Conclusions:

All of the remaining monitored streams show significant deviations from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Reference Stream | Counts Outflow      | 0.0770    |
| Reference Stream | Nanuq Outflow       | 0.4050    |
| Reference Stream | Vulture-Polar       | 0.0860    |
| Monitored Stream | 1616-30 (LLCF)      | 0.9570    |
| Monitored Stream | Kodiak-Little       | 0.6640    |
| Monitored Stream | Leslie-Moose        | 0.8410    |
| Monitored Stream | Lower PDC           | 0.3010    |
| Monitored Stream | Moose-Nero          | 0.8870    |
| Monitored Stream | Nema-Martine        | 0.9360    |
| Monitored Stream | Slipper-Lac de Gras | 0.9620    |

• Conclusions:

Model fit for Nanuq Outflow and Lower PDC is weak. Model fit for Counts Outflow and Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

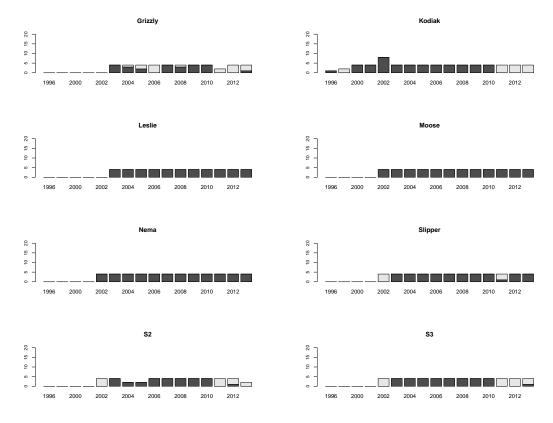
The estimated minimum detectable difference in mean total barium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 7.76e-03 | 9.30e-03 | 1.30e-03 | 7.08e-03 | 1.22e-02 | 3.80e-03       |
| Kodiak-Little       | 7.15e-03 | 6.94e-03 | 9.35e-04 | 5.33e-03 | 9.04e-03 | 2.74e-03       |
| Leslie-Moose        | 6.06e-02 | 5.90e-02 | 1.07e-02 | 4.13e-02 | 8.42e-02 | 3.13e-02       |
| 1616-30 (LLCF)      | 5.99e-02 | 5.93e-02 | 8.27e-03 | 4.51e-02 | 7.80e-02 | 2.42e-02       |
| Moose-Nero          | 4.34e-02 | 4.88e-02 | 6.57e-03 | 3.75e-02 | 6.35e-02 | 1.92e-02       |
| Nema-Martine        | 3.67e-02 | 3.29e-02 | 4.43e-03 | 2.53e-02 | 4.28e-02 | 1.30e-02       |
| Slipper-Lac de Gras | 1.61e-02 | 1.39e-02 | 1.87e-03 | 1.07e-02 | 1.81e-02 | 5.48e-03       |
| Nanuq Outflow       | 1.44e-03 | 1.27e-03 | 1.70e-04 | 9.73e-04 | 1.65e-03 | NA             |
| Counts Outflow      | 1.46e-03 | 1.50e-03 | 2.02e-04 | 1.15e-03 | 1.95e-03 | NA             |
| Vulture-Polar       | 3.09e-03 | 2.97e-03 | 3.99e-04 | 2.28e-03 | 3.86e-03 | NA             |

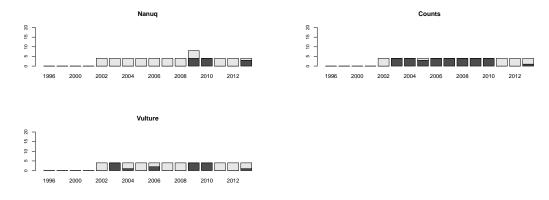
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|---------------------------------------------------------------------------------------|
| Barium    | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | 1.0              | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Boron in Lakes of the Koala Watershed and Lac de Gras

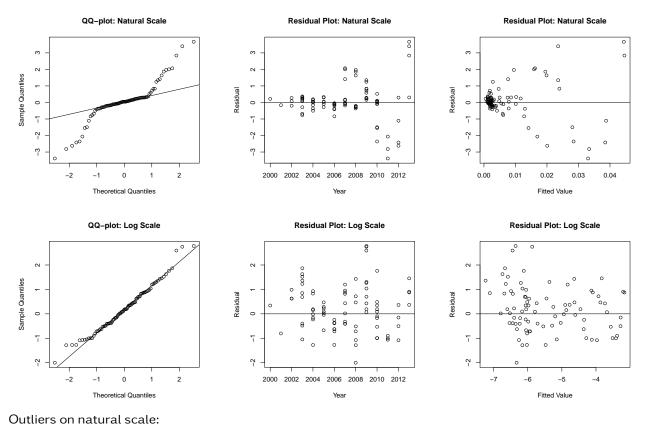
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Nanuq Lake was less than the detection limit. This lake was excluded from further analyses. 10-60% of data in Counts, Grizzly, Kodiak, Slipper, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 118 | Moose | 2011 | 0.03   | 0.03   | -3.39       |
| 120 | Moose | 2013 | 0.05   | 0.04   | 3.67        |
| 160 | Nema  | 2013 | 0.03   | 0.02   | 3.40        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 3.41E-161 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 7.70       | 3.00 | 0.05    |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

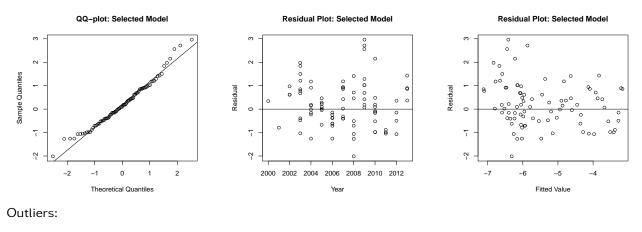
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.91       | 2.00 | 0.23    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.535        | 0.278        | 0.188        | Indistinguishable support for 1 & 2; choose Model 2. |

• Conclusions:

Results of AIC do not agree with reference model testing. Although results of contrasts suggest that reference lakes share a common slope and intercept, AIC suggests that the reference lakes are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2 (fitting separate intercepts and a common slope for reference lakes).

#### 3.3 Assess Fit of Reduced Model



None

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

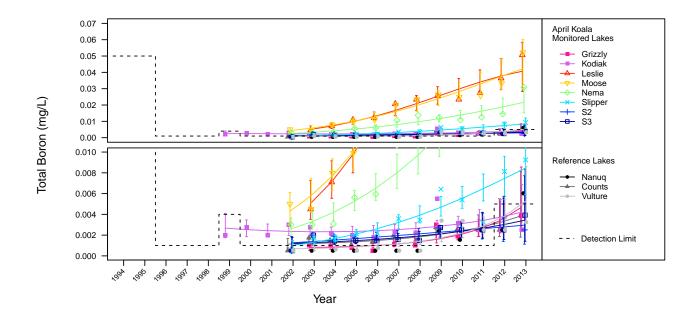
• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Grizzly | 0.2153      | 2  | 0.8980  |
| Kodiak  | 9.0863      | 2  | 0.0106  |
| Leslie  | 10.5029     | 2  | 0.0052  |
| Moose   | 10.4129     | 2  | 0.0055  |
| Nema    | 6.4669      | 2  | 0.0394  |
| Slipper | 6.2728      | 2  | 0.0434  |
| S2      | 2.3336      | 2  | 0.3114  |
| S3      | 1.4240      | 2  | 0.4907  |
|         |             |    |         |

• Conclusions:

All monitored lakes except Grizzly, S2, and S3 show significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.5920    |
| Monitored Lake    | Grizzly         | 0.7610    |
| Monitored Lake    | Kodiak          | 0.3040    |
| Monitored Lake    | Leslie          | 0.9530    |
| Monitored Lake    | Moose           | 0.9490    |
| Monitored Lake    | Nema            | 0.8900    |
| Monitored Lake    | S2              | 0.4010    |
| Monitored Lake    | S3              | 0.5340    |
| Monitored Lake    | Slipper         | 0.8180    |

#### • Conclusions:

Model fit for Kodiak and S2 is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

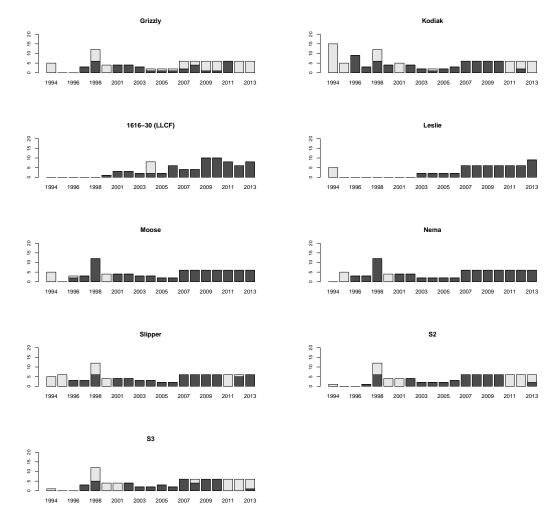
# 7 Minimum Detectable Differences

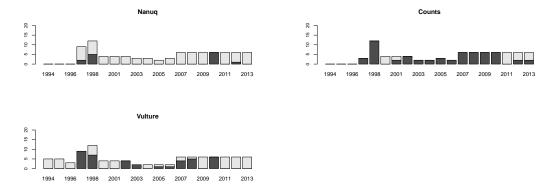
The estimated minimum detectable difference in mean total boron for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower     | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|-----------|----------|----------------|
| Grizzly | 3.85e-03 | 4.66e-03 | 1.45e-03 | 2.54e-03  | 8.56e-03 | 4.23e-03       |
| Kodiak  | 2.50e-03 | 4.20e-03 | 1.06e-03 | 2.57e-03  | 6.88e-03 | 3.09e-03       |
| Leslie  | 5.07e-02 | 4.07e-02 | 7.51e-03 | 2.83e-02  | 5.84e-02 | 2.20e-02       |
| Moose   | 5.22e-02 | 4.23e-02 | 7.57e-03 | 2.97e-02  | 6.00e-02 | 2.21e-02       |
| Nema    | 3.08e-02 | 2.17e-02 | 3.88e-03 | 1.53e-02  | 3.08e-02 | 1.14e-02       |
| Slipper | 9.25e-03 | 8.46e-03 | 1.54e-03 | 5.92e-03  | 1.21e-02 | 4.50e-03       |
| S2      | 2.50e-03 | 2.96e-03 | 1.45e-03 | 1.13e-03  | 7.71e-03 | 4.23e-03       |
| S3      | 3.93e-03 | 3.43e-03 | 1.56e-03 | 1.41e-03  | 8.36e-03 | 4.56e-03       |
| Nanuq   | 6.02e-03 | NA       | NA       | NA        | NA       | NA             |
| Counts  | 3.90e-03 | 3.83e-03 | 1.47e-03 | 1.80e-03  | 8.14e-03 | NA             |
| Vulture | 3.25e-03 | 5.29e-03 | 1.32e-03 | 3.24e-03  | 8.62e-03 | NA             |
| value   | 5.250 05 | 5.250 05 | 1.520 05 | 5.2 10 05 | 0.020 00 | 14/1           |

# 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model    | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*  |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------|------------------|----------------------------------------------|
| Boron     | April | Koala     | Lake          | Water    | Nanuq                         | log e                       | Tobit<br>regressior | #2 shared<br>n slopes | 1.5              | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper |

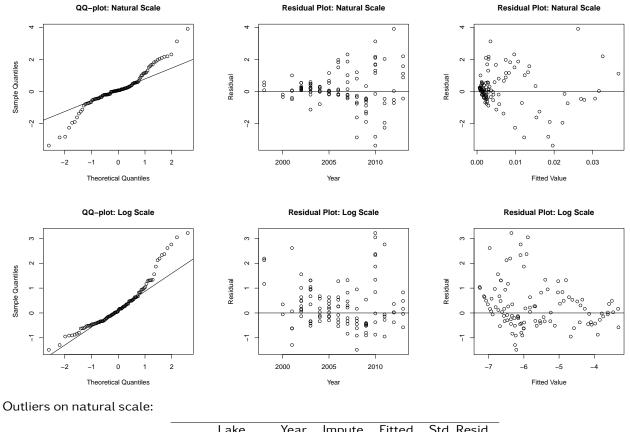

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Boron in Lakes of the Koala Watershed and Lac de Gras

January 11, 2014

# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).






Comment:

Greater than 60% of data in Nanuq Lake was less than the detection limit. This lake was excluded from further analyses. 10-60% of data in Counts, Vulture, Grizzly, Kodiak, Slipper, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 37  | Counts | 2010 | 0.01   | 0.00   | 3.13        |
| 97  | Leslie | 2010 | 0.02   | 0.02   | -3.36       |
| 119 | Moose  | 2012 | 0.03   | 0.03   | 3.91        |
|     |        |      |        |        |             |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 37  | Counts  | 2010 | 0.01   | -5.89  | 3.04        |
| 237 | Vulture | 2010 | 0.01   | -6.35  | 3.22        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 12.42       | 3.00 | 0.01    |

Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

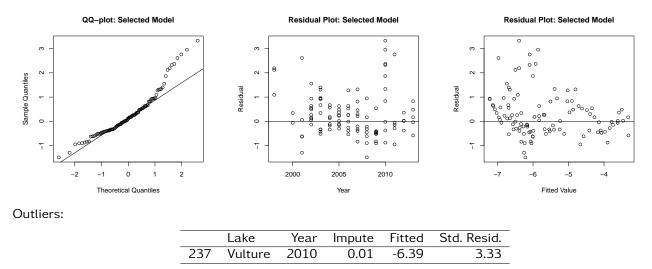
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.41        | 2.00 | 0.82    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.307        | 0.684        | 0.009        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

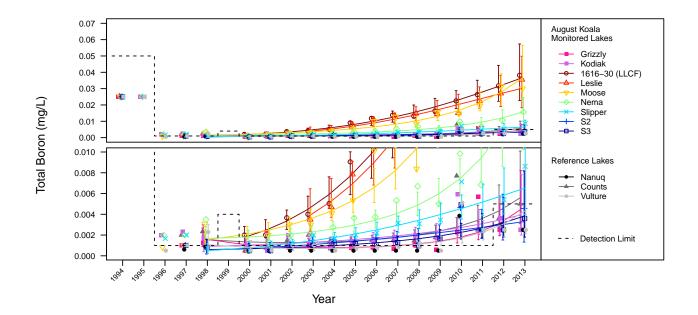
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 1.3004      | 2  | 0.5219  |
| Kodiak         | 1.8572      | 2  | 0.3951  |
| 1616-30 (LLCF) | 26.2988     | 2  | 0.0000  |
| Leslie         | 5.8870      | 2  | 0.0527  |
| Moose          | 21.7259     | 2  | 0.0000  |
| Nema           | 5.3176      | 2  | 0.0700  |
| Slipper        | 8.6659      | 2  | 0.0131  |
| S2             | 2.7645      | 2  | 0.2510  |
| S3             | 1.6964      | 2  | 0.4282  |

• Conclusions:

1616-30 (LLCF), Leslie, Moose, and Slipper lakes show significant deviation from the common slope and intercept of reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name       | R-squared                                                                                     |
|-----------------|-----------------------------------------------------------------------------------------------|
| (more than one) | 0.5800                                                                                        |
| 1616-30 (LLCF)  | 0.9830                                                                                        |
| Grizzly         | 0.5290                                                                                        |
| Kodiak          | 0.5060                                                                                        |
| Leslie          | 0.9490                                                                                        |
| Moose           | 0.8120                                                                                        |
| Nema            | 0.7210                                                                                        |
| S2              | 0.7030                                                                                        |
| S3              | 0.7650                                                                                        |
| Slipper         | 0.8640                                                                                        |
|                 | (more than one)<br>1616-30 (LLCF)<br>Grizzly<br>Kodiak<br>Leslie<br>Moose<br>Nema<br>S2<br>S3 |

• Conclusions:

Models provide a good fit for all monitored lakes.

# 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

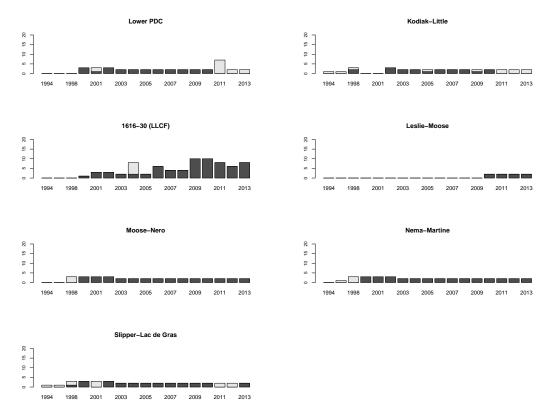
# 7 Minimum Detectable Differences

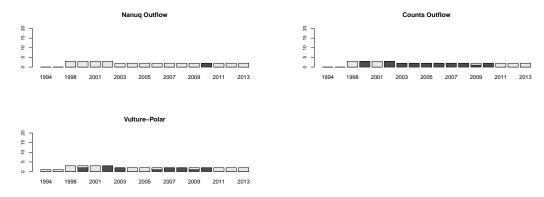
The estimated minimum detectable difference in mean total Boron for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 2.50e-03 | 4.46e-03 | 1.39e-03 | 2.42e-03 | 8.21e-03 | 4.06e-03       |
| Kodiak         | 2.50e-03 | 3.95e-03 | 1.37e-03 | 2.00e-03 | 7.81e-03 | 4.02e-03       |
| Leslie         | 3.55e-02 | 3.02e-02 | 7.72e-03 | 1.83e-02 | 4.98e-02 | 2.26e-02       |
| 1616-30 (LLCF) | 3.82e-02 | 3.61e-02 | 8.53e-03 | 2.27e-02 | 5.73e-02 | 2.49e-02       |
| Moose          | 3.00e-02 | 3.65e-02 | 8.17e-03 | 2.35e-02 | 5.65e-02 | 2.39e-02       |
| Nema           | 1.57e-02 | 1.59e-02 | 3.55e-03 | 1.02e-02 | 2.46e-02 | 1.04e-02       |
| Slipper        | 8.62e-03 | 6.53e-03 | 1.64e-03 | 3.98e-03 | 1.07e-02 | 4.81e-03       |
| S2             | 4.57e-03 | 3.29e-03 | 1.53e-03 | 1.32e-03 | 8.20e-03 | 4.49e-03       |
| S3             | 3.60e-03 | 3.83e-03 | 1.47e-03 | 1.80e-03 | 8.14e-03 | 4.31e-03       |
| Nanuq          | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 5.00e-03 | 5.59e-03 | 1.68e-03 | 3.10e-03 | 1.01e-02 | NA             |
| Vulture        | 2.50e-03 | 4.35e-03 | 1.56e-03 | 2.16e-03 | 8.79e-03 | NA             |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*     |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|-------------------------------------------------|
| Boron     | August | Koala     | Lake          | Water    | Nanuq                         | log e                       | Tobit<br>regression | #2 shared<br>slopes | 1.5              | 1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Slipper |

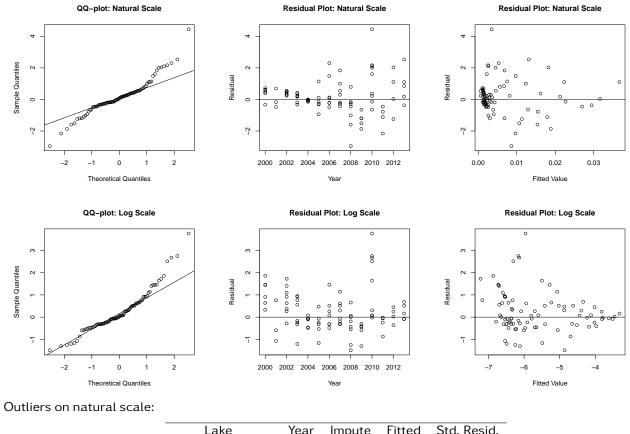

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Boron in Koala Watershed Streams

#### January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).






#### Comment:

Greater than 60% of data in Nanuq Outflow was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Counts Outflow, Vulture-Polar, Kodiak-Little, Lower PDC, and Slipper-Lac de Gras was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



|    | Lake      | Year | Impute | Fitted | Std. Resid. |
|----|-----------|------|--------|--------|-------------|
| 97 | Lower PDC | 2010 | 0.01   | 0.00   | 4.44        |

Outliers on log scale:

| Lake |           | Year | Impute | Fitted | Std. Resid. |
|------|-----------|------|--------|--------|-------------|
| 97   | Lower PDC | 2010 | 0.01   | -5.96  | 3.76        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 10.43       | 3.00 | 0.02    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

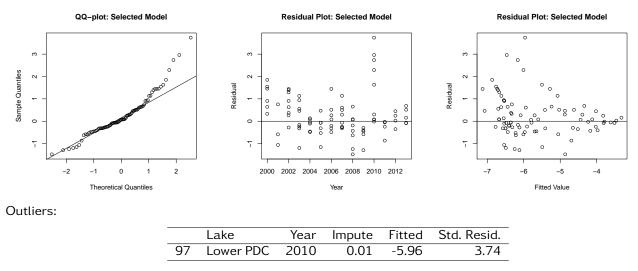
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.81        | 2.00 | 0.40    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.457        | 0.496        | 0.047        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

Reduced model shows dependence on year and fitted value. Results should be interpreted with caution.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

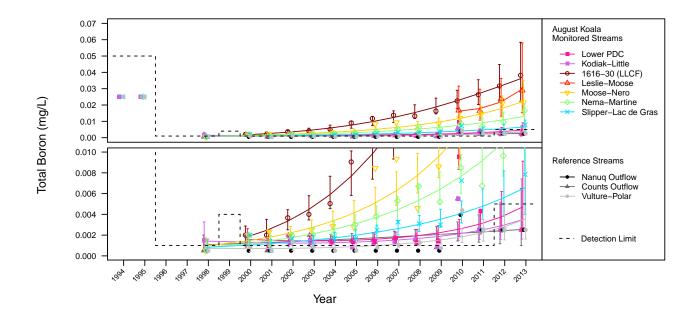
• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 0.9881      | 2  | 0.6102  |
| Kodiak-Little       | 0.6089      | 2  | 0.7375  |
| Leslie-Moose        | 0.2820      | 2  | 0.8685  |
| 1616-30 (LLCF)      | 24.4239     | 2  | 0.0000  |
| Moose-Nero          | 18.4609     | 2  | 0.0001  |
| Nema-Martine        | 11.8861     | 2  | 0.0026  |
| Slipper-Lac de Gras | 3.5613      | 2  | 0.1685  |

• Conclusions:

1616-30 (LLCF), Moose-Nero, and Nema-Martine show significant deviation from the common slope of reference streams.

# 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.4450    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.9830    |
| Monitored Stream    | Kodiak-Little       | 0.4040    |
| Monitored Stream    | Leslie-Moose        | 0.9290    |
| Monitored Stream    | Lower PDC           | 0.3470    |
| Monitored Stream    | Moose-Nero          | 0.8940    |
| Monitored Stream    | Nema-Martine        | 0.9100    |
| Monitored Stream    | Slipper-Lac de Gras | 0.6620    |
|                     |                     |           |

#### • Conclusions:

Model fit for the reference streams, Kodiak-Little, and the Lower PDC is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

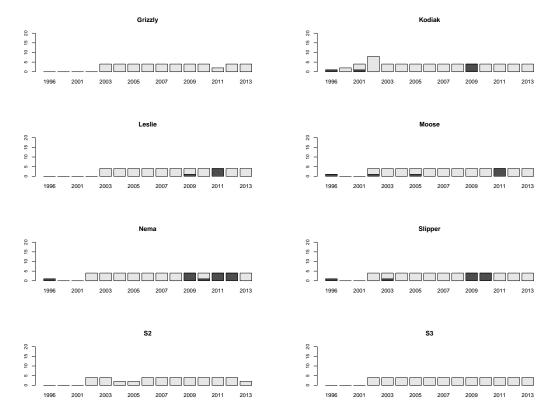
# 7 Minimum Detectable Differences

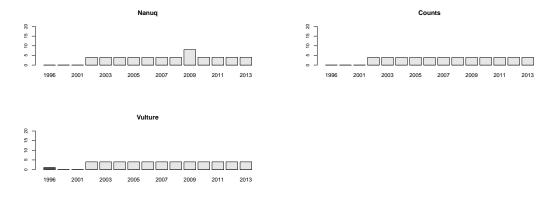
The estimated minimum detectable difference in mean total boron for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 2.50e-03 | 4.72e-03 | 1.59e-03 | 2.44e-03 | 9.12e-03 | 4.64e-03       |
| Kodiak-Little       | 2.50e-03 | 3.45e-03 | 1.35e-03 | 1.61e-03 | 7.41e-03 | 3.94e-03       |
| Leslie-Moose        | 2.90e-02 | 2.98e-02 | 1.01e-02 | 1.53e-02 | 5.80e-02 | 2.96e-02       |
| 1616-30 (LLCF)      | 3.82e-02 | 3.61e-02 | 8.86e-03 | 2.23e-02 | 5.84e-02 | 2.59e-02       |
| Moose-Nero          | 2.15e-02 | 2.22e-02 | 5.21e-03 | 1.40e-02 | 3.52e-02 | 1.53e-02       |
| Nema-Martine        | 1.66e-02 | 1.30e-02 | 3.08e-03 | 8.22e-03 | 2.07e-02 | 9.01e-03       |
| Slipper-Lac de Gras | 7.85e-03 | 6.56e-03 | 1.66e-03 | 4.00e-03 | 1.08e-02 | 4.86e-03       |
| Nanuq Outflow       | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 2.50e-03 | 2.54e-03 | 1.22e-03 | 9.93e-04 | 6.50e-03 | NA             |
| Vulture-Polar       | 2.50e-03 | 3.54e-03 | 1.41e-03 | 1.63e-03 | 7.72e-03 | NA             |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*             |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------------------|
| Boron     | August | Koala     | Stream        | Water    | Nanuq<br>Outflow              | log e                       | Tobit<br>regression | #2 shared<br>slopes | 1.5              | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine |

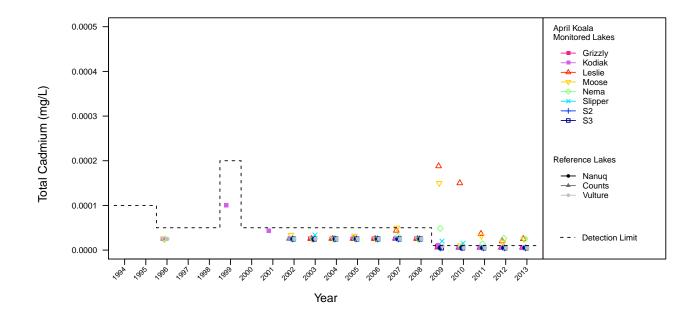

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Cadmium in Lakes of the Koala Watershed and Lac de Gras

January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).






#### Comment:

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Statisical tests not performed. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only.

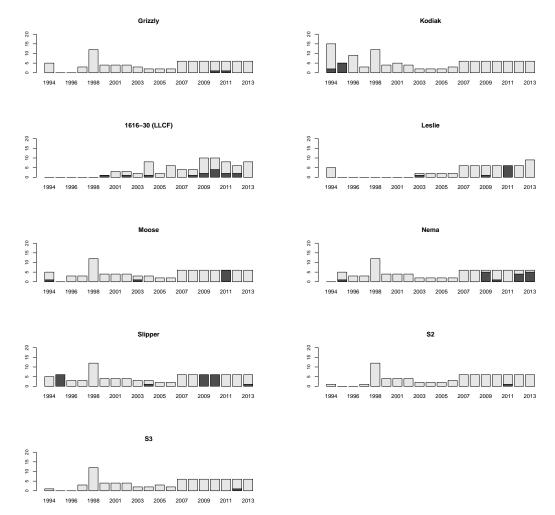
# 3 Minimum Detectable Differences

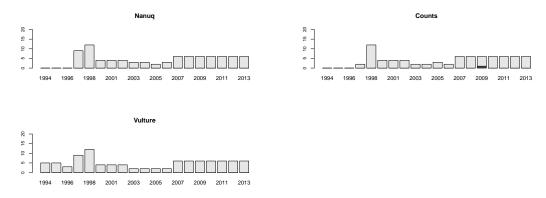
The estimated minimum detectable difference in mean total cadmium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted | SE Fit | Lower | Upper | Min. Det. Diff |
|---------|----------|--------|--------|-------|-------|----------------|
| Grizzly | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| Kodiak  | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| Leslie  | 2.5e-05  | NA     | NA     | NA    | NA    | NA             |
| Moose   | 2.5e-05  | NA     | NA     | NA    | NA    | NA             |
| Nema    | 2.5e-05  | NA     | NA     | NA    | NA    | NA             |
| Slipper | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| S2      | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| S3      | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| Nanuq   | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| Counts  | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |
| Vulture | 5.0e-06  | NA     | NA     | NA    | NA    | NA             |

# 4 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model |                        | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------|
| Cadmium   | April | Koala     | Lake          | Water    | ALL                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                          |

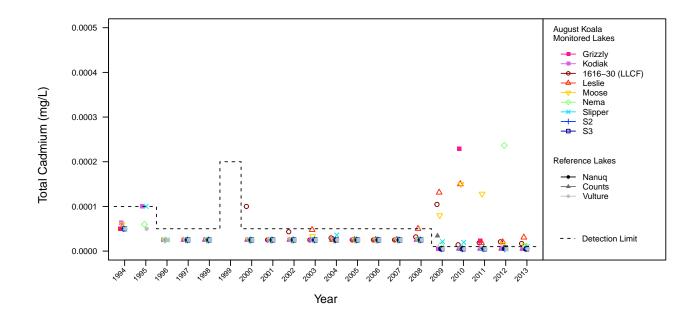

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Cadmium in Lakes of the Koala Watershed and Lac de Gras

January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).






Comment:

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed.

# 2 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only.

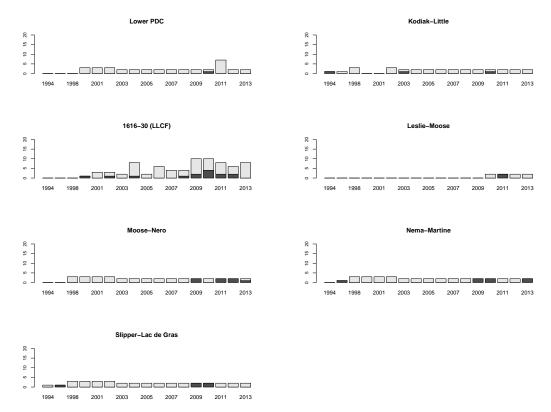
# 3 Minimum Detectable Differences

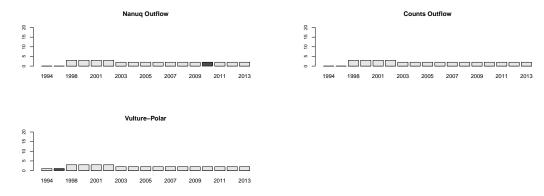
The estimated minimum detectable difference in mean total cadmium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted | SE Fit | Lower | Upper | Min. Det. Diff |
|----------------|----------|--------|--------|-------|-------|----------------|
| Grizzly        | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Kodiak         | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Leslie         | 3.06e-05 | NA     | NA     | NA    | NA    | NA             |
| 1616-30 (LLCF) | 1.69e-05 | NA     | NA     | NA    | NA    | NA             |
| Moose          | 1.29e-05 | NA     | NA     | NA    | NA    | NA             |
| Nema           | 1.02e-05 | NA     | NA     | NA    | NA    | NA             |
| Slipper        | 1.03e-05 | NA     | NA     | NA    | NA    | NA             |
| S2             | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| S3             | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Nanuq          | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Counts         | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Vulture        | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |

## 4 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------|
| Cadmium   | August | Koala     | Lake          | Water    | ALL                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                          |

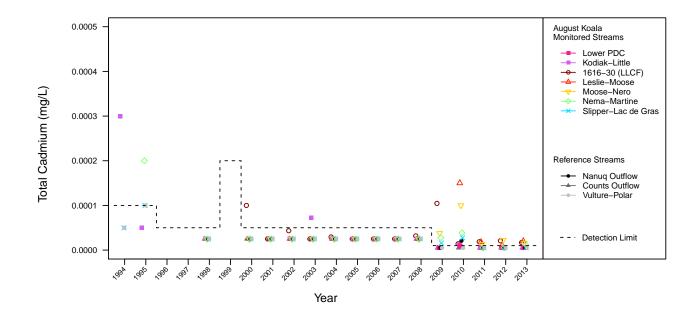

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Cadmium in Koala Watershed Streams

#### January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).






#### Comment:

Greater than 60% of data in all reference and monitored streams was less than the detection limit. All streams were excluded from further analyses. Tests not performed.

# 2 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only.

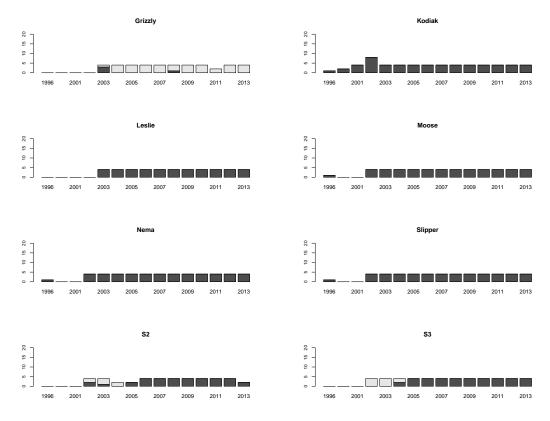
# 3 Minimum Detectable Differences

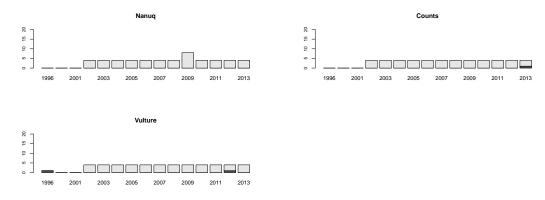
The estimated minimum detectable difference in mean varxxx for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted | SE Fit | Lower | Upper | Min. Det. Diff |
|---------------------|----------|--------|--------|-------|-------|----------------|
| Lower PDC           | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Kodiak-Little       | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Leslie-Moose        | 2.00e-05 | NA     | NA     | NA    | NA    | NA             |
| 1616-30 (LLCF)      | 1.69e-05 | NA     | NA     | NA    | NA    | NA             |
| Moose-Nero          | 1.60e-05 | NA     | NA     | NA    | NA    | NA             |
| Nema-Martine        | 1.25e-05 | NA     | NA     | NA    | NA    | NA             |
| Slipper-Lac de Gras | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Nanuq Outflow       | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Counts Outflow      | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |
| Vulture-Polar       | 5.00e-06 | NA     | NA     | NA    | NA    | NA             |

# 4 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------------------|
| Cadmium   | August | Koala     | Stream        | Water    | ALL                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                                      |

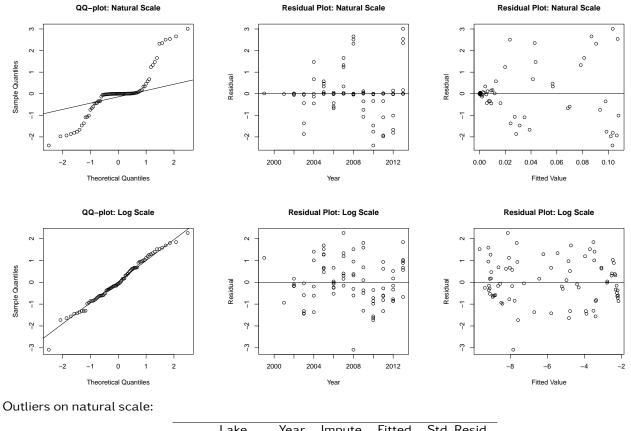

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Molybdenum in Lakes of the Koala Watershed and Lac de Gras

January 11, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).






#### Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and Grizzly lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in S2 and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 120 | Moose | 2013 | 0.13   | 0.10   | 3.01        |

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 195 | S3   | 2008 | 0.00   | -7.84  | -3.09       |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 1.38E-114 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

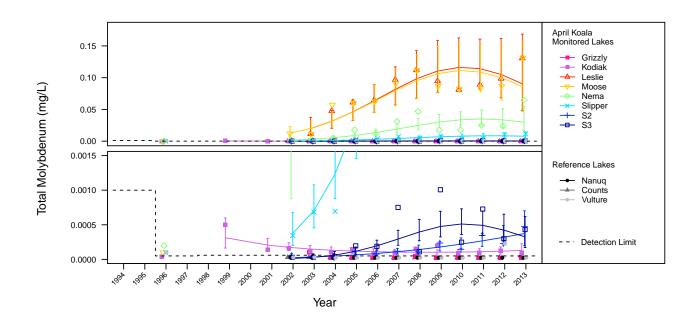
• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Kodiak  | 7.7361      | 2  | 0.0209  |
| Leslie  | 19.9630     | 2  | 0.0000  |
| Moose   | 33.6233     | 2  | 0.0000  |
| Nema    | 69.2398     | 2  | 0.0000  |
| Slipper | 72.5824     | 2  | 0.0000  |
| S2      | 26.2471     | 2  | 0.0000  |
| S3      | 27.0084     | 2  | 0.0000  |

• Conclusions:

All monitored lakes show significant deviation from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Kodiak    | 0.5080    |
| Monitored Lake | Leslie    | 0.7840    |
| Monitored Lake | Moose     | 0.8280    |
| Monitored Lake | Nema      | 0.7970    |
| Monitored Lake | S2        | 0.8140    |
| Monitored Lake | S3        | 0.7630    |
| Monitored Lake | Slipper   | 0.8630    |

• Conclusions:

Models provide a good fit for all monitored lakes.





Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

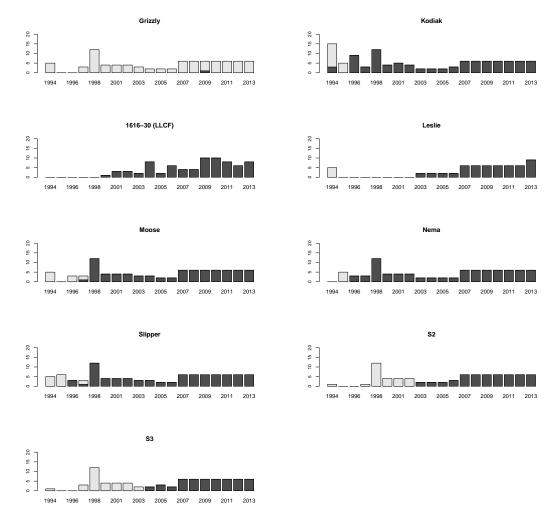
### 7 Minimum Detectable Differences

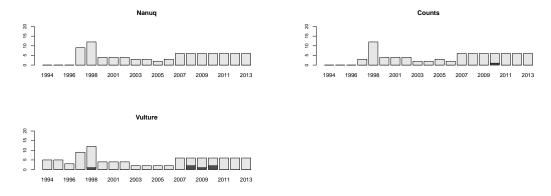
The estimated minimum detectable difference in mean total molybdenum for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak  | 9.77e-05 | 1.29e-04 | 3.69e-05 | 7.40e-05 | 2.27e-04 | 1.08e-04       |
| Leslie  | 1.31e-01 | 9.04e-02 | 2.87e-02 | 4.85e-02 | 1.69e-01 | 8.41e-02       |
| Moose   | 1.31e-01 | 8.56e-02 | 2.64e-02 | 4.67e-02 | 1.57e-01 | 7.73e-02       |
| Nema    | 6.45e-02 | 3.00e-02 | 9.25e-03 | 1.64e-02 | 5.49e-02 | 2.71e-02       |
| Slipper | 1.17e-02 | 7.79e-03 | 2.41e-03 | 4.26e-03 | 1.43e-02 | 7.04e-03       |
| S2      | 4.72e-04 | 3.73e-04 | 1.20e-04 | 1.99e-04 | 7.02e-04 | 3.52e-04       |
| S3      | 4.31e-04 | 3.26e-04 | 1.06e-04 | 1.72e-04 | 6.18e-04 | 3.11e-04       |
| Nanuq   | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts  | 5.30e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

# 8 Final Summary Table

| Parameter Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed         | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model               | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*           |
|------------------|-----------|---------------|----------|---------------------------------------|-----------------------------|---------------------|----------------------------------|------------------|-------------------------------------------------------|
| Molybdenum April | Koala     | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Grizzly | log e                       | Tobit<br>regressior | #1a slope<br>of zero &<br>slopes | 19.38            | Kodiak<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

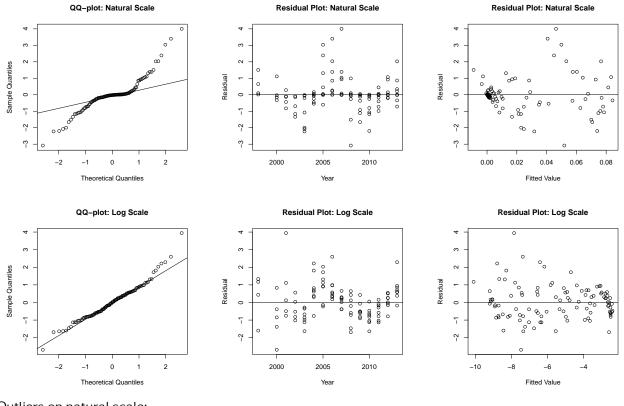

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Molybdenum in Lakes of the Koala Watershed and Lac de Gras

January 20, 2014

# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).






Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and Grizzly lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in S2 and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on natural scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 12  | 1616-30 (LLCF) | 2005 | 0.07   | 0.05   | 3.04        |
| 113 | Moose          | 2006 | 0.06   | 0.04   | 3.40        |
| 114 | Moose          | 2007 | 0.07   | 0.05   | 4.00        |
| 115 | Moose          | 2008 | 0.03   | 0.05   | -3.08       |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 68 | Kodiak | 2001 | 0.00   | -7.85  | 3.94        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

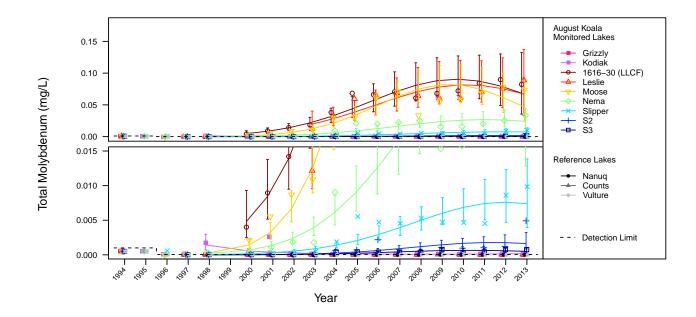
### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

| Chi-squared | DF                                                                          | P-value                                                    |
|-------------|-----------------------------------------------------------------------------|------------------------------------------------------------|
| 35.5038     | 2                                                                           | 0.0000                                                     |
| 52.2032     | 2                                                                           | 0.0000                                                     |
| 9.9004      | 2                                                                           | 0.0071                                                     |
| 190.3045    | 2                                                                           | 0.0000                                                     |
| 146.3937    | 2                                                                           | 0.0000                                                     |
| 157.3587    | 2                                                                           | 0.0000                                                     |
| 65.2380     | 2                                                                           | 0.0000                                                     |
| 31.6431     | 2                                                                           | 0.0000                                                     |
|             | 35.5038<br>52.2032<br>9.9004<br>190.3045<br>146.3937<br>157.3587<br>65.2380 | 35.5038252.203229.90042190.30452146.39372157.3587265.23802 |

• Conclusions:


All monitored lakes show significant deviation from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.9550    |
| Monitored Lake | Kodiak         | 0.5840    |
| Monitored Lake | Leslie         | 0.7440    |
| Monitored Lake | Moose          | 0.9460    |
| Monitored Lake | Nema           | 0.9080    |
| Monitored Lake | S2             | 0.8220    |
| Monitored Lake | S3             | 0.7850    |
| Monitored Lake | Slipper        | 0.9240    |

#### • Conclusions: Models provide a good fit for all monitored lakes.



## 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

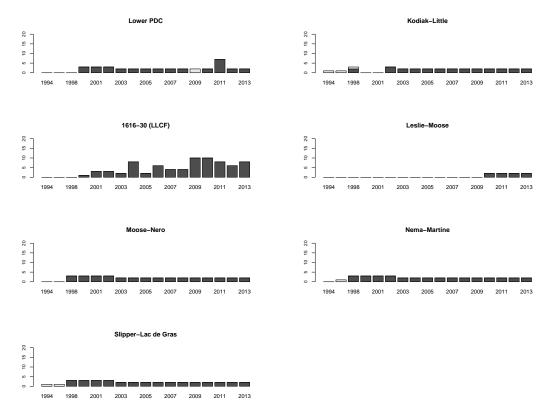
### 7 Minimum Detectable Differences

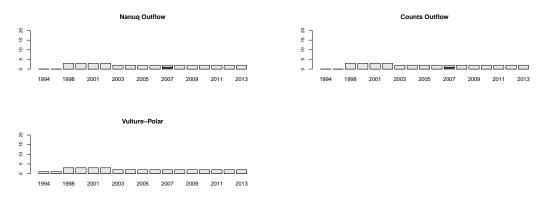
The estimated minimum detectable difference in mean total molybdenum for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak         | 1.52e-04 | 1.65e-04 | 5.30e-05 | 8.82e-05 | 3.10e-04 | 1.55e-04       |
| Leslie         | 8.88e-02 | 6.70e-02 | 2.45e-02 | 3.27e-02 | 1.37e-01 | 7.18e-02       |
| 1616-30 (LLCF) | 8.22e-02 | 6.85e-02 | 2.30e-02 | 3.54e-02 | 1.32e-01 | 6.73e-02       |
| Moose          | 7.36e-02 | 4.67e-02 | 1.50e-02 | 2.49e-02 | 8.75e-02 | 4.38e-02       |
| Nema           | 3.35e-02 | 2.40e-02 | 7.70e-03 | 1.28e-02 | 4.50e-02 | 2.25e-02       |
| Slipper        | 9.85e-03 | 7.39e-03 | 2.37e-03 | 3.94e-03 | 1.39e-02 | 6.93e-03       |
| S2             | 4.91e-03 | 1.63e-03 | 5.71e-04 | 8.25e-04 | 3.24e-03 | 1.67e-03       |
| S3             | 7.60e-04 | 5.05e-04 | 1.78e-04 | 2.53e-04 | 1.01e-03 | 5.22e-04       |
| Nanuq          | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

# 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed         | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                |
|------------|--------|-----------|---------------|----------|---------------------------------------|-----------------------------|---------------------|----------------------|------------------|----------------------------------------------------------------------------|
| Molybdenum | August | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Nanuq<br>Vulture | log e                       | Tobit<br>regression | #1a slope<br>of zero | 19.38            | Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

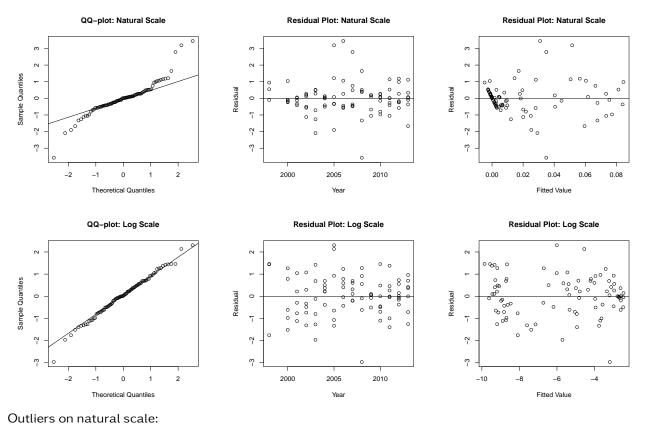

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Molybdenum in Koala Watershed Streams

January 20, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).






Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, and Vulture-Polar was less than the detection limit. These streams were excluded from further analyses. None of the remaining streams exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

### 2 Initial Model Fit



| - |     | Lake           | Year | Impute | Fitted | Std. Resid. |
|---|-----|----------------|------|--------|--------|-------------|
|   | 12  | 1616-30 (LLCF) | 2005 | 0.07   | 0.05   | 3.19        |
|   | 113 | Moose-Nero     | 2006 | 0.05   | 0.03   | 3.45        |
|   | 115 | Moose-Nero     | 2008 | 0.02   | 0.03   | -3.57       |

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

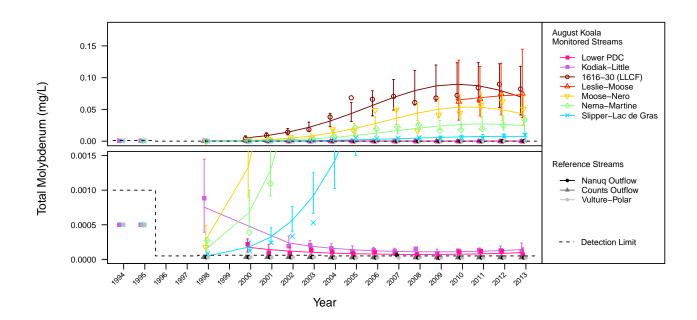
• Results:

| Chi-squared<br>95.5659<br>122.0949<br>0.5025 | DF<br>2<br>2<br>2 | P-value<br>0.0000<br>0.0000<br>0.7778 |
|----------------------------------------------|-------------------|---------------------------------------|
| 122.0949<br>0.5025                           | 2                 | 0.0000                                |
| 0.5025                                       | 2<br>2            |                                       |
|                                              | 2                 | 0.7778                                |
|                                              |                   |                                       |
| 96.3529                                      | 2                 | 0.0000                                |
| 6.7535                                       | 2                 | 0.0342                                |
| 7.2118                                       | 2                 | 0.0272                                |
| 9.0045                                       | 2                 | 0.0111                                |
|                                              | 7.2118            | 7.2118 2                              |

• Conclusions:

All monitored streams except Leslie-Moose show significant deviation from a constant slope of zero.

# 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Monitored Stream | 1616-30 (LLCF)      | 0.9520    |
| Monitored Stream | Kodiak-Little       | 0.9100    |
| Monitored Stream | Leslie-Moose        | 0.3890    |
| Monitored Stream | Lower PDC           | 0.3290    |
| Monitored Stream | Moose-Nero          | 0.9390    |
| Monitored Stream | Nema-Martine        | 0.9240    |
| Monitored Stream | Slipper-Lac de Gras | 0.9310    |

• Conclusions:

Model fit for Leslie-Moose and Lower PDC is weak. Results of statistical tests and MDD should be interpreted with caution.





Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

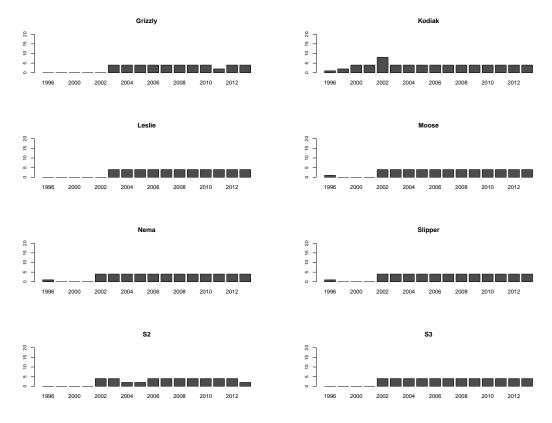
The estimated minimum detectable difference in mean total molybdenum for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 6.90e-05 | 9.78e-05 | 2.61e-05 | 5.80e-05 | 1.65e-04 | 7.65e-05       |
| Kodiak-Little       | 1.18e-04 | 1.42e-04 | 3.68e-05 | 8.59e-05 | 2.36e-04 | 1.08e-04       |
| Leslie-Moose        | 7.51e-02 | 7.33e-02 | 2.55e-02 | 3.71e-02 | 1.45e-01 | 7.45e-02       |
| 1616-30 (LLCF)      | 8.22e-02 | 6.98e-02 | 1.86e-02 | 4.13e-02 | 1.18e-01 | 5.45e-02       |
| Moose-Nero          | 5.08e-02 | 4.30e-02 | 1.11e-02 | 2.59e-02 | 7.12e-02 | 3.24e-02       |
| Nema-Martine        | 3.40e-02 | 2.43e-02 | 6.25e-03 | 1.46e-02 | 4.02e-02 | 1.83e-02       |
| Slipper-Lac de Gras | 9.71e-03 | 7.51e-03 | 1.94e-03 | 4.53e-03 | 1.24e-02 | 5.66e-03       |
| Nanuq Outflow       | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar       | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

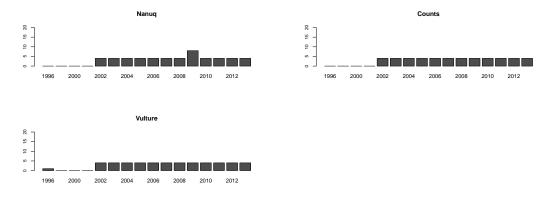
| Parameter  | Month    | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                              | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                                                             |
|------------|----------|-----------|---------------|----------|------------------------------------------------------------|-----------------------------|------------------------------------------|----------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|
| Molybdenum | n August | Koala     | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar | log e                       | linear<br>mixed<br>effects<br>regression | #1a slope<br>of zero | 19.38            | Lower PDC<br>Kodiak-<br>Little<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

## 8 Final Summary Table

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Nickel in Lakes of the Koala Watershed and Lac de Gras

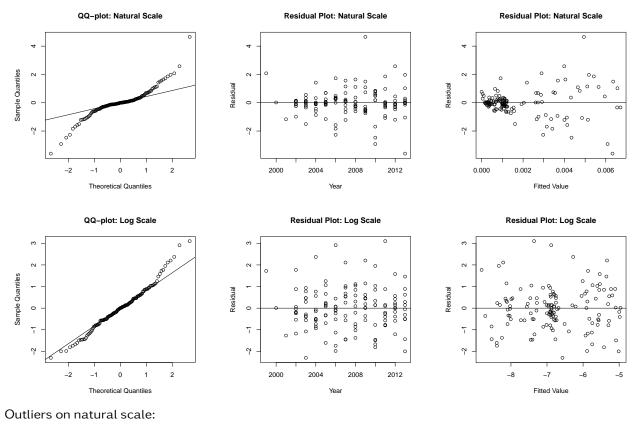
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

## 2 Initial Model Fit



|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 76 | Kodiak | 2009 | 0.01   | 0.00   | 4.65        |
| 80 | Kodiak | 2013 | 0.00   | 0.01   | -3.59       |

Outliers on log scale:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 38 | Counts | 2011 | 0.00   | -7.36  | 3.10        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 0.00E+00  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |  |
|------------|------|---------|--|
| 5851.23    | 6.00 | 0.00    |  |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

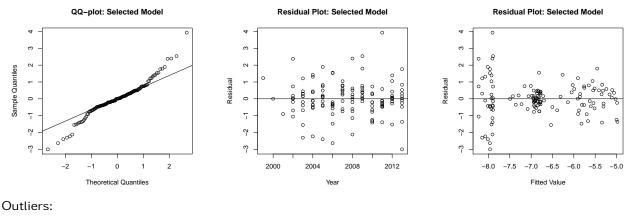
• Results:

| Chi-square | DF   | p-value |  |
|------------|------|---------|--|
| 8.07       | 4.00 | 0.09    |  |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 38  | Counts | 2011 | 0.00   | -7.90  | 3.93        |
| 140 | Nanuq  | 2013 | 0.00   | -7.96  | -3.00       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

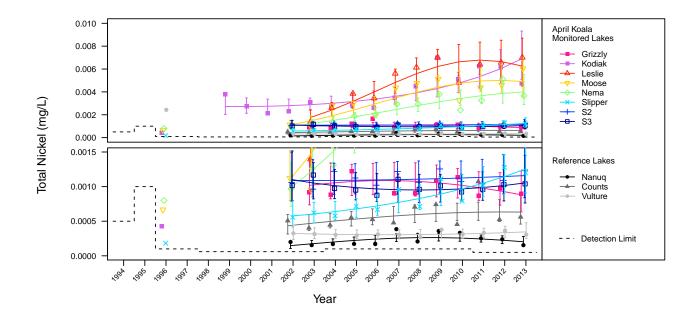
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.66        | 2.00 | 0.72    |
| Kodiak  | 3.81        | 2.00 | 0.15    |
| Leslie  | 11.98       | 2.00 | 0.00    |
| Moose   | 11.51       | 2.00 | 0.00    |
| Nema    | 9.22        | 2.00 | 0.01    |
| Slipper | 2.24        | 2.00 | 0.33    |
| S2      | 0.47        | 2.00 | 0.79    |
| S3      | 1.22        | 2.00 | 0.54    |

Conclusions:

Leslie, Moose and Nema lakes show significant deviations from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0540    |
| Monitored Lake    | Grizzly         | 0.1670    |
| Monitored Lake    | Kodiak          | 0.6520    |
| Monitored Lake    | Leslie          | 0.8920    |
| Monitored Lake    | Moose           | 0.7830    |
| Monitored Lake    | Nema            | 0.8890    |
| Monitored Lake    | S2              | 0.0920    |
| Monitored Lake    | S3              | 0.1740    |
| Monitored Lake    | Slipper         | 0.7940    |

#### • Conclusions:

Model fit for reference lakes, Grizzly, S2, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

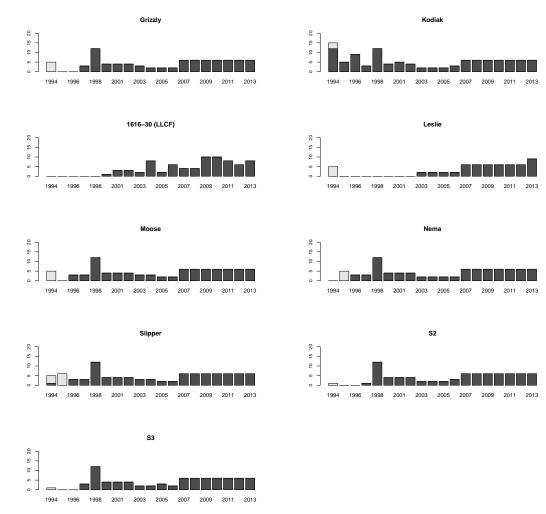
The estimated minimum detectable difference in mean total nickel for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 8.93e-04 | 8.83e-04 | 1.48e-04 | 6.35e-04 | 1.23e-03 | 4.34e-04       |
| Kodiak  | 4.76e-03 | 6.89e-03 | 1.06e-03 | 5.10e-03 | 9.32e-03 | 3.10e-03       |
| Leslie  | 7.01e-03 | 6.26e-03 | 1.05e-03 | 4.51e-03 | 8.70e-03 | 3.07e-03       |
| Moose   | 6.04e-03 | 4.90e-03 | 8.05e-04 | 3.56e-03 | 6.77e-03 | 2.36e-03       |
| Nema    | 3.66e-03 | 4.00e-03 | 6.56e-04 | 2.90e-03 | 5.51e-03 | 1.92e-03       |
| Slipper | 1.20e-03 | 1.25e-03 | 2.06e-04 | 9.08e-04 | 1.73e-03 | 6.02e-04       |
| S2      | 1.24e-03 | 1.16e-03 | 1.90e-04 | 8.40e-04 | 1.60e-03 | 5.56e-04       |
| S3      | 1.04e-03 | 1.05e-03 | 1.73e-04 | 7.63e-04 | 1.45e-03 | 5.06e-04       |
| Nanuq   | 1.54e-04 | 2.03e-04 | 3.34e-05 | 1.47e-04 | 2.81e-04 | NA             |
| Counts  | 5.61e-04 | 6.32e-04 | 1.04e-04 | 4.58e-04 | 8.72e-04 | NA             |
| Vulture | 3.06e-04 | 3.46e-04 | 5.68e-05 | 2.51e-04 | 4.77e-04 | NA             |
|         |          |          |          |          |          |                |

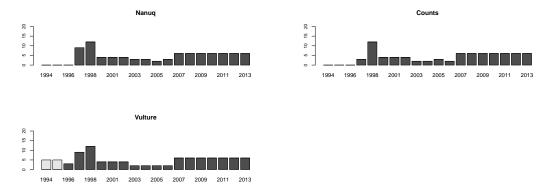
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                           | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|-----------------------------------------|---------------------|------------------|---------------------------------------------|
| Nickel    | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressio | #2 shared<br>slopes | NA               | Leslie<br>Moose<br>Nema                     |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lakes in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Nickel in Lakes of the Koala Watershed and Lac de Gras

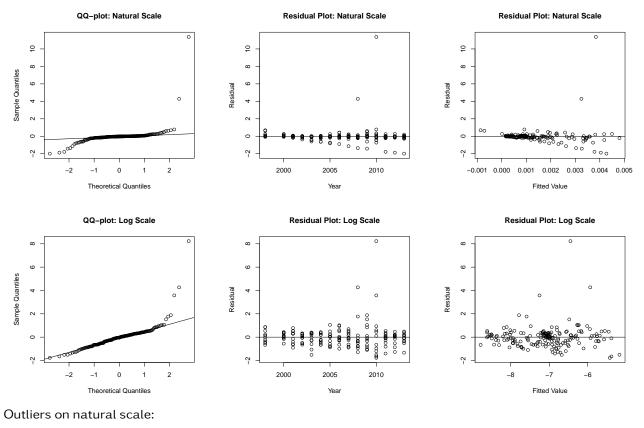
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 115 | Moose   | 2008 | 0.01   | 0.00   | 4.29        |
| 217 | Slipper | 2010 | 0.02   | 0.00   | 11.38       |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 115 | Moose   | 2008 | 0.01   | -5.94  | 4.27        |
| 217 | Slipper | 2010 | 0.02   | -6.45  | 8.23        |
| 237 | Vulture | 2010 | 0.00   | -7.25  | 3.58        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |  |
|-------------|------|---------|--|
| 33.37       | 6.00 | 0.00    |  |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

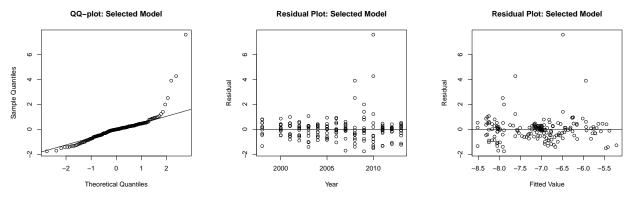
• Results:

| Chi-squared | DF   | P-value |  |
|-------------|------|---------|--|
| 0.76        | 4.00 | 0.94    |  |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



**Outliers:** 

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 115 | Moose   | 2008 | 0.01   | -5.94  | 3.90        |
| 217 | Slipper | 2010 | 0.02   | -6.49  | 7.59        |
| 237 | Vulture | 2010 | 0.00   | -7.62  | 4.26        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

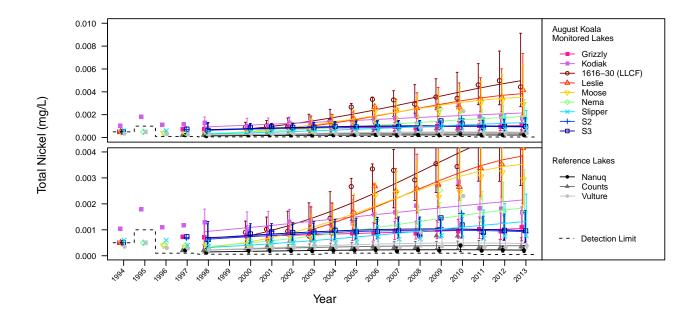
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.6188      | 2  | 0.7339  |
| Kodiak         | 0.8594      | 2  | 0.6507  |
| 1616-30 (LLCF) | 5.4502      | 2  | 0.0655  |
| Leslie         | 9.8129      | 2  | 0.0074  |
| Moose          | 27.6813     | 2  | 0.0000  |
| Nema           | 8.8036      | 2  | 0.0123  |
| Slipper        | 5.7405      | 2  | 0.0567  |
| S2             | 0.2765      | 2  | 0.8709  |
| S3             | 0.3770      | 2  | 0.8282  |

• Conclusions:

Leslie, Moose, Nema, and Slipper lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake TypeLake NameR-squaredPooled Ref. Lakes(more than one)0.1360Monitored Lake1616-30 (LLCF)0.8700Monitored LakeGrizzly0.7430Monitored LakeKodiak0.5560Monitored LakeLeslie0.8730Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS1ipper0.1960 |                   |                 |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------|-----------|
| Monitored Lake1616-30 (LLCF)0.8700Monitored LakeGrizzly0.7430Monitored LakeKodiak0.5560Monitored LakeLeslie0.8730Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                       | Lake Type         | Lake Name       | R-squared |
| Monitored LakeGrizzly0.7430Monitored LakeKodiak0.5560Monitored LakeLeslie0.8730Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                         | Pooled Ref. Lakes | (more than one) | 0.1360    |
| Monitored LakeKodiak0.5560Monitored LakeLeslie0.8730Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                                                    | Monitored Lake    | 1616-30 (LLCF)  | 0.8700    |
| Monitored LakeLeslie0.8730Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                                                                              | Monitored Lake    | Grizzly         | 0.7430    |
| Monitored LakeMoose0.7410Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                                                                                                        | Monitored Lake    | Kodiak          | 0.5560    |
| Monitored LakeNema0.8540Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                                                                                                                                 | Monitored Lake    | Leslie          | 0.8730    |
| Monitored LakeS20.3470Monitored LakeS30.4380                                                                                                                                                                                                                                         | Monitored Lake    | Moose           | 0.7410    |
| Monitored Lake S3 0.4380                                                                                                                                                                                                                                                             | Monitored Lake    | Nema            | 0.8540    |
|                                                                                                                                                                                                                                                                                      | Monitored Lake    | S2              | 0.3470    |
| Monitored Lake Slipper 0.1960                                                                                                                                                                                                                                                        | Monitored Lake    | S3              | 0.4380    |
|                                                                                                                                                                                                                                                                                      | Monitored Lake    | Slipper         | 0.1960    |

Conclusions:

Model fit for S2 and S3 is weak. Model fit for reference lakes and Slipper Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

