APPENDIX 17A

Fish and Fish Habitat Technical Data Report

Mackenzie Valley Highway Project Technical Data Report—Fish and Fish Habitat

Prepared for:

Government of the Northwest Territories

Prepared by:

K'alo-Stantec Limited

December 2022

Project No.: 144903025

Limitations and Sign-off

This document entitled Mackenzie Valley Highway Project Technical Data Report— Fish and Fish Habitat was prepared by K'alo-Stantec Limited ("K'alo-Stantec") for the account of Government of the Northwest Territories (the "Client") to support the regulatory review process for its Developers Assessment Report (DAR) (the "Application") for the Mackenzie Valley Highway Project (the "Project"). In connection therewith, this document may be reviewed and used by the Department of Infrastructure (INF) for the Government of the Northwest Territories participating in the review process in the normal course of its duties. Except as set forth in the previous sentence, any reliance on this document by any other party or use of it for any other purpose is strictly prohibited. The material in it reflects K'alo-Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between K'alo-Stantec and the Client. The information and conclusions in the document are based on the conditions existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, K'alo-Stantec did not verify information supplied to it by the Client or others, unless expressly stated otherwise in the document. Any use that another party makes of this document is the responsibility and risk of such party. Such party agrees that K'alo-Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other party as a result of decisions made or actions taken based on this document.

Executive Summary December 2022

Executive Summary

The Government of the Northwest Territories (GNWT), Department of Infrastructure (INF) is proposing the Mackenzie Valley Highway Project (the "Project") that will extend the Mackenzie Valley Highway (Northwest Territories Highway #1) from Wrigley to Norman Wells to replace the Mackenzie Valley Winter Road (MVWR) along this portion. The Project includes construction of approximately 281 kilometres (km) of new all-season highway, and the construction and operation of temporary and permanent quarry and borrow sources. The project highway alignment passes through the Dehcho Region and a portion of the Tulita District of the Sahtu Region within the Northwest Territories (NT).

This technical data report (TDR) presents technical data and analysis of watercourses to be crossed by the highway alignment as well as wetlands and waterbodies immediately adjacent to the highway that may require culvert installations. Watercourses with existing crossing structures (e.g., bridges and culverts) that will become part of the highway are not included in this report. The Great Bear River is also not included because the bridge crossing of this watercourse is undergoing a separate regulatory approvals process.

All watercourses to be crossed by the project highway alignment drain into the Mackenzie River. There are 33 species of fish within the Regional Study Area (RSA); however, not all species found within the RSA would be expected to utilize watercourses to be crossed by the highway (e.g., chum salmon [*Oncorhynchus keta*]). There is a known spawning population of chum salmon in the Liard River, which is a tributary to the Mackenzie River; however, this species is unlikely to use the watercourses expected to be crossed by the highway. Two species, the Western Arctic populations of Bull trout (*Salvelinus confluentus*) and Dolly Varden (*Salvelinus malma*), are listed under Schedule 1 of the *Species at Risk Act* as species of "special concern" and ranked sensitive under the Northwest Territories Species Ranking; however, no additional regulatory restrictions currently apply to these populations.

A desktop assessment was conducted on the 43 watercourses that cross the project highway alignment in the Sahtu Region. This desktop assessment was augmented by 28 field site-assessments within the Sahtu Region portion of the Project. Field assessments were conducted in September and October of 2021. Results indicated that all but 4 of the 43 watercourses assessed provide fish habitat or have the potential to provide fish habitat; most of the watercourses that have the potential to provide fish habitat would likely only support forage fish species.

In the Dehcho Region of the Project, desktop assessments of 49 watercourses or wetlands were augmented by field assessments conducted in September 2020. Field assessments focused on locations where there was not an existing crossing structure. There were 25 watercourses assessed in the field. Of the 49 watercourses and wetlands, 18 were unlikely to provide fish habitat and another 5 are unknown if they provide fish habitat (there was no previous data and could not be assessed in the field at the time). All other watercourses are known to provide fish habitat or have the potential to provide fish habitat. Most of the watercourses that have the potential to provide fish habitat would likely only support forage fish species.

Table of Contents

1	INTRODUC	CTION	1
2 2.1 2.2	STUDY AR Local Study Regional S	reas	 4 4 4
3	METHODS		5
3.1	Traditional	Knowledge and Traditional Land and Resource Use	5
3.2	Fish and Fi	sh Habitat Assessments	5
	3.2.1	Desktop Assessment	5
	3.2.2	Field Assessment	6
4	RESULTS		9
4.1	Traditional	Knowledge and Traditional Land and Resource Use	9
	4.1.1	Sahtu Region	9
	4.1.2	Dehcho Region	9
4.2	Fish Specie	es	10
	4.2.1	Life History Strategies	13
4.3	Watercours	e Crossing Assessments	17
	4.3.1	Sahtu Settlement Area	24
	4.3.2	Dehcho Region	40
5	SUMMARY	/	56
6	CLOSURE		57
7	REFEREN	CES	58

Table of Contents December 2022

List of Tables

Table 1.1	Fish and Fish Habitat Topics in Terms of Reference and Corresponding Sections in this Technical Data Report	1
Table 4.1	Potential Fish Species Within the RSA	11
Table 4.2	Watercourses Crossed by the Mackenzie Valley Highway Project Corridor and the MGP Route—in the Sahtu Region	18
Table 4.3	Waterbodies Crossed by the Mackenzie Valley Highway Project Corridor and the MGP Route—in the Dehcho Region	21

List of Figures

Figure 1.1	Dehcho Region and Sahtu Region - Proposed Mackenzie Valley Highway
	Alignment – Issued for EA 2022

List of Appendices

- APPENDIX A WATERCOURSE CROSSING LOCATIONS
- APPENDIX B STATION LOCATION MAPS AND SUMMARY SHEETS SAHTU SETTLEMENT AREA
- APPENDIX C STATION LOCATION MAPS AND SUMMARY SHEETS DEHCHO TERRITORY

Abbreviations

%	percent
AT	Alberta Transportation
COSEWIC	Committee on the Status of Endangered Wildlife in Canada
DAR	Developer's Assessment Report
DFO	Fisheries and Oceans Canada
GNWT	Government of the Northwest Territories
INF	Department of Infrastructure
IORVL	Imperial Oil Resources Ventures Limited
km	kilometre
КМ	kilometre marker
LSA	local study area
m	metre
mg/L	milligrams per litre
MGP	Mackenzie Gas Project
mm	millimetre
MVRMA	Mackenzie Valley Resource Management Act
MVWR	Mackenzie Valley Winter Road
NT	Northwest Territories
NTCMA	Northwest Territories Conference of Management Authorities
PDR	Project Description Report
RSA	regional study area
SARA	
TDR	
the Project	Mackenzie Valley Highway Project
тк	traditional knowledge
TLRU	traditional land and resource use

Glossary

Centreline	The location where the watercourse crosses the project highway alignment centreline, as currently defined by preliminary-level routing)
Coarse fish	Fish species that are not used for subsistence or recreational fishing such as suckers and Arctic lamprey
Drainage	Ephemeral feature that does not have a defined bed and banks
Feeding habitat	Habitat used by fish primarily for feeding purposes
Forage fish	Minnow-like species which are important food items for larger fish
Migration habitat	Features used by fish to migrate through a watercourse or waterbody to access different habitats to carry out additional life stages
Overwintering habitat	Habitat used by fish during the winter, typically when watercourses and waterbodies are ice-covered
Rearing habitat	Habitat used by larval and juvenile fish for feeding and shelter
Spawning habitat	Habitat used by adult fish to carry out spawning activities
Sport fish	Fish used for subsistence or recreational fishing such as whitefish

Section 1: Introduction December 2022

1 Introduction

The Government of the Northwest Territories (GNWT), Department of Infrastructure (INF) is proposing the Mackenzie Valley Highway Project (the Project) that will extend the Mackenzie Highway (Northwest Territories Highway #1) from Wrigley to Norman Wells to replace the Mackenzie Valley Winter Road (MVWR) along this portion. The Project includes construction of approximately 281 kilometres (km) of new all-season highway, and the construction and operation of temporary and permanent quarry and borrow sources. The project highway alignment will pass through the Dehcho Region and a portion of the Tulita District of the Sahtu Region within the Northwest Territories (NT; Figure 1.1). Watercourse crossing locations are provided in Appendix A.

The Project is subject to an environmental assessment and the requirements of Part 5 of the *Mackenzie Valley Resource Management Act* (MVRMA). This technical data report (TDR) presents the existing conditions for fish and fish habitat in watercourses, waterbodies, and wetlands crossed by, or adjacent to, the project highway alignment, as based on a preliminary design intended to support development of the Developer's Assessment Report (DAR) as required by the Terms of Reference (Mackenzie Valley Environmental Impact Review Board [MVEIRB], 2015). As per the Terms of Reference (MVEIRB, 2015), a description of existing fish habitat is provided (Table 1.1). As part of the environmental assessment, the DAR will present the GNWT's perspective of how the Project could affect the biophysical and socio-economic environment.

Terms of Reference ^a	Sections in This TDR
Description of fish habitat present at each of the planned water crossings including references	Section 3.2.2 Appendix A Appendix B
Fish species including forage fish (non-harvested) and any other aquatic resources of value present	Table 4.1
Seasonal and life cycle movements and sensitive periods	Section 4.2.1
Habitat requirements for each life stage	Section 4.2.1
Local and regional abundance, distribution and use of habitat types, including aquatic and riparian vegetation	Section 4.2.1
Known sensitive or important areas in terms of habitat type (e.g., spawning, overwintering, refugia, feeding), species and timing of use	Section 4.1
For species at risk or of concern, also describe specific location, population status, limits and size, sensitivity and limiting factors	Section 4.2.1.5 Section 4.2.1.6
Baseline contaminant concentrations in harvested species, that may change as a result of the highway and as available	Section 4.2
Any known issues with respect to health of harvested species (e.g., parasites, disease, condition)	Section 4.2
Species of particular importance to subsistence harvesters	Section 4.1

Table 1.1Fish and Fish Habitat Topics in Terms of Reference and Corresponding Sections in
this Technical Data Report

Section 1: Introduction December 2022

Terms of Reference ^a	Sections in This TDR
Species subject to exclusive or preferential rights granted by land claims	Section 4.1
species of particular importance to the guiding or outfitting industries	Section 4.1 Section 4.2.1
areas subject to exclusive harvesting rights granted to land claim beneficiaries	Section 4.1
harvest pressures (subsistence, sport fishing, and commercial harvesting) by species, season and geographic area	Section 4.1 Section 4.2.1
Listing of existing non-native species	Section 4.2

Note:

^a Section 5.1.4 of MVEIRB, 2015 Terms of Reference was referred to in order to develop this TDR

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Section 2: Study Areas December 2022

2 Study Areas

The Project is in the Mackenzie Valley region of the NT between Hodgson Creek (located approximately 1 km north of Wrigley) and Prohibition Creek (located approximately 28 km southeast of Norman Wells). The project highway alignment parallels the Mackenzie River to the east.

The Project is located within the Taiga Plains Low Subarctic, Taiga Cordillera Low Subarctic and Boreal Cordillera Level III ecoregions. Each of these ecoregions is distinguished by different climatic factors.

2.1 Local Study Area

The Local Study Area (LSA) for fish and fish habitat is defined as the collective area 300 metres (m) downstream and 100 m upstream of each watercourse crossing structure proposed to be constructed as part of the Project. The centreline reference point is defined as the mid-point where the highway preliminary routing corridor developed to support the DAR crosses a watercourse. This area provides local context for determining significance of Project specific and potential effects to be assessed in the DAR and to inform engineering design.

2.2 Regional Study Area

The Regional Study Area (RSA) is defined by a 15 km buffer on either side of the Project. The RSA includes the Mackenzie River and associated tributaries and drainages. A 15 km buffer provides regional context for determining significance of Project specific effects and potential cumulative effects to be assessed in the DAR.

3 Methods

3.1 Traditional Knowledge and Traditional Land and Resource Use

Traditional knowledge (TK) and traditional land and resource use (TLRU) were obtained through a review of existing published literature from past TK studies. For example, the Tulita Renewable Resources Council (TRRC) completed a TLRU study for the Tulita District relating to the Project (TRRC, 2022). In addition, the following published literature was reviewed:

- Auld and Kershaw (ed.), 2005
- Desseau, 2012
- Golder, 2015
- IMG-Golder Corporation, 2006
- TRRC, 2019

3.2 Fish and Fish Habitat Assessments

3.2.1 Desktop Assessment

Potential watercourses crossed by the project highway alignment were determined based on information included in the Project Description Report (PDR) for Construction of the Mackenzie Valley Highway Tulita District, Sahtu Settlement Area (5658 NWT Ltd. and GNWT, 2011), the PDR for the Mackenzie Valley Highway Extension Pehdzeh Ki Ndeh – Dehcho Region (Dessau, 2012), and the fish and fish habitat baseline report from the Mackenzie Gas Project (MGP) (Imperial Oil Resources Ventures Limited [IORVL], 2004), which follows a similar route to that of the Project. In 2011, fish habitat assessments were completed from a helicopter to identify potential watercourse crossings along the project highway alignment (5658 NWT Ltd. and GNWT, 2011; Dessau, 2012). Watercourse crossings were identified as either watercourses or drainages. Watercourses were identified as active channels with defined bed and banks, while drainages were vegetated and/or had no defined bed and banks (IORVL, 2004; 5658 NWT Ltd. and GNWT, 2012).

During aerial surveys, (5658 NWT Ltd. and GNWT, 2011; Dessau, 2012) identified fish habitat potential based on the type of watercourse to be crossed and did not qualify the quality of habitat available. (5658 NWT and GNWT, 2011; Dessau, 2012) identified fish habitat potential as follows:

- non-fish bearing; features are not used by fish during any life stage.
- migratory channels; ephemeral features used by fish for migration only or contribute to downstream habitat quality.
- spawning, rearing, and feeding habitats; watercourses and drainages that are used by fish for at least one life stage as well as migration.

Reconnaissance and detailed and seasonal surveys at each crossing along the MGP route completed by IORVL (IORVL, 2004). Fish inventories were completed to determine species and life stages in the watercourses crossed by the MGP route, but the report does not provide a comprehensive inventory of fish species in each watercourse. Habitat suitability was evaluated for the potential of large-bodied species harvested for commercial, recreation, or subsistence purposes (e.g., northern pike, Arctic grayling, or groups of fish such as whitefish species) and assumed that all channels provided suitable habitat for some species while vegetated channels did not (IORVL, 2004); it did not describe quality of habitat; instead, it evaluated habitat potential for large-bodied species at each crossing location for

- overwintering
- spawning and incubating
- rearing
- adult feeding and holding

In addition to reviewing existing reports, information on crossings was found using publicly available aerial imagery. Existing watercourses with existing crossing structures that have been established for the MVWR will be utilized by the Project and have been previously assessed.

Primary sources for information on fish species presence was gathered from existing literature and Fisheries and Oceans Canada's (DFO) aquatic species at risk map (DFO, 2022). The resulting historical fish capture data was reviewed for the presence of fish species at risk listed under Schedule 1 of the *Species at Risk Act* (SARA) and the Northwest Territories Conference of Management Authorities (NTCMA) Species at Risk List. Other species designations and status reports were also considered: the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (GOC, 2022b) and the General Status of Ranks of Wild Species in the Northwest Territories (GNWT, 2016).

Life history strategies of the fish species with historical presence within the RSA were summarized based on published literature. Life history strategies were provided for species that are expected to be of value for subsistence or recreational fishing and are predominantly sport fish (e.g., Arctic grayling, northern pike, lake whitefish). Forage fish (e.g., cyprinids) and coarse fish (e.g., suckers) are expected to occur within the RSA; however, life history strategies were not provided because they are less valued for subsistence or recreational fishing although they are ecologically important to the aquatic system. Watercourse crossings identifiers were cross-referenced between the MGP (IORVL, 2004) and PDR (5658 NWT Ltd. and GNWT, 2011) reports and summarized based on both data sources.

3.2.2 Field Assessment

Field assessments were conducted in the Dehcho Region portion of the Project between September 16 and 24, 2020. Field assessments in the Sahtu Region were conducted between September 30 and October 11, 2021. Field assessments in the Sahtu settlement Area were conducted later than originally proposed due to delays in obtaining community and research study approvals due to COVID-19. This delay resulted in some watercourses not being assessed in the field or fish capture not being conducted at all watercourses due to freezing conditions, which could result in injury to fish. For potential stream crossings where field assessments were not conducted, information relies on the desktop assessment.

Field assessments were not conducted at watercourse crossings where there are existing watercourse crossing structures. The Great Bear River is also not included in this report because a proposed bridge over the river at Tulita is undergoing a separate regulatory process.

Features crossed by the Project were grouped into the following categories:

- drainage; ephemeral feature that does not have a defined bed and banks.
- watercourse; has defined bed and banks with flowing surface water that may be active yearround or seasonally.
- wetland; a waterbody with defined bed and banks but does not have flowing water. A wetland may have an inlet and/or an outlet, which connects it to another watercourse or waterbody.

The fish habitat assessment used procedures based on standard protocols outlined in Alberta Transportation's (AT) Fish Habitat Manual (AT, 2009) and R.L. & L. Environmental Services Ltd. (1992). Alberta protocols are used as there are no fish habitat assessment protocols established for the NT and are the Alberta protocols are accepted by regulators in the NT. At each crossing location, six transects were established to document channel characteristics along a 400 m reach. Transects were established at 100 m and 50 m upstream of the centreline and 100 m, 200 m, and 300 m downstream of the centreline. Where possible, the following information and observations were recorded at each transect:

- date and time
- photographs
- habitat-type (e.g., pool riffle, run) and area
- channel characteristics (e.g., channel and wetted widths, depths, gradient)
- bed material (substrate size distribution)
- obstructions to fish passage
- vegetation (instream and riparian)
- flood signs
- stage of stream

Bank materials, bank stability, bank slopes, cover, vegetation, and fish habitat were estimated visually. Channel width, wetted width, water depth, and bank heights were measured quantitively. Instream substrate composition was estimated visually at each transect.

Habitat characteristics were incorporated into a physical habitat classification system, which rated the quality of each macro-habitat type, based on physical characteristics (e.g., depth, cover, substrate) and life history requirements (e.g., rearing, spawning, migration, overwintering) of different fish species known or likely to occur in the vicinity of the Project. Fish habitat suitability for migration, spawning, rearing, and overwintering for waterbodies adjacent to the project highway alignment was rated (i.e., good, moderate, poor, or none) according to its suitability to support migration, spawning, rearing, and overwintering by fish species known or likely to be present within the waterbody.

Generally, sport fish spawning habitat was rated of higher quality (i.e., good) where there was abundant large gravel (suitable for redd construction) and coarse substrate, such as cobble (suitable for broadcast spawning). Proximity to cover was considered because it is important for some species, such as bull trout. For northern pike, flooded riparian vegetation is required for spawning. Consistent flow and suitable depth for the various species were considered in determination of quality. For coarse fish, similar attributes to sport fish were considered because the substrate utilized is similar overall. Forage fish exhibit a variety of spawning behaviours, and good spawning habitat typically includes instream woody debris, instream vegetation, or flooded riparian vegetation as well as the variety of substrates. In addition, forage fish are typically tolerant of lower flows and shallower depths. Ratings of moderate and poor were based on lower amounts of preferred spawning habitat at an area.

Rearing habitat was rated as good quality where flows were suitable for larval and juvenile fish and where there was abundant overhead and/or instream cover. Rearing habitat was rated as better quality where substrate was coarser and complex because it is more likely to support colonization of benthic invertebrate communities as a food source for fish. Ratings of moderate and poor were based on lower amounts of potential rearing habitat at an area.

Overwintering habitat was rated as good for sport and coarse fish where the watercourse does not freeze to bottom and consistent flows were maintained. Deep, high-quality pools were also considered as good overwintering habitat. These areas are likely to maintain sufficient dissolved oxygen concentrations for fish during the winter. Forage fish are generally small bodied, and many are more resilient to lower dissolved oxygen concentrations (e.g., brook stickleback, fathead minnow). These fish are able to successfully overwinter in wetlands (depth greater than 1.5 m), watercourses that do not freeze to the bottom, or that freeze near to bottom. Ratings of moderate and poor were based on lower amounts of potential overwintering habitat at an area.

Migration was rated as good where no barriers to migration were observed. Barriers such as cascades or rapids may not be passed by small-bodied forage fish but could be successfully jumped by an adult salmonid. Other barriers, such as beaver dams, may serve as partial barriers to larger-bodied fish, such as sport and coarse fish, while forage fish are able to migrate past them. Ratings of moderate and poor were based on increasing potential for blockages to fish passage due to flow levels or other natural potential barriers at an area.

4 Results

December 2022

4.1 Traditional Knowledge and Traditional Land and Resource Use

4.1.1 Sahtu Region

Fishing is an important cultural and social activity in the Sahtu Region (Auld and Kershaw, 2005). The Mackenzie River is an important area for fish harvesting but lakes are also fished (Sahtu Heritage Places and Sites Working Group, 2000). When wildlife were not available at different times of year, some fish species were always available (Auld and Kershaw, 2005). Streams in the Sahtu area are all fish bearing though fish may be only found at certain times of year (Golder, 2015).

Important fish species harvested include Lake whitefish (humpbacks), Lake trout, Northern pike (jackfish), Arctic grayling and Inconnu (coney) (Auld and Kershaw, 2005; Golder, 2015). Arctic grayling are commonly present in the Great Bear River (5658 NWT Ltd. and GNWT, 2011). Broad whitefish are also harvested (Tallman and Reist, 1997). There are no exclusive harvesting rights for fish; however, individuals wishing to fish in Sahtu or Métis private lands or special harvesting areas should contact the local Renewable Resource Council for permission to access the area.

4.1.2 Dehcho Region

Fish, especially whitefish (Dessau, 2012), are an important food source and of cultural significance for people in the Dehcho Region, although other fish species are also harvested. The Mackenzie River is an important fishing area (Dehcho Land Use Planning Committee, 2006). Subsistence fishing is a commonly practiced activity, with the Mackenzie River, Wrigley River, Willowlake River, the River Between Two Mountains, Blackwater Lake, Greasy Lake and Highland Lake being important waterbodies for subsistence harvesting. The primary species caught are lake whitefish, lake trout, inconnu and northern pike (IMG-Golder, 2006). Fish spawning sites are located near the mouths of the Ochre River and Blackwater River (Dessau, 2012). as well as other watercourses crossed by the project highway alignment. Fishing is in important in Trout Lake for TLRU (TRRC, 2022). There are lakes within the RSA which are important spawning areas and fish harvesting within the RSA is reported to occur in the summer and wintertime (TRRC, 2022). There are no exclusive harvesting rights for fish and permission to access lands is not required.

Section 4: Results December 2022

4.2 Fish Species

Previously, 28 fish species were documented within the RSA, based on existing data from 5658 NWT and GNWT (2011) and IORVL (2004). Field assessments in the Dehcho Region by K'alo-Stantec in 2020 included capture of an additional two species: brook stickleback (*Cluea inconstans*) and fathead minnow (*Pimephales promelas*). The 2021 field assessments in the Sahtu Region identified three additional species: finescale dace (*Chrosomus neogaeus*), pearl dace (*Margariscus margarita*) and northern redbelly dace (*Chrosomus eos*). These additional five species raise the total number of fish species documented in the RSA to 33. The capture of pearl dace and northern redbelly dace indicates northern range extensions for both these species in the NT. Table 4.1 provides the status for each species identified in the desktop assessment and field assessments.

Previous studies (IORVL, 2004) conducted in the LSA captured lake chub (*Couesius plumbeus*), slimy sculpin (*Cottus cognatus*), northern pike (*Esox lucius*), longnose sucker (*Catostomus catostomus*) and Arctic grayling (*Thymallus arcticus*)

There are no resident non-native fish within the LSA. Three Pacific salmon species (sockeye [*Oncorhyncus nerka*], chinook [*O. tshawytscha*], and coho [*O. kisutch*]) have been captured and are non-native and occasionally occur in the Mackenzie River system but are considered vagrant in the RSA. Chum salmon [*O. keta*] also occurs within the RSA; however, this species is unlikely to migrate up watercourses into the LSA due to the lack of adequate spawning habitat for this species. Only one spawning population of chum salmon has been reported in the Mackenzie River system, in the Liard River (R.L. & L. Environmental Services Ltd., 1980) a tributary to the Mackenzie River.

The western Arctic population of bull trout (*Salvelinus confluentus*) and Dolly Varden (*Salvelinus malma*) are considered populations of Special Concern under SARA (GOC, 2022a) and COSEWIC (GOC, 2022b). Both species are listed as "sensitive" in the NT by the Species at Risk Committee (GNWT, 2020). Inconnu (*Stenodus leucichthys*) and Arctic cisco (*Coregonus autumnalis*) are also listed as "sensitive" (GNWT, 2016). Species listed as "special concern" or "sensitive" have no additional regulatory requirements associated with them.

There are no fish consumption advisories for watercourses crossed by the project highway alignment identified by the GNWT Department of Health and Social Services (GNWT, 2021) and no baseline contaminant studies have been conducted for those watercourses. No concerns over parasites in fish have been reported.

Section 4: Results December 2022

	Species Informatio	Legislated Protection	Scientific Review or Recommendation		
Family	Common Name	Scientific Name	SARAª (Federal)	COSEWICª (Federal)	General Status ^ь (Northwest Territories)
Catostomidae	longnose sucker	Catostomus	No status	Not assessed	Secure
	white sucker	Catostomus commersonii	No status	Not assessed	Secure
Cottidae	slimy sculpin	Cottus cognatus	No status	Not assessed	Secure
	spoonhead sculpin	Cottus ricei	No status	Not at risk	Secure
Cyprinidae	emerald shiner	Notropis atherinoides	No status	Not assessed	Secure
	fathead minnow	Pimephales promelas	No status	Not assessed	Undetermined
	finescale dace	Chrosomus neogaeus	No status	Not assessed	Secure
	flathead chub	Platygobio gracilis	No status	Not assessed	Secure
	lake chub	Couesius plumbeus	No status	Not assessed	Secure
	longnose dace	Rhinichthys cataractae	No status	Not assessed	Secure
	northern redbelly dace	Chrosomus eos	No status	Not assessed	Secure
	pearl dace	Semotilus margarita	No status	Not assessed	Secure
	spottail shiner	Notropis hudsonius	No status	Not assessed	Secure
Esocidae	northern pike	Esox lucius	No status	Not assessed	Secure
Gadidae	burbot	Lota lota	No status	Not assessed	Secure
Gasterosteidae	brook stickleback	Cluea inconstans	No status	Not assessed	Secure
	ninespine stickleback	Pungitius pungitius	No status	Not assessed	Secure
Hiodontidae	goldeye	Hiodon alosoides	No status	Not assessed	Secure
Percidae	walleye	Sander vitreus	No status	Not assessed	Secure
Percopsidae	trout-perch	Percopsis omiscomaycus	No status	Not assessed	Secure
Peteromyzontidae	Arctic lamprey	Lampetra arcticus	No status	Not assessed	Undetermined

Table 4.1 Potential Fish Species Within the RSA

Mackenzie Valley Highway Project Technical Data Report—Fish and Fish Habitat

Section 4: Results December 2022

	Species Informa	Legislated Protection	Scientific Review or Recommendation		
Family	Common Name	Scientific Name	SARAª (Federal)	COSEWIC ^a (Federal)	General Status ^b (Northwest Territories)
Salmonidae	Arctic cisco	Coregonus autumnalis	No status	Not assessed	Sensitive
	Arctic grayling	Thymallus arcticus	No status	Not assessed	Secure
	broad whitefish	Coregonus nasus	No status	Not assessed	Secure
	bull trout	Salvelinus confluentus	Special Concern	Special Concern	Sensitive
Salmonidae	Dolly Varden	Salvelinus malma	Special Concern	Special Concern	Sensitive
(cont'd)	Inconnu	Stenodus leucichthys	No status	Not assessed	Sensitive
	lake trout	Salvelinus namaycush	No status	Not assessed	Secure
	lake whitefish	Coregonus clupeaformis	No status	Not assessed	Secure
	least cisco	Coregonus sardinella	No status	Not assessed	Secure
	mountain whitefish	Prosopium williamsoni	No status	Not assessed	Secure
	round whitefish	Prosopium cylindraceum	No status	Not assessed	Secure
	Chum salmon	Oncorhynchus keta	No status	Not assessed	Undetermined

Notes:

^a Species at Risk Act and COSEWIC (GOC, 2022b)

^b General Status Ranks of Wild Species in the Northwest Territories (GNWT, 2016)

4.2.1 Life History Strategies

4.2.1.1 Lake Whitefish

Lake whitefish or humpback is a common species harvested by communities throughout the Mackenzie River system, including in the RSA. Spawning occurs in the fall in lakes and larger rivers (Scott and Crossman, 1998). There are no records of lake whitefish spawning in smaller streams, but they may utilize these streams to move between lakes and larger river systems for rearing. Lake whitefish are known to spawn in the Mackenzie River (Jessop and Lilly, 1975) and in larger tributaries of the Mackenzie River.

Spawning typically occurs between late September and early October (Reist and Bond, 1988) and eggs hatch in spring. Lake whitefish do not make redds but instead broadcast their eggs over cobble and gravel substrate (Scott and Crossman, 1998). In rivers, larval lake whitefish are swept downstream and move into backwaters of rivers as nursery areas (Sawatzky et al., 2007) and then move into lakes until they reach maturity (Evans et al., 2001). It is unknown if there are lake whitefish that reside in major rivers for their entire life history (Evans et al., 2001).

Adult lake whitefish diet consists mainly of aquatic insect larvae (e.g., chironomids), snails, clams, amphipods, and other bottom organisms (Scott and Crossman, 1998). Lake whitefish have also been known to feed on small fish and fish eggs (Scott and Crossman, 1998).

Lake whitefish would not be expected to occur in watercourses assessed in the LSA due to the lack of suitable habitat.

4.2.1.2 Least Cisco

The majority of information known about least cisco, a member of the whitefish family, in the Western Arctic is from the lower Mackenzie River and delta. Although they are known to occur throughout most of the Mackenzie River, least cisco is not known to occur in Great Slave Lake (Stewart and Low, 2000). Least cisco can be found in both lakes and rivers with some populations being only lake dwelling (Scott and Crossman, 1998).

Spawning occurs in late September to early October with eggs broadcast over sand or gravel. Hatching typically occurs in May (Sawatzky et al., 2007). Least cisco feed on aquatic and terrestrial insects (Scott and Crossman, 1998).

Least cisco would not be expected to occur in the streams assessed during this study due to the lack of suitable habitat.

Section 4: Results December 2022

4.2.1.3 Inconnu

Inconnu or coney is the only truly piscivorous (fish eating) whitefish and the largest member of the whitefish family. They may undertake long migrations; two tagged inconnu migrated almost 1,800 km from the Liard River to the Mackenzie River delta and Tuktoyaktuk (Stephenson et al., 2005). Inconnu have been grouped into three migratory types: fully anadromous, partially anadromous, and freshwater (Howland et al., 2001). All three migratory types may be found in the RSA.

Inconnu spawning occurs in October over coarse cobble substrate and some sand (Alt, 1969) in the Mackenzie River and larger tributary rivers (e.g., Peel River). After spawning, they migrate downstream to overwintering areas. Spawning of mature inconnu is believed to occur only every two to four years (Scott and Crossman, 1998). Inconnu are not known to migrate up streams into the LSA although may be found at the mouths of streams that enter the Mackenzie River.

4.2.1.4 Lake Trout

Lake trout are mainly found in deep, cold-water lakes but may also be found in some shallower lakes and larger rivers in the NT (Scott and Crossman, 1998). They spawn in the fall over cobble substrate along exposed shorelines and shoals of lakes (Callaghan et al., 2015). Lake trout spawning is not expected in the watercourses within the LSA due to the lack of spawning habitat potential in these systems.

Lake trout feed on zooplankton, other fish, and occasionally small mammals (Scott and Crossman, 1998). The presence of lake trout within the LSA is expected to be restricted to larger watercourses and used mainly for movement between lakes.

4.2.1.5 Bull Trout

Two types of bull trout have been identified in the Mackenzie Valley: migratory and non-migratory (Mochnacz et al., 2013). Bull trout have been reported in the Great Bear River (Mochnacz et al., 2013; IORVL, 2004; Reist et al., 2002). However, they are not thought to spawn in the Great Bear River system because they usually spawn in smaller, steeper gradient streams (Mochnacz et al., 2013; IORVL, 2004). It has been suggested bull trout in the eastern tributaries of the Mackenzie River, such as those within the RSA are individuals from tributaries on the west side of the Mackenzie River in search of feeding or overwintering areas (Mochnacz et al., 2013).

Bull trout are fall spawners, making redds in gravel substrate (COSEWIC, 2012). In the NT, bull trout spawn in alternate years (Mochnacz et al., 2013). Incubation can range from 35 days to four months, depending on water temperatures (COSEWIC, 2012). As bull trout age, their diet transitions from aquatic and terrestrial invertebrates to fish (Stewart et al., 2007).

The Western Arctic population of bull trout is considered "of special concern" under SARA (GOC, 2022a) and COSEWIC (GOC, 2022b) and is considered "sensitive" under the General Status Ranks of Wild Species in the NT (GNWT, 2016). The population is widely distributed throughout the Western Arctic drainage; however, populations are not abundant (COSEWIC, 2012). There are no population estimates for the NT, but there is evidence of decline within the Western Arctic Population in some locations

(COSEWIC, 2012). This species is particularly vulnerable to habitat degradation and fragmentation as a result of industrial development (e.g., oil, gas, and mining development, commercial forestry, road and urban development, displacement and hybridization with introduced species (i.e., brook trout [*Salvelinus fontinalis*]), and overexploitation, which is exacerbated with misidentification (COSEWIC, 2012).

Bull trout are not expected to occur in the watercourses assessed during this study due to the lack of suitable habitat.

4.2.1.6 Dolly Varden

Dolly Varden are unlikely to occur within tributaries of the Mackenzie River in the RSA. This is because the southern range of the northern population of Dolly Varden is the Gayna River, which is downstream of Norman Wells and outside the RSA. Dolly Varden have been reported in previous studies conducted within the RSA; however, these fish were likely misidentified bull trout (Reist et al., 2002).

There are two forms of Dolly Varden: a riverine form and an anadromous form, which migrates to the Beaufort Sea to feed during the open water season (Stewart at al., 2010). Both forms construct redds in clear, groundwater-fed streams that do not freeze to the bottom in winter (Stewart et al., 2010). The age before migrations to the Beaufort Sea can vary depending on the population but typically occurs between two to four years (Stewart et al., 2010).

The Western Arctic population of Dolly Varden is considered "of special concern" under SARA (GOC, 2022a) and COSEWIC (GOC, 2022b) and is considered "sensitive" under the General Status Ranks of Wild Species in the Northwest Territories (GNWT, 2016). The population within the NT is not well understood, and the extent of its decline is not known but serious declines have been observed in some populations (COSEWIC, 2010). The known threats to the species include climate change, habitat loss through freshwater river desiccation, overharvesting, and changes to groundwater recharging at overwintering sites (COSEWIC, 2010). Additional potential threats include offshore infrastructure (which can disrupt anadromous forms), resource extraction that may alter habitat and increasing fishing pressure driven by development of transportation corridors (COSEWIC, 2010).

Dolly Varden are not expected to occur in the watercourses assessed in the LSA due to the lack of suitable habitat.

4.2.1.7 Arctic Grayling

Arctic grayling is found in clear, cold streams, rivers, and lakes (Scott and Crossman, 1998; Ford et al., 1995) and are present in numerous streams along the project highway corridor. Male Arctic grayling reach maturity at three to four years of age; females mature later at four to five years (Low and Read, 1987).

Arctic grayling spawn in the spring as ice-cover begins to break-up over gravel or cobble bottoms (Scott and Crossman, 1998). No redd is built; instead, eggs are broadcast over the substrates. Young-of-the-year remain in their natal streams for up to 15 months (Ford et al., 1995). Adults may move into larger

systems to overwinter (Scott and Crossman, 1998). Juveniles feed mainly on zooplankton and gradually shift to larger aquatic and terrestrial invertebrates as they mature (Scott and Crossman, 1998).

Arctic grayling have the potential to occur in the larger watercourses assessed in the LSA.

4.2.1.8 Northern Pike

Northern pike occur in rivers, streams, and lakes throughout the Mackenzie River Valley (Scott and Crossman, 1998). Spawning occurs just after ice-out in weedy areas on flooded terrestrial vegetation with eggs hatching 12 to 14 days later (Scott and Crossman, 1998). Spawning adults may remain in the stream or lake where they spawned or move downstream to associated systems (Evans et al., 2002). Pike fry move into slower waters in tributaries or into the mainstem Mackenzie River in late July (Jessop and Lilly, 1975).

Adult northern pike prefer shallow portions of rivers, with no velocity or slow water and areas with aquatic vegetation (Casselman and Lewis, 1996; Ford et al., 1995; Jessop and Lilly, 1975). In mid-August and September, pike will move from shallower areas to deeper overwintering areas before freeze-up (Jessop and Lilly, 1975).

Northern pike have the potential to occur in most watercourses along the project highway alignment.

4.2.1.9 Burbot

Burbot or loche is a freshwater cod and is the only freshwater fish that spawns in the winter in the Northwest Territories. Burbot spawn in lakes over sand, gravel, or cobble substrate. In rivers and streams, burbot typically spawn in low-velocity areas within main channels or in side-channels behind depositional bars over fine gravel, sand, or fine silt substrate (McPhail and Paragamian, 2000). It is expected that suitable spawning habitat for burbot does not exist in most watercourses in the LSA highway corridor due to their shallow water depth and high likelihood of being frozen to or near the bottom.

Juvenile burbot may use smaller streams during the open water season. Young burbot feed on mainly aquatic invertebrates moving to a diet of fish as they become adults (McPhail and Paragamian, 2000; Scott and Crossman, 1998).

Burbot have the potential to occur in larger watercourses in the LSA along the project highway alignment.

4.2.1.10 Forage Fish

A variety of forage fish are found in watercourses in the LSA with Slimy sculpin, ninespine stickleback and brook stickleback being three of the more common and abundant forage species captured during fisheries surveys conducted for the Mackenzie Gas Project (IORVL, 2004). Forage fish species found in watercourses in the LSA are identified in Table 4.2 and Table 4.3, spawn in late spring or summer in flowing or stagnant water over a wide range of substrate types depending on species preferences.

December 2022

4.3 Watercourse Crossing Assessments

A summary of watercourse crossings in the Sahtu Region are provided in Table 4.2 and Figure A.1 to Figure A.4 in Appendix A. Based on the desktop assessment and literature review (i.e., IORVL, 2004; 5658 NWT Ltd. and GNWT, 2011), 27 watercourses are crossed by the Project. In addition, four drainages are crossed by the project highway corridor. Table 4.2 indicates where the MGP route and the project highway alignment cross the same watercourses and drainages.

A summary of watercourse crossings in the Dehcho Region are provided in Table 4.3 and Figure A.4 to Figure A.6 in Appendix A. Table 4.3 indicates where the MGP route crosses the same watercourses and drainages as the project highway alignment. K'alo-Stantec's field assessment data is included in Table 4.3. The determination of the type of water feature crossed by the project highway corridor (i.e., watercourse, drainage, wetland) shown in Table 4.3 is based on K'alo-Stantec's field assessments because they were completed most recently compared to 5658 NWT Ltd. and GNWT (2011) and IORVL (2004). K'alo-Stantec was not able to assess all the crossings due to weather and access conditions at the time of the survey.

Existing data is summarized for each crossing in the Sahtu Region and Dehcho Region in Sections 4..1 and 4.3.2, respectively. Station summary data sheets from the field assessments in the Dehcho Region are located provided in Appendix C.

Restricted Activity Timing Windows have been developed by DFO for periods when instream works are to be avoided in order to protect sensitive life stages of fish species. Because species presence is not known at all crossing locations, the restricted activity timing windows for Zone 2 recommended by DFO (2013) within the LSA permit instream work between July 15 and August 15. This was not refined further as comprehensive fish inventories were not completed at each watercourse in the LSA and so a conservative approach was adopted. Works in or near water which cannot avoid the Restricted Activity Timing Windows require a Request for Review to be submitted to DFO for those works.

Section 4: Results December 2022

	Mackenzie Va	MGP Route							
	Centreline UTM		MGP		UTM				
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Unnamed watercourse	797.9	10	437740	7101829	RPR-375	10	437768	7101905	Brook stickleback, Finescale dace, Pearl dace, unidentified cyprinid ^b
Unnamed watercourse	805.5	10	435589	7108255	RPR-374	10	435644	7108244	Brook stickleback. Pearl dace ^b
Unnamed watercourse	812.7	10	434329	7115337	RPR-372	10	434385	7115279	Potential
Unnamed watercourse	815	10	432721	7117031	-	-	-	-	Unlikely
Unnamed watercourse	820.7	10	433131	7121799	RPR-370	10	433494	7121478	Potential
Unnamed watercourse	821.9	10	432580	7123103	-	-	-	-	Potential
Unnamed watercourse	823	10	431979	7123968	-	-	-	-	Potential
Unnamed watercourse	824.5	10	431072	7126467	-	-	-	-	Potential
Unnamed watercourse	826	10	431007	7126834	-	-	-	-	Potential
Unnamed watercourse	826.3	10	430947	7126834	-	-	-	-	Potential
Unnamed watercourse	828.6	10	429991	7129070	-	-	-	-	Potential
Unnamed watercourse	834.1	10	425724	7132189	-	-	-	-	Potential
Unnamed watercourse	835	10	425405	7132988	-	-	-	-	Potential
Unnamed watercourse	837.1	10	424624	7135022	RPR-355	10	424006	7133065	Potential
Unnamed watercourse	843.3	10	422310	7140408	-	-	-	-	Unlikely
Unnamed watercourse	846.4	10	419947	7142715	-	-	-	-	Potential
Unnamed watercourse	857.4	10	415860	7151196	RPR-350	10	415585	7151326	Potential
Unnamed watercourse	872.9	10	412679	7164554	-	-	-	-	Unlikely
Drainage	874	10	410998	7166150	-	-	-	-	Potential

Table 4.2 Watercourses Crossed by the Mackenzie Valley Highway Project Corridor and the MGP Route—in the Sahtu Region

Section 4: Results December 2022

	Mackenzie Va	MGP Route							
		Centreline UTM			MGP		UTM		
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Drainage	875.5	10	410938	7167644	RPR-347	10	413223	7168155	Potential
Unnamed watercourse	876.6	10	410947	7168766	-	-	-	-	Potential
Unnamed watercourse	877.8	10	411245	7169818	-	-	-	-	Potential
Unnamed watercourse	879.1	10	411064	7169505	-	-	-	-	Potential
Unnamed watercourse	878.8	10	411627	7170638					Potential
Unnamed watercourse	879.4	10	411209	7168580	-	-	-	-	Potential
Unnamed watercourse	880.2	10	411595	7170626	RPR-346	10	412160	7171394	Potential
Unnamed watercourse	880.6	10	411800	7171054	-	-	-	-	Brook stickleback, Finescale dace, Pearl dace ^b
Unnamed watercourse	881	10	411798	7171042	RPR-346	10	412160	7171394	Potential
Unnamed watercourse	883.6	10	411615	7173282	-	-	-	-	Unlikely
Unnamed watercourse	884.3	10	411435	7174830					Potential
Unnamed watercourse	884.8	10	411300	7174635	RPR-344	10	411510	7174746	Potential
Unnamed watercourse	889	10	408491	7178378					Potential
Unnamed watercourse	891.4	10	406839	7178354	-	-	-	-	Potential
Unnamed watercourse	891.7	10	406854	7178332	-	-	-	-	Potential
Unnamed watercourse	892	10	407102	7180445	-	-	-	-	Potential
Unnamed watercourse	915.6	10	397368	7198303	-	-	-	-	Potential
Unnamed watercourse	918	10	394969	7198798					Potential
Unnamed watercourse	919.9	10	394956	7198775	RPR-333	10	394959	7198712	Potential
Twelve Mile Creek	922	10	392020	7198797	RPR-332	10	393165	7200177	Arctic grayling, burbot, northern pike, emerald shiner, spottail shiner, lake chub ^c

Mackenzie Valley Highway Project Technical Data Report—Fish and Fish Habitat

Section 4: Results December 2022

	Mackenzie Va	MGP Route							
		Centreline UTM		MGP	UTM				
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing ID	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Four Mile Creek	931	10	382776	7200651	-	-	-	-	Arctic grayling, burbot, northern pike, emerald shiner, lake chub ^d
Unnamed watercourse	940.1	10	375325	7203625	-	-	-	-	Potential
Unnamed watercourse	980.3	9	629551	7227955	RPR-314	9	627399	7227382	Potential
Unnamed watercourse	981.2	10	629352	7227768	-	-	-	-	Potential
Prohibition Creek	983	9	626464	7228215	RPR-313	9	626292	7227921	Arctic grayling, broad whitefish, cisco, longnose sucker, mountain whitefish, northern pike, round whitefish, trout- perch, lake chub, emerald shiner, spottail shiner, spoonhead sculpin, slimy sculpin ^c
Unnamed watercourse	987.2	9	623577	7230276	RPR-312	9	623642	7230364	Potential

Notes:

- Watercourse/waterbody was not crossed or assessed by IORVL (2004)

^a Where fish presence was recorded, the species are listed. Description of fish habitat potential are provided in Section 3.2.2. No recorded fish presence does not necessarily indicate the absence of fish or that the area does not afford fish habitat. Unlikely is related to lack of connectivity or no defined channel.