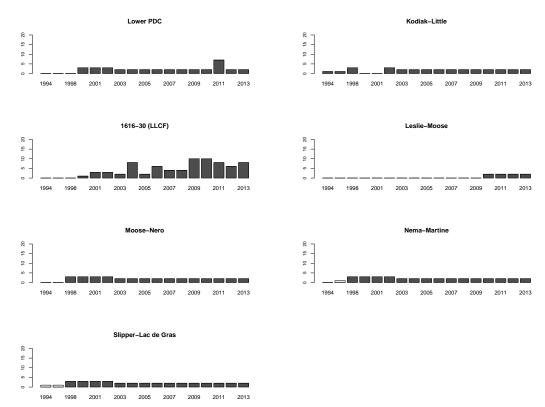
The estimated minimum detectable difference in mean total nickel for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 1.10e-03 | 1.05e-03 | 3.14e-04 | 5.81e-04 | 1.88e-03 | 9.18e-04       |
| Kodiak         | 1.67e-03 | 2.15e-03 | 6.45e-04 | 1.19e-03 | 3.87e-03 | 1.89e-03       |
| Leslie         | 4.16e-03 | 3.85e-03 | 1.27e-03 | 2.01e-03 | 7.35e-03 | 3.72e-03       |
| 1616-30 (LLCF) | 4.43e-03 | 4.97e-03 | 1.54e-03 | 2.70e-03 | 9.13e-03 | 4.51e-03       |
| Moose          | 2.94e-03 | 3.53e-03 | 1.06e-03 | 1.96e-03 | 6.35e-03 | 3.10e-03       |
| Nema           | 1.68e-03 | 1.85e-03 | 5.54e-04 | 1.03e-03 | 3.33e-03 | 1.62e-03       |
| Slipper        | 7.85e-04 | 1.32e-03 | 3.96e-04 | 7.33e-04 | 2.38e-03 | 1.16e-03       |
| S2             | 8.88e-04 | 9.29e-04 | 2.79e-04 | 5.16e-04 | 1.67e-03 | 8.16e-04       |
| S3             | 9.59e-04 | 9.66e-04 | 2.90e-04 | 5.37e-04 | 1.74e-03 | 8.48e-04       |
| Nanuq          | 2.10e-04 | 2.18e-04 | 6.55e-05 | 1.21e-04 | 3.93e-04 | NA             |
| Counts         | 3.46e-04 | 3.86e-04 | 1.16e-04 | 2.14e-04 | 6.94e-04 | NA             |
| Vulture        | 3.84e-04 | 4.70e-04 | 1.41e-04 | 2.61e-04 | 8.46e-04 | NA             |

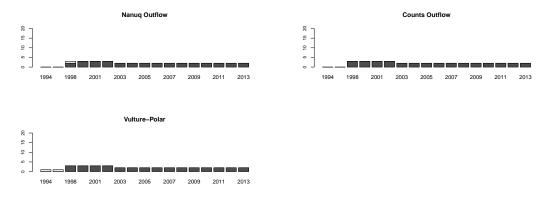
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Nickel    | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | Leslie<br>Moose<br>Nema<br>Slipper          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Nickel in Koala Watershed Streams

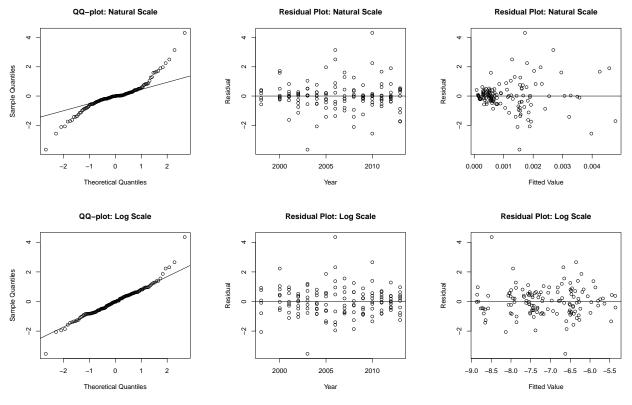
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 10 | 1616-30 (LLCF) | 2003 | 0.00   | 0.00   | -3.66       |
| 13 | 1616-30 (LLCF) | 2006 | 0.00   | 0.00   | 3.15        |
| 97 | Lower PDC      | 2010 | 0.00   | 0.00   | 4.32        |

Outliers on log scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 10  | 1616-30 (LLCF) | 2003 | 0.00   | -6.63  | -3.54       |
| 133 | Nanuq Outflow  | 2006 | 0.00   | -8.49  | 4.35        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

## 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 530.66      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 46.82       | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 1.7884      | 2  | 0.4089  |
| Kodiak-Little       | 8.3536      | 2  | 0.0153  |
| Leslie-Moose        | 2.8643      | 2  | 0.2388  |
| 1616-30 (LLCF)      | 190.4345    | 2  | 0.0000  |
| Moose-Nero          | 76.7584     | 2  | 0.0000  |
| Nema-Martine        | 50.5153     | 2  | 0.0000  |
| Slipper-Lac de Gras | 11.0607     | 2  | 0.0040  |

#### • Conclusions:

All monitored streams except Lower PDC and Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

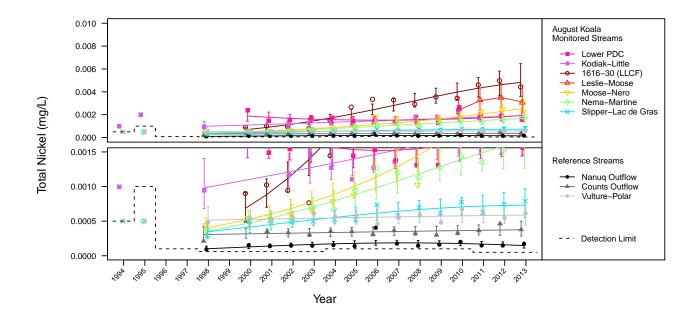
#### • Results:

|                                       | Chi-squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
| Kodiak-Little-vs-Nanuq Outflow        | 1374.7901   | 3  | 0.0000  |
| Kodiak-Little-vs-Counts Outflow       | 594.6565    | 3  | 0.0000  |
| Kodiak-Little-vs-Vulture-Polar        | 269.7478    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 112.2462    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 40.4714     | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 40.5367     | 3  | 0.0000  |
| Moose-Nero-vs-Nanuq Outflow           | 1220.4835   | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 494.6705    | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 225.2658    | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 977.2242    | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 343.2985    | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 129.5994    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 514.9077    | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 91.2690     | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 10.7719     | 3  | 0.0130  |

• Conclusions:

All remaining monitored streams show significant deviations from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| ~ <del>-</del>   | - N                 |           |
|------------------|---------------------|-----------|
| Stream Type      | Stream Name         | R-squared |
| Reference Stream | Counts Outflow      | 0.1040    |
| Reference Stream | Nanuq Outflow       | 0.3140    |
| Reference Stream | Vulture-Polar       | 0.1580    |
| Monitored Stream | 1616-30 (LLCF)      | 0.8760    |
| Monitored Stream | Kodiak-Little       | 0.6400    |
| Monitored Stream | Leslie-Moose        | 0.9570    |
| Monitored Stream | Lower PDC           | 0.1560    |
| Monitored Stream | Moose-Nero          | 0.8970    |
| Monitored Stream | Nema-Martine        | 0.9410    |
| Monitored Stream | Slipper-Lac de Gras | 0.8010    |

• Conclusions:

Model fit for Nanuq Outflow is weak. Model fit for Counts Outflow, Vulture-Polar, and Lower PDC is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

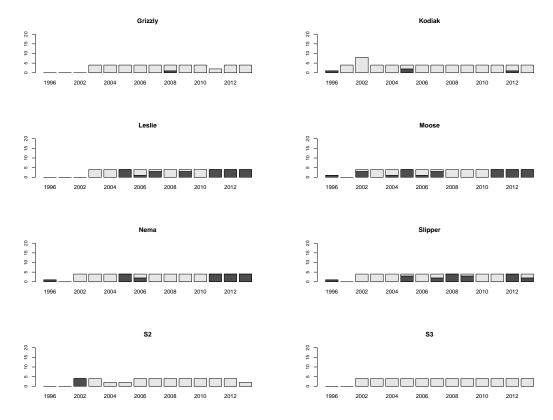
The estimated minimum detectable difference in mean total nickel for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 1.56e-03 | 1.94e-03 | 2.88e-04 | 1.45e-03 | 2.59e-03 | 8.43e-04       |
| Kodiak-Little       | 1.61e-03 | 1.90e-03 | 2.74e-04 | 1.44e-03 | 2.52e-03 | 8.02e-04       |
| Leslie-Moose        | 3.06e-03 | 3.11e-03 | 5.95e-04 | 2.14e-03 | 4.53e-03 | 1.74e-03       |
| 1616-30 (LLCF)      | 4.43e-03 | 4.83e-03 | 7.17e-04 | 3.61e-03 | 6.46e-03 | 2.10e-03       |
| Moose-Nero          | 2.22e-03 | 2.56e-03 | 3.68e-04 | 1.94e-03 | 3.40e-03 | 1.08e-03       |
| Nema-Martine        | 1.72e-03 | 1.67e-03 | 2.41e-04 | 1.26e-03 | 2.22e-03 | 7.04e-04       |
| Slipper-Lac de Gras | 7.87e-04 | 7.31e-04 | 1.05e-04 | 5.51e-04 | 9.68e-04 | 3.07e-04       |
| Nanuq Outflow       | 1.68e-04 | 1.48e-04 | 2.13e-05 | 1.12e-04 | 1.96e-04 | NA             |
| Counts Outflow      | 3.79e-04 | 3.76e-04 | 5.40e-05 | 2.84e-04 | 4.98e-04 | NA             |
| Vulture-Polar       | 6.15e-04 | 5.89e-04 | 8.47e-05 | 4.45e-04 | 7.81e-04 | NA             |

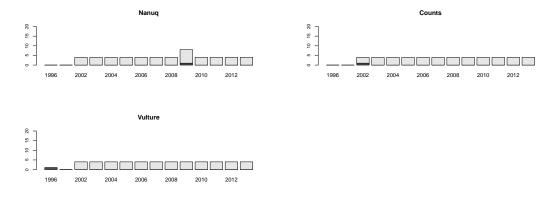
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts*                                                                        |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------|
| Nickel    | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | hardness-<br>dependent | Kodiak-<br>Little<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Selenium in Lakes of the Koala Watershed and Lac de Gras

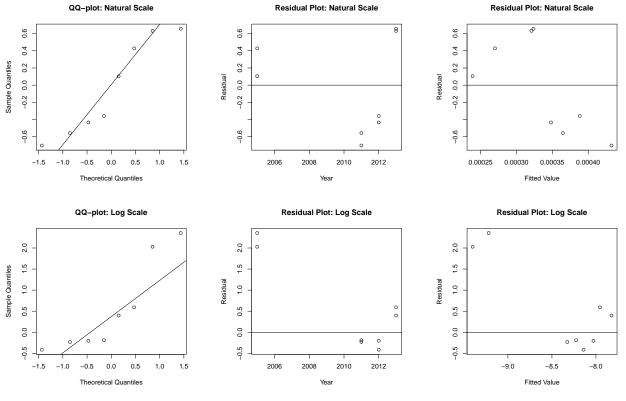
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, Nema Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Leslie and Moose lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



Outliers on natural scale:

None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 2.82E-17  | natural model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

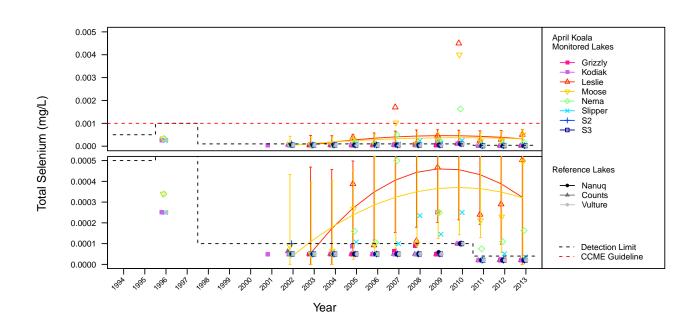
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|        | Chi-squared | DF | P-value |
|--------|-------------|----|---------|
| Leslie | 2.0618      | 2  | 0.3567  |
| Moose  | 1.6933      | 2  | 0.4288  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Leslie    | 0.1040    |
| Monitored Lake | Moose     | 0.0800    |

• Conclusions:

Model fit for Leslie and Moose lakes is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

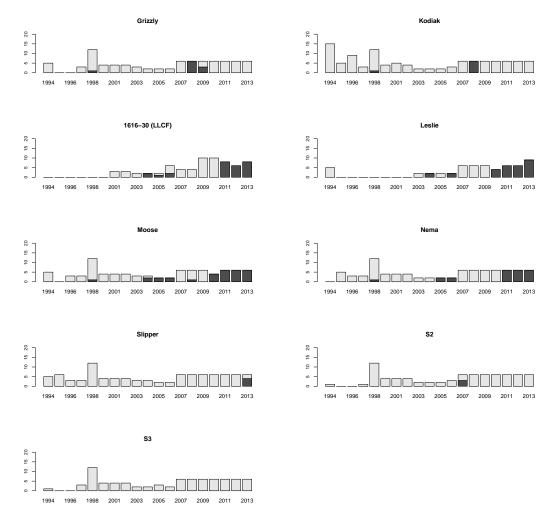
The estimated minimum detectable difference in mean total selenium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|-------|----------|----------------|
| Grizzly | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Kodiak  | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Leslie  | 5.04e-04 | 3.24e-04 | 2.10e-04 | 0e+00 | 7.36e-04 | 6.15e-04       |
| Moose   | 4.94e-04 | 3.21e-04 | 2.04e-04 | 0e+00 | 7.22e-04 | 5.98e-04       |
| Nema    | 1.63e-04 | NA       | NA       | NA    | NA       | NA             |
| Slipper | 3.55e-05 | NA       | NA       | NA    | NA       | NA             |
| S2      | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| S3      | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Nanuq   | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Counts  | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Vulture | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |

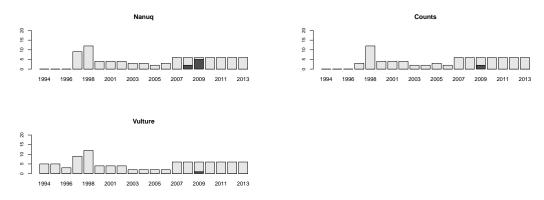
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                            | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|--------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Selenium  | April | Koala     | Lake          | Water    | Counts<br>Grizzly<br>Kodiak<br>Nanuq<br>Nema S2<br>S3 Slipper<br>Vulture | none                        | Tobit<br>regressior | #1a slope<br>of zero | 0.001            | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Selenium in Lakes of the Koala Watershed and Lac de Gras

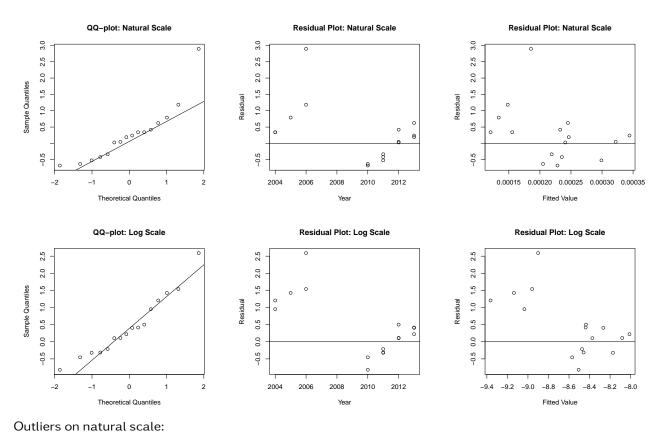
January 20, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Kodiak, Nema, Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in 1616-30 (LLCF), Leslie, and Moose lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

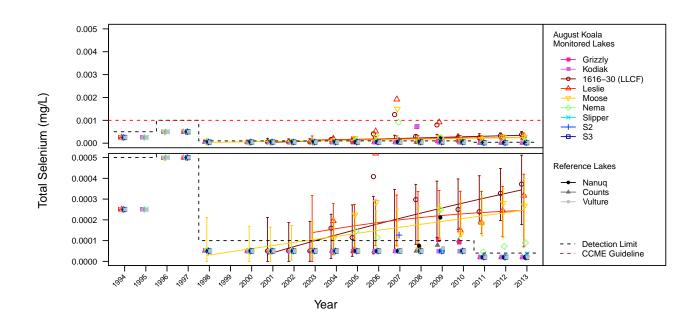
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-30 (LLCF) | 8.0748      | 2  | 0.0176  |
| Leslie         | 0.9296      | 2  | 0.6283  |
| Moose          | 4.3488      | 2  | 0.1137  |

• Conclusions:

1616-30 (LLCF) shows significant deviation from a constant slope of zero.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-30 (LLCF) | 0.2030    |
| Monitored Lake | Leslie         | 0.1270    |
| Monitored Lake | Moose          | 0.0910    |

• Conclusions:

Model fit for 1616-30 (LLCF), Leslie, and Moose lakes is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

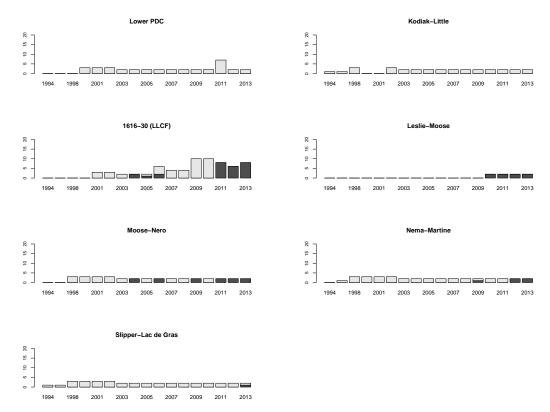
The estimated minimum detectable difference in mean total selenium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak         | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Leslie         | 3.17e-04 | 2.45e-04 | 8.93e-05 | 7.01e-05 | 4.20e-04 | 2.61e-04       |
| 1616-30 (LLCF) | 3.72e-04 | 3.44e-04 | 8.53e-05 | 1.77e-04 | 5.11e-04 | 2.50e-04       |
| Moose          | 2.68e-04 | 2.46e-04 | 7.78e-05 | 9.40e-05 | 3.99e-04 | 2.28e-04       |
| Nema           | 9.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Slipper        | 3.48e-05 | NA       | NA       | NA       | NA       | NA             |
| S2             | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| S3             | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq          | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |

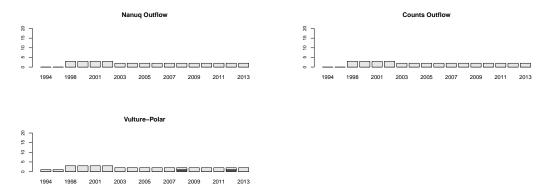
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                               | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-----------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Selenium  | August | Koala     | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Grizzly<br>Kodiak<br>Nema<br>Slipper S2<br>S3 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.001            | 1616-30<br>(LLCF)                                       |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Selenium in Koala Watershed Streams

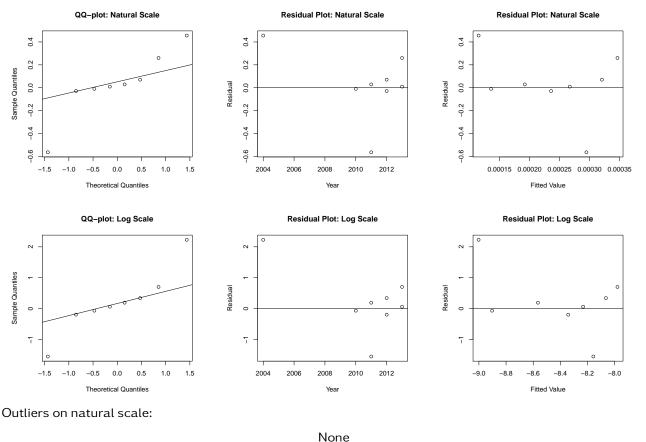
### January 20, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, Vulture-Polar, Lower PDC, Kodiak-Little, Moose-Nero, Nema-Martine, and Slipper-Lac de Gras was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in 1616-30 (LLCF) was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



INO

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

## 4 Test Results for Monitored Streams

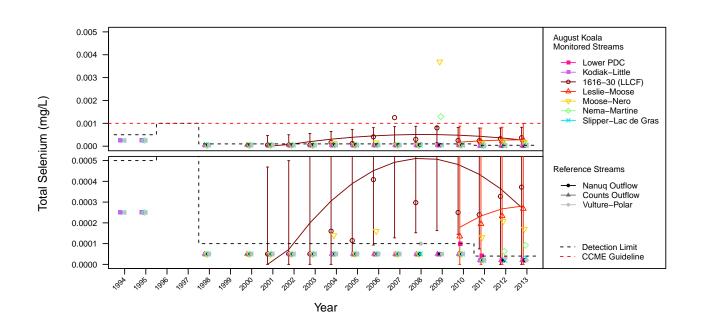
Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Leslie-Moose   | 1.0008      | 2  | 0.6063  |
| 1616-30 (LLCF) | 10.8638     | 2  | 0.0044  |

• Conclusions:

1616-30 (LLCF) shows significant deviation from a constant slope of zero.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name    | R-squared |
|------------------|----------------|-----------|
| Monitored Stream | 1616-30 (LLCF) | 0.2060    |
| Monitored Stream | Leslie-Moose   | 0.9980    |

• Conclusions:

Model fit for 1616-30 (LLCF) is weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

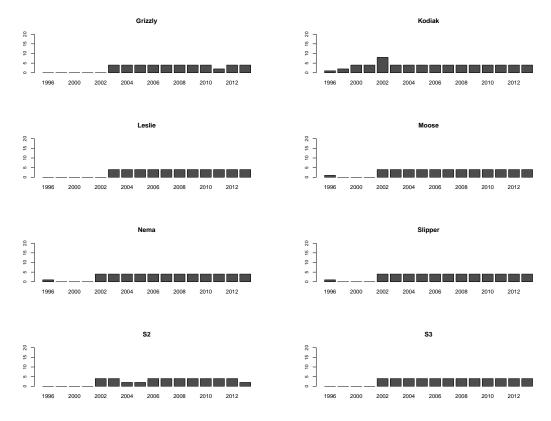
The estimated minimum detectable difference in mean total selenium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|-------|----------|----------------|
| Lower PDC           | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Kodiak-Little       | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Leslie-Moose        | 2.68e-04 | 2.81e-04 | 3.60e-04 | 0e+00 | 9.88e-04 | 1.05e-03       |
| 1616-30 (LLCF)      | 3.72e-04 | 2.74e-04 | 2.82e-04 | 0e+00 | 8.26e-04 | 8.25e-04       |
| Moose-Nero          | 1.70e-04 | NA       | NA       | NA    | NA       | NA             |
| Nema-Martine        | 9.20e-05 | NA       | NA       | NA    | NA       | NA             |
| Slipper-Lac de Gras | 3.10e-05 | NA       | NA       | NA    | NA       | NA             |
| Nanuq Outflow       | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Counts Outflow      | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Vulture-Polar       | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |

## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                                                                                                            | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Selenium  | August | Koala     | Stream        | Water    | Nanuq<br>Outflow<br>Counts<br>Outflow<br>Vulture-<br>Polar<br>Lower PDC<br>Kodiak-<br>Little<br>Moose-<br>Nero<br>Nero<br>Nema-<br>Martine<br>Slipper-<br>Lac de<br>Gras | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.001            | 1616-30<br>(LLCF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Strontium in Lakes of the Koala Watershed and Lac de Gras

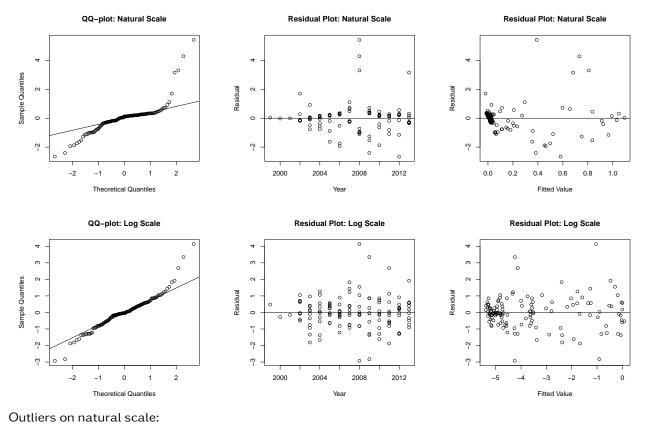
January 20, 2014

## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

# 2 Initial Model Fit



|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 95  | Leslie | 2008 | 0.98   | 0.81   | 3.31        |
| 115 | Moose  | 2008 | 0.95   | 0.73   | 4.29        |
| 155 | Nema   | 2008 | 0.67   | 0.39   | 5.42        |
| 160 | Nema   | 2013 | 0.84   | 0.68   | 3.16        |

Outliers on log scale:

|     | Lake | Year | Impute | Fitted | Std. Resid. |
|-----|------|------|--------|--------|-------------|
| 155 | Nema | 2008 | 0.67   | -1.04  | 4.13        |
| 196 | S3   | 2009 | 0.02   | -4.25  | 3.35        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 7.96E-65  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2491.33    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

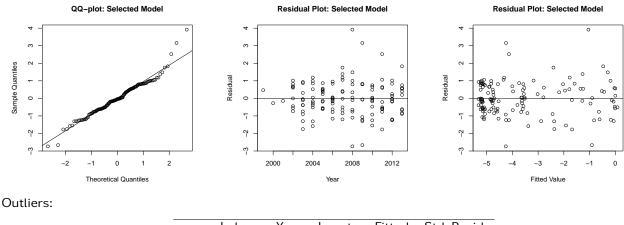
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.22       | 4.00 | 0.99    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.761        | 0.000        | 0.239        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Std. Resid. Lake Year Impute Fitted 155 Nema 2008 0.67 -1.05 3.92 196 2009 0.02 -4.25 3.16 S3

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

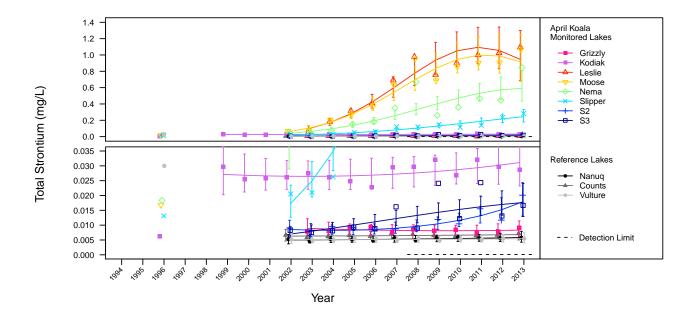
• Results:

|         | Chi-squared | DF   | P-value |
|---------|-------------|------|---------|
| Grizzly | 0.53        | 2.00 | 0.77    |
| Kodiak  | 0.10        | 2.00 | 0.95    |
| Leslie  | 124.55      | 2.00 | 0.00    |
| Moose   | 144.94      | 2.00 | 0.00    |
| Nema    | 128.93      | 2.00 | 0.00    |
| Slipper | 117.12      | 2.00 | 0.00    |
| S2      | 8.66        | 2.00 | 0.01    |
| S3      | 12.68       | 2.00 | 0.00    |

• Conclusions:

All monitored lakes except Grizzly and Kodiak lakes show significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0670    |
| Monitored Lake    | Grizzly         | 0.1170    |
| Monitored Lake    | Kodiak          | 0.2790    |
| Monitored Lake    | Leslie          | 0.9640    |
| Monitored Lake    | Moose           | 0.9600    |
| Monitored Lake    | Nema            | 0.8770    |
| Monitored Lake    | S2              | 0.7640    |
| Monitored Lake    | S3              | 0.5420    |
| Monitored Lake    | Slipper         | 0.9400    |

#### • Conclusions:

Model fit for Kodiak Lake is weak. Model fit for reference lakes and Grizzly Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

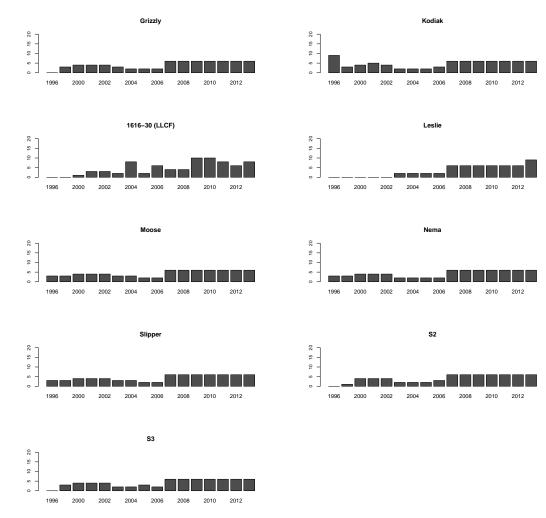
The estimated minimum detectable difference in mean total strontium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | <u>.</u> |          | ~        |          |          |                |
|---------|----------|----------|----------|----------|----------|----------------|
|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
| Grizzly | 9.07e-03 | 8.32e-03 | 1.35e-03 | 6.06e-03 | 1.14e-02 | 3.94e-03       |
| Kodiak  | 2.86e-02 | 3.11e-02 | 4.63e-03 | 2.32e-02 | 4.16e-02 | 1.35e-02       |
| Leslie  | 1.09e+00 | 9.46e-01 | 1.53e-01 | 6.89e-01 | 1.30e+00 | 4.48e-01       |
| Moose   | 1.06e+00 | 9.15e-01 | 1.45e-01 | 6.71e-01 | 1.25e+00 | 4.24e-01       |
| Nema    | 8.45e-01 | 5.92e-01 | 9.37e-02 | 4.34e-01 | 8.07e-01 | 2.74e-01       |
| Slipper | 2.83e-01 | 2.45e-01 | 3.87e-02 | 1.79e-01 | 3.34e-01 | 1.13e-01       |
| S2      | 2.01e-02 | 1.78e-02 | 2.82e-03 | 1.31e-02 | 2.43e-02 | 8.26e-03       |
| S3      | 1.67e-02 | 1.76e-02 | 2.79e-03 | 1.29e-02 | 2.40e-02 | 8.16e-03       |
| Nanuq   | 5.73e-03 | 5.83e-03 | 9.22e-04 | 4.27e-03 | 7.95e-03 | NA             |
| Counts  | 7.17e-03 | 6.81e-03 | 1.08e-03 | 5.00e-03 | 9.29e-03 | NA             |
| Vulture | 5.48e-03 | 5.45e-03 | 8.63e-04 | 4.00e-03 | 7.43e-03 | NA             |
|         |          |          |          |          |          |                |

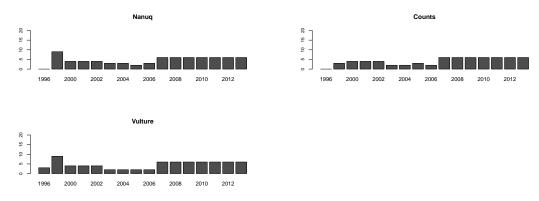
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Strontium | April | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressior | #2 shared<br>slopes | 6.242            | Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Strontium in Lakes of the Koala Watershed and Lac de Gras

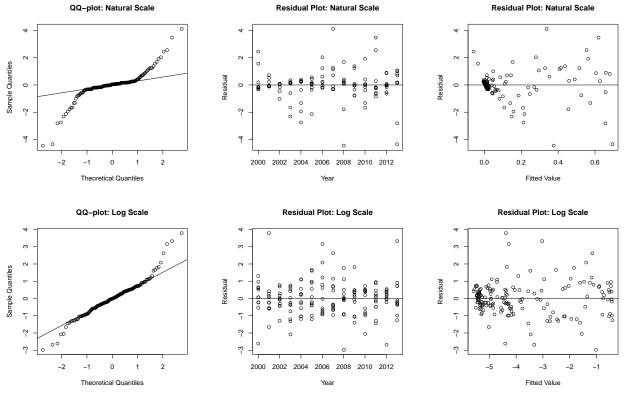
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 18  | 1616-30 (LLCF) | 2011 | 0.74   | 0.62   | 3.48        |
| 20  | 1616-30 (LLCF) | 2013 | 0.55   | 0.69   | -4.35       |
| 114 | Moose          | 2007 | 0.48   | 0.34   | 4.12        |
| 115 | Moose          | 2008 | 0.23   | 0.38   | -4.45       |

Outliers on log scale:

|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 68  | Kodiak | 2001 | 0.02   | -4.38  | 3.79        |
| 173 | S2     | 2006 | 0.02   | -4.28  | 3.16        |
| 180 | S2     | 2013 | 0.08   | -3.03  | 3.33        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

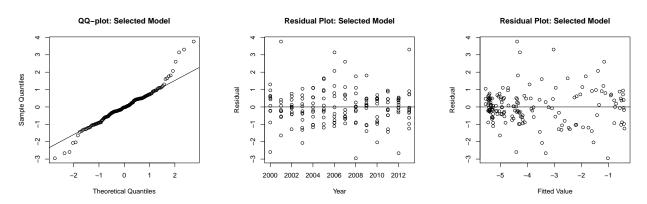
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.26        | 6.00 | 0.89    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.008        | 0.000        | 0.992        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake   | Year | Impute | Fitted | Std. Resid. |
|-----|--------|------|--------|--------|-------------|
| 68  | Kodiak | 2001 | 0.02   | -4.38  | 3.76        |
| 173 | S2     | 2006 | 0.02   | -4.28  | 3.14        |
| 180 | S2     | 2013 | 0.08   | -3.03  | 3.30        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 78.9990     | 3  | 0.0000  |
| Kodiak         | 435.7214    | 3  | 0.0000  |
| 1616-30 (LLCF) | 148.7479    | 3  | 0.0000  |
| Leslie         | 6241.8245   | 3  | 0.0000  |
| Moose          | 6155.2180   | 3  | 0.0000  |
| Nema           | 3982.7909   | 3  | 0.0000  |
| Slipper        | 2061.7422   | 3  | 0.0000  |
| S2             | 703.1086    | 3  | 0.0000  |
| S3             | 310.0797    | 3  | 0.0000  |
|                |             |    |         |

• Conclusions:

All monitored lakes except Grizzly and Kodiak lakes show significant deviations from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

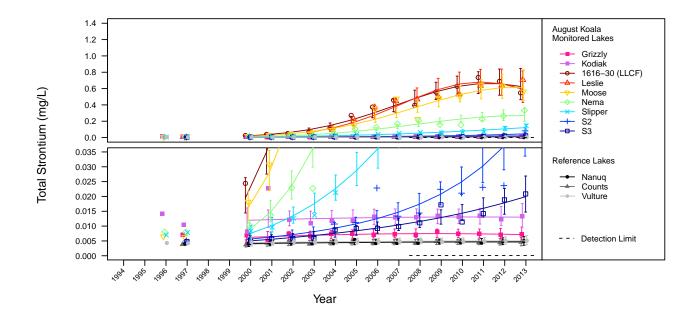
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 0.2295      | 2  | 0.8916  |
| Kodiak         | 0.0651      | 2  | 0.9680  |
| 1616-30 (LLCF) | 148.4753    | 2  | 0.0000  |
| Leslie         | 198.6977    | 2  | 0.0000  |
| Moose          | 538.4983    | 2  | 0.0000  |
| Nema           | 472.1338    | 2  | 0.0000  |
| Slipper        | 284.9892    | 2  | 0.0000  |
| S2             | 156.5920    | 2  | 0.0000  |
| S3             | 62.9922     | 2  | 0.0000  |

• Conclusions:

When allowing for differences in intercept, all monitored lakes show significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.3380    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.9750    |
| Monitored Lake    | Grizzly         | 0.3310    |
| Monitored Lake    | Kodiak          | 0.0200    |
| Monitored Lake    | Leslie          | 0.9480    |
| Monitored Lake    | Moose           | 0.9560    |
| Monitored Lake    | Nema            | 0.9560    |
| Monitored Lake    | S2              | 0.8400    |
| Monitored Lake    | S3              | 0.9180    |
| Monitored Lake    | Slipper         | 0.9630    |
|                   |                 |           |

• Conclusions:

Model fit for reference lakes and Grizzly Lake is weak. Model fit for Kodiak Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

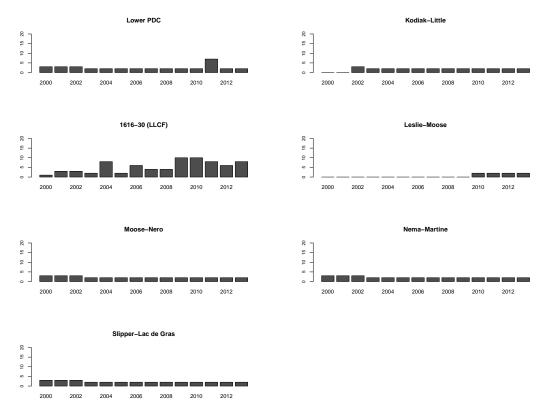
The estimated minimum detectable difference in mean total strontium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 7.22e-03 | 7.15e-03 | 1.10e-03 | 5.29e-03 | 9.66e-03 | 3.21e-03       |
| Kodiak         | 1.33e-02 | 1.30e-02 | 2.00e-03 | 9.63e-03 | 1.76e-02 | 5.85e-03       |
| Leslie         | 7.07e-01 | 5.92e-01 | 9.65e-02 | 4.30e-01 | 8.15e-01 | 2.82e-01       |
| 1616-30 (LLCF) | 5.48e-01 | 6.26e-01 | 9.61e-02 | 4.63e-01 | 8.46e-01 | 2.81e-01       |
| Moose          | 5.61e-01 | 6.15e-01 | 9.43e-02 | 4.55e-01 | 8.30e-01 | 2.76e-01       |
| Nema           | 3.32e-01 | 2.70e-01 | 4.14e-02 | 2.00e-01 | 3.64e-01 | 1.21e-01       |
| Slipper        | 1.46e-01 | 1.22e-01 | 1.87e-02 | 9.03e-02 | 1.65e-01 | 5.48e-02       |
| S2             | 8.17e-02 | 4.54e-02 | 6.96e-03 | 3.36e-02 | 6.13e-02 | 2.04e-02       |
| S3             | 2.08e-02 | 1.99e-02 | 3.05e-03 | 1.47e-02 | 2.69e-02 | 8.94e-03       |
| Nanuq          | 4.95e-03 | 4.78e-03 | 7.34e-04 | 3.54e-03 | 6.46e-03 | NA             |
| Counts         | 4.61e-03 | 4.53e-03 | 6.95e-04 | 3.35e-03 | 6.12e-03 | NA             |
| Vulture        | 5.06e-03 | 5.02e-03 | 7.70e-04 | 3.72e-03 | 6.78e-03 | NA             |

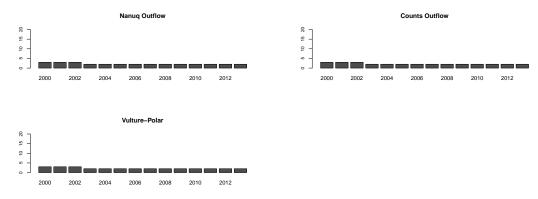
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                                           |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------------------------------------|
| Strontium | August | Koala     | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | 6.242            | Grizzly<br>Kodiak<br>1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema<br>Slipper S2<br>S3 |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Strontium in Koala Watershed Streams

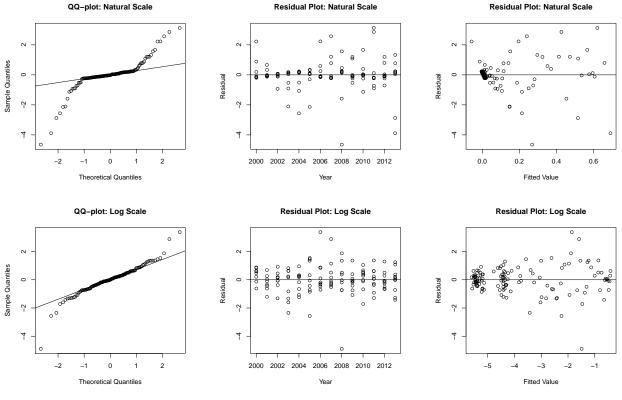
#### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



#### Outliers on natural scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 18  | 1616-30 (LLCF) | 2011 | 0.74   | 0.62   | 3.13        |
| 20  | 1616-30 (LLCF) | 2013 | 0.55   | 0.69   | -3.89       |
| 115 | Moose-Nero     | 2008 | 0.10   | 0.27   | -4.65       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 0.28   | -1.86  | 3.38        |
| 115 | Moose-Nero | 2008 | 0.10   | -1.49  | -4.89       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 140.22      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 127.94      | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.872        | 0.000        | 0.128        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 1.1391      | 2  | 0.5658  |
| Kodiak-Little       | 0.0976      | 2  | 0.9523  |
| Leslie-Moose        | 0.4048      | 2  | 0.8168  |
| 1616-30 (LLCF)      | 539.4545    | 2  | 0.0000  |
| Moose-Nero          | 297.6695    | 2  | 0.0000  |
| Nema-Martine        | 288.3839    | 2  | 0.0000  |
| Slipper-Lac de Gras | 172.3148    | 2  | 0.0000  |
|                     |             |    |         |

#### • Conclusions:

All monitored streams except Lower PDC, Kodiak-Little, and Leslie-Moose show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

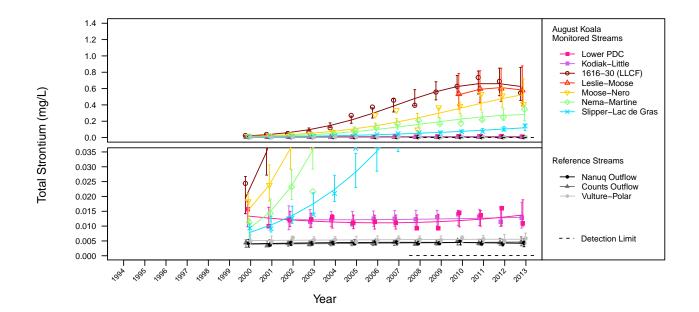
• Results:

|                                       | Chi-squared | DF | P-value |
|---------------------------------------|-------------|----|---------|
| 1616-30 (LLCF)-vs-Nanuq Outflow       | 122.5473    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Counts Outflow      | 116.0330    | 3  | 0.0000  |
| 1616-30 (LLCF)-vs-Vulture-Polar       | 117.3337    | 3  | 0.0000  |
| Moose-Nero-vs-Nanuq Outflow           | 3037.4462   | 3  | 0.0000  |
| Moose-Nero-vs-Counts Outflow          | 3064.0212   | 3  | 0.0000  |
| Moose-Nero-vs-Vulture-Polar           | 2700.8876   | 3  | 0.0000  |
| Nema-Martine-vs-Nanuq Outflow         | 2346.2430   | 3  | 0.0000  |
| Nema-Martine-vs-Counts Outflow        | 2368.8454   | 3  | 0.0000  |
| Nema-Martine-vs-Vulture-Polar         | 2056.3528   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Nanuq Outflow  | 1215.4942   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Counts Outflow | 1228.3300   | 3  | 0.0000  |
| Slipper-Lac de Gras-vs-Vulture-Polar  | 1010.0450   | 3  | 0.0000  |
|                                       |             |    |         |

• Conclusions:

All remaining monitored streams show significant deviations from the slopes of individual reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Reference Stream | Counts Outflow      | 0.3220    |
| Reference Stream | Nanuq Outflow       | 0.2520    |
| Reference Stream | Vulture-Polar       | 0.1090    |
| Monitored Stream | 1616-30 (LLCF)      | 0.9750    |
| Monitored Stream | Kodiak-Little       | 0.1020    |
| Monitored Stream | Leslie-Moose        | 0.9350    |
| Monitored Stream | Lower PDC           | 0.1650    |
| Monitored Stream | Moose-Nero          | 0.8900    |
| Monitored Stream | Nema-Martine        | 0.9560    |
| Monitored Stream | Slipper-Lac de Gras | 0.9700    |

• Conclusions:

Model fit for Counts Outflow and Nanuq Outflow is weak. Model fit for Vulture-Polar, Kodiak-Little, and Lower PDC is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

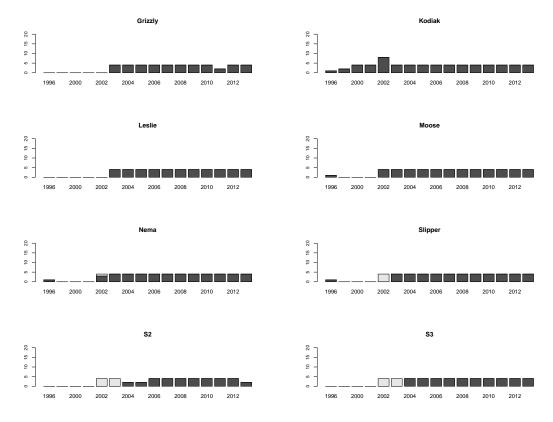
The estimated minimum detectable difference in mean total strontium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 1.09e-02 | 1.37e-02 | 2.22e-03 | 1.00e-02 | 1.89e-02 | 6.50e-03       |
| Kodiak-Little       | 1.28e-02 | 1.30e-02 | 2.19e-03 | 9.32e-03 | 1.80e-02 | 6.40e-03       |
| Leslie-Moose        | 5.79e-01 | 5.82e-01 | 1.22e-01 | 3.86e-01 | 8.77e-01 | 3.56e-01       |
| 1616-30 (LLCF)      | 5.48e-01 | 6.26e-01 | 1.01e-01 | 4.56e-01 | 8.60e-01 | 2.96e-01       |
| Moose-Nero          | 4.09e-01 | 5.27e-01 | 8.53e-02 | 3.84e-01 | 7.24e-01 | 2.50e-01       |
| Nema-Martine        | 3.46e-01 | 2.82e-01 | 4.57e-02 | 2.06e-01 | 3.88e-01 | 1.34e-01       |
| Slipper-Lac de Gras | 1.43e-01 | 1.20e-01 | 1.94e-02 | 8.74e-02 | 1.65e-01 | 5.68e-02       |
| Nanuq Outflow       | 4.32e-03 | 4.21e-03 | 6.80e-04 | 3.06e-03 | 5.77e-03 | NA             |
| Counts Outflow      | 4.68e-03 | 4.63e-03 | 7.49e-04 | 3.37e-03 | 6.36e-03 | NA             |
| Vulture-Polar       | 5.88e-03 | 5.57e-03 | 9.02e-04 | 4.06e-03 | 7.66e-03 | NA             |

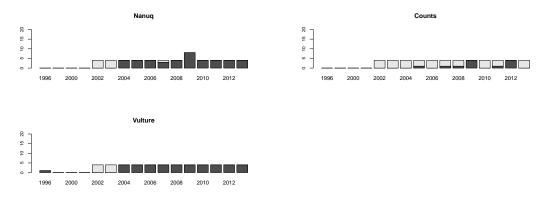
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                       |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|-------------------------------------------------------------------|
| Strontium | August | Koala     | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | 6.242            | 1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Slipper-<br>Lac de<br>Gras |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Uranium in Lakes of the Koala Watershed and Lac de Gras

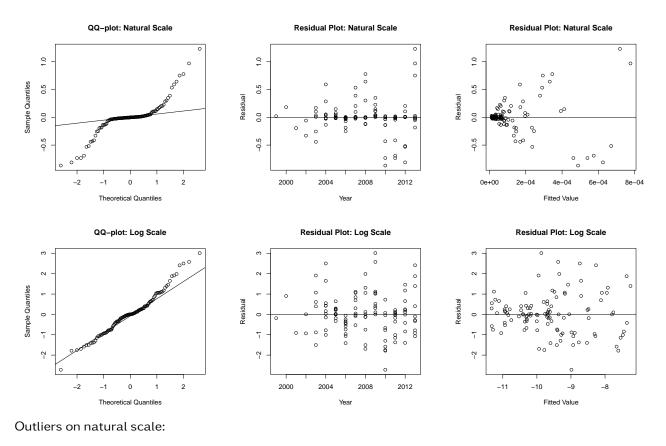
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts Lake was less than the detection limit. This lake was excluded from further analyses. 10-60% of data in Nanuq, Vulture, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



None

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 216 | Slipper | 2009 | 0.00   | -9.87  | 3.02        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 0.00E+00  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.60       | 3.00 | 0.46    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

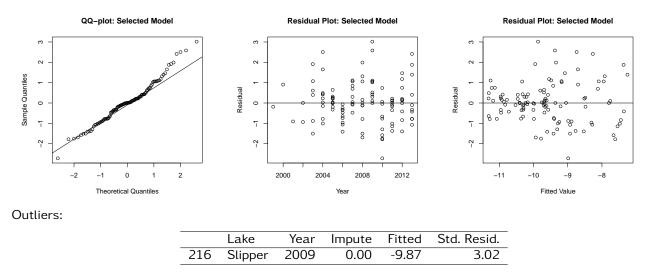
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.10       | 2.00 | 0.95    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.278        | 0.718        | 0.004        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

Results of AIC do not agree with reference model testing. Although results of contrasts suggest that reference lakes share a common intercept, AIC reveals that reference lakes are best modelled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

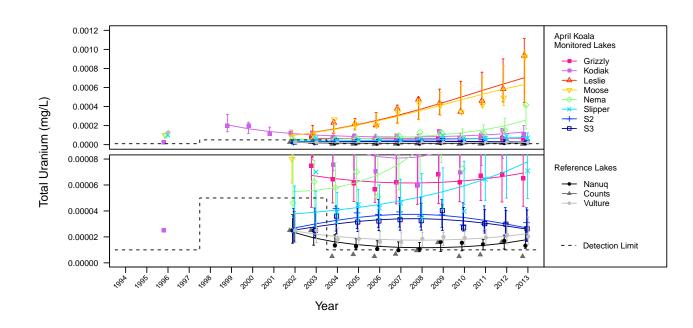
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Grizzly | 0.7157      | 2  | 0.6992  |
| Kodiak  | 2.3055      | 2  | 0.3158  |
| Leslie  | 32.9096     | 2  | 0.0000  |
| Moose   | 34.6155     | 2  | 0.0000  |
| Nema    | 30.4385     | 2  | 0.0000  |
| Slipper | 2.5972      | 2  | 0.2729  |
| S2      | 5.3446      | 2  | 0.0691  |
| S3      | 4.0183      | 2  | 0.1341  |

• Conclusions:

Leslie, Moose, and Nema lakes show significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.4230    |
| Monitored Lake    | Grizzly         | 0.3840    |
| Monitored Lake    | Kodiak          | 0.5980    |
| Monitored Lake    | Leslie          | 0.8360    |
| Monitored Lake    | Moose           | 0.8520    |
| Monitored Lake    | Nema            | 0.7400    |
| Monitored Lake    | S2              | 0.2870    |
| Monitored Lake    | S3              | 0.2820    |
| Monitored Lake    | Slipper         | 0.2530    |

#### • Conclusions:

Model fit for reference lakes, Grizzly, Slipper, S2, and S3 is weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

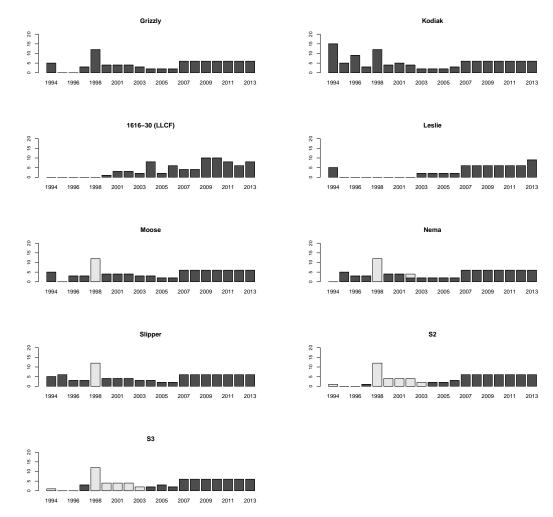
The estimated minimum detectable difference in mean total uranium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 6.52e-05 | 6.92e-05 | 1.63e-05 | 4.36e-05 | 1.10e-04 | 4.77e-05       |
| Kodiak  | 1.07e-04 | 1.32e-04 | 2.86e-05 | 8.66e-05 | 2.02e-04 | 8.37e-05       |
| Leslie  | 9.36e-04 | 7.02e-04 | 1.66e-04 | 4.42e-04 | 1.11e-03 | 4.84e-04       |
| Moose   | 9.20e-04 | 6.32e-04 | 1.46e-04 | 4.02e-04 | 9.93e-04 | 4.26e-04       |
| Nema    | 4.17e-04 | 2.58e-04 | 5.94e-05 | 1.64e-04 | 4.05e-04 | 1.74e-04       |
| Slipper | 7.10e-05 | 7.78e-05 | 1.79e-05 | 4.95e-05 | 1.22e-04 | 5.25e-05       |
| S2      | 3.10e-05 | 2.70e-05 | 6.22e-06 | 1.72e-05 | 4.24e-05 | 1.82e-05       |
| S3      | 2.63e-05 | 2.60e-05 | 5.99e-06 | 1.65e-05 | 4.08e-05 | 1.75e-05       |
| Nanuq   | 1.32e-05 | 1.77e-05 | 4.07e-06 | 1.12e-05 | 2.78e-05 | NA             |
| Counts  | 5.00e-06 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 2.03e-05 | 2.25e-05 | 5.19e-06 | 1.43e-05 | 3.53e-05 | NA             |

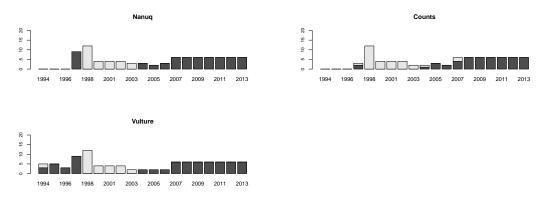
### 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model    | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|-----------------------|------------------|---------------------------------------------|
| Uranium   | April | Koala     | Lake          | Water    | Counts                        | log e                       | Tobit<br>regressio | #2 shared<br>n slopes | 0.015            | Leslie<br>Moose<br>Nema                     |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Uranium in Lakes of the Koala Watershed and Lac de Gras

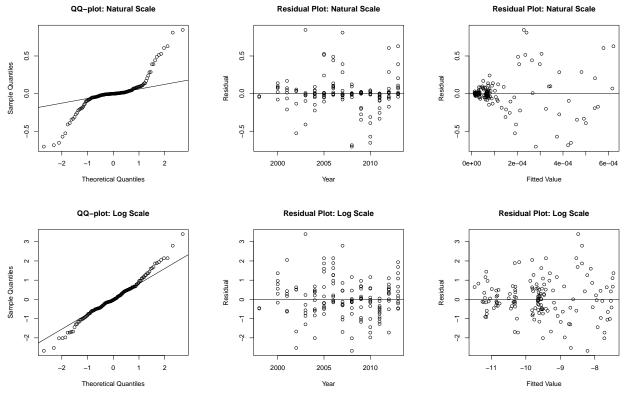
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

10-60% of data in Counts, Nanuq, Vulture, Moose, Nema, Slipper, S2, and S3 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:



Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 10 | 1616-30 (LLCF) | 2003 | 0.00   | -8.48  | 3.40        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 12.98       | 6.00 | 0.04    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

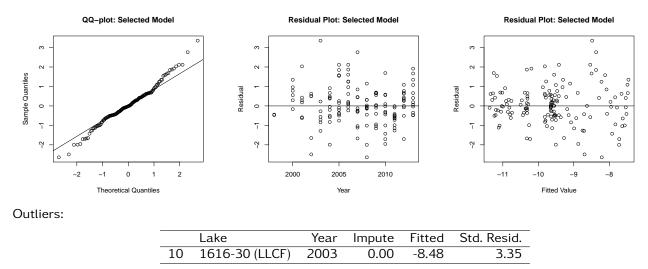
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 4.31        | 4.00 | 0.37    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.150        | 0.850        | 0.000        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

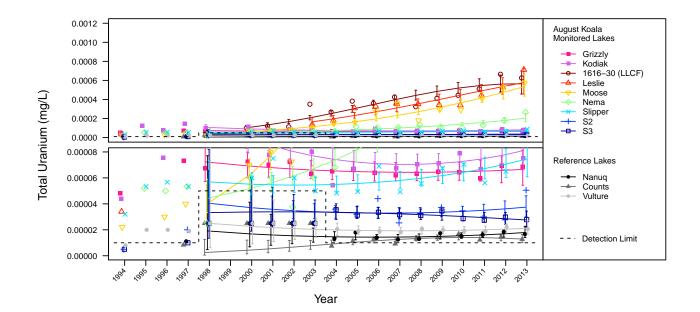
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| Grizzly        | 1.8836      | 2  | 0.3899  |
| Kodiak         | 2.6009      | 2  | 0.2724  |
| 1616-30 (LLCF) | 25.8606     | 2  | 0.0000  |
| Leslie         | 30.8564     | 2  | 0.0000  |
| Moose          | 59.6194     | 2  | 0.0000  |
| Nema           | 26.2108     | 2  | 0.0000  |
| Slipper        | 0.7316      | 2  | 0.6937  |
| S2             | 1.0226      | 2  | 0.5997  |
| S3             | 5.0330      | 2  | 0.0807  |

• Conclusions:

1616-30 (LLCF), Leslie, Moose, and Nema lakes show significant deviations from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.3530    |
| Monitored Lake    | 1616-30 (LLCF)  | 0.8580    |
| Monitored Lake    | Grizzly         | 0.3430    |
| Monitored Lake    | Kodiak          | 0.4070    |
| Monitored Lake    | Leslie          | 0.8390    |
| Monitored Lake    | Moose           | 0.9100    |
| Monitored Lake    | Nema            | 0.7570    |
| Monitored Lake    | S2              | 0.2000    |
| Monitored Lake    | S3              | 0.3050    |
| Monitored Lake    | Slipper         | 0.1480    |
|                   |                 |           |

• Conclusions:

Model fit for reference lakes, Grizzly, Kodiak, and S3 is weak. Model fit for Slipper and S2 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

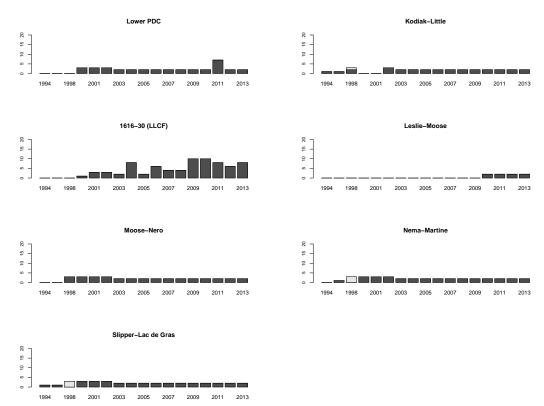
The estimated minimum detectable difference in mean total uranium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 6.85e-05 | 6.65e-05 | 6.86e-06 | 5.43e-05 | 8.14e-05 | 2.01e-05       |
| Kodiak         | 7.52e-05 | 8.10e-05 | 8.35e-06 | 6.62e-05 | 9.92e-05 | 2.44e-05       |
| Leslie         | 7.12e-04 | 5.77e-04 | 6.78e-05 | 4.58e-04 | 7.26e-04 | 1.99e-04       |
| 1616-30 (LLCF) | 6.26e-04 | 5.65e-04 | 6.10e-05 | 4.57e-04 | 6.98e-04 | 1.79e-04       |
| Moose          | 5.70e-04 | 5.35e-04 | 5.67e-05 | 4.34e-04 | 6.58e-04 | 1.66e-04       |
| Nema           | 2.64e-04 | 2.04e-04 | 2.14e-05 | 1.66e-04 | 2.50e-04 | 6.25e-05       |
| Slipper        | 8.82e-05 | 7.46e-05 | 7.72e-06 | 6.09e-05 | 9.13e-05 | 2.26e-05       |
| S2             | 5.05e-05 | 3.74e-05 | 4.01e-06 | 3.04e-05 | 4.62e-05 | 1.17e-05       |
| S3             | 2.78e-05 | 2.76e-05 | 3.12e-06 | 2.21e-05 | 3.44e-05 | 9.12e-06       |
| Nanuq          | 1.67e-05 | 1.79e-05 | 2.17e-06 | 1.41e-05 | 2.27e-05 | NA             |
| Counts         | 1.27e-05 | 1.29e-05 | 1.59e-06 | 1.01e-05 | 1.64e-05 | NA             |
| Vulture        | 2.05e-05 | 2.12e-05 | 2.57e-06 | 1.67e-05 | 2.69e-05 | NA             |

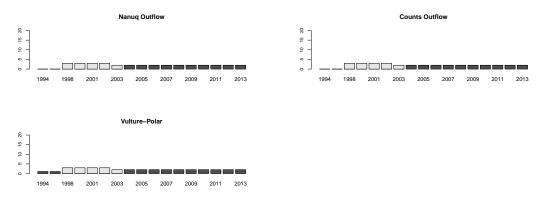
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------------------|
| Uranium   | August | Koala     | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | 0.015            | 1616-30<br>(LLCF)<br>Leslie<br>Moose<br>Nema            |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Uranium in Koala Watershed Streams

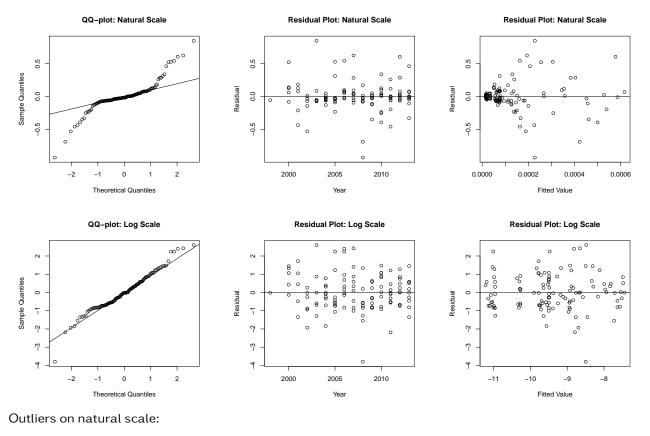
#### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

10-60% of data in Counts Outflow, Nanuq Outflow, and Vulture-Polar was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



None

#### Outliers on log scale:

| - | Lake |            | Year | Impute | Fitted | Std. Resid. |  |
|---|------|------------|------|--------|--------|-------------|--|
|   | 115  | Moose-Nero | 2008 | 0.00   | -8.50  | -3.80       |  |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |  |  |
|-------------|------|---------|--|--|
| 11.96       | 6.00 | 0.06    |  |  |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Trend for All Reference Streams: reference model 2

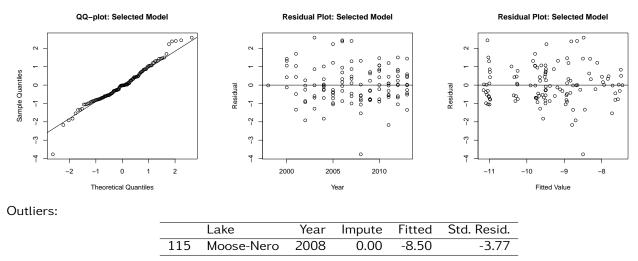
• Results:

| Chi-squared | DF   | P-value |  |  |
|-------------|------|---------|--|--|
| 1.37        | 4.00 | 0.85    |  |  |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.034        | 0.966        | 0.000        | Ref. Model 2 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although results of contrasts suggest that reference streams share a common slope and intercept, AIC reveals that reference streams are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

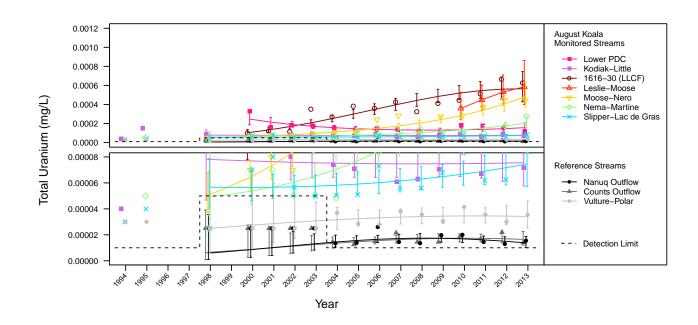
### 4 Test Results for Monitored Streams

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 7.5128      | 2  | 0.0234  |
| Kodiak-Little       | 1.6756      | 2  | 0.4327  |
| Leslie-Moose        | 4.0323      | 2  | 0.1332  |
| 1616-30 (LLCF)      | 15.9319     | 2  | 0.0003  |
| Moose-Nero          | 44.7915     | 2  | 0.0000  |
| Nema-Martine        | 21.8104     | 2  | 0.0000  |
| Slipper-Lac de Gras | 1.8984      | 2  | 0.3871  |

• Conclusions:

All monitored streams except Kodiak-Little, Leslie-Moose, and Slipper-Lac de Gras show significant deviations from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.5260    |
| Monitored Stream    | 1616-30 (LLCF)      | 0.8580    |
| Monitored Stream    | Kodiak-Little       | 0.0150    |
| Monitored Stream    | Leslie-Moose        | 1.0000    |
| Monitored Stream    | Lower PDC           | 0.5360    |
| Monitored Stream    | Moose-Nero          | 0.8500    |
| Monitored Stream    | Nema-Martine        | 0.6660    |
| Monitored Stream    | Slipper-Lac de Gras | 0.1190    |

#### • Conclusions:

Model fit for Kodiak-Little and Slipper-Lac de Gras is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

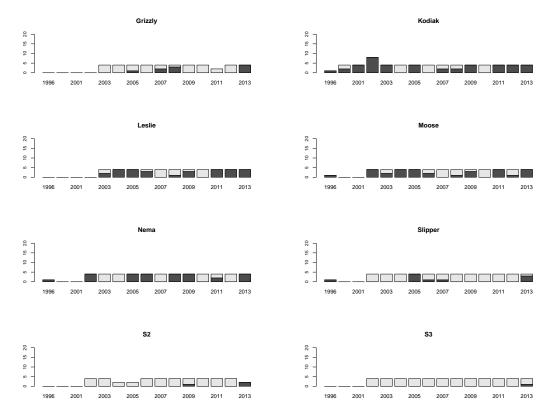
The estimated minimum detectable difference in mean total uranium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 1.19e-04 | 1.56e-04 | 2.21e-05 | 1.19e-04 | 2.06e-04 | 6.46e-05       |
| Kodiak-Little       | 7.15e-05 | 7.55e-05 | 1.04e-05 | 5.77e-05 | 9.89e-05 | 3.04e-05       |
| Leslie-Moose        | 5.85e-04 | 5.86e-04 | 1.15e-04 | 3.99e-04 | 8.61e-04 | 3.37e-04       |
| 1616-30 (LLCF)      | 6.26e-04 | 5.65e-04 | 7.97e-05 | 4.29e-04 | 7.45e-04 | 2.33e-04       |
| Moose-Nero          | 4.42e-04 | 4.84e-04 | 6.51e-05 | 3.72e-04 | 6.30e-04 | 1.91e-04       |
| Nema-Martine        | 2.73e-04 | 2.04e-04 | 2.77e-05 | 1.56e-04 | 2.66e-04 | 8.10e-05       |
| Slipper-Lac de Gras | 8.40e-05 | 7.46e-05 | 1.01e-05 | 5.72e-05 | 9.72e-05 | 2.95e-05       |
| Nanuq Outflow       | 1.55e-05 | 1.38e-05 | 2.18e-06 | 1.01e-05 | 1.88e-05 | NA             |
| Counts Outflow      | 1.40e-05 | 1.65e-05 | 2.62e-06 | 1.21e-05 | 2.25e-05 | NA             |
| Vulture-Polar       | 3.55e-05 | 3.42e-05 | 5.24e-06 | 2.53e-05 | 4.62e-05 | NA             |

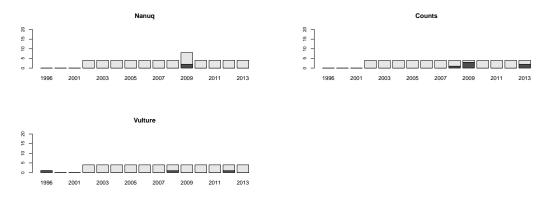
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                          |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|----------------------------------------------------------------------|
| Uranium   | August | Koala     | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | 0.015            | Lower PDC<br>1616-30<br>(LLCF)<br>Moose-<br>Nero<br>Nema-<br>Martine |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Vanadium Lakes of the Koala Watershed and Lac de Gras

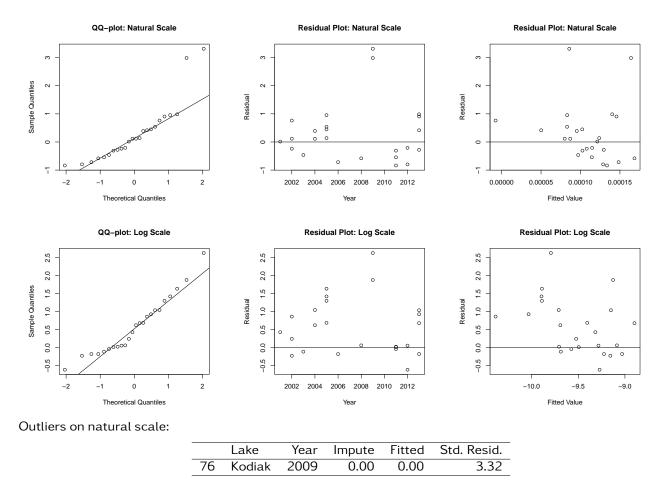
January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, Slipper, S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Kodiak, Leslie, Moose, and Nema was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-30 (LLCF) was not monitored in April.