^b This report

^c IORVL, 2004

^d 5658 NWT Ltd. and GNWT, 2011

KM = kilometre marker

Section 4: Results December 2022

	Mackenzie Valley Highway Project Corridor					Μ			
		Centerline UTM			MGP	UTM			
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Unnamed Watercourse	696.8	10	473317	7015384	-	-	-	-	Unknown
Drainage	699.1	10	473070	7015812	-	-	-	-	Unlikely
Wetland Area	699.3	10	472880	7015938	-	-	-	-	Unlikely
Wetland Area	700.3	10	472322	7016741	-	-	-	-	Potential
Wetland Area	701.7	10	471421	7017918	-	-	-	-	Potential
Wetland Area	702.2	10	471183	7018318	-	-	-	-	Potential
Wetland Area	702.9	10	470932	7019008	-	-	-	-	Potential
Wetland Area	704.7	10	470653	7020732	-	-	-	-	Potential
Unnamed Watercourse	705.4	10	470824	7023125	-	-	-	-	Unknown
Wetland Area	710.4	10	471528	7027742	-	-	-	-	Unlikely
Wetland Area	715.6	10	469827	7031105	-	-	-	-	Unlikely
Drainage	718.8	10	467959	7035544	-	-	-	-	Unlikely
Wetland Area	719.9	10	468244	7035072	-	-	-	-	Potential
Unnamed watercourse	721.6	10	465977	7037399	-	-	-	-	Potential
Unnamed Watercourse	724.5	10	465535	7039921	-	-	-	-	Unknown
Unnamed Watercourse	727.4	10	465248	7042571	-	-	-	-	Potential
Unnamed Watercourse	732.7	10	463008	7047414	-	-	-	-	Potential
Bonnie Creek	733.7	10	462586	7048307	-	-	-	-	Potential
Unnamed Watercourse	736.5	10	462082	7050913	-	-	-	-	Potential
Unnamed Watercourse	738.7	10	462013	7051561	-	-	-	-	Potential
Unnamed Watercourse	737.4	10	461944	7051827	-	-	-	-	Unknown
Unnamed Watercourse	739.6	10	461404	7053882	-	-	-	-	Potential

Table 4.3 Waterbodies Crossed by the Mackenzie Valley Highway Project Corridor and the MGP Route—in the Dehcho Region

Section 4: Results December 2022

	Mackenzie Valley Highway Project Corridor					М			
		Centerline UTM			MCP		UTM		
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Unnamed Watercourse	740.8	10	461135	7055011	-	-	-	-	Potential
Unnamed Watercourse	741.7	10	460915	7055927	-	-	-	-	Potential
Unnamed Watercourse	742.7	10	460641	7057047	-	-	-	-	Potential
Strawberry Creek	745.7	10	459359	7059422	RPR-385	10	465200	7060223	Potential
Unnamed Watercourse	747.6	10	458952	7061042	-	-	-	-	Potential
Unnamed Watercourse	748.0	10	458839	7061453	-	-	-	-	Potential
Bobs Canyon Creek	752.6	10	456554	7065466	-	-	-	-	Potential
Drainage	752.8	10	456629	7065715	-	-	-	-	Unlikely
Unnamed Watercourse	765.5	10	451513	7076541	-	-	-	-	Potential
Unnamed Watercourse	767.2	10	451279	7078183	-	-	-	-	Unknown
Unnamed Watercourse	767.8	10	451423	7076769	-	-	-	-	Potential
Wetland Area	768.2	10	451373	7077141	-	-	-	-	Potential
Drainage	768.9	10	451297	7077881	-	-	-	-	Unlikely
Drainage	769.7	10	450566	7080565	-	-	-	-	Unlikely
Wetland Area	769.7	10	451333	7078638	-	-	-	-	Unlikely
Wetland Area	770.0	10	451254	7079001	-	-	-	-	Unlikely
Wetland Area	770.6	10	451104	7079480	-	-	-	-	Potential
Drainage	772.8	10	449199	7083419	RPR-380	10	450932	7083773	Unlikely
Unnamed Watercourse	774.1	10	448523	7084338	RPR-379	10	448927	7086017	Arctic grayling, longnose sucker ^c
Drainage	780.9	10	444236	7089533	REV3-AK	10	444426	7089450	Unlikely
Drainage	785.3	10	-	-	-	-	-	-	Unlikely
Drainage	787.3	10	-	-	-	-	-	-	Unlikely

Section 4: Results December 2022

	Mackenzie Valley Highway Project Corridor					M			
		Centerline UTM		MGP	UTM				
Watercourses	KM Reference	Zone (W)	Easting	Northing	Crossing ID	Zone (W)	Easting	Northing	Known and Potential Fish Presence ^a
Wetland Area	789.0	10	441775	7094706	-	-	-	-	Unlikely
Wetland Area	789.4	10	441568	7095152	-	-	-	-	Unlikely
Wetland Area	791.2	10	440409	7096395	-	-	-	-	Unlikely
Wetland Area	791.8	10	439719	7096318	-	-	-	-	Unlikely
Wetland Area	793.1	10	438820	7097394	RPR-376	10	440272	7097726	Brook stickleback, fathead minnow ^b

Notes:

- Watercourse/waterbody was not crossed or assessed by the MGP project

^a Where fish presence was recorded, the species are listed. Description of fish habitat potential are provided in Section 3.2.2. No recorded fish presence does not necessarily indicate the absence of fish or that the area does not afford fish habitat. Unlikely is related to lack of connectivity or no defined channel.

^b This report

° IORVL 200

4.3.1 Sahtu Settlement Area

Station location maps and summary sheets for the 2021 field assessment are provided in Appendix B.

4.3.1.1 Crossing KM 797.9 – Unnamed Watercourse

Changes to the project highway alignment in 2021 moved the kilometre posting from kilometre marker (KM) 796.4 to KM 797.9 for this watercourse. At KM 796.4 site, which was assessed from the air (5658 NWT Ltd. and GNWT, 2011), the channel was approximately 15 m wide at high flow conditions. Habitat was run and pool habitat and a deep pool was observed near the existing winter road crossing. Substrate was comprised entirely of sand. There was small woody debris observed (15% cover) and beaver activity was noted in the upstream reaches of the watercourse. Riparian vegetation was deciduous trees (45%), coniferous trees (40%), grasses (10%) and forbs (5%). Live trees were observed growing within the active channel (5658 NWT Ltd. and GNWT, 2011).

The watercourse is crossed by the MGP route (RPR-375 [IORVL, 2004]). A previous assessment (5658 NWT Ltd. and GNWT, 2011) reported that it may provide rearing and migration habitat for forage fish as well as potential migration habitat for sportfish.

At the centreline of the KM 797.9 crossing site, the channel width and depth were 4.3 m and 0.9 m, respectively, and the banks stable . In the assessed area, the maximum channel width was 16.8 m with a maximum water depth of 1.2 m. Substrate was a mixture of organics and fines. Grasses were observed in the stream bed, and logjams were present upstream and downstream of the proposed crossing site. An old beaver dam was present 300 m downstream of the proposed crossing site before a downstream wetland area. Overhead cover was estimated at 10% consisting mostly of grasses. Instream cover was mostly comprised of woody debris and afforded 30% coverage within the area.

Fishing was conducted using minnow traps. Four species were captured: brook stickleback, finescale dace, pearl dace and one unidentified Cyprinid (minnow). Spawning is rated as moderate for forage fish, and none to poor for coarse and sportfish. Overwintering is rated as poor to moderate for all three fish categories. Rearing is rated as good for forage and coarse fish species and moderate for sportfish. Fish passage is rated as good to moderate for all three categories of fish.

4.3.1.2 Crossing KM 805.5 – Unnamed Watercourse

Changes to the project highway alignment in 2021 moved the kilometre posting from KM 803.4 to KM 805.5 for this watercourse. The proposed crossing location at KM 805.5 was assessed in the field in 2021. The location was a wetland with no defined channel with the exception of the centreline. The channel width at the centreline at KM 805.5 is 0.3 m. Average depth at the centreline was 0.45 m (0.36 m to 0.62 m) at the time of the assessment. Substrate composition was estimated at 20% organics and 80% fines. Dominant riparian vegetation is grasses and shrubs. The watercourse is connected to a lake upstream (5658 NWT Ltd. and GNWT, 2011).

Fishing was conducted using minnow traps. Two fish species were captured: brook stickleback and pearl dace. Spawning habitat is rated as good for forage fish and none for coarse and sport fish. Overwintering potential is rated as poor to moderate for forage fish and poor for coarse and sportfish. Rearing habitat is rated as good for forage fish and poor to moderate for coarse and sportfish. Fish passage is rated as moderate for forage fish and poor to moderate for coarse and sportfish.

4.3.1.3 Crossing KM 812.7 – Unnamed Watercourse

Changes to the project highway alignment in 2021 moved the kilometre posting from KM 811 to KM 812.7 for this watercourse. At the former KM 811 site, the channel was between 8 m and 15 m wide. Habitat was runs and pools. Substrate was entirely of sand. Some small woody debris and a beaver dam were observed on the west side of the winter road crossing. This debris was disrupting flow at the time of assessment, resulting in pooling. Log jams and sediment wedges were also observed. Riparian vegetation was primarily grass (40%) with shrubs (25%), deciduous trees (25%), and coniferous trees (10%) (5658 NWT Ltd. and GNWT, 2011). The watercourse has potential rearing habitat for forage fish and migration potential for all three categories of fish (5658 NWT Ltd. and GNWT, 2011).

At the proposed KM 812.7 crossing site, the channel width at the centreline was 1.37 m with an average depth of 0.14 m during the time of assessment. The maximum channel width in the assessed area was 1.8 m and a maximum depth was 0.57 m. There was woody debris throughout the assessed area and some minor logjams, which may result in partial barriers to fish passage. Centreline substrate composition was estimated to be 50% organics and 50% fines. Downstream substrate composition was more diverse with fines, small gravel, larger gravel, and cobble. There was some minor undercutting of the banks upstream of the centreline, with the channel becoming poorly defined and with low-water depths. The banks were stable at the centreline. Three beaver dams were present in the area: one at the downstream side of the centerline, one at a tributary to the watercourse 50 m upstream and one abandoned farther up the tributary where the channel is dry. The tributary flows parallel to the winter road and goes subsurface near the abandoned beaver dam.

Fishing was conducted using a backpack electrofisher but no fish were captured. Spawning habitat was rated as good for forage fish but poor for coarse and sportfish. Overwintering was rated as none to poor for all three categories of fish. Rearing was rated as good for forage and coarse fish and moderate for sport fish. Fish passage was rated as moderate to good for forage fish and moderate for coarse and sportfish.

4.3.1.4 Crossing KM 815 – Unnamed Watercourse

At the time of the assessment in 2021, the channel width at the centreline was 1.9 m with a water depth of 0.1 m at the time of the assessment. The maximum channel width was 2.5 m and maximum depth was 0.1 m in the assessed area. The watercourse drains into a wetland. Logjams were present upstream. At the centreline, the substrate was mainly fines (60%) with small gravel (20%) cobble (10%) and organic matter (10%). Overhead cover was 80%, mostly from deciduous trees. Instream cover was 30% consisting of woody debris. Banks were moderately stable consisting of organic material at the centreline.

Due to the shallow water depths, no fishing was conducted. Overall fish habitat is rated as poor.

Section 4: Results December 2022

4.3.1.5 Crossing KM 820.7 – Unnamed Watercourse

Changes to the project highway alignment moved the kilometre posting from KM 819.2 to KM 820.7 for this watercourse. At the former KM 819.2 crossing site, the channel was approximately 100 m wide. At the time of the assessment, the crossing was flooded. Substrate was entirely sand. Riparian vegetation was dominated by coniferous trees (90%) with grass (10%) and shrubs (10%). There appeared to be flooded riparian vegetation within the channel comprised of grass (5658 NWT Ltd. and GNWT, 2011). The watercourse is crossed by the MGP route (RPR-370 [IORVL, 2004]) approximately 600 m upstream of the alignment crossing. A previous assessment (5658 NWT Ltd. and GNWT, 2011) reported that the watercourse may provide seasonal rearing habitat for forage fish. No barriers to fish migration were observed (5658 NWT Ltd. and GNWT, 2011).

At KM 820.7, the channel was poorly defined within a floodplain. At the centreline, the channel width was 15.5 m and the water depth was 0.2 m. The maximum channel width was 95 m within a flooded area 100 m upstream from the centreline. The maximum depth in the assessed area was 0.5 m during the time of the assessment. The substrate at the centreline was 100% organics. The banks were moderately stable on the left bank and stable on the right bank. Overhead cover was 5% with instream cover estimated at 10%, which was contributed from grasses growing in the streambed. A beaver dam was present 300 m downstream of the centreline. An exposed culvert was present that had been installed at the winter road crossing.

Fishing was conducted using minnow traps and no fish were captured. Spawning is rated as poor to moderate for forage fish and none for coarse and sportfish. Overwintering potential is rated as poor for forage and coarse fish and none to poor for sportfish. Rearing is rated as moderate for forage fish, poor for coarse fish and none to poor for sport fish. Fish passage is rated as moderate for forage fish and poor to moderate for coarse and sportfish.

4.3.1.6 Crossing KM 821.9 – Unnamed Watercourse

The proposed crossing location was assessed from the air in 2010 (5658 NWT Ltd. and GNWT, 2011). It was observed that the channel was confined with cobble substrate and shallow flow. Fish habitat was run with some step pool. The channel width was approximately 2 m (5658 NWT Ltd. and GNWT, 2011). Riparian habitat consisted mostly of conifers with some deciduous trees, shrubs, and grasses. The watercourse is crossed by the MGP route (RPR-370 [IORVL, 2004]), approximately 1.2 km upstream of the project highway alignment crossing.

The proposed crossing location was assessed in the field in 2021. The channel width at the centreline was 1.3 m and the water depth at the time of assessment was 0.4 m. The maximum channel width in the assessed area was 2.4 m and maximum water depth at the time of assessment was 0.4 m. The channel was frozen to the stream bed between 100 m and 200 m downstream. At the centreline, the substrate was 50% fines, 30% small gravel and 20% large gravel. At the time of the assessment, the substrate was covered in leaves and woody debris. Both banks at the centreline were moderately stable.

Overhead cover was estimated at 30% consisting mainly of deciduous trees with conifers farther back. Instream cover consisted mainly of woody debris.

No fishing was conducted due to freezing conditions. Potential spawning habitat was rated as moderate and overwintering potential as poor for all three fish categories. Rearing habitat was rated as good for forage and coarse fish and moderate for sportfish. Fish passage was rated as moderate to good for all three fish categories.

4.3.1.7 Crossing KM 823 – Unnamed Watercourse

At the time of the assessment in October 2021, the watercourse was mostly frozen. Channel width at the centreline was 0.2 m with an average depth of approximately 0.2 m. Maximum channel width was 1.9 m, which was 100 m upstream of the centreline. Maximum water depth at the time of the assessment was 3.0 m. The substrate at the centreline and through most of the assessed portion of the watercourse was a mixture of large gravel, cobble and boulders. Overhead cover was estimated at 60%, consisting mainly of shrubs and deciduous trees. Instream cover was estimated at 40%, which consisted of woody debris and boulders. Woody debris and logjams were observed throughout the assessed reach. The banks at the centreline were moderately stable.

No fishing was conducted because the watercourse was mostly frozen. Fish habitat for rearing is rated at moderate to good for forage fish, moderate for coarse fish, and poor for sport fish. Overwintering potential is rated as none to poor for all three categories of fish. Rearing habitat is rated as good for forage and coarse fish species and rated moderate for sportfish. Fish passage is rated as moderate to good for all three categories of fish.

4.3.1.8 Crossing KM 824.5 – Unnamed Watercourse

At the proposed crossing location, the channel was approximately 10 m wide and the water depth was 0.1 m at the time of assessment. The watercourse is an outflow from a small lake with water flowing through a wetland area. There was no flow at the time of assessment and water appeared to be an impounded area (5658 NWT Ltd. and GNWT, 2011). A beaver lodge was noted on the lake upstream of the crossing location. The substrate was entirely sand. Riparian vegetation was shrubs (40%), grass (40%), deciduous trees (15%), and coniferous trees (5%). Grasses and flooded trees were observed within the partially confined channel (5658 NWT Ltd. and GNWT, 2011).

Habitat conditions suggests there is rearing potential for forage fish and spawning potential for northern pike (5658 NWT Ltd. and GNWT, 2011). Barriers to migration were not observed; however, migration is likely limited to small-bodied forage fish (5658 NWT Ltd. and GNWT, 2011).

A field assessment was not conducted at this crossing site in 2021.

4.3.1.9 Crossing KM 826 – Unnamed Watercourse

The channel was irregular with poor connectivity upstream of the centreline. Channel width at the centreline was1.8 m and the water depth was approximately 0.3 m at the time of the assessment. The maximum channel width was 3.0 m at 100 m upstream of the centreline. The maximum water depth was 0.3 m. Substrate at the centreline was estimated at 60% organics and 40% fines. Upstream of the centreline, the substrate was 100% fines, and downstream of the centreline, the substrate was 100%

organics. Overhead cover was estimated at 80%, consisting mainly of trees and shrubs. Instream cover was estimated at 80%, consisting mainly of woody debris. The banks at the centreline were moderately stable; however, 100 m downstream, the banks become unstable with signs of erosion. Evidence of a previous fire was observed in the assessed area.

Fishing was conducted using minnow traps, but no fish were captured. Spawning habitat is rated as moderate to good for forage fish and none for coarse and sportfish. Overwintering potential is rated as moderate to good for forage fish, moderate for coarse fish, and poor to moderate for sportfish. A ponded area upstream of the centreline may provide overwintering habitat. Rearing habitat is rated as moderate to good for all three categories of fish. Fish passage is rated as moderate for all three categories of fish.

4.3.1.10 Crossing KM 826.3 – Unnamed Watercourse

The watercourse was braided with debris jams and shrub islands. Channel width at the centreline was 1.1 m with an average depth of 0.1 m. The maximum channel width was 4.0 m upstream of the centreline. The maximum water depth was 0.3 m at the time of the assessment. The substrate consisted of 100% organics throughout the assessed reach. Overhead cover was estimated at 50% from shrubs and trees. Instream cover was estimated to be 40% provided by woody debris in the watercourse. The banks at the centreline were unstable. There was evidence of bank erosion on the left bank, 100 m downstream of the centreline. Signs of a previous fire in the upland area was observed.

Fishing was conducted using a backpack electrofisher but no fish were captured. Potential spawning habitat is rated as poor to moderate for forage fish and none for coarse or sportfish. Overwintering potential is rated as poor for forage fish and none for coarse and sportfish. Rearing habitat is rated as moderate for forage and coarse fish and poor to moderate for sportfish. Fish passage is rated as moderate for forage fish and poor for coarse and sportfish.

4.3.1.11 Crossing KM 828.6 – Unnamed Watercourse

The channel width at the centreline was 0.8 m and the water depth averaged 0.4 m at the time of the assessment. The maximum channel width in the assessed area was 1.9 m, with a maximum depth of 0.5 m at the time of the assessment. The substrate at the centreline was 60% fines, 30% small gravel and 10% large gravel. Fines and small gavel were the dominant substrate types in the assessed area. Overhead cover was estimated at 70%, dominated by overhanging trees. Instream cover was estimated at 40%, mainly contributed by woody debris. The banks were stable at the centreline. New plant growth resulting from a previous fire was observed in the upland area of the LSA.

No fishing was conducted due to freezing conditions. Spawning habitat is rated as moderate for forage fish and poor for coarse and sportfish. Overwintering potential is rated as poor for forage fish and none for coarse and sportfish. Rearing habitat is rated as poor to moderate for all three categories of fish. Fish passage is rated as moderate for forage fish and poor to moderate for coarse and sportfish.

4.3.1.12 Crossing KM 834.1 – Unnamed Watercourse

The channel width at the centreline was 1.1 m and the water depth was 0.1 m at the time of the assessment. The maximum channel width was 1.3 m and the maximum water depth was 0.6 m at the time of the assessment. Upstream of the centreline, there was low flow with some pooling. The substrate at the centreline was 100% fines. Downstream of the centreline, small and large gravel was present in addition to fines. Overhead cover was estimated at 70%, composed mainly of shrubs and deciduous trees. Instream cover was estimated at 40%, with undercut banks and woody debris. Logjams were present throughout the assessed reach. Unstable banks were present throughout the assessment area.

No fishing was conducted due to freezing conditions. Spawning habitat is rated as moderate for forage fish and poor for coarse and sportfish. Overwintering potential is rated as none to poor for all three categories of fish. Rearing habitat is rated as moderate for forage and coarse fish and poor to moderate for sportfish. Fish passage is rated as poor to moderate for all three categories of fish.

4.3.1.13 Crossing KM 835 – Unnamed Watercourse

At the time of the assessment, the area was covered in snow and the watercourse was mostly frozen over. Channel width at the centreline was 1.9 m and it was the maximum channel width of the assessed reach. The average water depth at the centreline was approximately 0.1 m. The maximum water depth of the assessed reach at the time of the assessment was 0.8 m. Substrate composition at the centreline and upstream was estimated to be 10% fines, 40% small gravel, 40% large gravel and 10 % cobble. Downstream, 200 m and 300 m from the centreline, the substrate was primarily organics. Overhead cover was estimated to be 70%, consisting of shrubs and deciduous trees. Instream cover was estimated to be 50%, consisting mainly of woody debris and undercut banks. At the centreline, the banks were unstable but most of the assessed reach had moderately stable banks.

No fishing was conducted due to freezing conditions. Spawning habitat is rated as moderate for forage fish and poor for coarse and sportfish. Overwintering potential is rated as none to poor for all three categories of fish. Rearing habitat is rated as moderate for forage fish and poor to moderate for coarse and sportfish. Fish passage is rated as poor to moderate for all three categories of fish.

4.3.1.14 Crossing KM 837.1 – Unnamed Watercourse

Changes to the project highway alignment moved the kilometre posting from KM 836.2 to KM 837.1. The watercourse was assessed from the air in 2010 and, at that time, the channel was dry. The channel width was estimated to be less than 2 m (5658 NWT Ltd. and GNWT, 2011). The watercourse is crossed by the MGP route (RPR-355 [IORVL, 2004]) downstream of the Project crossing. At the MGP route crossing location, instream habitat consisted of shallow run and riffle with coarse substrate (boulder, cobble and gravel) with few fines. Instream cover was provided by overhanging vegetation and woody debris. Riparian habitat was mainly shrubs, grasses, and forbes with some deciduous frees. There was evidence of a past fire (IORVL, 2004).

The new proposed crossing location was assessed in the field in 2021. The channel width at the centreline was 1.2 m and the average water depth was 0.1 m at the time of the assessment. The maximum channel width was 2.7 m and the maximum water depth in the assessed reach was 0.2 m at the time of the assessment. Step pools were created by downed woody debris in the upstream reach of the assessed area. Substrate composition at the centreline was a mixture of small gravel (20%), large gravel (35%), cobble (10%), and boulders (25%). The substrate composition was similar throughout the assessed reach. Overhead cover was estimated at 10%, dominated by shrubs. Instream cover was estimated at 30%, provided by cobble. The banks at the centreline were unstable but becoming moderately stable downstream of the centreline, although some undercutting of the banks was observed. Evidence of previous fire history was observed.

No fishing was conducted due to freezing conditions. Fishing conducted in 2002 for the MGP Project using a backpack electrofisher captured no fish (IORVL, 2004). Spawning habitat is rated as moderate to good for forage fish and moderate for coarse and sport fish. Overwintering potential is rated as none to poor for all three fish categories. Rearing habitat is rated as moderate for all three categories of fish. Fish passage is rated as moderate for forage fish and poor to moderate for coarse and sportfish.

4.3.1.15 Crossing KM 843.3 – Unnamed Watercourse

The site was snow covered at the time of the assessment in the fall of 2021. Most of the downstream assessed reach was a flooded area within the trees with no defined channel. Maximum depth was 0.39 m. Substrate was 30% fines, 30% small gravel, 30% large gravel and 10% cobble. Overhead cover was estimated at 60% created by deciduous trees. Instream cover was estimated at 80% provided by grasses and woody debris. The watercourse is not considered fish habitat and no fishing was conducted.

4.3.1.16 Crossing KM 846.4 – Unnamed Watercourse

The upstream section and centreline of the assessed reach was flooded with no defined channel, water was frozen and snow covered at the time of the assessment in the fall of 2021 and, therefore, no data could be collected for the centerline and upstream reach. From the centreline to 100 m downstream, the watercourse was also flooded with the channel banks becoming defined. Sinuous meanders develop downstream but could not be accessed for additional data collection because flooded portions upstream preventing downstream access to the downstream reach. At 100 m downstream, the channel width 1 was 2.5 m with an average depth of 0.7 m. The maximum water depth was 0.8 m at the time of the assessment. The substrate consisted of 40% organics and 60% fines. Overhead cover was estimated as 30%, consisting mostly of leaning branches from trees. Instream cover was estimated at 30%, provided by woody debris. Banks downstream were moderately stable.

No fishing was conducted due to freezing conditions. Spawning habitat for all three categories of fish is rated as poor as well as the potential for overwintering and fish passage. Rearing habitat is rated as moderate to good for forage fish, poor to moderate for coarse fish and poor for sportfish. The proposed crossing location is unlikely to allow fish passage.

4.3.1.17 Crossing KM 857.4 – Unnamed Watercourse

Changes to the project highway alignment in 2021 moved the kilometre posting from KM 855.9 to KM 857.4. The watercourse at KM 855.9 was assessed from the air in 2010. The area is an unconfined drainage/wetland approximately 100 m wide with no defined bed or banks. At the time of the assessment, water at the crossing location was impounded. The drainage is connected to a large lake to the northeast. Substrate was comprised of entirely of sand. Riparian vegetation was comprised of grass (50%), shrubs (30%), forbs (10%), and coniferous trees (10%). The drainage may provide spawning habitat for forage fish (5658 NWT Ltd. and GNWT, 2011). The watercourse is crossed by the MGP route (RPR-350 [IORVL, 2004]).

The upstream section of the assessed reach was flooded through low shrubs and grasses when assessed in October 2021. Flooding is likely related to beaver dams impounding water. Beaver dams were present upstream and downstream as well as one dam at the centreline. Approximately 130 m downstream, the channel converged with a larger channel. This second channel was flooded and meandered around debris dams. The channel width at the centreline was 2.3 m with an average depth of approximately 0.3 m. The maximum water depth was 0.6 m at the time of the assessment. Overhead cover was estimated at 10% with some small shrubs. Instream cover was estimated at 40% consisting mostly of woody debris and some grasses in the channel. The substrate at the centreline was approximately 60% organics and 40% fines. The substrate throughout the assessed reach was either organics or fines or a mixture of both.

No fishing was conducted due to freezing conditions. Spawning habitat is rated as moderate for forage fish and none for coarse and sportfish. Overwintering potential is rated as moderate for forage fish and poor for coarse and sportfish. Rearing habitat is rated as moderate to good for forage fish, poor to moderate for coarse fish, and poor for sportfish. Fish passage is rated poor for all three categories of fish. The downstream section of the assessed reach provides better fish habitat than at the centreline.

4.3.1.18 Crossing KM 872.9 – Unnamed Watercourse (Drainage)

Changes to the project highway alignment moved the kilometre posting from KM 871.6 to KM 872.9. The watercourse at KM 855.9 was assessed from the air in 2010. The drainage was approximately 12 m wide with a wetted area of approximately 2 m at the time of assessment. There were no defined bed or banks observed. Substrate was comprised entirely of sand. Small woody debris was abundant within the drainage. Riparian vegetation was grass (40%), shrubs (30%), and coniferous trees (30%). There is potential for rearing, spawning, and migration for forage provided by back-flooding from Big Smith Creek (5658 NWT Ltd. and GNWT, 2011).

At the time of the 2021 field assessment, the downstream was a flooded wetland area with submerged aquatic vegetation. The substrate was fines and organics throughout the assessed reach. Overhead cover was estimated at 10%; the area was mostly clear. Instream cover was estimated at 60%, dominated by aquatic vegetation. A rig mat was present over the crossing location. An exposed pipe from a pipeline was noted in the channel.

One minnow trap was set for one hour, but no fish were captured. It is unlikely the proposed crossing location provides fish habitat.

4.3.1.19 Crossing KM 874 – Drainage

At the proposed crossing location, the drainage was approximately 11 m wide with defined bed and banks. The crossing is at the downstream confluence of a series of lakes. Substrate is sand. There were trace small woody debris observed throughout the assessed area. Riparian vegetation was grass (40%), shrubs (30%), and coniferous trees (30%). Grass and dead trees were observed within the drainage (5658 NWT Ltd. and GNWT, 2011).

The upstream lakes likely provide habitat for northern pike and whitefish (5658 NWT Ltd. and GNWT, 2011). Based on observed conditions, the drainage has the potential to provide rearing habitat for forage fish and spawning habitat for sportfish (5658 NWT Ltd. and GNWT, 2011). There are no barriers to fish migration (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.20 Crossing KM 875.5 – Drainage

At the proposed crossing location, the drainage was approximately 50 m wide and there was an unconfined low area between two lakes. The substrate was entirely sand. Riparian vegetation was grass (40%), shrubs (30%), and coniferous trees (30%). Grasses and live coniferous trees were observed within the drainage area (5658 NWT Ltd. and GNWT, 2011).

The nearby lakes likely provide suitable habitat for northern pike and forage fish (5658 NWT Ltd. and GNWT, 2011). Based on observed conditions, the drainage may provide rearing and spawning habitat for forage fish and spawning habitat for northern pike (5658 NWT Ltd. and GNWT, 2011). No barriers to fish migration were observed. However, fish passage is likely limited to small-bodied forage fish at high flows (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.21 Crossing KM 876.6 – Unnamed Watercourse

At the proposed crossing location, the watercourse was approximately 11 m wide and the wetted width was 0.5 m at the winter road crossing and 1 m wide downstream of the winter road crossing. The substrate was entirely sand. Riparian vegetation was shrubs (40%), coniferous trees (40%), and grass (20%). Grasses and live coniferous trees were observed within the channel (5658 NWT Ltd. and GNWT, 2011).

Based on observed features, it is expected that this watercourse provides spawning and rearing habitat for forage fish and spawning habitat for sportfish (5658 NWT Ltd. and GNWT, 2011). No barriers to fish migration were observed but fish passage would be limited to high flows due to shallow water depths at other times of the year (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.22 Crossing KM 877.8 – Unnamed Watercourse

At the proposed crossing location, the channel was up to 20 m wide with a wetted width of 0.5 m (5658 NWT Ltd. and GNWT, 2011). The drainage was between a series of small lakes and was crossed by the existing winter road (5658 NWT Ltd. and GNWT, 2011). The substrate was entirely sand. Riparian vegetation was grass (40%), shrubs (30%), and coniferous trees (30%). Vegetation observed within the channel included shrubs and grass (5658 NWT Ltd. and GNWT, 2011).

Based on observed features, it is expected that this watercourse provides spawning and rearing habitat for forage fish (5658 NWT Ltd. and GNWT, 2011). No barriers to fish passage were observed but fish passage would be limited to periods of high flows due to shallow water depths at other times of the year (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.23 Crossing KM 878.8 – Unnamed Watercourse

At the proposed crossing location, the channel was approximately 2 m wide with a wetted width of 0.5 m (5658 NWT Ltd. and GNWT, 2011). The watercourse is a drainage from a series of small lakes. Habitat observed was predominately run. Substrate was cobble (50%) and boulder (50%). Riparian vegetation was coniferous trees (90%), shrubs (5%), and deciduous trees (5%) (5658 NWT Ltd. and GNWT, 2011).

Based on observed features, it is anticipated that this watercourse provides spawning habitat for forage fish (5658 NWT Ltd. and GNWT, 2011). No barriers to fish passage were observed but fish passage would be limited to periods of high flows due to shallow water depths at other times of the year (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.24 Crossing KM 879.1 – Unnamed Watercourse

The crossing location appears to be a wetland area and was frozen over at the time of the assessment in October 2021. The wetland is connected to the proposed crossing location at KM 879.4. Beaver activity was observed upstream of the centreline and there was a beaver lodge and impoundment downstream. Overhead cover was estimated at 30%, mainly provided by grasses. Instream cover could not be estimated because the watercourse was frozen. There are ponds located both upstream and downstream of the centreline.

No fishing was conducted due to frozen conditions. There is potential good habitat for forage fish during the open water season but likely poor for coarse and sportfish. Low oxygen levels (0.68 milligrams per litre [mg/L]) likely limits overwintering potential for fish.

4.3.1.25 Crossing KM 879.4 – Unnamed Watercourse

The watercourse was assessed in the fall of 2021. The channel width at the centreline was 5.2 m with an average water depth of approximately 0.4 m. The upstream portions of the assessment area were flooded. Maximum water depth in the assessed reach was 0.5 m at the time of the assessment. The substrate at the centreline was organics as well as upstream of the centreline; downstream was predominantly fines. Overhead cover was estimated at 60%, provided mainly by shrubs, while instream cover was estimated at 50%, mainly through woody debris in the water column. Grasses and aquatic vegetation were observed in the channel upstream of the centreline. The banks at the centreline were stable. Undercutting of the banks were observed 300 m downstream of the centreline. Aerial imagery of the area shows it is connected to the crossing at KM 879.1 on the upstream side and appears to have wetland characteristics upstream of T1 (100 m upstream), based on the aerial imagery, but it was snow covered at time of assessment.

No fishing was conducted due to unsafe conditions for electrofishing and freezing conditions. Spawning habitat is rated as poor to moderate for forage fish and none for coarse and sportfish. Overwintering potential is rated as poor to moderate for forage fish and poor for coarse and sportfish. Rearing habitat is rated as moderate for forage fish and poor to moderate for coarse and sport fish. Fish passage is rated as moderate to good for forage fish and moderate for coarse and sport fish.

4.3.1.26 Crossing KM 880.2 – Unnamed Watercourse

The channel width at the centreline was 2.7 m with an average water depth of 0.2 m at the time of the assessment. The maximum water depth in the assessed reach was 0.2 m at the time of the assessment. Upstream (at 100 m) of the centreline, the area was flooded with no defined channel. There is poor connectivity until 100 m downstream of the centreline where connectivity improves. The channel narrows 300 m downstream and has a steep grade with several logjams. Overhead cover was estimated at 30%, provided by shrubs and trees, while instream cover was estimated at 20%, mainly provided by woody debris. At the centreline, the left bank was stable while the right bank was moderately stable.

No fishing was conducted due to shallow water depths. The watercourse is unlikely to provide fish habitat.

4.3.1.27 Crossing KM 880.6 – Unnamed Watercourse

At the proposed crossing location, the watercourse was a large drainage channel from a lake. The watercourse is crossed by the MGP route (RPR-346 [IORVL, 2004]), approximately 830 m upstream of the project highway alignment crossing.

The channel width at the centreline was 1.8 m with an average water depth of 0.4 m at the time of the assessment in October 2021. Maximum water depth in the assessed reach was 0.6 m. A pipeline crossing exists 100 m downstream from the centreline. At this location there was some large boulders from rip-rap for a wooden banks support structure that was in place. Substrate at the centreline is 30% organics and 70% fines. Fines were the dominant substrate throughout the assessed reach. Overhead cover was estimated at 80%, provided mostly by shrubs. Instream cover was estimated at 40%, provided

mainly through woody debris. Banks at the centreline were stable; upstream and downstream of the centreline banks, were predominantly moderately stable.

Fishing was conducted using a backpack electrofisher. Three forage fish species were captured: brook stickleback, finescale dace, and pearl dace. Spawning habitat is rated as moderate for forage fish and none to poor for coarse and sport fish. Overwintering potential is rated as poor for all three categories of fish. Rearing habitat and fish passage is rated as good for all three categories of fish.

4.3.1.28 Crossing KM 883.6 – Unnamed Watercourse

The channel width at the centreline was 1.3 m with an average water depth of 0.3 m. The maximum water depth in the assessed reach was 0.3 m at the time of the assessment. The channel became undefined 50 m upstream from the centreline. Water was tinted an orange, copper colour. The substrate at the centreline was organics (100%). Organics was the dominant substrate type with some fines downstream. Overhead cover was estimated at 70%, provided mainly by shrubs. Instream cover was estimated at 10%, provided by woody debris. At the centreline and upstream, the banks were moderately stable transitioning to unstable 200 m downstream from the centreline.

No fishing was conducted due to freezing conditions. Fish habitat is rated as poor for all fish categories. The watercourse likely does not provide fish habitat.

4.3.1.29 Crossing KM 884.3 – Unnamed Watercourse

The proposed crossing location was assessed from the air in 2010 (5658 NWT Ltd. and GNWT, 2011). The watercourse is a drainage from a series of lakes. Channel width was estimated as 15 m, and it was ponded due to a beaver dam several metres downstream. Overhead cover was estimated at 1% to 25%, predominately consisting of a mix of conifer and deciduous trees. Substrate was sand (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.30 Crossing KM 889 – Unnamed Watercourse

The proposed crossing location was assessed from the air in 2010 (5658 NWT Ltd. and GNWT, 2011). The watercourse is connected to several lakes. The channel at the crossing was estimated to be approximately 15 m wide with a water depth of approximately 3 m. Overhead cover was estimated to be between 1% to 25%, consisting primarily of conifer trees with smaller amounts of deciduous trees and grasses. The substrate was sand. Water colour at the time of the survey was brown. The watercourse may provide habitat for forage and sport fish (5658 NWT and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.31 Crossing KM 884.8 – Unnamed Watercourse

The channel width at the centreline was 2.5 m with an average water depth of 0.3 m. The maximum water depth in the assessed reach was 0.6 m. Substrate at the centreline was 90% fines and 10% small gravel. Fines was the dominant substrate throughout the assessed reach. Overhead cover was estimated as 30%, provided mainly from shrubs. However, at the centreline, overhead cover was estimated as 60%. Instream cover was estimated at 60%, provided mainly through woody debris. Banks at the centreline and downstream were moderately stable; upstream they were unstable. According to a local wildlife monitor, a beaver dam 50 m upstream of the centreline collapsed the year before. This may have resulted in the unstable banks upstream.

Fishing was conducted using a backpack electrofisher. Two forage fish species were captured: brook stickleback and pearl dace. Spawning habitat is rated as moderate for forage fish and poor for coarse and sportfish. Overwintering potential is rated as poor for all three categories of fish. Rearing habitat is rated as moderate to good for forage fish, poor to moderate for coarse fish, and poor for sportfish. Fish passage was rated as moderate for forage fish and poor to moderate for coarse and sportfish.

4.3.1.32 Crossing KM 891.4 – Unnamed Watercourse

The channel width at the centreline was 12.5 m. A beaver dam at the centreline was impounding water upstream. Downstream from the centreline, channel width decreased to between 6.0 and 5.5 m. Water depth at the centreline could only be taken at one location due to safety concerns and was recorded as 1.3 m at the time of the assessment. The maximum water depth was estimated as greater than 1 m. Downstream of the centreline, water depths decreased to approximately 0.5 m. The substrate at the centreline was 100% fines. Downstream, the substrate was organics and fines. No substrate composition estimates were made for the upstream portion of the assessed reach. Overhead cover was estimated at 10%, provided mainly from conifer trees. Instream cover was estimated at 10%, largely provided by woody debris. Banks at the centreline were unstable, as well as downstream, but moderately stable upstream. Erosion of the banks were observed near the centreline and downstream.

No fishing was conducted due to freezing conditions and conditions were unsafe for electrofishing due to high flows and water depth. Spawning habitat is rated as moderate to good for forage fish and poor for coarse and sport fish. Overwintering potential is rated as moderate for all fish categories. Rearing habitat was rated as good and fish passage as moderate to good for all three fish categories.

4.3.1.33 Crossing KM 891.7 – Unnamed Watercourse

At the proposed crossing location, the channel was approximately 20 m wide and up to 2 m deep (5658 NWT Ltd. and GNWT, 2011). The watercourse drains a series of small upstream lakes. Substrate was entirely sand. There were trace amounts of large woody debris and a moderate amount of small woody debris observed throughout the assessed area. A beaver dam and small log jams were observed downstream from the proposed crossing location. Riparian vegetation was coniferous trees (85%), deciduous trees (5%), grass (5%), and shrubs (5%). Given the observed habitat conditions, the crossing likely provides rearing, spawning, and migration habitat for forage fish and sportfish (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.34 Crossing KM 915.6 – Unnamed Drainage

At the proposed crossing location, the drainage was between 3 m and 8 m wide and up to 0.2 m deep. The watercourse is a drainage from a series of upstream lakes. The substrate was entirely sand. Riparian vegetation was coniferous trees (75%), deciduous trees (15%), grass (5%), and shrubs (5%) and the drainage likely provides spawning and migration habitat for forage fish (5658 NWT Ltd. and GNWT, 2011).

The watercourse is crossed by the MGP route (RPR-333 [IORVL, 2004]) 87 m upstream of the proposed crossing location.

The site was not assessed in the field in 2021.

4.3.1.35 Crossing KM 918 – Unnamed Watercourse

The proposed crossing location was assessed from the air in 2010 (5658 NWT Ltd. and GNWT, 2011). The watercourse channel at the crossing site is approximately 8 m to 15 m wide with a water depth of approximately 0.2 m. The watercourse connects a series of lakes. Crown closure was estimated at 1% to 25% consisting of primarily conifer trees, with smaller amounts of deciduous trees, shrubs and grasses. Instream cover consisted of large woody debris. The substrate was sand. Water colour at the time of the assessment was brown. The watercourse may provide habitat for forage and sport fish (5658 NWT and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.36 Crossing KM 919.9 – Unnamed Watercourse

The channel width at the centreline was 37 m with a water depth of 0.2 m at the time of the assessment. The maximum water depth in the assessed reach was estimated to be greater than 2 m. Upstream, 100 m of the centreline, there was an entrance to a deep pool. Upstream 50 m, the area is flooded which extends downstream of the centreline. Downstream of the centreline, the channel becomes narrower and, by 300 m downstream, was only 1.3 m wide. Substrate at the centreline was estimated to be 30% organics, 60% fines, and 10% boulders. The boulders appear to be from rip-rap used for the winter road and not naturally occurring. Upstream, the substrate composition was 100% organics; downstream was a mixture of organics and fines. Overhead cover was estimated at 10% with overhanging grasses. Instream cover was also estimated at 10%, provided by vegetation. Banks at the centreline were stable.

Fishing was conducted using minnow traps but no fish were captured. Spawning habitat is rated as good for forage fish and none for coarse and sportfish. Overwintering potential is rated poor to moderate for forage fish and poor for coarse and sportfish. Rearing habitat is rated as good for forage fish, moderate for coarse fish, and poor to moderate for sportfish. Fish passage is rated as poor to moderate for all three categories of fish.

4.3.1.37 Crossing KM 922 – Twelve Mile Creek

At the proposed crossing location, the channel was approximately 1 m wide with a depth of 0.2 m at the time of assessment. The watercourse receives water from a series of small upstream lakes. Habitat was predominately run. Substrate was dominated by sand (90%) with limited gravel (10%). Small woody debris was observed throughout the watercourse, Riparian vegetation consisted of forbs (30%), grasses (20%), conifers (20%), deciduous trees (15%), and shrubs (15%) (5658 NWT Ltd. and GNWT, 2011).

Given the observed habitat conditions, Twelve Mile Creek likely provides spawning and rearing habitat for sportfish, forage fish, and coarse fish. There were no barriers to migration observed and no overwintering habitat present (5658 NWT Ltd. and GNWT, 2011). Arctic grayling, burbot, northern pike, emerald shiner, spottail shiner and lake chub were the most frequently captured species in Twelve Mile Creek (IORVL, 2004).

Twelve Mile Creek was assessed for the MGP route (crossing RPR-332 [IORVL, 2004]) approximately 1.7 km upstream of the project crossing.

The site was not assessed in the field in 2021.

4.3.1.38 Crossing KM 931 – Four Mile Creek

At the proposed crossing location, the channel was approximately 3 m wide and 0.5 m deep. Habitat was predominately run. A moderate amount of small woody debris was observed throughout the assessed area. The substrate was sand (90%) and gravel (10%). Riparian vegetation was forbs (30%), grass (20%), coniferous trees (20%), shrubs (15%), and deciduous trees (15%) (5658 NWT Ltd. and GNWT, 2011).

Juvenile Arctic grayling, burbot, northern pike, emerald shiner, spottail shiner, and lake chub have been captured at the confluence of Four Mile Creek and the Mackenzie River (5658 NWT Ltd. and GNWT, 2011). The upstream lakes provide suitable habitat for northern pike and whitefish (5658 NWT Ltd. and GNWT, 2011). Based on observed habitat conditions, Four Mile Creek provides suitable spawning, rearing, and migration habitat for species captured as well as bull trout and whitefish (5658 NWT Ltd. and GNWT, 2011).

The site was not assessed in the field in 2021.

4.3.1.39 Crossing KM 940.1 – Unnamed Watercourse

Channel width at the centreline was 1.5 m with an average water depth of 0.4 m at the time of the assessment. The maximum water depth in the assessed reach was 0.6 m. Substrate composition at the centreline was 60% organics and 40% fines. The substrate throughout the assessed reach was organics and fines. Overhead cover was 90%, provided by overhanging shrubs. Instream cover was 10%, provided by undercut banks. Banks at the centreline were moderately stable. A series of cascades with 0.25 m drops were present 200 to 300 m downstream from the centreline. These cascades may be barriers to fish passage.

No fishing was conducted due to snow and ice conditions. Spawning habitat is rated as moderate for forage fish and none for coarse and sportfish. Overwintering potential is rated as none to poor for all three categories of fish. Rearing habitat is rated as moderate to good for forage fish and poor to moderate for coarse and sportfish. Fish passage is rate as poor to moderate for all three categories of fish.

4.3.1.40 Crossing KM 980.3 – Unnamed Watercourse

At the proposed crossing location, the channel was approximately 1 m wide with a maximum depth of 0.2 m; it was dry in some locations. Habitat was predominately run. Substrate was predominantly boulders (70%) and cobble (30%). A moderate amount of small woody debris was observed throughout the assessed area. Riparian vegetation was coniferous trees (75%), shrubs (20%), and deciduous trees (5%). It is unknown whether this watercourse provides fish habitat.

The watercourse is crossed by the MGP route (RPR-314 [IORVL, 2004]) approximately 2.4 km downstream of the project crossing.

4.3.1.41 Crossing KM 981.2 – Unnamed Watercourse

The assessment was conducted in snow and 50% ice cover. The channel width at the centreline was 2.6 m with an average water depth of 0.1 m at the time of the assessment. The maximum water depth at the time of the assessment was 0.8 m. The substrate composition at the centreline was estimated to be 20% small gravel, 40% large gravel, 30% cobble and 10% boulders. The substrate upstream of the centreline was similar to the centreline. Downstream, 200 m and 300 m from the centreline, substrate composition changed to a mixture of fines and organics. Overhead cover was estimated at 40%, provided mainly by shrubs; instream cover was estimated at 25% cobble and boulders. Banks were moderately stable throughout the assessed reach except 300 m downstream of the centreline where the banks become unstable. Riffle and chutes occur throughout the assessed reach.

Fishing was conducted using a backpack electrofisher and no fish were captured. Spawning habitat is rated as moderate to good for all three categories of fish. Overwintering potential is ranked none to poor for all three categories of fish. Rearing habitat is rated as good for forage and coarse fish and moderate for sportfish. Fish passage is rated as moderate for all three categories of fish.

4.3.1.42 Crossing KM 983 – Prohibition Creek

At the proposed crossing location, Prohibition Creek was approximately 20 m wide with a depth of 0.2 m at the time of assessment. Habitat was predominately run (98%) with limited riffle habitat (2%). Substrate was cobble (60%), sand (20%), gravel (15%), and boulders (5%). Riparian vegetation was predominantly coniferous trees (70%) with some shrubs (20%) and grasses (10%) (5658 NWT Ltd. and GNWT, 2011).

Arctic grayling, broad whitefish, cisco, longnose sucker, mountain whitefish, northern pike, round whitefish, trout-perch, lake chub, emerald shiner, spottail shiner, spoonhead sculpin, and slimy sculpin have been previously captured in Prohibition Creek (IORVL, 2004). Given the observed habitat conditions, it is likely that spawning, rearing, and overwintering habitat for sportfish, forage fish, and

coarse fish exist in Prohibition Creek (IORVL, 2004; 5658 NWT Ltd. and GNWT, 2011). No barriers to migration were observed (5658 NWT Ltd. and GNWT, 2011).

Prohibition Creek is crossed by the MGP route (RPR-313 [IORVL, 2004]) approximately 470 m downstream from the proposed Project crossing.

The site was not assessed in the field in 2021.

4.3.1.43 Crossing KM 987.2 – Unnamed Watercourse

At the proposed crossing location, the channel was approximately 2.5 m wide and 0.1 m deep at the time of assessment. Habitat was predominately run habitat. Substrate was cobble (50%) and gravel (50%). Moderate small woody debris was observed at the crossing location. Riparian vegetation was predominately conifers (60%) with shrubs (25%), limited grass (10%), and deciduous trees (5%) (5658 NWT Ltd. and GNWT, 2011).