### 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 8.70E-81  | natural model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

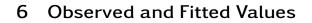
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

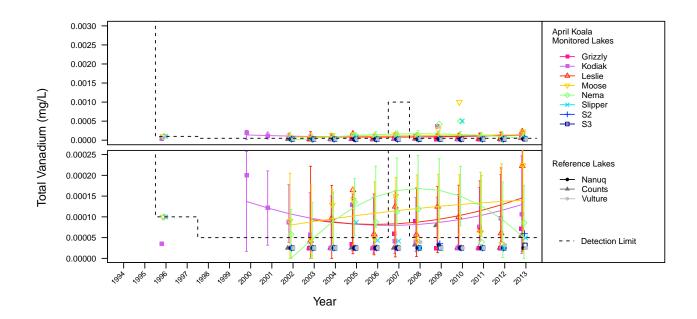
• Results:

|        | Chi-squared | DF | P-value |
|--------|-------------|----|---------|
| Kodiak | 0.6430      | 2  | 0.7251  |
| Leslie | 0.5888      | 2  | 0.7450  |
| Moose  | 0.5712      | 2  | 0.7515  |
| Nema   | 4.3801      | 2  | 0.1119  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.


### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name | R-squared                 |
|-----------|---------------------------|
| Kodiak    | 0.0440                    |
| Leslie    | 0.1460                    |
| Moose     | 0.0770                    |
| Nema      | 0.1650                    |
|           | Kodiak<br>Leslie<br>Moose |

• Conclusions:

Model fit for Kodiak, Leslie, Moose and Nema lakes is poor. Results of statistical tests and MDD should be interpreted with caution.





Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

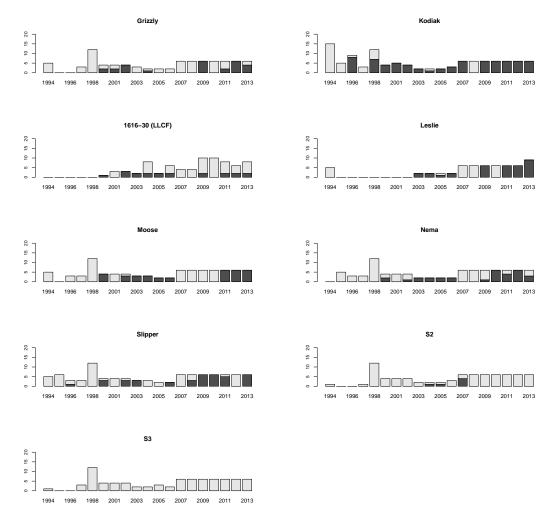
The estimated minimum detectable difference in mean total vanadium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Grizzly | 7.12e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak  | 1.06e-04 | 1.29e-04 | 5.99e-05 | 1.22e-05 | 2.47e-04 | 1.75e-04       |
| Leslie  | 2.23e-04 | 1.46e-04 | 6.55e-05 | 1.72e-05 | 2.74e-04 | 1.92e-04       |
| Moose   | 2.24e-04 | 1.40e-04 | 6.41e-05 | 1.46e-05 | 2.66e-04 | 1.88e-04       |
| Nema    | 8.57e-05 | 5.02e-05 | 6.41e-05 | 0.00e+00 | 1.76e-04 | 1.88e-04       |
| Slipper | 4.93e-05 | NA       | NA       | NA       | NA       | NA             |
| S2      | 5.95e-05 | NA       | NA       | NA       | NA       | NA             |
| S3      | 3.17e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq   | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts  | 5.32e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

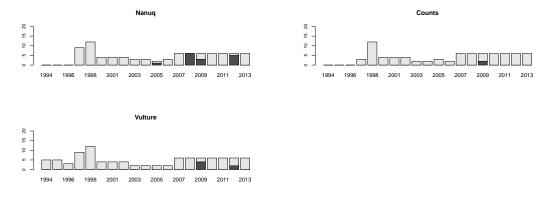
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                             | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-----------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Vanadium  | April | Koala     | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Grizzly<br>Slipper S2<br>S3 | none                        | Tobit<br>regressior | #1a slope<br>of zero | 0.03             | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Vanadium in Lakes of the Koala Watershed and Lac de Gras

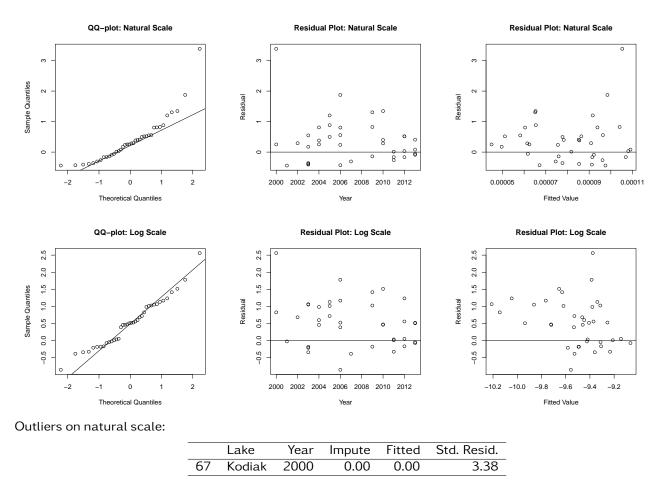
January 11, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, Grizzly, 1616-30 (LLCF), S2, and S3 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Kodiak, Leslie, Moose, Nema, and Slipper was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

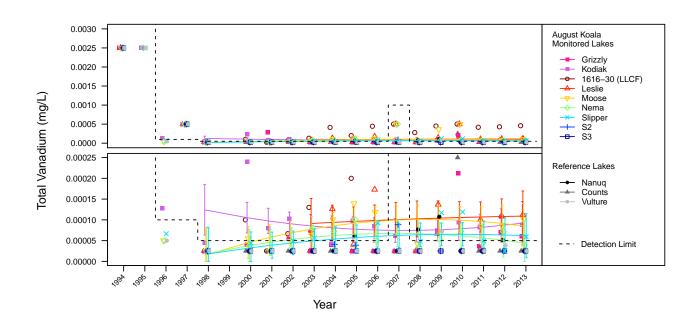
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|         | Chi-squared | DF | P-value |
|---------|-------------|----|---------|
| Kodiak  | 1.6489      | 2  | 0.4385  |
| Leslie  | 0.2124      | 2  | 0.8992  |
| Moose   | 4.1497      | 2  | 0.1256  |
| Nema    | 1.4050      | 2  | 0.4953  |
| Slipper | 1.6518      | 2  | 0.4379  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
|                |           | · · ·     |
| Monitored Lake | Kodiak    | 0.0810    |
| Monitored Lake | Leslie    | 0.1440    |
| Monitored Lake | Moose     | 0.1690    |
| Monitored Lake | Nema      | 0.0680    |
| Monitored Lake | Slipper   | 0.1880    |

• Conclusions:

Model fit for Kodiak, Leslie, Moose, Nema, and Slipper lakes is poor.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

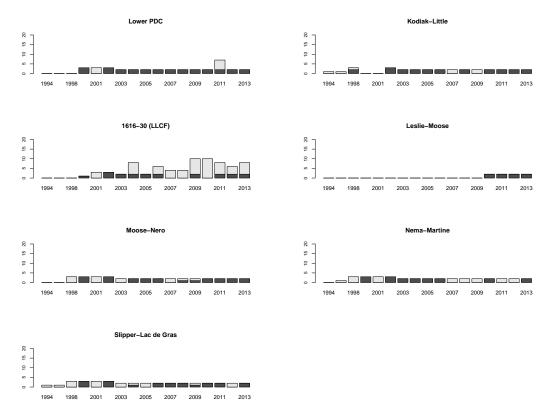
The estimated minimum detectable difference in mean total vanadium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Grizzly        | 6.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Kodiak         | 8.87e-05 | 9.21e-05 | 2.66e-05 | 4.00e-05 | 1.44e-04 | 7.78e-05       |
| Leslie         | 1.12e-04 | 1.09e-04 | 3.08e-05 | 4.86e-05 | 1.69e-04 | 9.02e-05       |
| 1616-30 (LLCF) | 4.58e-04 | NA       | NA       | NA       | NA       | NA             |
| Moose          | 1.02e-04 | 8.52e-05 | 2.77e-05 | 3.09e-05 | 1.39e-04 | 8.11e-05       |
| Nema           | 3.87e-05 | 4.41e-05 | 2.69e-05 | 0.00e+00 | 9.69e-05 | 7.88e-05       |
| Slipper        | 5.95e-05 | 6.17e-05 | 2.71e-05 | 8.61e-06 | 1.15e-04 | 7.93e-05       |
| S2             | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| S3             | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq          | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

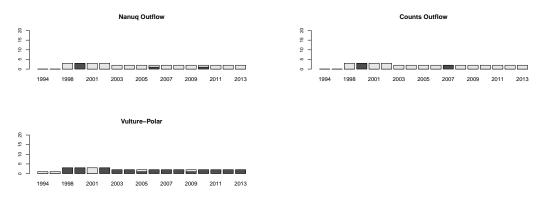
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                       | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|---------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Vanadium  | August | Koala     | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>1616-30<br>(LLCF)<br>Grizzly S2<br>S3 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.03             | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Total Vanadium in Koala Watershed Streams

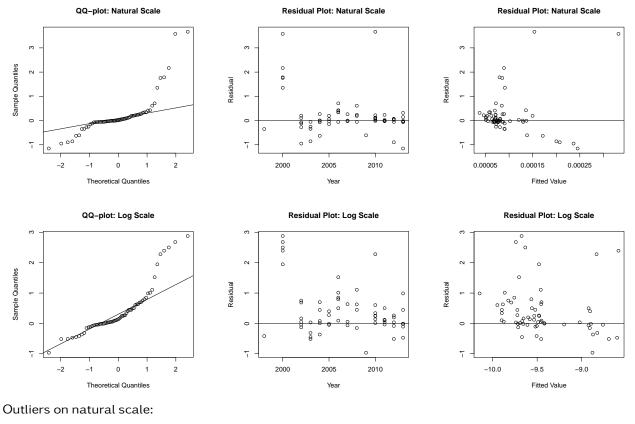
### January 11, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, and 1616-30 (LLCF) was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Kodiak-Little, Lower PDC, Moose-Nero, Nema-Martine, Slipper-Lac de Gras, and Vulture-Polar was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



|    | Lake      | Year | Impute | Fitted | Std. Resid. |
|----|-----------|------|--------|--------|-------------|
| 87 | Lower PDC | 2000 | 0.00   | 0.00   | 3.58        |
| 97 | Lower PDC | 2010 | 0.00   | 0.00   | 3.67        |

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

## 3 Comparisons within Reference Streams

Two of three reference streams were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

## 4 Test Results for Monitored Streams

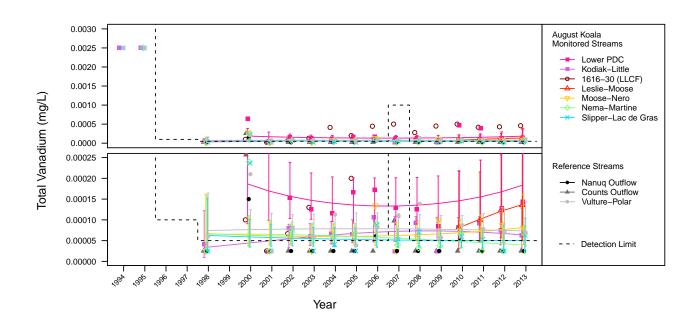
Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                     | Chi-squared | DF | P-value |
|---------------------|-------------|----|---------|
| Lower PDC           | 0.6550      | 2  | 0.7207  |
| Kodiak-Little       | 1.1070      | 2  | 0.5749  |
| Leslie-Moose        | 0.5776      | 2  | 0.7492  |
| Moose-Nero          | 0.4497      | 2  | 0.7986  |
| Nema-Martine        | 1.2535      | 2  | 0.5343  |
| Slipper-Lac de Gras | 0.1964      | 2  | 0.9065  |
|                     |             |    |         |

• Conclusions:

No significant deviations were found when comparing monitored streams to a constant slope of zero.


## 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name         | R-squared |
|------------------|---------------------|-----------|
| Reference Stream | Vulture-Polar       | 0.0030    |
| Monitored Stream | Kodiak-Little       | 0.1660    |
| Monitored Stream | Leslie-Moose        | 0.9950    |
| Monitored Stream | Lower PDC           | 0.0230    |
| Monitored Stream | Moose-Nero          | 0.0240    |
| Monitored Stream | Nema-Martine        | 0.0990    |
| Monitored Stream | Slipper-Lac de Gras | 0.0250    |

• Conclusions:

Model fit for Vulture-Polar, Kodiak-Little, Lower PDC, Moose-Nero, Nema-Martine, and Slipper-Lac de Gras is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

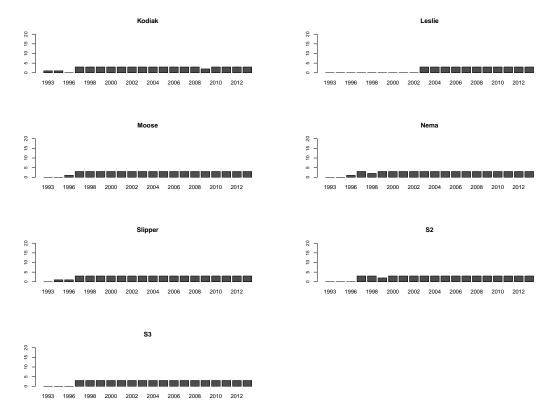
The estimated minimum detectable difference in mean total vanadium for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Lower PDC           | 1.44e-04 | 1.84e-04 | 7.10e-05 | 8.62e-05 | 3.92e-04 | 2.08e-04       |
| Kodiak-Little       | 6.35e-05 | 6.41e-05 | 2.27e-05 | 3.20e-05 | 1.28e-04 | 6.63e-05       |
| Leslie-Moose        | 1.36e-04 | 1.37e-04 | 6.92e-05 | 5.08e-05 | 3.68e-04 | 2.02e-04       |
| 1616-30 (LLCF)      | 4.58e-04 | NA       | NA       | NA       | NA       | NA             |
| Moose-Nero          | 8.10e-05 | 8.13e-05 | 2.85e-05 | 4.09e-05 | 1.62e-04 | 8.35e-05       |
| Nema-Martine        | 6.55e-05 | 3.92e-05 | 1.51e-05 | 1.84e-05 | 8.36e-05 | 4.43e-05       |
| Slipper-Lac de Gras | 6.35e-05 | 5.04e-05 | 1.87e-05 | 2.44e-05 | 1.04e-04 | 5.46e-05       |
| Nanuq Outflow       | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow      | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar       | 6.95e-05 | 7.34e-05 | 2.55e-05 | 3.71e-05 | 1.45e-04 | NA             |

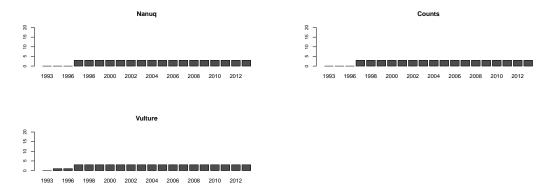
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                              | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|------------------------------------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------|---------------------------------------------|
| Vanadium  | August | Koala     | Stream        | Water    | 1616-30<br>(LLCF)<br>Counts<br>Outflow<br>Nanuq<br>Outflow | log e                       | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | 0.03             | Lower PDC                                   |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of Phytoplankton Biomass in Lakes of the Koala Watershed and Lac de Gras

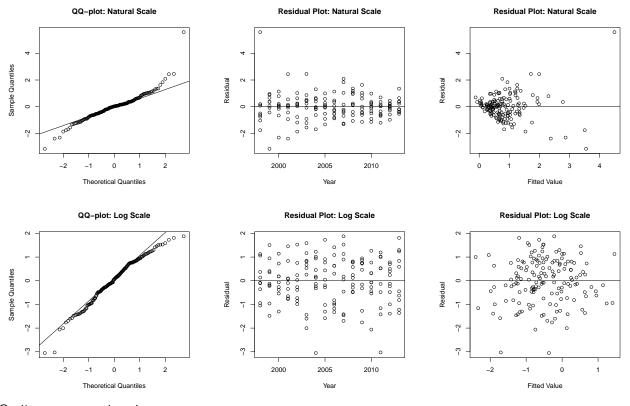
January 30, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 65 | Kodiak | 1998 | 6.48   | 4.49   | 5.58        |
| 66 | Kodiak | 1999 | 2.43   | 3.55   | -3.15       |

Outliers on log scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 111 | Moose | 2004 | 0.23   | -0.37  | -3.05       |
| 198 | S3    | 2011 | 0.06   | -1.71  | -3.03       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

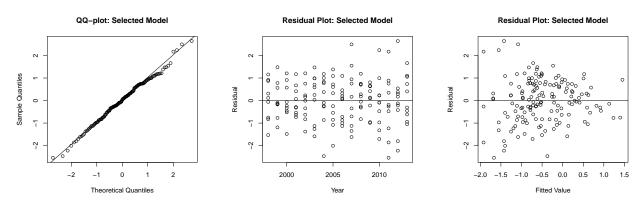
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 9.56       | 6.00 | 0.14    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero and because AIC indicated that reference model 3 was a better fit to the data than reference model 2.

### 3.3 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 15.2793    | 3  | 0.0016  |
| Leslie  | 4.6285     | 3  | 0.2011  |
| Moose   | 4.7801     | 3  | 0.1886  |
| Nema    | 15.3820    | 3  | 0.0015  |
| Slipper | 6.8274     | 3  | 0.0776  |
| S2      | 2.6760     | 3  | 0.4443  |
| S3      | 0.3485     | 3  | 0.9507  |

• Conclusions:

Kodiak and Nema lakes show significant deviation from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

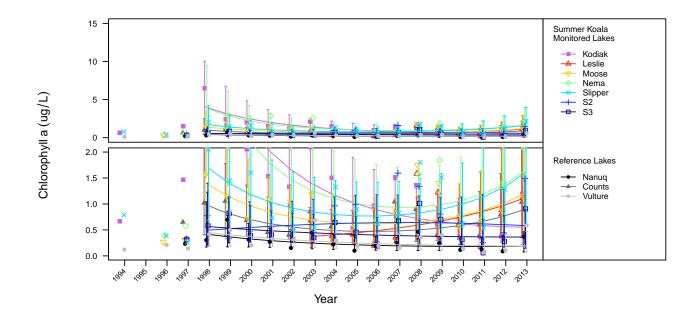
• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 4.9093     | 2  | 0.0859  |
| Leslie  | 3.0644     | 2  | 0.2161  |
| Moose   | 0.8224     | 2  | 0.6629  |
| Nema    | 1.0658     | 2  | 0.5869  |
| Slipper | 1.1768     | 2  | 0.5552  |
| S2      | 2.4250     | 2  | 0.2974  |
| S3      | 0.3068     | 2  | 0.8578  |
|         |            |    |         |

• Conclusions:

When allowing for differences in intercept, no monitored lakes show significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1040    |
| Monitored Lake    | Kodiak          | 0.6010    |
| Monitored Lake    | Leslie          | 0.3080    |
| Monitored Lake    | Moose           | 0.1990    |
| Monitored Lake    | Nema            | 0.5000    |
| Monitored Lake    | S2              | 0.0150    |
| Monitored Lake    | S3              | 0.0430    |
| Monitored Lake    | Slipper         | 0.2690    |
|                   |                 |           |

### • Conclusions:

Model fit for Leslie and Slipper is weak. Model fit for reference lakes, Moose, Slipper, S2, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively. For parameters where the slope (and intercept) for reference lakes were not statistically different, the regression line and associated 95% CI for the combined reference lake data is shown as Reference-Common. This corresponds to analyses using reference model 2 or 3 only.

## 7 Minimum Detectable Differences

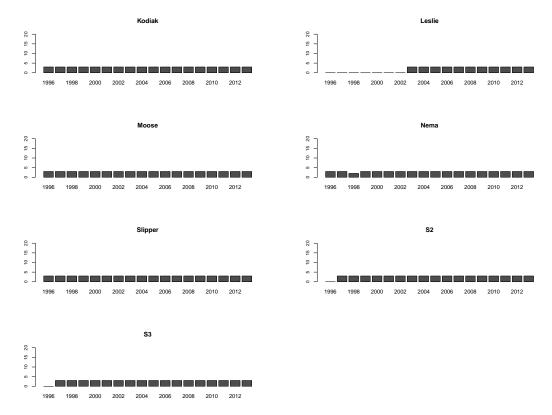
The estimated minimum detectable difference in mean biomass for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Kodiak  | 1.19E+00 | 5.52E-01 | 2.55E-01 | 2.23E-01 | 1.37E+00 | 7.46E-01       |
| Leslie  | 1.12E+00 | 1.10E+00 | 5.40E-01 | 4.21E-01 | 2.88E+00 | 1.58E+00       |
| Moose   | 1.15E+00 | 1.19E+00 | 5.48E-01 | 4.80E-01 | 2.94E+00 | 1.60E+00       |
| Nema    | 2.06E+00 | 1.63E+00 | 7.54E-01 | 6.59E-01 | 4.04E+00 | 2.21E+00       |
| Slipper | 2.17E+00 | 1.61E+00 | 7.43E-01 | 6.50E-01 | 3.98E+00 | 2.17E+00       |
| S2      | 1.49E+00 | 5.83E-01 | 2.70E-01 | 2.36E-01 | 1.44E+00 | 7.89E-01       |
| S3      | 9.07E-01 | 3.63E-01 | 1.68E-01 | 1.47E-01 | 8.97E-01 | 4.91E-01       |
| Nanuq   | 3.70E-01 | 1.87E-01 | 8.66E-02 | 7.57E-02 | 4.64E-01 |                |
| Counts  | 1.03E+00 | 8.76E-01 | 4.05E-01 | 3.54E-01 | 2.17E+00 |                |
| Vulture | 5.87E-01 | 1.90E-01 | 8.79E-02 | 7.69E-02 | 4.71E-01 |                |

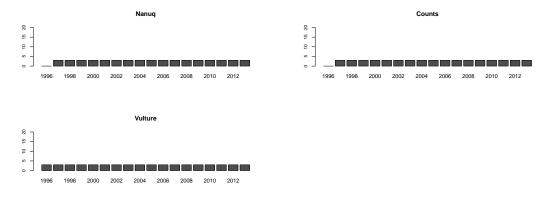
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Biomass   | Summer | Koala     | Lake          | Biology  | Grizzly                       | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | Kodiak<br>Nema                                          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of Phytoplankton Density in Lakes of the Koala Watershed and Lac de Gras

January 22, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (black).

### 1.1 Monitored



### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|     | Lake   | Year | Impute   | Fitted   | Std. Resid. |
|-----|--------|------|----------|----------|-------------|
| 65  | Kodiak | 1998 | 16434.15 | 12175.13 | 3.50        |
| 66  | Kodiak | 1999 | 5239.83  | 10223.66 | -4.10       |
| 68  | Kodiak | 2001 | 2295.78  | 6629.61  | -3.56       |
| 69  | Kodiak | 2002 | 13121.43 | 5452.48  | 6.30        |
| 145 | Nema   | 1998 | 2406.95  | 7245.00  | -3.98       |
| 147 | Nema   | 2000 | 10712.63 | 5381.78  | 4.38        |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake | Year | Impute  | Fitted | Std. Resid. |
|-----|------|------|---------|--------|-------------|
| 186 | S3   | 1999 | 4577.67 | 7.17   | 3.15        |

AIC weights and model comparison:

| _ |               | Un-transformed Model | Log-transformed Model | Best Model            |
|---|---------------|----------------------|-----------------------|-----------------------|
|   | Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

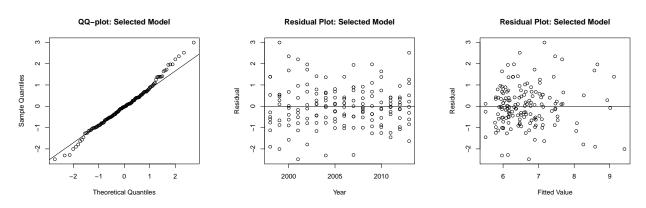
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 4.14       | 6.00 | 0.66    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.886        | 0.000        | 0.114        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero and because AIC suggests that reference model 3 is the second best model.

### 3.3 Assess Fit of Reduced Model



#### Outliers:

#### None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 32.6446    | 3  | 0.0000  |
| Leslie  | 7.8532     | 3  | 0.0491  |
| Moose   | 3.2786     | 3  | 0.3506  |
| Nema    | 20.1206    | 3  | 0.0002  |
| Slipper | 1.1152     | 3  | 0.7734  |
| S2      | 7.5636     | 3  | 0.0559  |
| S3      | 1.9637     | 3  | 0.5800  |

• Conclusions:

Kodiak, Leslie, Nema, and S2 show significant deviation from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 3.4313     | 2  | 0.1798  |
| Leslie  | 7.8283     | 2  | 0.0200  |
| Moose   | 3.2681     | 2  | 0.1951  |
| Nema    | 3.5098     | 2  | 0.1729  |
| Slipper | 0.0964     | 2  | 0.9529  |
| S2      | 4.4412     | 2  | 0.1085  |
| S3      | 1.3688     | 2  | 0.5044  |
|         |            |    |         |

• Conclusions:

When allowing for differences in intercept, Leslie Lake shows significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.2830    |
| Monitored Lake    | Kodiak          | 0.6330    |
| Monitored Lake    | Leslie          | 0.4950    |
| Monitored Lake    | Moose           | 0.1530    |
| Monitored Lake    | Nema            | 0.6290    |
| Monitored Lake    | S2              | 0.0250    |
| Monitored Lake    | S3              | 0.2230    |
| Monitored Lake    | Slipper         | 0.1760    |

### • Conclusions:

Model fit for reference lakes, Leslie Lake, and S3 is weak. Model fit for Moose, Slipper, and S2 is poor. Results of statistical tests and MDD should be interpreted with caution.

#### 35000 Summer Koala 30000 Monitored Lakes Kodiak 25000 Leslie 20000 Moose Nema 15000 Slipper Density (cells/mL) S2 10000 • S3 5000 **(p**) 0 2000 ٣ Reference Lakes 1500 Nanuq Counts Vulture 1000 500 0 2009 2008 2010 2012 2013 Se Year

## 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively. For parameters where the slope (and intercept) for reference lakes were not statistically different, the regression line and associated 95% CI for the combined reference lake data is shown as Reference-Common. This corresponds to analyses using reference model 2 or 3 only.

## 7 Minimum Detectable Differences

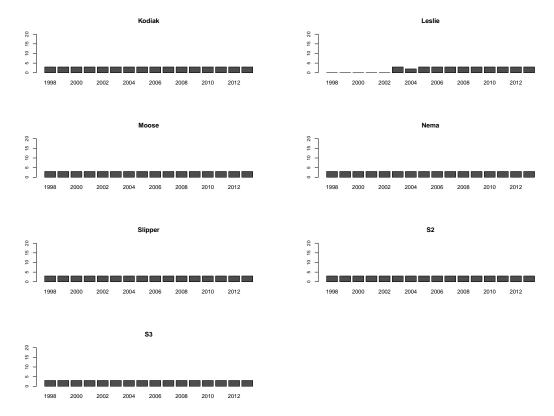
The estimated minimum detectable difference in mean density for each monitored lake in 2013. Reference lakes are shown for comparison.

| Observed | Fitted                                                                                                   | SE Fit                                                                                                                                           | Lower                                                                                                                                                                                                                    | Upper                                                                                                                                                                                                                                                                                            | Min. Det. Diff                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4.84E+03 | 2.49E+03                                                                                                 | 1.10E+03                                                                                                                                         | 1.05E+03                                                                                                                                                                                                                 | 5.91E+03                                                                                                                                                                                                                                                                                         | 3.22E+03                                                                                                                                                                                                                                                                                                                                                                 |
| 5.86E+02 | 4.26E+02                                                                                                 | 2.02E+02                                                                                                                                         | 1.68E+02                                                                                                                                                                                                                 | 1.08E+03                                                                                                                                                                                                                                                                                         | 5.92E+02                                                                                                                                                                                                                                                                                                                                                                 |
| 6.42E+02 | 8.20E+02                                                                                                 | 3.61E+02                                                                                                                                         | 3.46E+02                                                                                                                                                                                                                 | 1.94E+03                                                                                                                                                                                                                                                                                         | 1.06E+03                                                                                                                                                                                                                                                                                                                                                                 |
| 2.00E+03 | 1.17E+03                                                                                                 | 5.14E+02                                                                                                                                         | 4.92E+02                                                                                                                                                                                                                 | 2.77E+03                                                                                                                                                                                                                                                                                         | 1.50E+03                                                                                                                                                                                                                                                                                                                                                                 |
| 1.23E+03 | 7.99E+02                                                                                                 | 3.52E+02                                                                                                                                         | 3.37E+02                                                                                                                                                                                                                 | 1.90E+03                                                                                                                                                                                                                                                                                         | 1.03E+03                                                                                                                                                                                                                                                                                                                                                                 |
| 1.26E+03 | 5.10E+02                                                                                                 | 2.25E+02                                                                                                                                         | 2.15E+02                                                                                                                                                                                                                 | 1.21E+03                                                                                                                                                                                                                                                                                         | 6.57E+02                                                                                                                                                                                                                                                                                                                                                                 |
| 1.93E+03 | 7.26E+02                                                                                                 | 3.20E+02                                                                                                                                         | 3.06E+02                                                                                                                                                                                                                 | 1.72E+03                                                                                                                                                                                                                                                                                         | 9.36E+02                                                                                                                                                                                                                                                                                                                                                                 |
| 4.50E+02 | 3.40E+02                                                                                                 | 1.50E+02                                                                                                                                         | 1.44E+02                                                                                                                                                                                                                 | 8.07E+02                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |
| 1.87E+03 | 5.93E+02                                                                                                 | 2.61E+02                                                                                                                                         | 2.50E+02                                                                                                                                                                                                                 | 1.41E+03                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |
| 4.96E+02 | 3.46E+02                                                                                                 | 1.53E+02                                                                                                                                         | 1.46E+02                                                                                                                                                                                                                 | 8.22E+02                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                          |
|          | 4.84E+03<br>5.86E+02<br>6.42E+02<br>2.00E+03<br>1.23E+03<br>1.26E+03<br>1.93E+03<br>4.50E+02<br>1.87E+03 | 4.84E+032.49E+035.86E+024.26E+026.42E+028.20E+022.00E+031.17E+031.23E+037.99E+021.26E+035.10E+021.93E+037.26E+024.50E+023.40E+021.87E+035.93E+02 | 4.84E+032.49E+031.10E+035.86E+024.26E+022.02E+026.42E+028.20E+023.61E+022.00E+031.17E+035.14E+021.23E+037.99E+023.52E+021.26E+035.10E+022.25E+021.93E+037.26E+023.20E+024.50E+023.40E+021.50E+021.87E+035.93E+022.61E+02 | 4.84E+032.49E+031.10E+031.05E+035.86E+024.26E+022.02E+021.68E+026.42E+028.20E+023.61E+023.46E+022.00E+031.17E+035.14E+024.92E+021.23E+037.99E+023.52E+023.37E+021.26E+035.10E+022.25E+022.15E+021.93E+037.26E+023.20E+023.06E+024.50E+023.40E+021.50E+021.44E+021.87E+035.93E+022.61E+022.50E+02 | 4.84E+032.49E+031.10E+031.05E+035.91E+035.86E+024.26E+022.02E+021.68E+021.08E+036.42E+028.20E+023.61E+023.46E+021.94E+032.00E+031.17E+035.14E+024.92E+022.77E+031.23E+037.99E+023.52E+023.37E+021.90E+031.26E+035.10E+022.25E+022.15E+021.21E+031.93E+037.26E+023.20E+023.06E+021.72E+034.50E+023.40E+021.50E+021.44E+028.07E+021.87E+035.93E+022.61E+022.50E+021.41E+03 |

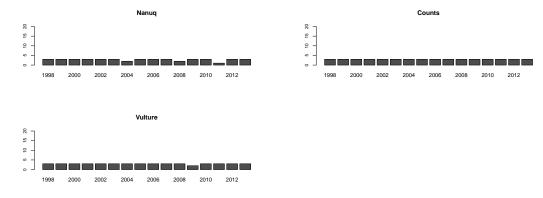
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Density   | Summer | Koala     | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | Kodiak<br>Leslie<br>Nema S2                             |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Zooplankton Biomass in Lakes of the Koala Watershed and Lac de Gras

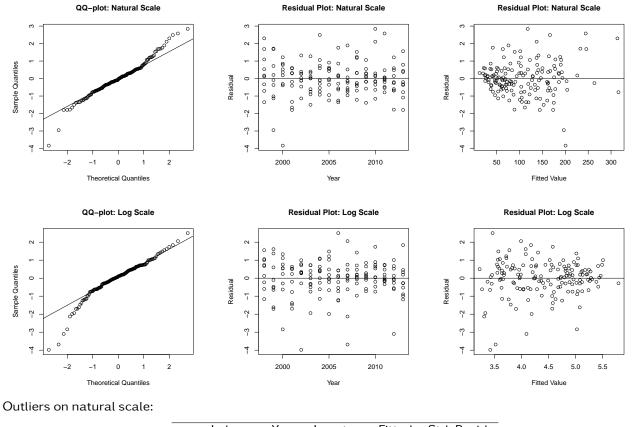
January 22, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 67 | Kodiak | 2000 | 34.65  | 200.58 | -3.83       |

Outliers on log scale:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 119 | Moose | 2012 | 11.96  | 4.09   | -3.10       |
| 169 | S2    | 2002 | 3.88   | 3.42   | -3.98       |
| 194 | S3    | 2007 | 4.99   | 3.52   | -3.68       |

AIC weights and model comparison:

|             |    | Un-transformed Model | Log-transformed Model | Best Model            |
|-------------|----|----------------------|-----------------------|-----------------------|
| Akaike Weig | nt | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 14.15      | 6.00 | 0.03    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

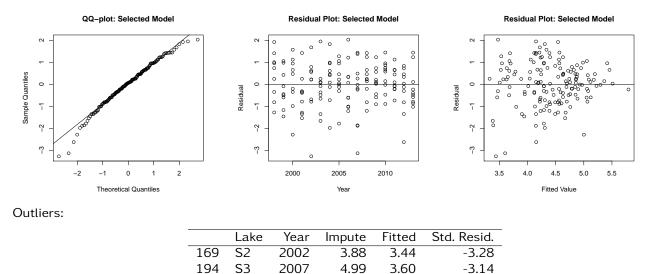
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 5.95       | 4.00 | 0.20    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

3.60

-3.14

#### Test Results for Monitored Lakes 4

194

S3

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

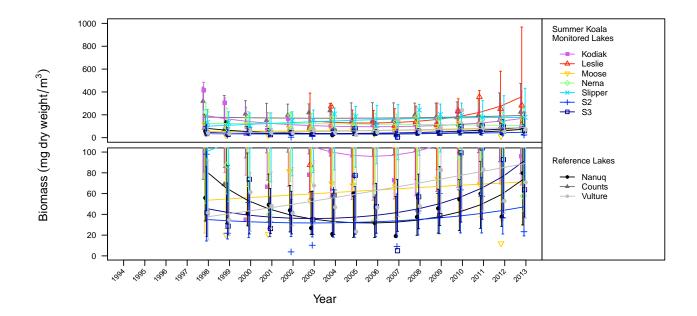
• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 0.5012     | 2  | 0.7783  |
| Leslie  | 0.3706     | 2  | 0.8308  |
| Moose   | 0.2006     | 2  | 0.9046  |
| Nema    | 0.5287     | 2  | 0.7677  |
| Slipper | 0.5364     | 2  | 0.7648  |
| S2      | 0.0149     | 2  | 0.9926  |
| S3      | 0.3741     | 2  | 0.8294  |

• Conclusions:

All monitored lakes show significant deviations from the common slope and intercept of reference lakes. No significant deviations were found when comparing monitored lakes to reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0320    |
| Monitored Lake    | Kodiak          | 0.1420    |
| Monitored Lake    | Leslie          | 0.4670    |
| Monitored Lake    | Moose           | 0.0140    |
| Monitored Lake    | Nema            | 0.0110    |
| Monitored Lake    | S2              | 0.0170    |
| Monitored Lake    | S3              | 0.1540    |
| Monitored Lake    | Slipper         | 0.2340    |

### • Conclusions:

Model fit for Leslie and Slipper lakes is weak. Model fit for reference lakes, Kodiak, Moose, Nema, S2, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

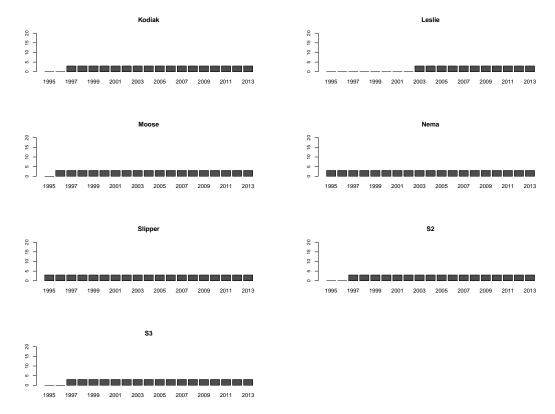
The estimated minimum detectable difference in mean zooplankton biomass for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Kodiak  | 9.58E+01 | 1.67E+02 | 7.63E+01 | 6.82E+01 | 4.09E+02 | 2.23E+02       |
| Leslie  | 2.82E+02 | 3.58E+02 | 1.82E+02 | 1.33E+02 | 9.68E+02 | 5.32E+02       |
| Moose   | 1.69E+02 | 7.12E+01 | 3.25E+01 | 2.91E+01 | 1.74E+02 | 9.52E+01       |
| Nema    | 5.76E+01 | 1.05E+02 | 4.82E+01 | 4.30E+01 | 2.58E+02 | 1.41E+02       |
| Slipper | 1.79E+02 | 1.76E+02 | 8.06E+01 | 7.20E+01 | 4.32E+02 | 2.36E+02       |
| S2      | 2.33E+01 | 4.71E+01 | 2.15E+01 | 1.93E+01 | 1.15E+02 | 6.31E+01       |
| S3      | 6.38E+01 | 9.16E+01 | 4.18E+01 | 3.74E+01 | 2.24E+02 | 1.22E+02       |
| Nanuq   | 7.97E+01 | 7.34E+01 | 3.35E+01 | 3.00E+01 | 1.80E+02 |                |
| Counts  | 2.24E+02 | 1.94E+02 | 8.86E+01 | 7.91E+01 | 4.75E+02 |                |
| Vulture | 7.08E+01 | 8.90E+01 | 4.07E+01 | 3.63E+01 | 2.18E+02 |                |

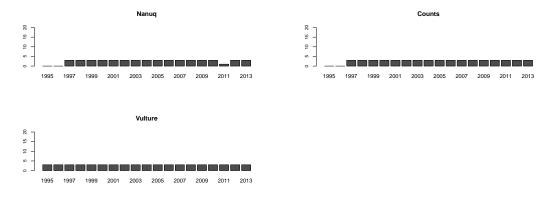
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Biomass   | Summer | Koala     | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Zooplankton Density in Lakes of the Koala Watershed and Lac de Gras

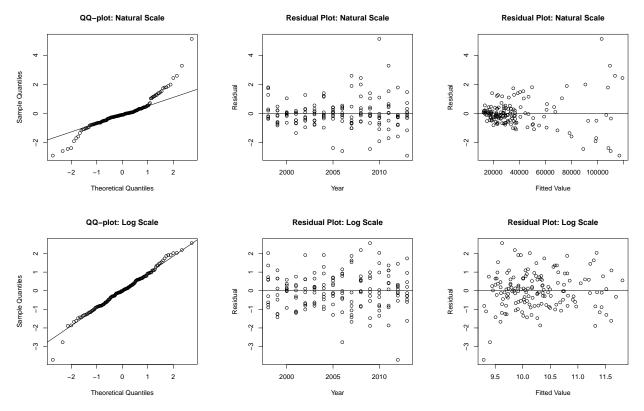
January 15, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake   | Year | Impute    | Fitted    | Std. Resid. |
|----|--------|------|-----------|-----------|-------------|
| 37 | Counts | 2010 | 219767.43 | 103184.12 | 5.13        |
| 78 | Kodiak | 2011 | 184244.35 | 109538.47 | 3.29        |

#### 2013 AQUATIC EFFECTS MONITORING PROGRAM PART 3 - STATISTICAL REPORT

Outliers on log scale:

|     | Lake  | Year | Impute  | Fitted | Std. Resid. |
|-----|-------|------|---------|--------|-------------|
| 119 | Moose | 2012 | 1873.65 | 9.29   | -3.71       |

AIC weights and model comparison:

| - |               | Un-transformed Model | Log-transformed Model | Best Model            |
|---|---------------|----------------------|-----------------------|-----------------------|
|   | Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

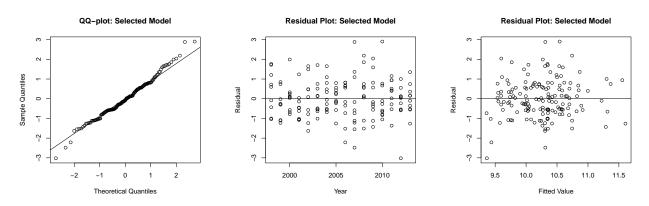
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 4.68       | 6.00 | 0.59    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake  | Year | Impute  | Fitted | Std. Resid. |
|-----|-------|------|---------|--------|-------------|
| 119 | Moose | 2012 | 1873.65 | 9.37   | -3.02       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 1.8334     | 3  | 0.6077  |
| Leslie  | 2.0128     | 3  | 0.5698  |
| Moose   | 1.5091     | 3  | 0.6802  |
| Nema    | 1.6457     | 3  | 0.6491  |
| Slipper | 0.2034     | 3  | 0.9770  |
| S2      | 0.6948     | 3  | 0.8744  |
| S3      | 0.4351     | 3  | 0.9329  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 1.3601     | 2  | 0.5066  |
| Leslie  | 1.9142     | 2  | 0.3840  |
| Moose   | 0.8797     | 2  | 0.6441  |
| Nema    | 1.5926     | 2  | 0.4510  |
| Slipper | 0.1535     | 2  | 0.9261  |
| S2      | 0.6922     | 2  | 0.7075  |
| S3      | 0.1186     | 2  | 0.9424  |

• Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing monitored to the common slope of reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0340    |
| Monitored Lake    | Kodiak          | 0.3620    |
| Monitored Lake    | Leslie          | 0.2420    |
| Monitored Lake    | Moose           | 0.0080    |
| Monitored Lake    | Nema            | 0.3600    |
| Monitored Lake    | S2              | 0.1340    |
| Monitored Lake    | S3              | 0.1880    |
| Monitored Lake    | Slipper         | 0.0160    |
|                   |                 |           |

#### • Conclusions:

Model fit for Kodiak, Leslie, and Nema lakes is weak. Model fit for reference lakes, Moose, Slipper, S2, and S3 is poor. Results of statistical tests and MDD should be interpreted with caution.

#### 300000 Summer Koala Monitored Lakes 250000 Kodiak 200000 Leslie Moose 150000 Nema Density (individuals/ $m^3$ ) Slipper S2 100000 S3 -0 50000 0 50000 Reference Lakes 40000 -- Nanuq -Counts 30000 Vulture 20000 10000 0 2012 2013 2008 2009 2004 00 Year

# 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

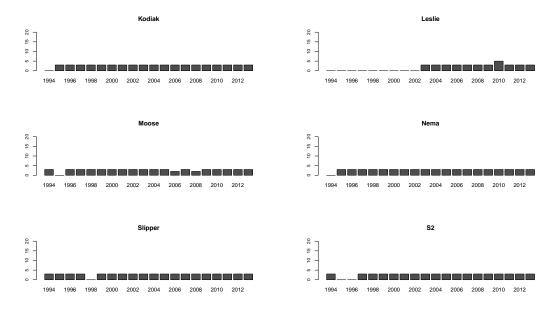
The estimated minimum detectable difference in mean zooplankton density for each monitored lake in 2013. Reference lakes are shown for comparison.

|         |          |          | CE E.    |          |          |                |
|---------|----------|----------|----------|----------|----------|----------------|
|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
| Kodiak  | 5.10E+04 | 1.10E+05 | 4.93E+04 | 4.57E+04 | 2.65E+05 | 1.44E+05       |
| Leslie  | 4.35E+04 | 5.47E+04 | 2.69E+04 | 2.08E+04 | 1.44E+05 | 7.88E+04       |
| Moose   | 1.83E+04 | 1.48E+04 | 6.61E+03 | 6.13E+03 | 3.55E+04 | 1.93E+04       |
| Nema    | 7.02E+04 | 7.48E+04 | 3.35E+04 | 3.11E+04 | 1.80E+05 | 9.80E+04       |
| Slipper | 3.86E+04 | 3.51E+04 | 1.57E+04 | 1.46E+04 | 8.46E+04 | 4.61E+04       |
| S2      | 7.40E+04 | 3.27E+04 | 1.46E+04 | 1.36E+04 | 7.86E+04 | 4.28E+04       |
| S3      | 4.27E+04 | 2.72E+04 | 1.22E+04 | 1.13E+04 | 6.55E+04 | 3.57E+04       |
| Nanuq   | 2.85E+04 | 3.29E+04 | 1.47E+04 | 1.37E+04 | 7.91E+04 |                |
| Counts  | 4.29E+04 | 5.71E+04 | 2.56E+04 | 2.38E+04 | 1.38E+05 |                |
| Vulture | 2.80E+04 | 3.19E+04 | 1.43E+04 | 1.33E+04 | 7.68E+04 |                |

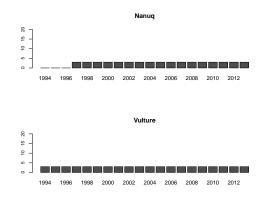
# 8 Final Summary Table

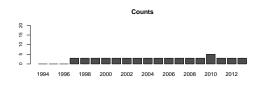
| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Density   | Summer | Koala     | Lake          | Biology  | None                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Benthos Density in Lakes of the Koala Watershed and Lac de Gras

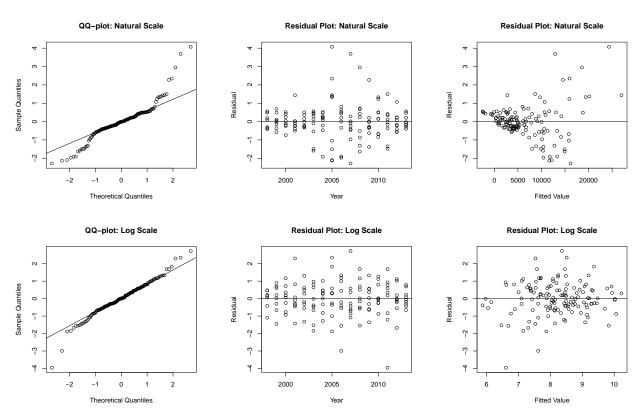
January 22, 2014


# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

# 1.1 Monitored




#### 1.2 Reference





#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.



# 2 Initial Model Fit

Outliers on natural scale:

|     | Lake  | Year | Impute   | Fitted   | Std. Resid. |
|-----|-------|------|----------|----------|-------------|
| 112 | Moose | 2005 | 45466.67 | 24332.47 | 4.08        |
| 114 | Moose | 2007 | 32059.26 | 12923.10 | 3.69        |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 218 | Slipper | 2011 | 39.51  | 6.60   | -3.96       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

# 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 13.02      | 6.00 | 0.04    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

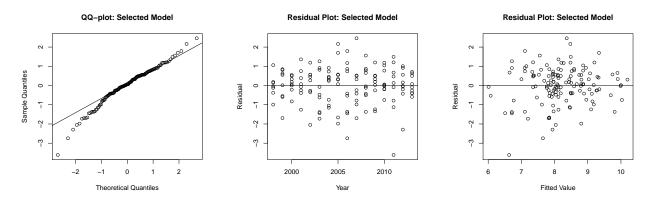
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.72       | 4.00 | 0.61    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.998        | 0.000        | 0.002        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

# 3.4 Assess Fit of Reduced Model



Outliers:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 218 | Slipper | 2011 | 39.51  | 6.63   | -3.61       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

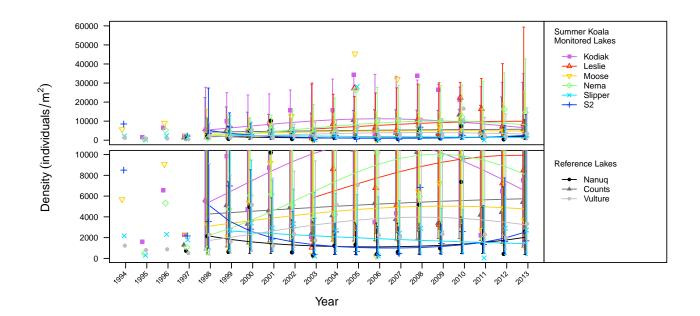
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|         | Chi-square | DF | P-value |
|---------|------------|----|---------|
| Kodiak  | 0.4458     | 2  | 0.8002  |
| Leslie  | 0.1654     | 2  | 0.9206  |
| Moose   | 0.0831     | 2  | 0.9593  |
| Nema    | 1.3955     | 2  | 0.4977  |
| Slipper | 0.6621     | 2  | 0.7182  |
| S2      | 2.2007     | 2  | 0.3328  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.


# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0090    |
| Monitored Lake    | Kodiak          | 0.0670    |
| Monitored Lake    | Leslie          | 0.0530    |
| Monitored Lake    | Moose           | 0.0130    |
| Monitored Lake    | Nema            | 0.3370    |
| Monitored Lake    | S2              | 0.2720    |
| Monitored Lake    | Slipper         | 0.0160    |

• Conclusions:

Model fit for Nema and S2 is weak. Model fit for reference lakes, Kodiak, Leslie, Moose, and Slipper lakes is poor. Results of statistical tests and MDD should be interpreted with caution.



#### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

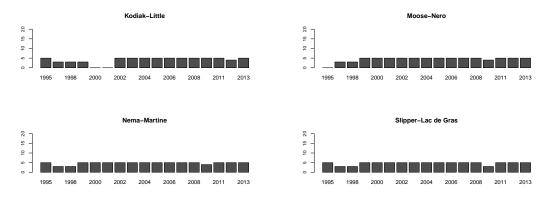
The estimated minimum detectable difference in mean benthos density for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Kodiak  | 7.51E+03 | 6.60E+03 | 5.60E+03 | 1.25E+03 | 3.49E+04 | 1.64E+04       |
| Leslie  | 8.51E+03 | 9.93E+03 | 9.06E+03 | 1.66E+03 | 5.94E+04 | 2.65E+04       |
| Moose   | 3.69E+03 | 4.77E+03 | 4.05E+03 | 9.02E+02 | 2.52E+04 | 1.19E+04       |
| Nema    | 1.46E+04 | 8.09E+03 | 6.87E+03 | 1.53E+03 | 4.28E+04 | 2.01E+04       |
| Slipper | 2.73E+03 | 1.42E+03 | 1.22E+03 | 2.63E+02 | 7.66E+03 | 3.57E+03       |
| S2      | 1.69E+03 | 2.55E+03 | 2.16E+03 | 4.82E+02 | 1.35E+04 | 6.33E+03       |
| Nanuq   | 2.57E+03 | 2.02E+03 | 1.72E+03 | 3.83E+02 | 1.07E+04 |                |
| Counts  | 5.41E+03 | 5.74E+03 | 4.87E+03 | 1.09E+03 | 3.03E+04 |                |
| Vulture | 3.33E+03 | 3.22E+03 | 2.74E+03 | 6.10E+02 | 1.70E+04 |                |

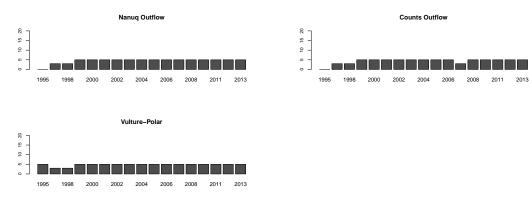
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Density   | Summer | Koala     | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of Benthos Density in Streams of the Koala Watershed and Lac de Gras

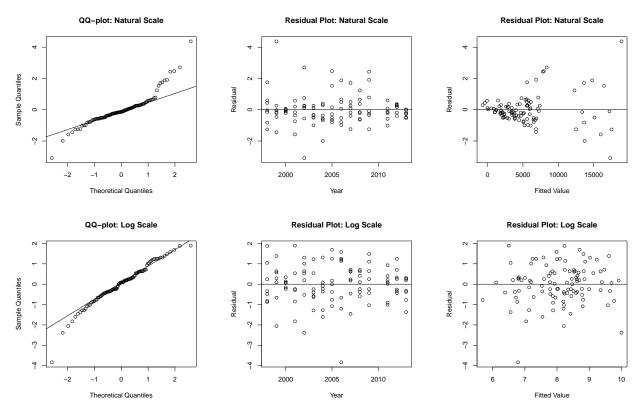
January 22, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were below the detection limit (grey) or above the detection limit (black).

# 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|     | Lake                | Year | Impute   | Fitted   | Std. Resid. |
|-----|---------------------|------|----------|----------|-------------|
| 166 | Slipper-Lac de Gras | 1999 | 36813.20 | 18935.35 | 4.37        |
| 169 | Slipper-Lac de Gras | 2002 | 4686.40  | 17337.51 | -3.09       |

Outliers on log scale:

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 73.20  | 6.79   | -3.84       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

# 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 18.42      | 6.00 | 0.01    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

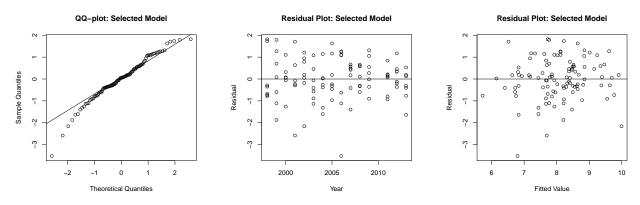
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 4.03       | 4.00 | 0.40    |

#### • Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.864        | 0.000        | 0.136        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

# 3.4 Assess Fit of Reduced Model



**Outliers:** 

|     | Lake       | Year | Impute | Fitted | Std. Resid. |
|-----|------------|------|--------|--------|-------------|
| 113 | Moose-Nero | 2006 | 73.20  | 6.80   | -3.52       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Streams

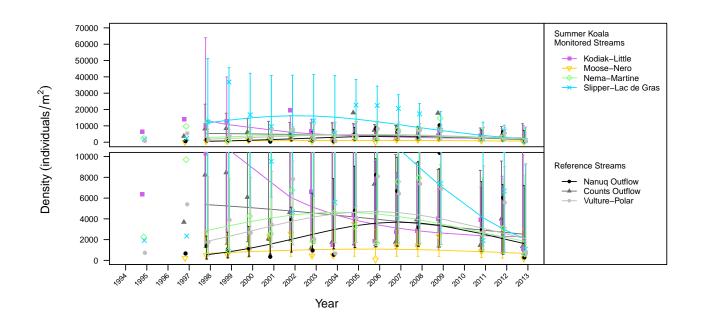
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                     | Chi-square | DF | P-value |
|---------------------|------------|----|---------|
| Kodiak-Little       | 5.0783     | 2  | 0.0789  |
| Moose-Nero          | 0.1170     | 2  | 0.9432  |
| Nema-Martine        | 0.3668     | 2  | 0.8324  |
| Slipper-Lac de Gras | 3.6542     | 2  | 0.1609  |

• Conclusions:

No significant deviations were found when comparing monitored streams to reference streams.


# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Stream Type         | Stream Name         | R-squared |
|---------------------|---------------------|-----------|
| Pooled Ref. Streams | (more than one)     | 0.0750    |
| Monitored Stream    | Kodiak-Little       | 0.4850    |
| Monitored Stream    | Moose-Nero          | 0.0240    |
| Monitored Stream    | Nema-Martine        | 0.0990    |
| Monitored Stream    | Slipper-Lac de Gras | 0.4680    |

• Conclusions:

Model fit for Kodiak-Little and Slipper-Lac de Gras is weak. Model fit for reference lakes, Moose-Nero, and Nema-Martine is poor. Results of statistical tests and MDD should be interpreted with caution.



# 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively. For parameters where the slope (and intercept) for reference streams were not statistically different, the regression line and associated 95% CI for the combined reference stream data is shown as Reference-Common. This corresponds to analyses using reference model 2 or 3 only.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean stream benthos density for each monitored stream in 2013. Reference streams are shown for comparison.

|                     | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------------------|----------|----------|----------|----------|----------|----------------|
| Kodiak-Little       | 1.12E+03 | 2.27E+03 | 1.74E+03 | 5.08E+02 | 1.02E+04 | 5.08E+03       |
| Moose-Nero          | 1.78E+02 | 6.78E+02 | 5.17E+02 | 1.52E+02 | 3.02E+03 | 1.51E+03       |
| Nema-Martine        | 6.27E+02 | 1.84E+03 | 1.41E+03 | 4.14E+02 | 8.23E+03 | 4.12E+03       |
| Slipper-Lac de Gras | 1.07E+03 | 2.06E+03 | 1.57E+03 | 4.62E+02 | 9.20E+03 | 4.60E+03       |
| Nanuq Outflow       | 2.89E+02 | 1.62E+03 | 1.24E+03 | 3.63E+02 | 7.22E+03 |                |
| Counts Outflow      | 1.35E+03 | 2.53E+03 | 1.93E+03 | 5.67E+02 | 1.13E+04 |                |
| Vulture-Polar       | 7.40E+02 | 2.09E+03 | 1.60E+03 | 4.69E+02 | 9.34E+03 |                |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Density   | Summer | Koala     | Stream        | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                        |

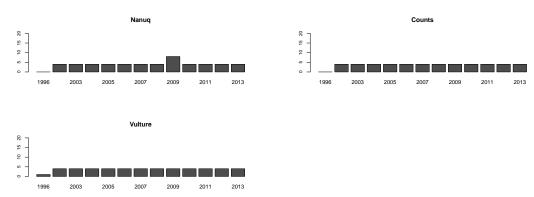
\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

# 2. King-Cujo Watershed and Lac du Sauvage



# Analysis of April pH in Lakes of the King-Cujo Watershed and Lac du Sauvage

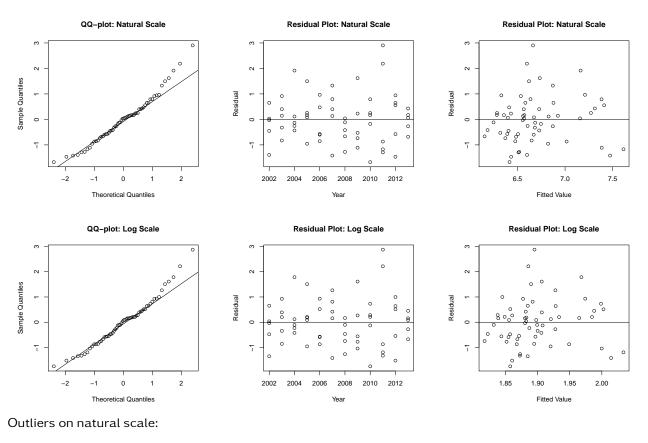
January 21, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 2.77E-50      | 1.00E+00  | log model  |

Conclusion:

Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

# 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 3393.40    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

# 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.82       | 4.00 | 0.94    |

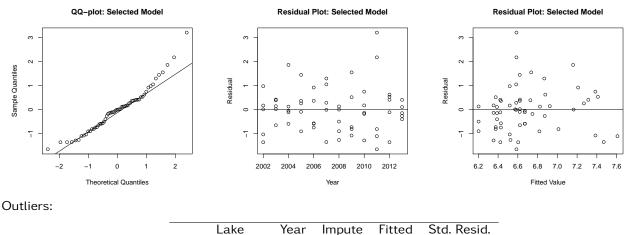
• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 **Compare Reference Models using AIC Weights**

138

Vulture


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.014        | 0.000        | 0.986        | Ref. Model 3 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using a common slope and intercept, contrasts suggest that reference lakes do not share a common intercept. AIC also suggests that the second best model for reference lakes is separate slopes and intercepts, but contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



2011

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

7.18

6.59

3.21

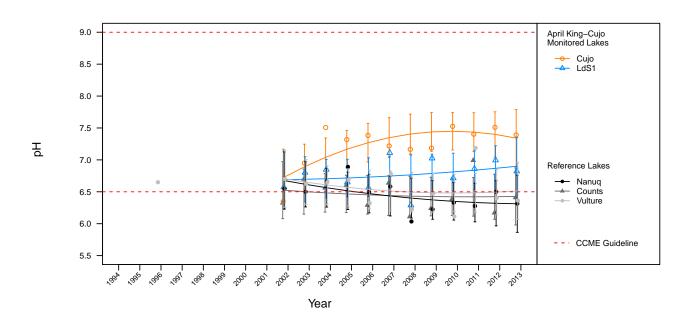
# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 11.02       | 2.00 | 0.00    |
| LdS1 | 2.20        | 2.00 | 0.33    |

- Conclusions:
  - Cujo Lake shows significant deviation from the common slope of reference lakes.


# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0850    |
| Monitored Lake    | Cujo            | 0.5330    |
| Monitored Lake    | LdS1            | 0.0940    |

#### • Conclusions:

Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.



# 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

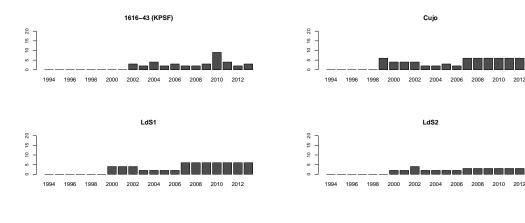
The estimated minimum detectable difference in mean pH for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 7.39E+00 | 7.34E+00 | 2.28E-01 | 6.89E+00 | 7.79E+00 | 6.68E-01       |
| LdS1    | 6.82E+00 | 6.90E+00 | 2.28E-01 | 6.45E+00 | 7.35E+00 | 6.68E-01       |
| Nanuq   | 6.31E+00 | 6.31E+00 | 2.28E-01 | 5.86E+00 | 6.76E+00 |                |
| Counts  | 6.41E+00 | 6.43E+00 | 2.28E-01 | 5.98E+00 | 6.88E+00 |                |
| Vulture | 6.36E+00 | 6.51E+00 | 2.28E-01 | 6.07E+00 | 6.96E+00 |                |
| -       |          |          |          |          |          |                |

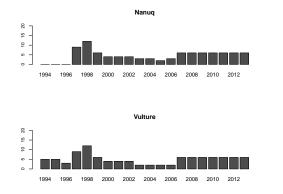
# 8 Final Summary Table

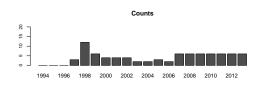
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model       | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|--------------------------|------------------|---------------------------------------------|
| pН        | April | King-Cujo | Lake          | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes<br>า | 6.5/9            | Cujo                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August pH in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

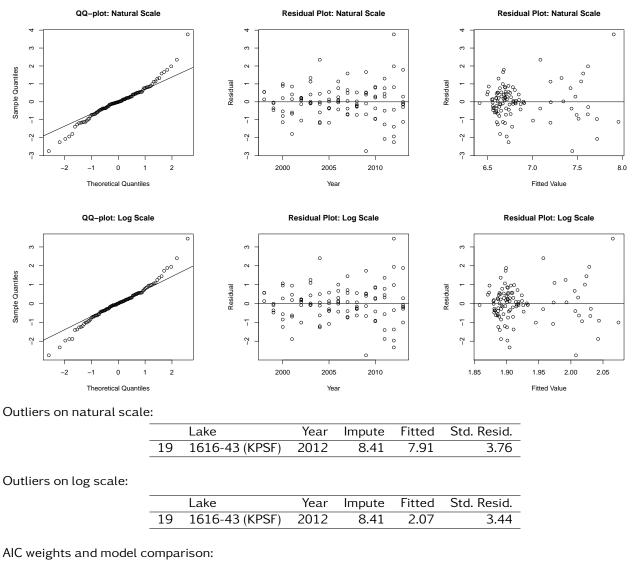

# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

# 1.1 Monitored



# 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

# 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

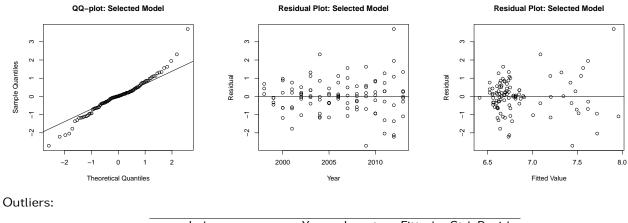
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.88        | 6.00 | 0.82    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.010        | 0.000        | 0.990        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

# 3.3 Assess Fit of Reduced Model



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 8.41   | 7.90   | 3.70        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

#### Test Results for Monitored Lakes 4

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 10.5467     | 3  | 0.0144  |
| Cujo           | 233.5748    | 3  | 0.0000  |
| LdS1           | 1.4938      | 3  | 0.6837  |
| LdS2           | 0.8896      | 3  | 0.8279  |

• Conclusions:

1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

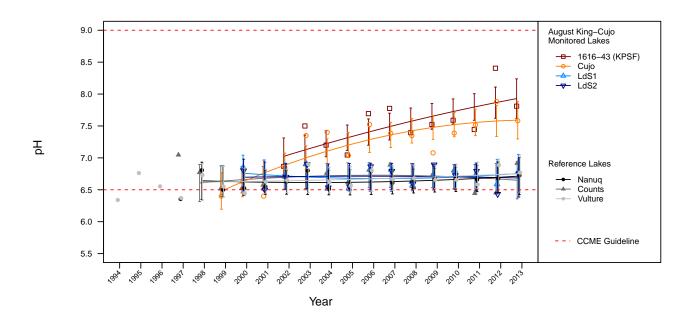
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 9.7739      | 2  | 0.0075  |
| Cujo           | 68.8862     | 2  | 0.0000  |
| LdS1           | 0.8580      | 2  | 0.6512  |
| LdS2           | 0.3754      | 2  | 0.8289  |

• Conclusions:

When allowing for differences in intercept, 1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0400    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.5190    |
| Monitored Lake    | Cujo            | 0.7260    |
| Monitored Lake    | LdS1            | 0.0450    |
| Monitored Lake    | LdS2            | 0.0030    |

• Conclusions:

Model fit for reference lakes, LdS1, and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.





Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

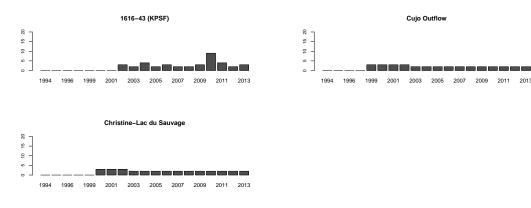
The estimated minimum detectable difference in mean pH for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 7.81E+00 | 7.93E+00 | 1.58E-01 | 7.62E+00 | 8.24E+00 | 4.62E-01       |
| Cujo           | 7.58E+00 | 7.59E+00 | 1.51E-01 | 7.30E+00 | 7.89E+00 | 4.41E-01       |
| LdS2           | 6.75E+00 | 6.69E+00 | 1.53E-01 | 6.39E+00 | 6.99E+00 | 4.48E-01       |
| LdS1           | 6.78E+00 | 6.76E+00 | 1.53E-01 | 6.46E+00 | 7.06E+00 | 4.48E-01       |
| Nanuq          | 6.72E+00 | 6.71E+00 | 1.49E-01 | 6.42E+00 | 7.01E+00 |                |
| Counts         | 6.92E+00 | 6.65E+00 | 1.49E-01 | 6.36E+00 | 6.94E+00 |                |
| Vulture        | 6.77E+00 | 6.75E+00 | 1.49E-01 | 6.46E+00 | 7.04E+00 |                |

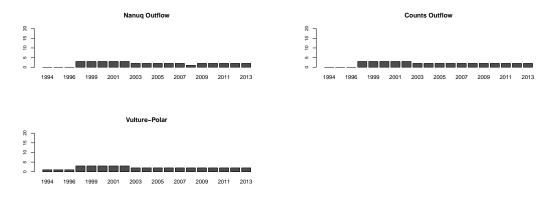
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------|
| рН        | August | King-Cujo | Lake          | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | 6.5/9            | 1616-43<br>(KPSF)<br>Cujo                   |

\* Monitored lakes are contrasted to the slope of each individual reference lake in model 1a, a slope of 0 in reference model 1b, the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August pH in King-Cujo Watershed Streams

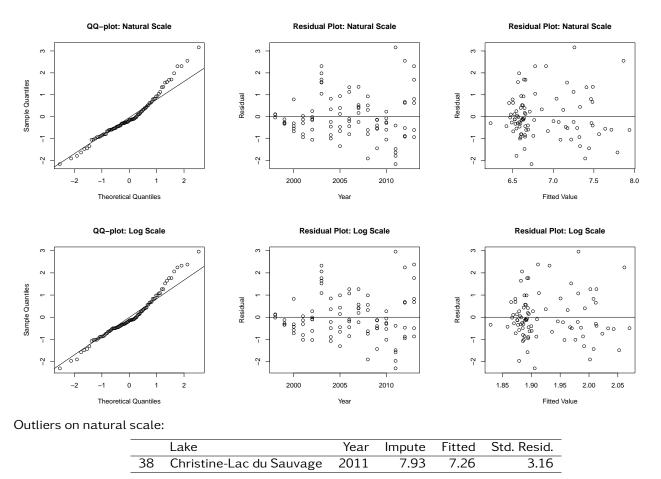
#### January 21, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

Although AIC reveals that the data is modeled best after log transformation, pH is already log scale and should not be transformed. Proceeding with analysis using untransformed, "natural" model.

# 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

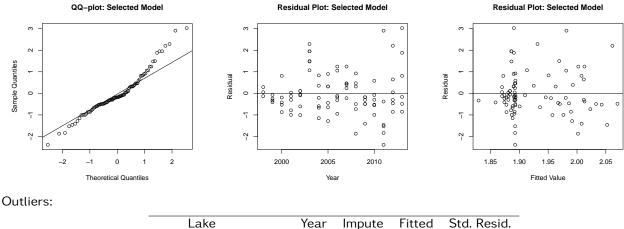
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 3.16        | 6.00 | 0.79    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.010        | 0.128        | 0.861        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 60 | Counts Outflow | 2013 | 7.27   | 1.89   | 3.03        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

#### 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 163.6109    | 3  | 0.0000  |
| Cujo Outflow             | 92.7296     | 3  | 0.0000  |
| Christine-Lac du Sauvage | 44.8071     | 3  | 0.0000  |

• Conclusions:

All monitored streams show significant deviations from the common slope and intercept of reference streams.

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

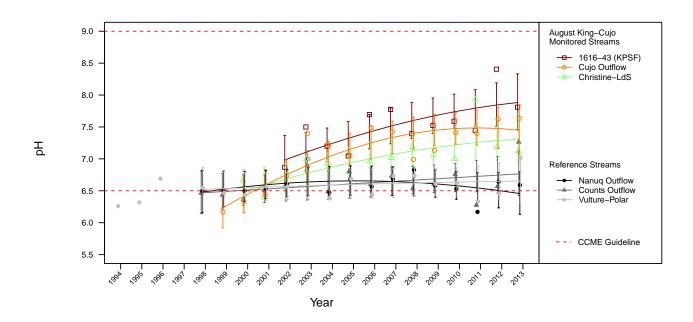
• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 11.2013     | 2  | 0.0037  |
| Cujo Outflow             | 36.5691     | 2  | 0.0000  |
| Christine-Lac du Sauvage | 12.8582     | 2  | 0.0016  |

#### • Conclusions:

When allowing for differences in intercept, all monitored streams show significant deviation from the common slope of reference streams.


# 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0580    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.4960    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.5850    |
| Monitored Stream    | Cujo Outflow             | 0.7870    |

• Conclusions:

Model fit for reference streams is poor. Results of statistical tests and MDD should be interpreted with caution.





Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

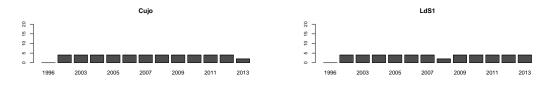
The estimated minimum detectable difference in mean pH for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 7.81E+00 | 7.88E+00 | 2.23E-01 | 7.46E+00 | 8.33E+00 | 6.52E-01       |
| Cujo Outflow             | 7.63E+00 | 7.45E+00 | 1.99E-01 | 7.07E+00 | 7.85E+00 | 5.83E-01       |
| Christine-Lac du Sauvage | 7.12E+00 | 7.31E+00 | 1.99E-01 | 6.93E+00 | 7.71E+00 | 5.83E-01       |
| Nanuq Outflow            | 6.59E+00 | 6.46E+00 | 1.70E-01 | 6.13E+00 | 6.80E+00 |                |
| Counts Outflow           | 7.27E+00 | 6.76E+00 | 1.78E-01 | 6.42E+00 | 7.12E+00 |                |
| Vulture-Polar            | 7.02E+00 | 6.65E+00 | 1.75E-01 | 6.32E+00 | 7.00E+00 |                |

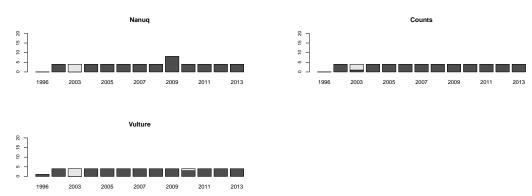
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                             |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|-------------------------------------------------------------------------|
| рН        | August | King-Cujo | Stream        | Water    | none                          | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope | 6.5/9            | 1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Alkalinity in Lakes of the King-Cujo Watershed and Lac du Sauvage

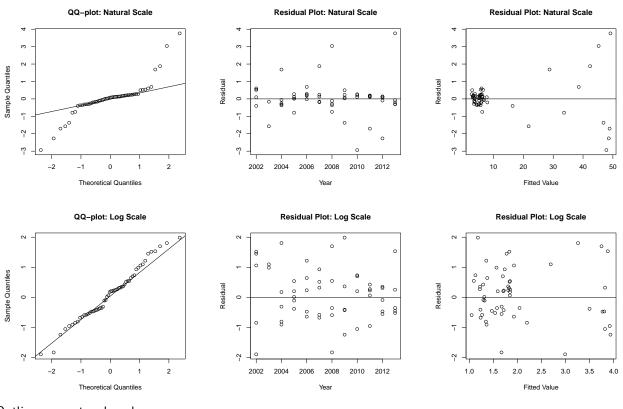
January 18, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 55 | Cujo | 2008 | 53.95  | 45.22  | 3.04        |
| 60 | Cujo | 2013 | 60.00  | 49.19  | 3.76        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 2.28E-75      | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

# 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 752.77     | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

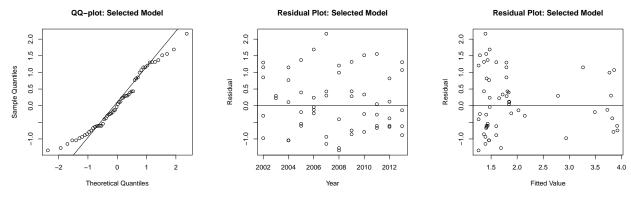
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.93       | 4.00 | 0.75    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

# 3.4 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

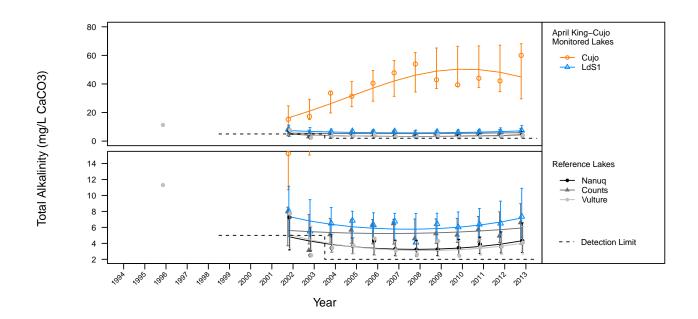
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 17.88       | 2.00 | 0.00    |
| LdS1 | 0.07        | 2.00 | 0.97    |

• Conclusions:

Cujo Lake shows significant deviation from the common slope of reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0960    |
| Monitored Lake    | Cujo            | 0.8180    |
| Monitored Lake    | LdS1            | 0.2610    |

#### • Conclusions:

Model fit for LdS1 is weak. Model fit for referenc lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

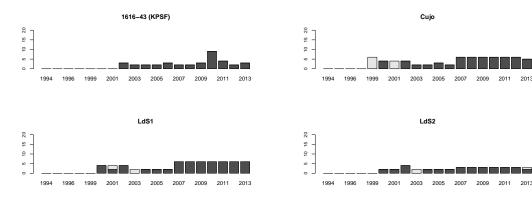
The estimated minimum detectable difference in mean total alkalinity for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 6.00E+01 | 4.49E+01 | 9.56E+00 | 2.96E+01 | 6.81E+01 | 2.80E+01       |
| LdS1    | 7.35E+00 | 7.17E+00 | 1.53E+00 | 4.73E+00 | 1.09E+01 | 4.47E+00       |
| Nanuq   | 4.33E+00 | 4.32E+00 | 9.20E-01 | 2.85E+00 | 6.56E+00 |                |
| Counts  | 6.60E+00 | 5.91E+00 | 1.26E+00 | 3.89E+00 | 8.97E+00 |                |
| Vulture | 4.08E+00 | 4.03E+00 | 8.58E-01 | 2.66E+00 | 6.12E+00 |                |

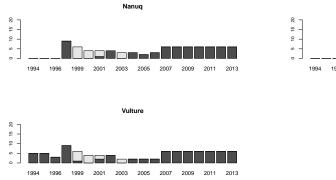
## 8 Final Summary Table

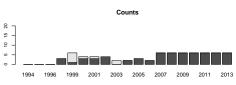
| Parameter  | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed |       | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|-------|-----------|---------------|----------|-------------------------------|-------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Alkalinity | April | King-Cujo | Lake          | Water    | none                          | log e | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | Cujo                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Alkalinity in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

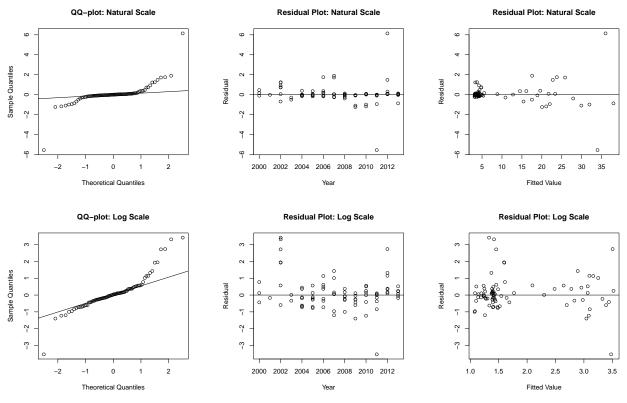

### 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

10-60% of data in Counts, Nanuq, Vulture, and Cujo lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 17.18  | 33.96  | -5.56       |
| 19 | 1616-43 (KPSF) | 2012 | 54.50  | 35.97  | 6.14        |

Outliers on log scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 18  | 1616-43 (KPSF) | 2011 | 17.18  | 3.48   | -3.53       |
| 109 | Nanuq          | 2002 | 7.00   | 1.33   | 3.42        |
| 129 | Vulture        | 2002 | 7.50   | 1.42   | 3.32        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 11.95       | 6.00 | 0.06    |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Trend for All Reference Lakes: reference model 2

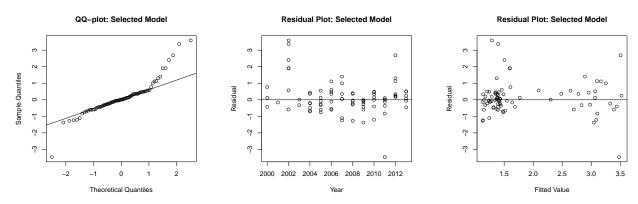
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.71        | 4.00 | 0.61    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.059        | 0.849        | 0.091        | Ref. Model 2 |

#### • Conclusions:

Results of AIC do not agree with reference model testing. Although contrasts suggest that reference lakes share a common slope and intercept, AIC suggests that reference lakes are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Outliers:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 18  | 1616-43 (KPSF) | 2011 | 17.18  | 3.48   | -3.47       |
| 109 | Nanuq          | 2002 | 7.00   | 1.29   | 3.59        |
| 129 | Vulture        | 2002 | 7.50   | 1.40   | 3.38        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

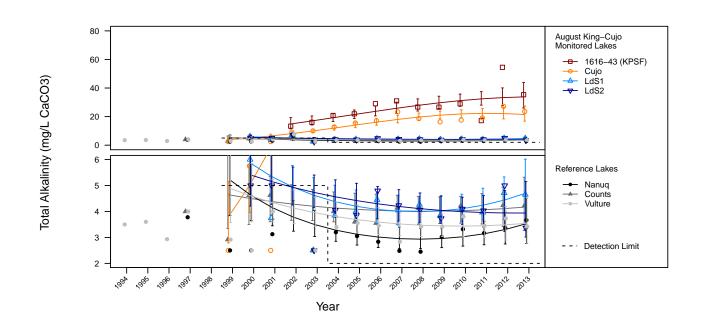
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 26.9428     | 2  | 0.0000  |
| Cujo           | 104.5013    | 2  | 0.0000  |
| LdS1           | 0.3831      | 2  | 0.8257  |
| LdS2           | 0.5931      | 2  | 0.7434  |

• Conclusions:

1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.2450    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.5260    |
| Monitored Lake    | Cujo            | 0.7830    |
| Monitored Lake    | LdS1            | 0.2400    |
| Monitored Lake    | LdS2            | 0.1960    |

• Conclusions:

Model fit for reference lakes and LdS1 is weak. Model fit for LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

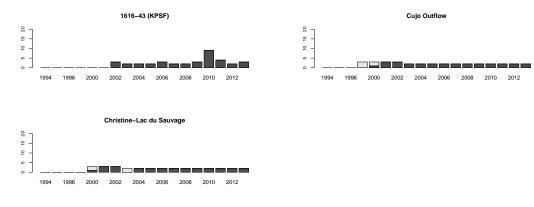
The estimated minimum detectable difference in mean total alkalinity for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 3.53E+01 | 3.38E+01 | 4.50E+00 | 2.60E+01 | 4.39E+01 | 1.32E+01       |
| Cujo           | 2.36E+01 | 2.15E+01 | 2.68E+00 | 1.68E+01 | 2.74E+01 | 7.85E+00       |
| LdS2           | 3.37E+00 | 3.94E+00 | 5.38E-01 | 3.02E+00 | 5.15E+00 | 1.57E+00       |
| LdS1           | 4.65E+00 | 4.70E+00 | 5.93E-01 | 3.67E+00 | 6.02E+00 | 1.74E+00       |
| Nanuq          | 3.67E+00 | 3.53E+00 | 4.39E-01 | 2.77E+00 | 4.50E+00 |                |
| Counts         | 4.22E+00 | 4.17E+00 | 5.19E-01 | 3.26E+00 | 5.32E+00 |                |
| Vulture        | 3.43E+00 | 3.54E+00 | 4.41E-01 | 2.78E+00 | 4.52E+00 |                |

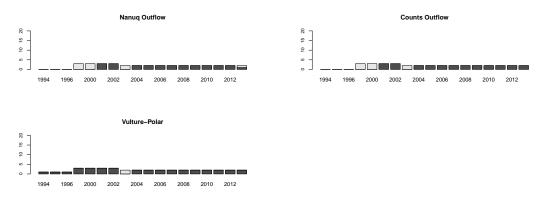
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------------------|
| Alkalinity | August | King-Cujo | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | 1616-43<br>(KPSF)<br>Cujo                               |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Alkalinity in King-Cujo Watershed Streams

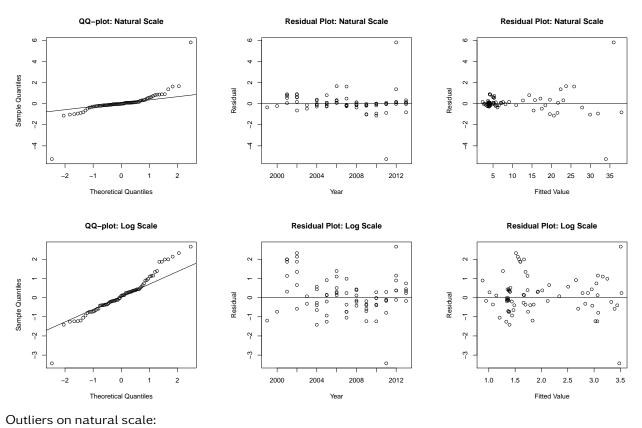
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Counts Outflow, Nanuq Outflow, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Std. Resid. Lake Year Impute Fitted -5.25 18 1616-43 (KPSF) 2011 17.18 33.96 19 1616-43 (KPSF) 2012 54.50 35.97 5.80

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 17.18  | 3.48   | -3.43       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 18.37       | 6.00 | 0.01    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

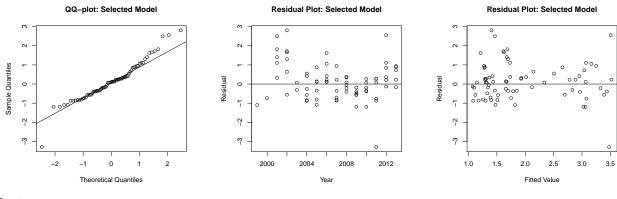
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 6.76        | 4.00 | 0.15    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.341        | 0.638        | 0.021        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 17.18  | 3.48   | -3.30       |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

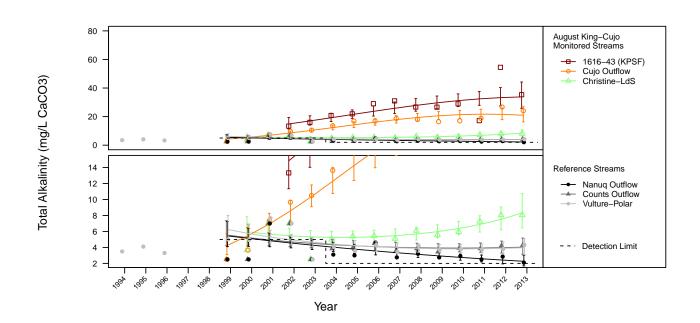
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 37.3891     | 2  | 0.0000  |
| Cujo Outflow             | 113.2314    | 2  | 0.0000  |
| Christine-Lac du Sauvage | 17.5110     | 2  | 0.0002  |

• Conclusions:

All monitored streams show significant deviations from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.2960    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.5260    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.2500    |
| Monitored Stream    | Cujo Outflow             | 0.8610    |

#### • Conclusions:

Model fit for reference streams and Christine-Lac du Sauvage is weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

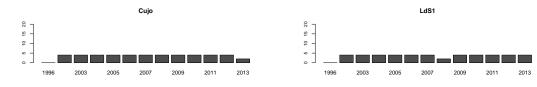
The estimated minimum detectable difference in mean total alkalinity for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 3.53E+01 | 3.38E+01 | 4.63E+00 | 2.58E+01 | 4.42E+01 | 1.35E+01       |
| Cujo Outflow             | 2.41E+01 | 2.10E+01 | 2.69E+00 | 1.63E+01 | 2.70E+01 | 7.86E+00       |
| Christine-Lac du Sauvage | 8.05E+00 | 8.31E+00 | 1.08E+00 | 6.44E+00 | 1.07E+01 | 3.17E+00       |
| Nanuq Outflow            | 2.10E+00 | 2.26E+00 | 3.36E-01 | 1.69E+00 | 3.03E+00 |                |
| Counts Outflow           | 4.30E+00 | 4.03E+00 | 5.13E-01 | 3.14E+00 | 5.17E+00 |                |
| Vulture-Polar            | 4.30E+00 | 3.97E+00 | 5.02E-01 | 3.09E+00 | 5.08E+00 |                |

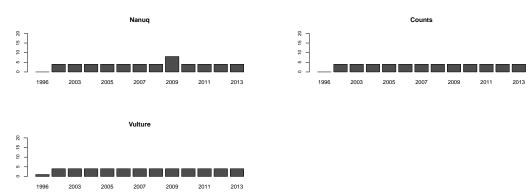
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                             |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|-------------------------------------------------------------------------|
| Alkalinity | August | King-Cujo | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | 1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Hardness in Lakes of the King-Cujo Watershed and Lac du Sauvage

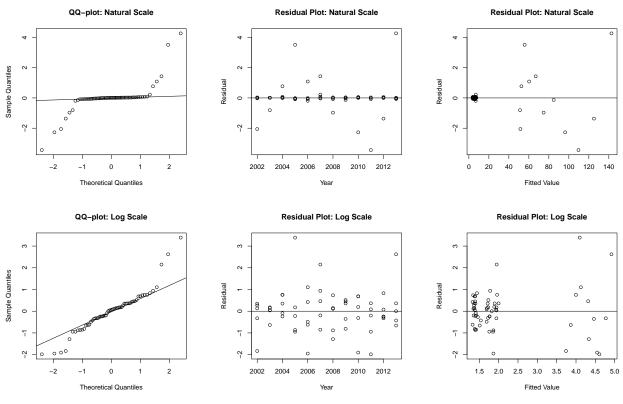
January 18, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 83.67  | 55.82  | 3.51        |
| 58 | Cujo | 2011 | 82.28  | 109.64 | -3.45       |
| 60 | Cujo | 2013 | 176.50 | 142.65 | 4.26        |

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 83.67  | 4.10   | 3.39        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 1.87E-113     | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1391.44    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

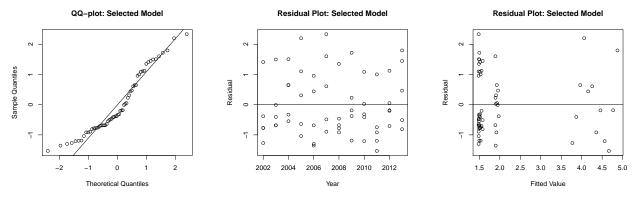
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.21       | 4.00 | 0.99    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

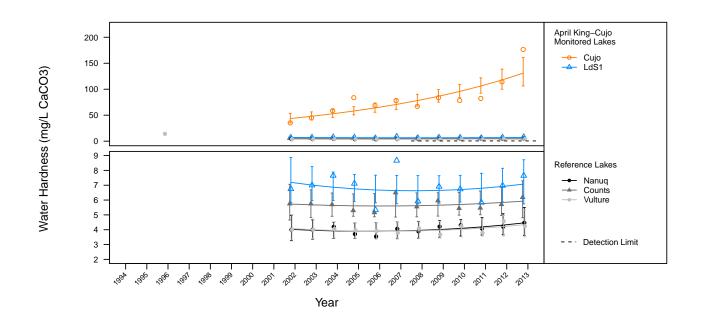
## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 19.67       | 2.00 | 0.00    |
| LdS1 | 0.13        | 2.00 | 0.94    |

- Conclusions:
  - Cujo Lake shows significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0300    |
| Monitored Lake    | Cujo            | 0.7690    |
| Monitored Lake    | LdS1            | 0.0430    |

#### • Conclusions:

Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

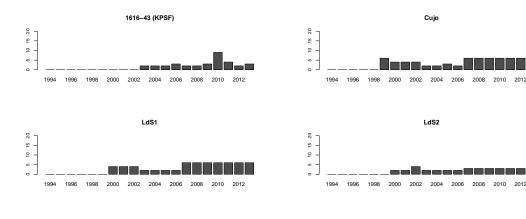
The estimated minimum detectable difference in mean hardness for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.76E+02 | 1.31E+02 | 1.39E+01 | 1.06E+02 | 1.61E+02 | 4.08E+01       |
| LdS1    | 7.65E+00 | 7.08E+00 | 7.53E-01 | 5.74E+00 | 8.72E+00 | 2.20E+00       |
| Nanuq   | 4.46E+00 | 4.46E+00 | 4.75E-01 | 3.62E+00 | 5.50E+00 |                |
| Counts  | 6.18E+00 | 5.92E+00 | 6.30E-01 | 4.81E+00 | 7.30E+00 |                |
| Vulture | 4.25E+00 | 4.34E+00 | 4.62E-01 | 3.52E+00 | 5.35E+00 |                |

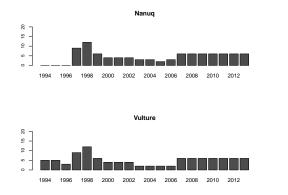
## 8 Final Summary Table

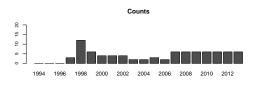
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Hardness  | April | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | Cujo                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Hardness in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

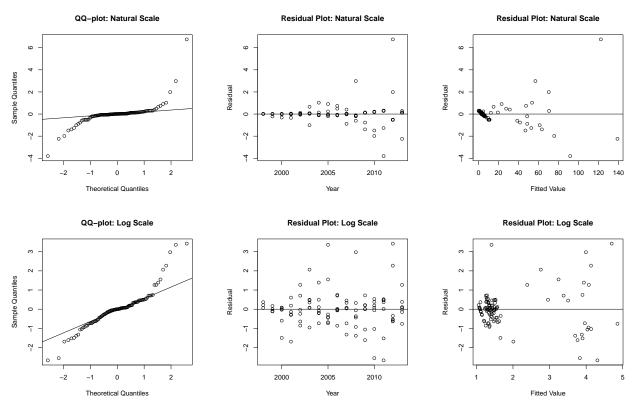

### 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 45.77  | 91.73  | -3.80       |
| 19 | 1616-43 (KPSF) | 2012 | 204.00 | 122.40 | 6.75        |

Outliers on log scale:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 19  | 1616-43 (KPSF) | 2012 | 204.00 | 4.70   | 3.42        |
| 112 | Nanuq          | 2005 | 7.57   | 1.41   | 3.36        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

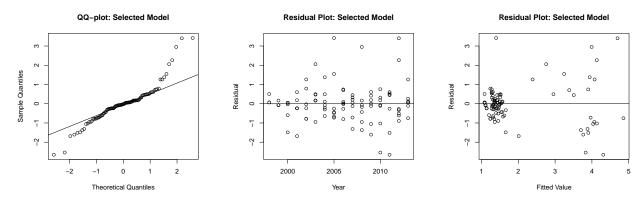
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.38        | 6.00 | 0.97    |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.005        | 0.000        | 0.995        | Ref. Model 3 |

#### Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake           | Year | Impute | Fitted | Std. Resid. |
|-----|----------------|------|--------|--------|-------------|
| 19  | 1616-43 (KPSF) | 2012 | 204.00 | 4.70   | 3.40        |
| 112 | Nanuq          | 2005 | 7.57   | 1.40   | 3.42        |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 934.6538    | 3  | 0.0000  |
| Cujo           | 1318.4516   | 3  | 0.0000  |
| LdS1           | 8.6470      | 3  | 0.0344  |
| LdS2           | 10.5986     | 3  | 0.0141  |
|                |             |    |         |

- Conclusions:
  - All monitored lakes show significant deviation from the common slope and intercept of reference lakes.

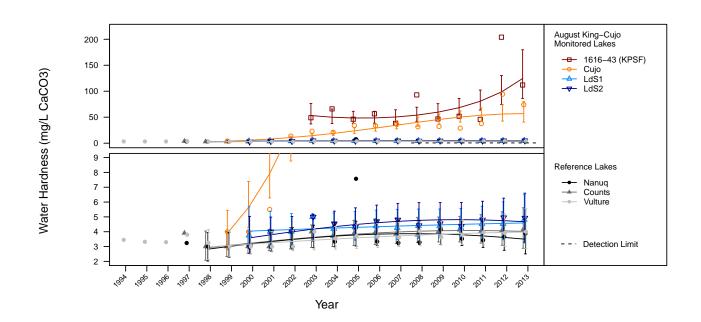
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 6.3518      | 2  | 0.0418  |
| Cujo           | 213.1093    | 2  | 0.0000  |
| LdS1           | 0.3675      | 2  | 0.8321  |
| LdS2           | 0.2725      | 2  | 0.8726  |

• Conclusions:

When allowing for differences in intercept, 1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

|   | Lake Type         | Lake Name       | R-squared |
|---|-------------------|-----------------|-----------|
|   | Pooled Ref. Lakes | (more than one) | 0.3470    |
|   | Monitored Lake    | 1616-43 (KPSF)  | 0.4090    |
|   | Monitored Lake    | Cujo            | 0.8710    |
|   | Monitored Lake    | LdS1            | 0.3360    |
|   | Monitored Lake    | LdS2            | 0.5650    |
| - |                   |                 |           |

• Conclusions:

Model fit for reference lakes, 1616-43 (KPSF) and LdS1 is weak.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

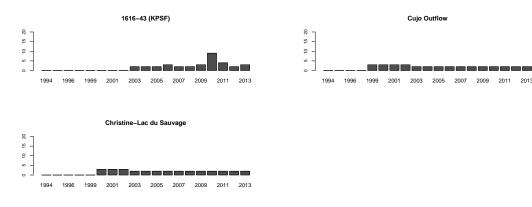
The estimated minimum detectable difference in mean hardness for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.12E+02 | 1.24E+02 | 2.34E+01 | 8.62E+01 | 1.80E+02 | 6.83E+01       |
| Cujo           | 7.40E+01 | 5.69E+01 | 9.85E+00 | 4.06E+01 | 7.99E+01 | 2.88E+01       |
| LdS2           | 4.93E+00 | 4.67E+00 | 8.23E-01 | 3.31E+00 | 6.60E+00 | 2.41E+00       |
| LdS1           | 4.81E+00 | 4.59E+00 | 8.10E-01 | 3.25E+00 | 6.49E+00 | 2.37E+00       |
| Nanuq          | 3.87E+00 | 3.50E+00 | 5.94E-01 | 2.51E+00 | 4.88E+00 |                |
| Counts         | 4.15E+00 | 4.02E+00 | 6.84E-01 | 2.88E+00 | 5.61E+00 |                |
| Vulture        | 4.00E+00 | 3.98E+00 | 6.76E-01 | 2.85E+00 | 5.55E+00 |                |

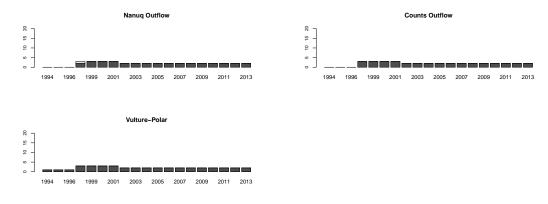
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------|
| Hardness  | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | 1616-43<br>(KPSF)<br>Cujo LdS1<br>LdS2      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Hardness in King-Cujo Watershed Streams

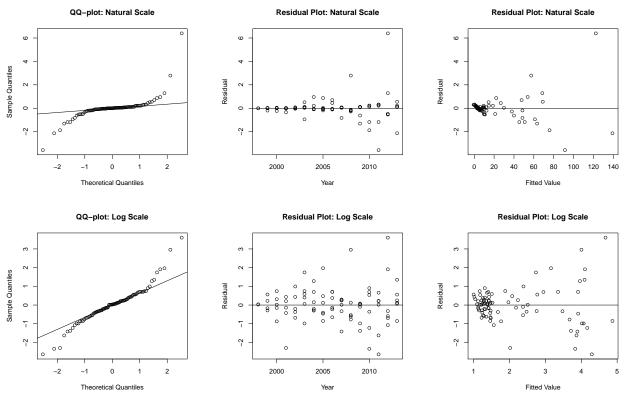
December 30, 2013


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 45.77  | 91.36  | -3.57       |
| 19 | 1616-43 (KPSF) | 2012 | 204.00 | 122.42 | 6.39        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 204.00 | 4.68   | 3.60        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 49.06       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 28.85       | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.976        | 0.000        | 0.024        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1a (fitting separate slopes and intercepts for reference streams).

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1a).

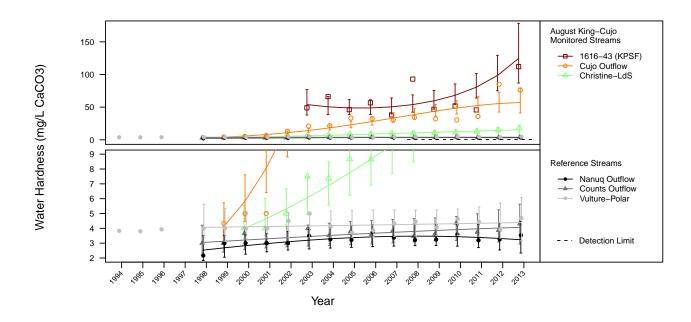
• Results:

|                                            | Chi-squared | DF | P-value |
|--------------------------------------------|-------------|----|---------|
| 1616-43 (KPSF)-vs-Nanuq Outflow            | 300.0732    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Counts Outflow           | 252.8632    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Vulture-Polar            | 211.9451    | 3  | 0.0000  |
| Cujo Outflow-vs-Nanuq Outflow              | 1018.2532   | 3  | 0.0000  |
| Cujo Outflow-vs-Counts Outflow             | 912.4483    | 3  | 0.0000  |
| Cujo Outflow-vs-Vulture-Polar              | 808.4702    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Nanuq Outflow  | 236.7053    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Counts Outflow | 187.1651    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Vulture-Polar  | 146.0554    | 3  | 0.0000  |

• Conclusions:

All monitored streams show significant deviations from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Reference Stream | Counts Outflow           | 0.5660    |
| Reference Stream | Nanuq Outflow            | 0.6320    |
| Reference Stream | Vulture-Polar            | 0.0880    |
| Monitored Stream | 1616-43 (KPSF)           | 0.4060    |
| Monitored Stream | Christine-Lac du Sauvage | 0.9450    |
| Monitored Stream | Cujo Outflow             | 0.8840    |

#### • Conclusions:

Model fit for 1616-43 (KPSF) is weak. Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

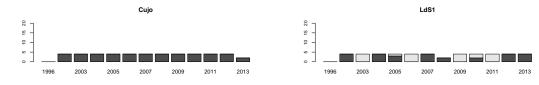
The estimated minimum detectable difference in mean hardness for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.12E+02 | 1.25E+02 | 2.28E+01 | 8.70E+01 | 1.78E+02 | 6.67E+01       |
| Cujo Outflow             | 7.62E+01 | 5.72E+01 | 9.64E+00 | 4.11E+01 | 7.96E+01 | 2.82E+01       |
| Christine-Lac du Sauvage | 1.77E+01 | 1.53E+01 | 2.63E+00 | 1.09E+01 | 2.14E+01 | 7.70E+00       |
| Nanuq Outflow            | 3.54E+00 | 3.23E+00 | 5.35E-01 | 2.34E+00 | 4.47E+00 |                |
| Counts Outflow           | 4.30E+00 | 4.07E+00 | 6.73E-01 | 2.94E+00 | 5.63E+00 |                |
| Vulture-Polar            | 4.70E+00 | 4.39E+00 | 7.27E-01 | 3.17E+00 | 6.07E+00 |                |

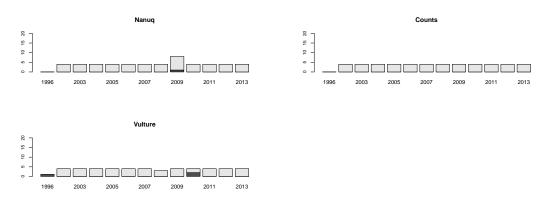
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                             |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|-------------------------------------------------------------------------|
| Hardness  | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1a<br>separate<br>intercepts<br>& slopes | NA               | 1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage |

\* Monitored streams are contrasted to the slope of each individual reference stream in model 1a, a slope of 0 in reference model 1b, the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Chloride in Lakes of the King-Cujo Watershed and Lac du Sauvage

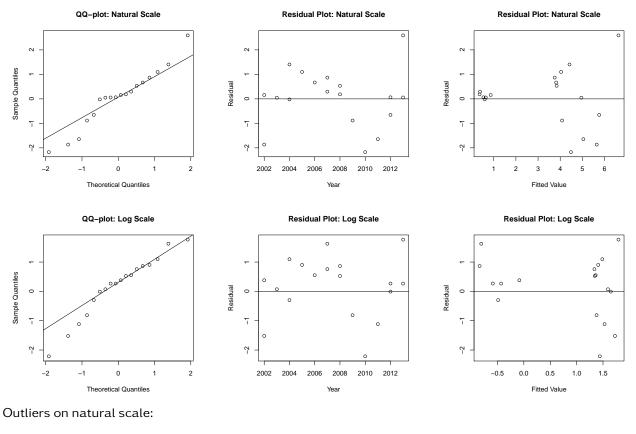
January 18, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in LdS1 as less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

### 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 5.98E-16      | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

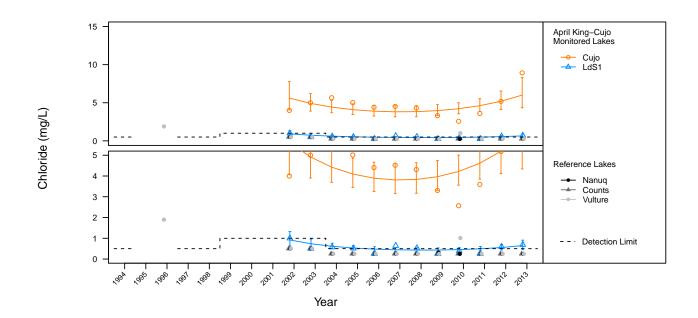
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 5.2849      | 2  | 0.0712  |
| LdS1 | 9.6706      | 2  | 0.0079  |

• Conclusions:

LdS1 shows significant deviation from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Cujo      | 0.2550    |
| Monitored Lake | LdS1      | 0.3590    |

• Conclusions:

Model fit for Cujo and LdS1 is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

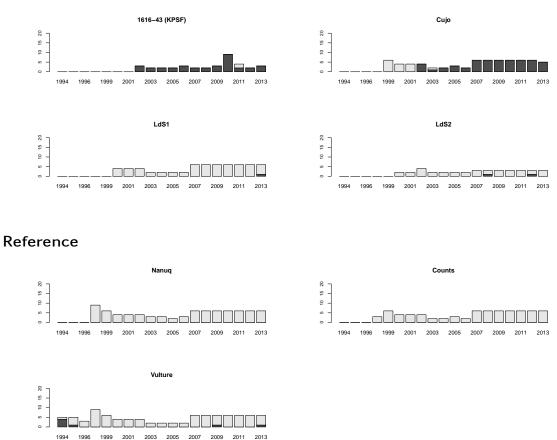
The estimated minimum detectable difference in mean chloride for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 8.92E+00 | 6.01E+00 | 9.95E-01 | 4.34E+00 | 8.31E+00 | 2.91E+00       |
| LdS1    | 6.90E-01 | 6.50E-01 | 1.11E-01 | 4.65E-01 | 9.09E-01 | 3.26E-01       |
| Nanuq   | 2.50E-01 |          |          |          |          |                |
| Counts  | 2.50E-01 |          |          |          |          |                |
| Vulture | 2.50E-01 |          |          |          |          |                |
|         |          |          |          |          |          |                |

## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed |       | Model<br>Type      | Reference<br>Model     | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-------|--------------------|------------------------|---------------------------------------------------------|
| Chloride  | April | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture    | log e | Tobit<br>regressio | #1a slope<br>n of zero | 1 451                                                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

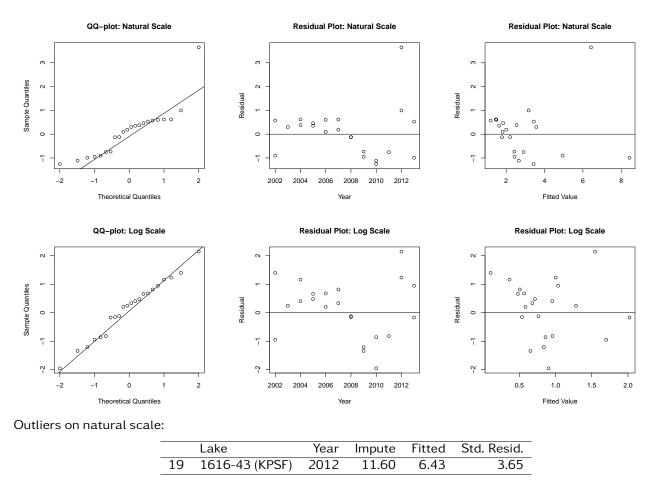

# Analysis of August Total Chloride in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




Comment:

1.2

Greater than 60% of data in Counts, Nanuq, Vulture, LdS1, and LdS2 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Cujo Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

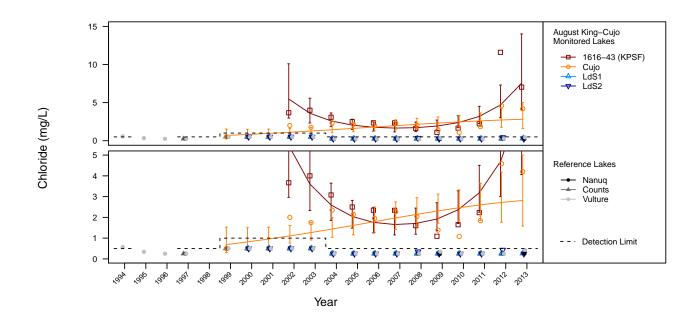
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 15.6089     | 2  | 0.0004  |
| Cujo           | 10.6583     | 2  | 0.0048  |

• Conclusions:

All monitored lakes show significant deviation from a constant slope of zero.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.6010    |
| Monitored Lake | Cujo           | 0.4880    |

• Conclusions:

Model fit for Cujo lake weak. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

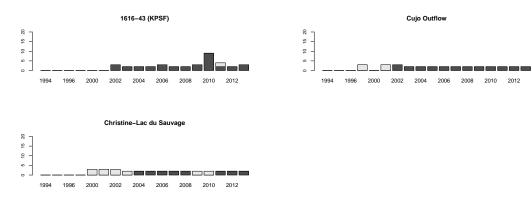
The estimated minimum detectable difference in mean chloride for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 7.03E+00 | 7.54E+00 | 2.38E+00 | 4.06E+00 | 1.40E+01 | 6.97E+00       |
| Cujo           | 4.20E+00 | 2.81E+00 | 8.25E-01 | 1.58E+00 | 5.00E+00 | 2.42E+00       |
| LdS2           | 2.50E-01 |          |          |          |          |                |
| LdS1           | 2.93E-01 |          |          |          |          |                |
| Nanuq          | 2.50E-01 |          |          |          |          |                |
| Counts         | 2.50E-01 |          |          |          |          |                |
| Vulture        | 4.33E-01 |          |          |          |          |                |

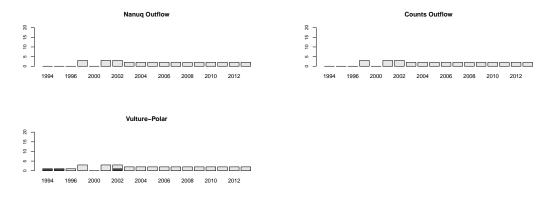
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed           | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-----------------------------------------|-----------------------------|---------------------|----------------------|------------------------|---------------------------------------------|
| Chloride  | August | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>LdS1 LdS2 | log e                       | Tobit<br>regression | #1a slope<br>of zero | hardness-<br>dependent | 1616-43<br>(KPSF)<br>Cujo                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Chloride in King-Cujo Watershed Streams

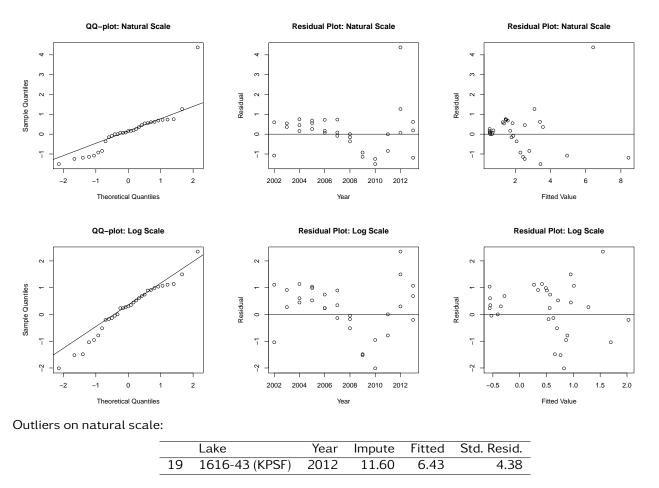
### January 22, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, and Vulture-Polar was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Cujo Outflow and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year and fitted value. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model. Results should be interpreted with caution.

## 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

## 4 Test Results for Monitored Streams

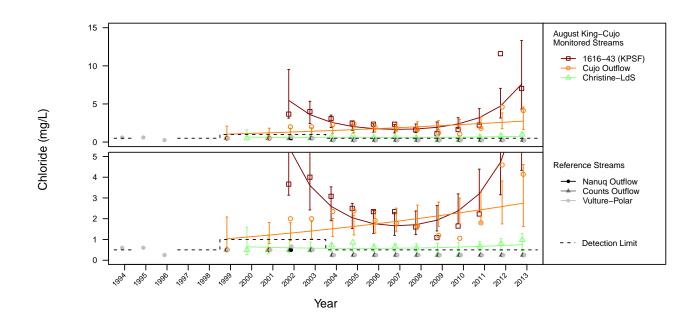
Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 18.9725     | 2  | 0.0001  |
| Cujo Outflow             | 6.8587      | 2  | 0.0324  |
| Christine-Lac du Sauvage | 0.5942      | 2  | 0.7430  |

# • Conclusions: 1616-43 (KPSF) and Cujo Outflow show significant deviation from a constant slope of zero.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Monitored Stream | 1616-43 (KPSF)           | 0.6020    |
| Monitored Stream | Christine-Lac du Sauvage | 0.0990    |
| Monitored Stream | Cujo Outflow             | 0.2570    |

#### • Conclusions:

Model fit for Cujo Outfow is weak. Model fit for Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

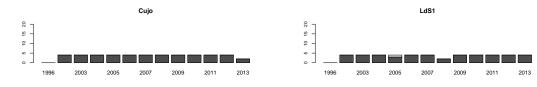
The estimated minimum detectable difference in mean total chloride for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 7.03E+00 | 7.60E+00 | 2.18E+00 | 4.33E+00 | 1.33E+01 | 6.37E+00       |
| Cujo Outflow             | 4.14E+00 | 2.74E+00 | 7.26E-01 | 1.63E+00 | 4.61E+00 | 2.13E+00       |
| Christine-Lac du Sauvage | 9.80E-01 | 7.53E-01 | 2.08E-01 | 4.38E-01 | 1.29E+00 | 6.07E-01       |
| Nanuq Outflow            | 2.50E-01 |          |          |          |          |                |
| Counts Outflow           | 2.50E-01 |          |          |          |          |                |
| Vulture-Polar            | 2.50E-01 |          |          |          |          |                |

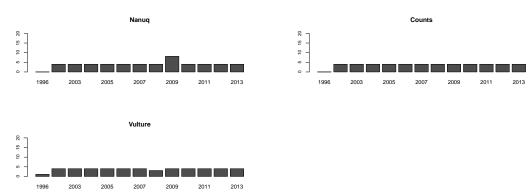
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                              | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------------|---------------------------------------------|
| Chloride  | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar | log e                       | Tobit<br>regression | #1a slope<br>of zero | hardness-<br>dependent | 1616-43<br>(KPSF)<br>Cujo<br>Outflow        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Sulphate in Lakes of the King-Cujo Watershed and Lac du Sauvage

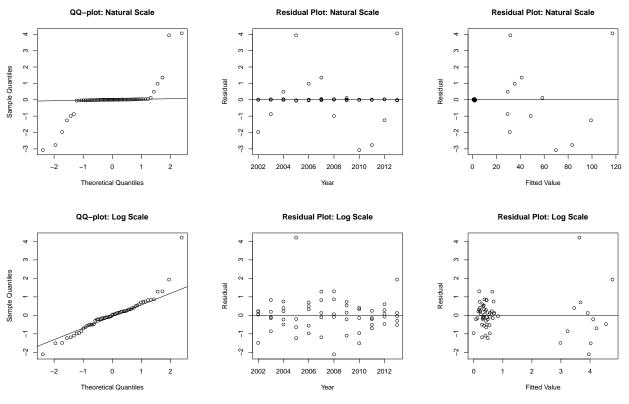
January 18, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 60.73  | 31.69  | 3.94        |
| 57 | Cujo | 2010 | 47.15  | 69.82  | -3.07       |
| 60 | Cujo | 2013 | 147.00 | 117.11 | 4.05        |

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 60.73  | 3.63   | 4.21        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 2.65E-105     | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 294.78     | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

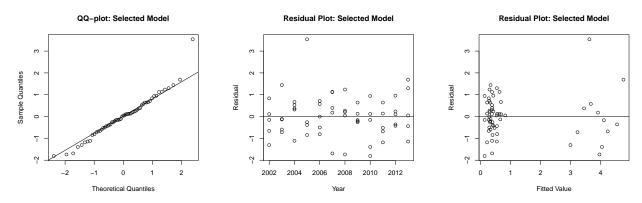
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 2.56       | 4.00 | 0.63    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.888        | 0.078        | 0.035        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



**Outliers:** 

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 60.73  | 3.62   | 3.54        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

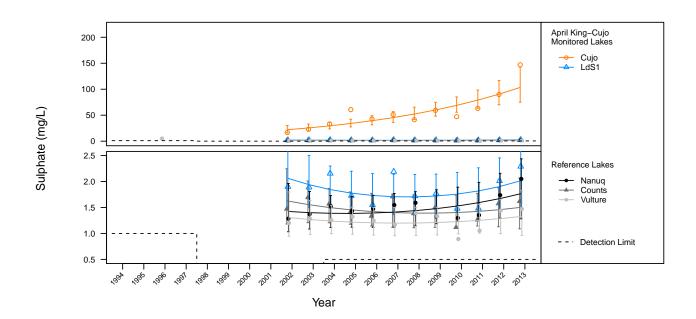
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 49.07       | 2.00 | 0.00    |
| LdS1 | 0.27        | 2.00 | 0.87    |

• Conclusions:

Cujo Lake shows significant deviation from the common slope of reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0700    |
| Monitored Lake    | Cujo            | 0.7740    |
| Monitored Lake    | LdS1            | 0.1940    |

• Conclusions:

Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

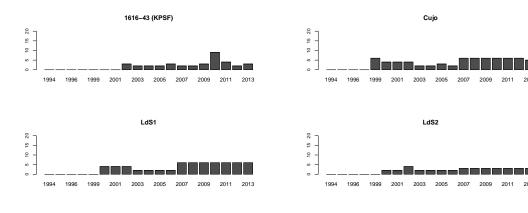
The estimated minimum detectable difference in mean sulphate for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.47E+02 | 1.03E+02 | 1.70E+01 | 7.50E+01 | 1.43E+02 | 4.96E+01       |
| LdS1    | 2.29E+00 | 2.01E+00 | 3.30E-01 | 1.46E+00 | 2.78E+00 | 9.66E-01       |
| Nanuq   | 2.05E+00 | 1.77E+00 | 2.90E-01 | 1.28E+00 | 2.44E+00 |                |
| Counts  | 1.62E+00 | 1.50E+00 | 2.46E-01 | 1.09E+00 | 2.07E+00 |                |
| Vulture | 1.47E+00 | 1.33E+00 | 2.18E-01 | 9.63E-01 | 1.83E+00 |                |

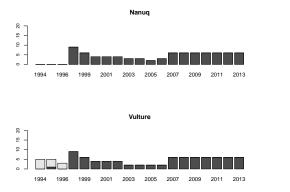
## 8 Final Summary Table

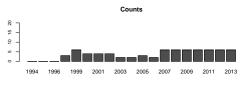
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model | CCME<br>Guidline      | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|--------------------|-----------------------|---------------------------------------------|
| Sulphate  | April | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | •                  | hardness-<br>dependen | Cuio                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Sulphate in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

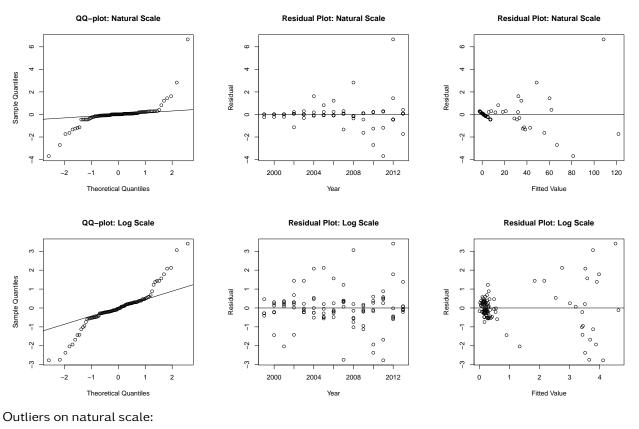

## 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 33.12  | 81.37  | -3.69       |
| 19 | 1616-43 (KPSF) | 2012 | 195.50 | 108.49 | 6.66        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 85.65  | 3.78   | 3.06        |
| 19 | 1616-43 (KPSF) | 2012 | 195.50 | 4.52   | 3.40        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

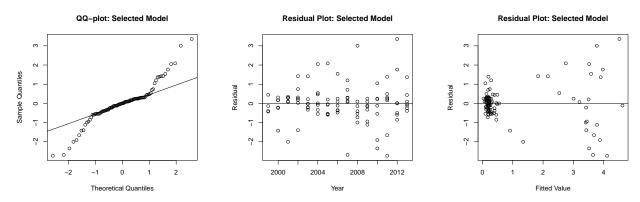
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 3.28        | 6.00 | 0.77    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.012        | 0.000        | 0.988        | Ref. Model 3 |

#### • Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 85.65  | 3.77   | 3.01        |
| 19 | 1616-43 (KPSF) | 2012 | 195.50 | 4.52   | 3.36        |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 279.8583    | 3  | 0.0000  |
| Cujo           | 1585.1141   | 3  | 0.0000  |
| LdS1           | 0.4724      | 3  | 0.9249  |
| LdS2           | 1.4151      | 3  | 0.7020  |

#### • Conclusions:

 $1616\text{-}43\,(\text{KPSF})$  and Cujo Lake show significant deviation from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

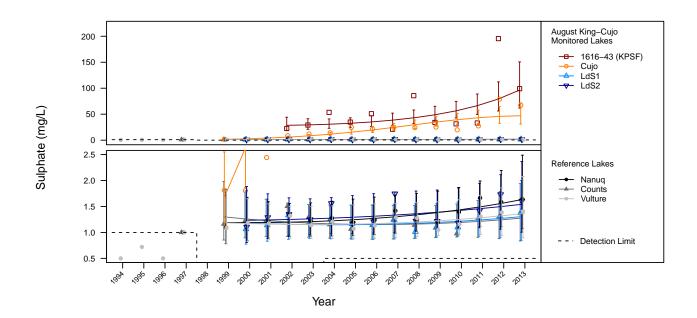
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 5.7802      | 2  | 0.0556  |
| Cujo           | 236.2840    | 2  | 0.0000  |
| LdS1           | 0.0823      | 2  | 0.9597  |
| LdS2           | 0.1248      | 2  | 0.9395  |
|                |             |    |         |

• Conclusions:

When allowing for differences in intercept, 1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.


## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.2320    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.3710    |
| Monitored Lake    | Cujo            | 0.8850    |
| Monitored Lake    | LdS1            | 0.1820    |
| Monitored Lake    | LdS2            | 0.2270    |

#### • Conclusions:

Model fit for reference lakes and 1616-43 (KPSF) is weak. Model fit for LdS1 and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.





Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

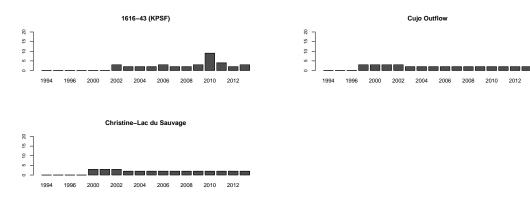
The estimated minimum detectable difference in mean sulphatefor each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 9.91E+01 | 9.65E+01 | 2.19E+01 | 6.18E+01 | 1.51E+02 | 6.42E+01       |
| Cujo           | 6.73E+01 | 4.71E+01 | 1.01E+01 | 3.09E+01 | 7.17E+01 | 2.96E+01       |
| LdS2           | 1.61E+00 | 1.54E+00 | 3.37E-01 | 1.00E+00 | 2.37E+00 | 9.86E-01       |
| LdS1           | 1.40E+00 | 1.30E+00 | 2.85E-01 | 8.49E-01 | 2.00E+00 | 8.34E-01       |
| Nanuq          | 1.64E+00 | 1.63E+00 | 3.51E-01 | 1.07E+00 | 2.49E+00 |                |
| Counts         | 1.36E+00 | 1.27E+00 | 2.73E-01 | 8.37E-01 | 1.94E+00 |                |
| Vulture        | 1.41E+00 | 1.36E+00 | 2.93E-01 | 8.95E-01 | 2.08E+00 |                |

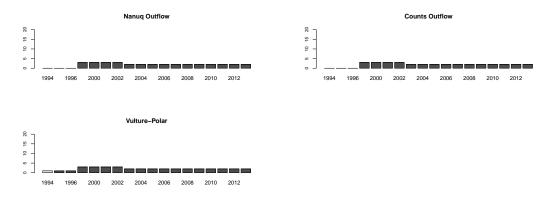
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------------|---------------------------------------------|
| Sulphate  | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | hardness-<br>dependent | 1616-43<br>(KPSF)<br>Cujo                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Sulphate in King-Cujo Watershed Streams

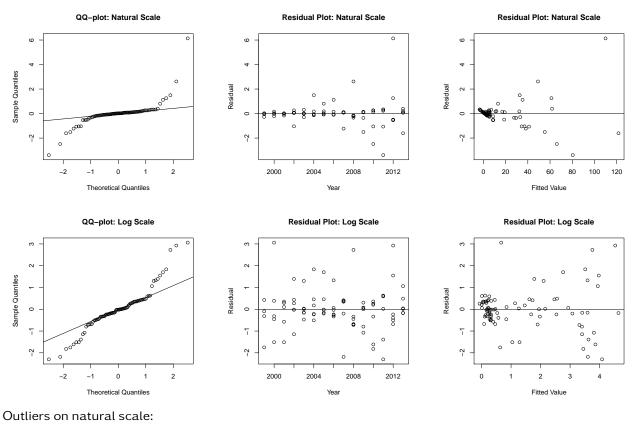
December 30, 2013


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 33.12  | 80.41  | -3.39       |
| 19 | 1616-43 (KPSF) | 2012 | 195.50 | 109.94 | 6.13        |

Outliers on log scale:

| Lake              | Year | Impute | Fitted | Std. Resid. |
|-------------------|------|--------|--------|-------------|
| 107 Vulture-Polar | 2000 | 4.24   | 0.67   | 3.06        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 26.41       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 25.30       | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.089        | 0.000        | 0.911        | Ref. Model 3 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled with a common slope and intercept, results of contrasts suggest that slopes and intercepts differ among reference streams. Proceeding with monitored contrasts using reference model 1a (fitting separate slopes and intercepts for reference streams).

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1a).

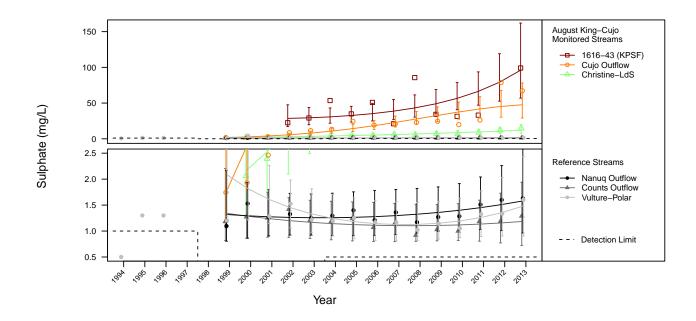
• Results:

|                                            | Chi-squared | DF | P-value |
|--------------------------------------------|-------------|----|---------|
| 1616-43 (KPSF)-vs-Nanuq Outflow            | 103.4999    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Counts Outflow           | 106.9414    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Vulture-Polar            | 74.6161     | 3  | 0.0000  |
| Cujo Outflow-vs-Nanuq Outflow              | 756.6296    | 3  | 0.0000  |
| Cujo Outflow-vs-Counts Outflow             | 855.8785    | 3  | 0.0000  |
| Cujo Outflow-vs-Vulture-Polar              | 800.0585    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Nanuq Outflow  | 233.3835    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Counts Outflow | 290.1384    | 3  | 0.0000  |
| Christine-Lac du Sauvage-vs-Vulture-Polar  | 257.4862    | 3  | 0.0000  |

• Conclusions:

All monitored streams show significant deviations from the slopes of individual reference streams.