Fish sampling was conducted in 2002 and 2003 but no fish were captured (IORVL, 2004). Given the observed habitat conditions, it is anticipated that spawning and rearing habitat exists for sportfish, forage fish, and coarse fish in this unnamed watercourse (5658 NWT Ltd. and GNWT, 2011). At the MGP route crossing, it was reported that there was potential rearing habitat for Arctic grayling and juvenile suckers, but the lack of deep-water habitat could restrict adult feeding by large-bodied fish species (IORVL, 2004).

The unnamed watercourse is crossed by the MGP route (RPR-312 [IORVL, 2004]) approximately 100 m upstream of the project crossing.

The site was not assessed in the field in 2021.

4.3.2 Dehcho Region

Field Assessments were completed by K'alo-Stantec between September 16 and September 24, 2020. Station location maps for crossings assessed in the field and site summary sheets are provided in Appendix C.

4.3.2.1 Crossing KM 696.8 – Unnamed Watercourse

There is no existing data at the proposed crossing location The proposed crossing location was not assessed by K'alo-Stantec in 2020 due to difficulties accessing the site and time constraints related to weather.

4.3.2.2 Crossing KM 699.1 - Drainage

At the proposed crossing location, there is an ephemeral drainage which is oriented from east to west across the existing winter road. Ponded water was present on both sides of the winter road. However, there were no continuously defined channels on either side of the road and this drainage is unlikely to support fish. This drainage was not assessed by previous studies.

4.3.2.3 Crossing KM 699.3 - Wetland Area

A suspected wetland area with several small waterbodies is located adjacent to the project highway alignment at this crossing location. The inlet to the wetland area was accessed as an ephemeral drainage (WX-028). Neither the wetland nor inlet were not considered fish habitat due to the lack of connectivity to a fish-bearing waterbody and lack of overwintering potential. This wetland area was not assessed in previous studies.

4.3.2.4 Crossing KM 700.3 - Wetland Area

At the proposed crossing location, there is a wetland which has an outlet connecting it to the Mackenzie River. Substrate in the wetland was entirely organics. Wetland riparian vegetation was also observed. The maximum depth was approximately 3 m. An active beaver lodge was observed in the wetland.

Minnow trapping was conducted for approximately 45 hours; no fish were captured. However, this waterbody likely provides fish habitat because of its connectivity to the Mackenzie River as well as its depth. The outlet to the waterbody is on the downstream side of the project highway corridor. It does not appear that the wetland crosses the existing winter road. This crossing was not assessed in previous studies.

4.3.2.5 Crossing KM 701.7 - Wetland Area

At the proposed crossing location, there is a wetland with an outlet connecting it to the Mackenzie River. The substrate was entirely organics. Wetland riparian vegetation was observed. The maximum depth of the waterbody was 2 m.

Minnow trapping was completed for 46 hours; no fish were captured. However, it is expected to provide fish habitat due to its connectivity with the Mackenzie River. This crossing was not assessed in previous studies.

4.3.2.6 Crossing KM 702.2 - Wetland Area

A wetland area with numerous small ponds was located adjacent to the project highway alignment. Substrates in the ponds was entirely organic material. Wetland vegetation exists around each pond. The outlet of this wetland connects to the Mackenzie River across the alignment.

Minnow trapping was conducted for approximately 40 hours; no fish were captured. This wetland likely provides habitat for forage fish due to its connectivity with the Mackenzie River. This crossing was not assessed in previous studies.

4.3.2.7 Crossing KM 702.9 - Wetland Area

At the crossing location, there is a wetland with an ephemeral drainage connected to a larger waterbody to the west, located adjacent to the project highway alignment. Substrates were entirely organic matter. Wetland riparian vegetation surrounded the waterbody on all sides. The maximum measured depth was approximately 1 m.

Minnow trapping was conducted for approximately 45 hours; no fish were captured. However, the wetland may provide seasonal fish habitat for forage fish due to its connectivity with a larger waterbody. This wetland was not assessed in previous studies.

4.3.2.8 Crossing KM 704.7 – Wetland Area

At the proposed crossing location, there was a wetland area which was connected to a larger waterbody to the west. Substrate was organic material and wetland riparian vegetation was present. The maximum measured depth was approximately 1 m.

Minnow trapping was conducted for 46 hours; no fish were captured. This wetland likely provides seasonal fish habitat for forage fish because of its connectivity with a larger waterbody to the west. This wetland was not assessed in previous studies.

4.3.2.9 Crossing KM 705.4 – Unnamed Watercourse

There is no existing data for the watercourse at this proposed crossing location. The proposed crossing location was not assessed by K'alo-Stantec in 2020 due to difficulties accessing the site or time constraints related to weather.

4.3.2.10 Crossing KM 710.4 - Wetland Area

A wetland area was located adjacent to the project highway alignment. An outlet from the wetland was assessed as an ephemeral drainage (WX-006) and this outlet crosses the alignment. No inlet to the wetland was observed. The wetland and outlet are not considered to provide fish habitat because of lack of connectivity to larger waterbodies or watercourses. K'alo-Stantec only assessed the crossing 200 m to the southeast because of a nearby moose pasture and concerns of entering the pasture raised by the community of Wrigley. There is no previous data for the suspected wetland area.

4.3.2.11 Crossing KM 715.6 - Wetland Area

A small wetland with no inlets or outlets was located adjacent to the project highway alignment. This waterbody is not considered fish habitat due to its lack of connectivity with other waterbodies. This wetland was not assessed in previous studies.

4.3.2.12 Crossing KM 718.8 - Drainage

This is an ephemeral drainage, oriented east to west, at the proposed crossing location, which is at the existing winter road. This drainage did not have a defined channel bed or banks and there was no channelization for approximately 50 m upslope of the existing winter road; standing water was present only downslope of the proposed crossing. The drainage is unlikely to provide fish habitat because it does not have sufficient depth nor connectivity to fish-bearing waterbodies. The crossing was previously assessed (Dessau, 2012) approximately 36 m southeast of the proposed crossing location and no fish habitat potential was found.

4.3.2.13 Crossing KM 719.9 - Wetland Area

A wetland area with an outlet visible to the northwest was located adjacent to the project highway alignment. Substrate was organic material and the waterbody was surrounded by wetland riparian vegetation. The maximum depth was greater than 2 m.

Minnow trapping was conducted for 35 hours; no fish were captured. However, this wetland likely provides fish habitat for forage fish because of its suitable depth and an outlet with connectivity to other waterbodies in the area. This waterbody was not assessed in previous studies.

4.3.2.14 Crossing KM 721.6 – Unnamed Watercourse

At the proposed crossing location, the watercourse was approximately 1.9 m wide with a wetted width of 2.6 m. The wetted width was longer than the channel width due to undercut banks. The maximum depth was 0.6 m at the time of the assessment. Substrate was fines (50%), organics (25%), cobble (10%), boulder (10%), and large gravel (5%). Riparian vegetation was dominated by shrubs and grasses on both banks. Cover for fish was provided by trees and shrubs as well as boulders and woody debris instream. Riffles was the dominant habitat type observed and a small cascade was observed at the proposed crossing location. However, approximately 300 m downstream of the crossing location, shallow runs dominated.

Backpack electrofishing was completed for 450 seconds of effort; no fish were captured. Spawning habitat potential is rated as poor for all species due to unsuitable substrate and limited instream woody debris. Downstream of the proposed crossing location, there is more suitable habitat that includes riffles and flat habitat with abundant cover and woody debris that may afford spawning habitat for forage fish. Overwintering habitat potential is rated as poor to nil for all fish species because it is expected that the watercourse will freeze to the bottom in winter. Rearing habitat potential is rated as moderate for coarse and forage fish and poor-moderate for sportfish because it is likely limited by high water velocity in the riffle habitat. Fish passage potential for all fish species is rated as good with no obstructions observed.

The watercourse was not assessed in previous studies.

4.3.2.15 Crossing KM 724.5 – Unnamed Watercourse

There is no existing data at the proposed crossing location; it was not assessed by K'alo-Stantec in 2020 due to difficulties accessing the site or time constraints related to weather.

4.3.2.16 Crossing KM 727.4 – Unnamed Watercourse

At the proposed crossing location, the watercourse was 1.5 m wide with a wetted width of 1.1 m. The maximum dept was 0.5 m at the time of the assessment. The substrate was fines (50%), organics (30%), cobble (10%), large gravel (5%), and small gravel (5%). Riparian vegetation was shrubs. There was little instream or overhead cover within the assessed area. Cover for fish was provided by undercut banks, trees and shrubs, and woody debris.

Backpack electrofishing was completed for 432 seconds; no fish were captured. Spawning habitat potential is as rated poor for all fish species due to the lack of appropriate substrate, instream woody debris, and vegetation. Overwintering habitat is rated as poor to nil for all fish species as the watercourse is expected to freeze to bottom in winter. There is limited overhead cover, limited instream cover, and lack of substrate complexity for invertebrate populations. Therefore, habitat is rated as moderate for forage fish and poor to moderate for sportfish. Migration habitat for all fish species is rated as moderate because there were no obstructions observed. During periods of low flow, fish passage for large-bodied fish species may be restricted

The watercourse was not assessed in previous studies.

4.3.2.17 Crossing KM 732.7 – Unnamed Watercourse

At the proposed crossing location, the channel width was 0.66 m with a wetted width of 0.74 m (Dessau, 2012). The substrate was fines (80%), gravel (10%), and cobble (10%). Riparian vegetation was dominated by coniferous trees (Dessau, 2012). Overhead cover was estimated to be 90% for the entire site (Dessau, 2012).

This crossing was assessed by K'alo-Stantec in 2020. The channel was found to have a width of 0.9 m with a wetted width of 0.8 m at the time of the assessment. The maximum depth was 0.6 m. The substrate was fines (40%), boulder (35%), cobble (15%), and organics (10%). Riparian vegetation was predominantly shrubs and grasses. Overhead cover was provided by trees and shrubs and undercut banks. The dominant habitat type was riffle.

Spawning habitat was rated as poor for all fish species. Overwintering habitat was rated as poor because the watercourse is likely to freeze to the bottom in winter. Rearing habitat potential was rated as poor for all fish species because overhead cover is limited and instream cover was provided primarily by boulders. The amount of overhead cover may have changed since the previous assessment (Dessau, 2012) due to local changes in vegetation. Fish passage was rated as poor for forage fish because of high water velocity and steeper gradients at the confluence with the Mackenzie River (14% gradient) and downstream of the crossing location (16% gradient). Sport and coarse fish are more likely to migrate past the gradient barriers; however, water depth was shallow with abundant boulders and migration could be

limited by depth. Therefore, passage was rated as poor to moderate for sport and coarse fish. In a previous assessment fish habitat potential was rated as poor due to low flow and fine substrate In addition, to debris jams which likely impede fish migration (Dessau, 2012).

4.3.2.18 Crossing KM 733.7 - Bonnie Creek

At the proposed crossing location, the channel was 2.9 m wide with a wetted width of 2.4 m (Dessau, 2012). Substrate was boulder (60%), cobble (15%), fines (15%), and gravel (10%) with riparian vegetation comprised of deciduous trees (Dessau, 2012). Available instream cover to fish was estimated to be 65% (Dessau, 2012). Spawning fish habitat potential was rated as low, overwintering habitat potential was rated as low, and rearing habitat potential was rated as moderate (Dessau, 2012). It is suspected that Arctic grayling may be present within Bonnie Creek (Dessau, 2012).

Bonnie Creek was assessed by K'alo-Stantec in 2020. The confluence of Bonnie Creek with the Mackenzie River is located approximately 240 m downstream of the proposed crossing location. At the proposed crossing location, Bonnie Creek was 2.0 m wide with a wetted width of 2.2 m with a maximum depth of 0.5 m. Substrate was boulder (40%), cobble (20%), fines (20%), small gravel (15%), and organics (5%). Riparian vegetation was shrubs and grasses with some coniferous trees. The dominant habitat type was riffle with a shallow pool located approximately 100 m upstream and shallow run approximately 200 m downstream of the proposed crossing. No electrofishing was completed but the presence of Arctic grayling was suspected (Dessau, 2012).

Spawning habitat potential was rated as poor for all fish species due to the very coarse substrate with limited instream vegetation and woody debris. Overwintering habitat potential was rated as nil because the watercourse likely freezes to bottom in winter due to maximum water depth of 0.5 m. Rearing habitat was rated as moderate for forage fish and coarse fish and moderate for sport fish. The coarse substrate likely supports benthic invertebrate production and provides instream cover for fish, but otherwise there is limited overhead cover. Fish passage was rated as moderate for all fish species because no barriers were observed during the survey. However, fish passage during lower flows may be more difficult for fish due to the boulder substrate.

4.3.2.19 Crossing KM 736.5 – Unnamed Watercourse

At the proposed crossing location, the channel was 0.79 m wide with a wetted width of 0.77 m (Dessau, 2012). Substrate was entirely fines. Riparian vegetation was deciduous trees (Dessau, 2012). Instream cover for fish was estimated to be 80% (Dessau, 2012). Fish habitat potential was rated as low due to poor substrate and shallow depths (Dessau, 2012).

Crossing KM 736.48 was assessed by K'alo-Stantec in 2020. The watercourse was 0.9 m wide with a wetted width of 1.0 m at the proposed crossing location. The maximum depth was 0.7 m at the time of the assessment. Substrate was fines (30%), organics (20%), small gravel (20%), boulder (15%), cobble (10%), and large gravel (5%). Riparian vegetation was grass and shrubs with some deciduous trees. There was limited cover provided by woody debris and undercut banks. The dominant habitat type was riffles with some shallow runs approximately 100 m and 50 m upstream of the proposed crossing location.

No electrofishing was completed. Overall, fish habitat was rated as poor. Spawning habitat potential was rated as poor for all fish species because of the lack of coarse substrate and instream vegetation. Overwintering habitat potential was rated as poor because the watercourse is expected to freeze to the bottom in winter. Rearing habitat potential was rated as moderate for forage fish and coarse fish and poor to moderate for sportfish. There was some substrate complexity that may support benthic invertebrate production, and there was some cover for fish provided by woody debris and undercut banks. Migration was rated as moderate for all fish species due to instream large woody debris, which may affect passage. However, there were no barriers between the proposed crossing location and the Mackenzie River.

4.3.2.20 Crossing KM 738.7 – Unnamed Watercourse

At the proposed crossing location, the watercourse was 1.8 m wide with a wetted width of 1.1 m. Maximum measured depth was 0.7 m at the time of the assessment. The substrate was fines (40%), small gravel (20%), cobble (20%), organics (10%), large gravel (5%), and bedrock (5%). Riparian vegetation was grass and shrubs with some deciduous and coniferous trees. Limited cover was provided by undercut banks, woody debris, and boulders. The dominant habitat type at the crossing location was shallow run with riffles observed upstream and downstream.

Backpack electrofishing was completed for 573 seconds of effort; no fish were captured (K'alo-Stantec, 2021). Overall, fish habitat potential was rated as poor. Spawning habitat potential was rated as poor for all fish species. There are limited gravel substrates for species that construct redds and limited instream vegetation and woody debris for other fish species. Overwintering habitat potential was rated as poor for all fish species because the watercourse is likely to freeze to the bottom in winter. Rearing habitat was rated as moderate for forage fish and coarse fish and poor to moderate for sportfish. There is some substrate complexity to support benthic invertebrate production; however, fine substrates would likely limit this production to a smaller diversity of taxa. Migration potential was rated as good for all fish species because there were no known barriers between the crossing and the Mackenzie River. This crossing was not assessed by previous studies.

4.3.2.21 Crossing KM 737.4 – Unnamed Watercourse

There was no previous existing data at the proposed crossing location. The proposed crossing location was not assessed by K'alo-Stantec in 2020 due to difficulties accessing the site or time constraints related to weather.

4.3.2.22 Crossing KM 739.6 – Unnamed Watercourse

At the crossing location, this watercourse was 1.3 m wide with a wetted width of 1.3 m at the time of the assessment (Dessau, 2012). The substrate was gravel (50%), fines (45%), and cobble (5%). Riparian vegetation was dominated by alder trees (Dessau, 2012). Fish habitat potential was rated as moderate to low for rearing and spawning and low for overwintering (Dessau, 2012).

K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the watercourse was 1.6 m wide with a wetted width of 1.18 m. The maximum measured depth was 0.5 m at the time of the assessment. The substrate was fines (40%), organics (20%), cobble (20%), small gravel (10%), and large gravel (10%). Riparian vegetation was shrubs and grass with some deciduous trees. There was limited overhead cover provided by undercut banks and limited instream cover provided by woody debris. The dominant habitat type was shallow run. Riffles were the dominant habitat type downstream of the proposed crossing location.

No electrofishing was completed; fish presence was assumed. Overall, fish habitat potential is poor. Spawning habitat potential for all fish species was rated as poor due to the limited depth, presence of predominantly fine substrates, and lack of instream vegetation and woody debris. Overwintering habitat potential for all fish species was rated as poor because the watercourse is likely to freeze to the bottom in winter. Rearing habitat potential was rated as good for all fish species because there was some substrate complexity to support benthic invertebrate production, and there was cover for juvenile fish from overhanging riparian vegetation and woody debris

Fish passage was rated as good for all fish species because no barriers were identified between the proposed crossing location downstream to the Mackenzie River. A logjam was observed approximately 50 m upstream of the proposed crossing that may partially impede fish passage upstream of the crossing, particularly for large bodied species.

4.3.2.23 Crossing KM 740.8 – Unnamed Watercourse

K'alo-Stantec assessed the proposed crossing location in 2020; there was no previous existing data at the proposed crossing location (Dessau, 2012). At the proposed crossing location, the channel was 1.3 m wide with a wetted width of 1.4 m. Wetted width was wider than the channel width due to the presence of undercut banks. The maximum depth was 0.4 m at the time of the assessment. The substrate was fines (70%), organics (20%), large gravel (5%), and cobble (5%). Riparian vegetation was grasses, shrubs, and coniferous trees. Cover was provided by woody debris and overhanging riparian vegetation. The dominant habitat type at the proposed and upstream of the crossing location consisted of shallow run habitat while riffles were present downstream of the proposed crossing location.

Backpack electrofishing was completed for 359 seconds of effort; no fish were captured. Overall, fish habitat was rated as poor. Spawning habitat potential was rated as poor for all fish species due to the fine substrate, limited instream vegetation and woody debris, and shallow depth. Overwintering habitat potential was rated as poor for all species because the watercourse is likely to freeze to the bottom in winter. Rearing habitat potential was rated as moderate to good for forage fish and coarse fish and moderate for sportfish. Fine substrate composition may limit benthic invertebrate production. However, there was overhead and instream cover and suitable flows for rearing fish. Passage potential was rated as moderate because there were no known barriers to migration downstream of the proposed crossing location to the Mackenzie River.

4.3.2.24 Crossing KM 741.7 - Unnamed Watercourse

There was no previous existing data at the proposed crossing location (Dessau, 2012). K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the channel was 1.3 m wide with a wetted width of 1.0 m. Maximum depth was measured at 0.9 m depth at the time of the assessment. The substrate was entirely fines. Riparian vegetation was grasses and shrubs with deciduous and coniferous trees. Cover was provided by trees, shrubs, and woody debris. The dominant habitat type at the crossing location was shallow run with step pools upstream and riffles and shallow run habitat downstream of the proposed crossing location.

Backpack electrofishing was completed for 331 seconds; no fish were captured. Overall, fish habitat potential was rated as poor at the proposed crossing location. Spawning habitat potential was rated as nil for all fish species due to the fine substrates. Overwintering habitat was rated as poor for all fish species because the watercourse is likely to freeze to the bottom. Rearing habitat potential was rated as poor to moderate for forage fish and coarse fish and poor for sportfish because of the limited cover and lack of complex substrate to support benthic invertebrates and likely limited by depth. Passage was rated as moderate for all fish species as there are no barriers between the proposed crossing location.

4.3.2.25 Crossing KM 742.7 – Unnamed Watercourse

There was no previous existing data at the proposed crossing location (Dessau, 2012). K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the channel was 1.0 m wide with a wetted width of 1.4 m. Wetted width was wider than channel width due to the presence of undercut banks. Maximum depth was 0.3 m at the time of the assessment. The substrate was fines (90%) with small gravel (10%). Riparian vegetation was shrubs with deciduous and coniferous trees. Overhead cover was limited and provided by trees and shrubs. The dominant habitat type was shallow run.

Backpack electrofishing was not completed due to safety concerns of walking over unstable banks. Overall, fish habitat potential was rated as poor. Spawning habitat potential was rated as poor for all fish species due to the fine substrates and shallow depths. Overwintering habitat potential was rated as poor for all fish species because the watercourse is likely to freeze to the bottom. Rearing habitat potential was rated as poor for all fish species due to the lack of substrate complexity for benthic invertebrates and limited cover. Passage was rated as poor for all fish species due to the shallow depth which likely limits fish passage to high flow periods.

4.3.2.26 Crossing KM 745.7 – Strawberry Creek

At the proposed crossing location, Strawberry Creek had a channel width of 8 m with a wetted width of 8 m (Dessau, 2012). Substrates were boulder (70%), fines (10%), gravel (10%), and cobble (10%) (Dessau, 2012). Riparian vegetation was willows and grasses (Dessau, 2012). Instream cover was provided in approximately 80% of the channel (Dessau, 2012). Fish habitat potential was rated as moderate for rearing and spawning with low overwintering habitat potential (Dessau, 2012).

Strawberry Creek is crossed by the MGP route (RPR-385 [IORVL, 2004]). The proposed crossing location was not assessed by K'alo-Stantec in 2020 due to access or time constraints related to weather.

4.3.2.27 Crossing KM 747.6 – Unnamed Watercourse

There is no previous existing data at the proposed crossing location (Dessau, 2012). K'alo-Stantec assessed the proposed crossing location in 2020. The confluence with the Mackenzie River is located approximately 110 m downstream from the proposed crossing location. The gradient between the proposed crossing and the river was approximately 30%. An existing culvert at the proposed crossing location was damaged at the outlet.

At the proposed crossing location, the channel was 1.3 m wide with a wetted width of 0.9 m. Maximum depth was measured at 0.1 m at the time of assessment. Substrate was boulder (30%), fines (25%), small gravel (20%), cobble (20%), and large gravel (5%). Riparian vegetation was grasses and shrubs with deciduous and coniferous trees. Cover was limited and provided by trees and shrubs and undercut banks. The dominant habitat type at the proposed crossing location was riffle with step pools upstream and downstream of the proposed crossing location.

Backpack electrofishing was completed for 213 seconds; no fish were captured. Overall, fish habitat was rated as poor. Spawning habitat potential was rated as poor for all fish species due to insufficient depth and unsuitable substrate. Overwintering habitat potential was rated as poor for all fish species as the watercourse likely freezes to bottom in winter. Rearing habitat potential was rated as poor for all species because the culvert had resulted in sloughing, which temporarily obstructed fish passage and because of the steep gradient (30%) upstream from the confluence with the Mackenzie River. In addition, there is a potential velocity barrier 100 m upstream from the proposed crossing location associated with the step pools.

4.3.2.28 Crossing KM 748.0 – Unnamed Watercourse

There is no previous existing data at the proposed crossing location (Dessau, 2012). K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the channel was approximately 1.6 m wide with a wetted width of 1.0 m. Maximum depth was 0.6 m at the time of the assessment. The substrate was cobble (40%), fines (20%), boulder (15%), large gravel (15%), and small gravel (10%). Riparian vegetation was shrubs and grasses. Cover for fish was also provided by undercut banks, overhanging trees and shrubs, and boulders.

Backpack electrofishing was completed for 335 seconds of effort; no fish were captured. Overall, fish habitat potential was rated as poor. Spawning habitat was rated as poor for all species due to the coarse substrate and lack of instream vegetation. Overwintering habitat was rated as poor for all species because the watercourse is expected to freeze to the bottom in winter. Rearing habitat potential was rated as poor for all species because of a gradient barrier (24% gradient over 20 m length) approximately 50 m upstream of the confluence of the Mackenzie River.

There is a culvert at this site associated with the winter road which is partially collapsed..

4.3.2.29 Crossing KM 752.6 – Bob's Canyon Creek

Bob's Canyon Creek is a tributary of the Mackenzie River. At the proposed crossing location, the channel width was 5.8 m and the wetted width was 4.8 m (Dessau, 2012). Substrate was boulder (40%), cobble (40%), and gravel (20%). Instream cover for fish was determined to be 70% (Dessau, 2012). Rearing habitat was rated as moderate, overwintering habitat was rated as low, and spawning habitat was rated as low (Dessau, 2012). The creek has been reported to freeze to the bottom (GNWT, 2010).

K'alo-Stantec assessed the proposed crossing location in 2020 approximately 50 m to the south from the location described in GNWT (2012). The proposed crossing is located approximately 200 m upstream from the confluence with the Mackenzie River. A large (7 m diameter) culvert is present at the existing winter road crossing location and was in good condition at the time of the assessment.

The channel at the road crossing location was 2.0 m wide with a wetted width of 1.8 m. Maximum depth was measured to be 0.48 m at the time of the assessment. The substrate was boulder (40%), fines (25%), small gravel (20%), and cobble (15%). Riparian vegetation was shrubs and grasses with deciduous trees. Cover was limited and provided by trees, shrubs, undercut banks, and instream woody debris.

Backpack electrofishing was not completed because it had been reported the creek was unlikely to provide fish habitat (GNWT, 2010). Overall, fish habitat potential was rated as poor due to the overall steep gradient (15% and 17% slopes near confluence with Mackenzie River). Spawning habitat was rated as poor for all fish species due to lack of suitable spawning substrate and surfaces (e.g., woody debris, instream vegetation). Overwintering habitat was rated a poor for all fish species because it is expected the watercourse freezes to the bottom in winter. Rearing habitat was rated as poor for forage fish and poor to moderate for coarse fish and sportfish. This was because, although there is cover for juvenile fish and substrates suitable for diverse benthic invertebrate production, the channel gradient is likely too steep for juvenile fish of most species. Passage was rated as poor for all fish species because of the two gradient impediments (15% and 17%) near the confluence with the Mackenzie River; also, there are some smaller cascades, which may be challenging for some smaller bodied fish to migrate past.

4.3.2.30 Crossing KM 752.8 – Drainage

This is an ephemeral drainage that does not provide fish habitat (Dessau, 2012). The drainage was a dry, vegetated gully during the assessment (Dessau, 2012). K'alo-Stantec did not assess the drainage in 2020 due to access or time constraints related to weather.

4.3.2.31 Crossing KM 765.5 – Unnamed Watercourse

There is no previous existing data at the proposed crossing location (Dessau, 2012). K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the channel measured 1.5 m wide with a wetted width of 1.6 m. Wetted width was wider than channel width due to the presence of undercut banks. Maximum depth was 0.6 m at the time of the assessment. The substrate

was boulder (40%), cobble (20), fines (20%), organics (10%), and small gravel (10%). Riparian vegetation was grasses and shrubs with deciduous and coniferous trees. Cover was provided by overhanging trees, shrubs, woody debris, and instream boulders.

Backpack electrofishing was completed for 651 seconds; no fish were captured. Overall, fish habitat potential was rated as moderate. Spawning habitat was rated as poor to moderate for forage fish and coarse fish and poor for sportfish because of inappropriate substrate size (i.e., few gravels). Overwintering habitat was rated as poor for all fish species because the watercourse is likely to freeze to the bottom in winter. Rearing habitat was rated as good for all fish species due to the substrate complexity, which likely supports benthic invertebrate production, and cover is provided to juvenile fish from woody debris, undercut banks, instream boulders, and overhanging vegetation. Fish passage was rated as good for all fish species because there were no barriers to migration between the Mackenzie River and the proposed crossing location.

4.3.2.32 Crossing KM 767.2 – Unnamed Watercourse

There is no previous existing data at the proposed crossing location. The proposed crossing location was not assessed by K'alo-Stantec in 2020 due to difficulties accessing the site or time constraints related to weather.

4.3.2.33 Crossing KM 767.8 – Unnamed Watercourse

This watercourse, not previously reported, was identified during K'alo-Stantec's 2020 field program. The confluence of this unnamed tributary with the Mackenzie River is approximately 400 m downstream of the proposed crossing location. No formal fish and fish habitat assessment was completed because the crossing has similar morphology to the crossing at KM 765.51 (WX-045) and has connectivity with the Mackenzie River; the tributary was assumed to be fish-bearing.

4.3.2.34 Crossing KM 768.2 – Wetland Area

This wetland, not previously reported, was identified during K'alo-Stantec's 2020 field program. A beaver impoundment was observed, which extended onto the existing winter road. However, no inlet was observed. The beaver dam appears to be active. The substrate was organics. Riparian vegetation was wetland species. Maximum depth was greater than 2 m at the time of the assessment and, therefore, may not freeze to the bottom in winter. The wetland may afford fish habitat potential because it is close to the Mackenzie River and is unlikely to freeze to the bottom. Small-bodied fish may be able to migrate past the beaver dam to access the wetland.

4.3.2.35 Crossing KM 768.9 - Drainage

There is no previous existing data at the proposed crossing location (Dessau, 2012). At the proposed crossing location, an ephemeral drainage flows from west to east across the existing winter road. There were no defined banks approximately 25 m downslope of the existing winter road and water was flowing through grasses and sedges approximately 70 m downslope. There was intermittent channelization approximately 50 m upslope of the existing winter road crossing. This drainage is unlikely to support fish because it does not have connectivity to any other waterbodies that may be fish-bearing.

4.3.2.36 Crossing KM 769.7 - Drainage

There is no previous existing data at the proposed crossing location (Dessau, 2012). At the proposed crossing location is an ephemeral drainage oriented along the winter road. Standing water was present both upslope and downslope of the existing winter road. However, no defined channel or banks were observed. This drainage is unlikely to support fish due to its lack of connectivity with fish-bearing waterbodies.

4.3.2.37 Crossing KM 769.7 – Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A wetland area with a shallow pond was present adjacent to the project highway alignment. However, no outlet or inlet were observed. This wetland area is not considered fish habitat because of its lack of connectivity to any fish-bearing waterbodies.

4.3.2.38 Crossing KM 770.0 – Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A small pond and wetland area were present adjacent to the project highway alignment. However, no outlet or inlet were observed. The pond intrudes into the project highway corridor. The pond and wetland were not considered fish habitat because there was no observed connectivity with any fish-bearing waterbodies.

4.3.2.39 Crossing KM 770.6 – Wetland Area

This wetland, not previously reported, was identified during K'alo-Stantec's 2020 field program. The inlet to this wetland is an ephemeral drainage. The outlet drained the wetland to the west. The substrate in the wetland was organic material. Riparian vegetation was wetland species. Maximum depth was measured to be greater than 2 m. Minnow trapping was completed within the unclassified waterbody for 40 hours; no fish were captured. The wetland was assumed to provide fish habitat because it has an inlet and outlet and depth greater than 2 m, so is unlikely to freeze to the bottom in winter.

4.3.2.40 Crossing KM 772.8 - Drainage

At the proposed crossing location, an ephemeral drainage flows along and across the winter road Standing water was present on both sides of the road. However, there was no defined channel bed or stream banks on either side of the road. For this reason, this drainage is unlikely to support fish and was not considered fish habitat. The drainage is crossed by the MGP route (RPR-380 [IORVL, 2004]). Like the K'alo-Stantec assessment, no fish habitat was identified (IORVL, 2004).

4.3.2.41 Crossing KM 774.1 – Unnamed Watercourse

At the proposed crossing location, this unnamed tributary did not have a defined channel, and a beaver dam was present (Dessau, 2012). Overall fish habitat quality was determined to be low and unlikely to provide overwintering habitat due to shallow water depths (Dessau, 2012). Potential rearing and feeding habitat were observed approximately 50 m downstream of the proposed crossing location (Dessau, 2012).

The watercourse is crossed by the MGP route (RPR-379 [IORVL, 2004]). The report described the channel width as ranging between 1.2 m and 4.2 m with a wetted width of 3 m and a maximum depth of 0.4 m. However, most of the watercourse was less than 0.3 m deep (IORVL, 2004). Habitat was shallow runs with riffles and pools accounting for approximately 20% of the total available habitat. Substrate was coarse gravel and cobble but was moderately embedded with fine material. Cover was provided by woody debris, overhanging vegetation, and boulders in riffles. Riparian vegetation was grass, forbs, and shrubs within a deciduous forest. A fish inventory was completed in the spring and summer; one Arctic grayling was captured in the spring and one juvenile longnose sucker was captured in the summer (IORVL, 2004).

K'alo-Stantec assessed the proposed crossing location in 2020. At the proposed crossing location, the channel was 4.1 m wide with a wetted width of 4.3 m. Wetted width was wider than channel width due the presence of undercut banks. Maximum depth at the proposed crossing was 0.6 m at the time of the assessment. The substrate was boulder (40%), cobble (30%), fines (15%), organics (10%), and large gravel (5%). Riparian vegetation was shrubs and grass with deciduous and coniferous trees. Cover was limited and provided by woody debris and instream boulders. The dominant habitat throughout the assessed area was run habitat . No fish inventory was conducted because fish presence was known.

Overall, fish habitat was rated as moderate. Spawning habitat was rated as poor for all fish species due to a lack of suitable substrates and limited instream vegetation and woody debris. Overwintering habitat was rated as poor for all species. Although pools were observed throughout the assessed area, their depths were shallow and the watercourse likely freezes to or near the bottom. Rearing habitat was rated as moderate for all fish species because the substrate is suitable for benthic invertebrate production and there is instream and overhead cover for juvenile fish. Passage was rated as good for all fish species with no barriers to fish passage observed between the Mackenzie River and the proposed crossing location.

4.3.2.42 Crossing KM 780.9 – Drainage

At the proposed crossing location, there were no defined stream banks, and the crossing is located on an ephemeral drainage (Dessau, 2012; IORVL, 2004). Flow is expected to occur only during the spring runoff and be dry for the rest of the year (Dessau, 2012). There is no fish habitat potential at this location (Dessau, 2012; IORVL, 2004). K'alo-Stantec did not assess this crossing in 2020 due to access or time constraints related to weather.

4.3.2.43 Crossing KM 785.3 – Drainage

At the proposed crossing location, there was no defined channel and there were no channel substrates or surface flow (Dessau, 2012). A barrier to fish passage, a 2 m vertical drop near the crossing location, was observed (Dessau, 2012). The drainage does not provide fish habitat (Dessau, 2012). K'alo-Stantec did not assess this crossing in 2020 due to access or time constraints related to weather.

4.3.2.44 Crossing KM 787.3 – Drainage

There is no suitable fish habitat present at this site and the crossing is a dry, vegetated gully at the proposed crossing location (Dessau, 2012). K'alo-Stantec did not assess the crossing in 2020.

4.3.2.45 Crossing KM 789.0 (SWA-5) - Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A wetland area was present adjacent to the project highway alignment. No outlet or inlet were observed connecting the wetland to another waterbody. This wetland area is not considered fish habitat because it does not have connectivity to a fish-bearing waterbody.

4.3.2.46 Crossing KM 789.4 - Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A wetland area with a small waterbody was present adjacent to the project highway alignment. No outlet or inlet were observed connecting the wetland to another waterbody. This wetland is not considered fish habitat because there is no connectivity to a fish-bearing waterbody.

4.3.2.47 Crossing KM 791.2 - Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A wetland area with a small shallow waterbody is present adjacent to the project highway alignment. No outlet or inlet were observed connecting the wetland to another waterbody. This wetland is not considered fish habitat because there is no connectivity to a fish-bearing waterbody.

4.3.2.48 Crossing KM 791.8 - Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). A wetland area with a small shallow waterbody and several smaller ponds were present adjacent to the project highway alignment. No outlet or inlet were observed. This wetland area is not considered fish habitat because there is no connectivity to a fish-bearing waterbody.

4.3.2.49 Crossing KM 793.1 - Wetland Area

There is no previous existing data at the proposed crossing location (Dessau, 2012). The area is crossed by the MGP route (RPR-376 [IORVL, 2004]). The crossing to be vegetated and did not provide fish habitat.

A wetland area was present adjacent to the project highway alignment in 2020. An outlet draining to the Mackenzie River was difficult to identify. Instead, large shallow ponded areas surrounded by wetland vegetation were visible. The Substrate was entirely organic material. A culvert (900 millimetres [mm] diameter) was placed across the existing winter road between two wetland areas. Some flow was observed in the culvert during the site visit. Minnow trapping (87 hours of effort) captured 120 brook stickleback and 60 fathead minnows. Therefore, this wetland area does provide fish habitat, at least for forage fish species.

Section 5: Summary December 2022

5 Summary

All permanent watercourses that are proposed to be crossed by the Project drain into the Mackenzie River. There are 33 fish species within the RSA, which includes the Mackenzie River. However, not all species are expected to utilize every watercourse that would be crossed by the project highway alignment (e.g., chum salmon). Two species, Bull trout and Dolly Varden, are listed under Schedule 1 of the *Species at Risk Act* as a species of "special concern" and are also ranked as "sensitive" under the Northwest Territories Species Ranking. Inconnu and Arctic cisco are also considered "sensitive" under the NT Species Ranking; however, no additional regulatory restrictions apply to this species because of these listings.

Two species of fish, finescale dace and pearl dace captured in field assessments in the Sahtu Settlement Area represent northern range extensions for these two species.

Based on a desktop review of existing information and field assessments, 39 of the 43 potential watercourse and wetland crossings within the Sahtu Region were found to provide fish habitat or have the potential to provide fish habitat. It is unlikely four other unnamed watercourses to be crossed by the project highway alignment could provide fish habitat. Most of the watercourses that have the potential to provide fish habitat would likely only support forage fish species.

In the Dehcho Region, desktop assessments of 49 watercourses or wetlands were conducted and augmented by field assessments conducted in September 2020. Field assessments focused on locations where there was not an existing crossing structure. There were 25 watercourses assessed in the field. Of the 49 watercourses and wetlands 18 were unlikely to provide fish habitat and another 5 are unknown whether they provide fish habitat as there is no previous data on these watercourses and field assessments have not been conducted at this time. All other watercourses are known to provide fish habitat or have the potential to provide fish habitat. Most of the watercourses that have the potential to provide fish habitat would likely only support forage fish species.

Section 6: Closure December 2022

6 Closure

This TDR was prepared for the sole benefit of GNWT to describe existing conditions related to fish and fish habitat within the Project LSA and RSA. If you have any questions, please do not hesitate to contact the undersigned.

Respectfully submitted,

K'alo-Stantec Limited

Section 7: References December 2022

7 References

- 5658 NWT Ltd. and GNWT 2011. Project description report for construction of the Mackenzie Valley Highway Tulita District, Sahtu Settlement Area.
- AT (Alberta Transportation). 2009. Fish Habitat Manual: Guidelines and Procedures for Watercourse Crossings in Alberta. October 2001. Revised August 2009. Edmonton, Alberta.
- Alt, K. T. 1969. A life history study of shellfish and whitefish in Alaska. Alaska Department of Fish and Game, Junea, Alaska. Project No F-9-1, Study R-11, Job 17-B, Volume 10: 16 p.
- Auld, J., and R. Kershaw. 2005 (Ed.). The Sahtu Atlas: Maps and Stories from the Sahtu Settlement Area in Canada's Northwest Territories. Sahtu Renewable Resource Board.
- Callaghan, D.T., P.J. Blanchfield and P.A. Cott. 2015. Lake trout (Salvelinus namaycush) spawning habitat in a northern lake: The role of wind and physical characteristics on habitat quality, J. Great Lakes Res. Available at: <u>http://dx.doi.org/10.1016/j.jglr.2015.07.001</u>.
- Casselman, J.M. and C.A. Lewis. 1996. Habitat requirements of northern pike (*Esox lucius*). Can. J. Fish. Aquat. Sci. 53: 161-174.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2010. Dolly Varden (*Savelinus malma malma*) COSEWIC assessment and status report 2010. Available at: <u>https://wildlife-species.canada.ca/species-risk-registry/virtual sara/files/cosewic/sr dolly varden 0911 eng.pdf</u>.
- COSEWIC. 2012. Bull trout (*Salvelinus confluentus*) COSEWIC assessment and status report 2012. Available at: <u>www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/cosewic-assessments-status-reports/bull-trout-2012.html</u>.
- Dehcho Land Use Planning Committee 2006. Respect for the Land: The Dehcho Land Use Plan. Final Draft Plan.
- Dessau. 2012. Mackenzie Valley Highway Extension Pehdzeh Ki Ndeh Decho Region: Project Description Report (PDR).
- DFO (Department of Fisheries and Oceans Canada). 2013. Projects Near Water Northwest Territories Restricted Activity Timing Windows for the Protection of Fish and Fish Habitat. Available at: <u>https://stantec.sharepoint.com/teams/144902921/Shared%20Documents/General/04_deliverable/</u> <u>technical%20data%20reports/1.2_data_report/Fish%20and%20fish%20habitat/dfo-mpo.gc.ca</u>.
- DFO. 2022. Available at: https://www.dfo-mpo.gc.ca/species-especes/sara-lep/map-carte/index-eng.html.
- Evans, C.L., J.D Reist and C.K. Minns. 2002. Life history characteristics of freshwater fishes occurring in the Northwest Territories and Nunavut, with major emphasis on riverine habitat requirements. Can. MS Rep. Fish. Aquat. Sci. 2614: xiii + 169.

- Ford, B.S., P.S. Higgins, A.F. Lewis, K.I. Cooper, T.A. Watson, C.M. Gee, G.L. Ennis, and R.L. Sweeting. 1995. Literature reviews of the life history, habitat requirements and mitigation/compensation strategies for thirteen sport fish species in the Peace, Liard and Columbia River drainages of British Columbia. Canadian Manuscript Report Fisheries Aquatic Sciences. 2321: 342 p.
- GOC (Government of Canada). 2022a. Species at Risk Public Registry. Available at: <u>https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/species-list.html</u>.
- GOC. 2022b. Wildlife Species Status Search: Database of wildlife species assessed by COSEWIC. Available at: <u>https://species-registry.canada.ca/index-en.html</u>.
- GNWT (The Government of the Northwest Territories). 2010. Environmental Information Report. Arched culvert Installation at Bob's Canyon, Km 753.5 and Strawberry Creek, Km 746.5, Mackenzie Valley Winter Road.
- GNWT. 2012. Mackenzie Valley Highway Estension Pehdzeh Ki Ndeh Dehcho Territory. Project Description Report.
- GNWT. 2016. NWT species 2016-2020. General Status Ranks of Wild Species in the Northwest Territories. Available at: www.nwtspeciesatrisk.ca/sites/enr-species-at risk/files/nwtspecies 2016-2020 report final_w properties.pdf.
- GNWT. 2020. NWT Species at Risk Infobase. Available at: <u>https://www.nwtspeciesatrisk.ca/content/search-infobase</u>.
- GNWT. 2021. Site Specific Fish Consumption Advice | Health and Social Services. Available at: <u>https://www.hss.gov.nt.ca/en/services/recommandations-sur-la-consommation-de-poisson/site-specific-fish-consumption-advice</u>.
- Golder. 2015. Central Mackenzie Surface Water and Groundwater Baseline Assessment. Report 1: Technical State of Knowledge. Report Number: 1401835 Final Report 1. May 21, 2015.
- Howland, K.L., W.M. Tonn, J.A. Babaluk and R.F. Tallman. 2001. Identification of freshwater and anadromous inconnu in the Mackenzie River system by otolith strontium. Transactions of the American Fisheries Society 130: 725-741.
- IMG-Golder Corporation. 2006. Draft Report on Renewable Resource Assessment of the Pehdeh Ndeh Area of Interest. Prepared for the Canadian Parks and Wilderness Society, Northwest Territories Chapter. Yellowknife.
- IORVL (Imperial Oil Resources Ventures Limited). 2004. Environmental Impact Statement for the Mackenzie Gas Project. Volume 3: Biophysical Baseline, Part C – Aquatic Resources, Section 7: Fish and Fish Habitat.

- Jessop, C.S. and J.W. Lilley. 1975. An evaluation of the fish resources of the Mackenzie River valley based on 1974 data. Can. Fish. Mar. Serv. Tech. Rep. Ser. Cen T CEN/T-75-6: 96 p.
- Low, G. and C.J. Read. 1987. Data from the Arctic grayling sport fishery on the Kakisa River, Northwest Territories, 1983 and 1984. Can. Data Rep. Fish. Aquat. Sci. 642: 12 p.
- McPhail, J.D. and V.L. Paragamian. 2000. Burbot biology and life history. In Paragamian, V. L. & D. H. Willis é(eds), Burbot Biology, Ecology, and Management. Publication No. 1, American Fisheries Society, Fisheries Management Section, Bethesda, Maryland: 11–23.
- Mochnacz, N.J., R. Bajno, J.D. Reist, G. Low and J.A. Babaluk. 2013. Distribution and biology of Bull Trout (*Salvelinus confluentus*) in the Mackenzie Valley, Northwest Territories, with notes on sympatry with Dolly Varden (*Salvelinus malma*). Arctic 66: 79-93.
- MVEIRB (Mackenzie Valley Environmental Impact Review Board). 2015. Terms of Reference EA1213-02 Mackenzie Valley Highway Extension Project Wrigley to Norman Wells Government of Northwest Territories. February 13, 2015. PR#66.
- R.L. & L. Environmental Services Ltd. 1980. Liard River fisheries study Fisheries Data. Prepared for BC Hydro, Vancouver, BC by R.L. & L. Environmental Services Ltd., Edmonton, Alberta.
- R.L. & L. Environmental Services Ltd. 1992. A general fish and riverine habitat inventory, Athabasca River. April to May 1992. April 1994.
- Reist, J.D. and W.A. Bond. 1988. Life history characteristics of migratory coregonids of the lower Mackenzie River, Northwest Territories, Canada. Finnish Fisheries Research 9: 133-144.
- Reist, J.D., G. Low, J.D. Johnson and D. McDowell. 2002. Range Extension of Bull Trout, *Salvelinus confluentus*, to the Central Northwest Territories, with Notes on Identification and Distribution of Dolly Varden, *Salvelinus malma*, in the Western Canadian Arctic.
- Sahtu Heritage Places and Sites Joint Working Group. 2000. Rakekée Gok'é Godi: Places we take care of. 116 p.
- Sawatzky, C.D., D. Michalak, J.D. Reist, T.J. Carmichael, N.E. Mandrak, and L.G. Heuring. 2007. Distributions of freshwater and anadromous fishes from the mainland Northwest Territories, Canada. Canadian Manuscript Report Fisheries Aquatic Sciences. 2793: xiv + 239 p.
- Scott, W.B. and E.J. Crossman. 1998. Freshwater Fishes of Canada. Galt House Publications Ltd., Oakville, ON.
- Stephenson, S.A., J.A Burrows and J.A Babaluk. 2005. Long-distance migrations by Inconnu (*Stenodus leucichtys*) in the Mackenzie River system. Arctic 58: 21-25.
- Stewart, D.B., and G. Low. 2000. A review of information on fish stocks and harvests in the Deh Cho area, Northwest Territories. Canadian Manuscript Report of Fisheries and Aquatic Sciences. 2549: iv + 73 p.

- Stewart, D.B., N.J. Mochnacz, C.D. Sawatzky, T.J. Carmichael, and J.D. Reist. 2007. Fish diets and food webs in the Northwest Territories: Bull Trout (*Salvelinus confluentus*). Canadian Data Reports of Fisheries and Aquatic Sciences No. 2800. Central and Arctic Region, Fisheries and Oceans Canada, Winnipeg, Manitoba. 18 pp.
- Stewart, D.B., N.J. Mochnacz, J.D. Reist, T.J. Carmichael, and C. D. Sawatzky. 2010. Fish life history and habitat use in the Northwest Territories: Dolly Varden (*Salvelinus malma*). Canadian Manuscript Report of Fisheries and Aquatic Sciences. 2915: vi + 63 p.
- Tallman, R.F., and J.D. Reist (editors). 1997. The proceedings of the broad whitefish workshop: the biology, traditional knowledge and scientific management of broad whitefish (Coregonus nasus (Pallas)) in the lower Mackenzie River. Canadian Technical Report Fisheries and Aquatic Sciences. 2193: xi + 219 p.
- TRRC (Tulita Renewable Resource Council). 2019. Traditional Knowledge Study for the Great Bear River Bridge Project. Prepared by Tulita Renewable Resource Council.
- TRRC. 2022. Tulita Renewable Resources Council Traditional Land and Resource Use Study for Tulita District Mackenzie Highway Project. Prepared by K'alo-Stantec Limited. Prepared for Tulita Renewable Resources Council.

Appendix A: Watercourse Crossing Locations December 2022

Appendix A Watercourse Crossing Locations

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Mackenzie Valley Highway Project Technical Data Report—Fish and Fish Habitat

Appendix B: Station Location Maps and Summary Sheets – Sahtu Settlement Area December 2022

Appendix B

Station Location Maps and Summary Sheets – Sahtu Settlement Area

						Ma	icke	nzie Va	alley	/ Hi	ghw	ay				
	TRA	τı	ЕСН			S	ite 7	97.9	Unn	am	ed W	/atercourse				
	INA.		-011				υтм	Location:	10W 4	43774	0 7101	1829		Survey	Date: 10/1/2021;	10:55
						l	Legal	Location:				-			Zone:	
						1	Cre	w Initials:	TM &	MAN		F	Restricted /	Activity Pe	eriod:	-
		Phy	ysical Chai	nnel Tr	ansect	Data							Habitat	Inventor	y / Reach Data	
Transect # (Location)	1 (个10	0)	2 (个50)	3 ((CL)	4 (↓	/100)	5 (↓200)		6 (4	300)	Instream Cover (%	6):	30	Overhead Cover (%): 10
Channel Width (m)	4.1		5.8	2	1.3	13	3.0	16.8			-	Dom. Instream Co	over:	WD	Dom. Overhead C	over: C
Wetted Width (m)	2.7		3.7	3	3.7	7	.1	5.6			-	Subdom. Instream	n Cover:	G	Subdom. Overhea	d Cover: S
Depth at LDB + 25% (m)	0.4		0.3	C).9	0	1.9	0.2			-	Maximum Depth	(m)	1.2	Dom. Aquatic Veg	. Туре: -
Depth at LDB + 50% (m)	0.3		0.6	C).9	1	2	0.4			-					
Depth at LDB + 75% (m)	0.3		0.6	C).5	0	1.8	0.4			-					
Max.BankfullDepth (m)	1.3		1.0	1	2	0.	.90	0.72			-					
Gradient (%)	1		1		1		1	1			-	Wate	r Quality D	ata	Channel	Characteristics
Dominant Habitat Unit	DD		FL	1	FL	F	FL	DD		v	VL	Time of Day (HH:	MM):	10:55	5 Pattern:	IR
Stream Bed												Water Temperatu	ıre (°C):	4.5	Islands:	0
Organics	50		20	4	40	3	30	60		1	00	Dissolved Oxygen	(mg/L):	10.49	Bars:	Ν
Fines	Fines 50 80 Small Gravel 0 0 Large Gravel 0 0							30			0	Sp. Conductivity (μs/cm):	339	Coupling:	PC
뮕 넔 Small Gravel	Small Gravel 0 0 Large Gravel 0 0 Cobble 0 0							0			0	pH:		7.50	Confinemer	nt: OC
Large Gravel	Small Gravel00Large Gravel00Cobble00							0			0	Turbidity (NTU):		Lightly Tu	urbid Flow Stage:	Flood
Copple	0		0		0		0	0			0					
Boulder	0		0		0		0	0			0					
Bedrock	0		0		0		0	0			0	Fish Habitat Asses	ssment Rat	tings		
Embeddedness	Ν		Ν		N	I	N	Ν			N		Forage	e Fish	Coarse Fish	Sport Fish
Bank Measurements	Left Ri	ght	Left Righ	t Left	Right	Left	Right	Left	Right	Left	Right	Spawning:	Mode	erate	None-Poor	None-Poor
Bank Height (m)	0.9 1	0	1.0 0.6	0.2	0.2	0.3	0.3	0.4	0.3	-	-	Overwintering:	Poor-Mo	oderate	Poor-Moderate	Poor-Moderate
Bank Slope (°)	90 6	50	50 50	90	60	30	30	80	50	-	-	Rearing:	Goo	od	Good	Moderate
Bank Stability	US L	JS	MS MS	S	S	S	S	MS	MS	-	-	Passage:	Moderat	e-Good	Moderate-Good	Moderate-Good
Dom. Bank Material	F	F	F F	F	F	0	F	0	F	-	-					
Subdom. Bank Material	0 (0	0 0	0	0	F	0	F	BL	-	-					
Dom. Riparian Veg.	G (G	G G	G	G	G	G	С	М	G	G					
Subdom. Riparian Veg.	S S	S	G D	G	G	М	С	G	G	G	G					
								Fish S	ampli	ng Da	ita					
									Efi	sh Ca	tch	Trap Catch	Efish (CPUE	Trap CPUE	Rel. Abundance
Method		E	ffort			Spec	cies			(n)		(n)	(#fish/	/100s)	(#fish/hr)	(% of total)
No Electrofishing		-	(s)		BROC)K STI	CKLEB.	ACK		-		13	-		0.18	2.5%
Minnow Trap (MT)		72.	0 (hr)		Р	EARL	DACE			-		20	-		0.28	3.9%
Electrofishe	er Setting	zs				-				-		1	-		0.01	0.2%
Volts Freq. (Hz) Duty		FIN	ESCA	LE DAC	ĴE		-		477	-		6.63	93.3%			
	-		-													
								Gene	ral Co	mmer	nts					
						C 1	1 400						·			<u> </u>

Grasses in stream, slight undercutting and exposed roots on left bank 100 m upstream. Logjams upstream and downstream of crossing. Occasional vegetation bars. Crossing was cleared for winter road, abundant grasses instream. Old beaver dam 300m downstream prior to wetland area. Could not measure some aspects due to flooding. The one fish not identified in the table is tentatively as Northern redbelly dace.

								Ma	cker	nzie	Val	ley H	lighv	vay					
	᠋᠇᠇	то		те	СЦ			Sit	e 81	2.7	Unn	ame	d Wa	tercourse					
			A		СП			UT	M Loca	ation:	10W 4	434329	71153	37		Survey Date	: 10/1/202	1; 16:17	
)							Leg	gal Loca	ation:			-			Zone	:		
								c	rew In	itials:	TM &	MAN		l	Restricted Ac	tivity Period	:	-	
			Phy	ysical	Chann	iel Tra	nsect [Data							Habitat	Inventory / F	Reach Data	1	
Transect # (Locat	tion)	1(↑	`100)	2 (1	↑50)	3 (CL)	4 (√	/100)	5 (↓2	200)	6 (↓3	00)	Instream Cover	(%):	30 Over	head Cove	r (%):	70
Channel Width (r	n)		-	1	3	1.	37	1.	.18	1	6	1	8	Dom. Instream	Cover:	Co Dom	. Overhead	d Cover:	М
Wetted Width (n	า)		-	0	.76	1.	12	0.	.75	0.	75		1	Subdom. Instrea	am Cover:	UCB Subd	lom. Overł	ead Cover	: S
Depth at LDB + 2	5% (m)		-	0	.13	0.	18	0.	.38	0.	13	0.	.09	Maximum Dept	h (m)	0.6 Dom	. Aquatic V	eg. Type:	-
Depth at LDB + 5	0% (m)		-	0	.21	0.	14	0.	.51	0.	17	0.	.09						
Depth at LDB + 7	5% (m)		-	0	.25	0.	11	0.	.57	0.	19	0.	.09						
Max.BankfullDep	oth (m)		-	0	.55	0	.7	0.	.95	0.	75	0.	.56						
Gradient (%)			1		1		1		1		2		3	Wat	er Quality Da	ita	Chanr	nel Charact	eristics
Dominant Habita	it Unit	F	R2	F	3	I	=L	I	FL	F	R2	F	RF	Time of Day (HH	I:MM):	16:17	Pattern:		IR
Stream Bed														Water Tempera	ture (°C):	0.1	Islands:		Ν
Organics		5	50		0		0		0	Dissolved Oxyge	en (mg/L):	12.53	Bars:		Ν				
Fines			0	2	20	5	50	3	30	1	LO	2	20	Sp. Conductivity	/ (μs/cm):	435	Coupling	:	DC
ੀ ਸ਼ੂ ¹ Small Gra	ivel		0	Ę	50		0	4	10	З	30	3	30	pH:		7.74	Confinen	nent:	FC
ts E Large Gra	ivel		0		0		0		0	1	LO	4	40	Turbidity (NTU)	:	CLEAR	Flow Stag	ge:	Low
T Copple			0		0		0	1	LO	5	50	1	10						
8 Boulder			0		0		0		0		0		0						
Bedrock			0		0		0	2	20		0		0						
Embeddedness		I	N	I	M	I	N		L	I	N		L		Fish Hab	itat Assessm	ent Rating	s	
Bank Measurem	ents	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	Coarse	Fish	Sport Fish	1
Bank Height (m)		-	-	0.3	0.3	0.5	0.6	0.5	0.4	0.6	0.6	0.43	0.52	Spawning:	Good	Poor	r	Poor	
Bank Slope ([°])		-	-	90	70	80	80	80	80	70	75	50	45	Overwintering:	None-F	Poor N	lone-Poor	Non	e-Poor
Bank Stability		-	-	S	S	S	S	MS	MS	MS	MS	S	S	Rearing:	Goo	d	Good	Мо	derate
Dom. Bank Mate	rial	0	0	SG	SG	0	0	F	F	SG	SG	F	F	Passage:	Moderate	e-Good N	Noderate	Мо	derate
Subdom. Bank M	laterial	F	F	0	0	F	F	0	0	F	F	0	0						
Dom. Riparian V	eg.	D	D	D	D	S	S	D	D	D	D	D	D						
Subdom. Riparia	n Veg.	S	S	S	S	D	D	S	S	S	S	S	S						
										Fis	h Sam	pling D	ata						
											E	fish Ca	tch	Trap Catch	Efish C	PUE T	rap CPUE	Rel. Al	oundance
Meth	od			Effor	t		S	pecie	s			(n)		(n)	(#fish/1	L00s)	(#fish/hr)	(% c	of total)
Backpack Electro	fisher (E	B)	26	53	(s)		NO FIS	н сағ	PTURED)		-		-	-		-		-
No Trapping				-	(hr)							-		-	-		-		
Ele	ctrofishe	er Sett	tings									-		-	-		-		
Volts Freq. (Ha	z) Dut	y Cycle	e (%)	Dist	t. (m)							-		-	-		-		
225 30		12		1	50							-		-	-		-		
										Ge	neral (Comme	ents						

This channel had excellent spawning potential, and consisted of good fish habitat. There is a small change in grade near 300 m downstream but this would not affect fish passage. There is woody debris throughout and some minor logjam which may creat partial barriers to fish passage. There is trace undercut banks upstream, and channel becomes poorly defined with low water depths at 100 m upstream. There were several beaver dams at this site. One at the crossing on the downstream side of centerline, one at a tributary to the channel approximately 50 m upstream, and one further upstream the tributary watercourse (however, this channel was dry). The second channel goes runs parallel to the winter road and goes subsurface near an abandoned and dry beaver dam.

							Mack	kenzi	e Va	alley	y Hi	ghw	ay				
TE TE	TR	Α 1	ГЕ	СН			Sit	e 81	Þ	Unr	namo	ed W	atercourse				
			-				U.	TM Loc	ation:	10W	43272	21E 71:	17031N	S	urvey Da	te: 10/2/2021;	13:05
							Le	gal Loc	ation:			-			Zor	ne:	
								Crew In	itials:	TM &	MAN		Res	tricted Acti	vity Perio	od:	-
		Ph	ysical	Chann	el Tra	nsect [Data							Habitat I	nventory	/ Reach Data	
Transect # (Location)	1(↑	100)	2 (*	个50)	3 (CL)	4(↓:	100)	5 (↓2	00)	6(↓	300)	Instream Cover	(%):	30 Ov	erhead Cover (۶	%): 80
Channel Width (m)	1	.8	2	2.4	1	.9	1.8	8	2.	.5		-	Dom. Instream	Cover:	WD Do	om. Overhead Co	over: S
Wetted Width (m)	1	.3	1	L.O	1	.4	1.0	D	0.	.6		-	Subdom. Instrea	am Cover:	- Su	bdom. Overhea	d Cover: G
Depth at LDB + 25% (m)	0	.1	().1	0	.1	0.0	C	0.	.0		-	Maximum Dept	h (m)	- Do	om. Aquatic Veg	. Туре: -
Depth at LDB + 50% (m)	0	.1	(0.1	0	.1	0.0	0	0.	.1		-					
Depth at LDB + 75% (m)	0	.1	(0.0	0	.1	0.0	0	0.	.0		-					
Max.BankfullDepth (m)	0	.5	(0.6	0	.4	0.4	4	0.	.1		-					
Gradient (%)		-		-		-	-		-			-					
Dominant Habitat Unit	R	2	[DD	F	2	IP	1	W	/L		-					
Stream Bed																	
Organics	(0		0	1	.0	10)	9	0		-					
Fines	3	0		0	e	0	10)	1	0		-					
ਦੂ 🖞 Small Gravel	3	0	:	20	2	20	40)	C)		-					
Large Gravel	2	20		40		D	20)	C)		-	Water	r Quality Da	ita	Channel C	haracteristics
Copple	2	20		40	1	.0	20)	C)		-	Time of Day (HH	H:MM):	13:05	5 Pattern:	ME
Boulder	(0		0		0	0		C)		-	Water Tempera	iture (°C):	2.3	Islands:	Ν
Bedrock	(0		0		0	0		C)		-	Dissolved Oxyge	en (mg/L):	12.13	Bars:	Ν
Embeddedness		L		N		L	M	I	F	ł		-	Sp. Conductivity	γ (μs/cm):	760	Coupling:	PC
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:		8.37	Confinemen	t: FC
Bank Height (m)	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.3	-	-	-	-	Turbidity (NTU)	:	Clear	r Flow Stage:	Moderate
Bank Slope (°)	70	60	30	80	50	30	90	90	-	-	-	-		Fish Habit	at Asses	sment Ratings	
Bank Stability	MS	MS	MS	MS	MS	MS	MS	MS	-	-	-	-		Forage I	Fish	Coarse Fish	Sport Fish
Dom. Bank Material	0	0	F	F	0	F	SG	F	SG	F	-	-	Spawning:	Poor-Mod	erate	Poor	None-Poor
Subdom. Bank Material	F	F	0	0	SG	SG	0	0	0	0	-	-	Overwintering:	Poor		Poor	Poor
Dom. Riparian Veg.	S	S	S	S	S	S	D	D	D	D	-	-	Rearing:	Poor-Mod	erate Po	oor-Moderate	None-Poor
Subdom. Riparian Veg.	С	D	G	G	G	G	S	S	S	S	-	-	Passage:	Poor-Mod	erate	Poor	Poor
								Fisl	h Samp	oling I	Data						
										Ef	ish Ca	tch	Trap Catch	Efish CP	UE	Trap CPUE	Rel. Abundance
Method			Effor	t			Species				(n)		(n)	(#fish/1	00s)	(#fish/hr)	(% of total)
No Electrofishing			-	(s)													
No Trapping			-	(hr)													
Electrofish	er Setti	ings															
Volts Freq. (Hz) Dut	y Cycle	(%)	Dis	t. (m)													
	-			-													

Fish habitat is poor, unlikely to hold fish due to lack of outlet downstream (converts to wetland) and logjams upstream. Crossing is eroded with two culverts that are not in line with watercourse. Not deep enough for minnow traps and too much woody debris/ too narrow for electrofishing. Not suitable for fish due to woody debris barriers throughout crossing section and poor connectivity. Minor undercutting of banks upstream.

								Ma	cke	nzie	Val	ley	High	way					
			• -		~			Sit	e 82	0.7	Unr	name	ed Wa	, atercourse	9				
		IEIR	A	E	СН			UT	M Loca	ation:	10W -	433131	1 71217	00	9	Survey Date:	10/6/2021;	14:00	
	\square							Leg	al Loca	ation:			-			Zone:			
								c	rew In	itials:	TM &	MAN			Restricted Act	ivity Period:		-	
			Phys	sical C	hanne	l Tran	sect D	ata											
Trans	ect # (Location)	1(1	`100)	2 (*	个50)	3 (CL)	4 (J	/100)	5 (↓	200)	6 (↓3	00)	Instream Cov	ver (%):	10 Over	head Cover	(%):	5
Chann	el Width (m)	3	.4	1	3.5	15	5.5	9	5.0	7	.1	3	3.2	Dom. Instrea	am Cover:	G Dom	. Overhead (Cover:	С
Wette	d Width (m)	3	.4	4	1.9	11	.6	2	5.0	4	.9	1	1.2	Subdom. Ins	tream Cover:	EV Subd	om. Overhea	ad Cover:	-
Depth	at LDB + 25% (m	n) 0	.1	C	0.1	0	.2	C).2	0	.4	(0.1	Maximum D	epth (m)	0.6 Dom	Aquatic Ve	g. Type:	-
Depth	at LDB + 50% (m	n) 0	.2	C	0.1	0	.2	C	.2	0	.5	(0.1						
Depth	at LDB + 75% (m	n) 0	.1	C).1	0	.3	C	.3	0	.4	(0.1						
Max.B	ankfullDepth (m	n) O	.0	1	L.3	0	.7	2	.0	1	.0	().5						
Gradie	ent (%)		2		2	:	1		1		1		2	Quality Data		Channel	Characteris	tics	
Domir	nant Habitat Unit	t f	٦L	I	FL	IF	P1	I	P1	П	P1	E	3D	Time of Day	(HH:MM):	14:01	Pattern:	M	E
Stream	n Bed													Water Temp	erature (°C):	2.3	Islands:	0	,
(F	Organics	1	00	3	30	10	00	(50	1	00		0	Dissolved Ox	ygen (mg/L):	10.47	Bars:	N	i
Area	Fines		0		0	(D	4	10		0	2	25	Sp. Conducti	vity (µs/cm):	731	Coupling:	DC	2
ate ect /	Small Gravel		0	3	30	(C		0		0	:	20	pH:		7.72	Confineme	nt: OC	С
ostr anse	Large Gravel		0	1	20	(C		0		0	:	25	Turbidity (N1	TU):	Clear	Flow Stage	: Pool	led
Sul f Tra	Cobble		0	:	10	(C		0		0	:	10						
io %	Boulder		0	:	10	(D		0		0	:	20						
	Bedrock		0		0	(C		0		0		0						
Embeo	ddedness	l	N		н	1	N		N		N		Н	Assessment F	Ratings				
Bank I	Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	Coarse I	ish S	port Fish	
Bank H	Height (m)	0.0	0.2	0.4	1.3	0.2	0.4	0.3	0.3	0.2	0.5	0.20	0.20	Spawning:	Poor-Moderate	None	2	None	
Bank S	Slope (°)	10	10	15	3	10	40	10	30	30	40	30	70	Overwinterin	ng: Poor		Poor	None-Poo	or
Bank S	Stability	US	US	MS	US	MS	S	MS	MS	MS	MS	US	US	Rearing:	Moder	ate	Poor	None-Poo	or
Dom.	Bank Material	0	0	0	0	0	0	0	0	F	F	F	SG	Passage:	Moder	ate Poo	r-Moderate	Poor-Mode	rate
Subdo	m. Bank Materia	al F	F	F	F	F	F	F	F	0	0	0	LG						
Dom.	Riparian Veg.	S	S	G	G	G	G	G	G	G	G	G	G						
Subdo	m. Riparian Veg.	. G	G	S	S	S	С	М	Μ	D	G	G	G						
										Fish	Samp	ling Da	ata						
											E	fish Ca	itch	Trap Cate	ch Efish CF	UE T	rap CPUE	Rel. Abunda	ance
	Method			Effor	t		:	Specie	s			(n)		(n)	(#fish/1	00s) (#fish/hr)	(% of tota	al)
No Ele	ectrofishing			-	(s)		NO FIS	H CAP	PTURED)									
Minno	ow Trap (MT)		50	0.0	(hr)														
	Electro	fisher Setti	ngs																
Volts	Freq. (Hz)	Dist	t. (m)																
-	-	-			-								_				_		
											eral C	omme	nts			1			
Poorly	defined channe	ei witnin flo	odplai	n with	1 DOCKE	ts of g	rasse	s thro	ugnout	. Upst	ream	OUE TO	m dowi	ristream is a b	eaver dam. Ther	e was limited	a crown cove	er que to flooc	Jed

region, which likely fills during freshet. Aquatic vegetation growing throughout. Exposed culvert along winter road.

		• -					Ma Si	<mark>ckenz</mark> te 821	ie Va 9	alley Unr	y Hig name	ghw ed W	/ay /atercourse	_		_	_		
	: I K	A	IEC	ЪН				UTM Loc	ation:	10W -	43258	0 7123	3103		Surv	vey Date:	10/9/2022	L; 11:13	
							1	Legal Loc	ation:				-			Zone:			
								Crew I	nitials:	TM &	MAN			Restricted	Activit	y Period:		-	
		Ph	ysical	Chan	nel Tra	insect	Data							Habitat	Invent	ory / Read	ch Data		
Transect # (Location)	1(↑	100)	2 (1	⊳50)	3 (CL)	4 (、	↓100)	5 (↓2	200)	6(43	:00)	Instream Cover (%):	-	Overhead	Cover (%)	:	30
Channel Width (m)	1.	2	1	.5	1	.3		1.4	1	.2	2	1	Dom. Instream C	over:	-	Dom. Ove	rhead Cov	er:	WD
Wetted Width (m)	1.	3	1	.3	0	.9		1.0	0.	.2	0	.9	Subdom. Instream	m Cover:	-	Subdom.	Overhead	Cover:	S
Depth at LDB + 25% (m)	0.	1	0	.2	0	.4		0.0	0	.0	0	1	Maximum Depth	(m)	0.4	Dom. Aqu	atic Veg. T	ype:	-
Depth at LDB + 50% (m)	0.	3	0	.3	0	.4		0.2	0.	.0	0	.1							
Depth at LDB + 75% (m)	0.	3	0	.2	0	.4		0.1	0.	.0	0	1							
Max.BankfullDepth (m)	0.5	57	0.	49	0.	71	C).70	0.3	23	0.	68							
Gradient (%)	2	2	1	2	:	1		2	7	2	:	L	Wat	er Quality I	Data		Channel	Charac	teristics
Dominant Habitat Unit	P	3	IF	23	R	2		R2	D	R	F	L	Time of Day (HH:	:MM):	1	1:13	Pattern:		ST
Stream Bed													Water Temperat	ure (°C):		1.4	Islands:		Ν
 Organics 	2	0	4	0	(С		0	4	0	3	0	Dissolved Oxyger	n (mg/L):	7	7.52	Bars:		N
Fines	3	0	(0	5	0		0	3	0	4	0	Sp. Conductivity	(µs/cm):	1,	,097	Coupling:		PC
월 문 Small Gravel	5	0	6	0	3	0	:	100	3	0	3	0	pH:		7	7.78	Confinem	ent:	OC
to B Large Gravel	C)	(0	2	0		0	(C	()	Turbidity (NTU):		Lightl	y Turbid	Flow Stag	e: N	1oderate
Sub Copple	C)	(0	(С		0	(C	()			-				
Boulder	C)	(C	1	Э		0	(D	()							
Bedrock	C)	(C	1	Э		0	(C	()							
Embeddedness	N	1	1	N	1	N		Ν	1	N	1	J		Fish Hat	oitat As	sessment	Ratings		
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage	Fish	Coars	e Fish	Spo	rt Fish
Bank Height (m)	0.3	0.2	0.2	0.2	0.3	0.3	0.5	0.5	0.1	0.2	0.6	0.6	Spawning:	Moder	ate	Mode	erate	Mod	derate
Bank Slope (°)	40	60	90	90	30	20	90	100	45	45	30	30	Overwintering:	Роо	r	Po	or	Р	oor
Bank Stability	US	US	US	US	MS	MS	US	US	MS	MS	MS	MS	Rearing:	Goo	d	Go	od	Мо	derate
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Moderate	-Good	Moderat	te-Good	Moder	ate-Good
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F							
Dom. Riparian Veg.	S	S	S	М	S	S	D	D	S	S	С	S							
Subdom. Riparian Veg.	D	D	М	S	G	G	D	D	D	D	S	С							
									Fish S	ampliı	ng Dat	а							
										Efi	ish Cat	ch	Trap Catch	Efish C	PUE	Trap	CPUE	Rel. Ab	undance
Method			Effort	:			Speci	es			(n)		(n)	(#fish/1	L00s)	(#fisl	h/hr)	(% o	f total)
No Electrofishing		-		(s)															
No Trapping		-		(hr)															
Electrofish	er Setti	ings		. ,															
Volts Freg. (Hz) Dut	v Cycle	(%)	Dist	. (m)															
		- '																	
									Gener	al Cor	nment	s							
Some sign of grasses und	er sno	w as w	/ell. U	ndercı	ut on l	eft ban	k occa	sionally	in upsti	ream r	each.	Abun	dant woody debris	s and leaves	s resting	g on top o	f sediment	t throug	hout, Dry
channel between 100 m a	and 20	0 m do	ownsti	ream,	frozer	i to bec	d and r	not enou	gh flow	. Debi	ris buil	dup o	ccasionally though	hout,the wa	atercou	rse creati	ng potenti	al barrie	ers to

fish. Woody debris overhanging throughout. No fishing conducted due to freezing conditions..

							Ma	ckenz	ie V	allev	/ His	hw	av				
				~			S	Site 82	3	Unn	ame	ed W	atercourse				
	- 1 6	A	IE	СН				UTM Loo	ation:	10W 4	43197	9 7123	3968	Survey D	Date: 10/6/20	21: 16:	00
								Legal Loo	ation:				-	Z	one:	, -	
	Km	823						Crew li	nitials:	TM &	MAN		Restricted	Activity Pe	riod:	-	
		Ph	ysical	Chan	nel Tra	ansect	Data						Habitat I	nventory /	Reach Data		
Transect # (Location)	1(↑	·100)	2 (1	<u>^50)</u>	3 ((CL)	4 (↓100)	5 (↓	200)	6(43	300)	Instream Cover (%):	40 C	Overhead Cov	er (%):	60
Channel Width (m)	1	.9	1	.3	C	.2		0.2	C).1	0	.0	Dom. Instream Cover:	Co E	Dom. Overhea	d Cove	r: S
Wetted Width (m)	2	.5	1	.0	C).1		0.0	C).1	0	.0	Subdom. Instream Cover	UCB S	Subdom. Over	head Co	ove C
Depth at LDB + 25% (m)	2	.2	1	.7	C	.2		0.2	C).3	0	.0	Maximum Depth (m)	3.0 E	Dom. Aquatic	Veg. Ty	ре: -
Depth at LDB + 50% (m)	3	.0	1	.0	C).1		0.2	C).1	0	.0					
Depth at LDB + 75% (m)	1	.7	1	.4	C	.4		0.4	C).3	0	.0					
Max.BankfullDepth (m)	4	.1	2	.3	0.	.97	(0.84	0.	.77	0.	43					
Gradient (%)		3		2		2		2		1		1	Water Quality	Data	Channel	Charac	teristics
Dominant Habitat Unit	F	81	F	RF	F	R1		R1	F	R1	F	1	Time of Day (HH:MM):	16:0	00 Pattern:		ST
Stream Bed													Water Temperature (°C):	0.3	B Islands:		I
Organics		0		0		0		0		0		0	Dissolved Oxygen (mg/L)	: 11.6	50 Bars:		Ν
Fines		0		0		0		10	4	40		0	Sp. Conductivity (µs/cm):	1,12	3 Couplin	g:	CO
我 Small Gravel		0		0		0		30	2	20	1	.0	pH:	8.1	4 Confine	ment:	OC
Large Gravel	2	20	3	30	3	30		40	3	30	2	20	Turbidity (NTU):	Clea	ar Flow Sta	age:	Low
L Copple	3	80	3	30	3	30		20		0	e	60					
🔗 Boulder	4	15	3	89	3	30		0	1	10	1	.0					
Bedrock		5		1	2	20		0		0		0					
Embeddedness		L		L		N		L		L		L	Fish Habi	tat Assessn	nent Ratings		
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Fora	ge Fish	Coarse Fish	Spo	rt Fish
Bank Height (m)	0.8	1.1	0.6	0.4	0.6	0.4	0.4	0.4	0.5	0.4	0.4	0.4	Spawning: Moder	ate-Good P	oor-Moderat	e P	oor
Bank Slope (°)	90.0	80.0	65.0	40.0	80.0	80.0	30.0	60.0	80.0	60.0	30.0	70.0	Overwintering: Non	e-Poor	None-Poor	Non	e-Poor
Bank Stability	MS	MS	MS	MS	MS	MS	MS	MS	US	US	MS	MS	Rearing: G	iood	Good	Mod	derate
Dom. Bank Material	F	F	0	0	F	F	F	F	0	0	0	0	Passage: Moder	ate-Good N	/loderate-Goo	d/loder	ate-Goo
Subdom. Bank Material	0	0	F	F	0	0	0	0	F	F	F	F					
Dom. Riparian Veg.	D	С	S	S	S	S	S	S	S	S	S	S					
Subdom. Riparian Veg.	S	S	С	С	С	С	М	М	С	С	С	С					
								Fish	n Samp	oling D	ata						
										Efi	sh Ca	tch	Trap Catch Efis	h CPUE	Trap CPUE	≀el. Ab	undanc
Method			Effort	:			Spec	ies			(n)		(n) (#fis	h/100s)	(#fish/hr)	(% o	f total)
No Electrofishing			-	(s)													
No Trapping			-	(hr)													
Electrofish	er Sett	tings															
Volts Freq. (Hz) Dut	y Cycle	e (%)	Dist	. (m)													
	-			-													
					Ger	neral C	comme	nts									
I ow water levels at time	of asse	ssmer	nt and	was m	nostiv	trozen	Ahun	dant wor	ndv de	hris an	d logia	ams th	roughout reach, some hai	nk erosion a	and some lind	Iercut h	anks

Low water levels at time of assessment and was mostly frozen. Abundant woody debris and logjams throughout reach, some bank erosion and some undercut banks. No fishing was conducted due to freezing and frozen conditions.

							Mad	c <mark>kenz</mark> ite 82	ie Va 6	alley Unn	/ Hig	ghw ad W	ay latercourse			
	TR	RA T	ΤE	СН						1014	124.00			6	Data: 10/0/20	24.42.27
									cation:	10W 4	13100	//120	5445	Survey	Date: 10/8/20	21; 13:37
								Legal Loo	cation:				-		Zone:	
	_	~ 1			1			Crew I	nitials:	IM &	MAN	_	Rest	ricted Activity Pe	eriod:	-
-		Ph	ysical	Chanr	iel Tra	nsect I	Data	1 4 9 9 1	= (] ,		c () c	100)	Ha	abitat Inventory	/ Reach Data	(6()
Transect # (Location)	1(↑	·100)	2 (*	r50)	3 (0	CL)	4 (\	(100)	5 (1)	200)	6(1)3	300)	Instream Cover (%)): 80	Overhead Cov	er (%): 80
Channel Width (m)	3	.0	0	.8	1.	8		1.3	1	0	1	.0	Dom. Instream Cov	ver: WD	Dom. Overnea	id Cover: WD
Wetted Width (m)	2	.1	0	.6	1.	1		0.6	0).8	0	.6	Subdom. Instream	Cover: DP	Subdom. Over	head Cove -
Depth at LDB + 25% (m)	0	.2	0	.3	0.	3	0	0.0	C).2	0	.1	Maximum Depth (I	m) 0.3	Dom. Aquatic	Veg. Type: -
Depth at LDB + 50% (m)	0	.2	0	.3	0.	3	(0.1	C).2	0	.1				
Depth at LDB + 75% (m)	0	.2	0	.2	0.	2		0.2	C).2	0	.1				
Max.BankfullDepth (m)	0.	54	0.	51	0.6	59	C	.34	0.	.46	0.	48				
Gradient (%)	:	2		2	2			3		4		4	Water C	Quality Data	Channel	Characteristics
Dominant Habitat Unit	F	÷L	F	₹3	R	3		DD	0	DD	D	D	Time of Day (HH:N	1M): 13:	40 Pattern	ME
Stream Bed													Water Temperatur	re (°C): 2.	0 Islands:	N
Organics	(0		0	6	C	1	L00	1	00	1	00	Dissolved Oxygen	(mg/L): 11.	.82 Bars:	N
Fines	1	00	1	00	40	D		0		0		0	Sp. Conductivity (µ	ıs/cm): 43	9 Couplin	g: PC
믩 攴 Small Gravel	(0		0	C	1		0		0		0	pH:	7.8	82 Confine	ment: OC
Large Gravel	(0		0	0			0		0		0	Turbidity (NTU):	_ightly	Turbic Flow Sta	age: Pooled
Trans in Cobble	(0		0	0			0		0		0				
Boulder	(0		0	C	1		0		0		0				
Bedrock	(0		0	0	1		0		0		0				
Embeddedness	I	N	I	N	Ν	l		N		N	I	N	Fis	h Habitat Assess	ment Ratings	
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	:	Forage Fish	Coarse Fish	Sport Fish
Bank Height (m)	0.3	0.4	0.2	0.2	0.4	0.4	0.2	0.2	0.2	0.2	0.2	0.4	Spawning:	Moderate-Good	None	None
Bank Slope (°)	45	60	45	45	80	90	10	10	80	50	50	50	Overwintering:	Moderate-Good	Moderate	Poor-Moderate
Bank Stability	MS	US	MS	MS	MS	MS	US	US	US	US	US	US	Rearing:	Moderate-GoodI	Moderate-Goo	d/oderate-Goo
, Dom. Bank Material	0	0	0	0	F	F	0	ο	0	0	F	0	Passage:	Moderate	Moderate	Moderate
Subdom, Bank Material	F	F	F	F	0	0	F	F	F	F	0	F				
Dom. Riparian Veg.	G	G	G	G	G	G	s	s	S	S	S	S				
Subdom, Riparian Veg.	S	S	S	S	S	S	G	G	G	G	G	G				
	-	-	-	-	-	-	-	Fis	h Samı	oling D	ata	-	1			
										Efi	sh Ca	tch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundanc
Method			Effort				Speci	es			(n)		(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing		-		(s)		NO FI	ISH CA	PTURFD			()		()	(((***********
Minnow Trap (MT)		44	.7	(br)												
Flectrofish	er Sett	ings	.,	(,												
Volts Free (Hz) Dut		- (%)	Dic+	(m)												
	, cycle	- (/0)	Dist	- (11)												
- -	-							Ger	noral C	ommo	nts -					
Upstream has a ponded a	ide gor	od ove	winte	ring ha	abitat. Th	ne char	nnel is i	irregu	lar wit	h poor connectivity	upstream of cer	terline with lin	nited			
Method Method No Electrofishing Minnow Trap (MT) Electrofish Volts Freq. (Hz) Dut	S er Sett y Cycle - area th	5 44 tings e (%) at may	S Effort J.7 Dist	5 (s) (hr) - ide goo	S od ove	S NO FI	G Speci ISH CA	G Fisl es PTURED Ger abitat. Th	G h Samp neral C ne char	G Ding D Efi Comme	G ata sh Cat (n) nts irregu	G tch	Trap Catch (n) :h poor connectivity	Efish CPUE (#fish/100s) y upstream of cer	Trap CPUE (#fish/hr) iterline with lin	≀el. Abundanc (% of total) nited

Upstream has a ponded area that may provide good overwintering habitat. The channel is irregular with poor connectivity upstream of centerline with overhanging vegetation and subsurface flow around historic beaver dam.

Downstream has abundant woody debris over channel and good cover from shrubs. There is evidence that there was a fire previously here. Approximately 200 m downstream, banks are unstable with occasional erosion throughout stretch. Most of the overhanging vegetation is shrubs.

							Mae	ckenz	ie V	alley	y Hi	ghw	/ay						
	TR	лт	CEC	ън			Si	te 826	.3	Unn	iame	ed W	/atercourse						
							ľ	UTM Loc	cation:	10W 4	13094	7 7126	6834		Survey	/ Date: 1	10/8/2021	l; 15:17	
							I	Legal Loc	cation:				-			Zone:			
								Crew I	nitials:	TM &	MAN		F	Restricted A	Activity P	Period:		-	
		Phy	sical C	hanne	l Trans	ect D	ata							Habitat I	nventor	y / Reac	h Data		
Transect # (Location)	1(↑	·100)	2 (1	↑50)	3 (C	:L)	4 (、	↓ 100)	5(√2	200)	6(↓3	:00)	Instream Cover (%	5):	40	Overhe	ead Cover	(%):	50
Channel Width (m)	4	.0	2	.7	1.1	1	:	1.6	2	.9	1	.1	Dom. Instream Co	ver:	WD	Dom. (Overhead	Cover:	S
Wetted Width (m)	4	.0	2	.3	0.9	9	:	1.1	1	.8	0	.8	Subdom. Instream	n Cover:	-	Subdo	m. Overhe	ead Cover:	Μ
Depth at LDB + 25% (m)	0	.1	0	.2	0.3	1	(0.1	0	.1	0	.1	Maximum Depth (m)	0.3	Dom. A	Aquatic Ve	eg. Type:	-
Depth at LDB + 50% (m)	0	.2	0	.3	0.3	1	(0.2	0	.2	0	.2							
Depth at LDB + 75% (m)	0	.1	0	.3	0.3	1	(0.1	0	.2	0	.2							
Max.BankfullDepth (m)	1.	.6	0.	52	0.3	4	C).41	0.	70	0.	40							
Gradient (%)	7	2	:	2	2			2	:	2	2	2	Water	r Quality Da	ata		Channe	l Character	ristics
Dominant Habitat Unit	D	D	F	₹3	RB	3		R3	R	(3	R	.3	Time of Day (HH:N	ИМ):	15:17	F	Pattern:	ME	
Stream Bed													Water Temperatu	re (°C):	1.2	1	slands:	0	
Organics	10	00	9	90	10	0	1	100	7	0	10	00	Dissolved Oxygen	(mg/L):	10.08	E	Bars:	BR	
Fines	(0	1	0	0			0	3	0	()	Sp. Conductivity (µ	us/cm):	663	c	Coupling:	CO	
ਸ਼ੂ ਦੂ Small Gravel	Small Gravel 0 0								(D	()	pH:		7.81	c	Confinem	ent: FC	
Large Gravel	(0	(0	0			0	(D	()	Turbidity (NTU):		Clear	F	Flow Stage	e: Low	
Sut Copple	(0	(0	0			0	(D	()							
Boulder	(0	ſ	0	0			0	(0	(J							
Bedrock	(0	ſ	0	0			0	(0	(J							
Embeddedness	1	N	1	N	N			N	1	N	1	N		Fish Habi	tat Asses	ssment	Ratings		
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage	Fish	Coai	rse Fish	Sport	Fish
Bank Height (m)	1.4	0.3	0.2	0.2	0.2	0.1	0.3	0.1	0.5	0.4	0.2	0.2	Spawning:	Poor-Mo	derate	N	lone	Non	ne
Bank Slope (°)	85.0	20.0	30.0	30.0	70.0	40.0	50.0	50.0	60.0	60.0	40.0	20.0	Overwintering:	Poo	or	N	lone	Non	ne
Bank Stability	US	MS	MS	MS	US	US	US	MS	US	US	MS	MS	Rearing:	Mode	rate	Mo	derate	Poor-Mo	derate
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Mode	rate	P	Poor	Poc	or
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F	_						
Dom. Riparian Veg.	S	S	G	G	S	S	S	S	S	S	S	S							
Subdom. Riparian Veg.	С	С	S	S	С	С	С	С	D	D	D	D							
								F	Fish Sau	mpling	Data								
										Efi	sh Cat	ch:	Trap Catch	Efish C	PUE	Tra	p CPUE	Rel. Abur	ndance
Method			Effort	:	1		Speci	es			(n)		(n)	(#fish/	100s)	(#f	ish/hr)	(% of t	otal)
Backpack Electrofisher (EB))	16	54	(s)	1	NO F	ISH CA	PTURED										-	
No Trapping			-	(hr)															
Electrofishe	er Settir	ngs			1														
Volts Freq. (Hz) Duty	/ Cycle ((%)	Dist	. (m)	1														
225 30	12		2	80															
								Q	Genera	l Comr	ments								
Braided with debris jams th	ent we	etted w	idth c	lue to (channel	interru	pted b	y shru	b islar	nds. Poor connectiv	vity despite	defined	channel	s. Natural	debris jan	۱			

Braided with debris jams throughout. Inconsistent wetted width due to channel interrupted by shrub islands. Poor connectivity despite defined channels. Natural debris jam throughout. Signs of historic fire in upland area. Some erosion on left bank 100 m downtream that could couple the channel. The crossing has coupling potential as well. Upstream pond may provide limited overwintering potential for forage fish but shallow water depth and organic substrate would make it unlikely coarse or sportfish could overwinter..

							Mad	kenzi	ie Va	alles	/ Hi	σhw	av						
							Ivitate	878 6		Unn	ame	od W	latercourse		_		_	_	_
	TR	Α -	ΓΕΟ	CH					ation:	10W 4	12999	1 7129	9070		Survey	Date:	10/9/2021; 13:	30	
							L	egal Loc	ation:				-		•	Zone:			
								Crew In	itials:	TM &	MAN			Restr	icted Activity P	eriod:		-	
		Ph	ysical (Chanr	nel Tra	insect	Data								Habitat Invento	ory / R	each Data		
Transect # (Location)	1(↑	100)	2(↑	50)	3 (CL)	4 (l 100)	5 (↓2	00)	6 (43	800)	Instream Cover (%):	:	40	Overl	nead Cover (%):		70
Channel Width (m)	0.	.9	0.	6	0	.8	2	1.8	1.	9	1	.6	Dom. Instream Cov	er:	WD	Dom.	Overhead Cove	r:	WD
Wetted Width (m)	0.	.3	0.	6	0	.7	(0.8	1.	3	0	.6	Subdom. Instream	Cover:	UCB	Subd	om. Overhead C	over:	S
Depth at LDB + 25% (m)	0.	1	0.	5	0	.4	(0.3	0.4	4	0	.3	Maximum Depth (m	n)	0.5	Dom.	Aquatic Veg. Ty	vpe:	-
Depth at LDB + 50% (m)	0.	2	0.	5	0	.4	(0.4	0.	5	0	.3							
Depth at LDB + 75% (m)	0.	2	0.	5	0	.3	(0.4	0.	3	0	.3							
Max.BankfullDepth (m)	0.7	76	0.8	31	0.	49	0	.98	0.8	33	0.	88							
Gradient (%)	1	L	1		3	3		1	1		:	1							
Dominant Habitat Unit	R	2	R2	2	R	2		R2	R2	2	R	2							
Stream Bed																			
Organics	C)	0		(0		0	10	D	(0							
Fines	6	0	0		6	0		40	40	D	4	0							
뫑 및 Small Gravel	4	0	30	C	3	0		40	40	C	6	0							
Large Gravel	C)	40	D	1	.0		20	10	D	(0	Wate	er Quali	ty Data		Channel	Characteri	stics
Copple	C)	30	D	(0		0	0		(0	Time of Day (HH:MI	M):	13:37		Pattern:		ST
Boulder	C)	0		(0		0	0		(0	Water Temperature	e (°C):	0.3		Islands:		N
Bedrock	C)	0		(0		0	0		(0	Dissolved Oxygen (r	mg/L):	11.31		Bars:		N
Embeddedness	L	_	L			L		L	N	1		L	Sp. Conductivity (µs	s/cm):	733		Coupling:		PC
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:		7.92		Confinement:		FC
Bank Height (m)	0.6	0.3	0.3	0.3	0.1	0.1	0.47	0.54	0.4	0.3	0.6	0.5	Turbidity (NTU):		Lightly Tur	bid	Flow Stage:	L	ow
Bank Slope (°)	80	20	45	45	20	10	65	65	30	70	50	80		F	ish Habitat Ass	essme	ent Ratings		
Bank Stability	MS	MS	S	S	S	S	MS	MS	MS	MS	S	MS		Fo	rage Fish	Co	arse Fish	Sport	Fish
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Spawning:	N	oderate		Poor	Poo	r
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F	Overwintering:		Poor		None	Non	e
Dom. Riparian Veg.	С	S	М	М	S	S	S	S	D	D	D	D	Rearing:	Poor	-Moderate	Poo	r-Moderate	Poor-Mo	derate
Subdom. Riparian Veg.	S	G	G	G	С	С	G	м	S	S	S	S	Passage:	N	oderate	Poo	r-Moderate	Poor-Mo	derate
										Fish S	ampli	ng Da	ta						
										Efi	sh Cat	tch	Trap Catch	Ef	ish CPUE	Т	ap CPUE	Rel. Abur	ndance
Method			Effort				Specie	es			(n)		(n)	(#1	ish/100s)	(#fish/hr)	(% of t	otal)
No Electrofishing		-		(s)															
No Trapping				(hr)															
Electrofish	er Setti	ings																	
Volts Freq. (Hz) Dut	y Cycle	: (%)	Dist.	(m)															
	_																		
						Gener	al Co	mmer	its										

Some instream grasses in upstream reach. Woody debris overhanging throughout. Crossing is cleared, coupled area with grasses and same channel width. Downstream has moderate riffles over woody debris and trace undercut banks. New growth in upland due to historic fire. No fishing was conducted due to freezing conditions.