## 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Reference Stream | Counts Outflow           | 0.2970    |
| Reference Stream | Nanuq Outflow            | 0.3880    |
| Reference Stream | Vulture-Polar            | 0.3020    |
| Monitored Stream | 1616-43 (KPSF)           | 0.3690    |
| Monitored Stream | Christine-Lac du Sauvage | 0.9370    |
| Monitored Stream | Cujo Outflow             | 0.8860    |

#### • Conclusions:

Model fit for Counts Outflow, Nanuq Outflow, Vulture-Polar, and 1616-43 (KPSF) is weak. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

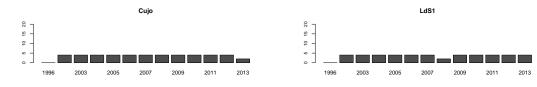
The estimated minimum detectable difference in mean total sulphate for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 9.91E+01 | 9.60E+01 | 2.56E+01 | 5.69E+01 | 1.62E+02 | 7.50E+01       |
| Cujo Outflow             | 6.73E+01 | 4.76E+01 | 1.20E+01 | 2.91E+01 | 7.81E+01 | 3.52E+01       |
| Christine-Lac du Sauvage | 1.46E+01 | 1.20E+01 | 3.08E+00 | 7.25E+00 | 1.98E+01 | 9.02E+00       |
| Nanuq Outflow            | 1.63E+00 | 1.58E+00 | 3.98E-01 | 9.64E-01 | 2.59E+00 |                |
| Counts Outflow           | 1.29E+00 | 1.18E+00 | 2.99E-01 | 7.22E-01 | 1.94E+00 |                |
| Vulture-Polar            | 1.60E+00 | 1.48E+00 | 3.74E-01 | 9.05E-01 | 2.43E+00 |                |

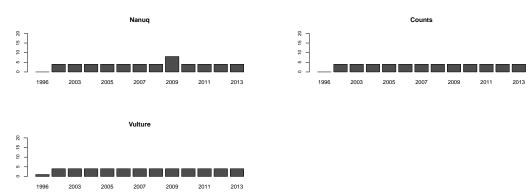
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                             |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|-------------------------------------------------------------------------|
| Sulphate  | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1a<br>separate<br>intercepts<br>& slopes | NA               | 1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage |

\* Monitored streams are contrasted to the slope of each individual reference stream in model 1a, a slope of 0 in reference model 1b, the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Potassium in Lakes of the King-Cujo Watershed and Lac du Sauvage

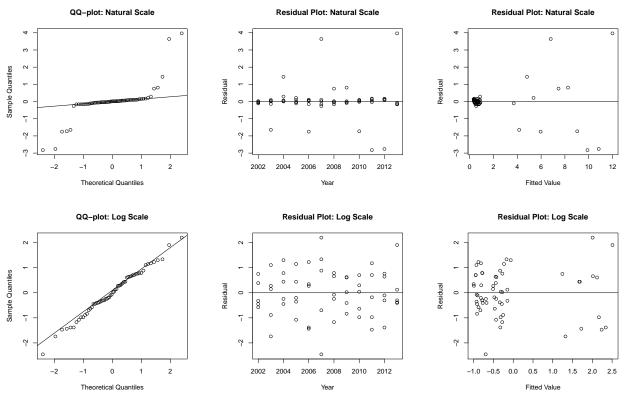
January 21, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 54 | Cujo | 2007 | 8.65   | 6.81   | 3.64        |
| 60 | Cujo | 2013 | 14.00  | 11.99  | 3.96        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 9.68E-49      | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

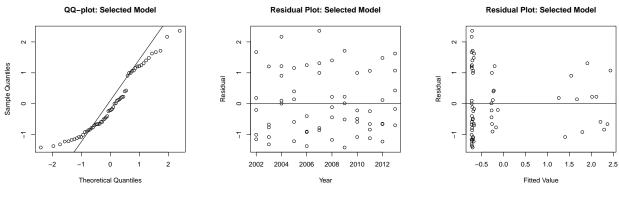
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 3.16       | 6.00 | 0.79    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero and because AIC suggests that the fit of reference models 2 and 3 are indistinguishable.

### 3.3 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

## 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 42.18       | 3.00 | 0.00    |
| LdS1 | 3.33        | 3.00 | 0.34    |

• Results:

• Conclusions:

Cujo lakes show significant deviation from the common slope of reference lakes.

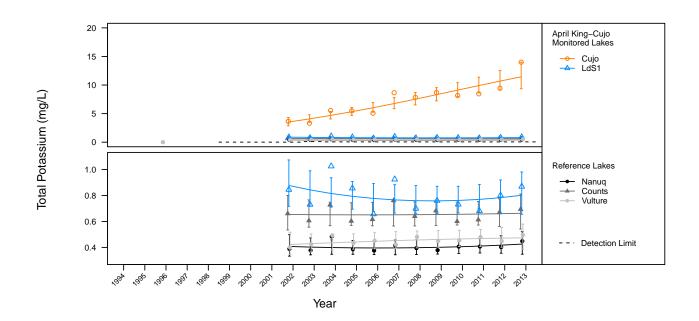
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 18.28       | 2.00 | 0.00    |
| LdS1 | 0.43        | 2.00 | 0.81    |

• Conclusions:

When allowing for differences in intercept, Cujo Lake shows significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0070    |
| Monitored Lake    | Cujo            | 0.8650    |
| Monitored Lake    | LdS1            | 0.1160    |

• Conclusions:

Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

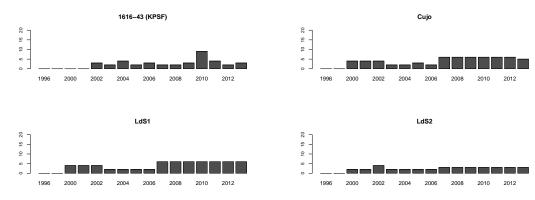
The estimated minimum detectable difference in mean potassium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.40E+01 | 1.14E+01 | 1.18E+00 | 9.34E+00 | 1.40E+01 | 3.45E+00       |
| LdS1    | 8.69E-01 | 8.02E-01 | 8.27E-02 | 6.55E-01 | 9.81E-01 | 2.42E-01       |
| Nanuq   | 4.48E-01 | 4.26E-01 | 4.39E-02 | 3.48E-01 | 5.21E-01 |                |
| Counts  | 6.94E-01 | 6.63E-01 | 6.83E-02 | 5.41E-01 | 8.11E-01 |                |
| Vulture | 4.95E-01 | 4.74E-01 | 4.88E-02 | 3.87E-01 | 5.80E-01 |                |

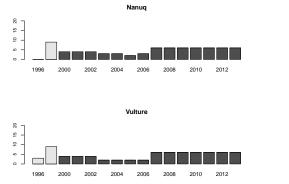
## 8 Final Summary Table

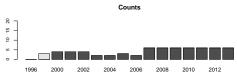
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Potassium | April | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressior | #3 shared<br>intercept<br>& slope | 41               | Cujo                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Potassium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014

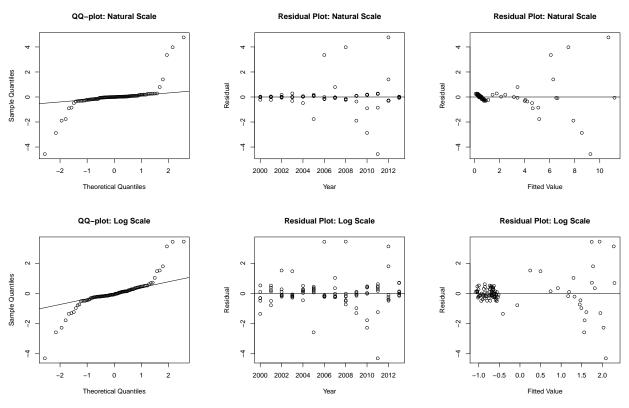

## 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-43 (KPSF) | 2006 | 9.93   | 6.09   | 3.36        |
| 15 | 1616-43 (KPSF) | 2008 | 12.05  | 7.49   | 3.98        |
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 9.25   | -4.56       |
| 19 | 1616-43 (KPSF) | 2012 | 16.15  | 10.69  | 4.76        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-43 (KPSF) | 2006 | 9.93   | 1.74   | 3.43        |
| 15 | 1616-43 (KPSF) | 2008 | 12.05  | 1.93   | 3.44        |
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 2.09   | -4.30       |
| 19 | 1616-43 (KPSF) | 2012 | 16.15  | 2.28   | 3.12        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. AIC also reveals that the data is modeled best after log transformation. Proceeding with the remaining analyses using the log transformed model.

## 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 31.47       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

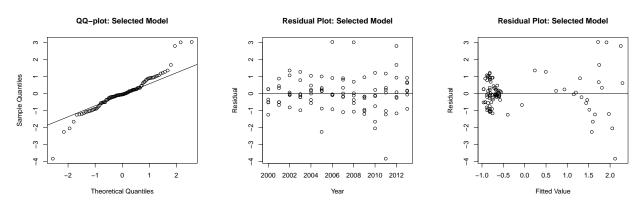
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.79        | 4.00 | 0.94    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.999        | 0.000        | 0.001        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-43 (KPSF) | 2006 | 9.93   | 1.72   | 3.04        |
| 15 | 1616-43 (KPSF) | 2008 | 12.05  | 1.92   | 3.01        |
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 2.12   | -3.82       |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

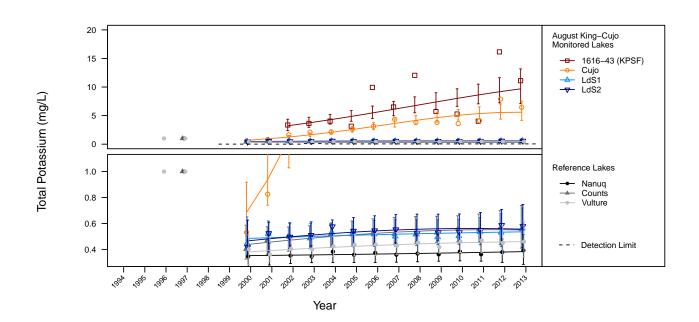
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 7.1809      | 2  | 0.0276  |
| Cujo           | 113.2603    | 2  | 0.0000  |
| LdS1           | 0.1461      | 2  | 0.9295  |
| LdS2           | 0.0472      | 2  | 0.9767  |

#### • Conclusions:

1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1200    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.4110    |
| Monitored Lake    | Cujo            | 0.9110    |
| Monitored Lake    | LdS1            | 0.3490    |
| Monitored Lake    | LdS2            | 0.5390    |

• Conclusions:

Model fit for 1616-43 (KPSF) and LdS1 is weak. Model fit for reference lakes is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

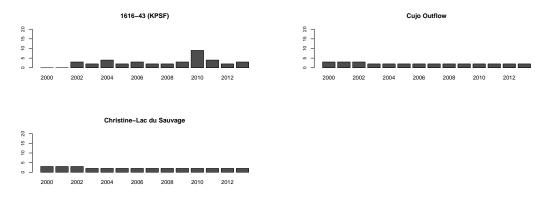
The estimated minimum detectable difference in mean potassium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.11E+01 | 9.68E+00 | 1.52E+00 | 7.12E+00 | 1.32E+01 | 4.45E+00       |
| Cujo           | 6.44E+00 | 5.59E+00 | 8.42E-01 | 4.16E+00 | 7.51E+00 | 2.46E+00       |
| LdS2           | 5.78E-01 | 5.56E-01 | 8.36E-02 | 4.14E-01 | 7.46E-01 | 2.45E-01       |
| LdS1           | 5.61E-01 | 5.35E-01 | 8.06E-02 | 3.99E-01 | 7.19E-01 | 2.36E-01       |
| Nanuq          | 3.93E-01 | 3.83E-01 | 5.76E-02 | 2.85E-01 | 5.14E-01 |                |
| Counts         | 5.55E-01 | 5.50E-01 | 8.28E-02 | 4.10E-01 | 7.39E-01 |                |
| Vulture        | 4.60E-01 | 4.60E-01 | 6.92E-02 | 3.42E-01 | 6.17E-01 |                |

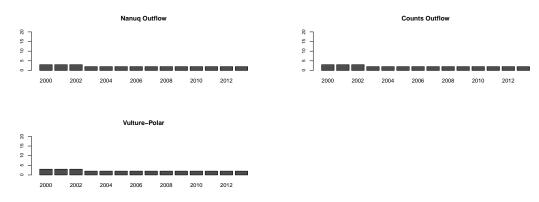
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Potassium | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 41               | 1616-43<br>(KPSF)<br>Cujo                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Potassium in King-Cujo Watershed Streams

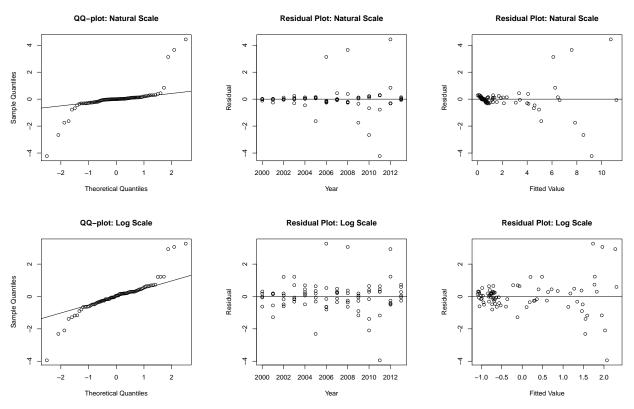
January 18, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-43 (KPSF) | 2006 | 9.93   | 6.10   | 3.13        |
| 15 | 1616-43 (KPSF) | 2008 | 12.05  | 7.58   | 3.65        |
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 9.19   | -4.23       |
| 19 | 1616-43 (KPSF) | 2012 | 16.15  | 10.73  | 4.43        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 13 | 1616-43 (KPSF) | 2006 | 9.93   | 1.73   | 3.27        |
| 15 | 1616-43 (KPSF) | 2008 | 12.05  | 1.96   | 3.06        |
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 2.07   | -3.95       |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 24.63       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

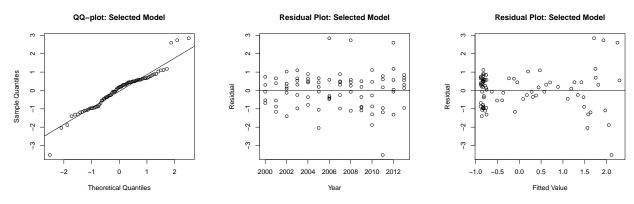
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 9.44        | 4.00 | 0.05    |

#### • Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.997        | 0.000        | 0.003        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 4.02   | 2.11   | -3.51       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

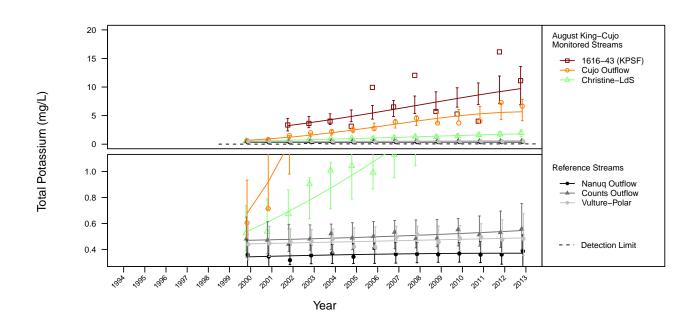
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 6.6008      | 2  | 0.0369  |
| Cujo Outflow             | 105.0224    | 2  | 0.0000  |
| Christine-Lac du Sauvage | 30.5487     | 2  | 0.0000  |

• Conclusions:

All monitored streams show significant deviation from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0490    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.4100    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.9550    |
| Monitored Stream    | Cujo Outflow             | 0.9250    |

• Conclusions:

Model fit for 1616-43 (KPSF) is weak. Model fit for reference streams is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total potassium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.11E+01 | 9.72E+00 | 1.67E+00 | 6.94E+00 | 1.36E+01 | 4.88E+00       |
| Cujo Outflow             | 6.64E+00 | 5.67E+00 | 9.34E-01 | 4.11E+00 | 7.83E+00 | 2.73E+00       |
| Christine-Lac du Sauvage | 1.98E+00 | 1.82E+00 | 3.00E-01 | 1.32E+00 | 2.52E+00 | 8.79E-01       |
| Nanuq Outflow            | 3.86E-01 | 3.71E-01 | 6.10E-02 | 2.69E-01 | 5.12E-01 |                |
| Counts Outflow           | 5.58E-01 | 5.45E-01 | 8.98E-02 | 3.95E-01 | 7.53E-01 |                |
| Vulture-Polar            | 4.82E-01 | 4.89E-01 | 8.04E-02 | 3.54E-01 | 6.75E-01 |                |

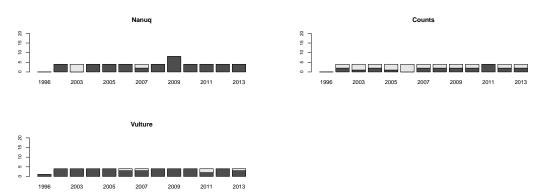
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts*                             |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|-------------------------------------------------------------------------|
| Potassium | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 41               | 1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

# Analysis of April Total Ammonia in Lakes of the King-Cujo Watershed and Lac du Sauvage

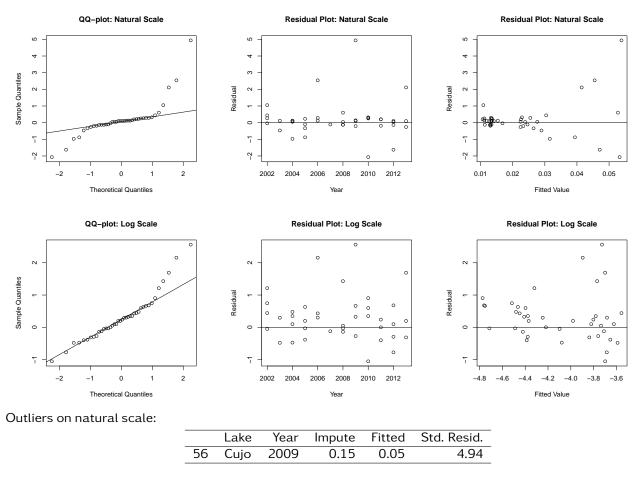
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

10-60% of data in Counts, Nanuq, and Cujo Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

## 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 4.32E-37  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 98058.90   | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 98745.42   | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.533        | 0.463        | 0.004        | Indistinguishable support for 1 & 2; choose Model 2. |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled with a common slope, results of contrasts suggest that slopes and intercepts differ among reference lakes. Proceeding with monitored contrasts using reference model 1.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

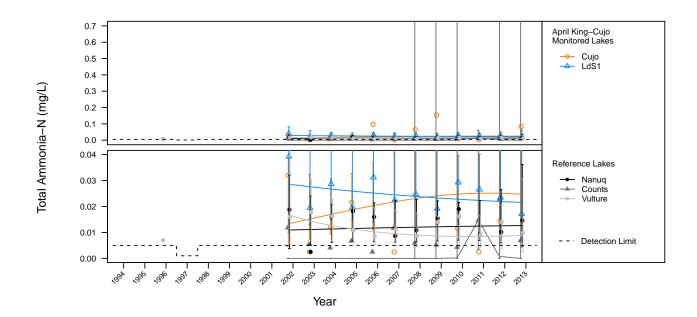
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 0.9616      | 2  | 0.6183  |
| LdS1 | 0.1815      | 2  | 0.9132  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.5000    |
| Reference Lake | Nanuq     | 0.0080    |
| Reference Lake | Vulture   | 0.4740    |
| Monitored Lake | Cujo      | 0.0270    |
| Monitored Lake | LdS1      | 0.1480    |

• Conclusions:

Model fit for Vulture Lake is weak. Model fit for the Nanuq, Cujo, and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

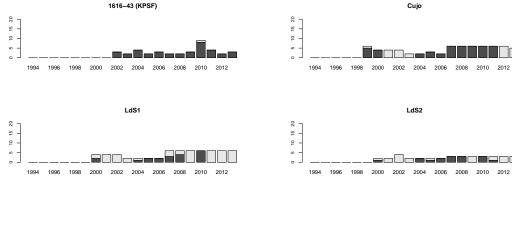
The estimated minimum detectable difference in mean total ammonia for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower     | Upper     | Min. Det. Diff |
|---------|----------|----------|----------|-----------|-----------|----------------|
| Cujo    | 8.41e-02 | 2.48e-02 | 1.33e-02 | 8.63e-03  | 7.10e-02  | 3.89e-02       |
| LdS1    | 1.72e-02 | 2.15e-02 | 1.15e-02 | 7.56e-03  | 6.14e-02  | 3.37e-02       |
| Nanuq   | 1.46e-02 | 1.27e-02 | 6.79e-03 | 4.43e-03  | 3.62e-02  | NA             |
| Counts  | 6.88e-03 | 2.10e-08 | 5.50e-06 | 4.74e-231 | 9.34e+214 | NA             |
| Vulture | 9.92e-03 | 8.86e-03 | 5.61e-03 | 2.56e-03  | 3.07e-02  | NA             |

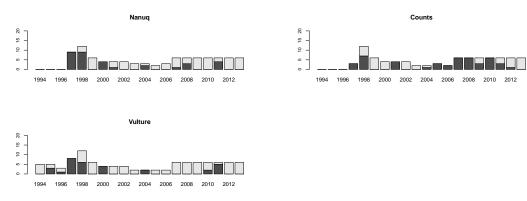
## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model                          | CCME<br>Guidline                 | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|---------------------------------------------|----------------------------------|---------------------------------------------|
| AmmoniaN  | April | King-Cujo | Lake          | Water    | None                          | log e                       | Tobit<br>regressio | #1b<br>separate<br>n intercepts<br>& slopes | pH- and<br>temperatu<br>dependen | ure-LdS1<br>t                               |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Ammonia-N in Lakes of the King-Cujo Watershed and Lac du Sauvage

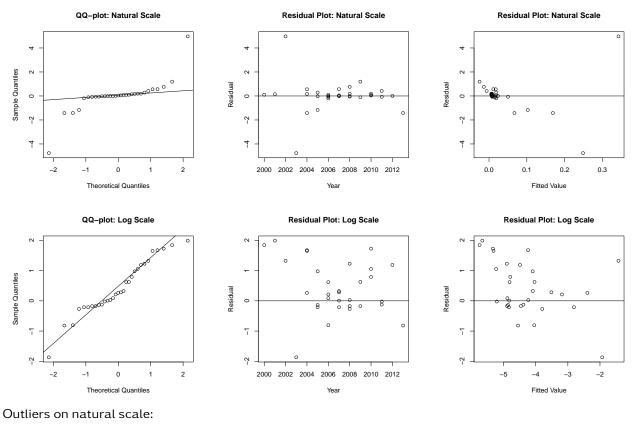
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Nanuq, Vulture, and LdS1 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Counts, Cujo, and LdS2 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 9  | 1616-43 (KPSF) | 2002 | 0.56   | 0.34   | 4.96        |
| 10 | 1616-43 (KPSF) | 2003 | 0.04   | 0.25   | -4.76       |

Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.002                | 0.998                 | Log-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed mode, but shows some dependence on year and fitted valuel. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model. Results of statisical analyses and MDD should be interpreted with caution.

### 3 Comparisons within Reference Lakes

Two of three reference lakes were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 29.7287     | 2  | 0.0000  |
| Cujo           | 11.6306     | 2  | 0.0030  |
| LdS2           | 3.4029      | 2  | 0.1824  |

• Conclusions:

1616-43 (KPSF) and Cujo Lake show significant deviation from a slope of zero.

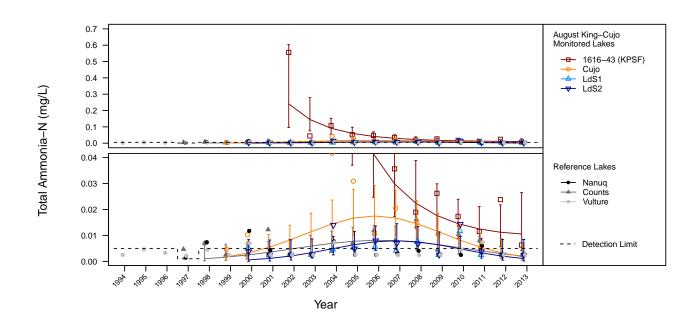
Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)-vs-Counts | 66.9144     | 3  | 0.0000  |
| Cujo-vs-Counts           | 4.8575      | 3  | 0.1825  |
| LdS2-vs-Counts           | 1.2418      | 3  | 0.7430  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from the slope of Counts Lake.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Reference Lake | Counts         | 0.4420    |
| Monitored Lake | 1616-43 (KPSF) | 0.7900    |
| Monitored Lake | Cujo           | 0.5070    |
| Monitored Lake | LdS2           | 0.5620    |

• Conclusions:

Model fit for Counts Lake weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

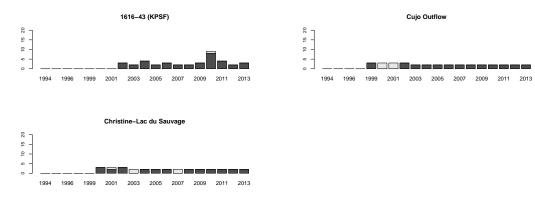
The estimated minimum detectable difference in mean total ammonia-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 6.3e-03  | 1.06e-02 | 4.96e-03 | 4.21e-03 | 2.65e-02 | 1.45e-02       |
| Cujo           | 2.5e-03  | 1.78e-03 | 1.15e-03 | 5.01e-04 | 6.30e-03 | 3.36e-03       |
| LdS2           | 2.5e-03  | 1.10e-03 | 1.14e-03 | 1.43e-04 | 8.42e-03 | 3.34e-03       |
| LdS1           | 2.5e-03  | NA       | NA       | NA       | NA       | NA             |
| Nanuq          | 2.5e-03  | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.5e-03  | 2.06e-03 | 1.50e-03 | 4.93e-04 | 8.61e-03 | NA             |
| Vulture        | 2.5e-03  | NA       | NA       | NA       | NA       | NA             |

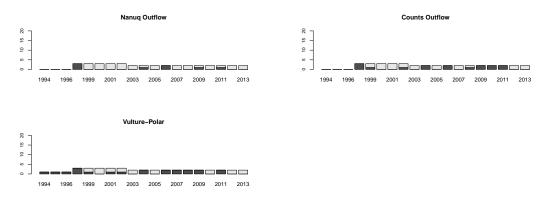
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline                   | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------------------------|---------------------------------------------|
| AmmoniaN  | August | King-Cujo | Lake          | Water    | Nanuq<br>Vulture<br>LdS1      | log e                       | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | pH- and<br>temperatur<br>dependent | -e <sup>-</sup> (KPSF)                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Ammonia-N in King-Cujo Watershed Streams

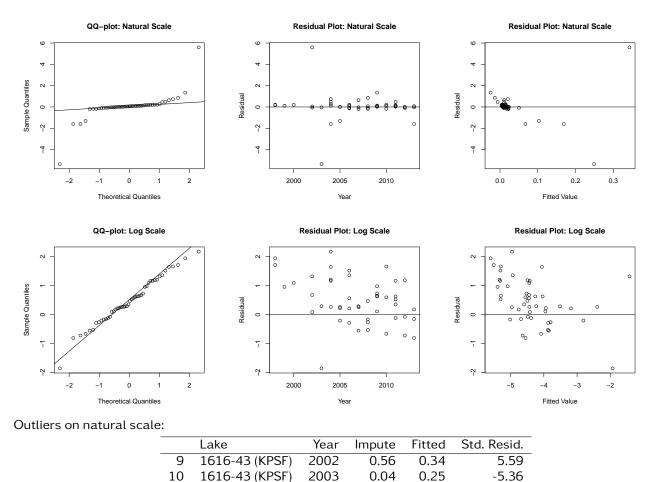
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Nanuq Outflow was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Counts Outflow, Vulture-Polar, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural and log transformed models show dependence on year or fitted value. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model". Results should be interpreted with caution.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

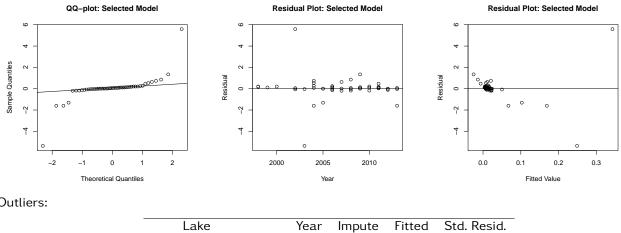
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.03        | 3.00 | 1.00    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.043        | 0.115        | 0.842        | Ref. Model 3 |

#### Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



**Outliers:** 

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 9  | 1616-43 (KPSF) | 2002 | 0.56   | 0.34   | 5.59        |
| 10 | 1616-43 (KPSF) | 2003 | 0.04   | 0.25   | -5.36       |

Conclusion:

Reduced model shows dependence on fitted value. Results should be interpreted with caution.

#### 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 129.2213    | 3  | 0.0000  |
| Cujo Outflow             | 0.7648      | 3  | 0.8579  |
| Christine-Lac du Sauvage | 0.2775      | 3  | 0.9642  |

#### • Conclusions:

1616-43 (KPSF) shows significant deviation from the common slope of reference streams.

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

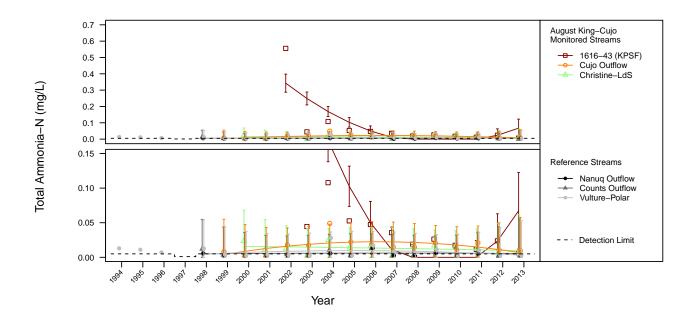
• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 93.6576     | 2  | 0.0000  |
| Cujo Outflow             | 0.1949      | 2  | 0.9072  |
| Christine-Lac du Sauvage | 0.0171      | 2  | 0.9915  |

#### • Conclusions:

When allowing for differences in intercept, 1616-43 (KPSF) shows significant deviation from the common slope of reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0370    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.5960    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.0870    |
| Monitored Stream    | Cujo Outflow             | 0.3020    |

• Conclusions:

Model fit for Cujo Outflow is weak. Model fit for reference streams and Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

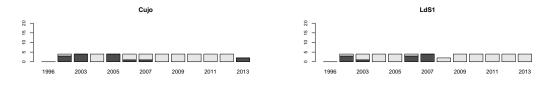
The estimated minimum detectable difference in mean total ammonia-N for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower   | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|---------|----------|----------------|
| 1616-43 (KPSF)           | 6.30e-03 | 6.72e-02 | 2.82e-02 | 1.2e-02 | 1.22e-01 | 8.25e-02       |
| Cujo Outflow             | 9.60e-03 | 6.84e-03 | 2.60e-02 | 0.0e+00 | 5.78e-02 | 7.60e-02       |
| Christine-Lac du Sauvage | 8.35e-03 | 9.69e-03 | 2.67e-02 | 0.0e+00 | 6.19e-02 | 7.80e-02       |
| Nanuq Outflow            | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |
| Counts Outflow           | 2.50e-03 | 5.62e-03 | 2.54e-02 | 0.0e+00 | 5.53e-02 | NA             |
| Vulture-Polar            | 2.50e-03 | 3.15e-03 | 2.54e-02 | 0.0e+00 | 5.29e-02 | NA             |

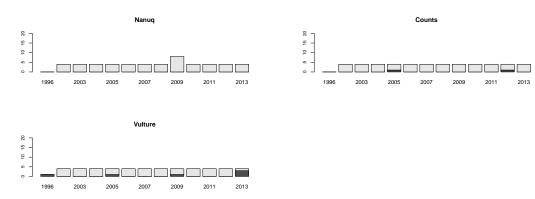
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------|
| AmmoniaN  | August | King-Cujo | Stream        | Water    | Nanuq<br>Outflow              | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope |                  | -e <sup>-</sup> 1616-43<br>(KPSF)           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

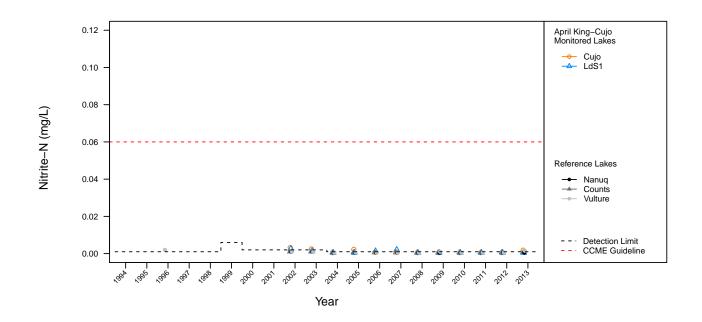

# Analysis of April Nitrite in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



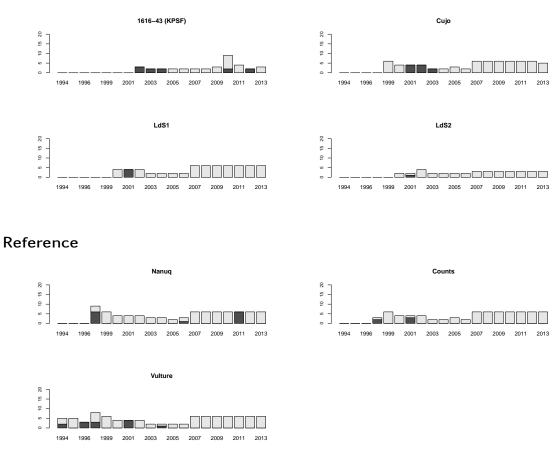
### 2 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 3 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------|---------------------------------------------|
| NitriteN  | April | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | 0.06             | NA                                          |

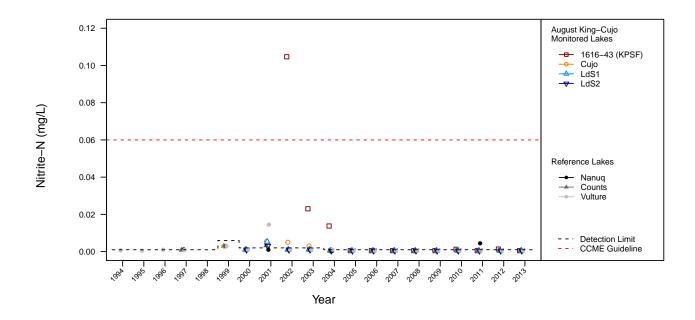
\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrite-N in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).


### 1.1 Monitored



Comment:

1.2

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed.



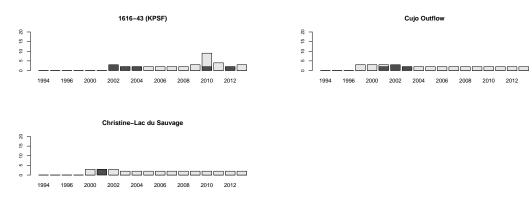
### 2 Observed and Fitted Values

Note: The yearly observed mean for lakes are represented by symbols only.

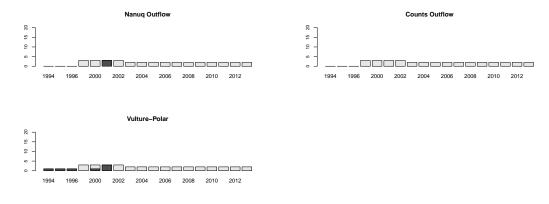
### 3 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------|---------------------------------------------|
| NitriteN  | August | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | 0.06             | NA                                          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

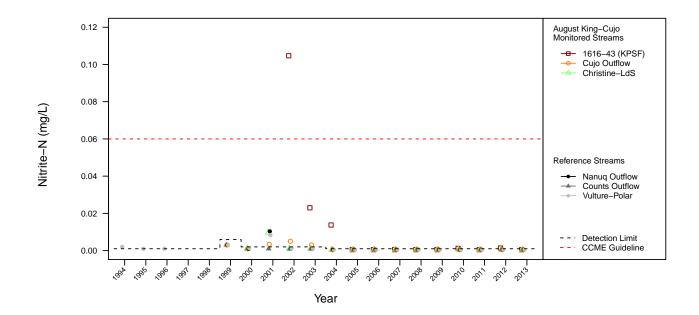

## Analysis of August Nitrite in King-Cujo Watershed Streams

#### January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in all reference and monitored streams was less than the detection limit. All streams were excluded from further analyses. Tests not performed.



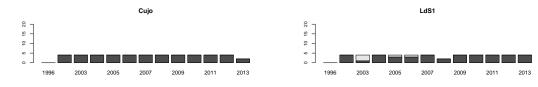
### 2 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

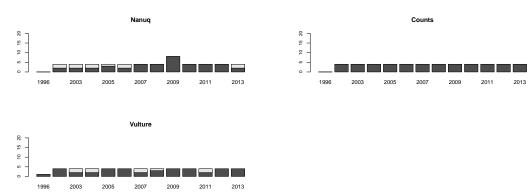
| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                                                                         | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------|--------------------|------------------|---------------------------------------------|
| NitriteN  | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar<br>1616-43<br>(KPSF)<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage | NA                          | NA            | NA                 | 0.06             | NA                                          |

### 3 Final Summary Table

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Nitrate in Lakes of the King-Cujo Watershed and Lac du Sauvage

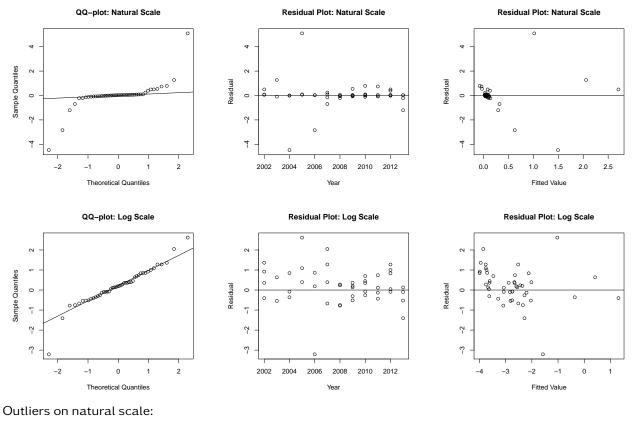
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

10-60% of data in Nanuq, Vulture, and LdS1 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

## 2 Initial Model Fit



|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 51 | Cujo | 2004 | 0.55   | 1.49   | -4.47       |
| 52 | Cujo | 2005 | 2.10   | 1.02   | 5.09        |

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 53 | Cujo | 2006 | 0.02   | -1.58  | -3.21       |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 7.44E-11      | 1.00E+00  | log model  |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 7.98       | 6.00 | 0.24    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

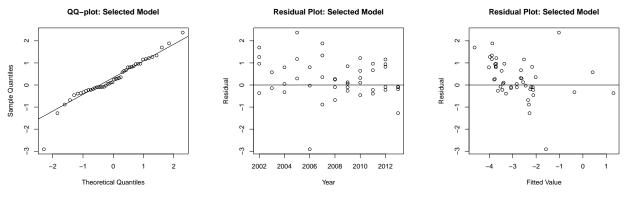
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 6.95       | 4.00 | 0.14    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.978        | 0.022        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero and because AIC suggests that reference model 2 provides a better fit to reference lake data than does reference model 3.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

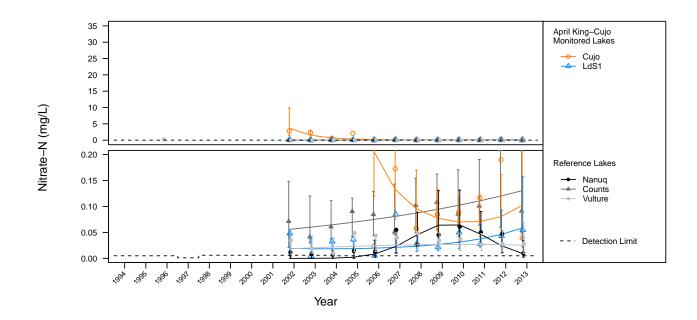
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 42.8500     | 2  | 0.0000  |
| LdS1 | 1.7461      | 2  | 0.4177  |

• Conclusions:

Cujo Lake shows significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.7060    |
| Monitored Lake    | Cujo            | 0.6510    |
| Monitored Lake    | LdS1            | 0.2040    |

#### • Conclusions:

Model fit for LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

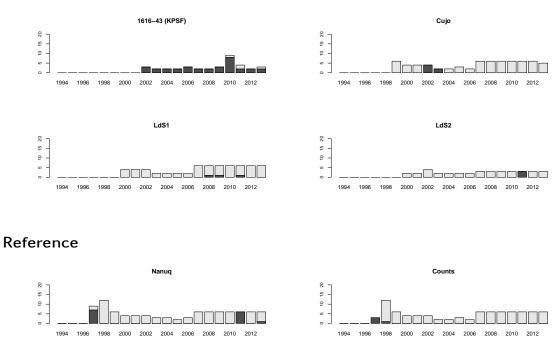
The estimated minimum detectable difference in mean nitrate for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 3.95e-02 | 1.02e-01 | 5.10e-02 | 3.84e-02 | 2.72e-01 | 1.49e-01       |
| LdS1    | 5.49e-02 | 5.87e-02 | 2.95e-02 | 2.19e-02 | 1.57e-01 | 8.64e-02       |
| Nanuq   | 9.38e-03 | 8.89e-03 | 6.14e-03 | 2.30e-03 | 3.44e-02 | NA             |
| Counts  | 9.13e-02 | 1.30e-01 | 6.50e-02 | 4.89e-02 | 3.46e-01 | NA             |
| Vulture | 2.78e-02 | 2.55e-02 | 1.31e-02 | 9.35e-03 | 6.96e-02 | NA             |

## 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  |                        | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------------|---------------------------------------------------------|
| NitrateN  | April | King-Cujo | Lake          | Water    | none                          | log e                       | Tobit<br>regressior | #2 shared<br>slopes | hardness-<br>dependent |                                                         |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Nitrate-N in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014

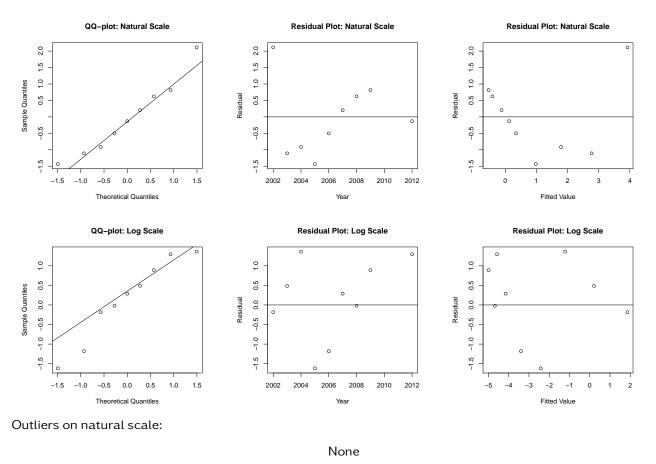
### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



# Comment:


1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

1.2

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in 1616-30 (KPSF) was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

Vulture

## 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

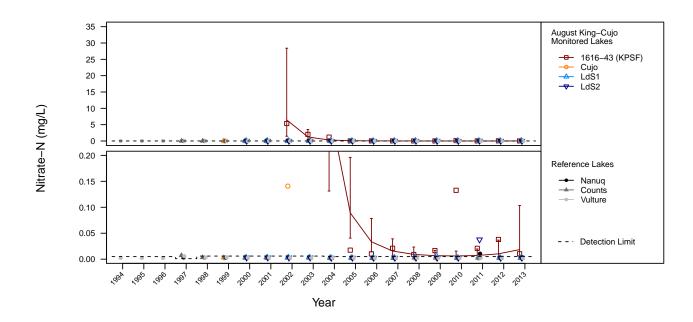
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 48.3746     | 2  | 0.0000  |

• Conclusions: 1616-30 (KPSF) shows significant deviation from a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.7500    |

• Conclusions:

Models provide a good fit for all monitored lakes.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes are represented by symbols.

## 7 Minimum Detectable Differences

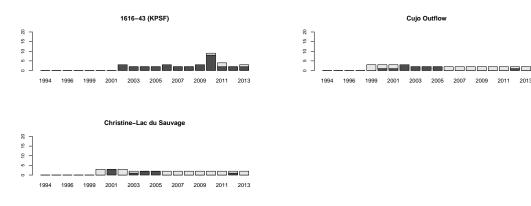
The estimated minimum detectable difference in mean nitrate-N for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower   | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|---------|----------|----------------|
| 1616-43 (KPSF) | 1.05e-02 | 1.85e-02 | 1.62e-02 | 3.3e-03 | 1.03e-01 | 4.75e-02       |
| Cujo           | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |
| LdS2           | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |
| LdS1           | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |
| Nanuq          | 3.75e-03 | NA       | NA       | NA      | NA       | NA             |
| Counts         | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |
| Vulture        | 2.50e-03 | NA       | NA       | NA      | NA       | NA             |

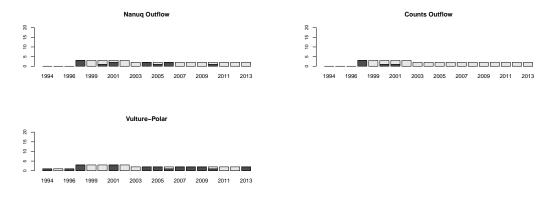
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                   | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------------------------|-----------------------------|---------------------|----------------------|------------------------|---------------------------------------------|
| NitrateN  | August | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Cujo LdS1<br>LdS2 | log e                       | Tobit<br>regression | #1a slope<br>of zero | hardness-<br>dependent | 1616-43<br>(KPSF)                           |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Nitrate-N in King-Cujo Watershed Streams

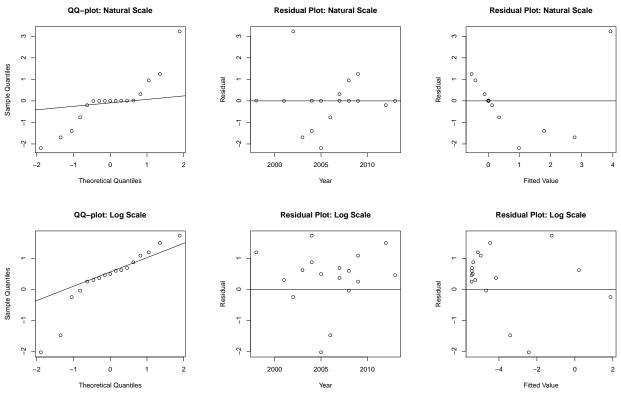
#### January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in 1616-43 (KPSF) and Vulture-Polar was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|   | Lake           | Year | Impute | Fitted | Std. Resid. |
|---|----------------|------|--------|--------|-------------|
| 9 | 1616-43 (KPSF) | 2002 | 5.35   | 3.92   | 3.23        |

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

# 3 Comparisons within Reference Streams

Two of three reference streams were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

# 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 75.9168     | 2  | 0.0000  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from a slope of zero.

Fitted model of the trend (slope) of each stream compared to slope of reference stream (reference model 1b).

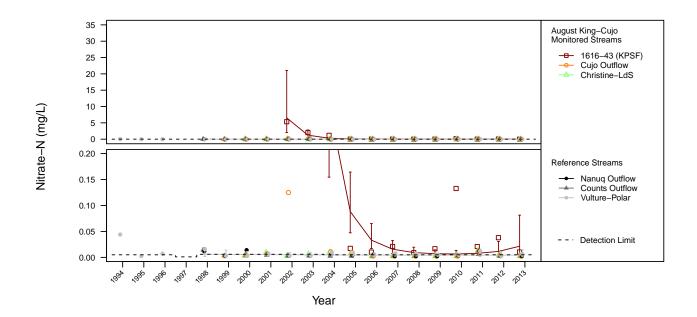
• Results:

|                                 | Chi-squared |   |        |
|---------------------------------|-------------|---|--------|
| 1616-43 (KPSF)-vs-Vulture-Polar | 121.5144    | 3 | 0.0000 |

• Conclusions:

1616-43 KPSF shows significant deviation from the slope of Vulture-Polar.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name    | R-squared |
|------------------|----------------|-----------|
| Reference Stream | Vulture-Polar  | 0.0750    |
| Monitored Stream | 1616-43 (KPSF) | 0.7520    |

• Conclusions:

Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

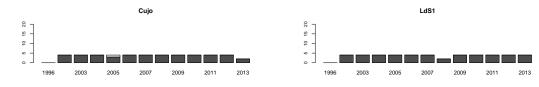
The estimated minimum detectable difference in mean nitrate-N for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.05e-02 | 2.15e-02 | 1.46e-02 | 5.69e-03 | 8.13e-02 | 4.27e-02       |
| Cujo Outflow             | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Christine-Lac du Sauvage | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Nanuq Outflow            | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar            | 6.30e-03 | 4.37e-03 | 2.73e-03 | 1.29e-03 | 1.48e-02 | NA             |

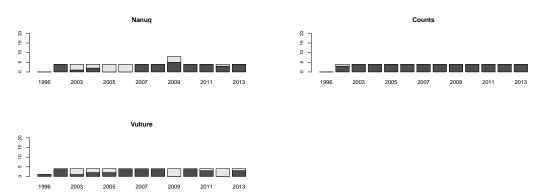
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                               | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                        | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|---------------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------------------------------------|------------------------|---------------------------------------------------------|
| NitrateN  | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage | log e                       | Tobit<br>regression | #1b<br>separate<br>intercepts<br>& slopes | hardness-<br>dependent | 1616-43<br>(KPSF)                                       |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Phosphorus in Lakes of the King-Cujo Watershed and Lac du Sauvage

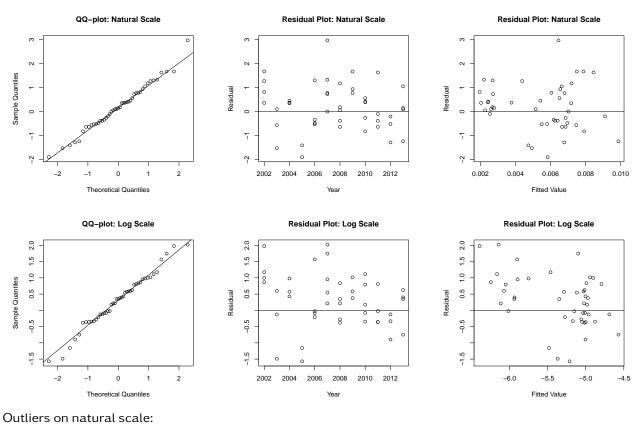
January 12, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

10-60% of data in Nanuq and Vulture lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 8.42E-100 | natural model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 48.09      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 11.96      | 4.00 | 0.02    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.813        | 0.187        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 5.7745      | 2  | 0.0557  |
| LdS1 | 4.7257      | 2  | 0.0941  |

• Conclusions:

Cujo Lake shows significant deviation from a slope of zero.

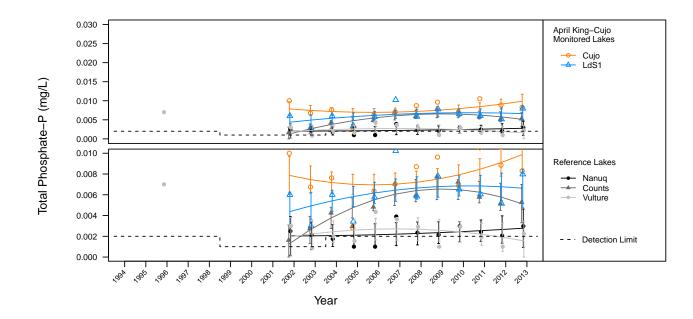
Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

• Results:

|                 | Chi-squared | DF | P-value |
|-----------------|-------------|----|---------|
| Cujo-vs-Nanuq   | 111.7527    | 3  | 0.0000  |
| Cujo-vs-Counts  | 39.8771     | 3  | 0.0000  |
| Cujo-vs-Vulture | 113.3801    | 3  | 0.0000  |

• Conclusions:

Cujo Lake shows significant deviations from the slopes of individual reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.8010    |
| Reference Lake | Nanuq     | 0.0990    |
| Reference Lake | Vulture   | 0.1130    |
| Monitored Lake | Cujo      | 0.1980    |
| Monitored Lake | LdS1      | 0.1840    |

#### • Conclusions:

Model fit for Nanuq, Vulture, Cujo, and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

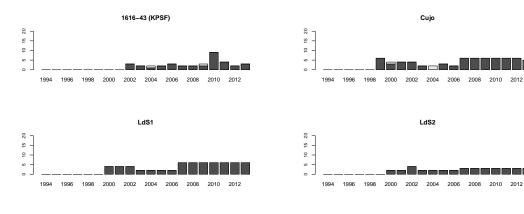
The estimated minimum detectable difference in mean total phosphorus for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 8.30e-03 | 9.87e-03 | 9.40e-04 | 8.03e-03 | 1.17e-02 | 2.75e-03       |
| LdS1    | 7.97e-03 | 6.63e-03 | 9.40e-04 | 4.79e-03 | 8.47e-03 | 2.75e-03       |
| Nanuq   | 2.97e-03 | 2.78e-03 | 9.44e-04 | 9.28e-04 | 4.63e-03 | NA             |
| Counts  | 5.28e-03 | 5.14e-03 | 9.40e-04 | 3.30e-03 | 6.98e-03 | NA             |
| Vulture | 2.25e-03 | 1.56e-03 | 9.66e-04 | 0.00e+00 | 3.45e-03 | NA             |

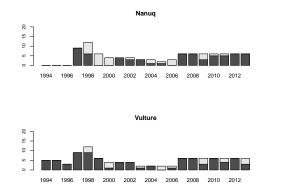
# 8 Final Summary Table

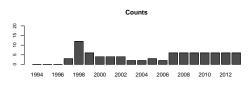
| Parameter  | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type      | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|------------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|--------------------|---------------------------------------------|------------------|---------------------------------------------------------|
| Phosphorus | April | King-Cujo | Lake          | Water    | none                          | none                        | Tobit<br>regressio | #1b<br>separate<br>n intercepts<br>& slopes | NA               | Cujo                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Phosphate-P in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

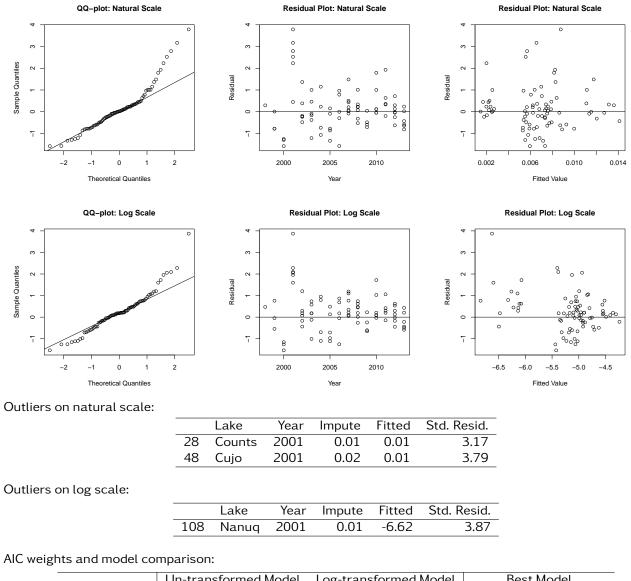

# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

10-60% of data in Nanuq and Vulture lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |
|               |                      |                       |                      |

#### Conclusion:

The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 53.28       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

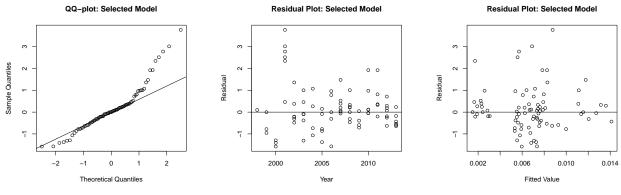
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.63        | 4.00 | 0.96    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.024        | 0.976        | 0.000        | Ref. Model 2 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake   | Year | Impute | Fitted | Std. Resid. |
|----|--------|------|--------|--------|-------------|
| 28 | Counts | 2001 | 0.01   | 0.01   | 3.02        |
| 48 | Cujo   | 2001 | 0.02   | 0.01   | 3.78        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

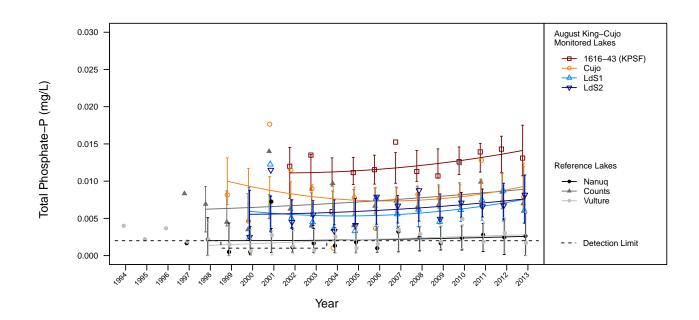
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 0.5847      | 2  | 0.7465  |
| Cujo           | 2.2639      | 2  | 0.3224  |
| LdS1           | 0.3725      | 2  | 0.8301  |
| LdS1           | 0.1042      | 2  | 0.9492  |
| LuJZ           | 0.1042      |    | 0.5452  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.6320    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.1800    |
| Monitored Lake    | Cujo            | 0.0470    |
| Monitored Lake    | LdS1            | 0.0740    |
| Monitored Lake    | LdS2            | 0.0820    |

• Conclusions:

Model fit for 1616-43 (KPSF), Cujo, LdS1, and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total phosphate-P for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.31e-02 | 1.41e-02 | 1.73e-03 | 1.07e-02 | 1.75e-02 | 5.07e-03       |
| Cujo           | 7.90e-03 | 9.28e-03 | 1.60e-03 | 6.15e-03 | 1.24e-02 | 4.68e-03       |
| LdS2           | 8.17e-03 | 7.61e-03 | 1.64e-03 | 4.40e-03 | 1.08e-02 | 4.80e-03       |
| LdS1           | 6.03e-03 | 7.55e-03 | 1.64e-03 | 4.33e-03 | 1.08e-02 | 4.80e-03       |
| Nanuq          | 2.63e-03 | 2.58e-03 | 1.56e-03 | 0.00e+00 | 5.64e-03 | NA             |
| Counts         | 6.98e-03 | 8.90e-03 | 1.56e-03 | 5.84e-03 | 1.20e-02 | NA             |
| Vulture        | 1.70e-03 | 2.79e-03 | 1.57e-03 | 0.00e+00 | 5.86e-03 | NA             |

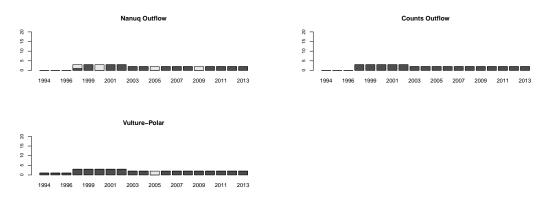
# 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------------------|
| Phosphorus | August | King-Cujo | Lake          | Water    | none                          | none                        | Tobit<br>regression | #2 shared slopes   | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Phosphate-P in King-Cujo Watershed Streams

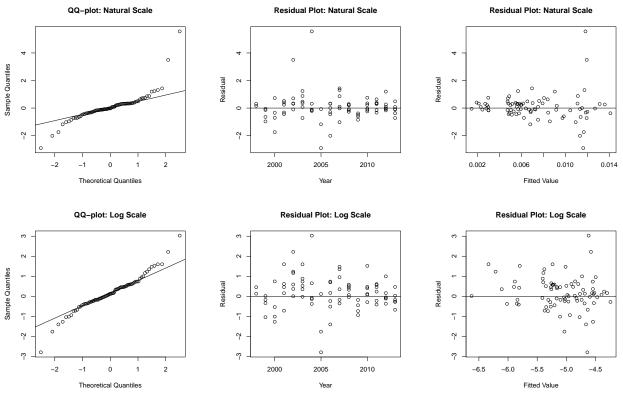
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

10-60% of data in Nanuq Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake         | Year | Impute | Fitted | Std. Resid. |
|----|--------------|------|--------|--------|-------------|
| 69 | Cujo Outflow | 2002 | 0.02   | 0.01   | 3.50        |
| 71 | Cujo Outflow | 2004 | 0.03   | 0.01   | 5.57        |

Outliers on log scale:

|    | Lake         | Year | Impute | Fitted | Std. Resid. |
|----|--------------|------|--------|--------|-------------|
| 71 | Cujo Outflow | 2004 | 0.03   | -4.62  | 3.03        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 102.80      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

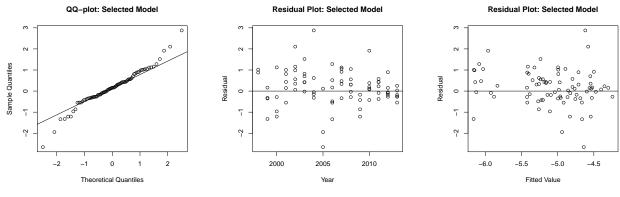
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 8.80        | 4.00 | 0.07    |

• Conclusions:

The slopes do not differ significantly among reference streams.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.636        | 0.364        | 0.000        | Indistinguishable support for 1 & 2; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



#### Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Streams

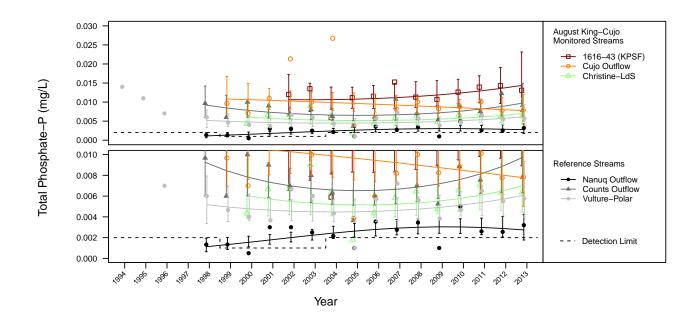
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 0.0195      | 2  | 0.9903  |
| Cujo Outflow             | 4.0822      | 2  | 0.1299  |
| Christine-Lac du Sauvage | 0.6227      | 2  | 0.7325  |
|                          |             |    |         |

• Conclusions:

No significant deviations were found when comparing monitored streams to reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.5540    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.1820    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.0620    |
| Monitored Stream    | Cujo Outflow             | 0.0520    |

#### • Conclusions:

Model fit for 161643 (KPSF), Cujo Outflow, and Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total phostphate-P for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.31e-02 | 1.44e-02 | 3.50e-03 | 8.92e-03 | 2.31e-02 | 1.02e-02       |
| Cujo Outflow             | 7.85e-03 | 7.78e-03 | 1.74e-03 | 5.01e-03 | 1.21e-02 | 5.10e-03       |
| Christine-Lac du Sauvage | 6.40e-03 | 6.98e-03 | 1.61e-03 | 4.44e-03 | 1.10e-02 | 4.70e-03       |
| Nanuq Outflow            | 3.20e-03 | 2.74e-03 | 6.13e-04 | 1.77e-03 | 4.25e-03 | NA             |
| Counts Outflow           | 7.80e-03 | 9.73e-03 | 2.13e-03 | 6.33e-03 | 1.49e-02 | NA             |
| Vulture-Polar            | 5.75e-03 | 6.09e-03 | 1.33e-03 | 3.97e-03 | 9.36e-03 | NA             |

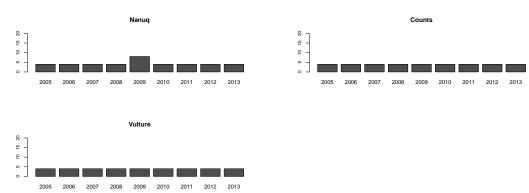
# 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------|
| Phosphorus | August | King-Cujo | Stream        | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | NA               | none                                        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

# Analysis of April Total Organic Carbon in Lakes of the King-Cujo Watershed and Lac du Sauvage

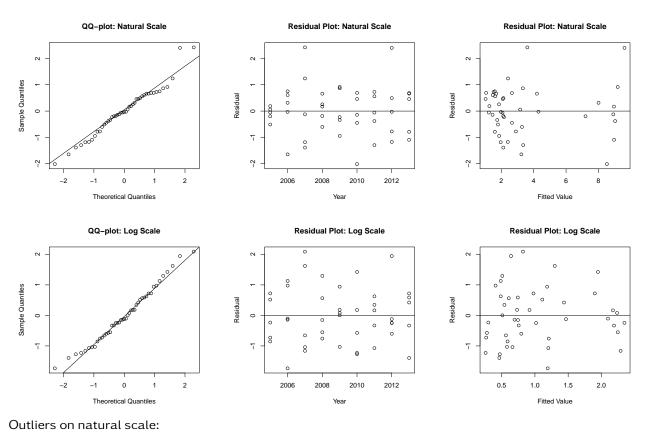
January 18, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model |
|---------------|-----------|------------|
| 2.89E-21      | 1.00E+00  | log model  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 102.11     | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

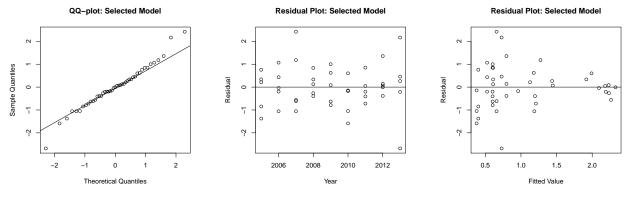
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 8.77       | 4.00 | 0.07    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

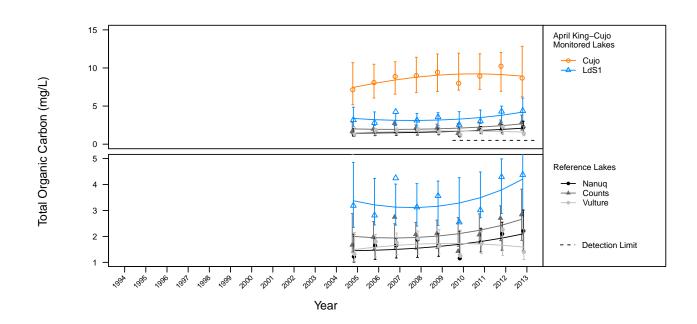
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 0.41        | 2.00 | 0.81    |
| LdS1 | 0.38        | 2.00 | 0.83    |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1100    |
| Monitored Lake    | Cujo            | 0.5180    |
| Monitored Lake    | LdS1            | 0.2620    |