TE TE	TR	RA -	ТΕ	сн			Mao Si	Ckenz te 834 UTM Loc Legal Loc Crew I	tie V 1.1 cation: cation: nitials:	Unr 10W	y Hig name 425724 . MAN	hway d Wat 713218	y sercourse 9 Res	S stricted Acti	Survey Dat Zor ivity Peric	te: 10/10/2021; 1 ne: od:	3:51	
		F	hysic	al Cha	nnel T	ransec	t Data							Habita	it Invento	ry / Reach Data		
Transect # (Location)	1(1	`100)	2 (*	^50)	3 (CL)	4 (、	↓100)	5 (↓:	200)	6 (↓30)0)	Instream Cover (%):	40 Ov	erhead Cover (%)	:	70
Channel Width (m)	0).9	1	.1	1	.1		1.3	0).9	C).9	Dom. Instream C	over:	UCB Do	m. Overhead Cov	er:	S
Wetted Width (m)	0	.9	C).9	0	.6		0.7	0).7	C).9	Subdom. Instrea	m Cover:	C Su	bdom. Overhead	Cover:	М
Depth at LDB + 25% (m)	0).1	C).1	0	.1		0.1	0).1	C	0.1	Maximum Depth	(m)	0.6 Do	m. Aquatic Veg. T	ype:	-
Depth at LDB + 50% (m)	0).1	C).1	0	.1		0.1	0).1	C	0.1						
Depth at LDB + 75% (m)	0).1	C).1	0	.1		0.1	0).6	C).2						
Max.BankfullDepth (m)	0.	.20	0.	.30	0.	49	C	.87	0.	.76	0	.50						
Gradient (%)		1		1		1		1		1		1						
Dominant Habitat Unit	F	R1	F	R1	R2		R1	R	1		I	R1						
Stream Bed																		
Organics	2	20	2	20		0		0		0		0						
Fines	8	30	8	80	1	00		20	e	50	:	10						
뮕 냜 Small Gravel		0		0		0		30	Э	30	4	40						
Large Gravel		0		0		0		10	1	10	3	30	Water	Quality Da	ta	Channel	Characteri	stics
The Cobble		0		0		0		40		0	2	20	Time of Day (HH:	MM):	13:50	Pattern:		IR
Boulder		0		0		0		0		0		0	Water Temperat	ure (°C):	1.1	Islands:		Ν
Bedrock		0		0		0		0		0		0	Dissolved Oxyger	n (mg/L):	9.42	Bars:		Ν
Embeddedness	1	N		N	I	N		L	I	N		N	Sp. Conductivity	(µs/cm):	736	Coupling:		PC
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:		7.44	Confinement:		OC
Bank Height (m)	0.1	0.1	0.2	0.1	0.4	0.4	0.8	0.5	0.2	0.1	0.34	0.24	Turbidity (NTU):		Clear	Flow Stage:	Мо	derate
Bank Slope ([°])	20	20	20	20	90	90	70	70	30	30	80	80		Fish Ha	bitat Ass	essment Ratings		
Bank Stability	US	US	US	US	US	US	US	US	MS	MS	US	US		Forage	Fish	Coarse Fish	Sport	Fish
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Spawning:	Moder	ate	Poor	Po	or
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F	Overwintering:	None-P	oor	None-Poor	No	ne
Dom. Riparian Veg.	G	G	S	S	D	D	S	S	S	S	S	S	Rearing:	Moder	ate	Moderate	Poor-Mo	oderate
Subdom. Riparian Veg.	S	S	D	D	G	G	D	D	D	D	D	D	Passage:	Poor-Mod	derate P	oor-Moderate	Poor-Mo	oderate
									Fis	sh Sam	pling D	ata						
										1	Efish Ca	tch	Trap Catch	Efish Cl	PUE	Trap CPUE	Rel. Abu	ndance
Method			Effor	t			Speci	es			(n)		(n)	(#fish/1	.00s)	(#fish/hr)	(% of t	total)
No Electrofishing			-	(s)														
No Trapping			-	(hr)														
Electrofishe	er Set	tings																
Volts Freq. (Hz) Duty	y Cycle	e (%)	Dist	:. (m)														
	-																	
						Ge	neral (Comme	nts									

Upstream has low flow with some pooling. Thick deciduous forest throughout. Mostly overhanging vegetation and shrubs for cover. Minor undercutting downstream on both banks. Downed woody debris throughout, signs of bank erosion and logjams throughout. No fishing conducted due to freezing conditions.

		TR	Δ	FFC	сн			Ma S	ckenz lite 83	ie Va 5	alley Unn	' Hig ame	hwa d Wa	y tercourse					
									UTM Loo	cation:	10W 4	125405	71329	88	Surve	y Date:	10/10/202	1; 14:56	
	\square								Legal Loo	cation:			-			Zone:	:		
									Crew I	nitials:	TM &	MAN		Restri	icted Activity	Period:		-	
			P	hysica	al Chan	inel Ti	ransect	Data						Hat	bitat Invento	ry / Rea	ch Data		
Transe	ect # (Location)	1(↑	·100)	2 (1	^50)	3 (CL)	4 (•	↓ 100)	5(√2	200)	6 (↓3	00)	Instream Cover (%):	50	Over	head Cover	(%):	70
Chann	el Width (m)	1	.1	1	.4	1	.9		1.0	1	.0	1	.0	Dom. Instream Cove	er: WI	Dom.	. Overhead	Cover:	S
Wette	d Width (m)	0	.3	0	.3	1	.1		1.0	0	.5	0	.8	Subdom. Instream C	Cover: UC	B Subd	om. Overhe	ad Cove	D
Depth	at LDB + 25% (m)	0	.1	0	.1	0	.1		0.2	0	.1	0	.1	Maximum Depth (m	n) 0.8	3 Dom.	. Aquatic Ve	g. Type:	-
Depth	at LDB + 50% (m)	0	.1	0	.1	0	.1		0.2	0	.1	0	.1						
Depth	at LDB + 75% (m)	0	.1	0	.1	0	.2		0.1	0	.1	0	.1						
Max.B	ankfullDepth (m)	0.	39	0.	48	0.	58	0).58	0.	37	0.	42						
Gradie	ent (%)	:	3		2		1		1		2	:	1						
Domir	ant Habitat Unit	F	₹2	F	82	F	81		R1	C	D	F	2						
Stream	n Bed																		
_	Organics		0		0		0		0	1	00	8	0						
vrea	Fines	1	.0		40		0	2	0										
ate ct ∕	Small Gravel	3	80	3	80	4	10		20		0	(D						
ostra	Large Gravel	4	10	4	10	4	10		10		0	(D	Water Qu	uality Data		Channel Cl	naracteris	tics
Sub	Cobble	2	20	2	20	1	.0		30		0	(D	Time of Day (HH:MN	M): 1	5:00	Pattern:	ST	
% of	Boulder	(0		0		0		0		0	(D	Water Temperature	e (°C):	0.1	Islands:	Ν	
2	Bedrock		0		0		0		0		0		C	Dissolved Oxygen (n	mg/L): 1	1.78	Bars:	Ν	
Embeo	ddedness		L	I	N		L		М		L	I	N	Sp. Conductivity (µs	s/cm): 1	,001	Coupling:	PC	
Bank I	Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:		8.07	Confineme	ent: CO	
Bank H	Height (m)	0.3	0.3	0.4	0.3	0.4	0.4	0.3	0.2	0.3	0.3	0.34	0.31	Turbidity (NTU):	(Clear	Flow Stage	e: Higl	ı
Bank S	Slope (°)	45	45	90	70	90	90	70	70	40	80	45	50	Fish	Habitat Asse	essment	Ratings		
Bank S	Stability	MS	MS	MS	MS	US	US	MS	MS	US	US	MS	MS		Forage Fish	Coa	arse Fish	Sport Fis	h
Dom.	Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Spawning:	Moderate		Poor	Poor	
Subdo	m. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F	Overwintering:	None-Poor	No	ne-Poor	None-Poo)r
Dom.	Riparian Veg.	S	S	S	S	S	D	D	D	D	D	D	Μ	Rearing:	Moderate	Poor-	ModeratePo	oor-mode	rate
Subdo	m. Riparian Veg.	G	G	G	G	G	G	S	S	S	S	S	S	Passage: P	Poor-moderat	e Poor-	moderate	oor-Mode	rate
									Fis	sh Sam	pling D	Data							
											Ef	fish Cat	ch	Trap Catch	Efish CPUE	Tra	ap CPUE 🛛 🕯	el. Abunda	inc
	Method			Effort	:			Speci	es			(n)		(n)	(#fish/100s)	(#	fish/hr)	(% of tota	il)
No Ele	ectrofishing		-		(s)														
No Tra	apping		-		(hr)														
	Electrofish	er Sett	tings																
Volts	Freq. (Hz) Dut	y Cycle	e (%)	Dist	. (m)														
-	-	-			-														
									Ge	eneral	Comme	ents							
Fire ev	idence in unland A	ehris tl	hroug	hout S	hallow	water w	/ith un	stable I	hanks a	t the c	enterline Some unde	ercut hanks ir	n downs	tream reac	n Snow				

Fire evidence in upland. Abundant woody debris throughout. Shallow water with unstable banks at the centerline. Some undercut banks in downstream reach. Snow covering site at time of visit and mostly frozen over. No fishing conducted due to freezing conditions.

							Mao	ckenz	ie Va	alley	/ Hig	ghw	ay					
	тр		ТЕ	сц			Si	te 837	7.1	Unn	ame	ed W	/atercourse					
		1						UTM Lo	cation:	10W 4	12462	4 713	5022	Survey	Date:	10/11/20	21; 12:34	
							I	Legal Lo	cation:				-		Zone:			
								Crew I	nitials:	TM &	MAN		Res	stricted Activity F	Period:		-	
		Ph	ysical	Chanr	nel Tra	ansect	Data							Habitat Invento	ory / Re	each Data		
Transect # (Location)	1 (↑	·100)	2 (1	∖50)	3 (CL)	4 (\	↓100)	5 (↓2	200)	6(↓:	300)	Instream Cover (9	%): 30	Overl	head Cover	· (%):	10
Channel Width (m)	1	5	1	.7	1	.2	:	2.7	2	.1	1	.9	Dom. Instream Co	over: C	Dom.	. Overhead	Cover:	S
Wetted Width (m)	1	3	1	.3	0	.9		1.3	1	.0	1	.4	Subdom. Instrear	m Cover: -	Subd	om. Overh	ead Cove	r: -
Depth at LDB + 25% (m)	0	.2	0	.2	0	.1	(0.0	0	.1	0	.2	Maximum Depth	(m) 0.2	Dom.	Aquatic V	eg. Type:	-
Depth at LDB + 50% (m)	0	.2	0	.2	0	.2		0.1	0	.1	0	.2						
Depth at LDB + 75% (m)	0	.0	0	.2	0	.1		0.1	0	.1	0	.1						
Max.BankfullDepth (m)	0.	.65	0.	59	0.	45	C).45	0.	41	0.	62						
Gradient (%)		2	:	3	Ĩ	3		5	:	3	:	3	Water	Quality Data		Channel	Charact	eristics
Dominant Habitat Unit	F	₹2	F	₹2	F	₹2		RF	R	₹2	F	R2	Time of Day (HH:	MM): 12	2:34	Pattern:		ME
Stream Bed													Water Temperatu	ure (°C):	L.1	Islands:		N
Organics		0	(0	(0		0	(0	ſ	0	Dissolved Oxyger	n (mg/L): 12	2.27	Bars:		SD
Fines		0	(0	(0		0	(0	1	LO	Sp. Conductivity	(µs/cm): 4	82	Coupling:		DC
뛽 및 Small Gravel	1	10	2	25	2	20		10	2	20	3	30	pH:	8	.20	Confinem	ent:	ос
targe Gravel	3	30	3	0	3	35		45	3	0	4	15	Turbidity (NTU):	C	ear	Flow Stag	e:	Low
and Copple	3	30	3	0	1	0		30	4	10	1	5						
Boulder	Э	30	1	10	2	25		20	1	.0	ſ	0						
Bedrock		0	(0	(0		0	(0	ſ	0						
Embeddedness	I	N	r	N	1	N		Ν	1	N	r	N		Fish Habitat Ass	essme	nt Ratings		
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	:	Forage Fish	Coa	arse Fish	Sport	Fish
Bank Height (m)	0.4	0.4	0.2	0.4	0.2	0.3	0.4	0.3	0.2	0.3	0.4	0.3	Spawning:	Moderate-Good	d Mo	oderate	Mode	erate
Bank Slope (°)	90	90	70	70	70	70	10	10	30	20	60	55	Overwintering:	None-Poor	No	ne-Poor	None	Poor
Bank Stability	MS	US	US	US	US	US	MS	MS	MS	MS	MS	MS	Rearing:	Moderate	Mo	oderate	Mode	erate
Dom. Bank Material	0	0	0	0	0	0	0	0	LG	0	0	0	Passage:	Moderate	Poor-	moderate	Poor-me	oderate
Subdom. Bank Material	F	F	F	F	F	F	F	SG	SG	F	F	F						
Dom. Riparian Veg.	С	S	S	S	S	С	S	S	S	S	S	S						
Subdom. Riparian Veg.	S	С	D	D	С	S	G	G	G	G	G	G						
								F	ish San	npling	Data							
										Efi	sh Ca	tch	Trap Catch	Efish CPUE	Tra	IP CPUE	Rel. Abu	ndance
Method			Effort	:			Speci	es			(n)		(n)	(#fish/100s)	(#	fish/hr)	(% of	total)
No Electrofishing			-	(s)														
No Trapping			-	(hr)														
Electrofish	er Seti	tings																
Volts Freq. (Hz) Dut	y Cycle	e (%)	Dist	. (m)														
								G	ieneral	Comm	ients							
Step pools created natura	ally fro	om dov	vned v	woody	debris	s in ups	tream	reach. D	Jownst	ream h	ias en	nergen	t boulders and col	bbles instream. N	1inor u	ndercuttin	g of bank	in

downstream. Fire history in upland. Gravel bar on left bank 200 m downstream. Limited overhanging vegetation in downstream reach. Downed trees created step pools. Challenging for forage fish but good habitat. No fishing conducted due to freezing conditions.

			Mackenzie	Valley Highw	/ay				
	4 TE	СН	Site 843.3	Unnamed v	vatercourse				
			UTM Locatio	on: 10W 422310 714	10408	Survey	/ Date: 10/11/2	021; 14:20	
			Legal Location	on:	-		Zone:		
			Crew Initia	als: TM & MAN	Rest	ricted Activity F	Period:	-	
Water Quality Data					Habitat Inventory	/ Reach Data			
Time of Day (HH:MM):	14:20				Instream Cover (%): 80	Overhead Cov	er (%):	60
Water Temperature (°C):	0.5				Dom. Instream Cov	ver: G	Dom. Overhea	d Cover:	D
Dissolved Oxygen (mg/L):	11.83				Subdom. Instream	Cover: WD	Subdom. Over	head Cover:	S
Sp. Conductivity (µs/cm):	577				Maximum Depth (I	m) -	Dom. Aquatic	Veg. Type:	0
pH:	8.07								
Turbidity (NTU):	Clear								
			Fish	Sampling Data					
				Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abun	dance
Method	Effor	t	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of to	otal)
No Electrofishing	-	(s)							
No Trapping	-	(hr)							
Electrofisher Settin	gs								
Volts Freq. (Hz) Duty Cycle (%) Dist	(m)							
		-							
			Gen	eral Comments					
Maximum depth was 0.39 m. Sub	strate was	30% fines, 30%	small gravel, 30% larg	ge gravel and 10% co	bble. Snow cover at	the site at time	of visit, most of	the downstr	eam
reach was a flooded area within t	he trees a	nd no defined ch	annel. No suitable fis	h habitat for any fish					

								Mad	ckenz	ie V	alley	y Hi	ghw	/ay					
	ד ה	стр		те	сц			Si	te 846	.4	Unn	ame	ed W	/atercourse					
	t '	EIK	A	IE	П				UTM Loo	ation:	10W 4	41994	7 7142	2715		s	urvey Date:	10/11/2021	; 15:00
								L	legal Loc	ation:			-				Zone:		
									Crew In	nitials:	ΤM	1 & M	٩N		Restricte	ed Acti	ivity Period:		-
			Ph	iysical	Chan	nel Tr	ansect	Data							Habita	at Inve	ntory / Read	h Data	
Transect # (Lo	cation)	1(个	100)	2 (1	r50)	3	(CL)	4 (、	↓100)	5(√2	200)	6 (1/3	:00)	Instream Cover	(%):	30 0	Overhead Co	over (%):	30
Channel Width	n (m)		-		-		-	:	2.5	2	.3	2	1	Dom. Instream	Cover:	WD [Dom. Overh	ead Cover:	-
Wetted Width	(m)		-		-		-	:	2.3	1	.9	1	7	Subdom. Instrea	am Cover:	- 9	Subdom. Ov	erhead Cove	r: -
Depth at LDB +	+ 25% (m)) -	-		-		-	(0.5	0	.2	0	1	Maximum Dept	h (m)	0.8 [Dom. Aquati	c Veg. Type:	-
Depth at LDB +	+ 50% (m)) -	-		-		-	(0.7	0	.5	0	5						
Depth at LDB +	+ 75% (m)) -	-		-		-	(0.8	0	.2	0	4						
Max.BankfullD	epth (m)	-	-		-		-	1	L.5	0.	84	0.	63						
Gradient (%)			-		-		-		1	:	1	1	L						
Dominant Hab	itat Unit	Р	1	Р	1י	I	21		P1	R	81	R	1						
Stream Bed																			
🚊 Organi	cs		-		-		-		40	4	10	4	0						
Fines			-		-		-		60	6	50	6	0						
ਸ਼ੂ ਤੂੰ Small G	Gravel	-	-		-		-		0	(0	()						
ts g Large 0	Gravel		-		-		-		0	(0	()	Wa	ater Quality	/ Data		Channel C	haracteristics
S Copple			-		-		-		0	(0	()	Time of Day (HF	H:MM):		14:00	Pattern:	SI
b Boulde	r		-		-		-		0	(0	()	Water Tempera	iture (°C):		0.1	Islands:	S
Bedroo	:k		-		-		-		0	(0	()	Dissolved Oxyge	en (mg/L):		12.21	Bars:	N
Embeddednes	s	-	-		-		-		0	(0	()	Sp. Conductivity	/ (μs/cm):		264	Coupling:	PC
Bank Measure	ements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:			7.97	Confinemer	nt: OC
Bank Height (n	n)	-	-	-	-	-	-	0.7	0.3	0.3	0.2	0.1	0.1	Turbidity (NTU):	:	Ligh	ntly Turbid	Flow Stage:	Moderate
Bank Slope (°)		-	-	-	-	-	-	90	90	70	20	5	40		Fish Ha	abitat /	Assessment	Ratings	
Bank Stability		-	-	-	-	-	-	MS	MS	MS	MS	MS	MS		Forage F	ish	Coarse	Fish	Sport Fish
Dom. Bank Ma	aterial	-	-	-	-	-	-	0	0	0	0	0	0	Spawning:	Poor		Роо	r	Poor
Subdom. Bank	Material	- 1	-	-	-	-	-	F	F	F	F	F	F	Overwintering:	Poor		Poo	r	Poor
Dom. Ripariar	n Veg.	-	-	-	-	-	-	S	S	S	S	S	S	Rearing:	Moderate-	Good	Poor-mo	derate	Poor
Subdom. Ripar	-	-	G	G	D	D	D	D	Passage:	Poor		Poo	r	Poor					
										Fish S	Sampli	ng Dat							
											Efi	sh Cat	ch	Trap Catch	Efish CP	UE	Trap C	PUE R	el. Abundance
Me	ethod			Effort	:			Specie	es			(n)		(n)	(#fish/10	00s)	(#fish,	/hr)	(% of total)
No Electrofishi	ing			-	(s)														
No Trapping				-	(hr)														
1	Electrofis	her Sett	ings																
Volts Freq.	(Hz) Du	uty Cycle	e (%)	Dist	. (m)														
		-			-														
			_					_		Gene	ral Cor	nmen	ts _			_			
The upstream	area was	flooded	with	no def	ined c	hann	el and f	rozen d	over with	n snow	cover	at tim	e of a	ssessment. Most	t of the dow	nstrea	m reach wa	s flooded as	well until

The upstream area was flooded with no defined channel and frozen over with snow cover at time of assessment. Most of the downstream reach was flooded as well until approximately 100 m downstream, where the channel banks became more defined. The channel developed sinuous meanders downstream. Current crossing is not suitable for fish passage. No fishing conducted due to freezing conditions.

							Ma	ckenz	ie V	alley	y Hi	ghw	/ay						
	те		те	СЦ			Si	te 857	.4	Unn	name	ed W	/atercourse						
		A	I E	СП				UTM Loo	ation:	10W 4	41586	0 7151	1196		Su	rvey Date:	10/11/20	21; 16:2	8
							1	Legal Loo	ation:				-			Zone:			
								Crew I	nitials:	TM &	MAN			Restricted	d Activ	ity Period:		-	
		Ph	nysical	l Chann	nel Tra	ansect	Data							Habitat	Invent	tory / Reac	h Data		
Transect # (Location)	1(1	<u>`100)</u>	2 (1	↑50)	3 (CL)	4 (•	↓100)	5(↓2	200)	6(↓3	300)	Instream Cover ((%):	40	Overhead	l Cover (%):	10
Channel Width (m)	1	5	1	0.0	2	.3		0.6	2	.3		-	Dom. Instream C	Cover:	WD	Dom. Ove	erhead Cov	ver:	С
Wetted Width (m)	1	4	1	0.0	1	.4		0.5	2	.0		-	Subdom. Instrea	im Cover:	G	Subdom.	Overhead	Cover:	S
Depth at LDB + 25% (m)	0).2	C).5	0	.2		0.2	0	.5		-	Maximum Depth	ו (m)	0.6	Dom. Aqu	uatic Veg.	Туре:	-
Depth at LDB + 50% (m)	0).2		-	0	.4		0.3	0	.6		-							
Depth at LDB + 75% (m)	0).1		-	0	.2		0.2	0	.4		-							
Max.BankfullDepth (m)	0.	.28	0	.50	0.	56	(0.40	0.	73	0.	00							
Gradient (%)		1		1		2		2	:	1	:	1	W	ater Quality Da	ata		Chann	el Chara	cteristics
Dominant Habitat Unit	F	1۱	I	P1	B	BD		R3	D	D	F	L	Time of Day (HH	:MM):	1	6:28	Pattern:		IR
Stream Bed													Water Temperat	ture (°C):		0.5	Islands:		I
Grganics	8	30		0	e	50		80	6	50	(0	Dissolved Oxyge	n (mg/L):	9	9.45	Bars:		Ν
Fines	2	20	1	00	4	10		20	4	10	1(00	Sp. Conductivity	(µs/cm):	1	163	Coupling:		PC
ੀ ਦੂ Small Gravel		0		0		0		0	(0	(0	pH:		7	7.92	Confinem	nent:	FC
Large Gravel		0		0		0		0	(0	(0	Turbidity (NTU):		Lightl	y Turbid	Flow Stag	ge:	Pooled
S L Cobble		0		0		0		0	(0	(D							
& Boulder		0		0		0		0	(0	(0							
Bedrock		0		0		0		0	(0	(D							
Embeddedness		N		N	I	N		N	1	N	1	N	Fish Habitat Ass	essment Rating	gs				
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish		Coarse Fig	sh	Sport Fi	sh
Bank Height (m)	0.1	0.1	-	-	0.2	0.2	0.2	0.2	0.2	0.1	-	-	Spawning:	Moderate		None		None	
Bank Slope (°)	10	10	30	30	25	10	5	5	10	10	30	30	Overwintering:	Moderate		Poor		Poor	
Bank Stability	MS	MS	US	US	MS	MS	US	MS	MS	MS	MS	MS	Rearing:	Moderate-Go	bod	Poor-mod	derate	Poor	
Dom. Bank Material	0	0	-	-	0	0	0	0	0	0	-	-	Passage:	Poor		Poor		Poor	
Subdom. Bank Material	F	F	-	-	F	F	F	F	F	F	-	-							
Dom. Riparian Veg.	S	S	S	S	S	S	S	S	S	S	М	Μ							
Subdom. Riparian Veg.	G	G	G	G	G	G	G	С	G	G	С	С							
									Fisl	h Samj	pling D	Data							
										Efi	sh Cat	tch	Trap Catch	Efish CP	UE	Trap	CPUE	Rel. A	bundance
Method	Effor	t			Speci	es			(n)		(n)	(#fish/10	0s)	(#fis	h/hr)	(% (of total)		
No Electrofishing		-	(s)																
No Trapping			-	(hr)															
Electrofishe	er Set	tings																	
Volts Freq. (Hz) Duty	y Cycl	e (%)	Dist	:. (m)															
	-			-														_	
									Gei	neral C	Comm	ents							

The upstream reach was mostly low shrubs and grasses as it was likely flooded in past due to downstream beaver dam, poorly defined channel. Some grasses instream at the crossing. There were two beaver dams, just upstream of the centerline crossing over the winter road. There was a smaller beaver dam at the winter road. Watercourse converged with larger channel approximately 130 m downstream. There were multiple beaver dams downstream as well. Could not assess parts of T2 and T6 locations because the water was frozen over and was unsafe to assess. Channel width for T6 was measured from aerial imagery. At 200 m downstream, the second channel was flooded and meandered around debris dams (likely from previous backflooding from impoundment). The downstream area would be more suitable fish habitat than in the channel that crosses the proposed highway alignment. No fishing conducted due to freezing conditions.

r			N 11 111					
		Mackenzi	e Valley Hig	hway				
		Site 872.9	Unnamed W	/atercourse				
	A IECH	UTM Location	n: 10W 412679 716	4554	Survey	Date: 10/2/2021	l; 15:17	
		Legal Location	n:	-		Zone:		
		Crew Initial	s: TM & MAN	Re	stricted Activity F	Period:	-	
Water Quality Da	ta	-			Habitat Invent	ory / Reach Data		
Time of Day (HH:MM):	15:17			Instream Cover (9	%): 60	Overhead Cover	(%):	10
Water Temperature (°C):	0.1			Dom. Instream Co	over: AQ	Dom. Overhead	Cover:	-
Dissolved Oxygen (mg/L):	12.53			Subdom. Instream	n Cover: G	Subdom. Overhe	ad Cover:	-
Sp. Conductivity (µs/cm):	435			Maximum Depth	(m) 0.6	Dom. Aquatic Ve	eg. Type:	-
pH:	7.74							
Turbidity (NTU):	Clear							
		Fi	sh Sampling Data					
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abun	dance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of to	otal)
No Electrofishing	- (s)	NO FISH CAPTURED						
Minnow Trap (MT)	1.0 (hr)							
Electrofisher Se	ttings							
Volts Freq. (Hz) Duty Cyc	cle (%) Dist. (m)							
	-							
		Ge	eneral Comments					
Address and the state of the st	and the second all states and a second	and the second sec	 Constant of the set of the set of the 	the state of the s		and the second	. .	

Wetland habitat, poor connectivity with rigmat over the crossing. Exposed pipe from a pipeline in the channel. One minnow trap was set but pulled after 1 hr when it was noted that there was no connectivity and no defined channel. The downstream area is flooded wetland with submerged aquatic vegetation. Substrate was all fines and organics. Not fish habitat.

		Mackenzie V	Valley Highv	way				
		Site 879.1	Unnamed V	Vatercourse				
	RA ILCH	UTM Locatio	n: 10W 411064 716	59505	Survey	Date: 10/9/202	21; 16:16	
		Legal Locatio	n:	-		Zone:		
		Crew Initia	s: TM & MAN	Res	tricted Activity F	eriod:	-	
Water Quality D	ata				Habitat Invent	ory / Reach Data	a	
Time of Day (HH:MM):	16:16			Instream Cover (S	%): 0	Overhead Cove	er (%):	30
Water Temperature (°C):	0.6			Dom. Instream C	over: -	Dom. Overhea	d Cover:	G
Dissolved Oxygen (mg/L):	0.68			Subdom. Instrear	n Cover: -	Subdom. Over	nead Cover:	С
Sp. Conductivity (µs/cm):	151			Maximum Depth	(m) 0.6	Dom. Aquatic \	√eg. Type:	-
pH:	6.44							
Turbidity (NTU):	Lightly Turbid							
		Fish Sar	npling Data					
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abunda	ance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of tota	al)
No Electrofishing	- (s)	NO FISH CAPTURED						
Minnow Trap (MT)	36.5 (hr)							
Electrofisher S	ettings							
Volts Freq. (Hz) Duty Cycle	e (%) Dist. (m)							
	-							
		General	Comments					
Very low dissolved oxygen - wa	s measured multiple tir	nes in multiple locations and got	same result. Frozer	n cover throughout,	generally a mars	hy bog. This we	tland was	
connected to the watercourse of	crossing at Site 879.4.	Beaver activity in the upstream a	nd a beaver lodge a	nd impoundment d	ownstream. Pote	ential good habit	at for forage f	ish
but low DO levels may not mak	e it suitable for larger b	odied fish. No fishing conducted	due to frozen cond	itions.				

									• • • •										
							Ma	ckenz	ie Va	alle	y Hi	ghw	vay						
	TRA	1	ΓFC	СН			Si	te 879	.4	Unr	ame	ed V	/atercourse						
								UTM Loo	ation:	10W -	41120	9 716	358		Survey	/ Date:	10/9/2021; 1	6:34	
							I	Legal Loc	ation:				-			Zone:			
								Crew In	nitials:	TM &	MAN			Restricted A	ctivity F	Period:		-	
		Phy	ysical	Chanr	iel Tra	insect	Data							Habi	tat Inve	entory ,	/ Reach Data		
Transect # (Location)	1(个10)0)	2 (1	`50)	3 (CL)	4 (•	↓ 100)	5(↓2	00)	6(↓3	300)	Instream Cover ((%):	50	Overł	nead Cover (%):	60
Channel Width (m)	1.5		2.	9	5	.2		1.2	1	9	1	.0	Dom. Instream C	Cover:	WD	Dom.	Overhead Co	ver:	S
Wetted Width (m)	1.3		2.	5	5	.2		0.9	1	9	1	.0	Subdom. Instrea	m Cover:	UC	Subdo	om. Overhead	Cover:	М
Depth at LDB + 25% (m)	0.3		0.	5	0	.2		0.2	0	1	0	.0	Maximum Depth	n (m)	0.5	Dom.	Aquatic Veg.	Туре:	G
Depth at LDB + 50% (m)	0.3		0.	5	0	.4		0.2	0	2	0	.1							
Depth at LDB + 75% (m)	0.3		0.	4	0	.5		0.2	0	1	0	.2							
Max.BankfullDepth (m)	0.31		0.5	54	0.	46	().39	0.	56	0.	59							
Gradient (%)	1		1	L	:	2		3	1	L	:	1	Wa	ter Quality Data	а		Chan	nel Chara	cteristics
Dominant Habitat Unit	IP1		IP	1	IF	P1		R2	R	1	R	1	Time of Day (HH	:MM):	16:3	6	Pattern:		ME
Stream Bed													Water Temperat	ure (°C):	0.6		Islands:		Ν
Organics	100		10	00	10	00		0	()	(0	Dissolved Oxyge	n (mg/L):	10.8	1	Bars:		Ν
Fines	0		0)	(C		90	10	00	10	00	Sp. Conductivity	(µs/cm):	193		Coupling:		CO
뮕 및 Small Gravel	0		0)	(C		10	()	(0	pH:		7.37	7	Confinement	:	FC
Large Gravel	0		C)	(0		0	()	(0	Turbidity (NTU):		Clea	r	Flow Stage:		Flood
In Copple	0		0)	(C		0	()	(0							
Boulder	0		0)	(C		0	()	(0							
Bedrock	0		0)	(D		0	()	(0							
Embeddedness	0		0)	(C		0	()	(0		Fish H	Habitat	Assess	ment Ratings		
Bank Measurements	Left Ri	ght	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage F	ish	С	oarse Fish	9	port Fish
Bank Height (m)	0.0 0	0.0	0.0	0.0	0.0	0.0	0.2	0.1	0.4	0.2	0.4	0.4	Spawning:	Poor-Moderat	te	None		None	
Bank Slope (°)	0	0	0	0	10	10	40	40	20	40	75	40	Overwintering:	Poor-moderat	te	Poor		Poor	
Bank Stability	S	S	S	S	S	S	US	US	MS	US	MS	MS	Rearing:	Moderate		Poor-	Moderate	Poor-Mo	oderate
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Moderate-Go	od	Mode	erate	Moderat	te
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F							
Dom. Riparian Veg.	G	G	G	G	G	G	S	S	S	S	S	М							
Subdom. Riparian Veg.	S	S	S	S	S	S	М	М	С	С	М	S							
										Fish	Sampl	ing Da	ita						
										Efi	sh Cat	tch	Trap Catch	Efish CP	UE	Т	rap CPUE	Rel.	Abundance
Method	Effort				Speci	es			(n)		(n)	(#fish/10)Os)		(#fish/hr)	(9	% of total)		
No Electrofishing		-		(s)															
No Trapping		-		(hr)															
Electrofishe	er Setting	gs																	
Volts Freq. (Hz) Duty	/olts Freq. (Hz) Duty Cycle (%) Dist. (m)																		
	-		-																
										Gene	ral Co	omme	nts						

Some instream aquatic vegetation and grasses instream in upstream reach, within the flooded area. The upstream area is flooded throughout trees and downstream is confined to valley. Some undercut banks 300 m downstream. Aerial imagery of the area shows the watercourse is connected to Site 879.1 on the upstream side, and appears to have wetland characteristics upstream of T1 (100 m upstream) based on the aerial imagery. The area was snow covered at the time of the assessment. No fishing was conducted due to unsafe conditions for electrofishing and freezing conditions.

								Ma	cker	nzie	Val	ley	High	way				
		TR	Δ-	TEC	СН			Sit	e 88	0.2	Unr	nam	ed W	atercourse				
	IC ''							UT	M Loca	ation:	10W	41159	95 7170	626	Sur	vey Date	: 10/1/2021;	16:23
	\square							Leg	gal Loca	ation:						Zone	:	
								C	rew In	itials:	TM 8			Rest	ricted Activi	ty Period	:	-
			Phys	sical C	hannel	l Tran	sect Da	ata							Habitat Invo	entory / I	Reach Data	
Transe	ct # (Location)	1(↑	100)	2 (1	►50)	3 (CL)	4(√	/100)	5 (↓2	200)	6(↓	300)	Instream Cover (%):		20 Over	head Cover (%): 30
Channe	el Width (m)	-		1	.2	2	.7	2	.6	3	.2	C).9	Dom. Instream Cove	er:	- Dom	. Overhead C	over: -
Wetteo	l Width (m)	-		0	.8	0	.7	1	0	0	.7	C).5	Subdom. Instream C	over:	- Subc	lom. Overhea	d Cover: -
Depth	at LDB + 25% (m)	-		0	.1	0	.1	C).1	0	.1	C	0.1	Maximum Depth (m) (0.2 Dom	. Aquatic Veg	. Туре: -
Depth	at LDB + 50% (m)	-		0	.2	0	.2	C).1	0	.1	C	0.1					
Depth	at LDB + 75% (m)	-		0	.1	0	.2	C).1	0	.1	C	0.1					
Max.Ba	inkfullDepth (m)	-		0	.4	1	.0	C).5	0	.5	C).6					
Gradie	nt (%)	-	-	1	.0	2	.0	2	.0	8	.0	8	3.0	Water Q	uality Data		Channel	Characteristics
Domin	ant Habitat Unit	W	/L	F	₹2	F	12	F	32	R	2	I	R2	Time of Day (HH:MN	∕ /) :	16:23	Pattern:	IR
Stream	Bed													Water Temperature	(°C):	2.5	Islands:	Ν
-	Organics	-		9	90		0	6	50	1	.0	:	10	Dissolved Oxygen (m	ng/L):	9.47	Bars:	Ν
Area	Fines	-		1	0	1	00	4	10	8	80	9	90	Sp. Conductivity (µs,	/cm):	195	Coupling:	DC
ate ect ∕	Small Gravel	-			0		0		0	1	.0		0	pH:		7.87	Confineme	nt: OC
ostr anse	Large Gravel	-	-		0		0		0	(0		0	Turbidity (NTU):		Clear	Flow Stage:	Low
Sul f Tra	Cobble	-			0		0		0	(0		0					
.o %	Boulder	-	-		0		0		0	(0		0					
	Bedrock	-	-		0		0		0	(0		0					
Embed	dedness	-		I	N	I	N		N		L		N					
Bank N	leasurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	n C	oarse Fish	Sport Fish
Bank H	eight (m)	-	-	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	Spawning:	None		None	None
Bank S	ope (°)	-	-	20	20	45	80	45	50	10	80	45	45	Overwintering:	None		None	None
Bank St	ability	-	-	MS	MS	S	MS	US	MS	US	US	MS	MS	Rearing:	None		Poor	None
Dom. B	ank Material	-	-	0	0	0	0	0	0	F	F	0	0	Passage:	None-Poor	r N	lone-Poor	None-Poor
Subdor	n. Bank Material	-	-	F	F	F	F	F	F	0	0	F	F					
Dom. I	Riparian Veg.	-	-	S	S	S	S	S	S	S	S	С	С					
Subdor	n. Riparian Veg.	-	-	С	С	С	С	С	С	С	С	S	S					
										Fish	Samp	oling D	ata					
											Ef	ish Ca	tch	Trap Catch	Efish CPUE	Е Т	rap CPUE	Rel. Abundance
	Method			Effort	:		S	pecie	s			(n)		(n)	(#fish/100s	5)	(#fish/hr)	(% of total)
No Elec	trofishing			-	(s)		NO FIS	н саг	TURED)								
No Tra	oping			-	(hr)													
	Electrofish	er Sett	ings															
Volts	Freq. (Hz) Dut	y Cycle	e (%)	Dist	. (m)													
-	-	-			-													
										Gen	eral C	omme	ents					
100 m	upstream is a floo	ded are	ea and	no de	efined of	chann	el. Poo	r con	nectivi	ty all t	he wa	y to 1	00 m d	ownstream of crossi	ng. Abundan	it grasses	instream and	woody debris
blockin	g channel. 100 m	downst	tream	of pro	posed	align	ment is	s just	upstrea	am of	existi	ng win	ter roa	d. There is a soft org	anic bottom	with min	or undercuts	. Some

underground flow where banks have coupled previously. 200 m downstream looks like it was flooded a few years ago but has since had new growth. 300 m downstream is a narrow channel with steep grade and several logjams. Woody debris throughout. No fishing conducted due to shallow water depths.

							Ma	ckenz	ie V	alley	y Hi	ghw	/ay				
	TP	• • •	ГЕ	сц			Si	te 880	.6	Unn	iame	ed W	/atercourse				
								UTM Loc	ation:	10W4	11800) 7171	054		Survey Date:	10/5/2021; 16	:30
								Legal Loc	ation:				-		Zone:		
								Crew Ir	nitials:	TM &	MAN			Restricted	Activity Period:	-	
		Ph	ysical	Chanr	nel Tra	insect	Data							Habitat Inve	ntory / Reach D	ata	
Transect # (Location)	1(↑	100)	2 (1	↑50)	3 (CL)	4 (-	↓100)	5(↓2	200)	6(↓3	800)	Instream Cover (%): 40	Overhead Cov	er (%):	80
Channel Width (m)	2	.5	2	.2	1	.8		2.8	2	.7	1	.9	Dom. Instream C	over: WD	Dom. Overhea	ad Cover:	S
Wetted Width (m)	2	.3	1	6	1	.5		1.9	2	.0	1	.1	Subdom. Instream	m Cover: -	Subdom. Over	head Cover:	С
Depth at LDB + 25% (m)	0	.2	C	.3	0	.2		0.3	0	.3	0	.5	Maximum Depth	(m) 0.6	Dom. Aquatic	Veg. Type:	-
Depth at LDB + 50% (m)	0	.3	0	.3	0	.4		0.4	0	.5	0	.5					
Depth at LDB + 75% (m)	0	.4	0	.2	0	.6		0.3	0	.2	0	.4					
Max.BankfullDepth (m)	0.	67	0.	.65	0.	78	(0.66	0.	83	1.	1					
Gradient (%)	2	1		1	:	2		4	1	5	5	5	w	ater Quality Dat	а	Channel Chara	cteristics
Dominant Habitat Unit	F	L	F	=L	R	1		CA	R	81	R	1	Time of Day (HH:	:MM):	16:30	Pattern:	ST
Stream Bed													Water Temperat	ure (°C):	1.6	Islands:	Ν
G Organics	(0	1	LO	3	0		10	1	0	1	0	Dissolved Oxyger	n (mg/L):	13.61	Bars:	Ν
Fines	10	00	9	90	7	0		80	7	0	9	0	Sp. Conductivity	(µs/cm):	240	Coupling:	PC
월 것 Small Gravel	(D		0	(D		0	2	20	(D	pH:		7.66	Confinement:	CO
Large Gravel	E Large Gravel 0 0									0	(D	Turbidity (NTU):	Мо	derately Turbid	Flow Stage:	High
S L Cobble	(D		0	(D		0		0	(D					
8 Boulder	(C		0	(C		10		0	()					
Bedrock	(C		0	(C		0		0	()					
Embeddedness	(D		0	(D		0		0	(D	Fish Habitat Asse	essment Ratings			
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	Coarse Fish	Spor	t Fish
Bank Height (m)	0.3	0.2	0.3	0.2	0.2	0.2	0.3	0.2	0.4	0.2	0.3	0.5	Spawning:	Moderate	None-poor	None	e-Poor
Bank Slope (°)	25	70	10	20	30	10	10	25	60	10	60	80	Overwintering:	Poor	Poor	Poor	
Bank Stability	MS	US	MS	MS	S	S	MS	MS	MS	MS	S	MS	Rearing:	Good	Good	Good	ł
Dom. Bank Material	0	F	F	0	0	0	F	F	F	F	F	0	Passage:	Good	Good	Good	k
Subdom. Bank Material	F	0	0	F	F	F	0	0	SG	0	0	F					
Dom. Riparian Veg.	S	S	S	S	S	S	S	S	S	S	S	S					
Subdom. Riparian Veg.	С	С	G	G	D	G	S	S	М	М	D	С					
									Fish S	ampli	ng Dat	a					
										Efi	sh Cat	ch	Trap Catch	Efish CPUE	Trap CP	VE tel. A	bundanc
Method			Effor	:			Speci	es			(n)		(n)	(#fish/100s)	(#fish/	hr) (% d	of total)
Backpack Electrofisher (E	В)	24	16	(s)		BROO	K STIC	KLEBACK			2		-	2.86	-	4	0.0%
No Trapping - (hr)							SCAL	E DACE			1		-	1.43	-	2	0.0%
Electrofishe	er Sett	ings				PI	EARL	DACE			2		-	2.86	-	4	0.0%
Volts Freq. (Hz) Duty	y Cycle	e (%)	Dist	. (m)													
200 30																	
									Como								

100 m downstream is located along pipeline, some large boulders in transect from riprap for wooden bank support that was in place. Some in stream grass throughout. Lots of woody debris in water. High flow rate wth occasional riffle sections. Occasional natural small debris dams.

							Ma	ckenz	ie V	alle	y Hi	ghw	/ay						
	-			- CU 1			Si	te 883	.6	Unr	nam	ed W	/atercourse						
			IE	СН				UTM Lo	ation:	10W	41161	5 717	3282		Sur	vev Date:	10/5/2021:	11:53	
								Legal Lo	ation:				-			Zone:	-/ -/ - /		
								Crew I	nitials:	TM 8				Restricted A	ctivi	tv Period:		-	
		Ph	vsica	al Chann	nel Tra	insect	Data									- ,			
Transect # (Location)	1(1	100)	2(个50)	3 (CL)	4 (-	↓100)	5 (1)	200)	6 (J	300)	Instream Cover (%):	10	Overhead	Cover (%):		70
Channel Width (m)	2	.4	•	-	1	.3	•	2.1	3	.1	3	3.4	Dom. Instream C	over:	WD	Dom. Ove	erhead Cover	:	S
Wetted Width (m)	2	.0		-	1	.3		1.3	0	.5	1	.1	Subdom, Instrea	m Cover:	-	Subdom.	Overhead Co	ver:	M
Depth at LDB + 25% (m)	0	.0		-	0	.3		0.2	0	.1	C).1	Maximum Depth	(m)	0.3	Dom. Aqu	uatic Veg. Tvp	be:	-
Depth at LDB + 50% (m)	0	.1		-	0	.3		0.1	0	.1	C).1		()					
Depth at LDB + 75% (m)	0	2		-	0	2		0.1	0	1	(0							
Max BankfullDepth (m)	0	46		-	0	41	() 44	1	1	2	0							
Gradient (%)	0.	1				2		2	-	6	-	8	Wat	er Ouality Da	ita		Channe	el Chara	cteristics
Dominant Habitat Unit	v	vi		-	F	-		_ R1	F	RE	I	RF	Time of Day (HH	·MM)·	1	1.56	Pattern [.]		IR
Stream Bed	-										-		Water Temperat	ure (°C):	-	2.8	Islands:		0
Organics	1	00		100	1	00		90		0	(50	Dissolved Oxyger	n (mg/l.)·		2 54	Bars		N
Fines	-	0	-	0	-	0		10		0	2	40	Sp. Conductivity	(us/cm):		355	Coupling:		PC
문 Small Gravel		0		0		0		0		0		0	pH:	(p.,).		7.16	Confinemen	it:	00
ta C Large Gravel		0		0		- 0		0		0		0	Turbidity (NTU)		Light	ly Turbid	Flow Stage		Moderate
		0		0		n		0		0		0	ransially (interp			.,,	non otager		moderate
Boulder		n		0		n		0		0		0							
8 Bedrock		0		0		n		0		0		0							
Embeddedness		N		N		N		N		N		N	Fish Habitat Ass	ossmont Rativ	ngs				
Bank Measurements	loft	Right	۱۵ft	t Right	loft	Right	loft	Right	Loft	Right	loft	Right		Forage Fish	1.5.5	Coarse Ei	sh Sn	ort Fish	
Bank Height (m)	0.2	0.3	-		0.1	0.1	03	0.2	0.9	1 1	0.7	1 0	Snawning.	Poor		Poor	511 Sp Do	or	
Bank Slope (°)	5	45	_	_	5	5	20	25	60	70	80	00	Overwintering	Poor		Poor	Po	or	
Bank Stope ()	MS	45	-	-	MC	MC	20	25	110	115	110	50	Rearing:	Poor		Poor	Po	or	
Barrik Stability	IVIS	IVIS	-	-	IVIS	IVIS	IVIS	IVIS	03	03	03	03	Deccaro:	Poor		Poor	Pu		
Dom. Bank Material	0	5	-	-	0	5	0	0	0	0	0	0	Passage.	2001		2001	PU	01	
Subdom. Bank Material	F	F	-	-	F	F C	F	F	F	F	F	F							
Dom. Riparian Veg.	G	D	-	-	S	5	5	5	S	5	C	C							
Subdom. Riparian Veg.	5	5	-	-	L	D	IVI	IVI	L		5	5							
				I					Fis	in Sam	npling	Data				_			
										Et	ish Ca	tch	Trap Catch	Efish CPU	JE JE	Trap	CPUE	Rel. A	bundance
Method			Effor	rt ()			Speci	es			(n)		(n)	(#fish/100	US)	(#fis	h/hr)	(% (of total)
No Electrofishing		-	•	(s)															
No Trapping		-		(hr)															
Electrofishe	er Sett	tings																	
Volts Freq. (Hz) Duty	y Cycle	e (%)	Dis	st. (m)															
	-		_	-	1						_								
									Ge	neral	Comn	nents	1.1.						
50 m upstream was the w	/inter	road a	nd no	o define	d cha	nnel w	as pre	sent (dep	oths re	corde	d at de	ep po	ois). The water wa	as snow cover	red a	nd had lov	N TIOW Upstre	am. Sor	ne Istais (Istai

overhanging vegetation and abundant downed woody debris. Orange copper look to water, flow is low with occasional pool pockets to the side, dominated by organic debris (leaves and sticks).Slope increased at 300 m downstrea, with steep slopes, riffles with minor cascades and organic islands. Abundant moss throughout. Flowing water, 250 m downstream there was erosion on the left bank. No fishing conducted due to freezing conditions.

							Ma	cke	ozie	Val	lov H	lighw						
\square							Sit	- 88	4 8	l Inn	amer	l Watı	a y ercourse					
	TR/	4 T	ΓEO	СН				MLos	tion		111200	7174626	creourse	ç.	urway Data	. 00/20/2021	. 14.24	
									ation:	1000 4	+11300	/1/4035	•	50	Trvey Date	. 09/30/2021	; 14:24	
							Leg		itiolo:	TNA 9.		-	D	octricted Activ	uity Doriod	•		
		Dhy	vsical	Chan		nsoct	Data	rew in	itiais:		IVIAN			Habitat In	vontory / I	Doach Data	-	
Transact # (Location)	1 (1 1	00)	2 (A		2/			.100)	5 (.l. ²	200)	6 (.1.20	0)	Instream Cover (9	2).		bead Cover (<i>م</i> د).	30
Channel Width (m)	10.5	;	2(1	1 30)	3(5		2	2(1)	2001	0(430	0	Dom Instream (over:	WD Dom	Overhead C	ver:	50
Wetted Width (m)	3.0	,	2	. . 2	1	0	0	1.5	1	3	1	3	Subdom Instream	m Cover:	- Subc	lom Overhea	d Cover	G
Depth at I DB + 25% (m)	0.5		0	1	0	ט. א	0).0) 3	0	12	0		Maximum Denth	(m)	0.6 Dom	Aquatic Veg		-
Depth at LDB + 50% (m)	0.5		0	1	0	4	0	12	0) 2	0	3	Waximam Depti	(,	0.0 0011	. Aquatic Veg	, type:	
Depth at LDB + 75% (m)	0.0		0	1	0	 2	0	12	0) 2	0	3						
Max BankfullDenth (m)	2.0		2	1	0	. <u>2</u> 87	0	97	0	72	1	0						
Gradient (%)	-		-	-	0.	-	0.	-	0.	-	-	-	Water	r Quality Data		Channel	Characte	ristics
Dominant Habitat Unit	IP1		F	а.	R	2	F	32	F	R1	F	81	Time of Day (HH:	MM):	14:22	Pattern:	enaracee	IR
Stream Bed													Water Temperate	ure (°C):	3.2	Islands:		0
 Organics 	0		(0	(C	2	20	2	20	e	50	Dissolved Oxyger	n (mg/L):	-	Bars:		BR
Fines	0		9	0	9	0	ξ	30	ε	30	2	10	Sp. Conductivity	(μs/cm):	338	Coupling:		со
별 번 Small Gravel	र Small Gravel 0 10									0		0	pH:		7.70	Confinemer	nt:	со
to B Large Gravel	E Large Gravel 0 0									0		0	Turbidity (NTU):	L	ightly Turb	ie Flow Stage:		Low
Sub Tra	0		(0	(C		0		0		0						
Soulder	0		(0	(C		0		0		0						
Bedrock	0		(0	(C		0		0		0						
Embeddedness	VH		r	M	ł	4		N	I	N	I	N		Fish Habita	at Assessm	ent Ratings		
Bank Measurements	Left R	ight	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Fo	orage Fish	Coarse	Fish Sp	oort Fish	
Bank Height (m)	0.5	1.4	0.5	2.0	0.4	0.4	0.5	0.7	0.5	0.3	0.60	0.70	Spawning:	Moderat	e	Poor	Ро	or
Bank Slope (°)	45	45	60	60	90	90	80	80	70	70	60	60	Overwintering:	Poor		Poor	Po	or
Bank Stability	US	US	US	US	MS	MS	MS	MS	MS	US	MS	MS	Rearing:	Moderate-G	Good Poo	or-Moderate	Po	or
Dom. Bank Material	F	F	F	F	F	F	0	0	F	F	F	F	Passage:	Moderat	te Poo	or-Moderate	Poor-M	oderate
Subdom. Bank Material	0	0	0	0	0	0	F	F	0	0	0	0						
Dom. Riparian Veg.	G	G	G	G	D	D	G	G	S	С	G	G						
Subdom. Riparian Veg.	S	S	С	С	S	S	S	С	G	S	D	D						
									Fi	ish San	pling D	ata						
										1	Efish Ca	tch	Trap Catch	Efish CPU	JE T	rap CPUE	Rel. Abu	indance
Method		E	Effort	:		S	pecie	es			(n)		(n)	(#fish/100	0s)	(#fish/hr)	(% of	total)
Backpack Electrofisher (E	Backpack Electrofisher (EB) 471 (s) BR										3		-	0.64		-	9.4	1%
No Trapping		(hr)		PEA	RL D	ACE			29		-	6.16		-	90.	6%		
Electrofishe	er Settin	gs																
Volts Freq. (Hz) Duty	y Cycle (%)	Dist	. (m)														
190 30		30	00							_	_			_	_		_	
No crown cover from cro	ccing to	100 -	2 1122	troom	and		rhang	ing vor	G	eneral	Comme	ents erosion	on banks. Partially	coupled The	wildlife m	onitor montic	anad that	2

No crown cover from crossing to 100 m upstream, and no overhanging vegetation. Significant erosion on banks. Partially coupled. The wildlife monitor mentioned that a beaver dam approximately 50 m upstream of centerline was blown out a year ago. A lot of bank instability at that location. Ice scarring is 2 m high at 50 m upstream and at the crossing. Crown cover is 60% at crossing. In downstream reach, there are woody debris throughout.

T t T	ETI	RA	ТЕ	сн			Ma Si	ckenz te 891 итм Loc	ie V 4	Uni 10W	у Н nam 4068	ighw 1ed W 39 7178	ay Atercourse 3354	S	urvey Date:	10/11/2	021; 11:00	
								Legal Loo	ation:				-		Zone:			
								Crew I	nitials:	TM 8	MA	N		Restricted Act	vity Period:		-	
		Ph	ysical	Chanr	nel Tra	insect	Data							Habitat Inven	ory / Reach	Data		
Transect # (Location)	1(1	·100)	2 (1	`50)	3 (CL)	4 (•	↓100)	5 (1)	200)	6 (1	/300)	Instream Cover (%): 10	0 Overhead	Cover (%	5):	10
Channel Width (m)	1.	/.0	15	o.0	1.	2.5		5.5	5	0.8		6.0	Dom. Instream C	over: Wi	Dom. Ove	erhead Co	ver:	C
Wetted Width (m)		-		-		-		5.0	5	.0		-	Subdom. Instrea	m Cover: C	Subdom.	Overhead	Cover:	S
Depth at LDB + 25% (m)		-		-	1	.3		0.5	0).5		-	Maximum Depth	i (m) >1	. Dom. Aqı	uatic Veg.	Type:	-
Depth at LDB + 50% (m)		-		-		-		0.5	0).5		-						
Depth at LDB + 75% (m)		-		-		-		0.3	0).7		-						
Max.BankfullDepth (m)		-		-			().52	0.	.65		-				-		
Gradient (%)		3	-	3		3		3		3		3	W	ater Quality Data		Channe	el Characte	eristics
Dominant Habitat Unit	F	81	R	F	E	D		R1	F	31		FL	Time of Day (HH	:MM):	11:00	Pattern:		ST
Stream Bed													Water Temperat	ure (°C):	3.3	Islands:		N
G Organics		-		-		0		30	3	30		-	Dissolved Oxyge	n (mg/L):	10.25	Bars:		N
€ Fines		-		-	1	00		40	7	70		-	Sp. Conductivity	(µs/cm):	340	Coupling	:	CO
활 당 Small Gravel		-		-		0		-		-		-	pH:		8.04	Confiner	nent:	со
Large Gravel		-		-		0		-		-		-	Turbidity (NTU):	Lig	htly Turbid	Flow Sta	ge:	High
S L Copple		-		-		0		30		-		-						
8 Boulder		-		-		0		-		-		-						
Bedrock		-		-		0		-		-		-						
Embeddedness		-		-		N		М	1	М		-	Fish Habitat Ass	essment Ratings				
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Lef	t Right		Forage Fish	Coarse Fi	sh	Sport Fis	h
Bank Height (m)	-	-	-	-	1.3	-	-	-	-	-	-	-	Spawning:	Moderate-Good	Poor		Poor	
Bank Slope ([°])	80	80	70	70	65	65	50	50	50	50	50	50	Overwintering:	Moderate	Moderate	5	Moderat	e
Bank Stability	MS	MS	MS	US	US	US	US	US	US	US	US	US	Rearing:	Good	Good		Good	
Dom. Bank Material	LG	LG	LG	LG	LG	LG	LG	LG	LG	LG	LG	LG	Passage:	Moderate-Good	Moderate	e-Good	Moderat	e-Good
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F						
Dom. Riparian Veg.	С	С	С	С	С	С	С	С	С	С	С	С						
Subdom. Riparian Veg.	G	G	G	G	G	G	G	G	G	G	G	G						
									Fish	Samp	ling [Data						
										Ef	ish C	atch	Trap Catch	Efish CPUE	Trap	CPUE	Rel. Abu	ndance
Method			Effort				Speci	es			(n)		(n)	(#fish/100s)	(#fis	h/hr)	(% of t	otal)
No Electrofishing		-	-	(s)														
No Trapping		-	-	(hr)														
Electrofishe	er Sett	tings																
Volts Freq. (Hz) Duty	y Cycle	e (%)	Dist	. (m)														
				_	_	_	_		Gen	eral C	omm	ents						
Upstream of the centerlin	ne was	s a sligh	ntly im	pound	ded ar	ea as a	result	of the b	eaver	dam a	t the	centerl	ne. The channel v	was wide providing	moderate to	good fisl	habitat. S	Steep
banks on either side mad	ole for	asses	sment	of 100	m and 5	0 m u	ostrea	m as	well as	300 m downstrea	m, therefore aerial	assessment	s were co	mpleted ir	nstead.			

No barriers were observed with the exception of the beaver dam. Erosion of bank was more significant near the centerline and downstream, with increasing bank stability upstream. No fishing conducted due to freezing conditions and unsafe conditions for electrofishing due to high flows and water depth

								140	aka		Val		liab						
	\frown							IVIa		1210	var	ley F	ngnv	vay					
	TE TE	TR	RA '	TE	СН			SIT	e 91	9.9	Unr	iame	a wa	tercourse					
								UT	M Loc	ation:	10W 3	394956	71987	75		Su	rvey Date:	9/30/2021;	10:27
								Leg	al Loc	ation:			-				Zone:		
								c	rew Ir	itials:	TM &	MAN			Restricte	ed Activ	ity Period:		-
			Phy	ysical	Chann	el Tra	nsect D	Data							Habita	at Inven	tory / Reac	h Data	
Transe	ect # (Location)	1(1	`100)	2 (1	۲ 50)	3 (CL)	4(↓	100)	5 (1/2	200)	6 (↓3	00)	Instream Cover (9	%):	10	Overhead	Cover (%):	10
Chann	el Width (m)	43	3.0	44	4.0	37	7.0	18	3.0	3	.1	1	3	Dom. Instream Co	over:	OHV	Dom. Ove	rhead Cover	: G
Wette	d Width (m)	2	7.0	44	4.0	37	7.0	18	3.0	1	.8	0).6	Subdom. Instream	n Cover:	G	Subdom. C	Overhead Co	ver: S
Depth	at LDB + 25% (m)	0).7	0	.6	0	.2	1	.1	0	.3	0).3	Maximum Depth	(m)	>2	Dom. Aqu	atic Veg. Typ	
Depth	at LDB + 50% (m)	1	1	1	.4	0	.2	1	.2	0	.3	0).4						
Depth	at LDB + 75% (m)	0).8	0	.4	0	.2	1	.1	0	.2	0).3						
Max.B	ankfullDepth (m)	1	.5	1	.9	0.	29	1.	.3	0.	70	0.	.77						
Gradie	ent (%)		-		-		-		-		-		-	Wat	ter Quality	Data		Channel	Characteristics
Domin	ant Habitat Unit	II	P1	V	VL	v	VL	v	/L	v	VL	II	P1	Time of Day (HH:	MM):		10:27	Pattern:	ME
Stream	n Bed													Water Temperatu	ure (°C):		2.9	Islands:	0
(F	Organics	1	00	1	00	З	10	3	0	6	50	e	50	Dissolved Oxygen	n (mg/L):		5.96	Bars:	BR
Area	Fines	e	i0	7	0	4	10	2	10	Sp. Conductivity ((µs/cm):		182	Coupling:	DC				
ate ect /	Small Gravel		0		0		0	(D		0		0	pH:			6.50	Confineme	nt: UN
ostr anse	Large Gravel		0		0		0	(D		0		0	Turbidity (NTU):		Ligh	tly Turbid	Flow Stage:	Flood
Sul Tra	Cobble		0		0		0	(D	(0		0						
% of	Boulder		0		0	1	0		D		0		0						
5	Bedrock		0		0		0	(D	(0		0						
Embec	dedness	V	/H	V	/H		L	ł	H	1	н	I	н		Fish Ha	abitat A	ssessment	Ratings	
Bank f	Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage	Fish	Coar	se Fish	Sport Fish
Bank H	Height (m)	0.3	0.5	0.6	0.6	0.1	0.1	0.1	0.1	0.2	0.4	0.37	0.23	Spawning:	Goo	d	N	one	None
Bank S	Slope (°)	0	0	0	0	0	0	10	10	10	10	70	70	Overwintering:	Poor-Mo	derate	P	oor	Poor
Bank S	Stability	S	S	S	S	S	S	S	S	MS	MS	MS	MS	Rearing:	Goo	d	Mod	derate	Poor-Moderate
Dom. I	Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Poor-Mo	derate	Poor-N	1oderate	Poor-Moderate
Subdo	m. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F						
Dom.	Riparian Veg.	С	С	G	С	G	S	G	S	S	С	D	D						
Subdo	m. Riparian Veg.	S	S	С	S	S	G	S	G	S	G	G	G						
										F	ish Sar	npling	Data						
											E	fish Ca	tch	Trap Catch	Efish C	PUE	Trap	CPUE	Rel. Abundance
	Method			Effort	:		S	opecie	s			(n)		(n)	(#fish/:	100s)	(#fi	sh/hr)	(% of total)
No Ele	ctrofishing			-	(s)		NO FIS	Н САР	TURE)									
Minno	w Trap (MT)		46	5.6	(hr)														
	Electrofish	er Seti	tings																
Volts	Freq. (Hz) Dut	y Cycle	e (%)	Dist	. (m)														
-	-	-			-														
										G	ienera	l Comn	nents						
100 m	upstream is the en	trance	e of a c	deep p	ool flo	oded	in floor	dplain	. at 50	m up	stream	n is a flo	oded a	rea that crosses de	ownstream	of cent	erline. Dov	wnstream is	braided with
organi	c islands in the mid	ldle th	rough	out to	100 m	dowr	istream	n, whe	ere bea	aver da	am is p	resent	. An exi	sting culvert is pre	sent at cros	ssing wi	th pooling o	on either sid	e with

vegetation islands. Entire reach had poorly defined channel that was largely flooded. Two minnow traps were set on either side of the crossing.

							Ma	ckenz	ie Va	alle	y Hi	ghw	/ay					
	TE		те	СЦ			Si	te 940	.1	Unr	name	ed W	/atercourse					
						UTM Loo	ation:	10W	37532	5 7203	3625 Survey Date: 10/8/2021; 18:00							
							I	egal Loc	ation:				-		Zone:			
								Crew II	nitials:	TM &	MAN			Restricted A	Activity Period:		-	
		Ph	ysical	Chanr	nel Tra	ansect	Data							Habitat In	ventory / Reac	h Data		
Transect # (Location)	1 (1	`100)	2 (1	↑50)	3 (CL)	4 (、	↓100)	5(↓2	200)	6(↓3	600)	Instream Cover ((%):	10 Overhead	l Cover (%):	90
Channel Width (m)	1	.9	2	.2	1	5		1.4	1	.0	1	.3	Dom. Instream C	Cover:	UC Dom. Ove	erhead Co	ver:	S
Wetted Width (m)	1	.1	1	7	1	.0		1.1	0	.9	1	.0	Subdom. Instrea	m Cover:	- Subdom.	Overhead	Cover:	G
Depth at LDB + 25% (m)	C).2	0	.3	0	.4		0.4	0	.2	0	.1	Maximum Depth	n (m)	0.6 Dom. Aqu	atic Veg.	Туре:	-
Depth at LDB + 50% (m)	C).4	0	.3	0	.4		0.3	0	.1	0	.2						
Depth at LDB + 75% (m)	C).3	0	.2	0	.3		0.5	0	.3	0	.2						
Max.BankfullDepth (m)	0	.51	0.	.47	0.	.93	C	.68	0.	40	0.	32						
Gradient (%)		1		1		1		1	!	5	8	3	w	ater Quality Data	a	Chann	el Chara	acteristics
Dominant Habitat Unit	F	R1	F	R1	F	81		R1	Р	22	S	Р	Time of Day (HH	:MM):	18:09	Pattern:		ME
Stream Bed													Water Temperat	:ure (°C):	0.2	Islands:		Ν
Grganics	4	40	4	10	e	50	2	L00	3	80	6	0	Dissolved Oxyge	n (mg/L):	12.54	Bars:		Ν
Fines	6	50	e	50	2	10		0	7	0	3	0	Sp. Conductivity	(µs/cm):	597	Coupling	:	PC
ੀ ਨੂੰ Small Gravel		0		0		0		0			(D	pH:		8.29	Confinem	ient:	OC
Large Gravel		0		0		0		0	(0	1	0	Turbidity (NTU):		Lightly Turbid	Flow Stag	ge:	Moderate
S L Cobble		0		0		0		0	(0	(D						
Boulder		0		0		0		0	(0	(D						
Bedrock		0		0		0		0	(0	(D						
Embeddedness		N	I	N	1	N		N	1	N	1	N	Fish Habitat Ass	essment Ratings				
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	Coarse Fi	sh	Sport F	ish
Bank Height (m)	0.1	0.1	0.2	0.1	0.4	0.5	0.2	0.1	0.0	0.1	0.1	0.1	Spawning:	Moderate	None		None	
Bank Slope (°)	20	5	25	30	20	20	10	10	10	10	10	10	Overwintering:	None-Poor	None-Poo	or	None-P	oor
Bank Stability	MS	MS	MS	MS	MS	MS	US	MS	S	MS	MS	MS	Rearing:	Moderate-Goo	d Poor-Mo	derate	Poor-N	loderate
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Poor-Moderate	e Poor-Mo	derate	Poor-N	Ioderate
Subdom. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F						
Dom. Riparian Veg.	S	S	S	S	S	S	S	S	D	D	S	S						
Subdom. Riparian Veg.	G	G	G	G	G	G	D	D	S	S	D	D						
									Fisl	h Sam	pling [Data						
										Ef	ish Cat	ch	Trap Catch	Efish CPUE	Trap	CPUE	Rel. A	bundance
Method			Effort	:			Speci	es			(n)		(n)	(#fish/100s	s) (#fis	h/hr)	(%	of total)
No Electrofishing			-	(s)														
No Trapping			-	(hr)														
Electrofishe	er Set	tings																
Volts Freq. (Hz) Duty	y Cycl	e (%)	Dist	. (m)														
	-			-														
									Gei	neral	Comm	ents						

Snow and ice cover throughout at time of assessment. Overhanging shrubs cover 90-100% of stream throughout. Grasses compressed by snow. Uplands show signs of fire in past, with abundant woody debris throughout. No instream vegetation. 200 DS: Significant flow with several cascades. Upstream passage, along with the increased gradient, would be difficult for all fish species. Step pools are present downstream 300 m and cascade drops 0.25m with 0.36m pool depth (i.e. natural barriers). No fishing conducted due to snow and ice conditions.

	ТЕТ	R A	Т	EC	н			Ma Si	c <mark>kenz</mark> te 981	ie V .2	alle Unr	y Hi namo	ghv ed W	vay /atercourse					_
								,	UTM Loc	ation:	10W	62935	52 722	7768		Survey Date:	10/7/2021;	15:30	
								L	egal Loc	ation:				-		Zone:	1		
									Crew Ir	itials:	TM 8	MAN			Restricted Ac	tivity Period:	:	-	
Physical Channel Transect Data Habitat Inventory / Reach Data																			
Transect # (Location)		1(↑	100)	2 (1	<u></u> *50)	3 (CL)	4 (\	↓100)	5 (↓:	200)	6 (↓	300)	Instream Cover ((%): 25	o Overhead	ታ Cover (%):		40
Channel Width (m)		1	.4	2	.2	2	.6		2.0	4	.0	1	.4	Dom. Instream C	Cover: Co	Dom. Ove	erhead Cove	r:	S
Wetted Width (m)		0	.9	1	1	1	.4		1.5	1	.4	0	.7	Subdom. Instrea	im Cover: Bo	Subdom.	Overhead Co	over:	С
Depth at LDB + 25% (m	ı)	0	.1	0).1	0	.0		0.2	0	.5	0	.2	Maximum Depth	n (m) 0.5	3 Dom. Aqı	uatic Veg. Ty	pe:	-
Depth at LDB + 50% (m	ı)	0	.1	0).1	0	.1		0.1	0	.4	C	.2						
Depth at LDB + 75% (m	ı)	0	.1	0).1	0	.2		0.1	0	.4	C	.2						
Max.BankfullDepth (m)	0.4	45	0.	.71	1	.0	C	.52	0.	86	0.	57						
Gradient (%)		2	1		4		4		2		2		2	Wa	ater Quality Data		Channe	el Chara	acteristics
Dominant Habitat Unit		R	F	F	RF	F	RF		R1	F	1	F	82	Time of Day (HH	:MM):	15:30	Pattern:		ME
Stream Bed														Water Temperat	ture (°C):	0.2	Islands:		I.
Organics		()		0		0		0		0		0	Dissolved Oxyge	n (mg/L):	12.77	Bars:		N
Fines		1	0	1	10		0		0	3	0	2	20	Sp. Conductivity	(µs/cm):	961	Coupling:		CO
ਦੂ ਨੂੰ Small Gravel		4	0	1	LO	2	20		40	7	0	8	30	pH:		8.54	Confinemer	nt:	OC
Large Gravel		3	0	2	25	4	10		50		0		0	Turbidity (NTU):		Clear	Flow Stage:		Moderate
T Cobble		2	0	5	50	З	0		10		0		0						
Boulder		()		5	1	.0		0		0		0						
Bedrock		()		0		0		0		0		0						
Embeddedness		1	N	I	N		N		N	1	N		N	Fish Habitat Ass	essment Ratings				
Bank Measurements		Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right		Forage Fish	Coarse Fi	ish	Sport F	ish
Bank Height (m)		0.3	0.3	0.6	0.5	0.9	0.7	0.3	0.3	0.3	0.4	0.3	0.4	Spawning:	Moderate-Good	Moderate	e-Good	Modera	ate-Good
Bank Slope (°)		70	90	50	90	90	90	35	50	20	30	90	70	Overwintering:	None-Poor	None-Poo	or	None-P	oor
Bank Stability		MS	MS	MS	MS	MS	MS	MS	MS	MS	MS	US	US	Rearing:	Good	Good		Modera	ate
Dom. Bank Material		0	0	0	0	0	0	0	0	0	0	0	0	Passage:	Moderate	Moderate	e	Modera	ate
Subdom. Bank Materia	ıl	F	F	F	F	F	F	F	F	F	F	F	F						
Dom. Riparian Veg.		S	S	S	S	S	S	S	S	S	S	S	S						
Subdom. Riparian Veg.		G	G	S	С	G	G	С	С	G	G	С	С						
										Fish	Samp	oling D	Data						
											Ef	ish Ca	tch	Trap Catch	Efish CPUE	Trap	CPUE	Rel.	Abundance
Method				Effor	t			Speci	es			(n)		(n)	(#fish/100s)	(#fi	ish/hr)	(%	of total)
Backpack Electrofisher	(EB)		48	85	(s)		NO F	ISH CA	PTURED										
No Trapping				-	(hr)														
Electro	ofisher S	Setting	s																
Volts Freq. (Hz)	Duty C	ycle (%	6)	Dist	:. (m)														
235 30	1	12		1	00														
										Gen	eral <u>C</u>	omme	ents _						_
Assessment done in snow and 50% ice cover frozen. Upstream has some undercut banks and large cobbles present under banks. There are riffle sections throughout with chutes																			

abundant. Some step pools upstream from woody debris. Some logjams downstream that may be fish passage barriers. Good flow 300 m downstream, some woody debris causing riffling with minor undercutting and exposed roots on bank. Grasses covered in snow on bank.

		Mackenzie Va	lley Highwa	ıy			
	Site 805.5	Unnamed V	Vatercourse				
		UTM Location	: 10W 435589 710	8255	Survey [Date: 10/1/202	21; 13:13
		Legal Location	:	-	z	one:	
		Crew Initials	: TM & MAN	Restri	cted Activity Pe	riod:	-
Water Quality Dat	ta				Habitat Invento	ry / Reach Dat	а
Time of Day (HH:MM):	13:13			Instream Cover (9	%):	Overhead Co	ver (%): 30
Water Temperature (°C):	4.1			Dom. Instream Co	over:	Dom. Overhe	ad Cover: -
Dissolved Oxygen (mg/L):	9.10			Subdom. Instrear	n Cover:	Subdom. Ove	rhead Cover: -
Sp. Conductivity (µs/cm):	257			Maximum Depth	(m)	Dom. Aquati	: Veg. Type: -
pH:	7.53						
Turbidity (NTU):	Clear						
		Fish Samp	ling Data				
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing	- (s)	BROOK STICKLEBACK	-	106	-	2.39	67.9%
Minnow Trap (MT)	44.4 (hr)	PEARL DACE	-	50	-	1.13	32.1%
Electrofisher Se	ttings						
Volts Freq. (Hz) Duty Cyc	cle (%) Dist. (m) -						
	General Comments						
The site was a flooded wetland	e site was a flooded wetland and only had a defined channel at the crossing location. An assessment at the crossing identified the substrate to be 20% organics and 80%						
fines. Channel width as it cros	sed the winter road wa	s 0.3 m but was undefined upstr	eam and downstre	am of the crossing	due to flooding.	Wetted width	at the crossing

was 0.14m and the average depth was 0.45 m (0.36 m to 0.62m). Dominant riparian vegetation was grasses with shrubs.

Appendix C: Station Location Maps and Summary Sheets – Dehcho Territory December 2022

Appendix C Station Location Maps and Summary Sheets – Dehcho Territory

Code	Substrate	Size Range
0	Organics	NA
F	Fines	<2mm
SG	Small gravel	2-16mm
LG	Large gravel	17-64mm
С	Cobble	65-256mm
BL	Boulder	>256mm
BD	Bedrock	NA

Table B.1 Substrate Classifications for Stream Bed and Banks

Table B.2 Embeddedness

Code	Class	Description
Ν	Non-embedded	All rock substrates (i.e., gravel, cobble, boulders)
L	Low embeddedness	<25% embedded
М	Medium embeddedness	25-50% embedded
Н	High embeddedness	51-75% embedded
VH	Very high embeddedness	>75% embedded

Table B.3 Bank Stability

Code	Description
S	Stable
MS	Moderately stable
US	Unstable

Table B.4 Riparian Vegetation

Code	Description
Ν	None
G	Grass
S	Shrub
С	Coniferous
D	Deciduous forest
М	Mixed coniferous and deciduous forest
W	Wetland (e.g., muskeg, marsh, swamp, or bog)

Table B.5	Instream and Overhead Cover Typ	bes	
	Code		Description
AV		Aquatic vegetation	
BL		Boulders	

AV	Aquatic vegetation
BL	Boulders
DC	Depth or clarity (turbid) of water
OV	Overhanging vegetation
TS	Trees and/or shrubs overhead
UC	Undercut bank
WD	Woody debris

Table B.6 Stream Channel Pattern

Code	Description
ST	Straight
SI	Sinuous
IR	Irregular, wandering
IM	Irregular, meandering
ME	Regular meanders
ТМ	Torturous meander

Table B.7 Channel Islands

Code	Туре	Description
Ν	None	No islands in channel
0	Occasional	No overlapping islands, average spacing less than ten channel widths
I	Infrequent	Infrequent overlapping, average spacing less than ten channel widths
F	Frequent	Not overlapping, average spacing less than ten channel widths
S	Split	Islands overlap frequently or continuously, usually two or three flow branches
AN	Anatomizing	Continuously overlapped islands, with multiple flow branches

Table B.8 Sediment Bars

Code	Туре	Description
Ν	None	No bars present
SD	Side bar/point bar	Sediment deposition intermittent along the sides of the stream
DG	Diagonal bar	Mid-stream sediment deposition diagonally aligned to stream axis
MD	Mid-channel bar	Mid-stream deposition aligned parallel to stream axis
SP	Span	Sediment deposition continuous along the sides of the stream
BR	Braided	Sediment deposition forms a number of small channels separated by bars

Table B.9 Coupling

Code	Туре	Description
DC	Decoupled	Sediment mobilized on the hill slope by a land-slide normally would not enter the stream channel
PC	Partially coupled	A portion of the sediment mobilized on the hill slope by a landslide enters the stream channel
СО	Coupled	Sediment mobilized on the hillslope by landslide activity directly enters the stream channel

Table B.10 Confinement

Code	Туре	Description
EN	Entrenched	Entrenched channels are confined by fluvial eroded gullies or valleys or bedrock walls
СО	Confined	Confined channels are prevented or restricted from lateral migration by the valley walls
FC	Frequently Confined	Frequently confined channels are restricted from lateral migration by the valley walls, but are able to store sediments on a valley flat (typically, < channel width)
OC	Occasionally Confined	Occasionally confined channels are able to store sediments on a valley flat (typically 1 to 10 channel widths)
UN	Unconfined	Unconfined channels are not restricted from lateral migration by the valley walls.
N/A	Not Applicable	Confinement is not always applicable to every stream reach, such as a channel flowing across a fan or cone onto a valley flat.
Code	Туре	Description
------	--------------------	---
NDC	No defined channel	Site lacks a defined bed and bank (i.e., no channel scour).
EPH	Ephemeral	Water only present during certain times of the year (e.g., spring freshet). Includes dry channels that exhibit a defined bed and bank (i.e., scour)
INT	Intermittent	Water is not continuous in space. Example: areas of sub- surface flow
PER	Permanent	Water is likely present at all times of the year

Table B.11 Channel and Flow Characterization

Table B.12 Flow Stage

Туре	Description
Dry	Water not present
Pooled	Water only present as unconnected pools or standing in bottom depressions. No flow
Low	Water flowing as threads within the channel; most bed material is exposed and little of the lower banks are wet
Moderate	Water flowing throughout the normal bed and in contact with the lower portions of banks; some bars are exposed
High	Water fills most of the channel and is in contact with the middle and upper portions of banks
Flood	Water is bankfull or over banks and into the floodplain

Habitat Unit	Class	Code	Code Description									
Falls		FA	Highly turbulent whitewater caused by water free-falling over a vertical drop. Falls formed from a full spanning flow obstruction, often bedrock. Slope < 100%.									
Cascade		CA	Series of small falls or steps and pools; stepped longitudinal profile. Substrate of bedrock or boulder accumulations. Highly turbulent, high velocity, > 7% slope, mainly whitewater.									
Rapid		RA	Steps and pocket pools common, cobble/boulder substrate with some exposed boulders at lower flows. Considerable turbulence, some whitewater, fast velocity (> 0.5 m/s), 4-7% slope.									
Chute		СН	Area of channel constriction, usually due to bedrock intrusions; associated with channel deepening and increased velocity.									
Riffle		RF	Partially to totally submerged pebble to cobble substrate, causing moderate turbulence and ripples, little to no whitewater (some whitewater at points of constriction), moderate velocity (0.2 to 0.5 m/s), usually < 0.5 m depth, 1 - 4% slope.									
Run			Runs are typically deep, slow to swift flowing sections (> 0.2 m/s), with gravel to boulder substrate. Defined thalweg, moderate slope and with no surface turbulence. Run units are differentiated into three classes, based on depth.									
	1	R1	Deepest run (> 1 m), slow to fast water velocity, coarse substrate (cobble to boulder), high instream cover from substrate and depth.									
	2	R2	Moderate depth (0.6 - 1.0 m), slow to fast water velocity, coarse substrate (cobble to boulder), moderate instream cover from substrate and depth.									
	3	R3	Shallowest depth (0.3 - 0.6 m), slow to fast water velocity, coarse substrate (gravel to cobble), low instream cover.									
Glide		GL	Glides are shallow (< 0.3 m deep), wide, slow flowing (< 0.2 m/s), non-turbulent and lack a defined thalweg. Substrate is usually silt/sand but may sometimes consist of gravel to small cobble. Featureless with low instream cover.									
Flat		FL	Area characterized by low velocity and near-uniform flow; differentiated from pool habitat by high channel uniformity; more depositional than R3 habitat									
Sheet		ST	Shallow water reach that flows uniformly over smooth bedrock. Non-turbulent.									
Pool			Pools are deeper and wider than channel units immediately above or below it and are usually formed by the scouring or plunging action of water. Sub-surface velocities are slow (water surface may be fast and substrate usually composed of fines or small gravel.									
	1	P1	High quality pool habitat based on depth and size. High instream cover from instream features (<i>i.e.</i> , logs/boulders) and depth (> 1.2 m deep), provides overwintering habitat.									
	2	P2	Shallower than P1 (0.6 - 1.2 m deep), moderate to high instream cover, not suitable for overwintering but provides juvenile and adult fish rearing habitat during open water.									
	3	P3	Shallow (< 0.6 m deep) and small, low instream cover. Not suitable for overwintering or adult holding habitat but may provide rearing habitat for juvenile fish during open water.									
Step Pool		SP	Series of pools separated by short riffles or cascades. Generally found in high gradient, confined mountain streams dominated by boulder substrate. The length of the turbulent water cannot exceed the mean wetted width; otherwise, classify the pools and turbulent water separately.									

 Table B.13
 Habitat Unit Classification for Small Streams

Table B.14 Water Clarity/Turbidity Codes

Code	Definition
С	Turbid
L	Moderately turbid
Μ	Lightly turbid
Т	Clear

		Dencho UWB-1: V	Vetland Area	sh and Fish H			
Kal	o-Stante		ocation: 10U 470	0932 7019008	Survey	Date: Septemb	er 16, 2020
		km	Marker: 702.9		2	one: 2	
		Crew	Initials: LD MAN	Restricted /	Activity Timing Win	dow: August 1	5 to July 15
			Site Photogra	aphs			
	owards larger B	ody of water		Photo 2. Facing wes	st showing inlet as e	phemeral drain	age
	7		Fish Sampling	Data			
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Method Electrofishing	Littort	Species	(n) -	(n) 0	(#tish/100s)	(#tish/hr) 0.00	(% of total)
Minnow Trap	- (3) 44.8 (hr)			U U	-	0.00	-
Water Quality Da	ata			General Com	ments		
Time of Day (HH:MM):	14:22	Wetland area with an ir	nlet assessed as an	ephemeral drainage	e (WX-031). Inlet pro	vides connecti	vity to a larger
Water temperature (°C):	7.86	waterbody to the west.	Organic substrate	and wetland vegeta	tion with a maximum	m depth of app	roximately 1 m. No
Dissolved Oxygen (mg/L):	13.08	non captureu în minnov	v daps. Laiger Wat	erbouy to west may		otentidi.	
oH:	6 77						
Turbidity (NTU):	-						

Ephemeral drainage oriented east-west across the existing winter road. No defined bed or banks observed. Some standing, isolated water was observed and was discontinuous on the west side of the existing winter road. No connectivity to the Mackenzie River was observed. River is approximately 2 km to the west. No fish habitat potential.

Prepared by: LD Reviewed by: DC Stantec Document Classification: Stantec Internal

		De	hcł	10 1	ſerı	rito	ry F	ish and Fis	sh Hab	oitat								
							W	X-03	36:	Un	nam	led	Watercourse					
K K	alo	0-S	tar	iteo	3			UTM	Loca	tion:	10U	4659	77 7037399 Survey Date: Septemeber 22, 2020					
								k	m Ma	aker:	721.	51			Zone:		2	
								Cre	w Ini	tials:	LD N	/AN	Restricted Activit	ty Timing	Window:	August	15 to Ju	ly 15
	Ph	ysica	l Chai	nnel	Trans	ect D	ata						На	abitat Inve	entory / I	Reach Dat	a	
Transect # (Location)	1(↑	·100) _	2 (1	<u>50)</u>	3 ((CL)	4 (↓	100)	5 (↓	200)	6(↓	300)	Instream Cover	(%):	11 Over	rhead Cov	er (%):	24
Channel Width (m)	2	.7	2	.2	1.	.8	1	.9	1	.6	1	2	Dom. Instream C	Cover:	WD Dom	i. Overhea	d Cover	: TS
Wetted Width (m)	1	.9	2	.1	1.	./	2	.6	1	.4	1.	./	Subdom. Instrea	im Cover	DC Subo	dom. Over	head Co	ve UB
Depth at LDB + 25% (m)	0	.1	0	.2	0.	.2	0	.2	0	.1	0	2	Maximum Deptr	n (m)	0.4 Dom	. Aquatic	Veg. Typ	e: -
Depth at LDB + 50% (m)	0	.2	0	.1	0.	.2	0	.2	0	.3	0	2	Habitat Dist	tribution	<u>s</u>	ubstrate (Composi	tion
Depth at LDB + 75% (m)	0	.3	0	.1	0.	.4	0	.2	0	.3	0	2	P3			BL 10%		
Max.Bankfull Depth (m)	0	.6 ว	0	.5 -	0.	./	0	.6 -	0	.9 1	0	5	13%		(2		
Gradient (%)	-	2	:) ר	:	р Г	4	+ 		י ר			_10 LG)%	25%	
Dominant Habitat Unit	P		R	F	ĸ	F	R	F	R	F	ĸ	3			RF 5%			
Organico	2	E	2	c	n	c	2	c	2	c	2	c	P3		50%		F	
	2	.5 :0	2	.5 0	2	5 0	5	5 0	2	.5 .0	5	5 0	R3 35%				50%	
		n	ر ب	n n	ر م	บ า	ر ر	u n	ر ۱	n n	ر ر	0 1						
	ì	5		5		;		5		5		;	Water O	uality Dat	2	Channel	Charact	aristics
	1	0	1	, 0	1	, 0	1	, 0	1	, 0	1	, ∩	Time of Day (HH		14.03	Pattorn:	Charact	SI
	1	0	1	0	1	0	1	0	1	0	1	0	Water Temperat	$ture (^{0}C)$	2 9	Islands:		N
& Bedrock	1	.0 n	-	.u n	1	บ า	1	บ า	-	.0 1	1	บ า		m (mg/l)	2.J 8.50	Bars.		SD IN
Embeddedness	ŀ	н	ŀ	- -	F	, 1	ŀ	, 1	ŀ	- -	ŀ	, 1	Sp. Conductivity	(us/cm)	81.0	Coupling		0
Bank Measurements	l eft	Right	Left	Right	left	Right	left	Right	Left	Right	left	Right	nH [.]	(µ0) 0111)	6.27	Confinen	nent:	FC
Bank Height (m)	0.3	0.3	0.2	0.3	0.4	0.3	0.3	0.4	0.6	0.6	0.3	0.3	Turbidity (NTU):		-	Flow Star	re:	low
Bank Slope (°)	40	30	150	150	120	120	130	160	110	70	130	150	Fis	h Habitat	Assessm	ent Ratin	gs	
Bank Stability	MS	MS	S	S	MS	MS	S	S	S	MS	S	S		Forage Fi	sh Co	arse Fish	Sport	Fish
Dom. Bank Material	F	F	F	F	0	0	0	0	0	0	0	0	Spawning:	Poor		Poor	Po	or
Subdom. Bank Material	F	0	0	0	F	LG	SG	С	F	F	F	F	Overwintering	Poor		Poor	Ро	or
Dom. Riparian Veg.	G	G	G	G	S	S	G	G	Ν	Ν	G	G	Rearing:	Moderat	te M	oderate	Poor-M	oderate
Subdom. Riparian Veg.	S	S	D	D	G	G	D	D	D	D	D	D	Passage:	Good		Good	Go	od
	A State of the sta	and the second	1 State State State			ルトメージを一つたる	A REAL AND				and the second second							

Photo 1: Facing upstream 200 m downstream of centerline.

Photo 2: Facing upstream at centerline.

	Fish Sampling Data											
				Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance				
Meth	od	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)				
Backpack Electr	ofisher (EB)	450 (s)	NO FISH CAPTURED	0	-	0.00	-	-				
No Trapping		- (hr)										
Elec	trofisher Setting	S										
Volts Freq. (Hz	Duty Cycle (%) Dist. (m)										
400 30	12	346										
			Gener	al Comments								
No fish captured or observed during fish assessment. Rearing habitat may be limited by velocity in riffle habitat throughout assessed reach. No known barrier between crossing location and Mackenzie River.												

Contract of the			De	hcł	ho T	err	ito	ry F	ish and Fis	sh Hab	itat							
		W	WX-038: Unnamed Watercourse															
K	alo-	St	an	tec	:			υтм	Loca	tion:	10U	4652	248 7042571 Survey Date: September 22, 2020					
								k	m Ma	arker	727.	36	Zone: 2					
								Cre	w Init	tials:	LD M	MAN	Restricted A	ctivity Tim	ing Win	dow: Aug	gust 15 to J	July 15
	Phys	sical	Char	nnel	Trans	ect D	Data						н	labitat Inv	entory /	Reach Da	ata	
Transect # (Location)	1(↑1	.00)	2 (↑	`50)	3 (CL)	4 (↓	/100)	5(↓	200)	6(↓	300)	Instream Cover	(%):	9 Ove	rhead Cov	ver (%):	21
Channel Width (m)	1.6	;	1.	.1	1.	.5	1	.4	2.	.3	0	.9	Dom. Instream (Cover: I	DC Dom	1. Overhea	ad Cover:	UB
Wetted Width (m)	1.1	i.	1.	.0	1.	1	1	2	1.	.8	0	.8	Subdom. Instrea	am Cover	- Subo	Jom. Ovei	rhead Cove	e WD
Depth at LDB + 25% (m)	0.1		0.	.2	0.	.3	0	.3	0.	.2	0	.3	Maximum Depti	h(m) ().4 Dom	i. Aquatic	Veg. Type	: -
Depth at LDB + 50% (m)	0.1		0.	.2	0.	. <u>3</u>	0	.3	0.	.2	0	.4	Habitat Dis	tribution		Substrate	Composit	ion
Depth at LDB + 75% (m) Max Bankfull Donth (m)	0.1		0.	.2	0.	5	0	.1	0.	.1 6	0	.4 7	20%	R	LG	_ C		0 30%
Gradient (%)	0.5	,	0.	1	0.	1	0	2 2	1	5	1	.7		30)%	SG 10%		/ 30/0
Dominant Habitat Unit	RF	:	R	F	R	r २	R	2	R		R							
Stream Bed						5												
- Organics	30)	3	0	3	0	3	30	3	0	3	0						/
e Fines	50)	5	0	5	0	5	50	5	0	5	0	P 3					
ਧ ਸ਼ੁ ਤ Small Gravel	5		5	5	ŗ	5	ļ	5	Ę	5	į	5	50%		F 50)%		
ਤੂੰ ਨੂੰ Large Gravel	5		5	5	5	5	!	5	5	5	ŗ	5	Water Q	uality Data	a	Channe	l Characte	ristics
Sub Tra	10	I	1	0	1	0	1	10	1	.0	1	.0	Time of Day (HH	I:MM):	17:26	Pattern:		ME
Boulder	0		C	C	()	(0	(C	(0	Water Temperat	ture (°C):	2.5	Islands:		Ν
Bedrock	0		C)	()	(0	(С	(0	Dissolved Oxyge	en (mg/L)	9.26	Bars:		DG
Embeddedness	н		H	4	H	1	ŀ	н	ŀ	H	ŀ	H	Sp. Conductivity	' (μs/cm)	74.0	Coupling	:	CO
Bank Measurements	Left R	ight	Left	Right	Left	Right	l Left	Right	Left	Right	Left	Right	pH:		7.53	Confinen	nent:	FC
Bank Height (m)	0.4 (0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.2	0.3	Turbidity (NTU):		-	Flow Stag	ge: I	Low
Bank Slope (°)	80	60	100	90	45	50	80	30	50	40	90	90	Fi	sh Habitat	Assessr	nent Rati	ngs	
Bank Stability	MS I	MS	MS	MS	US	US	MS	MS	US	US	MS	MS		Forage Fis	sh Co	arse Fish	Sport	Fish
Dom. Bank Material	0	0	0	0	0	F	0	F	F	F	0	0	Spawning:	Poor		Poor	Poc	or
Subdom. Bank Material	F	F	F	F	F	F	F	0	0	0	F	F	Overwintering	Poor		Poor	Poo	or
Dom. Riparian Veg.	G	G	G	G	Ν	Ν	G	G	N	Ν	G	G	Rearing:	Moderat	e M	oderate	Poor-Mo	derate
Photo 1: Facing up at	50 m L	upst	ream	fron	n cen.	terlir	ne		10日本語の法律を考えた。 たいてんしょう		Phot	co 2: F	Facing upstream	at centerli	ne.			
								F	ish Sa	ampli	ing D	ata	T O i i	50.4 00.4		CDUE	D.I.Al	
Method Backpack Electrofisher (E No Trapping Electrofisher Volts Freq. (Hz) Duty C 400 30	EB) Settin Cycle (9 12	43 gs %)	Effort 32 Dist. 31	t (s) (hr) . (m) 17	NC	s) fis	pecie H CAI	2s PTURI	ED	Efis	sh Ca (n) 0	tch	Trap Catch (n) -	Efish CPU (#fish/100 0.00	lE Tr;)s) (‡	a p CPUE tfish/hr) -	Rel. Abui (% of t -	ndance otal)
								0	Sener	al Co	mme	ents						
High approach banks, fis fish captured or observe	h habi d durir	tat r ng fi	nostl sh as	y lim sessr	ited k nents	y ov s.	erall	depti	п. No	knov	vn ba	rriers	s from Mackenzie	e River may	y provid	e seasona	l fish habit	at. No

all should be a second s								Dehcho Territory Fish and Fish Habitat										
							Dra	ina	ge 1	:Un	nan	ned	Watercourse					
	Ka	lo-	Sta	ant	ec			UTN	1 Loca	tion:	10U	4630	08 7047414		Surve	ey Date:	Septembe	er 24, 2020
							km I	Mark	er:		732.	74				Zone:		2
								Cre	ew Ini	itials:	LD I	MAN	Restricted A	ctivity Tin	ning V	Vindow:	August 15	to July 15
Physical Channel Transec	t Data	3											Habitat Inventory / R	each Data	1			
Transect # (Location)	1(↑	100)	2 (1	<u>^50)</u>	3 (CL)	4(↓	·100)	5 (↓	·200)		6	Instream Cover (%):	5	5 Ov	erhead Co	ver (%):	22
Channel Width (m)	0	.9	0	.9	0.	.9	1	.7	1	.1	1	.6	Dom. Instream Cover:	: D	C Do	m. Overhe	ead Cover:	TS
Wetted Width (m)	0	.8	0	.9	0.	.8	1	.7	0	.9	1	.2	Subdom. Instream Co	ver:	- Sul	bdom. Ove	erhead Cov	ver: UB
Depth at LDB + 25% (m)	0	.2	0	.2	0.	.2	0	.3	0	.0	0	.1	Maximum Depth (m)	0.	.3 Do	m. Aquati	c Veg. Typ	e: -
Depth at LDB + 50% (m)	0	.2	0	.2	0.	.2	0	.0	0	.1	0	.0	Habitat Distrib	ution_		<u>Substra</u>	ate Compo	<u>sition</u>
Depth at LDB + 75% (m)	0	.1	0	.1	0.	.3	0	.1	0	.1	0	.2	P3					0
Max.Bankfull Depth (m)	0	.6	0	.7	0.	.6	0	.4	0	.4	0	.5	20%					_10%
Gradient (%)	4	4	ŗ	5	5	5	1	.4	6	6	9	9				BL		
Dominant Habitat Unit	R	۲F	R	۲F	R	F	F	۲F	R	RF	F	۲F	R3			35%		
Stream Bed													10%				F 40%	
Grganics	1	.0	1	.0	1	0	1	.0	1	0	1	.0		RF		C 15	%	
Fines	4	0	4	0	4	0	4	0	4	10	4	0		70%				
ਦੂ ਨੂੰ Small Gravel	(C	(0	()		0	(0		0						
transferred Gravel	(C	(0	()		0	(0		0	Water Quali	ty Data		Char	nnel Chara	cteristics
and Cobble	1	.5	1	.5	1	5	1	.5	1	.5	1	.5	Time of Day (HH:MM)):	13:52	Pattern	:	ST
Boulder	3	5	3	5	3	5	3	5	3	35	3	5	Water Temperature (°C):	3.3	Islands:		Ν
Sedrock	(C	(0	()		0	(0	(0	Dissolved Oxygen (mg	g/L):	8.55	Bars:		SD
Embeddedness	Ν	N	Ν	N	Ν	Λ	ſ	N	Ν	N	ſ	N	Sp. Conductivity (µs/c	:m):	88.0	Couplin	g:	CO
Bank Measurements	Left	Right	t Left	Right	Left	Right	Left	Right	Left	Right	t Left	Right	pH:		6.47	Confine	ment:	EN
Bank Height (m)	0.4	0.4	0.5	0.4	0.3	0.3	0.3	0.3	0.3	0.2	0.3	0.2	Turbidity (NTU):		-	Flow Sta	age:	Low
Bank Slope (°)	90	90	100	80	90	90	90	90	100	90	50	90	Fish	n Habitat /	Assess	sment Rat	ings	
Bank Stability	S	MS	MS	MS	S	S	S	S	S	S	MS	S	For	age Fish	0	Coarse Fis	h Sp	ort Fish
Dom. Bank Material	0	F	F	0	0	0	0	0	0	0	0	0	Spawning:	Poor		Poor		Poor
Subdom. Bank Material	F	0	0	0	F	F	F	F	0	0	F	0	Overwintering:	Poor		Poor		Poor
Dom. Riparian Veg.	G	G	G	S	S	S	G	G	G	G	S	S	Rearing:	Poor		Poor		Poor
Subdom. Riparian Veg.	S	S	S	G	S	G	G	С	С	С	S	S	Passage:	Poor	Po	or-Moder	ate Poor	-Moderate

Photo 1: Facing upstream 50 m downstream from centerline.