• Conclusions:

Model fit for LdS1 is weak. Model fit for reference lakes is poor.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

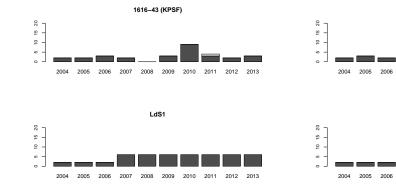
The estimated minimum detectable difference in mean total organic carbon for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 8.68E+00 | 8.93E+00 | 1.65E+00 | 6.21E+00 | 1.28E+01 | 4.84E+00       |
| LdS1    | 4.38E+00 | 4.21E+00 | 7.79E-01 | 2.93E+00 | 6.05E+00 | 2.28E+00       |
| Nanuq   | 2.21E+00 | 2.10E+00 | 3.88E-01 | 1.46E+00 | 3.02E+00 |                |
| Counts  | 2.84E+00 | 2.66E+00 | 4.92E-01 | 1.85E+00 | 3.82E+00 |                |
| Vulture | 1.40E+00 | 1.59E+00 | 2.94E-01 | 1.11E+00 | 2.29E+00 |                |

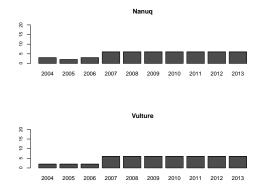
# 8 Final Summary Table

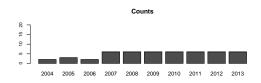
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed |       | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| тос       | April | King-Cujo | Lake          | Water    | none                          | log e | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Organic Carbon in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014


# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



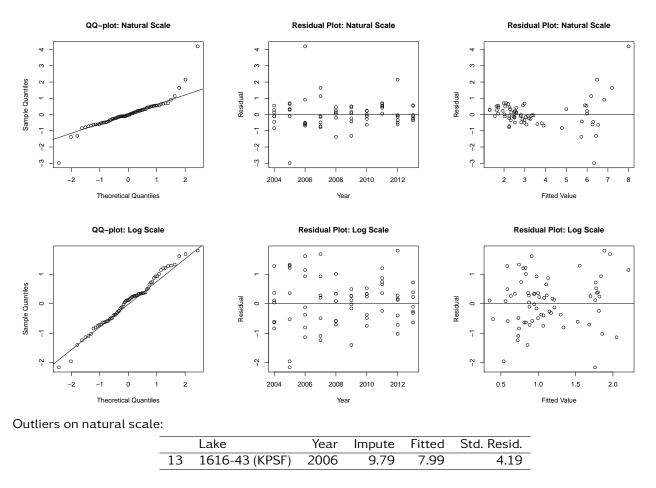
### 1.2 Reference





Cujo

LdS2


2007 2008 2009 2010 2011 2012 2013

2007

#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 31.98       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 11.55       | 4.00 | 0.02    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 0.3967      | 2  | 0.8201  |
| Cujo           | 5.4167      | 2  | 0.0666  |
| LdS1           | 6.9095      | 2  | 0.0316  |
| LdS2           | 5.8036      | 2  | 0.0549  |

• Conclusions:

LdS1 and LdS2 show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

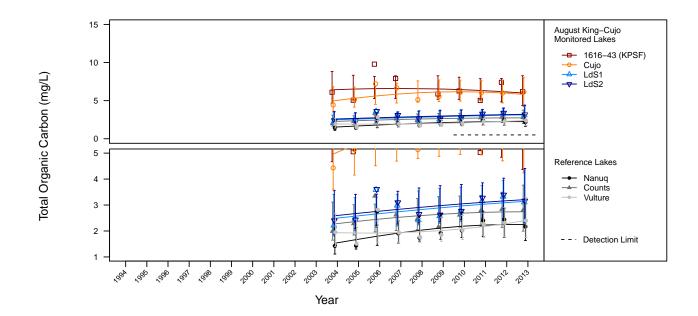
• Results:

|                 | Chi-squared | DF | P-value |
|-----------------|-------------|----|---------|
| LdS1-vs-Nanuq   | 33.8250     | 3  | 0.0000  |
| LdS1-vs-Counts  | 0.5312      | 3  | 0.9120  |
| LdS1-vs-Vulture | 14.9032     | 3  | 0.0019  |
| LdS2-vs-Nanuq   | 40.6578     | 3  | 0.0000  |
| LdS2-vs-Counts  | 1.6299      | 3  | 0.6526  |
| LdS2-vs-Vulture | 19.2955     | 3  | 0.0002  |
|                 |             |    |         |

• Conclusions:

LdS1 and LdS1 show significant deviation from the slopes of individual reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake TypeLake NameR-squaredReference LakeCounts0.1940Reference LakeNanuq0.3900Reference LakeVulture0.1970Monitored Lake1616-43 (KPSF)0.0250Monitored LakeCujo0.2560Monitored LakeLdS10.2610Monitored LakeLdS20.2580 |                |                |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-----------|
| Reference LakeNanuq0.3900Reference LakeVulture0.1970Monitored Lake1616-43 (KPSF)0.0250Monitored LakeCujo0.2560Monitored LakeLdS10.2610                                                                              | Lake Type      | Lake Name      | R-squared |
| Reference LakeVulture0.1970Monitored Lake1616-43 (KPSF)0.0250Monitored LakeCujo0.2560Monitored LakeLdS10.2610                                                                                                       | Reference Lake | Counts         | 0.1940    |
| Monitored Lake1616-43 (KPSF)0.0250Monitored LakeCujo0.2560Monitored LakeLdS10.2610                                                                                                                                  | Reference Lake | Nanuq          | 0.3900    |
| Monitored LakeCujo0.2560Monitored LakeLdS10.2610                                                                                                                                                                    | Reference Lake | Vulture        | 0.1970    |
| Monitored Lake LdS1 0.2610                                                                                                                                                                                          | Monitored Lake | 1616-43 (KPSF) | 0.0250    |
|                                                                                                                                                                                                                     | Monitored Lake | Cujo           | 0.2560    |
| Monitored Lake LdS2 0.2580                                                                                                                                                                                          | Monitored Lake | LdS1           | 0.2610    |
|                                                                                                                                                                                                                     | Monitored Lake | LdS2           | 0.2580    |

#### • Conclusions:

Model fit for Nanuq, Cujo, LdS1, and LdS2 is weak. Model fit for 1616-43 (KPSF), Counts, and Vulture lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

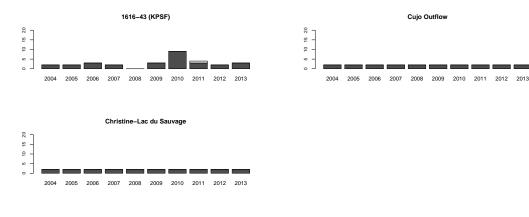
The estimated minimum detectable difference in mean total organic carbon for each monitored lake in 2013. Reference lakes are shown for comparison.

| -              | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 6.20E+00 | 6.01E+00 | 9.77E-01 | 4.37E+00 | 8.26E+00 | 2.86E+00       |
| Cujo           | 6.14E+00 | 5.82E+00 | 9.46E-01 | 4.24E+00 | 8.00E+00 | 2.77E+00       |
| LdS2           | 3.16E+00 | 3.21E+00 | 5.21E-01 | 2.33E+00 | 4.41E+00 | 1.52E+00       |
| LdS1           | 3.11E+00 | 3.14E+00 | 5.10E-01 | 2.28E+00 | 4.32E+00 | 1.49E+00       |
| Nanuq          | 2.17E+00 | 2.25E+00 | 3.65E-01 | 1.63E+00 | 3.09E+00 |                |
| Counts         | 2.80E+00 | 2.74E+00 | 4.45E-01 | 1.99E+00 | 3.77E+00 |                |
| Vulture        | 2.40E+00 | 2.40E+00 | 3.90E-01 | 1.75E+00 | 3.30E+00 |                |

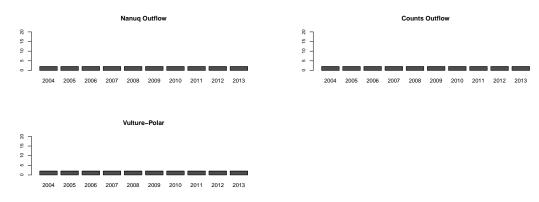
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|---------------------------------------------|
| ТОС       | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | LdS1 LdS2                                   |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Organic Carbon in King-Cujo Watershed Streams

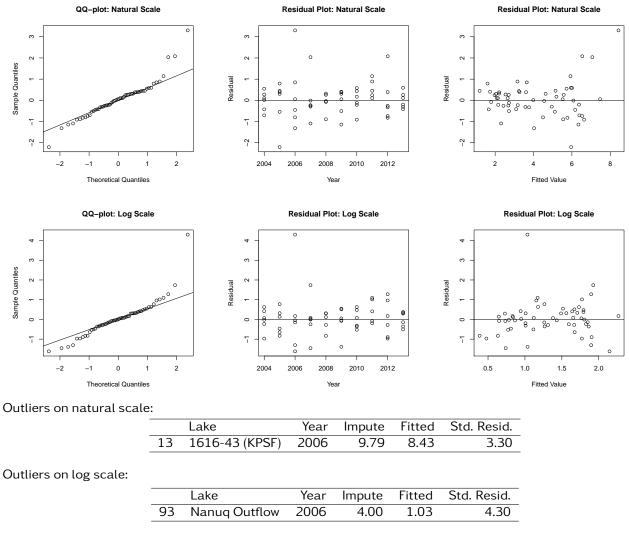
January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 14.62       | 6.00 | 0.02    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

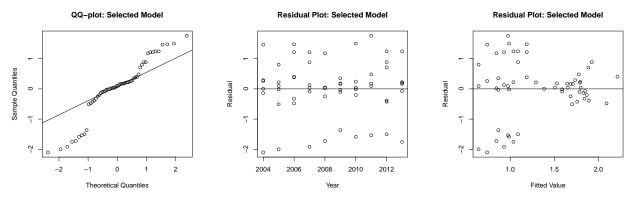
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 3.84        | 4.00 | 0.43    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

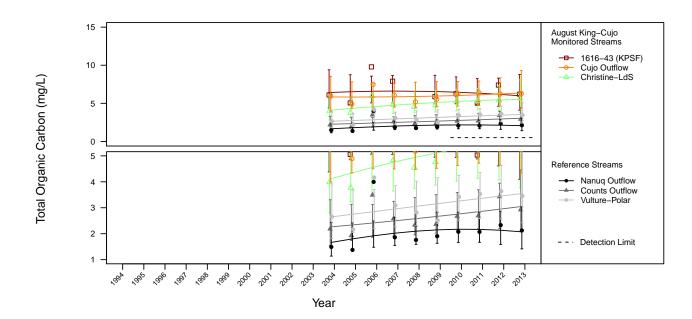
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 0.8709      | 2  | 0.6470  |
| Cujo Outflow             | 1.2100      | 2  | 0.5461  |
| Christine-Lac du Sauvage | 0.0230      | 2  | 0.9886  |

#### • Conclusions: No significant deviations were found when comparing monitored streams to reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0980    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.0280    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.4630    |
| Monitored Stream    | Cujo Outflow             | 0.0650    |

• Conclusions:

Model fit for Christine-Lac du Sauvage is weak. Model fit for reference lakes, 1616-43 (KPSF), and Cujo Outflow is poor. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total organic carbon for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 6.20E+00 | 6.00E+00 | 1.17E+00 | 4.10E+00 | 8.79E+00 | 3.42E+00       |
| Cujo Outflow             | 6.29E+00 | 6.36E+00 | 1.24E+00 | 4.34E+00 | 9.30E+00 | 3.62E+00       |
| Christine-Lac du Sauvage | 5.68E+00 | 5.52E+00 | 1.07E+00 | 3.77E+00 | 8.08E+00 | 3.14E+00       |
| Nanuq Outflow            | 2.12E+00 | 2.07E+00 | 4.03E-01 | 1.41E+00 | 3.03E+00 |                |
| Counts Outflow           | 2.92E+00 | 3.04E+00 | 5.92E-01 | 2.08E+00 | 4.46E+00 |                |
| Vulture-Polar            | 3.45E+00 | 3.55E+00 | 6.90E-01 | 2.42E+00 | 5.19E+00 |                |

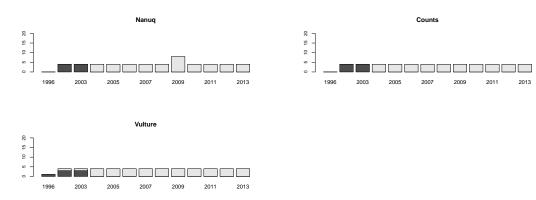
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| тос       | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

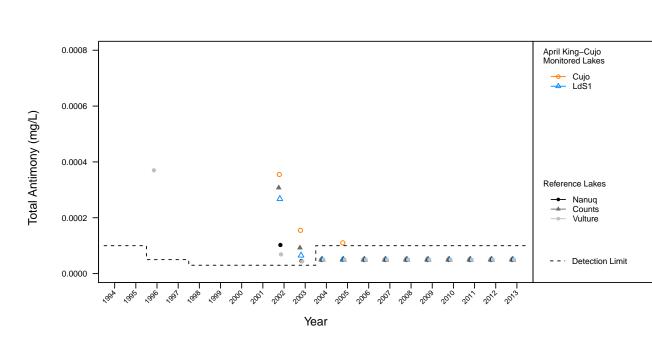
# Analysis of April Total Antimony in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in all lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



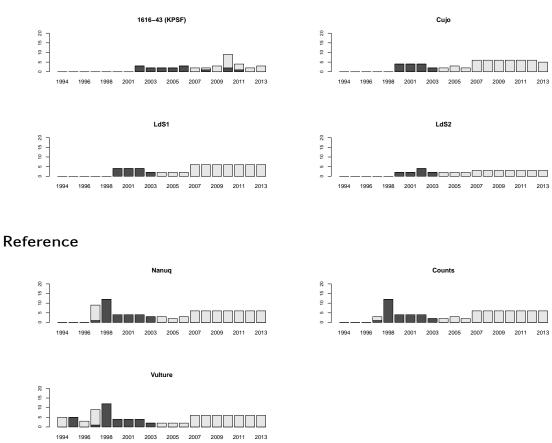
### 2 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 3 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------|---------------------------------------------|
| Antimony  | April | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | 0.02             | NA                                          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Antimony in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



#### Comment:

1.2

Greater than 60% of data in all reference and monitored lakes except 1616-43 (KPSF) was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in 1616-43 (KPSF) was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

# 2 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

# 3 Test Results for Monitored Lakes

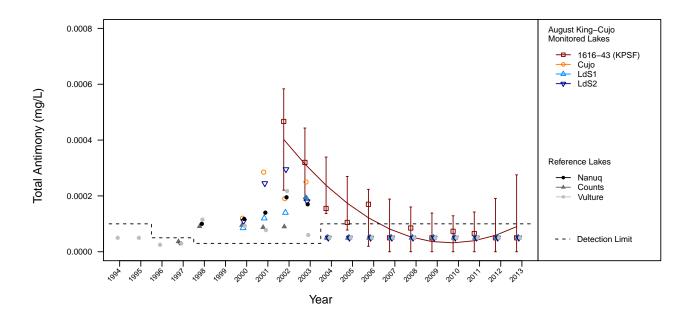
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |  |
|----------------|-------------|----|---------|--|
| 1616-43 (KPSF) | 10.2916     | 2  | 0.0058  |  |

• Conclusions: 1616-43 (KPSF) shows significant deviation from a constant slope of zero.

# 4 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.8690    |

• Conclusions:

Model provides a good fit for 1616-43 (KPSF).

### 5 Observed and Fitted Values



Note: The yearly observed mean for lakes are represented by symbols only.

# 6 Minimum Detectable Differences

The estimated minimum detectable difference in mean total antimony for each monitored lake in 2013. Reference lakes are shown for comparison.

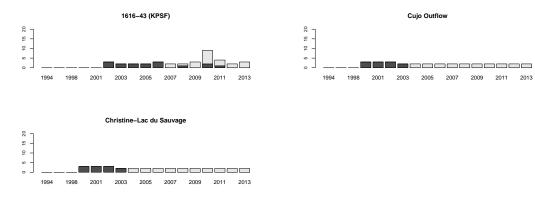
|                | Observed | Fitted | SE Fit   | Lower | Upper    | Min. Det. Diff |
|----------------|----------|--------|----------|-------|----------|----------------|
| 1616-43 (KPSF) | 5e-05    | 9e-05  | 9.46e-05 | 0e+00 | 2.75e-04 | 2.77e-04       |
| Cujo           | 5e-05    | NA     | NA       | NA    | NA       | NA             |
| LdS2           | 5e-05    | NA     | NA       | NA    | NA       | NA             |
| LdS1           | 5e-05    | NA     | NA       | NA    | NA       | NA             |
| Nanuq          | 5e-05    | NA     | NA       | NA    | NA       | NA             |
| Counts         | 5e-05    | NA     | NA       | NA    | NA       | NA             |
| Vulture        | 5e-05    | NA     | NA       | NA    | NA       | NA             |

Not performed, all reference lakes removed from analysis.

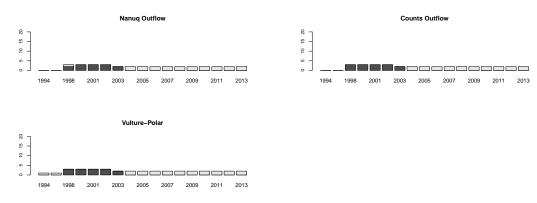
# 7 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                   | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Antimony  | August | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Cujo LdS1<br>LdS2 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.02             | 1616-43<br>(KPSF)                                       |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Antimony in King-Cujo Watershed Streams

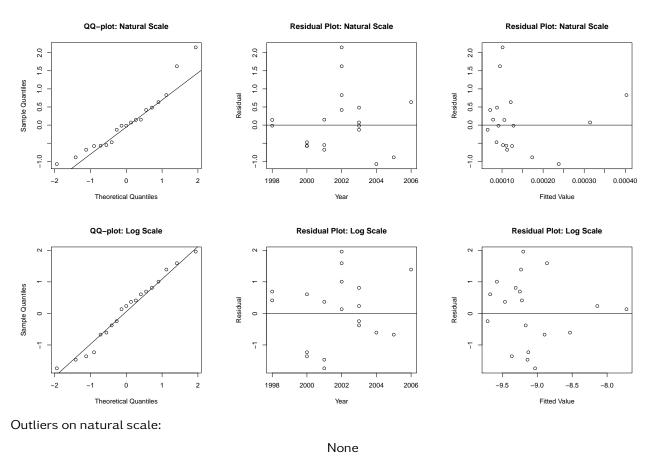
January 12, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in Nanuq Outflow, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Counts Outflow, Vulture-Polar, and 1616-43 (KPSF) was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

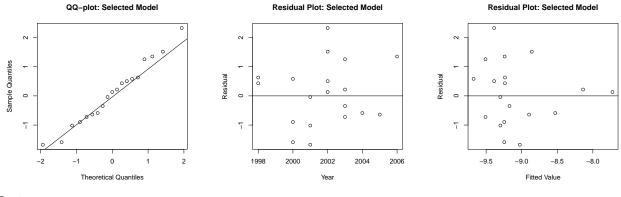
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.71        | 3.00 | 0.63    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.083        | 0.185        | 0.731        | Ref. Model 3 |

#### • Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 24.9330     | 3  | 0.0000  |
| Christine-Lac du Sauvage | 3.4448      | 3  | 0.3280  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from the common slope of reference streams.

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

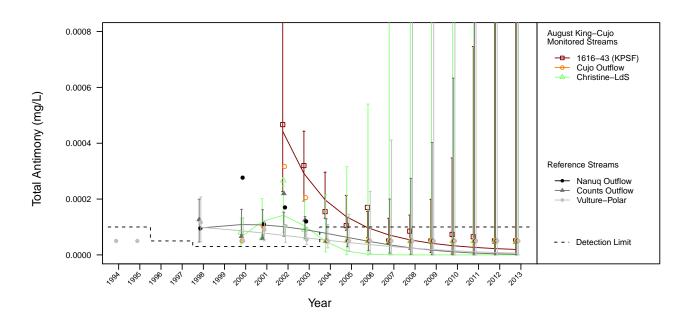
• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 1.4901      | 2  | 0.4747  |
| Christine-Lac du Sauvage | 3.1004      | 2  | 0.2122  |

• Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing monitored to the common slope of reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.5470    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.7590    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.5050    |

• Conclusions:

Models provide a good fit for all reference and monitored streams.

# 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

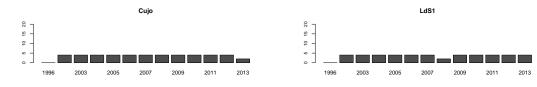
The estimated minimum detectable difference in mean total antimony for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 5e-05    | 1.96e-05 | 5.78e-05 | 6.05e-08 | 6.35e-03 | 1.69e-04       |
| Cujo Outflow             | 5e-05    | NA       | NA       | NA       | NA       | NA             |
| Christine-Lac du Sauvage | 5e-05    | 2.40e-17 | 4.64e-16 | 8.16e-34 | 7.06e-01 | 1.36e-15       |
| Nanuq Outflow            | 5e-05    | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 5e-05    | 2.09e-06 | 7.95e-06 | 1.19e-09 | 3.65e-03 | NA             |
| Vulture-Polar            | 5e-05    | 6.18e-06 | 3.32e-05 | 1.65e-10 | 2.31e-01 | NA             |

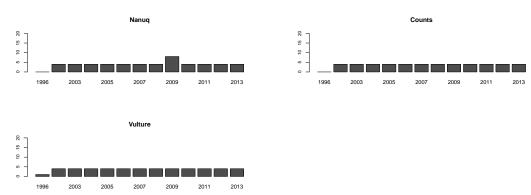
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                          | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|------------------------------------------------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------|
| Antimony  | August | King-Cujo | Stream        | Water    | Nanuq<br>Outflow<br>Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage | log e                       | Tobit<br>regression | #3 shared<br>intercept<br>& slope | 0.02             | 1616-43<br>(KPSF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Arsenic in Lakes of the King-Cujo Watershed and Lac du Sauvage

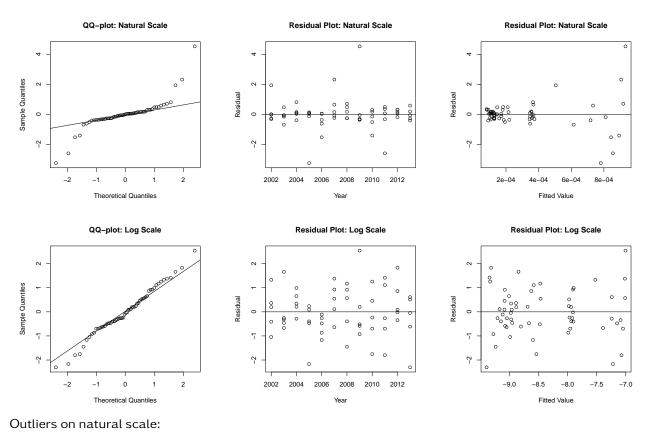
January 21, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



| - |    | Lake | Year | Impute | Fitted | Std. Resid. |
|---|----|------|------|--------|--------|-------------|
|   | 52 | Cujo | 2005 | 0.00   | 0.00   | -3.25       |
|   | 56 | Cujo | 2009 | 0.00   | 0.00   | 4.53        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 8.02E-197 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 20620.61   | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 16.41      | 4.00 | 0.00    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 16.36       | 2.00 | 0.00    |
| LdS1 | 0.07        | 2.00 | 0.96    |

• Conclusions:

Cujo Lake shows significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1b).

• Results:

|                 | Chi-squared | DF | P-value |
|-----------------|-------------|----|---------|
| Cujo-vs-Nanuq   | 4.5412      | 3  | 0.2086  |
| Cujo-vs-Counts  | 7398.0994   | 3  | 0.0000  |
| Cujo-vs-Vulture | 1357.9374   | 3  | 0.0000  |

• Conclusions:

Cujo Lake shows significant deviations from the slopes of individual reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.5310    |
| Reference Lake | Nanuq     | 0.4850    |
| Reference Lake | Vulture   | 0.5260    |
| Monitored Lake | Cujo      | 0.4360    |
| Monitored Lake | LdS1      | 0.0250    |

#### • Conclusions:

Model fit for Nanuq and Cujo lakes is weak. Model fit for LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

#### 0.0030 April King–Cujo Monitored Lakes 0.0025 Cujo 0.0020 📥 LdŚ1 0.0015 Total Arsenic (mg/L) 0.0010 0.0005 0.0000 0.0005 Reference Lakes 0.0004 Nanuq -Counts 0.0003 Vulture 0.0002 0.0001 - - · Detection Limit 0.0000 2004 2 Year

## 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

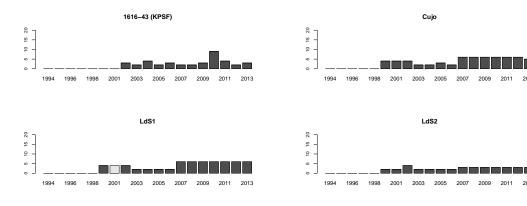
The estimated minimum detectable difference in mean total arsenic for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 7.73e-04 | 7.38e-04 | 9.33e-05 | 5.76e-04 | 9.46e-04 | 2.73e-04       |
| LdS1    | 3.67e-04 | 3.55e-04 | 4.49e-05 | 2.77e-04 | 4.55e-04 | 1.31e-04       |
| Nanuq   | 6.28e-05 | 8.60e-05 | 1.09e-05 | 6.71e-05 | 1.10e-04 | NA             |
| Counts  | 1.40e-04 | 1.55e-04 | 1.96e-05 | 1.21e-04 | 1.99e-04 | NA             |
| Vulture | 1.26e-04 | 1.30e-04 | 1.65e-05 | 1.02e-04 | 1.67e-04 | NA             |

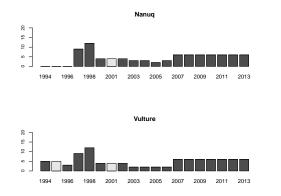
# 8 Final Summary Table

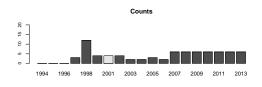
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model                          | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|---------------------------------------------|------------------|---------------------------------------------|
| Arsenic   | April | King-Cujo | Lake          | Water    | none                          | log e                       |               | #1b<br>separate<br>intercepts<br>n & slopes | 0.005            | Cujo                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Arsenic in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

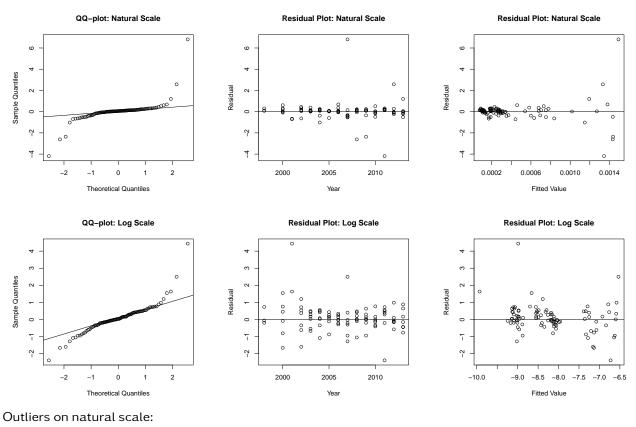

# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 14 | 1616-43 (KPSF) | 2007 | 0.00   | 0.00   | 6.81        |
| 18 | 1616-43 (KPSF) | 2011 | 0.00   | 0.00   | -4.19       |

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 48 | Cujo | 2001 | 0.00   | -8.99  | 4.44        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 64.88       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

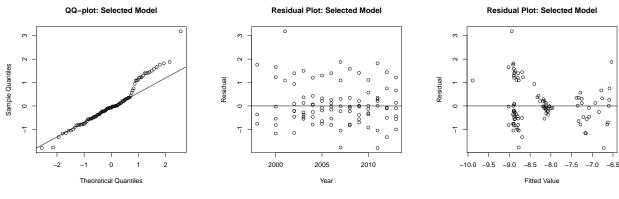
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.93        | 4.00 | 0.92    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 48 | Cujo | 2001 | 0.00   | -8.94  | 3.19        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

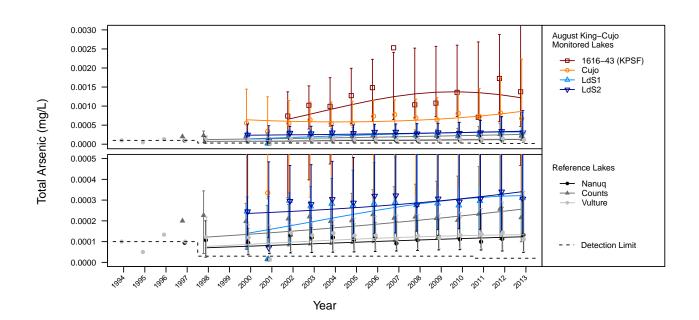
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | <u>.</u>    | 55 |         |
|----------------|-------------|----|---------|
|                | Chi-squared | DF | P-value |
| 1616-43 (KPSF) | 0.4995      | 2  | 0.7790  |
| Cujo           | 1.2974      | 2  | 0.5227  |
| LdS1           | 1.7207      | 2  | 0.4230  |
| LdS2           | 0.2432      | 2  | 0.8855  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0830    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.3500    |
| Monitored Lake    | Cujo            | 0.2560    |
| Monitored Lake    | LdS1            | 0.1430    |
| Monitored Lake    | LdS2            | 0.1140    |

• Conclusions:

Model fit for 1616-43 (KPSF) and Cujo Lake is weak. Model fit for reference lakes, LdS1, and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

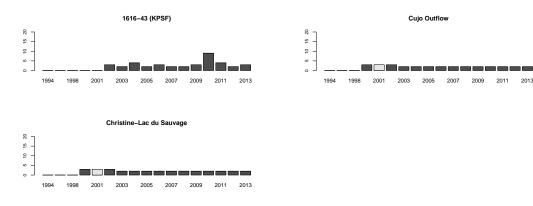
The estimated minimum detectable difference in mean total arsenic for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.38e-03 | 1.22e-03 | 5.98e-04 | 4.67e-04 | 3.19e-03 | 1.75e-03       |
| Cujo           | 6.75e-04 | 8.61e-04 | 4.18e-04 | 3.33e-04 | 2.23e-03 | 1.22e-03       |
| LdS2           | 3.06e-04 | 3.41e-04 | 1.66e-04 | 1.32e-04 | 8.83e-04 | 4.84e-04       |
| LdS1           | 3.10e-04 | 3.22e-04 | 1.56e-04 | 1.24e-04 | 8.34e-04 | 4.57e-04       |
| Nanuq          | 1.32e-04 | 1.23e-04 | 5.94e-05 | 4.80e-05 | 3.17e-04 | NA             |
| Counts         | 2.16e-04 | 2.56e-04 | 1.23e-04 | 9.96e-05 | 6.58e-04 | NA             |
| Vulture        | 1.12e-04 | 1.33e-04 | 6.42e-05 | 5.19e-05 | 3.43e-04 | NA             |

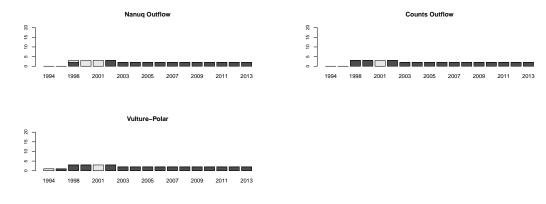
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Arsenic   | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 0.005            | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Arsenic in King-Cujo Watershed Streams

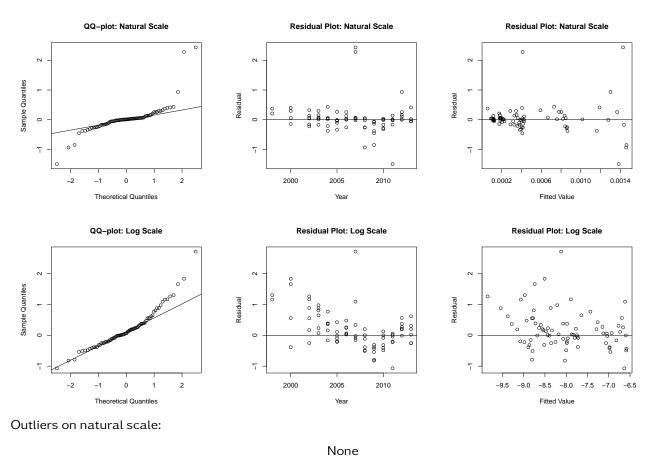
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

10-60% of data in Nanuq Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The natural model best meets the assumptions of normality and equal variance. AIC also reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

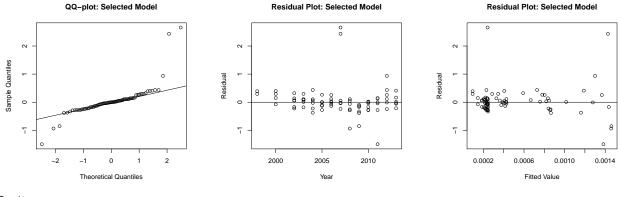
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 2.19        | 6.00 | 0.90    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.006        | 0.253        | 0.741        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



Outliers:

None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

# 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 49.8545     | 3  | 0.0000  |
| Cujo Outflow             | 14.4777     | 3  | 0.0023  |
| Christine-Lac du Sauvage | 1.3890      | 3  | 0.7081  |

• Conclusions:

All monitored streams except Christine-Lac du Sauvage show significant deviation from the common slope and intercept of reference streams.

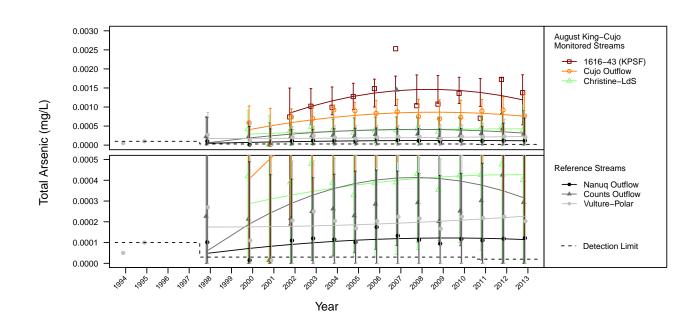
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 1.5693      | 2  | 0.4563  |
| Cujo Outflow             | 0.6953      | 2  | 0.7063  |
| Christine-Lac du Sauvage | 0.0237      | 2  | 0.9882  |

#### • Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing monitored to the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0430    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.1540    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.1750    |
| Monitored Stream    | Cujo Outflow             | 0.3900    |

#### • Conclusions:

Model fit for Cujo Outflow is weak. Model fit for reference streams, 1616-43 (KPSF), and Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.



# 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

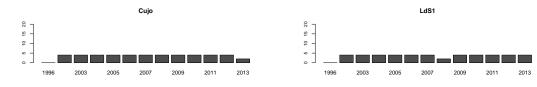
The estimated minimum detectable difference in mean total arsenic for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.38e-03 | 1.19e-03 | 3.35e-04 | 5.33e-04 | 1.85e-03 | 9.80e-04       |
| Cujo Outflow             | 7.67e-04 | 7.59e-04 | 3.17e-04 | 1.38e-04 | 1.38e-03 | 9.27e-04       |
| Christine-Lac du Sauvage | 4.02e-04 | 4.27e-04 | 3.17e-04 | 0.00e+00 | 1.05e-03 | 9.27e-04       |
| Nanuq Outflow            | 1.21e-04 | 1.14e-04 | 3.02e-04 | 0.00e+00 | 7.07e-04 | NA             |
| Counts Outflow           | 2.94e-04 | 3.16e-04 | 3.02e-04 | 0.00e+00 | 9.09e-04 | NA             |
| Vulture-Polar            | 2.03e-04 | 2.27e-04 | 3.02e-04 | 0.00e+00 | 8.20e-04 | NA             |

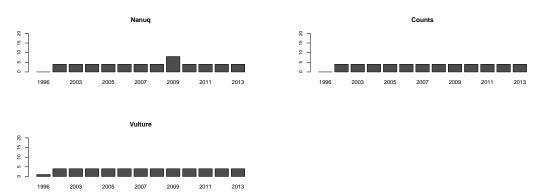
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------|
| Arsenic   | August | King-Cujo | Stream        | Water    | none                          | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope | 0.005            | 1616-43<br>(KPSF)<br>Cujo<br>Outflow        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Barium in Lakes of the King-Cujo Watershed and Lac du Sauvage

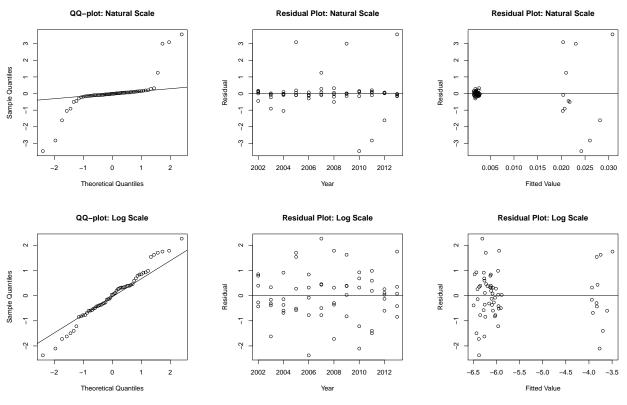
January 18, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data was less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 0.03   | 0.02   | 3.09        |
| 57 | Cujo | 2010 | 0.02   | 0.02   | -3.46       |
| 60 | Cujo | 2013 | 0.04   | 0.03   | 3.56        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 9.70E-111 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 10445.58   | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

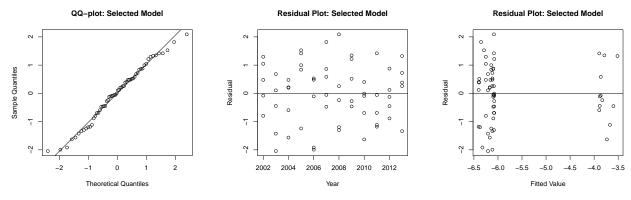
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 4.21       | 4.00 | 0.38    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

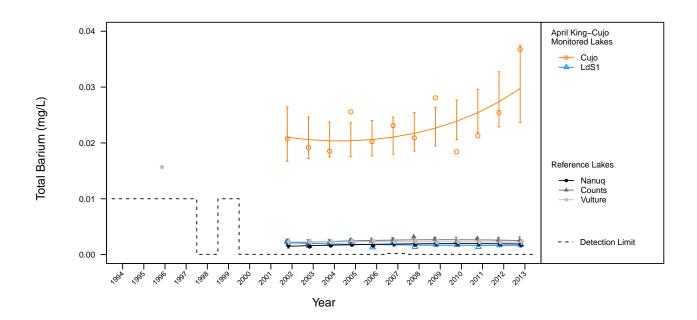
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 2.46        | 2.00 | 0.29    |
| LdS1 | 3.59        | 2.00 | 0.17    |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1070    |
| Monitored Lake    | Cujo            | 0.3980    |
| Monitored Lake    | LdS1            | 0.1670    |

• Conclusions:

Model fit for Cujo Lake is weak. Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

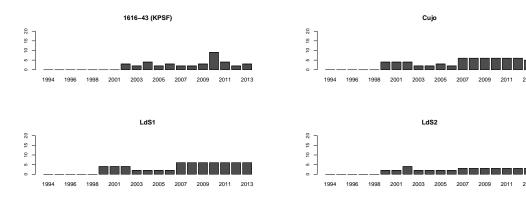
The estimated minimum detectable difference in mean total barium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 3.68e-02 | 2.98e-02 | 3.48e-03 | 2.37e-02 | 3.74e-02 | 1.02e-02       |
| LdS1    | 1.78e-03 | 1.67e-03 | 1.95e-04 | 1.33e-03 | 2.10e-03 | 5.72e-04       |
| Nanuq   | 1.78e-03 | 1.91e-03 | 2.23e-04 | 1.52e-03 | 2.40e-03 | NA             |
| Counts  | 2.48e-03 | 2.53e-03 | 2.96e-04 | 2.01e-03 | 3.18e-03 | NA             |
| Vulture | 2.30e-03 | 2.23e-03 | 2.60e-04 | 1.77e-03 | 2.80e-03 | NA             |

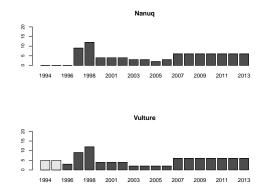
# 8 Final Summary Table

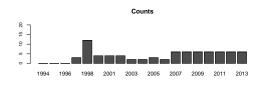
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                           | Reference<br>Model       | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|-----------------------------------------|--------------------------|------------------|---------------------------------------------------------|
| Barium    | April | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regressio | #2 shared<br>slopes<br>n | 1                | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Barium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

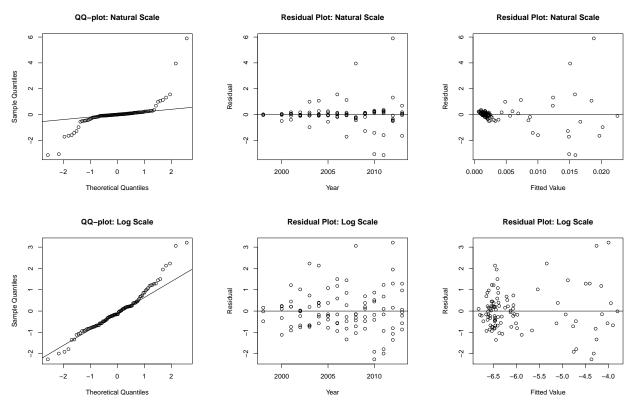

# 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 0.02   | 0.02   | 3.95        |
| 17 | 1616-43 (KPSF) | 2010 | 0.01   | 0.01   | -3.07       |
| 18 | 1616-43 (KPSF) | 2011 | 0.01   | 0.02   | -3.14       |
| 19 | 1616-43 (KPSF) | 2012 | 0.03   | 0.02   | 5.90        |

Outliers on log scale:

|        | Lake           | Year | Impute | Fitted | Std. Resid. |
|--------|----------------|------|--------|--------|-------------|
| 15     | 1616-43 (KPSF) | 2008 | 0.02   | -4.26  | 3.06        |
| <br>19 | 1616-43 (KPSF) | 2012 | 0.03   | -3.99  | 3.21        |

#### AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 65.04       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.28        | 4.00 | 0.99    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

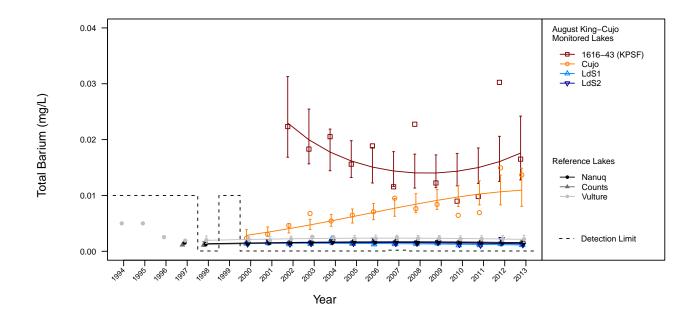
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 1.9938      | 2  | 0.3690  |
| Cujo           | 44.9410     | 2  | 0.0000  |
| LdS1           | 1.6982      | 2  | 0.4278  |
| LdS2           | 0.1423      | 2  | 0.9313  |

• Conclusions:

Cujo Lake shows significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0780    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.1940    |
| Monitored Lake    | Cujo            | 0.7700    |
| Monitored Lake    | LdS1            | 0.2350    |
| Monitored Lake    | LdS2            | 0.0520    |

#### • Conclusions:

Model fit for LdS1 is weak. Model fit for reference lakes, 1616-43 (KPSF), and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

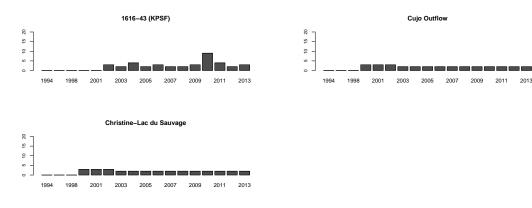
The estimated minimum detectable difference in mean total barium for each monitored lake in 2013. Reference lakes are shown for comparison.

| -              | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.65e-02 | 1.76e-02 | 2.87e-03 | 1.28e-02 | 2.42e-02 | 8.39e-03       |
| Cujo           | 1.37e-02 | 1.09e-02 | 1.72e-03 | 8.05e-03 | 1.49e-02 | 5.02e-03       |
| LdS2           | 1.21e-03 | 1.35e-03 | 2.12e-04 | 9.95e-04 | 1.84e-03 | 6.21e-04       |
| LdS1           | 1.13e-03 | 1.13e-03 | 1.78e-04 | 8.34e-04 | 1.54e-03 | 5.21e-04       |
| Nanuq          | 1.60e-03 | 1.55e-03 | 2.35e-04 | 1.15e-03 | 2.08e-03 | NA             |
| Counts         | 1.58e-03 | 1.32e-03 | 2.01e-04 | 9.83e-04 | 1.78e-03 | NA             |
| Vulture        | 2.17e-03 | 2.13e-03 | 3.24e-04 | 1.58e-03 | 2.87e-03 | NA             |

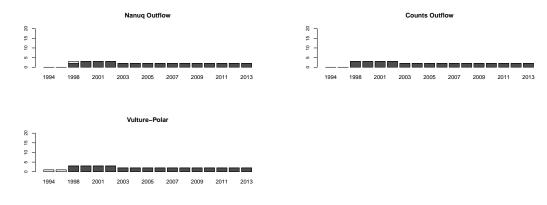
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Barium    | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 1                | Cujo                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Barium in King-Cujo Watershed Streams

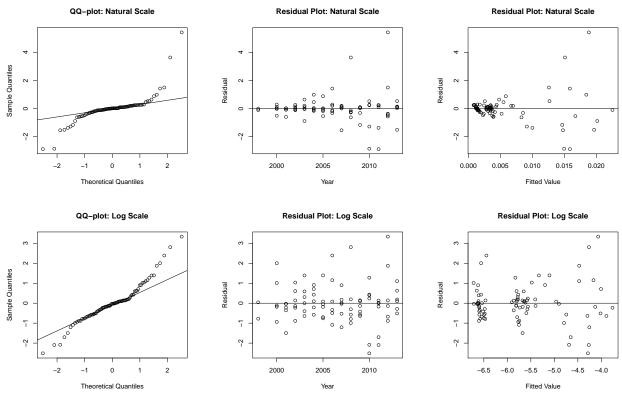
January 18, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 0.02   | 0.02   | 3.63        |
| 19 | 1616-43 (KPSF) | 2012 | 0.03   | 0.02   | 5.42        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 0.03   | -4.07  | 3.34        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 163.56      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

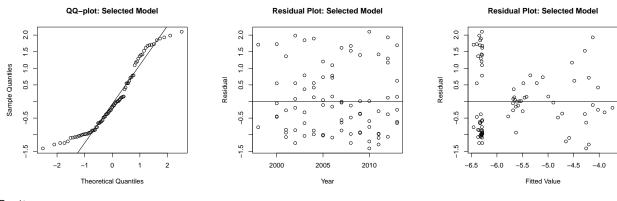
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 5.29        | 4.00 | 0.26    |

Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

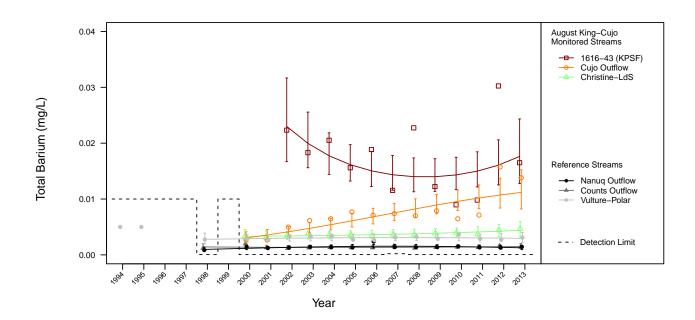
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 0.9094      | 2  | 0.6346  |
| Cujo Outflow             | 15.3763     | 2  | 0.0005  |
| Christine-Lac du Sauvage | 0.6181      | 2  | 0.7341  |

#### • Conclusions: Cujo Ouflow shows significant deviation from the common slope of reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0140    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.2100    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.7100    |
| Monitored Stream    | Cujo Outflow             | 0.7410    |

#### • Conclusions:

Model fit for reference lakes and 1616-43 (KPSF) is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total barium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.65e-02 | 1.76e-02 | 2.90e-03 | 1.28e-02 | 2.43e-02 | 8.49e-03       |
| Cujo Outflow             | 1.38e-02 | 1.12e-02 | 1.76e-03 | 8.21e-03 | 1.52e-02 | 5.16e-03       |
| Christine-Lac du Sauvage | 4.63e-03 | 4.39e-03 | 6.92e-04 | 3.22e-03 | 5.98e-03 | 2.03e-03       |
| Nanuq Outflow            | 1.44e-03 | 1.27e-03 | 1.93e-04 | 9.40e-04 | 1.71e-03 | NA             |
| Counts Outflow           | 1.46e-03 | 1.50e-03 | 2.28e-04 | 1.11e-03 | 2.02e-03 | NA             |
| Vulture-Polar            | 3.09e-03 | 2.97e-03 | 4.51e-04 | 2.20e-03 | 4.00e-03 | NA             |

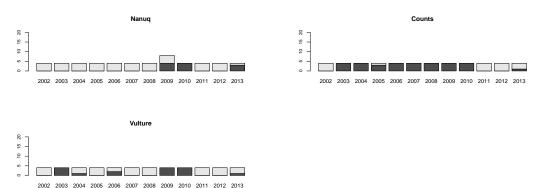
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Barium    | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 1                | Cujo<br>Outflow                             |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

# Analysis of April Total Boron in Lakes of the King-Cujo Watershed and Lac du Sauvage

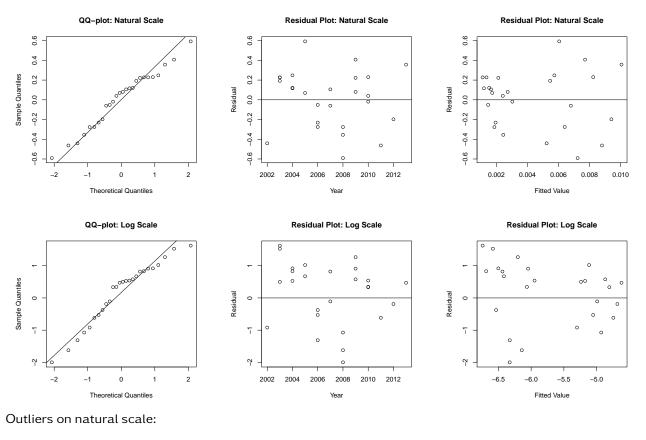
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Nanuq and Vulture lakes was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Counts and LdS1 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

### 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 9.90E-53  | natural model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

Two of three reference lakes were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

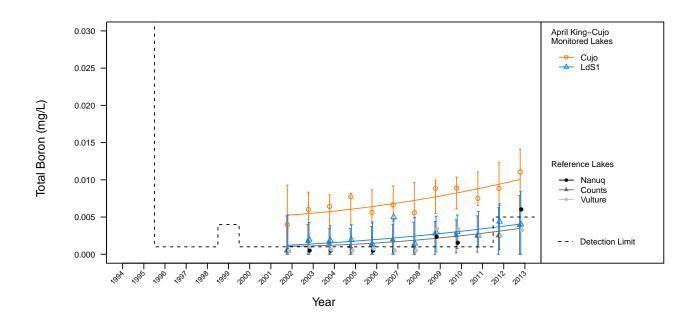
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 3.5740      | 2  | 0.1675  |
| LdS1 | 1.1538      | 2  | 0.5616  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |  |  |
|----------------|-----------|-----------|--|--|
| Reference Lake | Counts    | 0.7370    |  |  |
| Monitored Lake | Cujo      | 0.6810    |  |  |
| Monitored Lake | LdS1      | 0.4610    |  |  |

• Conclusions:

Model fit for LdS1 is weak. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

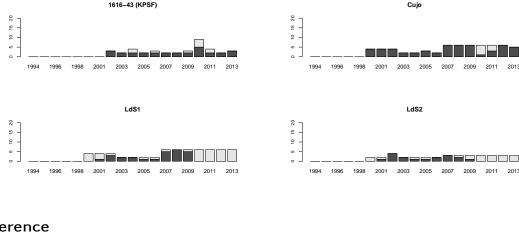
The estimated minimum detectable difference in mean total boron for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.11e-02 | 1.01e-02 | 2.07e-03 | 5.99e-03 | 1.41e-02 | 6.06e-03       |
| LdS1    | 4.02e-03 | 4.07e-03 | 2.21e-03 | 0.00e+00 | 8.40e-03 | 6.47e-03       |
| Nanuq   | 6.02e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts  | 3.90e-03 | 3.47e-03 | 2.26e-03 | 0.00e+00 | 7.90e-03 | NA             |
| Vulture | 3.25e-03 | NA       | NA       | NA       | NA       | NA             |

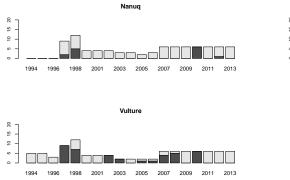
# 8 Final Summary Table

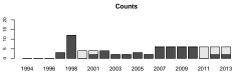
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model     | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|------------------------|------------------|---------------------------------------------------------|
| Boron     | April | King-Cujo | Lake          | Water    | Nanuq<br>Vulture              | none                        | Tobit<br>regressior | #1a slope<br>n of zero | 1.5              | Cujo                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Boron in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

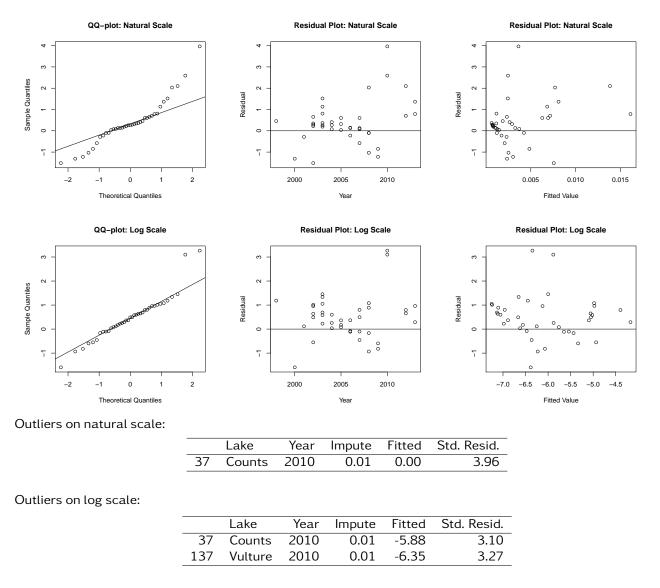

### 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



### 1.2 Reference






#### Comment:

Greater than 60% of data in Nanuq Lake was less than the detection limit. This lake was excluded from further analyses. 10-60% of data in Counts, Vulture, 1616-43 (KPSF), Cujo, LdS1, and LdS2 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 12.50       | 3.00 | 0.01    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

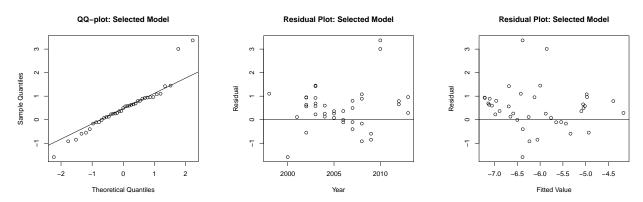
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.41        | 2.00 | 0.81    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.307        | 0.683        | 0.010        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



Outliers:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 37  | Counts  | 2010 | 0.01   | -5.86  | 3.01        |
| 137 | Vulture | 2010 | 0.01   | -6.38  | 3.37        |

#### Conclusion:

Reduced model shows dependence on year and fitted value. Results should be interpreted with caution.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

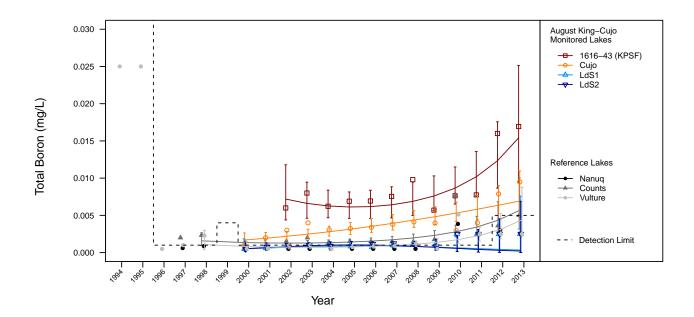
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 4.3537      | 2  | 0.1134  |
| Cujo           | 4.6621      | 2  | 0.0972  |
| LdS1           | 2.3041      | 2  | 0.3160  |
| LdS2           | 2.7232      | 2  | 0.2562  |
|                |             |    |         |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.5810    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.6710    |
| Monitored Lake    | Cujo            | 0.6790    |
| Monitored Lake    | LdS1            | 0.3220    |
| Monitored Lake    | LdS2            | 0.3400    |

• Conclusions:

 $Model \ fit \ for \ LdS1 \ and \ LdS2 \ is \ weak. \ Results \ of \ statistical \ tests \ and \ MDD \ should \ be \ interpreted \ with \ caution.$ 

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

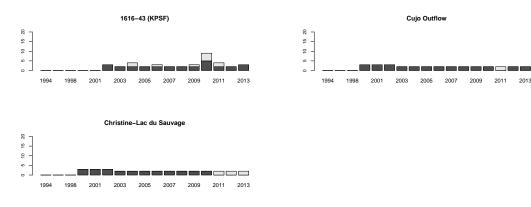
The estimated minimum detectable difference in mean total boron for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.69e-02 | 1.54e-02 | 3.84e-03 | 9.45e-03 | 2.51e-02 | 1.12e-02       |
| Cujo           | 9.50e-03 | 6.92e-03 | 1.63e-03 | 4.36e-03 | 1.10e-02 | 4.77e-03       |
| LdS2           | 2.50e-03 | 2.06e-04 | 3.69e-04 | 6.17e-06 | 6.89e-03 | 1.08e-03       |
| LdS1           | 2.50e-03 | 3.41e-04 | 5.39e-04 | 1.53e-05 | 7.58e-03 | 1.58e-03       |
| Nanuq          | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 5.00e-03 | 5.64e-03 | 1.67e-03 | 3.16e-03 | 1.01e-02 | NA             |
| Vulture        | 2.50e-03 | 4.40e-03 | 1.55e-03 | 2.20e-03 | 8.78e-03 | NA             |

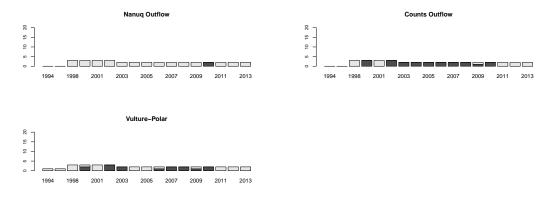
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------------------|
| Boron     | August | King-Cujo | Lake          | Water    | Nanuq                         | log e                       | Tobit<br>regression | #2 shared slopes   | 1.5              | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Boron in King-Cujo Watershed Streams

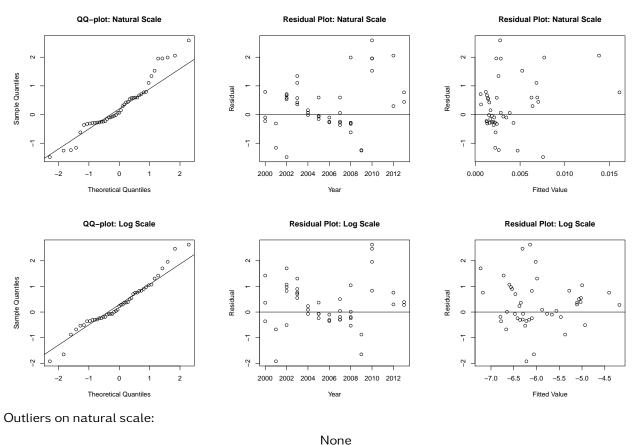
#### January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

Greater than 60% of data in Nanuq Outflow was less than the detection limit. This stream was excluded from further analyses. 10-60% of data in Counts Outflow, Vulture-Polar, 1616-43 (KPSF), and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 10.04       | 3.00 | 0.02    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Streams: reference model 2

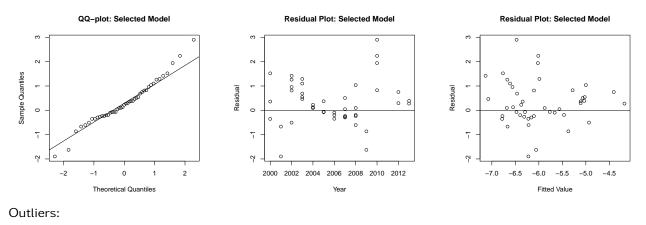
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.76        | 2.00 | 0.41    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.443        | 0.496        | 0.061        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



None

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

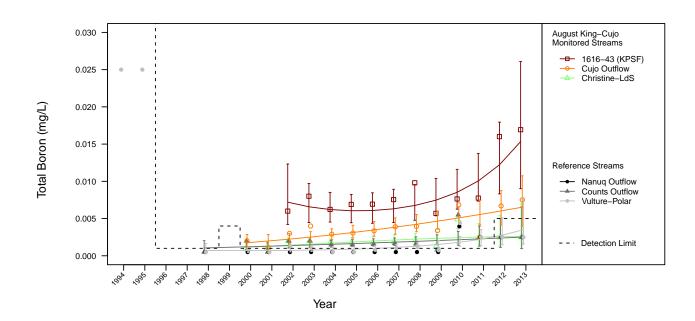
• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 1.7846      | 2  | 0.4097  |
| Cujo Outflow             | 0.7546      | 2  | 0.6857  |
| Christine-Lac du Sauvage | 0.5306      | 2  | 0.7670  |

#### Conclusions:

No significant deviations were found when comparing monitored streams to reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.4440    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.6690    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.4590    |
| Monitored Stream    | Cujo Outflow             | 0.5860    |

#### • Conclusions:

Model fit for reference lakes and Christine-Lac du Sauvage is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total boron for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.69e-02 | 1.53e-02 | 4.16e-03 | 9.01e-03 | 2.61e-02 | 1.22e-02       |
| Cujo Outflow             | 7.50e-03 | 6.53e-03 | 1.66e-03 | 3.97e-03 | 1.07e-02 | 4.85e-03       |
| Christine-Lac du Sauvage | 2.50e-03 | 2.60e-03 | 1.31e-03 | 9.69e-04 | 7.00e-03 | 3.84e-03       |
| Nanuq Outflow            | 2.50e-03 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 2.50e-03 | 2.51e-03 | 1.23e-03 | 9.57e-04 | 6.56e-03 | NA             |
| Vulture-Polar            | 2.50e-03 | 3.50e-03 | 1.43e-03 | 1.57e-03 | 7.80e-03 | NA             |

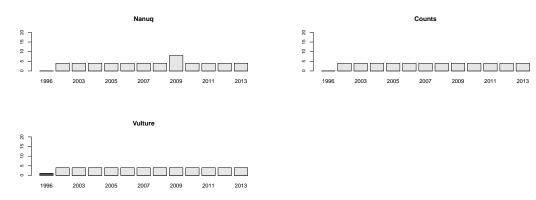
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------|
| Boron     | August | King-Cujo | Stream        | Water    | Nanuq<br>Outflow              | log e                       | Tobit<br>regression | #2 shared<br>slopes | 1.5              | none                                        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

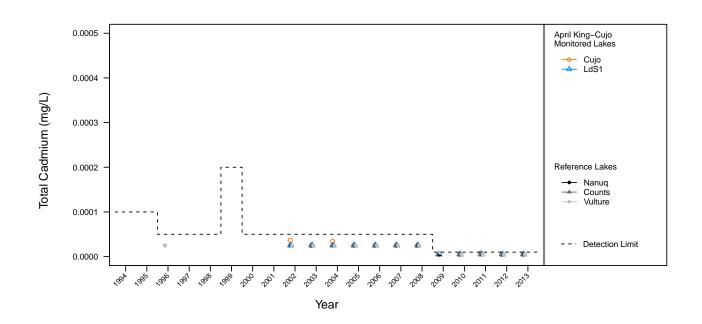

# Analysis of April Total Cadmium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in all lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



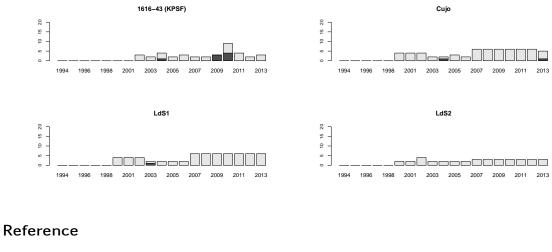
### 2 Observed and Fitted Values

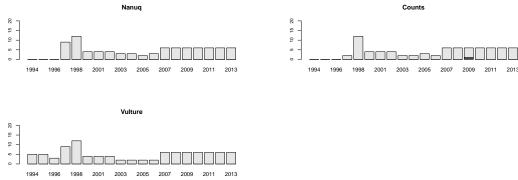
Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 3 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model |                        | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------------------|
| Cadmium   | April | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

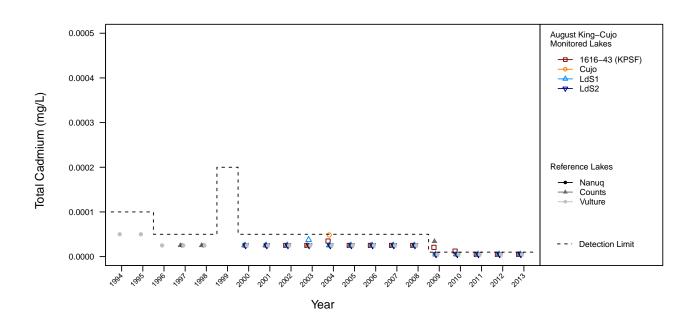

# Analysis of August Total Cadmium in Lakes of the King-Cujo Watershed and Lac du Sauvage


January 12, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored






Comment:

1.2

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed.