Photo 2: Facing downstream 100 m downtream of centerline.

		Fis	h Sampling Data	a			
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing	- (s)	NO FISH CAPTURED					-
No Trapping	- (hr)						
Electrofisher Settings							
Volts Freq. (Hz) Duty Cycle (%)	Dist. (m)						
		Ge	neral Comment	s			

Velocity and gradient barriers for fish at confluence with Mackenzie River and downstream of centerline (14% and 16% slope, respectively). Fish assessment not completed as fish presence was known.

								De	hcł	<mark>ו סו</mark>	Γerı	rito	ry I	Fish and Fis	h Habi	tat					
								Boi	nnie	e Cr	eek										
		Ka	lo-	Sta	nte	ec			υтм	Loca	tion:	10U	4625	86 7048307	Sur	vey D	ate: S	Septemb	oer 23,	2020	
									kn	n Ma	rker:	733.	71				z	one:	•	2	
									Cre	w Ini	tials:	LD I	MAN	Restricted Ac	tivity Timi	ng W	indow	v A	August 1	5 to Ju	uly 15
		Ph	ysica	l Chai	nnel ⁻	Frans	ect D	ata							Habitat In	vento	ory / F	Reach D	ata		
Tran	sect # (Location)	1(↑	·100)	2 (1	<u>^50)</u>	3 (CL)	4(↓	100)	5(↓	200)	6(1	/300)	Instream Cover (%):	15	Over	head Co	over (%)	:	25
Char	nnel Width (m)	3	.4	3	.1	2.	.0	3	.0	3	.1		-	Dom. Instream C	over:	BL	Dom	. Overh	ead Cov	er:	TS
Wet	ted Width (m)	3	.0	3	.2	2.	.2	3	.1	2	.3		-	Subdom. Instrea	m Cover:	WD	Subd	lom. Ov	erhead	Cove	UB
Dept	h at LDB + 25% (m):	0	.1	0	.2	0.	.2	0	.2	0	.3		-	Maximum Depth	(m)	0.4	Dom	. Aquati	ic Veg. T	ype:	-
Dept	h at LDB + 50% (m):	0	.1	0	.2	0.	2	0	.1	0	.4		-	Habitat Dis	stribution			Substra	ate Com	positio	on
Dept	h at LDB + 75% (m):	0	.1	0	.3	0.	.2	0	.2	0	.3		-							_05	5%
Max	.Bankfull Depth (m)	0	.4	0	.5	0.	.7	0	.5	0	.7		-	P3 30%							
Grad	lient (%)		4	4	4	9	Э	5	5		2		-								
Dom	inant Habitat Unit	Р	3	R	RF	R	F	R	F	F	₹3		-			RF		40	L F %	20%	
Strea	am Bed															50%					
-	_ Organics	!	5	ļ	5	5	5	Ę	5		5		-						C 20%	~	_SG 15%
	Fines	2	20	2	0	2	0	2	0	2	20		-	R3							1370
ate /	Small Gravel	1	15	1	.5	1	5	1	5	1	L5		-	20%							
stra	Large Gravel	(0	(D	()	()		0		-	Water C	Quality Dat	а		Chan	nel Cha	racteri	istics
Sub	Cobble	2	20	2	0	2	0	2	0	2	20		-	Time of Day (HH:	MM):	10	:47	Pattern	:	9	SI
J.	Boulder	4	10	4	0	4	0	4	0	4	10		-	Water Temperat	ure (°C):	0	.8	Islands:	:	I	N
0/	Bedrock	(0	(D	()	()		0		-	Dissolved Oxyger	n (mg/L):	12	.03	Bars:		D	G
Emb	eddedness	M	N	Ν	N	Ν	Λ	Ν	Λ	ſ	M		-	Sp. Conductivity	(µs/cm):	80	0.0	Couplin	ng:	C	0
Banl	Measurements	Left	Right	t Left	Right	Left	Right	Left	Right	Left	Right	l Left	Righ	pH:		6.	61	Confine	ement:	E	N
Bank	: Height (m)	0.2	0.2	0.2	0.2	0.5	0.6	0.3	0.3	0.2	0.3	-	-	Turbidity (NTU):			-	Flow St	age:	Mod	lerate
Bank	slope (°)	90	90	110	90	90	100	120	110	90	40	-	-		Fish Habita	at Ass	sessm	ent Rat	ings		
Bank	Stability	S	MS	MS	MS	S	S	S	S	MS	MS	-	-		Forage Fis	sh	Coa	arse Fish	n S	port F	ish
Dom	. Bank Material	0	0	0	0	0	0	0	0	0	F	-	-	Spawning:	Poor			Poor		Poor	r
Subo	lom. Bank Material	F	F	F	F	F	F	SG	SG	F	0	-	-	Overwintering:	None		I	None		None	е
Dom	. Riparian Veg.	G	S	S	S	S	S	G	G	G	G	-	-	Rearing:	Moderat	e	Mo	oderate	Mod	derate	-Good
Subo	lom. Riparian Veg.	С	G	G	G	С	G	S	S	S	S	-	-	Passage:	Moderat	e	Mo	oderate	Ν	Nodera	ate
			Ki	5/2		1	14		1	10			نى ئىرى	State State	一些日		1.	1	1	110	

Photo 1: Facing upstream from 100 meters up for centerline

Photo 2: Facing upstream 100 meters down from Centerline.

			Fis	h Sampling Data	а			
				Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Method	Effort		Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing	- ((s)	NO FISH CAPTURED					-
No Trapping	- ((hr)						
Electrofisher Setting	5							
Volts Freq. (Hz) Duty Cycle (%)	Dist.	(m)						
			Ge	neral Comment	:s			
Confluence with Mackenzie Rive	r approx	ximatel	ly 240 meters downstr	eam from cente	erline, no fish ba	arriers observed. F	ish assessment	t not completed as

Confluence with Mackenzie River approximately 240 meters downstream from centerline, no fish barriers observed. Fish assessment not completed as fish presence was known.

a state of the				Dehch	10 Teri	ritory F	Fish and Fish Habitat
				Drainag	ge 2 Un	named	Watercourse
H I	Kalo-S	Stante	с	UTM	Location:	10U 4620	82 7050913 Survey Date: September 23, 2020
				kr	n Marker:	736.48	Zone: 2
				Cre	w Initials:	LD MAN	Restricted Activity Timing Window: August 15 to July 15
	Physic	al Channe	Transect	Data			Habitat Inventory / Reach Data
Transect # (Location)	1 (个100)	2 (个50)	3 (CL)	4 (↓100)	5 (↓200)	6 (↓300)	Instream Cover (%): 7 Overhead Cover (%): 16
Channel Width (m)	0.8	1.1	0.9	1.2	1.3	1.2	Dom. Instream Cover: WD Dom. Overhead Cover: UB
Wetted Width (m)	0.9	1.0	1.0	1.0	0.9	1.7	Subdom. Instream Cover DC Subdom. Overhead Cove TS
Depth at LDB + 25% (0.2	0.1	0.3	0.1	0.3	0.1	Maximum Depth (m) 0.3 Dom. Aquatic Veg. Type: -
Depth at LDB + 50% (0.2	0.1	0.3	0.2	0.3	0.1	Habitat Distribution Substrate Composition
Depth at LDB + 75% (0.2	0.1	0.3	0.3	0.1	0.1	P3 15%
Max.Bankfull Depth (0.6	0.4	0.7	0.5	0.4	0.2	BL O
Gradient (%)	6	4	4	10	/	6	RF C 10% 15% 20%
Dominant Habitat Un	R3	R3	KF	R3	RF	RF	45%
Stream Bed	20	20	20	20	20	20	LG 5% F 30%
	20	20	20	20	20	20	R3 20%
	20	20	20	20	20	20	40%
	20	20	20	5	5	20	Water Quality Data Channel Characteristics
	10	10	10	10	10	10	Time of Day (HH:MM): 10:27 Pattern: SI
	10	10	10	10	10	10	Water Temperature $\binom{0}{2}$ 0.7 Islands:
& Bedrock	15	15	15	15	15	15	Discolved Oxygen (mg/L) 8 88 Bars: N
Embeddedness	M	M	M	M	M	M	Sn Conductivity (us/cm) 78.0 Counting: CO
Bank Measurements	Left Right	Left Right	Left Right	Left Right	l oft Righ	I Left Right	nH: 6.52 Confinement: CO
Bank Height (m)	0.3 0.3	0.3 0.3	0.3 0.4	0.2 0.2	0.2 0.3	0.2 0.3	Turbidity (NTU): - Flow Stage: Low
Bank Slope (°)	110 130	70 50	120 160	80 70	110 80	130 160	Fish Habitat Assessment Ratings
Bank Stability	S S	MS US	S S	MS MS	S S	S S	Forage Fish Coarse Fish Sport Fish
Dom. Bank Material	0 0	FF	0 0	F F	0 0	0 0	Spawning: Poor Poor Poor
Subdom. Bank Mater	FF	0 0	FF	0 0	FF	FF	Overwintering: Poor Poor Poor
Dom. Riparian Veg.	N N	GG	G G	GG	G G	G G	Rearing: Moderate Moderate Poor-Moderate
Subdom. Riparian Ve	S S	S S	S S	S S	S S	S S	Passage: Moderate Moderate Moderate
Photo 1: Facing down	nstream 2	.00 m dowr	nstream o	f centerlir	ie.	Photo 2: I	acing upstream 100 m upstream of centerline.
		-			Fish Sam	pling Data sh Catch	Tran Catch Efich (DIIE Tran (DIIE Dal Aburdance
Method		Effort	, ,	necies	E11	(n)	(n) (#fish/100s) (#fish/hr) (% of total)
No Electrofishing		- (s)	NO FIS	H CAPTUR	FD	(11)	
No Trapping		- (hr)					
Electrofishe	r Setting	; ,					
Volts Freq. (Hz) Duty	Cycle (%)	Dist. (m)					
					General	Comments	5
No known barriers be	etween M	ackenzie R	iver and p	roposed c	rossing lo	cation or w	vithin assessed reach. Fish assessment not completed as fish
presence was known.	. Fish habi	tat was lin	nited by d	epth at th	e time of a	ssessmen	t.
: LD Reviewed by: DC							

							De	hcł	ιο Τ	err	ito	ry F	ish and Fis	h Habit	at			
		~					W	X-03	39:	Un	nan	ned	Watercourse	9				
K	alo	-St	tan	tec				UTM	Locat	tion:	10U	4620	13 7051561	Sui	vey Dat	e: Septe	emeber 23	, 2020
								kn Cro	n Mai	rker:	738.	7	Destricted Asti	uitu Tinaina	Zon	e:	2 	
	Phys	sical	Chan	nel T	ranse	oct D	ata	Cre	w init	lais:	LDT	VIAN	Restricted Acti	wity filming	ntory / R	N: Augi	isi 15 lo ji ta	11Y 15
Transect # (Location)	1(个:	100)	2(1	`50)	3 ((CL)	4(↓	100)	5(↓	200)	6(1	300)	Instream Cover (%	%): <u>9</u>	9 Overl	head Cov	ver (%):	15
Channel Width (m)	1.4	4	0.	.9		8	1	.1	1.	.4	1	.5	Dom. Instream Co	over: D	C Dom.	Overhea	ad Cover:	TS
Wetted Width (m)	1.	2	1.	.0	1.	1	1	.0	1.	.0	1	.1	Subdom. Instream	n Cover: B	L Subdo	om. Ove	rhead Co [,]	UB
Depth at LDB + 25% (m)	0.2	2	0.	1	0.	2	0	.3	0.	2	0	.1	Maximum Depth	(m) 0	.3 Dom.	Aquatic	Veg. Typ	-
Depth at LDB + 50% (m)	0.2	2	0.	2	0.	2	0	.3	0.	2	0	.0	Habitat Dist	<u>ribution</u>	<u>S</u>	ubstrate	Composit	ion
Depth at LDB + 75% (m)	0.2	2	0.	2	0.	1	0	.2	0.	1	0	.1	P3			BR	C)
Max.Bankfull Depth (m)	0.6	6	0.	6	0.	7	0	.7	0.	.6	0	.5	10%			5%	10	%
Gradient (%)	3		2	ł	2		-	1	Э	3	1	3				с		
Dominant Habitat Unit	RF	F	R	F	R	3	R	3	R	F	F	RF	R3			20%	F	
Stream Bed													30%	RF		SG	40%	
Greanics	10	C	1	0	1	C	1	.0	1	0	1	.0		60%	LG	20%		
e Fines	40)	4	0	4	2	4	0	4	0	4	0			5%			
말 당 Small Gravel	20)	2	0	2	2	2	.0	2	0	2	20						
Ti S Large Gravel	5		5	; -	5	'	ļ	5	5	5		5	Water Qu	ality Data		Channe	l Characte	ristics
	20)	2	0	2)	2	.0	2	0	2	20	Time of Day (HH:	MM):	13:27	Pattern:	I	IR
8 Boulder	0	!	C)	C	1	()	()	(0	Water Temperatu	ure (°C):	0.4	lslands:		N
Bedrock	5		5) 	5			5 A	5) /		5	Dissolved Oxygen	i (mg/L):	9.08	Bars:		5D
Embeddedness		 	N	/ 	N	1	1	/I		/	,	vi 	sp. Conductivity (μs/cm):	67.0	Coupling		.0
Bank Weasurements	Lett	cignτ		Right	Left	Kignt	Left	Kight	Left	Kigni		Right	pH: Turbidity (NTU):		6.99	Continer	nent H	-C
Bank Slope (°)	0.5	0.5	120	110	0.4	0.5 50	0.5	0.4	0.2 00	0.5 40	100	0.2	Fic	h Habitat /	-	not Patin	ge. WOU	lerate
Bank Stople ()	MS	110	120	110	50	110	MS	MS	MC	40	100	90 MC	FIS	Forago Eich	Coor	ent Kath	Sport F	lich
Dom Bank Material	0	0	0		0	03	0	0	0	03	03	F	Snawning:	Poor	D	oor	Poor	'1511 r
Subdom Bank Material	F	F	F	F	F	F	F	F	F	F	F	0	Overwintering	Poor	P	oor	Pool	r
Dom Rinarian Veg	G	Ġ	Ġ	Ġ	Ġ	Ġ	Ġ	Ġ	G	Ġ	Ġ	G	Rearing:	Moderate	Mor	lerate	Poor-Mor	lerate
Subdom, Riparian Veg.	c	c	S	s	s	s	c	s	S	S	S	s	Passage:	Good	G	ood	Good	d
Photo 1: Facing down	fom 5	0 m	upstr	eam	from	cent	erline	2.			Phot	to 2: 1	Facing upstream at	t centerline				
								F	ish Sa	ampl	ing D	ata			_	40.115		
66 . 11 1										Efi	sh Ca	tch	Trap Catch	Efish CPUE		CPUE	Rel. Abun	dance
Mietnoa Backpack Electrofisher (E No Trapping	B)	57	73 -	(s) (hr)	NC) FISI	pecie H CAF	י s יTURI	ED		(n) 0		(n) (-	(#TISN/100S 0.00) (#TIS	-	(% of to -	ital)
Electrofisher Volts Freq. (Hz) Duty C 350 30 1	Settin Sycle (% 12	∣ gs %)	Dist. 37	(m) 78														
								G	ie <u>ne</u> r	al <u>Co</u>	mme	en <u>ts</u>						
No fish captured or obser	rved d	lurin	g fish	asse	ssme	nt. N	o kno	own ł	oarrie	r froi	m Ma	icken	zie River. Waterco	ourse may p	rovide s	easonal	fish habita	ıt.
Predominantly fines and	organi	ic su	bstra	te co	mbin	ed w	ith lo	w de	pth a	nd co	over l	imit f	ish habitat ratings	5.				

	10000							De	hch	10 T	ſerr	ito	ry F	ish and Fish H	Habitat			
								Drai	nag	ge 3	Uni	nam	ned	Watercourse				
	Ka Ka	alo	-St	ant	tec			ι	UTM	Loca	tion:	10U	4614	04 7053822	Survey Da	ate: Septen	nber 21, 2	2020
									kn	n Ma	rker:	739.	55		Zo	ne:	2	
									Crev	w Ini	tials:	LD N	MAN	Restricted Activity T	Timing Windo	ow: August	15 to Jul	ly 15
		Phy	/sical	Char	nnel 1	Trans	ect D	ata						Habita	t Inventory /	Reach Data	1	
Tran	sect # (Location)	1(个	100)	2 (1	<u>`50)</u>	3 (0	CL)	4 (↓	100)	5 (↓	200)	6(4	300)	Instream Cover (%):	13 C	verhead Co	ver (%)	11
Chan	nel Width (m)	2.	.4	2	.2	1.	.6	1.	7	2	.4	1	.7	Dom. Instream Cover	: WD D	om. Overhe	ad Cov	TS
Wett	ed Width (m):	1.	9	1.	.1	1.	2	1.	4	2	.2	1	.4	Subdom. Instream Co	over: DC S	ubdom. Ove	rhead	UB
Dept	h at LDB + 25% (m)	0.	1	0.	.2	0.	2	0.	2	0	.1	0	.1	Maximum Depth (m)	0.3 D	om. Aquatio	: Veg. T	-
Dept	h at LDB + 50% (m)	0.	1	0.	.2	0.	2	0.	2	0	.1	0	.2	Habitat Distrib	ution	Substrate C	Composit	tion
Dept	h at LDB + 75% (m)	0.	.2	0.	.2	0.	.2	0.	.1	0	.1	0	.3	P3				
Max.	.Bankfull Depth (m)	0.	.5	0.	.6	0.	.5	0.	7	0	.3	0	.6	20%	PE			
Grad	ient (%)	2	2	2	4	3	3	3	3	2	2	4	4		35%	с	20%	
Dom	inant Habitat Unit	R	3	R	3	R	3	R	F	R	۲F	R	3			LG 20%		Ì.
Strea	am Bed														1	0%		
-	_ Organics	2	0	2	0	2	0	20	0	2	20	2	20			SG	F	'
Tres	Fines	4	0	4	0	4	0	4(0	4	0	4	0	R3		10%	40%	
ate ct /	Small Gravel	1	0	1	0	1	0	1(0	1	.0	1	.0	45%				
stra	Large Gravel	1	0	1	0	1	0	1(0	1	.0	1	.0	Water Quality	/ Data	Channel C	haracteri	istics
Sub Tra	Cobble	2	0	2	0	2	0	20	0	2	20	2	20	Time of Day (HH:MM): 17:23	Pattern:	М	E
, of	Boulder	C)	()	C)	0)	(0	(0	Water Temperature ((°C): 2.2	Islands:	N	1
6)	Bedrock	C)	()	C)	0)	(D	(0	Dissolved Oxygen (m	g/L): 9.29	Bars:	D	G
Emb	eddedness	H	1	H	4	F	ł	Н	ł	ł	H	ł	н	Sp. Conductivity (μs/o	cm): 103	Coupling:	CC	С
Bank	Measurements	Left	Right	Left	Right	Left	Right	Left I	Right	Left	Right	Left	Right	pH:	7.55	Confineme	nt FC	С
Bank	Height (m)	0.2	0.4	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.2	0.3	0.2	Turbidity (NTU):	-	Flow Stage:	: Lo	w
Bank	Slope (°)	80	90	30	70	40	80	50	80	90	100	30	150	Fish Ha	bitat Assessr	ment Rating	s	
Bank	Stability	S	S	MS	MS	MS	MS	MS	MS	MS	S	US	S	For	age Fish Co	oarse Fisł	Sport Fig	sh
Dom	. Bank Material	0	0	F	F	F	F	0	0	0	0	F	0	Spawning:	Poor	Poor	Poor	
Subd	om. Bank Material	F	F	0	0	0	0	F	F	F	F	0	F	Overwintering:	Poor	Poor	Poor	
Dom	. Riparian Veg.	S	S	С	S	S	S	S	S	С	S	S	S	Rearing:	Good	Good	Good	
Subd	om. Riparian Veg.	G	G	S	G	G	G	G	G	G	G	G	G	Passage:	Good	Good	Good	
14 million (19 mil				るよ	Contraction of the second	APP PAR		いたない		A CONTRACTOR			N. W.				Set all	

Photo 1: Facing upstrea 200 m downstream from centerline.

Photo 2: Facing downstream 50 m upstream of centerline.

		Fish S	ampling Data			
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE Rel. Abundance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr) (% of total)
No Electrofishing	- (s)	NO FISH CAPTURED				-
No Trapping	- (hr)					
Electrofisher Setting	5					
Volts Freq. (Hz) Duty Cycle (%)	Dist. (m)					
		Gener	ral Comments			
Potential for erosion concerns u	pstream of o	centerline, stream does a	a sharp "S" bend	and parallels e	xisting winter ro	oad for approximately 20 m.
No know barriers between cross	ing and Ma	ckenzie River. Fish assess	ment not comp	leted as fish pre	sence was know	vn.

1.000							De	hcł	10 T	<u>[er</u>	rito	ry l	Fish and Fi	sh Habi	tat				
							W	X-04	10:	Un	nan	ned	Watercours	se					
	K'a	lo-	Sta	ant	ec			υтм	Loca	tion:	10U	4611	135 7055011		Su	rvey Date:	Septer	neber 21, 2	2020
								kn	n Ma	rker:	740.	75				Zone:	[2	
								Cre	w Ini	tials:	LD I	MAN	Rest	ricted Activ	ity Timin	ng Window	August	t 15 to July	/ 15
	P	hysic	al Ch	anne	l Tran	sect	Data	1						Habita	at Inven	tory / Reach	Data		
Transect # (Location)1(↑	`100)	2 (1	^50)	3 (0	CL)	4(↓	100)	5 (↓	·200)	6(↓	/300)	Instream Cover	(%):	8 O'	verhead Cov	er (%):	1	.7
Channel Width (m)	1	.5	1	.9	1.	3	1	.2	1	.4	1	.1	Dom. Instream	Cover:	DC D	om. Overhea	d Cover:	Т	S
Wetted Width (m)	1	.1	1	.6	1.	4	1	.0	1	.3	1	.1	Subdom. Instrea	am Cover:	WD Su	ubdom. Over	head Cov	ver: W	/D
Depth at LDB + 25%	(0	.3	0	.1	0.	3	0	.3	0	.2	0	.3	Maximum Dept	h (m)	0.4 D	om. Aquatic	Veg. Type	2:	-
Depth at LDB + 50%	(0	.3	0	.1	0.	2	0	.3	0	.2	0	.4	<u>Habitat D</u>	<u>istribution</u>		<u>Subst</u>	rate Com	position	
Depth at LDB + 75%	(0	.1	0	.1	0.	1	0	.2	0	.3	0	.3	P3				C 5%		
Max.Bankfull Depth	(0	.6	0	.4	0.	4	0	.4	0	.5	0	.6	10%			LG 10%			
Gradient (%)		4		2	4	ļ		-		4		3							
Dominant Habitat Ur	ı F	RF	F	3	R	3	R	۲F	F	RF	F	RF			RF	SG 15%			
Stream Bed													R3		50%		F 7	0%	
Organics	2	20	2	20	2	0	2	0	2	20	2	20	40%						
Fines	7	70	7	70	7	0	7	0	7	70	7	70							
ੂ ਦੂ Small Gravel		0		0	C)	(D		0		0							
Large Gravel	!	5		5	5	,	ļ	5		5		5	Water 0	Quality Data)	Char	nnel Char	acteristics	
Sub Tra	!	5		5	5	,	ļ	5		5		5	Time of Day (HH	I:MM):	16:25	Pattern:		IR	
ີ Boulder		0		0	C)	(D		0		0	Water Tempera	ture (°C):	2.5	Islands:		N	
🛎 Bedrock		0		0	C)	(D		0		0	Dissolved Oxyge	en (mg/L):	17.83	Bars:		DG	
Embeddedness	ſ	N	ſ	M	N	1	Ν	N	ſ	M	ſ	М	Sp. Conductivity	/ (μs/cm):	83.0	Coupling:		CO	
Bank Measurements	5 Left	Right	Left	Right	t Left I	Right	Left	Right	Left	Righ	t Left	Righ	tpH:		7.99	Confinemer	nt:	CO	
Bank Height (m)	0.2	0.3	0.2	0.2	0.2	0.1	0.2	0.2	0.3	0.2	0.1	0.2	Turbidity (NTU)	:	-	Flow Stage:		Low	
Bank Slope ([°])	80	20	40	70	100	100	70	45	90	110	100	90		Fish Ha	abitat As	ssessment Ra	atings		
Bank Stability	MS	US	US	US	S	S	MS	MS	MS	MS	S	S		Forage Fi	ish	Coarse Fish		Sport Fish	
Dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Spawning:	Poor		Poor		Poor	
Subdom. Bank Mate	r F	F	F	F	F	F	F	F	F	F	F	F	Overwintering	Poor		Poor		Poor	
Dom. Riparian Veg.	G	G	G	G	G	G	G	G	G	G	S	S	Rearing:	Moderate-0	Good M	oderate-Goo	bd	Moderate	!
Subdom. Riparian Ve	e S	S	S	S	С	S	S	S	S	S	G	G	Passage:	Modera	te	Moderate		Moderate	!
Photo 1: Facing do		tream	nate	enter	line						Phot	to 2:	Facing downstree	ат 100 т и	pstream	of centerline	e.		
										Fis	sh Sai	mplir	ng Data						
Method Backpack Electrofish No Trapping Electrofish Volts Freq. (Hz) Duty 300 30	er (EE er Set / Cycl 12	3 3 ttings e (%)	Effor 59 - Dist	t (s) (hr) (m) 67	NC	s D FISI	pecie H CAF	es PTURI	ED	Efi	sh C a (n) 0	itch	Trap Catch (n) -	Efish CPU (#fish/10 0.00	JE Os)	Trap CPUE (#fish/hr) -	Re	l. Abundaı (% of total -	тсе)
500 50	14		5	5,			_			Ge	nera	l Con	nments						
No fish captured or o	bser	ved d	luring	r fish	asses	smer	nt. No	o kno	wn h	arrie	r fron	n Ma	ckenzie River, like	elv provides	season	al fish habita	t. Low de	oth and co	over
limit fish habitat, wit	h pot	entia	l for	rearii	ng in r	un h	abita	t.										and co	

								De	hcł	no T	erı	ito	ry l	Fish and Fish Ha	abita	at		
								W	K-04	11:	Un	nan	ned	Watercourse				
	K K	alo	-S	tan	ited	C			лти	Locat	ion:	10U	4609	15 7055927	Surv	vey Date: S	eptemeber 2	0, 2020
									km	n Mar	ker:	741.	74			Zone:	2	
									Crev	<i>w</i> Init	ials:	LD N	ИAN	Restricted Activity Ti	iming \	Window: /	August 15 to	July 15
		Phy	ysical	Char	nnel [·]	Trans	ect D	oata						Habitat I	Invent	ory / Reach	Data	
Trans	sect # (Location)	1(↑	100)	2 (1	<u>`50)</u>	3 (CL)	4(↓	100)	5 (↓	200)	6 (4	300)	Instream Cover (%):	2 (Overhead Co	over (%):	15
Chan	nel Width (m)	0	.9	1	.3	1	.2	1.	3	1.	7	0	.8	Dom. Instream Cover:	DC I	Dom. Overh	ead Cover:	TS
Wett	ed Width (m)	0	.6	0	.7	1	.0	1.	0	1.	1	0	.9	Subdom. Instream Cover	r - 9	Subdom. Ov	erhead Cove	WD
Dept	h at LDB + 25% (m)	0	.3	0	.1	0	.5	0.	1	0.	1	0	.2	Maximum Depth (m)	0.6	Dom. Aquat	ic Veg. Type:	-
Dept	h at LDB + 50% (m)	0	.2	0	.0	0	.6	0.	2	0.	1	0	.2	Habitat Distribution	<u>n</u>	<u>Substra</u>	ate Composit	ion_
Dept	h at LDB + 75% (m)	0	.2	0	.2	0	.5	0.	3	0.	2	0	.3	SP				
Max.	Bankfull Depth (m)	0	.7	0	.7	0	.9	0.	6	0.	5	0	.6	20%				
Grad	ient (%)	7	7	6	6	4	1	-		4	ŀ	(5		RF			
Dom	inant Habitat Unit	S	Ρ	S	Р	R	3	R	F	R	3	R	F	P3	40%			
Strea	ım Bed													10%				
-	Organics	()	(0	()	()	0)	(C					
vrea	Fines	10	00	10	00	10	00	10	00	10	0	1(00	R3			0	:
ate ct ∕	Small Gravel	()	(0	()	0)	0)	(C	30%			10070	,
stra nse	Large Gravel	()	(0	()	()	0)	(0	Water Quality Da	ata	Chan	nel Characte	eristics
Sub Tra	Cobble	()	(0	()	C)	0)	(C	Time of Day (HH:MM):	18:0	07 Patterr	ו:	IR
6 of	Boulder	()	(0	()	()	0)	()	Water Temperature (°C)	: 4.0	0 Islands	:	N
6)	Bedrock	()	(0	()	()	0)	()	Dissolved Oxygen (mg/L)) 8.9	4 Bars:		MD
Embe	eddedness	V	Н	V	Ή	V	н	V	н	V	Н	V	Ή	Sp. Conductivity (µs/cm)): 62.	.0 Couplir	ng:	со
Bank	Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left I	Right	Left	Right	pH:	7.2	4 Confine	ement:	FC
Bank	Height (m)	0.3	0.3	0.3	0.4	0.3	0.4	0.2	0.3	0.4	0.3	0.3	0.3	Turbidity (NTU):	-	Flow St	tage:	Low
Bank	Slope (°)	80	80	90	50	45	70	80	90	80	80	100	120	Fish Habi	itat As	sessment R	atings	
Bank	Stability	MS	MS	MS	US	MS	MS	MS	S	US	US	S	S	Forage	Fish	Coarse Fis	h Sport	Fish
Dom	. Bank Material	F	F	F	F	F	F	0	0	F	F	F	F	Spawning: None	е	None	No	ne
Subd	om. Bank Material	0	0	0	0	0	0	F	F	0	0	0	0	Overwintering: Poor	r	Poor	Po	or
Dom	. Riparian Veg.	G	G	Ν	G	G	G	G	G	G	G	G	G	Rearing: Poor-Moo	derateP	oor-Moder	ate Po	or
Subd	om. Riparian Veg.	S	D	S	S	S	S	S	S	S	S	S	S	Passage: Moder	ate	Moderate	e Mode	rate
120			State State		a she w		小語い		があい	「日本」また			Street.		I			

Photo 1: Facing down at 200 m downstream from centerline

Photo 2: Facing up at 100 m downstream of centerline.

				Fish	Sampling Data				
					Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Ν	/lethod	Effe	ort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
Backpack El	ectrofisher (EB)	331	(s)	NO FISH CAPTURED	0	-	0.00	-	-
No Trapping	5	-	(hr)						
Í	Electrofisher Setti	ngs							
Volts Freq.	(Hz) Duty Cycle ((%) Di	st. (m)						
300 30) 12		321						
				Gene	eral Comments				
No suitable	substrate for spaw	vning. N	o knov	vn barriers between prop	osed crossing lo	ocation and the	Mackenzie Rive	er. Some rearin	g habitat present
in runs thro	ughout assessed re	each bu	t limite	ed by depth and instream	cover. No fish c	aptured during	g fish assessmen	ts.	

								De	hcł	10 -	Fer i	rito	ry I	Fish and Fi	sh Ha	bit	at				
								W	X-04	42:	Un	nam	ned	Watercours	ie						
	K	alo	-S	tar	ited	C			υтм	Loca	tion:	10U -	4606	41 7057047		Sur	vey Dat	te: Se	eptemebe	r 20, 2	2020
									kn	n Ma	rker:	742.	74				Zor	ne:	2		
									Cre	w Ini	tials:	LD N	/IAN	Restricted Ac	ctivity Ti	ming	Windo	w: A	ugust 15	to July	/ 15
		Phy	ysical	l Cha	nnel	Trans	sect D	Data						H	labitat l	nven	tory / R	Reach I	Data		
Trar	sect # (Location)	1(↑	100)	2 (1	<u>^50)</u>	3 (CL)	4 (↓	·100)	5 (↓	·200)	6(↓	300)	Instream Cover	(%):	0	Overhe	ead Co	over (%):	:	19
Cha	nnel Width (m)	0	.6	0	.6	1	.0	1	.6	1	.4	0.	8	Dom. Instream O	Cover:	-	Dom. (Overhe	ead Cover	: .	TS
Wet	ted Width (m)	1	.1	1	.2	1	.4	2	.0	1	.8	1.	1	Subdom. Instrea	ım Cover	-	Subdo	m. Ove	erhead Co	ove (VC
Dep	th at LDB + 25% (m)	0	.1	0	.1	0	.1	0	.1	0	.1	0.	1	Maximum Depth	n (m)	0.2	Dom. A	4quati	c Veg. Ty	be:	-
Dep	th at LDB + 50% (m)	0	.1	0	.2	0	.1	0	.1	0	.1	0.	1	Habitat Dist	tribution	<u>1</u>	<u>Sı</u>	ubstrat	te Compo	sition	<u>I</u>
Dep	th at LDB + 75% (m)	0	.1	0	.1	0	.0	0	.0	0	.2	0.	1	10%		RE		SG			
Max	.Bankfull Depth (m)	0	.6	0	.7	0	.3	0	.4	0	.9	0.	4			30%		10%			
Gra	dient (%)	3	3		1		-		4		-	-									
Don	ninant Habitat Unit	R	3	F	₹3	R	3	F	RF	F	3	R	3						F 90	%	
Stre	am Bed																				
	Organics	(C		0	(0		0		0	C)								
	Fines	9	0	ç	90	9	90	ç	90	ç	90	9	0	R3 60%							
ate	ີ່ Small Gravel	1	0	1	10	1	0	1	0	1	0	1	0	0070							
ostr	Large Gravel	()		0		0		0		0	C)	Water Q	uality Da	ata		Chanr	nel Chara	cterist	ics
Suk	Cobble	(C		0	(0		0		0	C)	Time of Day (HH	I:MM):	14	:15 Pa	attern	:	IR	
	5 8 Boulder	()		0		0		0		0	C)	Water Temperat	ture (°C):	: 2	.9 Is	lands:		F	
	Bedrock	()		0		0		0		0	C)	Dissolved Oxyge	n (mg/L)	10	.00 B	ars:		BR	
Emb	oeddedness	V	Ή	۷	/H	V	Ή	٧	Ή	٧	Ή	V	Н	Sp. Conductivity	(µs/cm)	96	6.0 C	ouplin	g:	CO	
Ban	k Measurements	Left	Right	Left	Right	l Left	Right	Left	Right	Left	Right	Left	Right	pH:		7.	.32 C	onfine	ment:	FC	
Ban	k Height (m)	0.3	0.4	0.3	0.3	0.1	0.1	-	0.4	0.3	0.4	0.2	0.3	Turbidity (NTU):			- Fl	low Sta	age:	Low	/
Ban	k Slope (°)	70	70	60	60	20	20	-	50	-	-	110	70	F	ish Habit	tat A	ssessmo	ent Ra	tings		
Ban	k Stability	US	US	US	US	US	US	US	US	US	US	US	US		Forage F	Fish	Coars	se Fish	n Spo	ort Fisl	h
Don	n. Bank Material	F	F	F	F	F	F	F	F	F	F	F	F	Spawning:	Poor		Р	oor		Poor	
Sub	dom. Bank Material	0	0	0	0	0	0	0	0	0	0	0	0	Overwintering:	Poor		Р	oor		Poor	
Don	n. Riparian Veg.	Ν	Ν	S	S	Ν	Ν	S	S	S	S	S	S	Rearing:	Poor		Р	oor		Poor	
Sub	dom. Riparian Veg.	G	G	G	G	S	S	Ν	Ν	Ν	Ν	Ν	Ν	Passage:	Poor		Ро	oor		Poor	
					いたな	たの						34				111	The Part	AH Y			

Photo 1: Facing up 200 m downstream from centerline

Photo 2: Facing up 100 m downstream from centerline.

		Fish	Sampling Data				
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing	- (s)	NO FISH CAPTURED	-	-	-	-	-
No Trapping	- (hr						
Electrofisher Setting	s						
Volts Freq. (Hz) Duty Cycle (%) Dist. (m)					
		Gene	eral Comments				
Fish assessment not completed organic substrate and lack of ins	due to safe tream cove	ty concerns from unstable r.	banks. Fish hab	itat rated as po	oor due to low d	epth, predomi	nantly fine and

				Dehch	o Ter	r itory	Fish and Fish Ha	bitat		
				WX-04	3: Un	named	Watercourse			
	K'alo-	Stante	ec	UTM L	ocation:	10U 4589	952 7061042	Survey	Date: Septe	mber 20, 2020
				km	Marker:	747.56		2	Zone:	2
				Crew	/ Initials:	LD MAN	Restricted Activity Ti	ming Win	dow: Augu	st 15 to July 15
	Phys	ical Channe	el Transec	t Data			Habitat I	nventory	/ Reach Data	1
Transect # (Locatio	n)1(个10	0) 2 (个50)	3 (CL)	4 (↓100) 5	5 (↓200)	6 (↓300)	Instream Cover (%):	6 Ove	rhead Cover	(%): 10
Channel Width (m)	0.9	-	1.3	1.3	-	-	Dom. Instream Cover:	BL Don	n. Overhead	Cover: TS
Wetted Width (m)	2.1	-	0.9	0.9	-	-	Subdom. Instream Cove	r DC Sub	dom. Overhe	ad Cove UB
Depth at LDB + 25%	6(0.8	-	0.1	0.1	-	-	Maximum Depth (m)	0.8 Don	n. Aquatic Ve	g. Type: -
Depth at LDB + 50%	6 (0.1	-	0.0	0.1	-	-	Habitat Distribution	<u>1</u>	Substrate Co	omposition
Depth at LDB + 75%	6 (0.2	-	0.0	0.1	-	-	P3			
Max.Bankfull Depth	n(0.1	-	0.1	0.4	-	-	20%			
Gradient (%)	16	-	2	14	-	-			BL	F 25%
Dominant Habitat U	Jn SP	-	RF	SP	-	-	R3		50%	
Stream Bed							10%		C 20%	20%
$\overline{\mathfrak{R}}$ Organics	0	-	0	0	-	-		RF		
e Fines	25	-	25	25	-	-		70%		5.6%
ਤੂੰ ਤੋਂ Small Gravel	20	-	20	20	-	-				5%
ts S Large Gravel	5	-	5	5	-	-	Water Quality D	ata	Channel C	haracteristics
공 냔 Copple	20	-	20	20	-	-	Time of Day (HH:MM):	10:45	Pattern:	IR
⊖ Boulder %	30	-	30	30	-	-	Water Temperature (°C)	: 2.6	Islands:	N
Bedrock	0	-	0	0	-	-	Dissolved Oxygen (mg/L) 113.20	Bars:	N
Embeddedness	L	L	L	L	-	-	Sp. Conductivity (µs/cm)	90.0	Coupling:	CO
Bank Measuremen	ts Left Rig	ht Left Right	Left Righ	1 Left Right I	Left Right	Left Righ	pH:	-	Confinemer	nt: CO
Bank Height (m)			0.2 0.1	0.2 0.2			Turbidity (NTU):	-	Flow Stage:	Moderate
Bank Slope ([°])			70 60	90 60			Fish Habi	tat Assess	ment Rating	S
Bank Stability	S S		US US	MS MS			Forage	Fish Co	arse Fish	Sport Fish
Dom. Bank Materia)	FF	0 C			Spawning: Pool	r	Poor	Poor
Subdom. Bank Mate	er LG SC	<u> </u>	FO	C O			Overwintering: Pool	r	Poor	Poor
Dom. Riparian Veg.	. G G	j	GG	GG			Rearing: Poor	ſ	Poor	Poor
Subdom. Riparian V	e G G	i	GS	5 5			Passage: Pool		Poor	Poor
									いたが	
Photo 1: Facing u	upstream	100 m upstr	eam of ce	enterline.	Eich Sam	Photo 2:	Facing downstream 50 m	downstre	am of center	line.
					Ffi	sh Catch	Trap Catch Efish C	PUE Tr		el. Abundance
Method		Effort		Species		(n)	(n) (#fish/1	00s) (#fish/hr)	(% of total)
Backpack Electrofis	her (EB	213 (s)	NO FIS	H CAPTURE	D	0	- 0.00)	-	-
No Trapping	-	- (hr)								
Electrofis	her Settin	gs	1							
Volts Freq. (Hz) Du	ty Cycle (%	%) Dist. (m)								
355 30	12	131								

Existing culvert at this site is broken on the inlet and bank is sloughing on the outlet causing a temporary barrier to fish (see crossing WX-043 Culvert). Confluence with Mackenzie River located approximately 110 m downstream. Potential gradient barrier (30% slope) with step pools 30 m upstream of confluence. Potential velocity barrier at step pools 100 m upstream from centerline. No transect completed at 50 m upstream as stream became inaccessible in root bridge complexes for approximately 50 m. No fish were captured or observed during the fish assessment.

144421						De	hcł	10 1	ſerı	rito	ry I	Fish and Fish Ha	abita	at		
						W	X-0	44	Un	nam	ned	Watercourse				
Ka	alo-St	ant	ec			ų	UTM	Locat	tion:	10U	4588	39 7061453	Surv	vey Date: Sep	otember 20	, 2020
							kn	n Mai	ker:	748.	02			Zone:	2	
							Cre	w Init	ials:	LD N	/IAN	Restricted Activity Ti	ming	Window: Au	gust 15 to J	uly 15
	Physica	l Chan	nel T	ranse	ect D	ata						Habitat I	Invent	ory / Reach D	ata	
Transect # (Location)	1(个100) 2 (1	`50)	3 (CL)	4(↓	100)	5 (↓	200)	6(↓	300)	Instream Cover (%):	8	Overhead Cov	er (%):	18
Channel Width (m)	1.2	1	.6	1	.6	0.	.8	1.	.7	-	-	Dom. Instream Cover:	DC	Dom. Overhea	d Cover:	UB
Wetted Width (m)	1.0	0	.5	1	.0	0.	.9	1.	.4	-	-	Subdom. Instream Cover	r BL	Subdom. Over	head Cove	TS
Depth at LDB + 25% (m)	0.1	0	.2	0	.1	0.	1	0.	.1	-	-	Maximum Depth (m)	0.3	Dom. Aquatic	Veg. Type:	-
Depth at LDB + 50% (m)	0.1	0	.3	0	.1	0.	1	0.	.1	-	-	Habitat Distribution	<u>n</u>	<u>Substrate</u>	Compositi	on
Depth at LDB + 75% (m)	0.1	0	.3	0	.2	0.	1	0.	.1	-	-					
Max.Bankfull Depth (m)	0.7	0	.5	0	.6	0.	.4	0.	.4	-	-		R3	BI		
Gradient (%)	15	1	6		-	2	2	1	1	-			070	155	- % F 20%	
Dominant Habitat Unit	SP	S	Р	S	Р	R	3	S	Р	-					SG	
Stream Bed															10%	
Organics	0	()	()	C)	()	-	-	SP		C 409	[%] 15%	
Fines	20	2	0	2	0	2	0	2	0	-	-	70%				
월 · · Small Gravel	10	1	0	1	0	1	0	1	0	-	-					
Large Gravel	15	1	5	1	5	1	5	1	5	-	-	Water Quality Da	ata	Channe	l Characte	ristics
du ² Copple	40	4	0	4	0	4	0	4	0	-	-	Time of Day (HH:MM):	12:	13 Pattern:		IR
b Boulder	15	1	5	1	5	1	5	1	5	-		Water Temperature (°C)	: 3.	8 Islands:		N
Sedrock	0	()	()	C)	()	-		Dissolved Oxygen (mg/L)) 12.	09 Bars:		N
Embeddedness	L	I	_	I	_	L	-	l	-	-	-	Sp. Conductivity (µs/cm)	: 74	.0 Coupling:	. (0
Bank Measurements	Left Righ	n Left	Right	Left	Right	Left	Right	Left	Right	l Left	Right	pH:	6.5	59 Confinem	ient:	0
Bank Height (m)	0.4 0.5	5 0.1	0.2	0.4	0.4	0.1	0.2	0.3	0.3	-	-	Turbidity (NTU):	-	Flow Stag	e: Moo	derate
Bank Slope (°)	100 110	30	110	30	70	90	110	100	130	-	-	Fish Habi	itat As	sessment Rati	ngs	
Bank Stability	S S	MS	S	US	MS	S	S	S	S	-	-	Forage	Fish	Coarse Fish	Sport I	Fish
Dom. Bank Material	0 0	F	F	F	F	0	0	0	0	-	-	Spawning: Poor	r	Poor	Роо	r
Subdom. Bank Material	SG C	0	0	0	0	F	F	LG	F	-	-	Overwintering: Poor	r	Poor	Роо	r
Dom. Riparian Veg.	G G	G	G	S	S	S	S	S	S	-	-	Rearing: Poor	r	Poor	Роо	r
Subdom. Riparian Veg.	S S	S	S	G	G	G	G	G	G	-	-	Passage: Poor	r	Poor	Роо	r
Subuom. Riparian Veg.	5 5	2	3	G	G	G	G	G	G			Passage: Poor		POOr	200	I

Photo 1: Facing upstream 100 m downstream from centerline.

Photo 2: Facing upstream 50 m upstream of centerline.