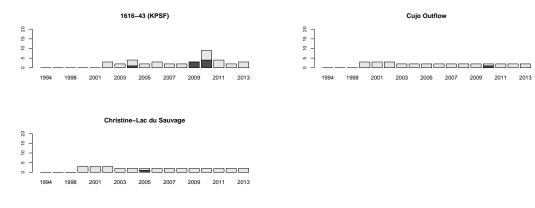
### 2 Observed and Fitted Values

Note: The yearly observed mean for lakes are represented by symbols only.

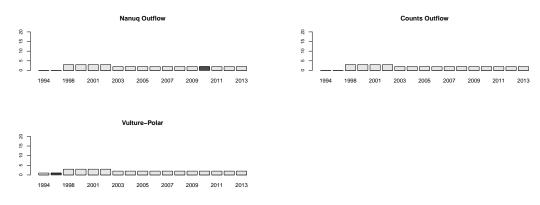
### 3 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------------------|
| Cadmium   | August | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                                      |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

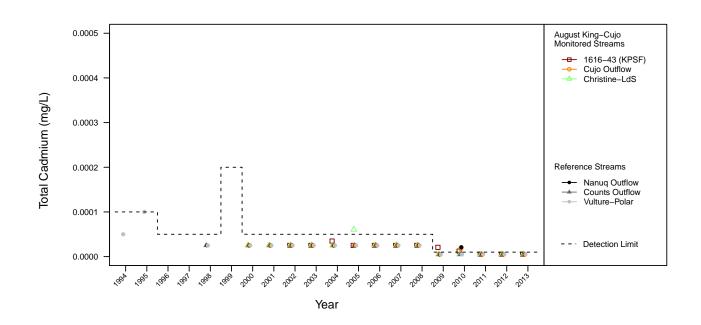

# Analysis of August Total Cadmium in King-Cujo Watershed Streams

January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

Greater than 60% of data in all reference and monitored streams was less than the detection limit. All streams were excluded from further analyses. Tests not performed.



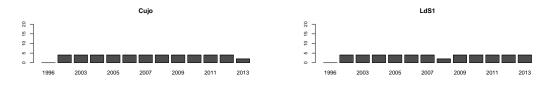
### 2 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

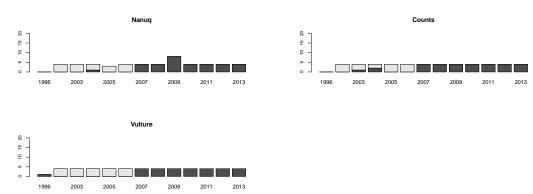
### 3 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------------|---------------------------------------------------------|
| Cadmium   | August | King-Cujo | Stream        | Water    | all                           | NA                          | NA            | NA                 | hardness-<br>dependent | NA                                                      |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


# Analysis of April Total Copper in Lakes of the King-Cujo Watershed and Lac du Sauvage

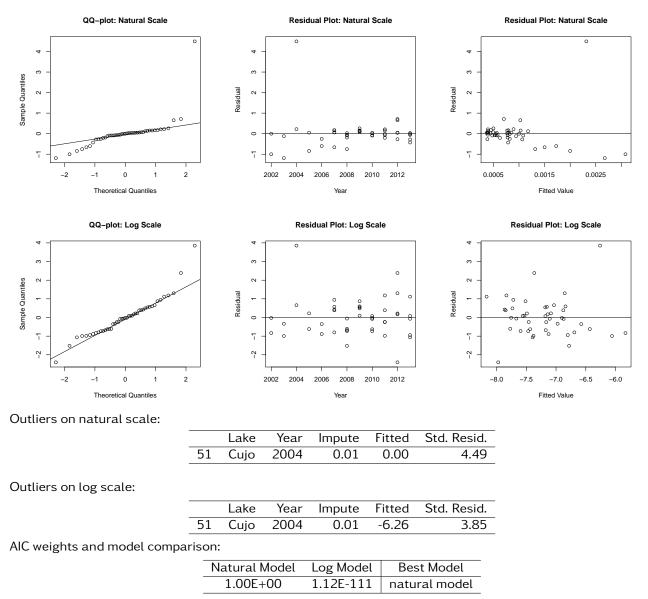
January 12, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

10-60% of data in Counts, Nanuq, and Vulture lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

# 2 Initial Model Fit



#### Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

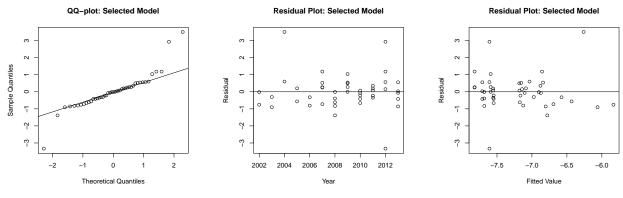
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.35       | 6.00 | 0.97    |

#### • Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.053        | 0.649        | 0.298        | Indistinguishable support for 2 & 3; choose Model 3. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|     | Lake  | Year | Impute | Fitted | Std. Resid. |
|-----|-------|------|--------|--------|-------------|
| 51  | Cujo  | 2004 | 0.01   | -6.26  | 3.51        |
| 119 | Nanuq | 2012 | 0.00   | -7.61  | -3.33       |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 20.3313     | 3  | 0.0001  |
| LdS1 | 8.4473      | 3  | 0.0376  |

• Conclusions:

All monitored lakes show significant deviations from the common slope and intercept of reference lakes.

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

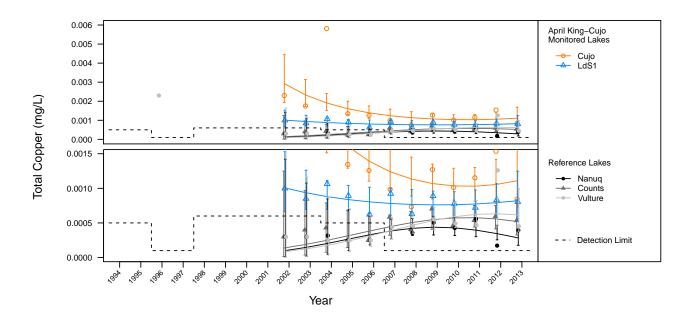
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 9.2929      | 2  | 0.0096  |
| LdS1 | 4.5682      | 2  | 0.1019  |

• Conclusions:

When allowing for differences in intercept, Cujo Lake shows significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.5510    |
| Monitored Lake    | Cujo            | 0.4160    |
| Monitored Lake    | LdS1            | 0.2890    |

#### • Conclusions:

Model fit for Cujo and LdS1 is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

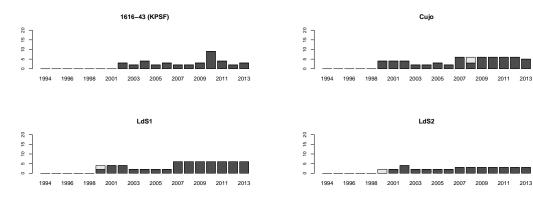
The estimated minimum detectable difference in mean total copper for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 8.45e-04 | 1.11e-03 | 2.37e-04 | 7.30e-04 | 1.69e-03 | 6.94e-04       |
| LdS1    | 8.05e-04 | 8.21e-04 | 1.75e-04 | 5.40e-04 | 1.25e-03 | 5.13e-04       |
| Nanuq   | 3.92e-04 | 2.84e-04 | 6.89e-05 | 1.77e-04 | 4.57e-04 | NA             |
| Counts  | 5.35e-04 | 5.22e-04 | 1.25e-04 | 3.27e-04 | 8.34e-04 | NA             |
| Vulture | 4.52e-04 | 6.16e-04 | 1.51e-04 | 3.81e-04 | 9.95e-04 | NA             |

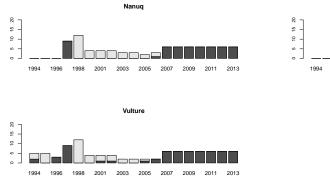
# 8 Final Summary Table

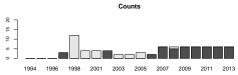
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Copper    | April | King-Cujo | Lake          | Water    | 1616-43<br>(KPSF)<br>LdS2     | log e                       | Tobit<br>regression | #3 shared<br>intercept<br>& slope | NA               | Cujo LdS1                                               |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Copper in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014

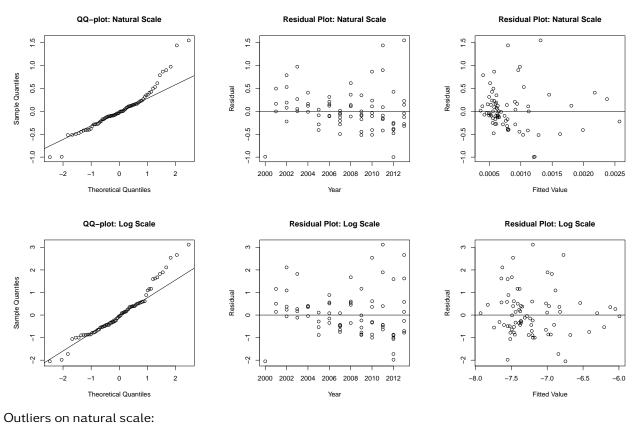

### 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored



#### 1.2 Reference






#### Comment:

10-60% of data in Counts, Nanuq, and Vulture lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

# 2 Initial Model Fit



None

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 98 | LdS2 | 2011 | 0.00   | -7.20  | 3.12        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

#### Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 4.79        | 6.00 | 0.57    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Trend for All Reference Lakes: reference model 2

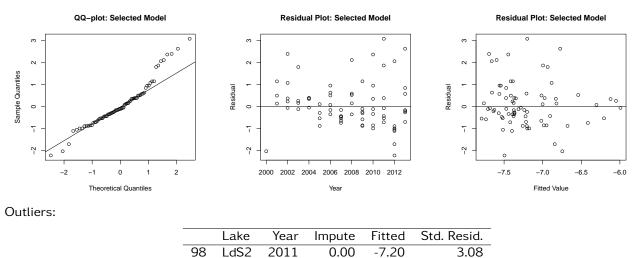
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 3.29        | 4.00 | 0.51    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### **Compare Reference Models using AIC Weights** 3.3


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.103        | 0.680        | 0.217        | Ref. Model 2 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although contrasts suggest that reference lakes share a common slope and intercept, AIC suggests that reference lakes are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

Reduced model shows dependence on year and fitted value. Results should be interpreted with caution.

# 4 Test Results for Monitored Lakes

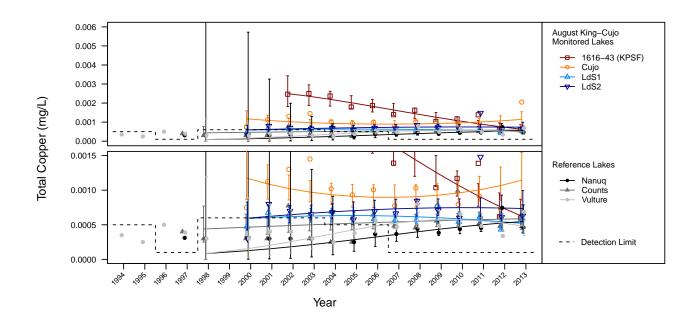
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 47.2922     | 2  | 0.0000  |
| Cujo           | 3.5865      | 2  | 0.1664  |
| LdS1           | 4.4237      | 2  | 0.1095  |
| LdS2           | 0.6499      | 2  | 0.7226  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |  |  |
|-------------------|-----------------|-----------|--|--|
| Pooled Ref. Lakes | (more than one) | 0.3230    |  |  |
| Monitored Lake    | 1616-43 (KPSF)  | 0.8740    |  |  |
| Monitored Lake    | Cujo            | 0.0970    |  |  |
| Monitored Lake    | LdS1            | 0.1630    |  |  |
| Monitored Lake    | LdS2            | 0.0730    |  |  |

• Conclusions:

Model fit for reference lakes weak. Model fit for Cujo, LdS1, and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

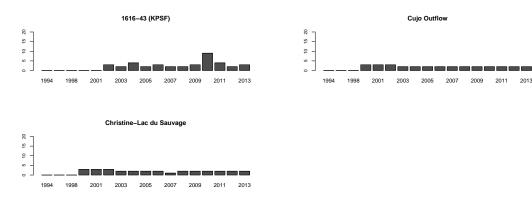
The estimated minimum detectable difference in mean total copper for each monitored lake in 2012. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 5.97e-04 | 6.32e-04 | 1.02e-04 | 4.60e-04 | 8.68e-04 | 3.00e-04       |
| Cujo           | 2.05e-03 | 1.14e-03 | 1.75e-04 | 8.47e-04 | 1.55e-03 | 5.14e-04       |
| LdS2           | 6.30e-04 | 7.35e-04 | 1.13e-04 | 5.43e-04 | 9.95e-04 | 3.32e-04       |
| LdS1           | 5.92e-04 | 5.21e-04 | 8.04e-05 | 3.85e-04 | 7.05e-04 | 2.35e-04       |
| Nanuq          | 4.60e-04 | 5.46e-04 | 1.02e-04 | 3.79e-04 | 7.87e-04 | NA             |
| Counts         | 6.05e-04 | 5.87e-04 | 8.93e-05 | 4.35e-04 | 7.91e-04 | NA             |
| Vulture        | 6.87e-04 | 4.81e-04 | 8.44e-05 | 3.41e-04 | 6.79e-04 | NA             |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------------------|
| Copper    | August | King-Cujo | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared slopes   | NA               | 1616-43<br>(KPSF)                                       |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

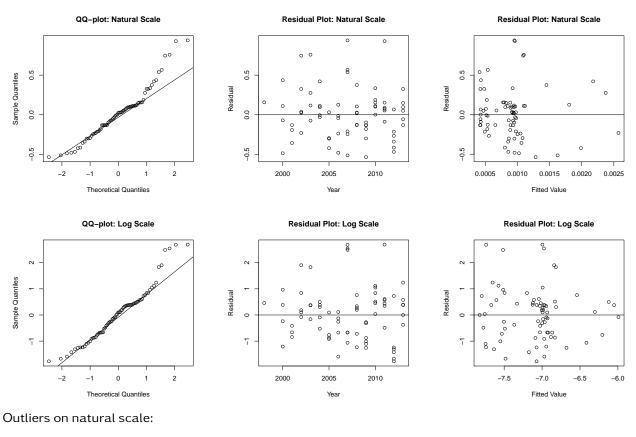

# Analysis of August Total Copper in King-Cujo Watershed Streams

January 12, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

10-60% of data in Counts and Nanuq Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.



None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 10.66       | 6.00 | 0.10    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Trend for All Reference Streams: reference model 2

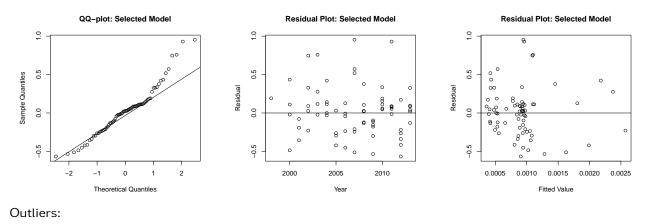
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.11        | 4.00 | 1.00    |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.018        | 0.946        | 0.036        | Ref. Model 2 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although contrasts suggest that reference lakes share a common slope and intercept, AIC suggests that reference lakes are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

### 3.4 Assess Fit of Reduced Model



None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Streams

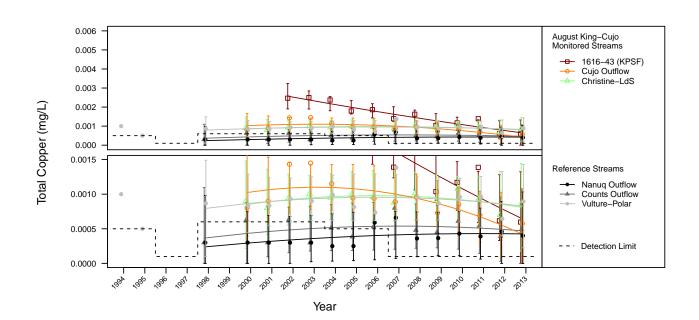
Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

• Results:

| Chi-squared | DF                | P-value  |
|-------------|-------------------|----------|
| 16.3468     | 2                 | 0.0003   |
| 2.2448      | 2                 | 0.3255   |
| 0.0589      | 2                 | 0.9710   |
|             | 16.3468<br>2.2448 | 2.2448 2 |

• Conclusions:

1616-43 (KPSF) shows significant deviation from the common slope of reference streams.


## 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.7580    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.9010    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.3240    |
| Monitored Stream    | Cujo Outflow             | 0.5980    |

#### • Conclusions:

Model fit for Christine-Lac du Sauvage is weak. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total copper for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 5.97e-04 | 6.57e-04 | 3.40e-04 | 0.00e+00 | 1.32e-03 | 9.96e-04       |
| Cujo Outflow             | 5.75e-04 | 4.25e-04 | 3.22e-04 | 0.00e+00 | 1.06e-03 | 9.43e-04       |
| Christine-Lac du Sauvage | 8.55e-04 | 8.11e-04 | 3.22e-04 | 1.79e-04 | 1.44e-03 | 9.43e-04       |
| Nanuq Outflow            | 4.00e-04 | 4.26e-04 | 3.09e-04 | 0.00e+00 | 1.03e-03 | NA             |
| Counts Outflow           | 4.95e-04 | 4.72e-04 | 3.09e-04 | 0.00e+00 | 1.08e-03 | NA             |
| Vulture-Polar            | 8.95e-04 | 8.27e-04 | 3.07e-04 | 2.24e-04 | 1.43e-03 | NA             |

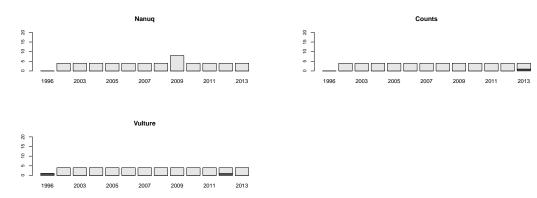
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|--------------------|------------------|---------------------------------------------|
| Copper    | August | King-Cujo | Stream        | Water    | none                          | none                        | Tobit<br>regression | #2 shared slopes   | NA               | 1616-43<br>(KPSF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

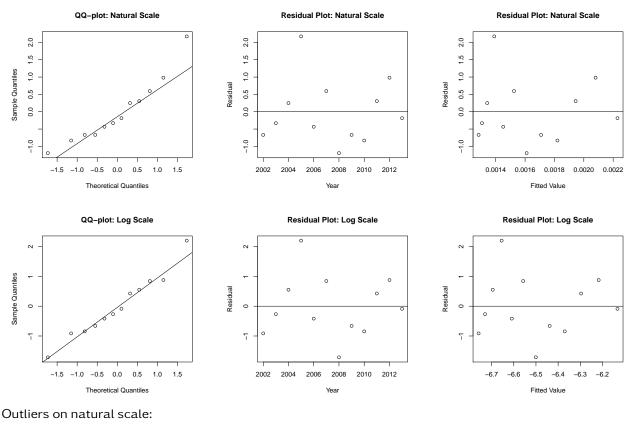
# Analysis of April Total Molybdenum in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and LdS1 was less than the detection limit. These lakes were excluded from further analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 5.05E-34  | natural model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

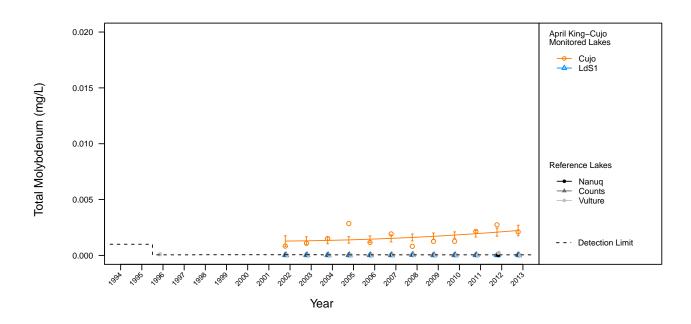
Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 2.4611      | 2  | 0.2921  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Cujo      | 0.2050    |

• Conclusions: Model fit for Cujo Lake is weak.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

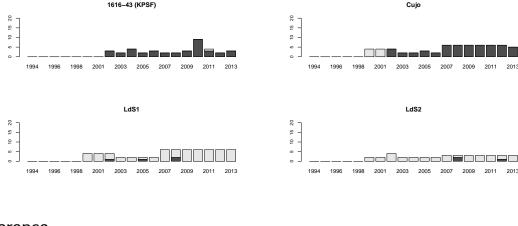
The estimated minimum detectable difference in mean total molybdenum for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper   | Min. Det. Diff |
|---------|----------|----------|----------|----------|---------|----------------|
| Cujo    | 2.11e-03 | 2.23e-03 | 2.41e-04 | 1.76e-03 | 2.7e-03 | 7.05e-04       |
| LdS1    | 2.50e-05 | NA       | NA       | NA       | NA      | NA             |
| Nanuq   | 2.50e-05 | NA       | NA       | NA       | NA      | NA             |
| Counts  | 5.30e-05 | NA       | NA       | NA       | NA      | NA             |
| Vulture | 2.50e-05 | NA       | NA       | NA       | NA      | NA             |

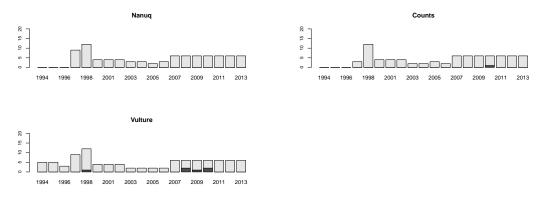
## 8 Final Summary Table

| Parameter  | Month   | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed      |      | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|------------|---------|-----------|---------------|----------|------------------------------------|------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Molybdenum | ı April | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>LdS1 | none | Tobit<br>regressior | #1a slope<br>of zero | 19.38            | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

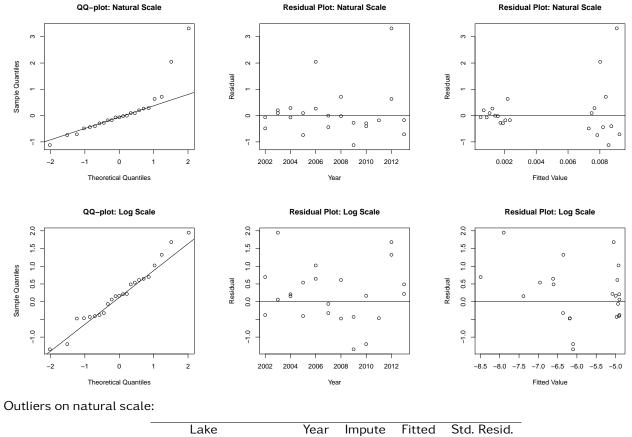

# Analysis of August Total Molybdenum in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, LdS1, and LdS2 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Cujo Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.



|   |    | Lake           | Year | Impute | Fitted | Std. Resid. |
|---|----|----------------|------|--------|--------|-------------|
| _ | 19 | 1616-43 (KPSF) | 2012 | 0.02   | 0.01   | 3.32        |

Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

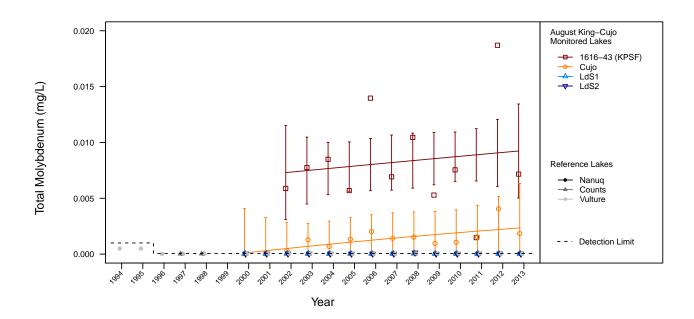
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 0.5235      | 2  | 0.7697  |
| Cujo           | 0.8040      | 2  | 0.6690  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.0200    |
| Monitored Lake | Cujo           | 0.5130    |

• Conclusions:

Model fit for 1616-43 (KPSF) is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total molybdenum for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 7.16e-03 | 9.23e-03 | 2.15e-03 | 5.02e-03 | 1.34e-02 | 6.28e-03       |
| Cujo           | 1.85e-03 | 2.35e-03 | 2.03e-03 | 0.00e+00 | 6.33e-03 | 5.95e-03       |
| LdS2           | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| LdS1           | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq          | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts         | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture        | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

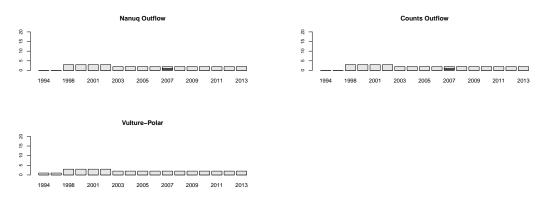
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed           | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|------------|--------|-----------|---------------|----------|-----------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Molybdenum | August | King-Cujo | Lake          | Water    | Nanuq<br>Counts<br>Vulture<br>LdS1 LdS2 | none                        | Tobit<br>regression | #1a slope<br>of zero | 19.38            | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

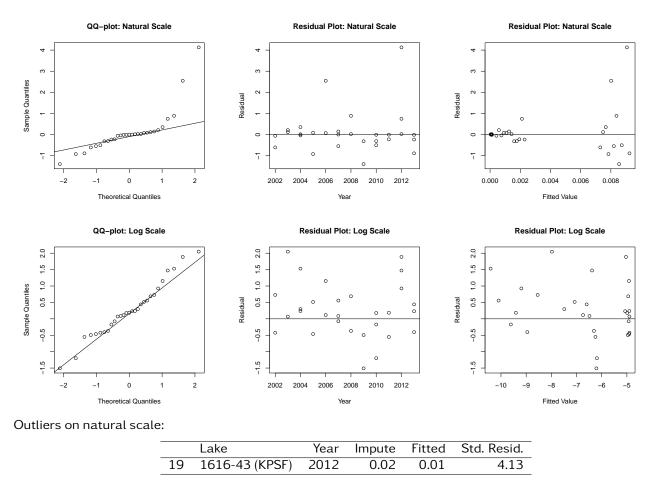
# Analysis of August Total Molybdenum in King-Cujo Watershed Streams

January 12, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, and Vulture-Polar was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Cujo Outflow and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

## 4 Test Results for Monitored Streams

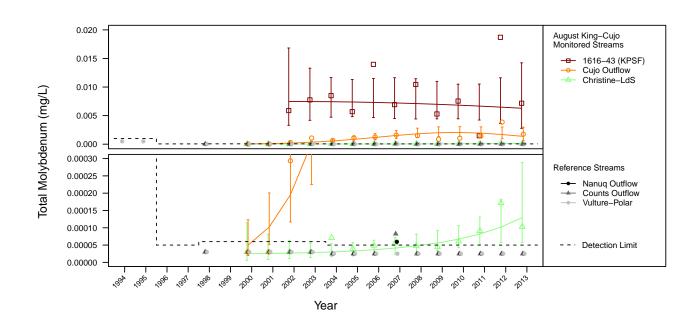
Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 0.1176      | 2  | 0.9429  |
| Cujo Outflow             | 47.1417     | 2  | 0.0000  |
| Christine-Lac du Sauvage | 7.5219      | 2  | 0.0233  |

• Conclusions:

Cujo Outflow and Christine-Lac du Sauvage show significant deviation from the common slope of reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Monitored Stream | 1616-43 (KPSF)           | 0.0090    |
| Monitored Stream | Christine-Lac du Sauvage | 0.7450    |
| Monitored Stream | Cujo Outflow             | 0.7810    |

#### • Conclusions:

Model fit for 1616-43 (KPSF) is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

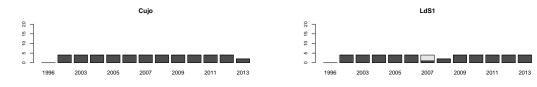
The estimated minimum detectable difference in mean total molybdenum for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 7.16e-03 | 6.29e-03 | 2.62e-03 | 2.78e-03 | 1.42e-02 | 7.67e-03       |
| Cujo Outflow             | 1.74e-03 | 1.36e-03 | 5.40e-04 | 6.27e-04 | 2.96e-03 | 1.58e-03       |
| Christine-Lac du Sauvage | 1.03e-04 | 1.29e-04 | 5.30e-05 | 5.79e-05 | 2.89e-04 | 1.55e-04       |
| Nanuq Outflow            | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar            | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |

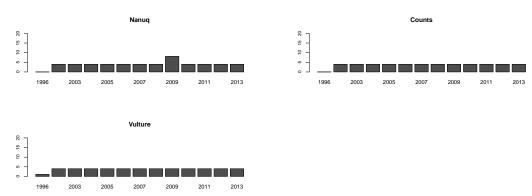
## 8 Final Summary Table

| Parameter  | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                              | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|------------|--------|-----------|---------------|----------|------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Molybdenum | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar | log e                       | Tobit<br>regression | #1a slope<br>of zero | 19.38            | Cujo<br>Outflow<br>Christine-<br>Lac du<br>Sauvage      |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

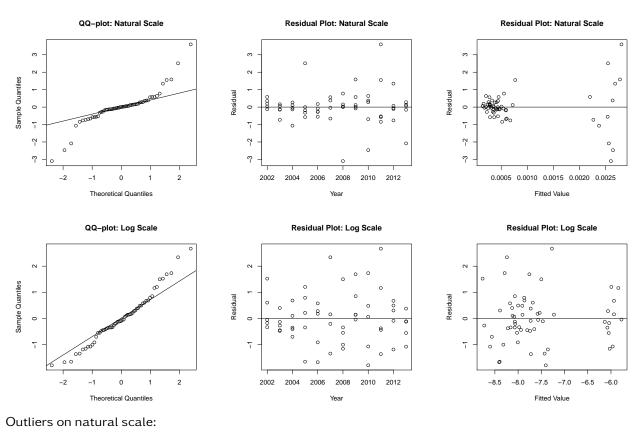

# Analysis of April Total Nickel in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 55 | Cujo | 2008 | 0.00   | 0.00   | -3.10       |
| 58 | Cujo | 2011 | 0.00   | 0.00   | 3.60        |

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 7.22E-177 | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 6394.94    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

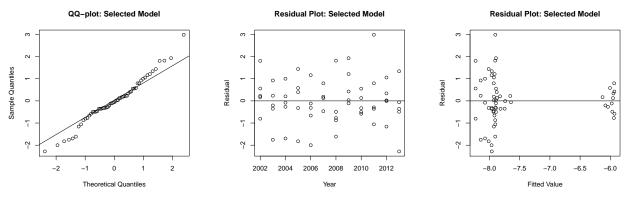
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 8.60       | 4.00 | 0.07    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

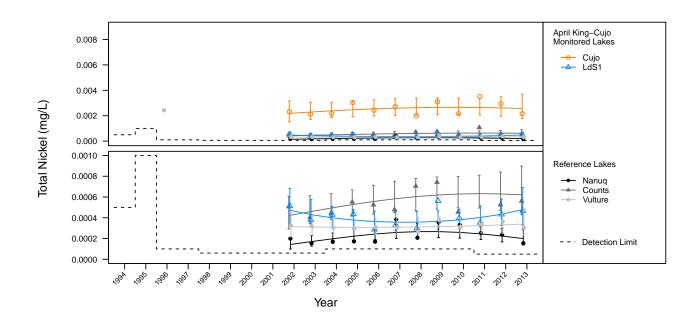
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 0.08        | 2.00 | 0.96    |
| LdS1 | 1.34        | 2.00 | 0.51    |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0540    |
| Monitored Lake    | Cujo            | 0.1220    |
| Monitored Lake    | LdS1            | 0.2580    |

• Conclusions:

Model fit for LdS1 is weak. Model fit for reference lakes and Cujo Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

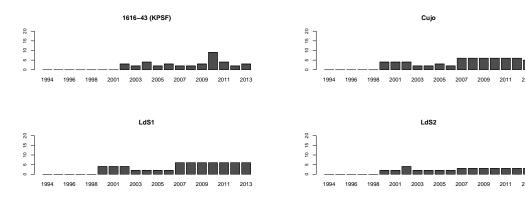
The estimated minimum detectable difference in mean total nickel for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 2.15e-03 | 2.57e-03 | 4.82e-04 | 1.78e-03 | 3.71e-03 | 1.41e-03       |
| LdS1    | 4.68e-04 | 4.78e-04 | 8.98e-05 | 3.31e-04 | 6.91e-04 | 2.63e-04       |
| Nanuq   | 1.54e-04 | 2.00e-04 | 3.75e-05 | 1.38e-04 | 2.89e-04 | NA             |
| Counts  | 5.61e-04 | 6.21e-04 | 1.17e-04 | 4.30e-04 | 8.98e-04 | NA             |
| Vulture | 3.06e-04 | 3.40e-04 | 6.38e-05 | 2.35e-04 | 4.91e-04 | NA             |

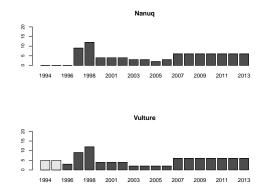
## 8 Final Summary Table

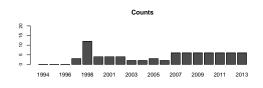
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed |       | Model<br>Type                            | Reference<br>Model | CCME<br>Guidline      | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-------|------------------------------------------|--------------------|-----------------------|---------------------------------------------|
| Nickel    | April | King-Cujo | Lake          | Water    | None                          | log e | linear<br>mixed<br>effects<br>regression | •                  | hardness-<br>dependen | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Nickel in Lakes of the King-Cujo Watershed and Lac du Sauvage

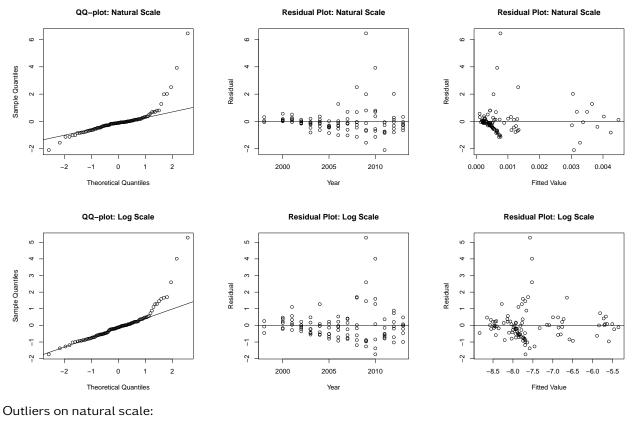
January 21, 2014


## 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference





#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.



|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | LdS1    | 2009 | 0.00   | 0.00   | 6.45        |
| 137 | Vulture | 2010 | 0.00   | 0.00   | 3.93        |

Outliers on log scale:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | LdS1    | 2009 | 0.00   | -7.57  | 5.28        |
| 137 | Vulture | 2010 | 0.00   | -7.52  | 4.01        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 27.83       | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

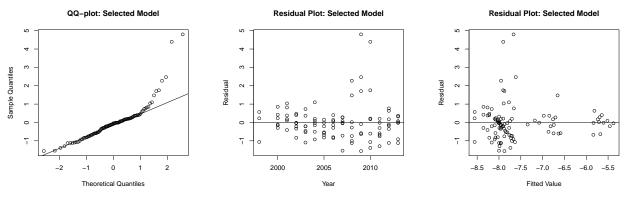
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.64        | 4.00 | 0.96    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.998        | 0.000        | 0.002        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Outliers:

|     | Lake    | Year | Impute | Fitted | Std. Resid. |
|-----|---------|------|--------|--------|-------------|
| 76  | LdS1    | 2009 | 0.00   | -7.67  | 4.80        |
| 137 | Vulture | 2010 | 0.00   | -7.90  | 4.40        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

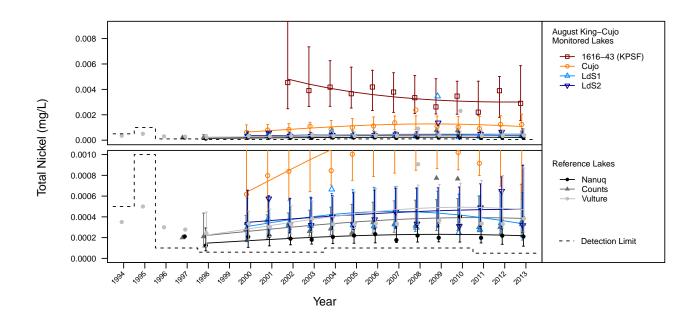
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 0.8466      | 2  | 0.6549  |
| Cujo           | 0.4800      | 2  | 0.7866  |
| LdS1           | 0.7010      | 2  | 0.7043  |
| LdS2           | 0.1364      | 2  | 0.9341  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1360    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.4840    |
| Monitored Lake    | Cujo            | 0.4810    |
| Monitored Lake    | LdS1            | 0.0350    |
| Monitored Lake    | LdS2            | 0.0610    |

• Conclusions:

Model fit for 1616-43 (KPSF) and Cujo Lake is weak. Model fit for reference lakes, LdS1, and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

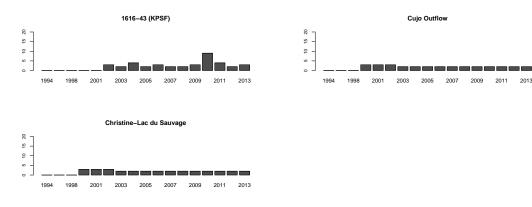
The estimated minimum detectable difference in mean total nickel for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 2.90e-03 | 3.01e-03 | 1.03e-03 | 1.54e-03 | 5.87e-03 | 3.00e-03       |
| Cujo           | 1.24e-03 | 1.08e-03 | 3.52e-04 | 5.68e-04 | 2.04e-03 | 1.03e-03       |
| LdS2           | 3.19e-04 | 4.73e-04 | 1.55e-04 | 2.50e-04 | 8.97e-04 | 4.52e-04       |
| LdS1           | 3.31e-04 | 3.34e-04 | 1.09e-04 | 1.76e-04 | 6.34e-04 | 3.19e-04       |
| Nanuq          | 2.10e-04 | 2.18e-04 | 6.87e-05 | 1.18e-04 | 4.05e-04 | NA             |
| Counts         | 3.46e-04 | 3.86e-04 | 1.21e-04 | 2.08e-04 | 7.14e-04 | NA             |
| Vulture        | 3.84e-04 | 4.70e-04 | 1.48e-04 | 2.54e-04 | 8.71e-04 | NA             |

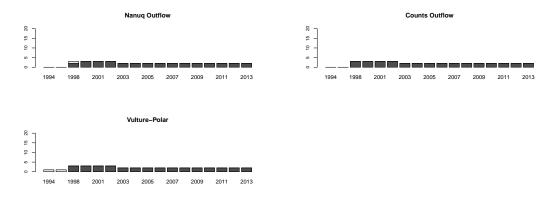
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|--------------------|------------------------|---------------------------------------------|
| Nickel    | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression |                    | hardness-<br>dependent | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

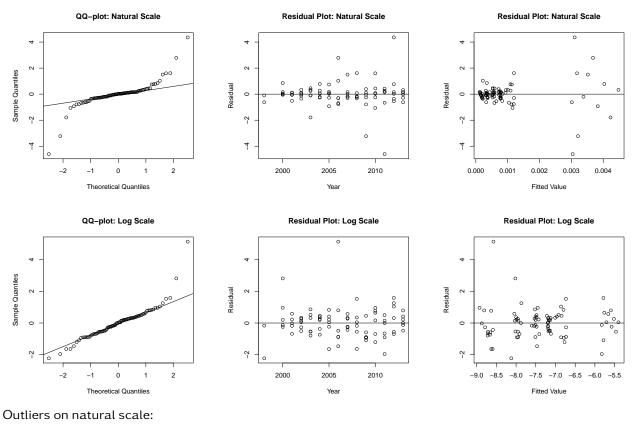

# Analysis of August Total Nickel in King-Cujo Watershed Streams

#### January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 16 | 1616-43 (KPSF) | 2009 | 0.00   | 0.00   | -3.22       |
| 18 | 1616-43 (KPSF) | 2011 | 0.00   | 0.00   | -4.60       |
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | 0.00   | 4.36        |

Outliers on log scale:

|    | Lake          | Year | Impute | Fitted | Std. Resid. |
|----|---------------|------|--------|--------|-------------|
| 93 | Nanuq Outflow | 2006 | 0.00   | -8.57  | 5.14        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 540.33      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 9.85        | 4.00 | 0.04    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 9.6241      | 2  | 0.0081  |
| Cujo Outflow             | 3.2870      | 2  | 0.1933  |
| Christine-Lac du Sauvage | 0.0345      | 2  | 0.9829  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from a slope of zero.

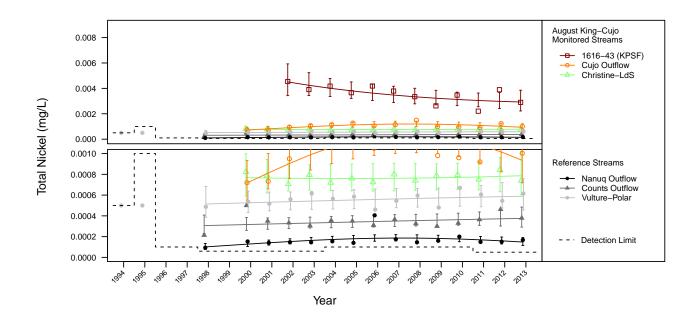
Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

• Results:

|                                  | Chi-squared | DF | P-value |
|----------------------------------|-------------|----|---------|
| 1616-43 (KPSF)-vs-Nanuq Outflow  | 659.2261    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Counts Outflow | 325.6641    | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Vulture-Polar  | 222.5868    | 3  | 0.0000  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from the slopes of individual reference streams.


### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Reference Stream | Counts Outflow           | 0.1040    |
| Reference Stream | Nanuq Outflow            | 0.3140    |
| Reference Stream | Vulture-Polar            | 0.1580    |
| Monitored Stream | 1616-43 (KPSF)           | 0.4590    |
| Monitored Stream | Christine-Lac du Sauvage | 0.0440    |
| Monitored Stream | Cujo Outflow             | 0.5760    |

• Conclusions:

Model fit for Nanuq Outflow and 1616-43 (KPSF) is weak. Model fit for Counts Outflow, Vulture-Polar, and Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

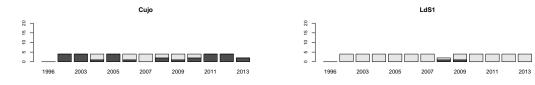
The estimated minimum detectable difference in mean total nickel for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 2.90e-03 | 2.93e-03 | 4.11e-04 | 2.22e-03 | 3.85e-03 | 1.20e-03       |
| Cujo Outflow             | 1.00e-03 | 9.35e-04 | 1.25e-04 | 7.18e-04 | 1.22e-03 | 3.67e-04       |
| Christine-Lac du Sauvage | 7.39e-04 | 7.86e-04 | 1.06e-04 | 6.05e-04 | 1.02e-03 | 3.09e-04       |
| Nanuq Outflow            | 1.68e-04 | 1.48e-04 | 1.91e-05 | 1.15e-04 | 1.91e-04 | NA             |
| Counts Outflow           | 3.79e-04 | 3.76e-04 | 4.86e-05 | 2.92e-04 | 4.84e-04 | NA             |
| Vulture-Polar            | 6.15e-04 | 5.89e-04 | 7.62e-05 | 4.57e-04 | 7.59e-04 | NA             |

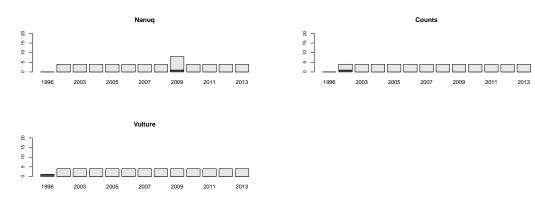
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model | CCME<br>Guidline       | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|--------------------|------------------------|---------------------------------------------|
| Nickel    | August | King-Cujo | Stream        | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | intercepts         | hardness-<br>dependent | 1616-43<br>(KPSF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

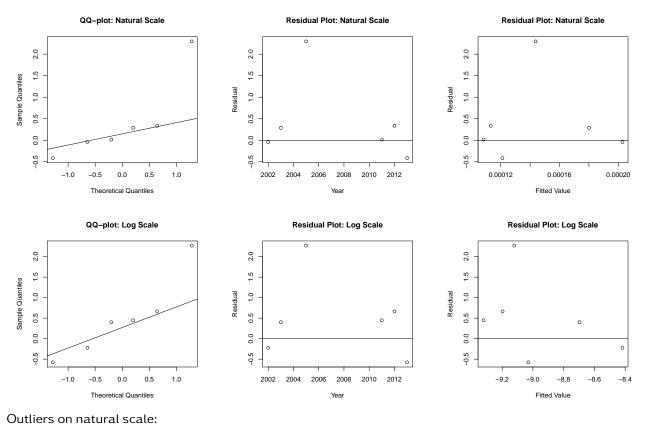

# Analysis of April Total Selenium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts, Nanuq, Vulture, and LdS1 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Cujo Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



None

Outliers on log scale:

None

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 9.48E-22  | natural model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

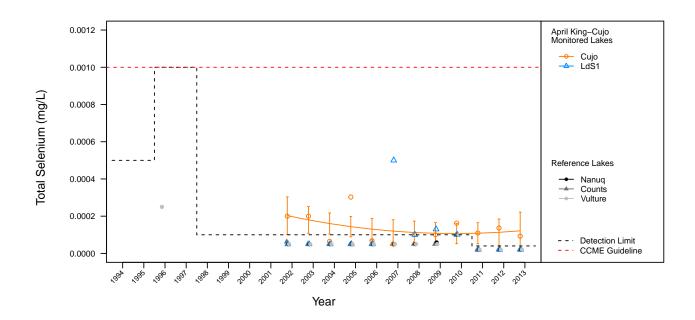
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 2.2451      | 2  | 0.3255  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Monitored Lake | Cujo      | 0.1870    |

• Conclusions:

Model fit for Cujo Lake is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

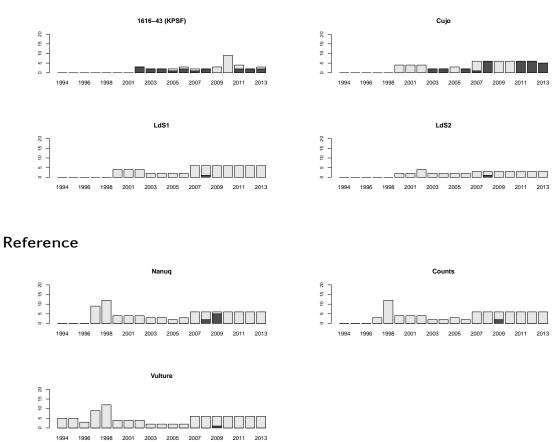
The estimated minimum detectable difference in mean total selenium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 9.25e-05 | 1.21e-04 | 5.13e-05 | 2.05e-05 | 2.22e-04 | 1.5e-04        |
| LdS1    | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq   | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts  | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |

### 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed      |      | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|------------------------------------|------|---------------------|----------------------|------------------|---------------------------------------------------------|
| Selenium  | April | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>LdS1 | none | Tobit<br>regressior | #1a slope<br>of zero | 0.001            | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

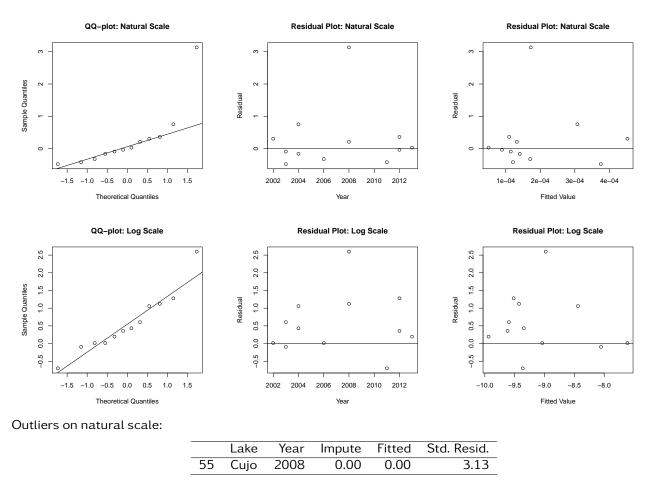

# Analysis of August Total Selenium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




Comment:

1.2

Greater than 60% of data in Counts, Nanuq, Vulture, LdS1, and LdS2 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in 1616-43 (KPSF) and Cujo Lake was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

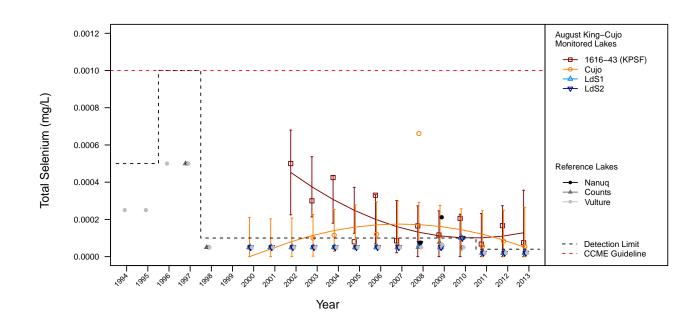
### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 6.0972      | 2  | 0.0474  |
| Cujo           | 1.6838      | 2  | 0.4309  |

• Conclusions: 1616-43 (KPSF) shows significant deviation from a constant slope of zero.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.6280    |
| Monitored Lake | Cujo           | 0.1260    |

#### • Conclusions:

Model fit for Cujo Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

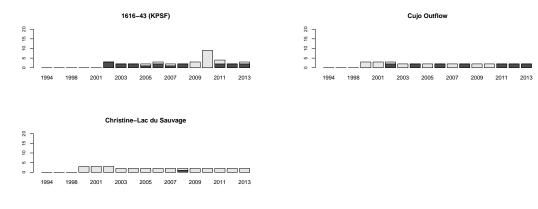
The estimated minimum detectable difference in mean total selenium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|-------|----------|----------------|
| 1616-43 (KPSF) | 7.50e-05 | 1.28e-04 | 1.16e-04 | 0e+00 | 3.57e-04 | 3.41e-04       |
| Cujo           | 5.48e-05 | 5.02e-05 | 1.10e-04 | 0e+00 | 2.65e-04 | 3.21e-04       |
| LdS2           | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| LdS1           | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Nanuq          | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Counts         | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |
| Vulture        | 2.00e-05 | NA       | NA       | NA    | NA       | NA             |

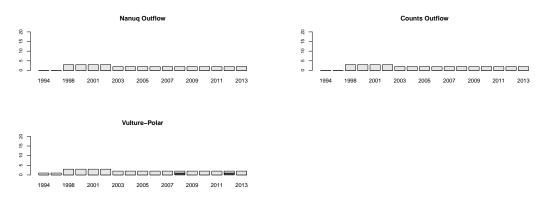
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed           | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-----------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Selenium  | August | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>LdS1 LdS2 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.001            | 1616-43<br>(KPSF)                           |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Total Selenium in King-Cujo Watershed Streams

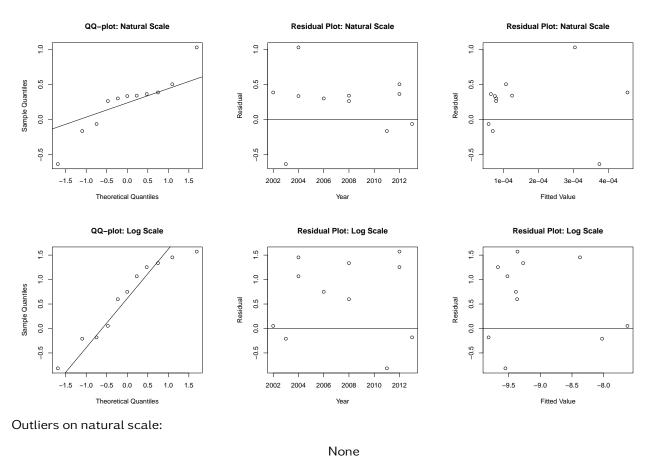
January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, Vulture-Polar, and Christine-Lac du Sauvage was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in 1616-43 (KPSF) and Cujo Outflow was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

### 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Streams

All reference streams removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored stream against a slope of 0.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a constant slope of zero (reference model 1a).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 17.3650     | 2  | 0.0002  |
| Cujo Outflow   | 1.4503      | 2  | 0.4843  |

• Conclusions:

1616-43 (KPSF) shows significant deviation from a constant slope of zero.

#### 5 Overall Assessment of Model Fit for Each Stream

• R-squared values for model fit for each stream:

| Stream Type      | Stream Name    | R-squared |
|------------------|----------------|-----------|
| Monitored Stream | 1616-43 (KPSF) | 0.5530    |
| Monitored Stream | Cujo Outflow   | 0.2700    |

#### • Conclusions:

Model fit for Cujo Outflow is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

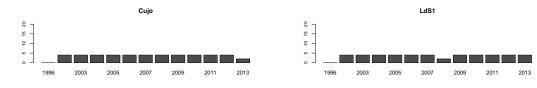
The estimated minimum detectable difference in mean total selenium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 7.50e-05 | 9.54e-05 | 3.52e-05 | 4.63e-05 | 1.96e-04 | 1.03e-04       |
| Cujo Outflow             | 5.05e-05 | 5.45e-05 | 1.70e-05 | 2.96e-05 | 1.00e-04 | 4.97e-05       |
| Christine-Lac du Sauvage | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq Outflow            | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar            | 2.00e-05 | NA       | NA       | NA       | NA       | NA             |

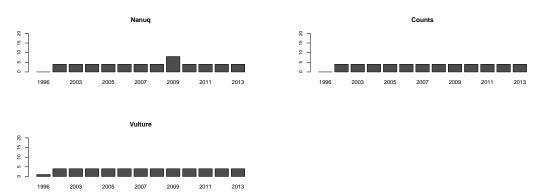
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                                                 | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-----------------------------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Selenium  | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Vulture-<br>Polar<br>Christine-<br>Lac du<br>Sauvage | log e                       | Tobit<br>regression | #1a slope<br>of zero | 0.001            | 1616-43<br>(KPSF)                           |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.


## Analysis of April Total Strontium in Lakes of the King-Cujo Watershed and Lac du Sauvage

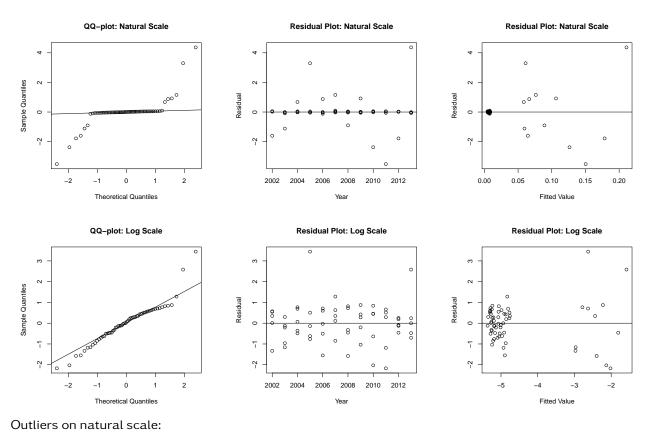
January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

### 2 Initial Model Fit



|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 0.10   | 0.06   | 3.30        |
| 58 | Cujo | 2011 | 0.11   | 0.15   | -3.52       |
| 60 | Cujo | 2013 | 0.26   | 0.21   | 4.37        |
|    |      |      |        |        |             |

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 0.10   | -2.63  | 3.45        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 2.27E-57  | natural model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

#### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 6306.47    | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.56       | 4.00 | 0.97    |

#### • Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

### 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

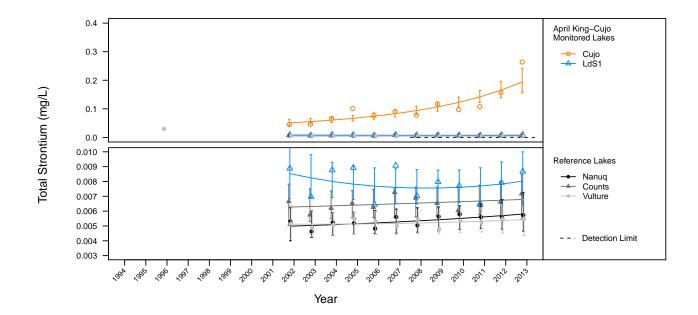
• Results:

|      | Chi-squared | DF   | P-value |
|------|-------------|------|---------|
| Cujo | 44.09       | 2.00 | 0.00    |
| LdS1 | 0.92        | 2.00 | 0.63    |

#### • Conclusions:

Cujo Lake shows significant deviation from the common slope of reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0680    |
| Monitored Lake    | Cujo            | 0.8070    |
| Monitored Lake    | LdS1            | 0.0880    |

#### • Conclusions:

Model fit for reference lakes and LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

#### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

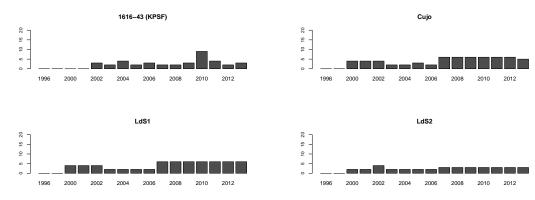
The estimated minimum detectable difference in mean total strontium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 2.64e-01 | 1.94e-01 | 2.19e-02 | 1.56e-01 | 2.42e-01 | 6.41e-02       |
| LdS1    | 8.67e-03 | 8.01e-03 | 9.04e-04 | 6.43e-03 | 1.00e-02 | 2.64e-03       |
| Nanuq   | 5.73e-03 | 5.80e-03 | 6.54e-04 | 4.65e-03 | 7.24e-03 | NA             |
| Counts  | 7.17e-03 | 6.79e-03 | 7.65e-04 | 5.44e-03 | 8.46e-03 | NA             |
| Vulture | 5.48e-03 | 5.43e-03 | 6.12e-04 | 4.35e-03 | 6.77e-03 | NA             |

### 8 Final Summary Table

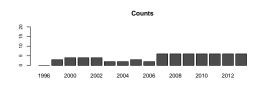
| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed |       | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-------|------------------------------------------|---------------------|------------------|---------------------------------------------|
| Strontium | April | King-Cujo | Lake          | Water    | None                          | log e | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | 6.242            | Cujo                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Total Strontium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 18, 2014

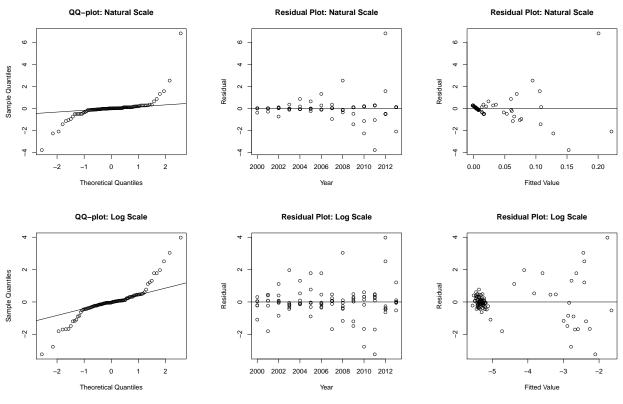
### 1 Censored Values:


The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored



#### 1.2 Reference






#### Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 0.07   | 0.15   | -3.77       |
| 19 | 1616-43 (KPSF) | 2012 | 0.35   | 0.20   | 6.82        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 0.15   | -2.44  | 3.04        |
| 18 | 1616-43 (KPSF) | 2011 | 0.07   | -2.10  | -3.23       |
| 19 | 1616-43 (KPSF) | 2012 | 0.35   | -1.77  | 3.97        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

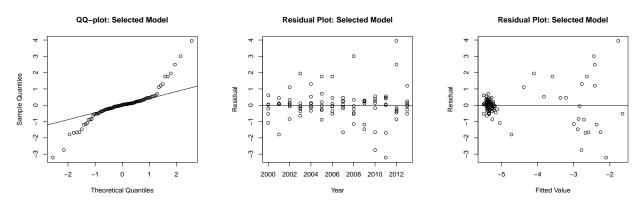
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.66        | 6.00 | 0.95    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.006        | 0.000        | 0.994        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 15 | 1616-43 (KPSF) | 2008 | 0.15   | -2.44  | 3.01        |
| 18 | 1616-43 (KPSF) | 2011 | 0.07   | -2.10  | -3.21       |
| 19 | 1616-43 (KPSF) | 2012 | 0.35   | -1.77  | 3.95        |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

### 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 235.2580    | 3  | 0.0000  |
| Cujo           | 1317.8634   | 3  | 0.0000  |
| LdS1           | 3.5133      | 3  | 0.3190  |
| LdS2           | 6.0128      | 3  | 0.1110  |

• Conclusions:

1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope and intercept of reference lakes.

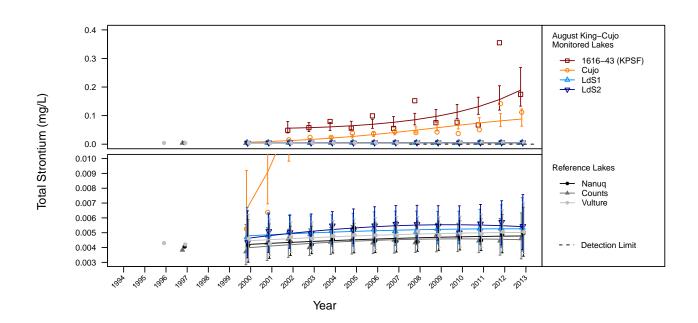
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 10.5610     | 2  | 0.0051  |
| Cujo           | 184.7751    | 2  | 0.0000  |
| LdS1           | 0.0331      | 2  | 0.9836  |
| LdS2           | 0.1062      | 2  | 0.9483  |

• Conclusions:

When allowing for differences in intercept, 1616-43 (KPSF) and Cujo Lake show significant deviation from the common slope of reference lakes.


### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.3380    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.4770    |
| Monitored Lake    | Cujo            | 0.8630    |
| Monitored Lake    | LdS1            | 0.6980    |
| Monitored Lake    | LdS2            | 0.6370    |

• Conclusions:

Model fit for reference lakes and 1616-43 (KPSF) is weak. Results of statistical tests and MDD should be interpreted with caution.



#### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

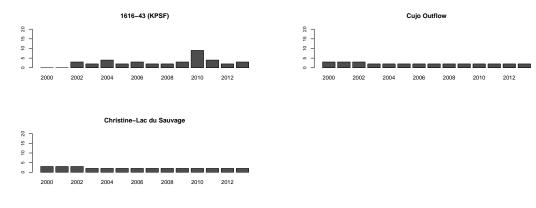
The estimated minimum detectable difference in mean total strontium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 1.74e-01 | 1.89e-01 | 3.38e-02 | 1.33e-01 | 2.68e-01 | 9.88e-02       |
| Cujo           | 1.12e-01 | 8.81e-02 | 1.51e-02 | 6.30e-02 | 1.23e-01 | 4.41e-02       |
| LdS2           | 5.44e-03 | 5.41e-03 | 9.26e-04 | 3.87e-03 | 7.57e-03 | 2.71e-03       |
| LdS1           | 5.35e-03 | 5.26e-03 | 9.01e-04 | 3.76e-03 | 7.36e-03 | 2.64e-03       |
| Nanuq          | 4.95e-03 | 4.78e-03 | 8.19e-04 | 3.42e-03 | 6.69e-03 | NA             |
| Counts         | 4.61e-03 | 4.53e-03 | 7.76e-04 | 3.24e-03 | 6.34e-03 | NA             |
| Vulture        | 5.06e-03 | 5.02e-03 | 8.59e-04 | 3.59e-03 | 7.02e-03 | NA             |

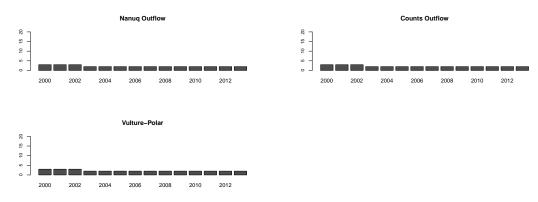
### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------|
| Strontium | August | King-Cujo | Lake          | Water    | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | 6.242            | 1616-43<br>(KPSF)<br>Cujo                   |

\* Monitored lakes are contrasted to the slope of each individual reference lake in model 1a, a slope of 0 in reference model 1b, the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


## Analysis of August Total Strontium in King-Cujo Watershed Streams

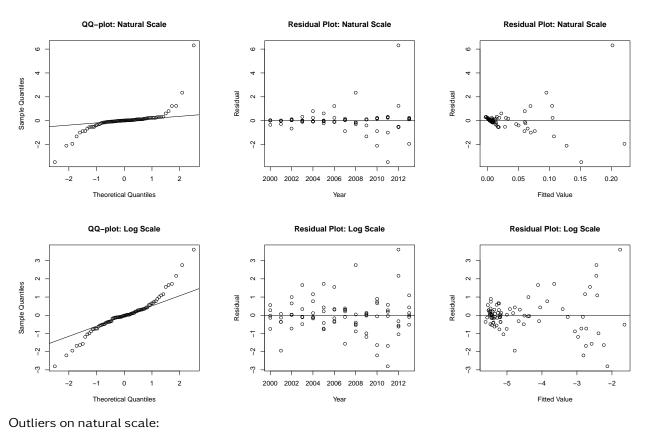
January 21, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



#### Comment:

None of the streams exhibited greater than 10% of data less than the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Std. Resid. Lake Year Impute Fitted 2011 18 1616-43 (KPSF) 0.07 0.15 -3.47 19 1616-43 (KPSF) 2012 0.35 0.20 6.31

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 0.35   | -1.77  | 3.61        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 13.07       | 6.00 | 0.04    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 12.97       | 4.00 | 0.01    |

• Conclusions:

The slopes differ significantly among reference streams. Reference streams do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.000        | 0.826        | 0.174        | Ref. Model 2 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled with a common slope, results of contrasts suggest that slopes and intercepts differ among reference streams. Proceeding with monitored contrasts using reference model 1.

### 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 54.4491     | 2  | 0.0000  |
| Cujo Outflow             | 9.9346      | 2  | 0.0070  |
| Christine-Lac du Sauvage | 0.1253      | 2  | 0.9393  |

Conclusions:

1616-43 (KPSF) and Cujo Outflow show significant deviation from a slope of zero.

Fitted model of the trend (slope) of each monitored stream compared to slope of each reference stream (reference model 1b).

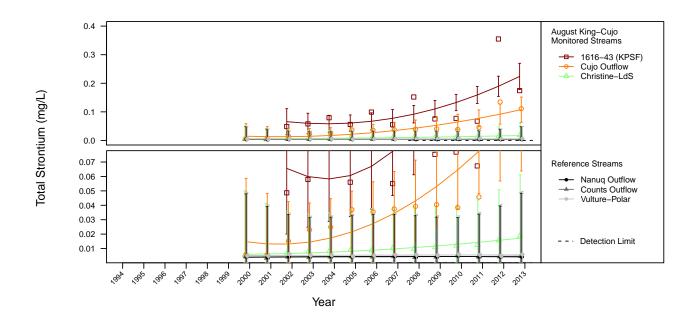
• Results:

|                                  | Chi-squared | DF | P-value |
|----------------------------------|-------------|----|---------|
| 1616-43 (KPSF)-vs-Nanuq Outflow  | 31.5204     | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Counts Outflow | 31.3252     | 3  | 0.0000  |
| 1616-43 (KPSF)-vs-Vulture-Polar  | 31.1143     | 3  | 0.0000  |
| Cujo Outflow-vs-Nanuq Outflow    | 28.4094     | 3  | 0.0000  |
| Cujo Outflow-vs-Counts Outflow   | 28.3581     | 3  | 0.0000  |
| Cujo Outflow-vs-Vulture-Polar    | 27.3983     | 3  | 0.0000  |
|                                  |             |    |         |

#### • Conclusions:

All remaining streams show significant deviation from slopes of individual reference streams.

#### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name              | R-squared |
|------------------|--------------------------|-----------|
| Reference Stream | Counts Outflow           | 0.3220    |
| Reference Stream | Nanuq Outflow            | 0.2470    |
| Reference Stream | Vulture-Polar            | 0.1040    |
| Monitored Stream | 1616-43 (KPSF)           | 0.4190    |
| Monitored Stream | Christine-Lac du Sauvage | 0.9350    |
| Monitored Stream | Cujo Outflow             | 0.7550    |

• Conclusions:

Model fit for Counts Outflow, Nanuq Outflow, and 1616-43 (KPSF) is weak. Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total strontium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 1.74e-01 | 2.24e-01 | 2.34e-02 | 1.78e-01 | 2.70e-01 | 6.85e-02       |
| Cujo Outflow             | 1.11e-01 | 1.08e-01 | 2.24e-02 | 6.38e-02 | 1.52e-01 | 6.56e-02       |
| Christine-Lac du Sauvage | 1.90e-02 | 1.72e-02 | 2.24e-02 | 0.00e+00 | 6.12e-02 | 6.56e-02       |
| Nanuq Outflow            | 4.32e-03 | 4.21e-03 | 2.24e-02 | 0.00e+00 | 4.81e-02 | NA             |
| Counts Outflow           | 4.68e-03 | 4.64e-03 | 2.24e-02 | 0.00e+00 | 4.86e-02 | NA             |
| Vulture-Polar            | 5.88e-03 | 5.59e-03 | 2.24e-02 | 0.00e+00 | 4.95e-02 | NA             |

### 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                        | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-------------------------------------------|------------------|---------------------------------------------|
| Strontium | August | King-Cujo | Stream        | Water    | none                          | none                        | linear<br>mixed<br>effects<br>regression | #1b<br>separate<br>intercepts<br>& slopes | NA               | 1616-43<br>(KPSF)<br>Cujo<br>Outflow        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

## Analysis of April Total Uranium in Lakes of the King-Cujo Watershed and Lac du Sauvage

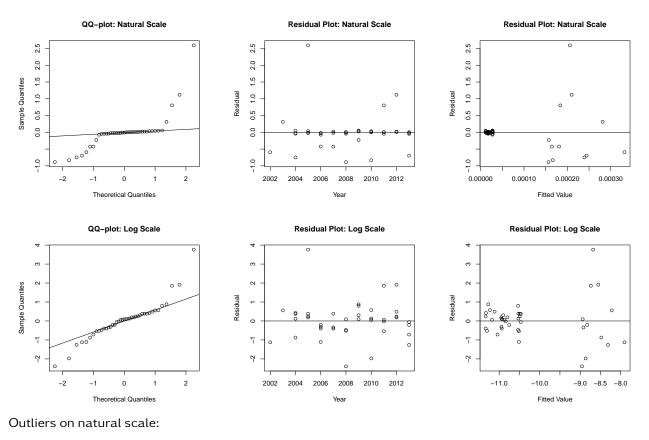
January 2, 2014


### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in Counts Lake was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in Nanuq, Vulture, and LdS1 was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.

### 2 Initial Model Fit



None

Outliers on log scale:

|    | Lake | Year | Impute | Fitted | Std. Resid. |
|----|------|------|--------|--------|-------------|
| 52 | Cujo | 2005 | 0.00   | -8.68  | 3.76        |

AIC weights and model comparison:

| Natural Model | Log Model | Best Model    |
|---------------|-----------|---------------|
| 1.00E+00      | 8.56E-142 | natural model |

#### Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

#### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.57       | 3.00 | 0.67    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

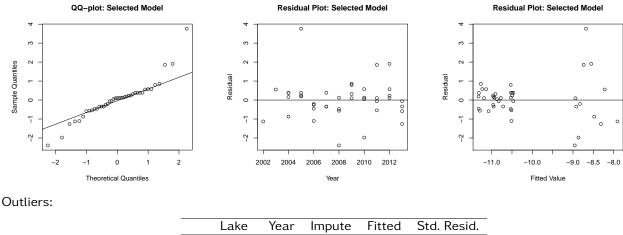
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 0.07       | 2.00 | 0.96    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 **Compare Reference Models using AIC Weights**


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.253        | 0.663        | 0.084        | Indistinguishable support for 2 & 1; choose Model 2. |

• Conclusions:

Results of AIC do not agree with reference model testing. However, AIC weights differ little between the best model as selected by AIC and the best model as selected by reference model testing. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

0.00

-8.68

3.76

#### 4 Test Results for Monitored Lakes

52

Cujo

2005

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

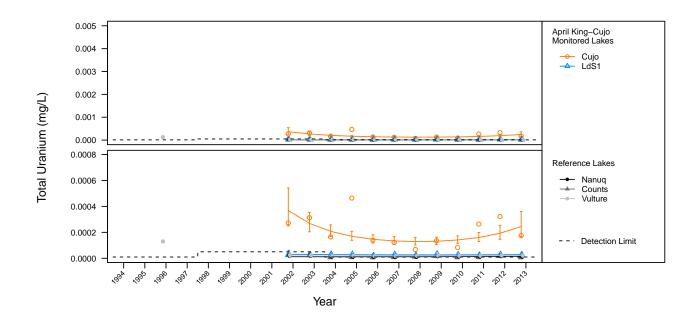
• Results:

|      | Chi-squared | DF | P-value |
|------|-------------|----|---------|
| Cujo | 5.3365      | 2  | 0.0694  |
| LdS1 | 0.5806      | 2  | 0.7480  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.4320    |
| Monitored Lake    | Cujo            | 0.3270    |
| Monitored Lake    | LdS1            | 0.0990    |

• Conclusions:

Model fit for reference lakes and Cujo Lake is weak. Model fit for LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

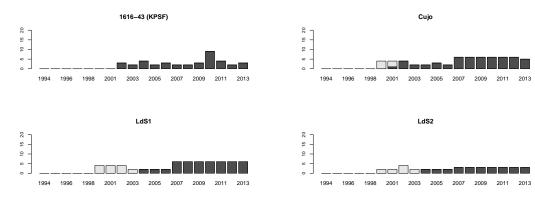
The estimated minimum detectable difference in mean total uranium for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.75e-04 | 2.45e-04 | 4.84e-05 | 1.66e-04 | 3.61e-04 | 1.42e-04       |
| LdS1    | 2.80e-05 | 2.84e-05 | 5.82e-06 | 1.90e-05 | 4.25e-05 | 1.70e-05       |
| Nanuq   | 1.32e-05 | 1.60e-05 | 3.38e-06 | 1.06e-05 | 2.43e-05 | NA             |
| Counts  | 5.00e-06 | NA       | NA       | NA       | NA       | NA             |
| Vulture | 2.03e-05 | 2.14e-05 | 4.50e-06 | 1.42e-05 | 3.23e-05 | NA             |

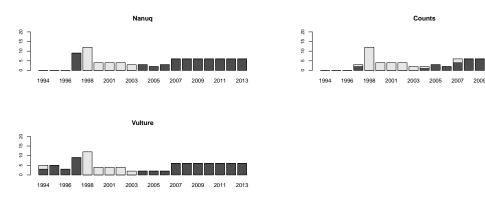
### 8 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed       | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model    | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|-------|-----------|---------------|----------|-------------------------------------|-----------------------------|---------------------|-----------------------|------------------|---------------------------------------------------------|
| Uranium   | April | King-Cujo | Lake          | Water    | 1616-43<br>(KPSF)<br>LdS2<br>Counts | log e                       | Tobit<br>regressior | #2 shared<br>n slopes | 0.015            | none                                                    |

\* Monitored lakes are contrasted to the slope of each individual reference lake in model 1a, a slope of 0 in reference model 1b, the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Uranium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 21, 2014


### 1 Censored Values:

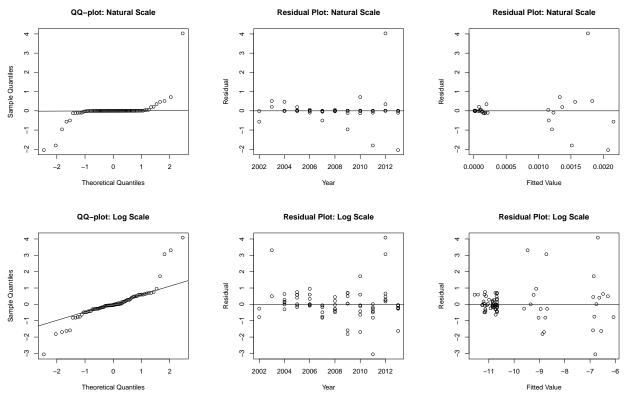
The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored



#### 1.2 Reference




Comment:

10-60% of data in all reference and monitored lakes was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

2013

2011

### 2 Initial Model Fit



Outliers on natural scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | 0.00   | 4.03        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 0.00   | -6.79  | -3.06       |
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | -6.69  | 4.08        |
| 50 | Cujo           | 2003 | 0.00   | -9.47  | 3.31        |
| 59 | Cujo           | 2012 | 0.00   | -8.73  | 3.07        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

#### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 4.76        | 6.00 | 0.57    |

Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

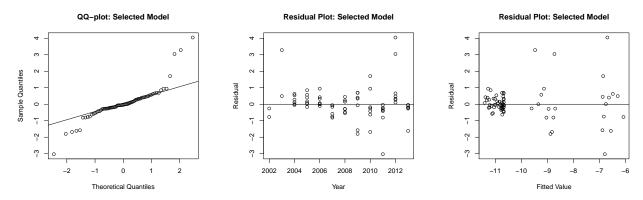
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 1.77        | 4.00 | 0.78    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.042        | 0.942        | 0.016        | Ref. Model 2 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although contrasts suggest that reference lakes share a common slope and intercept, AIC suggests that reference lakes are best modeled with separate intercepts. Proceeding with monitored contrasts using reference model 2.

#### 3.4 Assess Fit of Reduced Model



Outliers:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 18 | 1616-43 (KPSF) | 2011 | 0.00   | -6.79  | -3.03       |
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | -6.69  | 4.05        |
| 50 | Cujo           | 2003 | 0.00   | -9.47  | 3.28        |
| 59 | Cujo           | 2012 | 0.00   | -8.73  | 3.04        |
|    |                |      |        |        |             |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

### 4 Test Results for Monitored Lakes

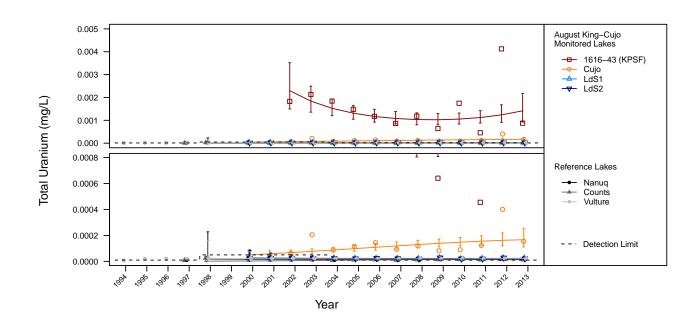
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 5.4322      | 2  | 0.0661  |
| Cujo           | 2.7027      | 2  | 0.2589  |
| LdS1           | 0.6482      | 2  | 0.7232  |
| LdS2           | 0.4977      | 2  | 0.7797  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.


#### 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.3650    |
| Monitored Lake    | 1616-43 (KPSF)  | 0.1820    |
| Monitored Lake    | Cujo            | 0.3790    |
| Monitored Lake    | LdS1            | 0.3320    |
| Monitored Lake    | LdS2            | 0.0410    |

• Conclusions:

Model fit for reference lakes, Cujo, and LdS1 is weak. Model fit for 1616-43 (KPSF) and LdS2 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

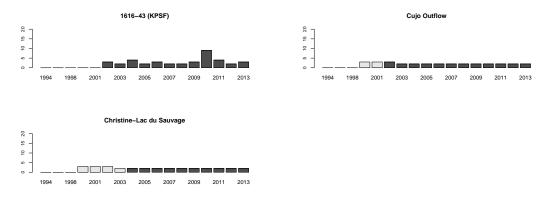
The estimated minimum detectable difference in mean total uranium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF) | 8.76e-04 | 1.42e-03 | 3.09e-04 | 9.24e-04 | 2.17e-03 | 9.03e-04       |
| Cujo           | 1.54e-04 | 1.67e-04 | 3.47e-05 | 1.11e-04 | 2.51e-04 | 1.02e-04       |
| LdS2           | 2.17e-05 | 2.30e-05 | 5.13e-06 | 1.49e-05 | 3.56e-05 | 1.50e-05       |
| LdS1           | 2.30e-05 | 2.34e-05 | 5.09e-06 | 1.53e-05 | 3.59e-05 | 1.49e-05       |
| Nanuq          | 1.67e-05 | 1.79e-05 | 4.08e-06 | 1.14e-05 | 2.80e-05 | NA             |
| Counts         | 1.27e-05 | 1.28e-05 | 3.01e-06 | 8.09e-06 | 2.03e-05 | NA             |
| Vulture        | 2.05e-05 | 2.10e-05 | 4.59e-06 | 1.37e-05 | 3.22e-05 | NA             |

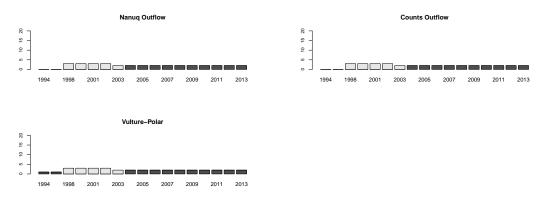
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|---------------------|------------------|---------------------------------------------|
| Uranium   | August | King-Cujo | Lake          | Water    | none                          | log e                       | Tobit<br>regression | #2 shared<br>slopes | 0.015            | none                                        |

\* Monitored lakes are contrasted to the slope of each individual reference lake in model 1a, a slope of 0 in reference model 1b, the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Uranium in King-Cujo Watershed Streams

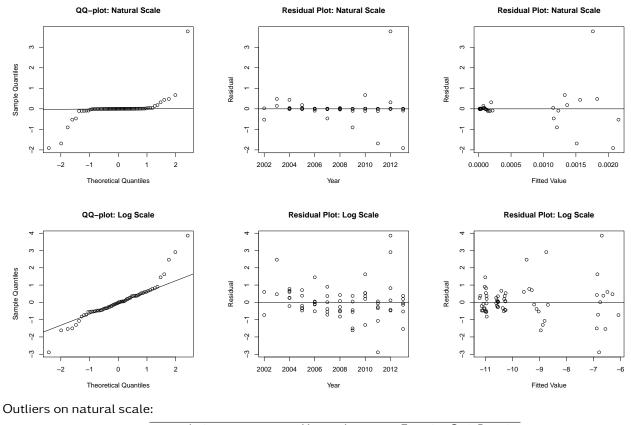
December 30, 2013


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



Comment:

10-60% of data in Counts Outflow, Nanuq Outflow, Vulture-Polar, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | 0.00   | 3.77        |

Outliers on log scale:

|    | Lake           | Year | Impute | Fitted | Std. Resid. |
|----|----------------|------|--------|--------|-------------|
| 19 | 1616-43 (KPSF) | 2012 | 0.00   | -6.69  | 3.86        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

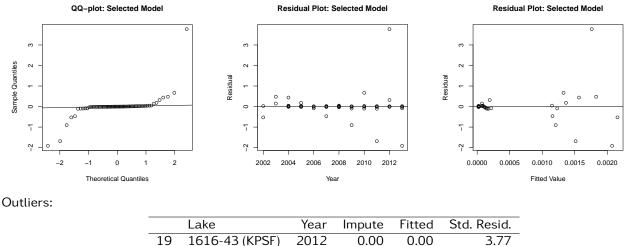
• Results:

| Chi-squared | DF   | P-value |
|-------------|------|---------|
| 0.00        | 6.00 | 1.00    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference streams.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.002        | 0.119        | 0.879        | Ref. Model 3 |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference streams are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

#### 3.3 Assess Fit of Reduced Model



| Conclusion: |  |
|-------------|--|

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

#### 4 Test Results for Monitored Streams

Fitted model of the slope and intercept of each monitored stream compared to a common slope and intercept fitted for all reference streams together (reference model 3).

• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 56.9109     | 3  | 0.0000  |
| Cujo Outflow             | 0.3049      | 3  | 0.9591  |
| Christine-Lac du Sauvage | 0.0002      | 3  | 1.0000  |

#### • Conclusions:

1616-43 (KPSF) shows significant deviation from the common slope of reference streams.

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

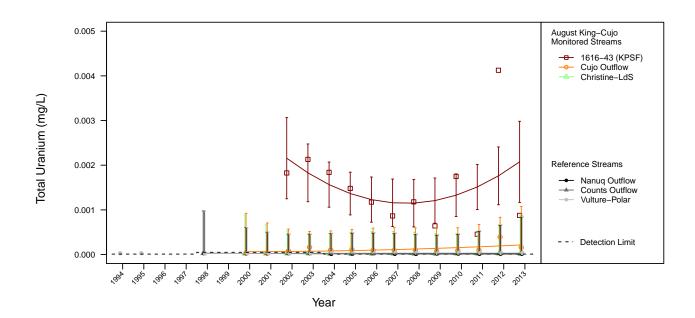
• Results:

|                          | Chi-squared | DF | P-value |
|--------------------------|-------------|----|---------|
| 1616-43 (KPSF)           | 3.2842      | 2  | 0.1936  |
| Cujo Outflow             | 0.0652      | 2  | 0.9679  |
| Christine-Lac du Sauvage | 0.0000      | 2  | 1.0000  |

#### • Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing monitored to the common slope of reference streams.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type         | Stream Name              | R-squared |
|---------------------|--------------------------|-----------|
| Pooled Ref. Streams | (more than one)          | 0.0160    |
| Monitored Stream    | 1616-43 (KPSF)           | 0.1330    |
| Monitored Stream    | Christine-Lac du Sauvage | 0.1160    |
| Monitored Stream    | Cujo Outflow             | 0.3260    |

#### • Conclusions:

Model fit for Cujo Outflow is weak. Model fit for reference streams, 1616-43 (KPSF), and Christine-Lac du Sauvage is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

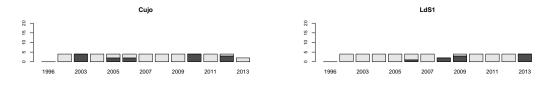
The estimated minimum detectable difference in mean total uranium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 8.76e-04 | 2.07e-03 | 4.63e-04 | 1.17e-03 | 2.98e-03 | 1.36e-03       |
| Cujo Outflow             | 1.61e-04 | 2.15e-04 | 4.38e-04 | 0.00e+00 | 1.07e-03 | 1.28e-03       |
| Christine-Lac du Sauvage | 2.45e-05 | 2.55e-05 | 4.38e-04 | 0.00e+00 | 8.85e-04 | 1.28e-03       |
| Nanuq Outflow            | 1.55e-05 | 1.48e-05 | 4.18e-04 | 0.00e+00 | 8.35e-04 | NA             |
| Counts Outflow           | 1.40e-05 | 1.76e-05 | 4.18e-04 | 0.00e+00 | 8.37e-04 | NA             |
| Vulture-Polar            | 3.55e-05 | 3.53e-05 | 4.18e-04 | 0.00e+00 | 8.55e-04 | NA             |

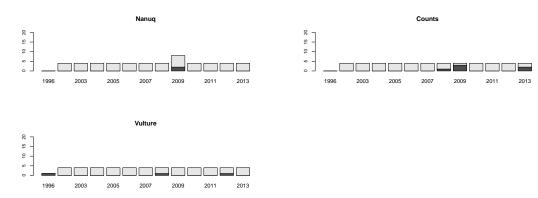
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------------|-----------------------------------|------------------|---------------------------------------------|
| Uranium   | August | King-Cujo | Stream        | Water    | none                          | none                        | Tobit<br>regression | #3 shared<br>intercept<br>& slope | 0.015            | 1616-43<br>(KPSF)                           |

\* Monitored streams are contrasted to the slope of each individual reference stream in model 1a, a slope of 0 in reference model 1b, the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

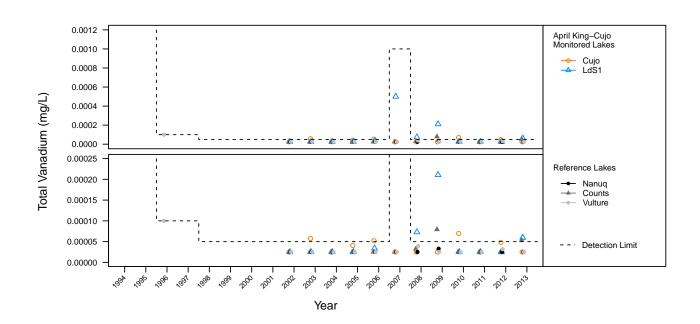

# Analysis of April Total Vanadium in Lakes of the King-Cujo Watershed and Lac du Sauvage

January 12, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

Greater than 60% of data in all reference and monitored lakes was less than the detection limit. All lakes were excluded from further analyses. Tests not performed. Note: 1616-43 (KPSF) and LdS2 were not monitored in April.



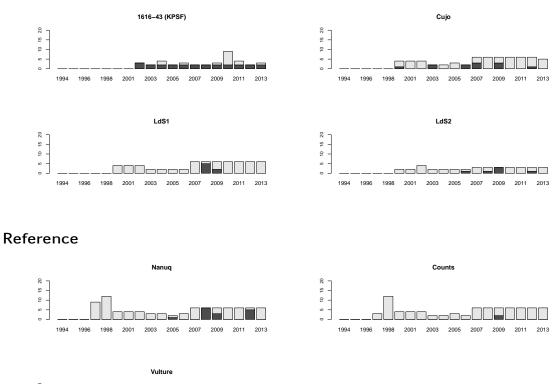
### 2 Observed and Fitted Values

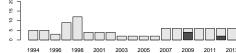
Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 3 Final Summary Table

| Parameter | Month | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type | Reference<br>Model | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|-------|-----------|---------------|----------|-------------------------------|-----------------------------|---------------|--------------------|------------------|---------------------------------------------|
| Vanadium  | April | King-Cujo | Lake          | Water    | all                           | NA                          | NA            | NA                 | 0.03             | NA                                          |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Vanadium in Lakes of the King-Cujo Watershed and Lac du Sauvage

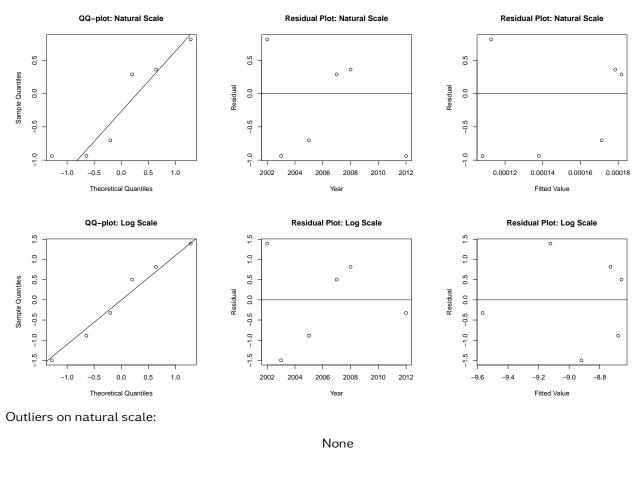

January 21, 2014

### 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored






Comment:

1.2

Greater than 60% of data in Counts, Nanuq, Vulture, Cujo, LdS1, and LdS2 was less than the detection limit. These lakes were excluded from further analyses. 10-60% of data in 1616-43 (KPSF) was less than the detection limit. Proceeding with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Lakes

All reference lakes removed from analysis. Tests not performed. Proceeding with analysis using reference model 1a, comparing slopes of each monitored lake against a slope of 0.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a constant slope of zero (reference model 1a).

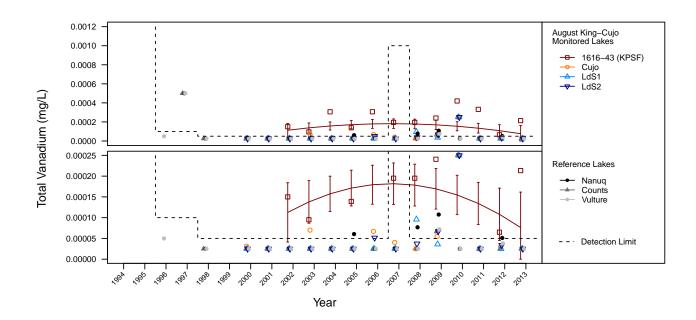
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 4.0237      | 2  | 0.1337  |

Conclusions:

No significant deviations were found when comparing monitored lakes to a slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name      | R-squared |
|----------------|----------------|-----------|
| Monitored Lake | 1616-43 (KPSF) | 0.3080    |

• Conclusions:

Model fit for 1616-43 (KPSF) is weak. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

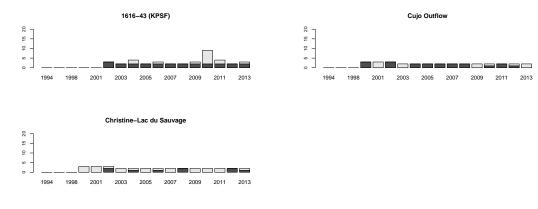
The estimated minimum detectable difference in mean total vanadium for each monitored lake in 2013. Reference lakes are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|-------|----------|----------------|
| 1616-43 (KPSF) | 2.13e-04 | 7.62e-05 | 4.35e-05 | 0e+00 | 1.62e-04 | 1.27e-04       |
| Cujo           | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |
| LdS2           | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |
| LdS1           | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |
| Nanuq          | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |
| Counts         | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |
| Vulture        | 2.50e-05 | NA       | NA       | NA    | NA       | NA             |

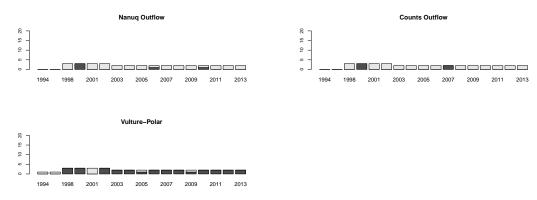
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                   | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Vanadium  | August | King-Cujo | Lake          | Water    | Counts<br>Nanuq<br>Vulture<br>Cujo LdS1<br>LdS2 | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.03             | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of August Total Vanadium in King-Cujo Watershed Streams

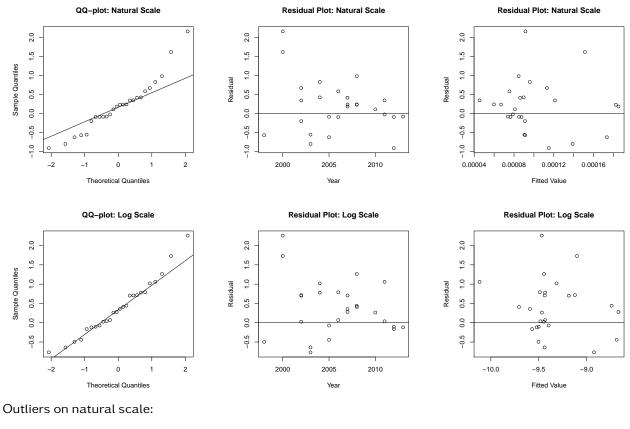
January 21, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were less than the detection limit (grey) or greater than the detection limit (black).

### 1.1 Monitored




### 1.2 Reference



#### Comment:

Greater than 60% of data in Counts Outflow, Nanuq Outflow, and Christine-Lac du Sauvage was less than the detection limit. These streams were excluded from further analyses. 10-60% of data in Vulture-Polar, Cujo Outflow, and Christine-Lac du Sauvage was less than the detection limit. We proceeded with Tobit regression for the remainder of the analyses.

## 2 Initial Model Fit



None

Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 1.000                | 0.000                 | Un-transformed Model |

Conclusion:

AIC reveals that the data is modeled best with no transformation. Proceeding with analysis using the untransformed "natural model".

## 3 Comparisons within Reference Streams

Two of three reference streams were removed from the analysis. Tests could not be performed. Proceeding with analysis using reference model 1.

## 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a slope of zero (reference model 1a).

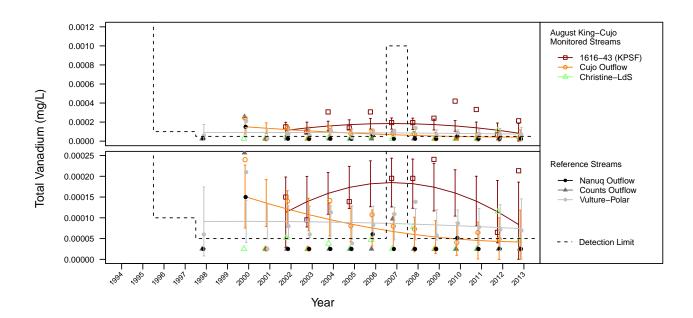
• Results:

|                | Chi-squared | DF | P-value |
|----------------|-------------|----|---------|
| 1616-43 (KPSF) | 2.7098      | 2  | 0.2580  |
| Cujo Outflow   | 5.5814      | 2  | 0.0614  |

• Conclusions:

No significant deviations were found when comparing monitored streams to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Stream


• R-squared values for model fit for each stream:

| Stream Type      | Stream Name    | R-squared |
|------------------|----------------|-----------|
| Reference Stream | Vulture-Polar  | 0.0170    |
| Monitored Stream | 1616-43 (KPSF) | 0.2980    |
| Monitored Stream | Cujo Outflow   | 0.3460    |

• Conclusions:

Model fit for 1616-43 (KPSF) and Cujo Outflow is weak. Model fit for Vulture-Polar is poor. Results of statistical tests and MDD should be interpreted with caution.

## 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

## 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean total vanadium for each monitored stream in 2013. Reference streams are shown for comparison.

|                          | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|--------------------------|----------|----------|----------|----------|----------|----------------|
| 1616-43 (KPSF)           | 2.13e-04 | 8.38e-05 | 5.20e-05 | 0.00e+00 | 1.86e-04 | 1.52e-04       |
| Cujo Outflow             | 2.50e-05 | 4.19e-05 | 3.91e-05 | 0.00e+00 | 1.18e-04 | 1.14e-04       |
| Christine-Lac du Sauvage | 4.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Nanuq Outflow            | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Counts Outflow           | 2.50e-05 | NA       | NA       | NA       | NA       | NA             |
| Vulture-Polar            | 6.95e-05 | 7.39e-05 | 3.66e-05 | 2.22e-06 | 1.46e-04 | NA             |

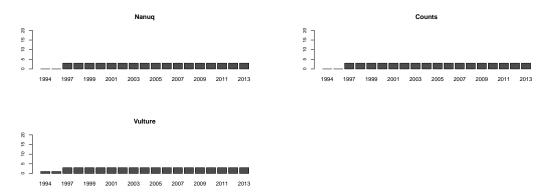
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed                                            | Data<br>Transfor-<br>mation | Model<br>Type       | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|--------------------------------------------------------------------------|-----------------------------|---------------------|----------------------|------------------|---------------------------------------------|
| Vanadium  | August | King-Cujo | Stream        | Water    | Counts<br>Outflow<br>Nanuq<br>Outflow<br>Christine-<br>Lac du<br>Sauvage | none                        | Tobit<br>regression | #1a slope<br>of zero | 0.03             | none                                        |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.

# Analysis of Phytoplankton Biomass in Lakes of the King-Cujo Watershed and Lac du Sauvage

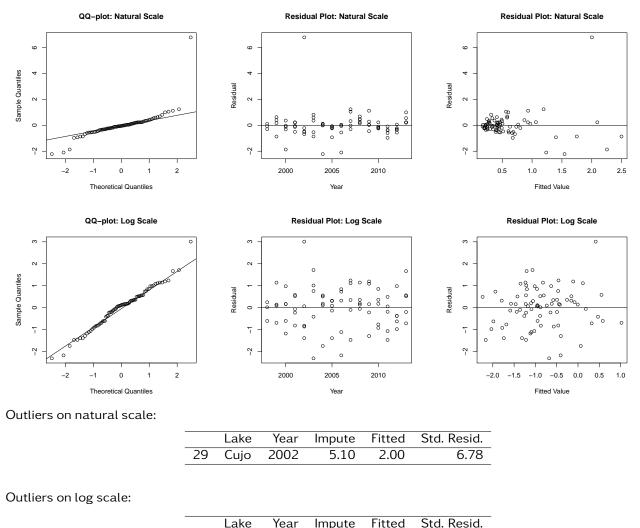
January 30, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    |      |      | •    |      | Std. Resid. |
|----|------|------|------|------|-------------|
| 29 | Cujo | 2002 | 5.10 | 0.41 | 3.01        |
|    |      |      |      |      |             |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model           |
|---------------|----------------------|-----------------------|----------------------|
| Akaike Weight | 0.510                | 0.490                 | Un-transformed Model |

Conclusion:

The log transformed model meets the regression assumptions of normality and equal variance better than the untransformed model. We are proceeding with the remaining analyses using the log transformed model despite the contradictory AIC results, because AIC is less reliable when data do not meet the assumption of normally distributed errors.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 9.34       | 6.00 | 0.16    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

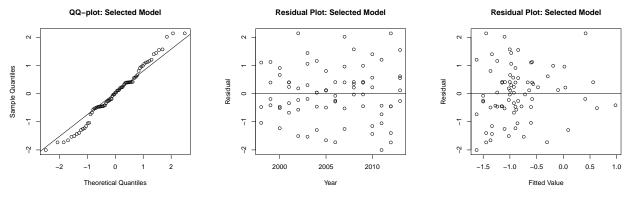
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 1.39       | 4.00 | 0.85    |

• Conclusions:

The slopes do not differ significantly among reference lakes.

### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero and because AIC indicated that reference model 2 was a better fit to the data than reference model 3.

### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

## 4 Test Results for Monitored Lakes

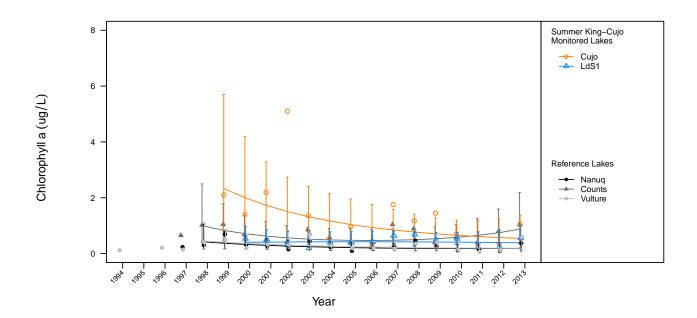
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 1.9108     | 2  | 0.3847  |
| LdS1 | 0.6747     | 2  | 0.7137  |

- Conclusions:
  - No significant deviations were found when comparing monitored lakes to reference lakes.

## 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.1040    |
| Monitored Lake    | Cujo            | 0.3220    |
| Monitored Lake    | LdS1            | 0.0050    |

• Conclusions:

Model fit for Cujo Lake is weak. Model fit for reference lakes, LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean biomass for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.06E+00 | 5.44E-01 | 2.57E-01 | 2.16E-01 | 1.37E+00 | 7.52E-01       |
| LdS1    | 5.63E-01 | 3.88E-01 | 1.86E-01 | 1.52E-01 | 9.92E-01 | 5.44E-01       |
| Nanuq   | 3.70E-01 | 1.87E-01 | 8.73E-02 | 7.52E-02 | 4.67E-01 |                |
| Counts  | 1.03E+00 | 8.76E-01 | 4.08E-01 | 3.52E-01 | 2.18E+00 |                |
| Vulture | 5.87E-01 | 1.90E-01 | 8.86E-02 | 7.63E-02 | 4.74E-01 |                |

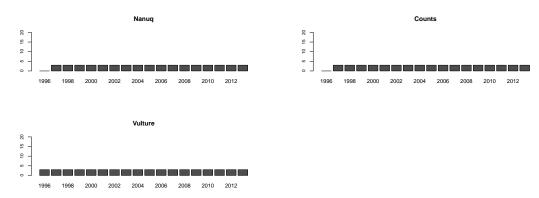
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Biomass   | Summer | King-Cujo | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                                    |

\* Monitored lakes are contrasted to a constant in reference model 1, to the slope of reference lakes in model 2, and to the slope and intercept of reference lakes in model 3.

# Analysis of Phytoplankton Density in Lakes of the King-Cujo Watershed and Lac du Sauvage

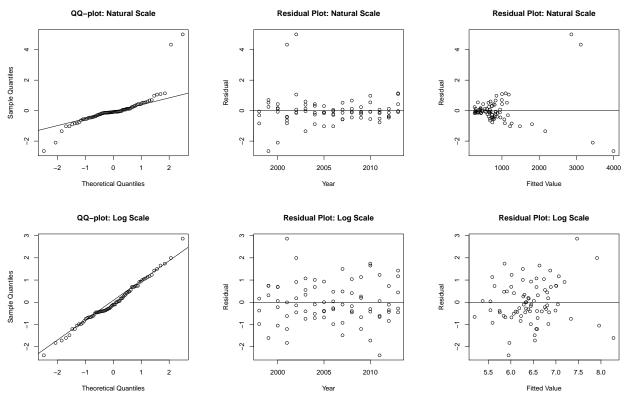
January 22, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were below the detection limit (grey) or above the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute  | Fitted  | Std. Resid. |
|----|------|------|---------|---------|-------------|
| 28 | Cujo | 2001 | 6564.60 | 3115.16 | 4.33        |
| 29 | Cujo | 2002 | 6847.07 | 2862.63 | 5.01        |

Outliers on log scale:

#### None

AIC weights and model comparison:

|              | Un-transformed Model | Log-transformed Model | Best Model            |
|--------------|----------------------|-----------------------|-----------------------|
| Akaike Weigh | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the log transformed model. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

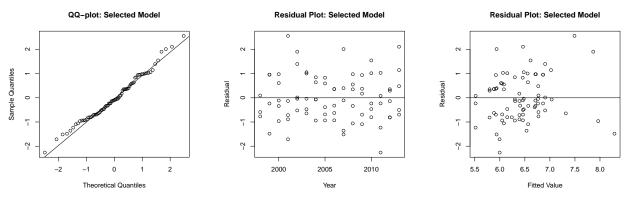
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 3.13       | 6.00 | 0.79    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model                                           |
|---------------|--------------|--------------|--------------|------------------------------------------------------|
| Akaike Weight | 0.455        | 0.000        | 0.545        | Indistinguishable support for 3 & 1; choose Model 3. |

• Conclusions:

AIC results are in agreement with reference model testing and reveal that the reference lakes are best modeled with a common slope and intercept. Proceeding with monitored contrasts using reference model 3.

### 3.3 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

## 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3).

• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 6.8494     | 3  | 0.0769  |
| LdS1 | 5.5507     | 3  | 0.1356  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

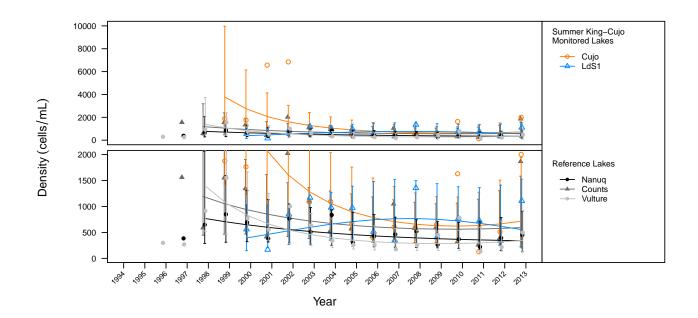
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 2.4484     | 2  | 0.2940  |
| LdS1 | 5.0267     | 2  | 0.0810  |

• Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing the slopes of monitored lakes to the common slope of reference lakes.


## 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.2830    |
| Monitored Lake    | Cujo            | 0.3480    |
| Monitored Lake    | LdS1            | 0.1030    |

• Conclusions:

Model fit for reference lakes and Cujo Lake is weak. Model fit for LdS1 is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean density for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 2.00E+03 | 7.17E+02 | 3.65E+02 | 2.64E+02 | 1.94E+03 | 1.07E+03       |
| LdS1    | 1.11E+03 | 5.55E+02 | 2.86E+02 | 2.01E+02 | 1.53E+03 | 8.38E+02       |
| Nanuq   | 4.50E+02 | 3.40E+02 | 1.71E+02 | 1.28E+02 | 9.09E+02 |                |
| Counts  | 1.87E+03 | 5.93E+02 | 2.97E+02 | 2.22E+02 | 1.58E+03 |                |
| Vulture | 4.96E+02 | 3.46E+02 | 1.74E+02 | 1.30E+02 | 9.25E+02 |                |

## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------|
| Density   | Summer | King-Cujo | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

# Analysis of August Zooplankton Biomass in Lakes of the King-Cujo Watershed and Lac du Sauvage

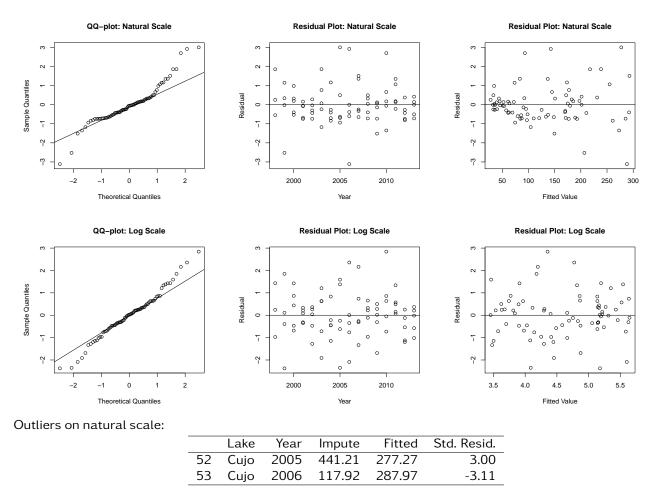
January 22, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

## 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 27.13      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

### 3.2 Compare Trend for All Reference Lakes: reference model 2

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 10.17      | 4.00 | 0.04    |

• Conclusions:

The slopes differ significantly among reference lakes. Reference lakes do not fit reference model 2.

#### 3.3 Compare Reference Models using AIC Weights

• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

AIC results are in agreement with reference mode testing and reveal that the reference lakes are best modeled with separate slopes and intercepts. Proceeding with monitored contrasts using reference model 1.

## 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a slope of zero (reference model 1a).

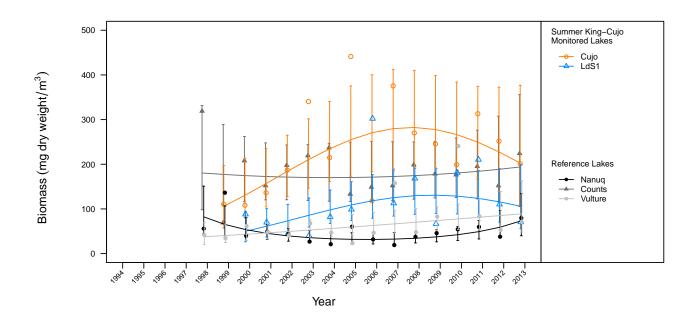
• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 0.1438     | 2  | 0.9306  |
| LdS1 | 5.3764     | 2  | 0.0680  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to a constant slope of zero.

### 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Type      | Lake Name | R-squared |
|----------------|-----------|-----------|
| Reference Lake | Counts    | 0.0140    |
| Reference Lake | Nanuq     | 0.4110    |
| Reference Lake | Vulture   | 0.2320    |
| Monitored Lake | Cujo      | 0.4480    |
| Monitored Lake | LdS1      | 0.2730    |

• Conclusions:

Model fit for Nanuq, Vulture, Cujo, and LdS1 is weak. Model fit for Counts Lake is poor. Results of statistical tests and MDD should be interpreted with caution.

### 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

### 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean zooplankton biomass for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 2.01E+02 | 2.03E+02 | 6.41E+01 | 1.09E+02 | 3.77E+02 | 1.88E+02       |
| LdS1    | 7.07E+01 | 1.06E+02 | 3.43E+01 | 5.62E+01 | 2.00E+02 | 1.00E+02       |
| Nanuq   | 7.97E+01 | 7.34E+01 | 2.27E+01 | 4.00E+01 | 1.35E+02 |                |
| Counts  | 2.24E+02 | 1.94E+02 | 6.01E+01 | 1.06E+02 | 3.56E+02 |                |
| Vulture | 7.08E+01 | 8.90E+01 | 2.76E+01 | 4.85E+01 | 1.63E+02 |                |

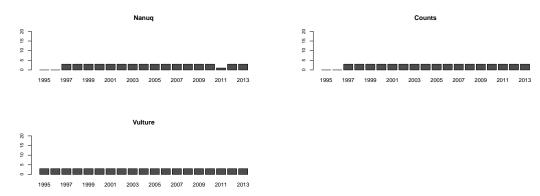
## 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model   | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts* |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|----------------------|------------------|---------------------------------------------|
| Biomass   | Summer | King-Cujo | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #1a slope<br>of zero | NA               | none                                        |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

# Analysis of August Zooplankton Density in Lakes of the King-Cujo Watershed and Lac du Sauvage

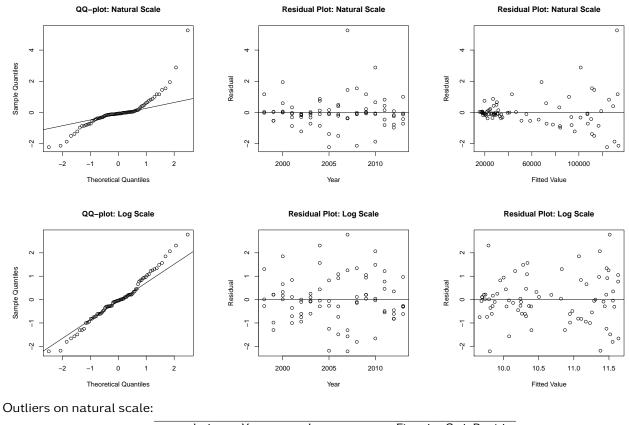
January 22, 2014


## 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

## 2 Initial Model Fit



|    | Lake | Year | Impute    | Fitted    | Std. Resid. |
|----|------|------|-----------|-----------|-------------|
| 54 | Cujo | 2007 | 348239.66 | 132418.33 | 5.26        |

Outliers on log scale:

#### None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

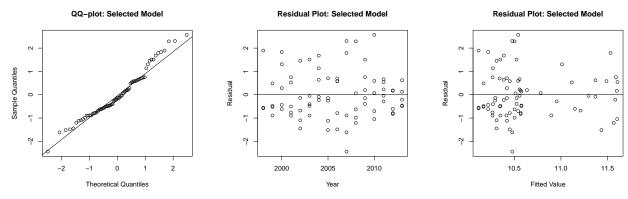
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 6.47       | 6.00 | 0.37    |

• Conclusions:

The slopes and intercepts do not differ significantly among reference lakes.

#### 3.2 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

#### • Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope and intercept. Proceeding with monitored contrasts using reference model 3 (fitting a common slope and intercept for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero, given that reference model 3 was the second best model according to AIC.

#### 3.3 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope and intercept (reference model 3). Proceeding with remaining analyses using reference model 3.

# 4 Test Results for Monitored Lakes

Fitted model of the slope and intercept of each monitored lake compared to a common slope and intercept fitted for all reference lakes together (reference model 3). Fitted model of the trend (slope) of each monitored lake compared to slope of each reference lake (reference model 1a).

• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 1.8894     | 3  | 0.5957  |
| LdS1 | 1.5425     | 3  | 0.6725  |

• Conclusions:

No significant deviations were found when comparing monitored lakes to reference lakes.

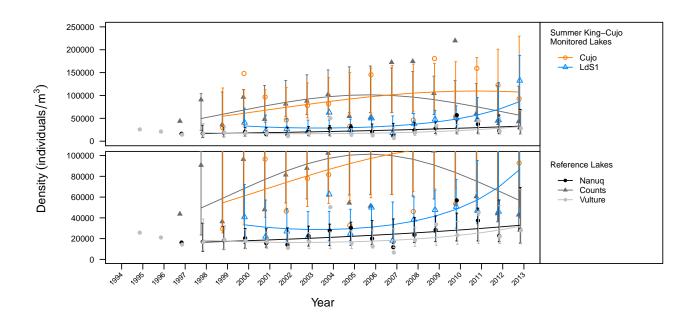
Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 0.1870     | 2  | 0.9107  |
| LdS1 | 0.9984     | 2  | 0.6070  |

• Conclusions:

When allowing for differences in intercept, no significant deviations were found when comparing monitored to the common slope of reference lakes.


# 5 Overall Assessment of Model Fit for Each Lake

• R-squared values for model fit for each lake:

| Lake Type         | Lake Name       | R-squared |
|-------------------|-----------------|-----------|
| Pooled Ref. Lakes | (more than one) | 0.0340    |
| Monitored Lake    | Cujo            | 0.1170    |
| Monitored Lake    | LdS1            | 0.4670    |

#### • Conclusions:

Model fit for LdS1 is weak. Model fit for reference lakes and Cujo Lake is poor. Results of statistical tests and MDD should be interpreted with caution.



### 6 Observed and Fitted Values

Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean zooplankton density for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 9.29E+04 | 1.08E+05 | 4.16E+04 | 5.04E+04 | 2.30E+05 | 1.22E+05       |
| LdS1    | 1.33E+05 | 8.66E+04 | 3.42E+04 | 4.00E+04 | 1.88E+05 | 1.00E+05       |
| Nanuq   | 2.85E+04 | 3.29E+04 | 1.25E+04 | 1.56E+04 | 6.91E+04 |                |
| Counts  | 4.29E+04 | 5.71E+04 | 2.17E+04 | 2.72E+04 | 1.20E+05 |                |
| Vulture | 2.80E+04 | 3.19E+04 | 1.21E+04 | 1.52E+04 | 6.71E+04 |                |

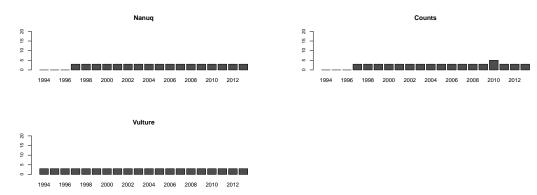
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model                | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|-----------------------------------|------------------|---------------------------------------------------------|
| Density   | Summer | King-Cujo | Lake          | Biology  | 1616-43<br>(KPSF)<br>LdS2     | log e                       | linear<br>mixed<br>effects<br>regression | #3 shared<br>intercept<br>& slope | NA               | none                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.

# Analysis of August Benthos Density in Lakes of the King-Cujo Watershed and Lac du Sauvage

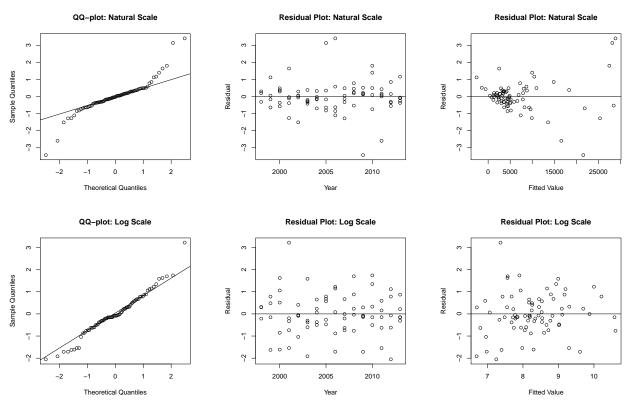
January 22, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each lake that were less than the detection limit (grey) or greater than the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the lakes exhibited greater than 10% of data less than the detection limit. Proceeding with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on natural scale:

|    | Lake | Year | Impute   | Fitted   | Std. Resid. |
|----|------|------|----------|----------|-------------|
| 52 | Cujo | 2005 | 42874.07 | 28170.57 | 3.14        |
| 53 | Cujo | 2006 | 44844.44 | 28886.55 | 3.40        |
| 56 | Cujo | 2009 | 5511.11  | 21582.98 | -3.43       |

Outliers on log scale:

|     | Lake  | Year | Impute   | Fitted | Std. Resid. |
|-----|-------|------|----------|--------|-------------|
| 108 | Nanuq | 2001 | 10192.59 | 7.37   | 3.22        |

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |
|---------------|----------------------|-----------------------|-----------------------|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |

Conclusion:

No extreme deviations from normality and equal variance found after fitting the untransformed and log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

# 3 Comparisons within Reference Lakes

#### 3.1 Compare Fitted Curves for All Reference Lakes: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 21.60      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference lakes. Reference lakes do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Lakes: reference model 2

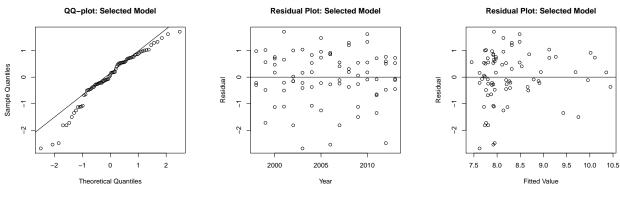
• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 4.45       | 4.00 | 0.35    |

Conclusions:

The slopes do not differ significantly among reference lakes.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 1.000        | 0.000        | 0.000        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference lakes are best modeled using separate slopes and intercepts, contrasts suggest that reference lakes share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference lakes) to avoid defaulting to comparing trends in monitored lakes against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference lake slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Lakes

Fitted model of the trend (slope) of each monitored lake compared to a common slope fitted to all reference lakes (reference model 2). This contrast does not test for differences in intercepts between reference and monitored lakes.

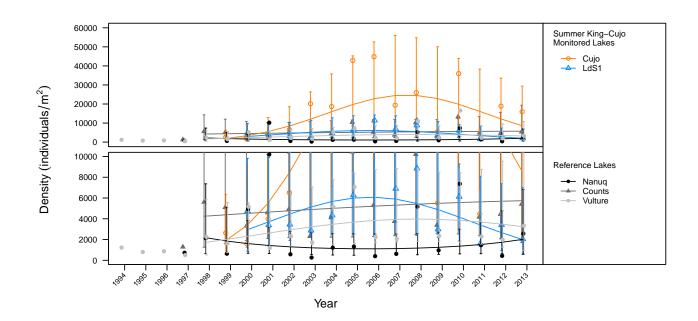
• Results:

|      | Chi-square | DF | P-value |
|------|------------|----|---------|
| Cujo | 6.8854     | 2  | 0.0320  |
| LdS1 | 1.5817     | 2  | 0.4535  |

• Conclusions:

Cujo Lake shows significant deviation from the slopes of individual reference lakes.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Lake Name       | R-squared               |  |  |
|-----------------|-------------------------|--|--|
| (more than one) | 0.0090                  |  |  |
| Cujo            | 0.5550                  |  |  |
| LdS1            | 0.3970                  |  |  |
|                 | (more than one)<br>Cujo |  |  |

• Conclusions:

Model fit for LdS1 is weak. Model fit for reference lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for lakes during baseline years are represented by symbols only. For lakes during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

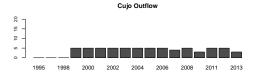
The estimated minimum detectable difference in mean benthos density for each monitored lake in 2013. Reference lakes are shown for comparison.

|         | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|---------|----------|----------|----------|----------|----------|----------------|
| Cujo    | 1.59E+04 | 8.56E+03 | 5.39E+03 | 2.49E+03 | 2.94E+04 | 1.58E+04       |
| LdS1    | 2.05E+03 | 2.00E+03 | 1.28E+03 | 5.70E+02 | 7.00E+03 | 3.74E+03       |
| Nanuq   | 2.57E+03 | 2.02E+03 | 1.25E+03 | 5.99E+02 | 6.82E+03 |                |
| Counts  | 5.41E+03 | 5.74E+03 | 3.56E+03 | 1.70E+03 | 1.94E+04 |                |
| Vulture | 3.33E+03 | 3.22E+03 | 2.00E+03 | 9.56E+02 | 1.09E+04 |                |

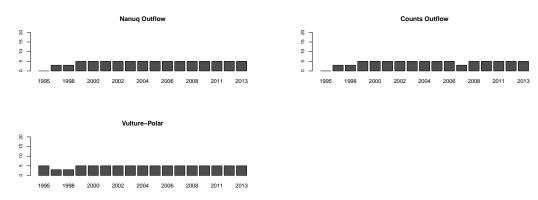
# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Density   | Summer | King-Cujo | Lake          | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regressior | #2 shared<br>slopes | NA               | Cujo                                                    |

\* Monitored lakes are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference lake in model 1b, to the common slope of reference lakes in model 2, and to the common slope and intercept of reference lakes in model 3.


# Analysis of Benthos Density in Streams of the King-Cujo Watershed and Lac du Sauvage

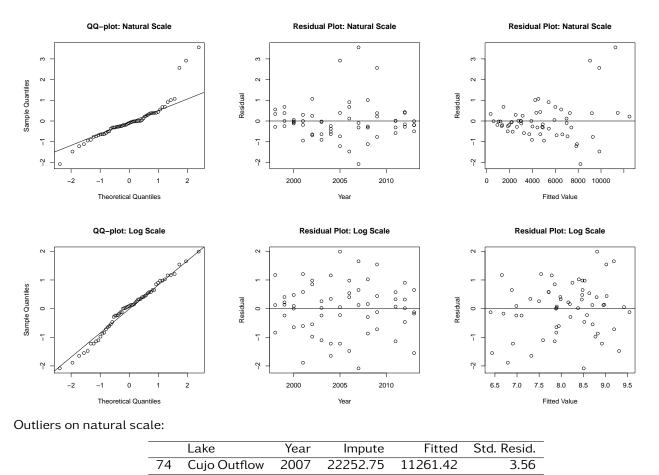
January 16, 2014


# 1 Censored Values:

The following charts indicate the number of measurements taken in each year from each stream that were below the detection limit (grey) or above the detection limit (black).

#### 1.1 Monitored




#### 1.2 Reference



Comment:

None of the streams exhibited greater than 60% of data below the detection limit. We proceeded with linear mixed model regression for the remainder of the analyses.

# 2 Initial Model Fit



Outliers on log scale:

None

AIC weights and model comparison:

|               | Un-transformed Model | Log-transformed Model | Best Model            |  |  |
|---------------|----------------------|-----------------------|-----------------------|--|--|
| Akaike Weight | 0.000                | 1.000                 | Log-transformed Model |  |  |

Conclusion:

No extreme deviations from normality and equal variance found after fitting both the untransformed natural and the log transformed models. AIC reveals that the data is modeled best after log transformation. Proceeding with analysis using log transformed model.

### 3 Comparisons within Reference Streams

#### 3.1 Compare Fitted Curves for All Reference Streams: reference model 3

• Results:

| Chi-square | DF   | p-value |
|------------|------|---------|
| 27.06      | 6.00 | 0.00    |

• Conclusions:

The slopes and intercepts differ significantly among reference streams. Reference streams do not fit reference model 3. Continuing with test of reference model 2 (fitting a common reference slope).

#### 3.2 Compare Trend for All Reference Streams: reference model 2

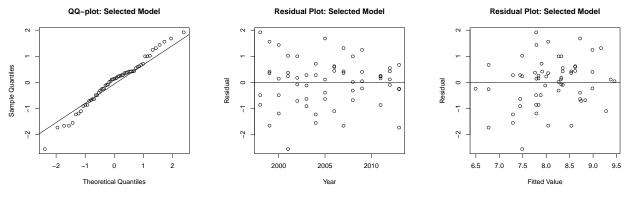
• Results:

| Chi-square | DF   | p-value |  |
|------------|------|---------|--|
| 6.36       | 4.00 | 0.17    |  |

• Conclusions:

The slopes do not differ significantly among reference streams.

#### 3.3 Compare Reference Models using AIC Weights


• Results:

|               | Ref. Model 1 | Ref. Model 2 | Ref. Model 3 | Best Model   |
|---------------|--------------|--------------|--------------|--------------|
| Akaike Weight | 0.995        | 0.000        | 0.005        | Ref. Model 1 |

• Conclusions:

Results of AIC do not agree with reference model testing. Although AIC suggests that reference streams are best modeled using separate slopes and intercepts, contrasts suggest that reference streams share a common slope. Proceeding with monitored contrasts using reference model 2 (fitting a common slope for reference streams) to avoid defaulting to comparing trends in monitored streams against a slope of zero.

#### 3.4 Assess Fit of Reduced Model



Outliers:

None

#### Conclusion:

No extreme deviations from normality and equal variance found after fitting the reduced model using a common reference stream slope while ignoring intercepts (reference model 2). Proceeding with remaining analyses using reference model 2.

# 4 Test Results for Monitored Streams

Fitted model of the trend (slope) of each monitored stream compared to a common slope fitted to all reference streams (reference model 2). This contrast does not test for differences in intercepts between reference and monitored streams.

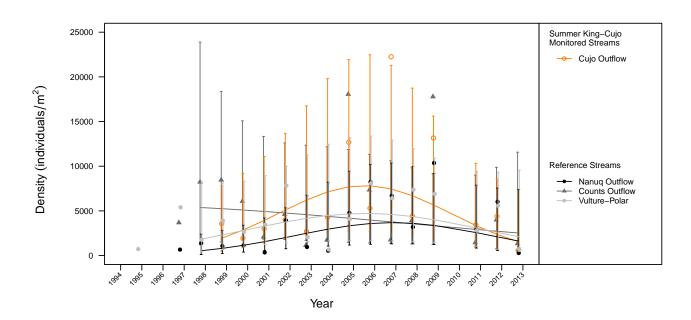
• Results:

|              | Chi-square | DF | P-value |
|--------------|------------|----|---------|
| Cujo Outflow | 1.1721     | 2  | 0.5565  |

• Conclusions:

No significant deviations were found when comparing monitored streams to reference streams.

# 5 Overall Assessment of Model Fit for Each Lake


• R-squared values for model fit for each lake:

| Stream Type         | Stream Name     | R-squared |
|---------------------|-----------------|-----------|
| Pooled Ref. Streams | (more than one) | 0.0750    |
| Monitored Stream    | Cujo Outflow    | 0.4260    |

#### • Conclusions:

Model fit for Cujo Outflow is weak. Model fit for reference lakes is poor. Results of statistical tests and MDD should be interpreted with caution.

# 6 Observed and Fitted Values



Note: The yearly observed mean for streams during baseline years are represented by symbols only. For streams during monitored years, the yearly observed mean is shown by symbols, and the mean and 95% confidence interval estimated by model fitting is represented by curved horizontal lines and vertical bars respectively.

# 7 Minimum Detectable Differences

The estimated minimum detectable difference in mean benthos density for each monitored stream in 2013. Reference streams are shown for comparison.

|                | Observed | Fitted   | SE Fit   | Lower    | Upper    | Min. Det. Diff |
|----------------|----------|----------|----------|----------|----------|----------------|
| Cujo Outflow   | 5.67E+02 | 1.56E+03 | 1.22E+03 | 3.39E+02 | 7.23E+03 | 3.58E+03       |
| Nanuq Outflow  | 2.89E+02 | 1.62E+03 | 1.26E+03 | 3.54E+02 | 7.40E+03 |                |
| Counts Outflow | 1.35E+03 | 2.53E+03 | 1.96E+03 | 5.54E+02 | 1.16E+04 |                |
| Vulture-Polar  | 7.40E+02 | 2.09E+03 | 1.62E+03 | 4.58E+02 | 9.57E+03 |                |

# 8 Final Summary Table

| Parameter | Month  | Watershed | Water<br>Body | Analysis | Lakes &<br>Streams<br>Removed | Data<br>Transfor-<br>mation | Model<br>Type                            | Reference<br>Model  | CCME<br>Guidline | Significant<br>Monitored<br>Con-<br>trasts <sup>*</sup> |
|-----------|--------|-----------|---------------|----------|-------------------------------|-----------------------------|------------------------------------------|---------------------|------------------|---------------------------------------------------------|
| Density   | Summer | King-Cujo | Stream        | Biology  | none                          | log e                       | linear<br>mixed<br>effects<br>regression | #2 shared<br>slopes | NA               | none                                                    |

\* Monitored streams are contrasted to a slope of 0 in reference model 1a, to the slope of each individual reference stream in model 1b, to the common slope of reference streams in model 2, and to the common slope and intercept of reference streams in model 3.