					Fish S	ampling Data				
						Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance
	Metho	bd	Effo	ort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electro	fishing		335	(s)	NO FISH CAPTURED	0	-	0.00	-	-
No Trappin	ng		-	(hr)						
	Electi	rofisher Setting	s							
Volts Freq	. (Hz)	Duty Cycle (%)	Dis	st. (m)						
375 3	80	12		251						
					Gene	ral Comments				
No fish cap	tured	or observed dur	ing fisl	h asses	sment. Gradient barrier i	identified 50 m	upstream from	confluence with	n Mackenzie Ri	ver, 24 % gradient

over 20 m of stream length. Culvert collapsed under existing road, see WX-044 Culvert summary data sheet.

							De	hcł	10 T	eri	rito	ry I	Fish and Fis	h Hal	bitat		
	÷.,	~	h.,				Во	b's (Cany	yon	Cre	ek					
Ka	10-	Sta	int	ec			UTM Location: 10U 456				10U 4	4565	S54 7065466 Survey Date: Septmebe				eber 19, 2020
								kn	n Mar	ker:	752.6	51			Z	one:	2
								Cre	w Init	ials:	LD N	1AN	Restricted Act	ivity Tim	ning Win	dow: Augus	t 15 to July 15
Physical Channel Transect D							ata						Hat	oitat Inve	entory /	Reach Data	
Transect # (Location)	1(↑	100)	2 (1	` 50)	3 (CL)	4 (↓	100)	5 (↓:	150)	6 (↓:	300)	Instream Cover (%	6):	4 Ove	rhead Cove	r (%): 24
Channel Width (m)	1.7 3.4 2.0		.0	2.5 1.9		9	-		Dom. Instream Cover:		DC Dom. Overhead C		Cover: TS				
Wetted Width (m)	1.	1.5 2.5 1.8		2.75 1.65		-		Subdom. Instream	n Cover	- Subdom. Overhead Cove UB							
Depth at LDB + 25% (m)	0.	.2	0	.2	0	.2	0.1 0.3		-		Maximum Depth	(m)	0.4 Dom	n. Aquatic V	eg. Type: -		
Depth at LDB + 50% (m)	0.	.2	0	.3	0	.2	0	.1	0.	2	-		Habitat Distr	ibution	<u>s</u>	ubstrate Co	omposition
Depth at LDB + 75% (m)	0.	.2	0	.1	0	.4	0	.1	0.	1	-		P3				
Max.Bankfull Depth (m)	0.	.4	0	.4	0.	48	0.	35	0.	5	-		25%				F
Gradient (%)	5	5		7	2	1	ļ	5	6)	-					BL	25%
Dominant Habitat Unit	R	F	R	RE	R	F	R	F	R	F	-		R3			40%	
Stream Bed													5%				SG
Organics	0)	(0	()	(0		0				F	RF	15%	20%
₽ Fines A	2	5	25		25		25		25		-			70	J%		
Small Gravel	20		20		20		20		20		-						
TS C Large Gravel	0		0		0		0		0		-		Water Qu	ality Dat	ta	Channel C	haracteristics
고 도 Copple	15		15		15		15		15		-		Time of Day (HH:	MM):	21:47	Pattern:	IR
% Boulder	Boulder 40		4	40		40		40		40			Water Temperatu	ire (°C):	5.1	Islands:	N
Bedrock	C)	(0	()	()	0)	-		Dissolved Oxygen	(mg/L)	88.10	Bars:	DG
Embeddedness	L	-		L	L		I	LL		•			Sp. Conductivity (μs/cm):	52.0	Coupling:	CO
Bank Measurements	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	Left	Right	pH:		8.01	Confineme	ent: OC
Bank Height (m)	0.2	0.2	0.1	0.2	0.1	0.2	0.3	0.2	0.2	0.2	-	-	Turbidity (NTU):		-	Flow Stage	: Moderate
Bank Slope (°)	110	90	70	45	90	80	90	140	100	90	-	-	Fish	Habitat	Assessm	nent Rating	5
Bank Stability	MS	MS	US	US	MS	MS	MS	MS	S	S	-	-	F	orage Fi	ish Co	arse Fish	Sport Fish
Dom. Bank Material	0	0	F	F	0	0	F	F	0	0	-	-	Spawning:	Poor		Poor	Poor
Subdom. Bank Material	F	F	0	0	F	F	0	0	SG	F	-	-	Overwintering	Poor		Poor	Poor
Dom. Riparian Veg.	S	S	S	S	S	S	G	S	G	G	-	-	Rearing:	Poor	Poor	-ModerateP	oor-Moderate
Subdom. Riparian Veg.	G	G	Ν	G	G	G	S	G	S	S	-	-	Passage:	Poor		Poor	Poor
				「日本」の語言語で、	いいろういろう						Real March 1 - Alen			- REAL			

Photo 1: Facing upstream at 50 m upstream from centerline.

Photo 2: Facing downstream at 150 m downstream from centerline.

				-			
		Fish Sa	mpling Data				
			Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundanc
Method	Effort	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)
No Electrofishing	- (s)	NO FISH CAPTURED					-
No Trapping	- (hr)						
Electrofisher Setting	s						
Volts Freq. (Hz) Duty Cycle (%)	Dist. (m)						
		Genera	l Comments				
Overall poor fish babitat due to s	toon gradient	Two potential gradient	barriors (15% a	nd 17% clope) r	oor confluonco	with Mackon	zio Pivor

Overall poor fish habitat due to steep gradient. Two potential gradient barriers (15% and 17% slope) near confluence with Mackenzie River, approximately 200 m downstream from centerline. Large (7,000 mm diameter) culvert on Bob's Canyon Creek at existing winter road appears in good condition. Fish assessment not completed as fish presence was known.

	Children I.							De	hcł	10 T	ſerı	rito	ry l	Fish and Fish H	abitat	t	
						W	WX-045: Unnamed Watercourse										
Kalo-Stantec								UTM Location: 10U 4515						13 7076541 Survey Date: Septe			mber 18, 2020
									kn	n Mar	ker:	765.5	51		z	Zone:	2
p.									Cre	w Init	ials:	LD N	1AN	Restricted Activity Tin	ning Win	dow: Augus	st 15 to July 15
		P	hysic	al Cha	anne	l Tra	nsect	Data						Habitat	Inventor	ry / Reach Dat	a
Tran	sect # (Location)	1(↑	100)	2 (↑	`50)	3 (CL)	4(↓	100)	5 (↓	200)	6 (4	300)	Instream Cover (%):	10 O	verhead Cove	r (%): 22
Char	nnel Width (m)	2.	1	3.	.0	1	.5	2.	7	2.	.7	3.	2	Dom. Instream Cover:	BL D	om. Overhead	Cover: TS
Wet	ted Width (m)	1.	9	2.	.2	1	.6	2.	7	2.	.5	2.	7	Subdom. Instream Cove	er DC Su	ubdom. Overh	ead Covei WD
Dept	h at LDB + 25% (0.	2	0.	.1	0	.2	0.	3	0.	.3	0.	2	Maximum Depth (m)	0.4 D	om. Aquatic V	eg. Type: -
Dept	h at LDB + 50% (0.	2	0.	.2	0	.2	0.	3	0.	.4	0.	1	Habitat Distributio	<u>on</u>	Substrate C	<u>Composition</u>
Dept	h at LDB + 75% (0.	3	0.	.2	0	.3	0.	2	0.	.4	0.	1	P3			O 10%
Max	.Bankfull Depth (0.	5	0.	.7	0	.6	0.	5	0.	.9	0.	4	20%			
Grad	lient (%)	З	3	3	3	4	4	2	2	5	5	1	1			DI	
Dom	inant Habitat Un	R	F	R	F	R	3	R	F	R	F	R	F		RF	40%	F 20%
Strea	am Bed														50%		
-	Organics	1	0	1	0	1	.0	1	0	1	0	10	0	R3		c:	20%SG
res	Fines	2	0	2	0	2	0	2	0	2	0	20	0	30%			10%
ate	Small Gravel	1	0	1	0	1	.0	1	0	1	0	10	0				
ostr	Large Gravel	C)	C)	(0	C)	C)	0)	Water Quality [Data	Channel	Characteristics
Sul	Cobble	2	0	2	0	2	0	2	0	2	0	20	0	Time of Day (HH:MM):	17:04	4 Pattern:	ST
2	Boulder	4	0	4	0	4	0	4	0	4	0	40	0	Water Temperature (°C	2): 4.6	Islands:	N
2	Bedrock	C)	C)	(0	C)	C)	0)	Dissolved Oxygen (mg/	L) 19.25	5 Bars:	N
Emb	eddedness	N	Λ	N	Л	I	Н	N	1	N	Λ	N	1	Sp. Conductivity (µs/cm	n): 81.0	Coupling:	PC
Bank	Measurements	Left	Right	Left I	Right	Left	Right	Left	Right	Left	Right	Left F	Right	pH:	7.31	Confineme	ent: OC
Bank	: Height (m)	0.2	0.2	0.3	0.3	0.4	0.3	0.2	0.2	0.3	0.4	0.2	0.2	Turbidity (NTU):	-	Flow Stage	: Moderate
Bank	slope (°)	100	90	100	90	90	90	110	90	110	90	150	90	Fish Hab	oitat Asse	essment Ratin	gs
Bank	Stability	S	S	S	S	MS	MS	S	S	S	S	S	S	Forage	Fish (Coarse Fish	Sport Fish
Dom	. Bank Material	0	0	0	0	0	0	0	0	0	0	F	0	Spawning: Poor-Mo	deratePo	oor-Moderate	Poor
Subc	lom. Bank Mater	F	F	F	F	F	F	F	BL	F	SG	0	С	Overwintering: Poo	or	Poor	Poor
Dom	. Riparian Veg.	S	S	S	S	G	G	G	G	S	S	G	G	Rearing: Goo	bd	Good	Good
Subc	lom. Riparian Ve _i	G	G	G	G	G	S	S	S	G	G	S	S	Passage: Goo	bd	Good	Good
				一十八					「二十二十二十二								

Photo 1: Facing upstream 100 m downstream of centerline.

Fish Sampling Data											
						Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance	
Method Effort				rt	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)	
Backpack Electrofisher (EB 651 (s)				(s)	NO FISH CAPTURED	0	-	0.00	-	-	
No Tra	No Trapping - (hr)										
	Electrofishe	r Setti	ings								
Volts F	Freq. (Hz) Duty	Cycle	(%) Dis	t. (m)							
405 30 12 377											
General Comments											
No fish	No fish captured or observed during fish assessment. No known barriers between proposed crossing location and the Mackenzie River. Run										
habitat	habitat with cover could provide rearing habitat for sport, forage, and coarse fish.										

Previously unreported watercourse. Fish and fish habtiat assessment not completed. Crossing location appears similar to WX-045 and therefore it is assumed it affords fish habitat potential. The confluence with the Mackenzie River is located approximately 400 m downstream from the proposed crossing location.

Previously unreported wetland. Beaver impoundment observed within wetland. No inlet was visible from the aerial survey but the outlet appears to drain across the existing winter road. Substrate was organic and wetland vegetation observed. Maximum depth was greater than 2 m. A fish habtiat assessment was not completed. Fish habitat potential is assumed.

Wetland area adjacent to proposed construction corridor. No inlet or outlet visible. No fish habitat potential.

Ephemeral drainage, oriented northeast to southwest across the existing winter road. No defined bed or banks. Does not afford fish habitat potential.

Contraction of the							De	ehcl	າວ່	Ter	rito	ory	Fish and F	ish H	abita	t			
Kalo-Stantec					Drainage 4 Unnamed				med	Watercourse									
				UTM Location: 10U 4485				523 7084338			Survey Dat	:e: 5	September	18, 2020					
						kr	n Ma	rker:	774	.04				Zon	e:	2			
								Cre	w Ini	itials:	LD	MAN	Rest	tricted Ad	tivity Ti	ming Windo	w:	August 15 t	o July 15
	P	hysic	al Ch	nanne	el Tra	nsect	Dat	а						Hab	oitat Invo	entory / Rea	ch Da	ita	
Transect # (Location)	1(个	100)	2 (1	^50)	3 (CL)	4 (\	/100)	5 (1	/200)	6 (\	L300)	Instream Cove	er (%):	18 C	Overhead Cov	/er (%):	9
Channel Width (m)	4.	2	5	.1	4	.1	4	1.1	6	5.0	6	5.5	Dom. Instream	n Cover:	BL D	om. Overhea	ad Co	ver:	WD
Wetted Width (m)	3.	6	4	.8	4	.3	3	3.5	5	5.1	4	4.9	Subdom. Instru	eam Cove	er DC S	ubdom. Over	rhead	Cover:	GF
Depth at LDB + 25% (0.	3	0	0.3	0	.5 r).4).5 \	(J.3	Maximum Dep	oth (m)	0.6 D	om. Aquatic	Veg.	Type:	-
Depth at LDB + 50% (0.	3	0).4 _4	0	.5 4).4).5 _4		J.3 1 2	Habitat D	istributio	<u>on</u>	Subs	trate	Compositio	<u>o</u> 10%
Max Bankfull Donth (0.	Q	0	1.4 1 7	0	.4 6).4) 0).4) 0	(ט.ט דר	15%						_010%
Gradient (%)	1	0	0	-	0	-	, c	5	C	5	,	Δ.7	P2						
Dominant Habitat Un	R	2	F	RF	R	2	I	RF	I	RF		RF	3%		RE		BL 40%	F 15%	
Stream Bed		-				-									50%				LG 5%
_ Organics	1	0	1	10	1	0		10		10		10					_ / c	30%	
ຍີ Fines	1	5	1	15	1	.5	:	15	:	15		15	R3 30%						
ੂ ਦੂ Small Gravel	C)		0	(C		0		0		0							
Large Gravel	5	5		5	!	5		5		5		5	Water	Quality [Data	Ch	annel	l Characteri	stics
gn Cobble	3	0	3	30	3	0	3	30	3	30		30	Time of Day (⊦	H:MM):	09:0	4 Pattern:			TM
5 Boulder	4	0	4	10	4	0	4	40	4	40		40	Water Temper	rature (°C	2): 4.8	Islands:			F
Bedrock	C)		0	(C		0		0		0	Dissolved Oxy	gen (mg/	L) 11.2	9 Bars:			BR
Embeddedness	F	ł	I	Н	I	4		н		н		Н	Sp. Conductivi	ty (µs/cm	n): 121	. Coupling	:		CO
Bank Measurements	Left	Right	Left	Right	l Left	Right	Left	Righ	Left	Righ	Lef	t Righ	pH:		7.39	9 Confinen	nent:		FC
Bank Height (m)	0.4	0.3	0.3	0.2	0.2	0.1	0.3	0.2	0.2	0.5	0.4	0.3	Turbidity (NTU	J):	-	Flow Sta	ge:	N	loderate
Bank Slope ()	40	70 Mac	120	110	90	130	/U	30	20	40	20	90		Fish	Habitat	Assessment	Ratir	ngs	ut Fich
Bank Stability	IVIS		о О	ъ 0	1015	5 E	<u>о</u>	о О	<u>о</u>	1015	3 0	3 0	Snowning:	Forage	e FISN	Coarse F	isn	Spo	
Subdom Bank Mater	0	F	F	F	0	0	F	F	F	F	F	F	Overwintering	PON Pode	rate	Modera	to	Г	derate
Dom. Riparian Veg.	G	S	S	S	S	S	S	S	S	G	S	s	Rearing:	Mode	rate	Modera	te	Mod	derate
Subdom, Riparian Ve	s	G	c	G	G	G	G	G	G	s	S	S	Passage:	Goo	nd	Good	ic .	G	ood
<image/>																			
					1					Fish	Sam	npling	Data						
										Efi	sh C	atch	Trap Catch	Efish C	PUE	Trap CPU	JE	Rel. Ab	undance
Method		I	Effor	t		S	peci	es			(n)		(n)	(#fish/	100s)	(#fish/h	ır)	(% o	f total)
No Electrofishing			-	(s)	N) FISI	H CA	PTUR	ÉD										-
No Trapping			-	(hr)	ł														
Volts Freq. (Hz) Duty	Cycle	tings e (%)	Dist	:. (m)															
									_	Gen	er <u>al</u>	Comr	nents						
No barrier observed a	at cor	nfluer	nce v	vith N	/lacke	nzie	Rive	r. No	spaw	ning	habit	tat pro	esent, overwint	ering pot	ential in	pools and co	over s	ufficient for	rearing
habitat. Fish assessme	ent n	ot co	mple	eted a	as fish	pres	ence	e was	knov	vn.									

General Comments

Wetland area adjacent to proposed construction corridor. No inlet our outlet visible from aerial survey. Does not afford fish habtiat potential.

Photo 1. Facing east towards existing winter road from helicopter

Photo 2. Facing north from helicopter

General Comments

Wetland area adjacent to proposed Project. No inlet or outlet visible from aerial survey. No fish habtiat potential.

Photo 1. Facing northwest from helicopter

Photo 3. Facing northwest from middle of beaver dam complex

Photo 4. Minnow trap location in wetland near existing winter road

Fish Sampling Data										
				Efish Catch	Trap Catch	Efish CPUE	Trap CPUE	Rel. Abundance		
Method	Effo	rt	Species	(n)	(n)	(#fish/100s)	(#fish/hr)	(% of total)		
Electrofishing	-	(s)	Brook stickleback	-	120	-	14.93	66.7		
Minnow Trap	87	(hr)	Fathead minnow	-	60	-	7.46	33.3		
Water Quality Data			General Comments							
Time of Day (HH:MM):	16:5	55	Outlet with connection	to Mackenzie Rive	r. Old beaver dam co	omplex observed b	ut does not app	ear to be active. A		
Water temperature (°C):	Water temperature (°C): 8.04		900 mm diameter culvert is across the existing winter road between two wetland areas. Brook stickleback and							
Dissolved Oxygen (mg/L):	4.6	2	fathead minnow captur	ed so wetlands affo	ord fish habitat.					
Sp. Conductivity (µS/cm):	102.	00								
pH:	6.2	1								
Turbidity (NTU):	-									

APPENDIX 18A

Vegetation and Wetlands Technical Data Report

Prepared for:

Government of the Northwest Territories

Prepared by:

K'alo-Stantec Limited

December 2022

Project No.: 144903025

Limitations and Sign-off

This document entitled Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands was prepared by K'alo-Stantec Limited ("K'alo-Stantec") for the account of Government of Northwest the Territories (the "Client") to support the regulatory review process for its Developers Assessment Report (DAR) (the "Application") for the Mackenzie Valley Highway Project (the "Project"). In connection therewith, this document may be reviewed and used by the Department of Infrastructure (INF) for the Government of the Northwest Territories participating in the review process in the normal course of its duties. Except as set forth in the previous sentence, any reliance on this document by any other party or use of it for any other purpose is strictly prohibited. The material in it reflects K'alo-Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between K'alo-Stantec and the Client. The information and conclusions in the document are based on the conditions existing at the time the document was published and does not take into account any subsequent changes. In preparing the document, K'alo-Stantec did not verify information supplied to it by the Client or others, unless expressly stated otherwise in the document. Any use which another party makes of this document is the responsibility and risk of such party. Such party agrees that K'alo-Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other party as a result of decisions made or actions taken based on this document.

December 2022

Executive Summary

The Government of the Northwest Territories (GNWT), Department of Infrastructure (INF) is proposing the Mackenzie Valley Highway Project (the Project) that will extend the Mackenzie Highway (Northwest Territories Highway #1) from Wrigley to Norman Wells to replace the Mackenzie Valley Winter Road (MVWR) along this portion. The Project includes construction of approximately 281 kilometres (km) of new all-season highway, and the construction and operation of temporary and permanent quarry and borrow sources. The project highway alignment will pass through the Dehcho Region and a portion of the Tulita District of the Sahtu Region within the Northwest Territories (NT).

This technical data report (TDR) presents data and analysis of landcover/plant assemblages, forest characteristics (e.g., tree heights and timber volume), fire, plant species of conservation concern (SOCC), and weeds for the Dehcho and Sahtu regions intersected by the project highway alignment.

Coniferous forest is the most abundant landcover type/plant assemblage in upland areas within the Local Study Area (LSA) (44.8%) and the Regional Study Area (RSA) (32.5%) in the Dehcho Region. Wetlands occupy 19.6% of the LSA and 29.0% of the RSA in the Dehcho Region.

Large portions of the LSA and RSA have burned in the past; however, fires in the LSA are not common: a maximum of two fires have occurred per decade recorded (1990-1999).

No plant SOCC occurrences have been documented within the Dehcho Region of the LSA or RSA; however, several species reported by Dessau (2012) were previously considered plant SOCC but are no longer listed due to changes in territorial rankings. Nine alien and three invasive alien plant species have been documented in the RSA in the Dehcho Region. Appendix B provides a list of additional alien and invasive alien plant species in the RSA that have been documented, although specific distributions of these species are not known.

Upland areas in the Sahtu Region are similarly dominated by coniferous forest in both the LSA (28.3%) and RSA (31.3%). Wetlands occupy 25.5% of the LSA and 25.3% of the RSA.

Fires in the LSA and RSA have occurred in multiple areas with portions within the Sahtu Region burning at least once per decade. Less than 1% to 61.1% of the LSA burned each decade between 1960 and 2019.

In the RSA, seven vascular plant SOCC have been documented, six of which are considered *sensitive* and one considered *may be at risk*, territorially. Ten alien and three invasive alien plant species have been documented in the RSA in the Sahtu Region. Appendix B provides a list of additional alien and invasive alien plant species in the RSA that have been documented, although specific distributions of these species are not known.

Table of Contents December 2022

Table of Contents

1	INTRODUC	CTION	1					
2	STUDY AR	REAS	3					
2.1	Project Dev	Project Development Area						
2.2	Local Study	y Area	3					
2.3	Regional S	tudy Area	3					
2.4	Intersected	l Ecoregions	5					
	2.4.1	Taiga Plains Low Subarctic	5					
	2.4.2	Taiga Cordillera Low Subarctic	6					
	2.4.3	Boreal Cordillera High Boreal	6					
3	REVIEW O	F EXISTING DATA	7					
3.1	Traditional	Knowledge and Traditional Land and Resource Use	7					
	3.1.1	Methods	7					
	3.1.2	Results	8					
3.2	Literature F	Review						
	3.2.1	Methods						
	3.2.2	Results						
4	KEY RESU	JLTS AND FINDINGS	41					
4.1	Dehcho Re	egion						
4.2	Sahtu Regi	ion						
5	CLOSURE							
6	REFEREN	CES	43					
6.1	Literature C	Cited						
6.2	Personal Communications47							

List of Tables

Table 3.1	Traditional Plant Species – Dehcho Region	9
Table 3.2	Additional Potential Traditional Plant Species – Dehcho Region	13
Table 3.3	Traditional Plant Species – Sahtu Region	14
Table 3.4	Landcover/Plant Assemblage Types in the LSA and RSA – Dehcho Region	19
Table 3.5	Tree Height, Stand Volume Density and Total Volume by Forest Type in the LSA – Dehcho Region	23
Table 3.6	Tree Height, Stand Volume Density and Total Volume by Forest Type in the RSA – Dehcho Region	23
Table 3.7	Forest Fire Occurrence within the LSA and RSA from 1960 to 2019 – Dehcho Region	24

Table 3.8	Number of Fires per Landcover/Plant Assemblage Type and Total Area Burned from 1960 to 2019 – Dehcho Region
Table 3.9	Alien and Invasive Alien Plant Species Recorded within the RSA – Dehcho Region
Table 3.10	Landcover/Plant Assemblage Types in the LSA and RSA - Sahtu Region
Table 3.11	Cover Type and Stand Volume Density per Landcover/Plant Assemblage Type in the LSA – Sahtu Region
Table 3.12	Tree Height, Stand Volume Density and Total Volume per Forest Type in the RSA – Sahtu Region
Table 3.13	Forest Fire Occurrence within the LSA and RSA from 1960 to 2019 – Sahtu Region
Table 3.14	Number of Fires and Total Area Burned by Landcover/Assemblage Type from 1960 to 2019 – Sahtu Region
Table 3.15	Documented Plant SOCC Occurrences within the RSA – Sahtu Region
Table 3.16	Alien and Invasive Alien Plant Species Recorded within the RSA - Sahtu Region40

List of Figures

Figure 1.1	Project Overview	2
Figure 2.1	Vegetation and Wetlands Study Areas	4
Figure 3.1	Landcover Types and Documented Alien and Invasive Alien Species Occurrences within the Mackenzie Valley Highway Project LSA and RSA – Dehcho Region	20
Figure 3.2	Upland Landcover/Plant Assemblage – Dehcho Region	21
Figure 3.3	Open Water and Wetland Landcover/Plant Assemblage – Dehcho Region	22
Figure 3.4	Area Burnt per Decade within the Mackenzie Valley Highway LSA and RSA between 1960 and 2019 – Dehcho Region	25
Figure 3.5	Area Burned by Landcover/Plant Assemblage Type from 1960 to 2019 in the LSA and RSA – Dehcho Region	26
Figure 3.6	Landcover Types and Documented Alien and Invasive Alien Species Occurrences with the Mackenzie Valley Highway Project LSA and RSA – Sahtu Region	31
Figure 3.7	Unvegetated Rock/Rubble (foreground) in the LSA – Sahtu Region	32
Figure 3.8	Open Water Surrounded by Herb and Shrub Wetland in the LSA - Sahtu Region	33
Figure 3.9	Area Burnt per Decade within the Mackenzie Valley Highway LSA and RSA between 1960 and 2019 – Sahtu Region	36
Figure 3.10	Area Burned by Landcover/Assemblage Type from 1960 to 2019 in the LSA and RSA – Sahtu Region	38

List of Appendices

APPENDIX A PLANT SOCC DETAILS

APPENDIX B ALIEN AND INVASIVE ALIEN PLANT DETAILS

Abbreviations

%	percent
AKEPIC	Alaska Exotic Plants Information Clearinghouse
cm	centimetre
CNFDB	Canadian National Fire Database
COSEWIC	Committee on The Status of Endangered Wildlife in Canada
DAR	Developer's Assessment Report
EOSD	Earth Observation of Sustainable Development of Forests
GNWT	Government of the Northwest Territories
ha	hectare
INF	Department of Infrastructure
km	kilometre
LSA	Local Study Area
m	metre
m ³	cubic metre
m³/ha	cubic metres per hectare
MVWR	Mackenzie Valley Winter Road
NT/NWT	Northwest Territories
PDA	Project Development Area
PDR	Project Description Report
ROW	right-of-way
RSA	Regional Study Area
SARA	Species At Risk Act
SD	standard deviation
SOCC	species of conservation concern
TDR	technical data report
the Project	Mackenzie Valley Highway Project
тк	traditional knowledge
TLRU	traditional land and resource use
ToR	

Glossary

Alien plant species	Plants introduced to the Northwest Territories from Eurasia or other parts of North America as a result of human activities (Oldham and Delisle-Oldham, 2016).
Invasive alien plant species	Plants introduced to the Northwest Territories from Eurasia or other parts of North America as a result of human activities and with potential to cause significant ecological harm to native ecosystems, economy, or society (Carriere, 2008 and GNWT, 2015). Invasive alien plant species have the potential to be invasive due to high rates of dispersal and establishment (Snyder and Anions, 2008).
May be at Risk	Species that may be at risk of extinction or extirpation. NatureServe S-rank equaling S1 to S2 (Working Group on General Status of NWT Species, 2016).
Sensitive	Species that are not at high risk of extinction or extirpation but may require some special attention or protection to prevent them from becoming at risk. NatureServe S-rank equaling S3. May include species assessed as special concern by Committee on The Status of Endangered Wildlife in Canada (COSEWIC) or SARA (Working Group on General Status of NWT Species, 2016).
the Project	Mackenzie Valley Highway Project

1 Introduction

The Government of the Northwest Territories (GNWT), Department of Infrastructure (INF) is proposing the Mackenzie Valley Highway Project (the Project) that will extend the Mackenzie Highway (Northwest Territories Highway #1) from Wrigley to Norman Wells to replace the Mackenzie Valley Winter Road (MVWR) along this portion. The Project includes construction of approximately 281 kilometres (km) of new all-season highway, and the construction and operation of temporary and permanent quarry and borrow sources. The project highway alignment will pass through the Dehcho Region and a portion of the Tulita District of the Sahtu Region within the Northwest Territories (NT; Figure 1.1).

The Project is subject to an environmental assessment and the requirements of Part 5 of the *Mackenzie Valley Resource Management Act.* This technical data report (TDR) presents the existing baseline conditions for vegetation to support the Developer's Assessment Report (DAR), as required by the Terms of Reference (ToR; MVEIRB, 2015).

With respect to vegetation and wetlands, this TDR provides a description of existing conditions within the study areas based on available desktop information, including:

- vegetation and vegetation assemblages
- identification of species or assemblages that are considered species of conservation concern (SOCC), valued, protected or designated (e.g., vulnerable, threatened, endangered); for any species at risk or of concern, as well as location, population status, limits and size, sensitivity and limiting factors
- historic and current human use of vegetation, including subsistence and commercial harvesting, (e.g., berry picking, forestry)
- baseline contaminant concentrations in harvested species or vegetation (e.g., berries) that may change as a result of the highway and as available
- locations and quantities of merchantable timber (based on desktop timber volumes)
- listing and locations of existing non-native plant species
- frequency of forest fires; and, post-fire vegetation succession, if applicable

Vegetation and wetland baseline data has important influence on wildlife habitat, including old growth forest, as discussed in Caribou and Moose TDR (EDI, 2022), Wildlife and Wildlife Habitat TDR (K'alo-Stantec, 2022a) and Birds and Bird Habitat TDR (K'alo-Stantec, 2022b). The influence of vegetation on thermal exchange between air and ground, therefore influencing overall ice-rich soils and permafrost distribution is discussed in the Soils, Terrain and Permafrost TDR (K'alo-Stantec, 2022c). Due to low resolution of available permafrost information, permafrost extent could not be quantified or correlated with vegetation assemblages (i.e., land cover) in this TDR.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

December 2022

2 Study Areas

The Project is located in the Mackenzie Valley region of the NT between Hodgson Creek (located approximately 1 km north of Wrigley) and Prohibition Creek (located approximately 28 km southeast of Norman Wells) (Figure 1.1). The Project parallels the Mackenzie River, located to the west, and generally follows the MVWR. The Project is located within three ecoregions, each distinguished by different degrees of climatic factors (Figure 2.1).

Two study areas, the Local Study Area (LSA) and the Regional Study Area (RSA), are used to evaluate potential project-related effects and potential cumulative effects. The LSA and RSA are relatively anthropogenically undisturbed except for communities, the existing MVWR, and the Norman Wells Pipeline. Oil and gas exploration and production infrastructure in the RSA occurs on the west side of and in the Mackenzie River near Norman Wells (Auld and Kershaw, 2005). Other existing disturbances include quarries and borrow sources, a fibre optic line, and bridges associated with the MVWR.

2.1 Project Development Area

This is the area of direct Project disturbance within which works and activities will occur (footprint), and includes a new two-lane gravel highway, 60 metres (m) wide highway right-of-way (ROW), laydown and staging areas, maintenance yards, construction camps and quarry/borrow sites with access roads on a 30 m ROW.

2.2 Local Study Area

The Local Study Area (LSA) for vegetation and wetlands is consistent with that for wildlife and wildlife habitat and is a 1 km buffer around the project highway alignment centreline and proposed borrow/quarry access roads and quarry sites (Figure 2.1). The size of the LSA is based on measurable extent of Project-related effects (direct or indirect) on vegetation and wetlands, while also considering recommended setback distances for wildlife and wildlife habitat features consistent with guidance provided by Environment and Climate Change Canada (Dufour, 2020, pers. comm.). Results of this TDR are presented for the LSA by region; Dehcho Region and Sahtu Region.

2.3 Regional Study Area

The Regional Study Area (RSA) for vegetation and wetlands is consistent with that for wildlife and wildlife habitat and is a 15 km buffer around the Project's proposed road alignment centreline (Figure 2.1), which provides context for determining significance of Project-specific effects and potential cumulative effects; the RSA is consistent with other highway projects in the NT (e.g., Inuvik to Tuktoyaktuk Highway [Kiggiak - EBA Consulting Ltd., 2011]) and follows recommendations from Environment and Climate Change Canada (Dufour, 2020, pers. comm.). Results of this TDR are presented for the RSA by region; Dehcho Region and Sahtu Region.

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

December 2022

2.4 Intersected Ecoregions

2.4.1 Taiga Plains Low Subarctic

The Taiga Plains Low Subarctic is a Level III ecoregion in the central third of the Taiga Plains (Level II) (Ecosystem Classification Group, 2007). The Taiga Plains Low Subarctic ecoregion extends north to the Taiga Plains High Subarctic ecoregion (Level III) and extends 650 km south to the Taiga Plains High Boreal ecoregion (Level III) and includes outlying Cameron Plateau along the NT-AB border (Ecosystem Classification Group, 2007). To the west, the Taiga Plains Low Subarctic ecoregion is bordered by the Taiga Cordillera ecoregion (Level II); to the east, by the Taiga Shield ecoregion (level II); and to the northeast, by Great Bear Lake (Ecosystem Classification Group, 2007). The ecoregion is characterized by undulating plains, upland communities of white and black spruce, and permafrost-influenced wetlands (Ecosystem Classification Group, 2007). Human activity within the Taiga Plains Low Subarctic ecoregion includes industrial activities such as mining, petroleum extraction, and forestry (Wiken, 1986).

The northern section of the Project is located within the North Mackenzie Plain Low Subarctic ecoregion, a Level IV classification within the Taiga Plains Low Subarctic ecoregion. The North Mackenzie Plain Low Subarctic ecoregion parallels the Mackenzie River and consists of level to undulating terrain. The North Mackenzie Plains ecoregion has been subject to recent burns, which have influenced vegetation community and structure, resulting in a patchwork of low-canopy black spruce and successional shrublands and regenerating forests communities (Ecosystem Classification Group, 2007). Vegetation consists of white and black spruce (*Picea mariana*), Alaska paper birch (*Betula neoalaskana*), and dwarf birch (*Betula nana*) communities. Occurrences of trembling aspen and jack pine occur on well-drained sites south of Tulita. Bogs and fens occupy approximately 15% of the ecoregion (Ecosystem Classification Group, 2007).

A small section of the project highway alignment north of Tulita intersects the Norman Range Low Subarctic ecoregion, a Level IV classification within the Taiga Plains Low Subarctic ecoregion. The Norman Range Low Subarctic ecoregion is located northeast of the North Mackenzie Plain ecoregion and is more rugged terrain. Southwest portions of this ecoregion are composed of mixedwood deciduous and coniferous forest. Upland deciduous areas typically contain trembling aspen and Alaska paper birch; and coniferous forests typically contain white and black spruce. Bogs and fens cover approximately 4% of the ecoregion (Ecosystem Classification Group, 2007). The Sahtu Land Use plan states that plants are harvested in Norman Range Low Subarctic ecoregion by Sahtu and Pehdzeh Ki/Dehcho First Nations; this harvesting is discussed in the Cultural and Traditional Land Use TDR (K'alo-Stantec, 2022d).

Section 2: Study Areas December 2022

2.4.2 Taiga Cordillera Low Subarctic

The Taiga Cordillera Low Subarctic ecoregion (Level III) consists of mountain ranges, foothills, tundra and spruce woodlands located in the central third of the Taiga Cordillera (Level II). In comparison to the Taiga Plains, the Taiga Cordillera Low Subarctic ecoregion has very few waterbodies and peatland establishment (Ecosystem Classification Group, 2010). Human activity within the Taiga Cordillera Low Subarctic ecoregion includes hunting, fishing, trapping, and tourism (Wiken, 1986).

Central sections of the project highway alignment intersect the Central Mackenzie Plain ecoregion, a Level IV classification within the Taiga Cordillera Low Subarctic ecoregion. The Central Mackenzie Plain is located between the Dahadinni and Blackwater Rivers to the south and the boundary of the Taiga Plains ecoregion to the north. Topography includes level to gently sloping terrain, which supports a diverse array of forest types. Almost half the ecoregion has been exposed to fires, leading to widespread shrubby and deciduous community development. Black spruce – shrub – moss woodlands are common and similar in structure to the North Mackenzie Plain ecoregion. Jack pine (*Pinus banksiana*) and trembling aspen (*Populus tremuloides*) occur but are limited to southern sections. Wetlands occupy approximately 10% to 20% of the ecoregion and consist of mainly peatlands (Ecosystem Classification Group, 2010). The Sahtu Land Use plan states that plants are harvested in Norman Range Low Subarctic ecoregion by Sahtu and Pehdzeh Ki/Dehcho First Nations and is discussed in the Cultural and Traditional Land Use TDR (K'alo-Stantec, 2022d).

2.4.3 Boreal Cordillera High Boreal

The Boreal Cordillera High Boreal ecoregion (Level III) is in the southeast portion of the Boreal Cordillera (Level II), south of the Taiga Cordillera Low Subarctic ecoregion. In comparison to the Taiga Cordillera Low Subarctic, the Boreal Cordillera High Boreal has a milder climate, greater precipitation and taller, more dense stands of spruce woodlands. Mixedwood forest of trembling aspen, white spruce, paper birch, and balsam poplar are common (Ecosystem Classification Group, 2010). Human activity includes mining, forestry, and tourism (Wiken, 1986).

Southern portions of the project highway alignment intersect the Central Mackenzie Valley ecoregion, a Level IV classification within the Taiga Cordillera High Boreal ecoregion. The Central Mackenzie Valley ecoregion is bordered by the Dahadinni and Blackwater Rivers to the north and by higher elevation slopes to the south, east, and west. Topography is undulating terrain, rolling slopes, and level plains. Northern sections consist of closed black spruce woodlands and peat plateaus. Southern sections near Wrigley are composed of productive mixedwood stands of trembling aspen and white spruce (*Picea glauca*). Wetlands occupy less than 10% of the entire ecoregion and consist mainly of peat plateaus, sedge fens, northern ribbed fens, and horizontal fens (Ecosystem Classification Group, 2010). The Sahtu Land Use plan states that plants are harvested within the Dehcho Region along portions of the Mackenzie River by Sahtu Dene and Métis and is discussed in K'alo-Stantec (2022d).

3 Review of Existing Data

3.1 Traditional Knowledge and Traditional Land and Resource Use

This section presents a review of relevant traditional knowledge (TK) and traditional land and resource (TLRU) use information summarized from publicly available sources for consideration for baseline reporting that provides information on existing conditions and potential Project effects, as identified by Indigenous groups.

3.1.1 Methods

TK and TLRU plant information for the Dehcho and Sahtu regions was determined using publicly available reports:

Dehcho Region

- IMG-Golder Corporation (2006) Renewable Resource Assessment of the Pehdzeh Ki Ndeh Area of Interest. Prepared for the Canadian Parks and Wilderness Society, Northwest Territories Chapter. Yellowknife.
- Dehcho Land Use Planning Committee (2006) Respect for the Land: The Dehcho Land Use Plan – Final Draft
- Dehcho First Nations. 2011. Traditional Knowledge Assessment of Boreal Caribou (Mbedzih) in the Dehcho Region. Prepared by Dehcho First Nations for the Canadian Wildlife Service. Published by the Dehcho First Nations Fort Simpson, Northwest Territories.
- Dessau. 2012. Mackenzie Valley Highway Extension Pehdzeh Ki Ndeh Dehcho Region. Project Description Report. Prepared for Government of the Northwest Territories, Department of Transport.
- NWT Bureau of Statistics. 2018. NWT Community Survey. NWT Bureau of Statistics.

Sahtu Region

- EBA Engineering Consultants (2006) Traditional Knowledge Study Report Tulita, NT, Great Bear River Bridge.
- The Sahtu Heritage Places and Sites Joint Working Group (2000) Rakekée Gok'é Godi: Places We Take Care Of.
- McDonald, R. 2010. Boreal Caribou Traditional Knowledge Collection Study: The Sahtu Settlement Area. Edited by Andrea Hrynkiw and Glen Guthrie and McDonald. For the Canadian Wildlife Service, Environment Canada.
- 5658 NWT Ltd. and the Government of Northwest Territories (2011) Project Description Report for Construction of the Mackenzie Valley Highway Tulita District, Sahtu Settlement Area.

- Sahtu Land Use Planning Board (2013) Sahtu Land Use Plan. Government of Northwest Territories. Good Hope.
- Golder. 2015. Central Mackenzie Surface Water and Groundwater Baseline Assessment. Report 1: Technical State of Knowledge. Report Number: 1401835 Final Report 1. May 21, 2015.
- Tulita Renewable Resource Council (2019) Traditional Knowledge Study for the Great Bear River Bridge Project. Prepared by Tulita Renewable Resource Council.

Information was also obtained from the Tulita Renewable Resources Council's Project-specific TLRU study (Tulita Renewable Resource Council, 2022).

3.1.2 Results

3.1.2.1 Dehcho Region

A review of the available information indicates 140 plants or groups of plants are used for traditional purposes in the Dehcho Region (Table 3.1 and Table 3.2), with 122 expected in the ecoregions intersected by the LSA and RSA. Most of the expected plants, 101, are ranked *secure* in the NT, three are ranked *sensitive* and seven are ranked *may be at risk* (GNWT, 2016a). Many plant species serve different purposes, such as for medicine, food, craft, ritual ceremonies, spiritual endeavours, and home fuel. For example, birch bark (*Betula papyrifera, Betula neoalaskana*) is used for baskets, berries are collected for food and for dyeing materials (e.g., blueberries [*Vaccinium* spp.]), and pasture sage (*Artemisia frigida*) is used for spiritual, ritual or medicinal purposes (IMG-Golder Corporation, 2006).

Both wood and wood pellets are an important fuel for heating homes in the Dehcho Region. Within the Dehcho Region, wood is used for house heating in 388 (36%) households with 265 (24%) homes reporting wood as their main heat source (NWT Bureau of Statistics, 2018). Wood pellets are used for house heating in 65 (6%) households with 30 (3%) homes reporting wood pellets as their main heat source (NWT Bureau of Statistics, 2018).

The most common berry picking location in the Dehcho Region is adjacent to the Mackenzie Highway towards Fort Simpson and along existing trails through Pehdzeh Ki Ndeh. People also pick berries along an existing pipeline corridor near Wrigley (IMG-Golder Corporation, 2006). Within the Dehcho Region, 38% of the general population reported gathering berries (NWT Bureau of Statistics, 2020), with 50% of indigenous population of Wrigley reporting engaging in berry gathering (NWT Bureau of Statistics, 2019a).

Recent changes in climate are include warmer temperatures, increased rain in November, milder winters and increasing summer storms. Boreal woodland caribou food sources are affected by precipitation. During colder times, food becomes less accessible because it is covered by more snow, making it harder for caribou to access. Climate change does not yet appear to be affecting ground or hanging lichens, although some monitoring of future changes to lichen due to climate change should be undertaken (Dehcho First Nations, 2011).

Contaminants may be a concern for certain traditional foods, including berries and medicinal teas, in some areas (GNWT, 2017). The GNWT publishes contaminant fact sheets on many traditional meats, but no fact sheets are published for plant species (GNWT, 2016b). The Northern Contaminants Program focuses on heavy metals and on persistent organic pollutants that can bioaccumulate in wildlife and human populations (Government of Canada, 2021). There are some studies that link increased industrial activity and dust generation to increases in concentrations of some heavy metals in berries (Shotyk, 2020). Heavy metals linked to dust by Shotyk (2020) include aluminum, chromium, iron, lead, scandium, thorium, vanadium, yttrium, and lanthanides. No specific data on contaminants in berries and plants has been found for the Dehcho Region.

Form	Scientific Name ¹	Common Name(s)	Rank ²
Tree	Abies lasiocarpa*	alpine fir	-
Tree	Betula papyrifera	white birch, paper birch	Secure
Tree	Larix laricina	tamarack	Secure
Tree	Picea glauca	white spruce	Secure
Tree	Picea mariana	black spruce	Secure
Tree	Pinus banksiana	jack pine	Secure
Tree	Pinus contorta	lodgepole pine	Secure
Tree	Populus balsamifera	balsam poplar	Secure
Tree	Populus tremuloides	trembling aspen	Secure
Shrub	Alnus rugosa*	mountain alder	-
Shrub	Alnus tenufolia* (Alnus tenuifolia)	speckled alder, river alder	-
Shrub	Amelanchier alnifolia	Saskatoon	Secure
Shrub	Andromeda polifolia	dwarf bog rosemary	Secure
Shrub	Arctostaphylos uva-ursi	common bearberry, Kinnikinnick,	Secure
Shrub	Arctostaphylos alpina* (Arctous alpina)	alpine bearberry, torpedoberry	Secure
Shrub	Arctostaphylos rubra* (Arctous rubra)	red bearberry	Secure
Shrub	Betula glandulosa	bog birch	Secure
Shrub	Betula occidentalis	water birch	Secure
Shrub	Betula pumila var. glandulifera	dwarf birch	Secure
Shrub	Chamaedaphne calyculata	leatherleaf	Secure
Shrub	Cornus sericea	red osier dogwood	Secure
Shrub	Potentilla fruticosa* (Dasiphora fruticosa)	shrubby cinquefoil	Secure
Shrub	Elaegnus commutata (Elaeagnus commutata)	silverberry	Secure
Shrub	Empetrum nigrum	crowberry, black berry	Secure
Shrub	Gaultheria hispidula*	creeping wintergreen, teaberry	-

Table 3.1 Traditional Plant Species – Dehcho Region

Section 3: Review of Existing Data December 2022

Form	Scientific Name ¹	Common Name(s)	Rank ²
Shrub	Hudsonia tomentosa	sand heather	Sensitive
Shrub	Juniperus communis	common juniper	Secure
Shrub	Juniperus horizontalis	creeping juniper	Secure
Shrub	Kalmia polifolia	northern bog laurel, pale bog laurel	Secure
Shrub	Ledum groenlandicum	common Labrador tea	Secure
Shrub	Lonicera dioica	twinning/ red honeysuckle	Secure
Shrub	Lonicera involucrata*	bracted honeysuckle, black twin berry	-
Shrub	Myrica gale	sweet gale	Secure
Shrub	Prunus pensylvanica	pin cherry	Secure
Shrub	Prunus virginiana	choke cherry	Sensitive
Shrub	Ribes americanum*	wild black currant	-
Shrub	Ribes glandulosum	skunk currant, wild red currant	Secure
Shrub	Ribes hudsonianum	northern black currant	Secure
Shrub	Ribes lacustre	bristly black currant	Secure
Shrub	Ribes oxyacanthoides	northern gooseberry, Canada gooseberry	Secure
Shrub	Ribes triste	wild red currant	Secure
Shrub	Rosa acicularis	prickly rose, rose hips	Secure
Shrub	Rubus idaeus	wild red raspberry red raspberry	Secure
Shrub	<i>Salix</i> spp.	multiple willow species, including diamond willow and red willow	N/A multiple species
Shrub	Sorbus scopulina	western mountain ash	Secure
Shrub	Shepherdia canadensis	buffaloberry, soopolallie, soapberry,	Secure
Shrub	Symphoricarpos albus	common snowberry	Undetermined
Shrub	Symphoricarpos occidentalis	western snowberry	Secure
Shrub	Vaccinium myrtilloides	common blueberry, velvet leaf blueberry	Sensitive ⁺
Shrub	Vaccinium caespitosum	dwarf blueberry	Undetermined
Shrub	Vaccinium oxycoccus (Vaccinium oxycoccos)	small bog cranberry	Secure
Shrub	Vaccinium vitis-idaea	lingonberry, bog cranberry, cowberry, mountain cranberry	Secure
Shrub	Viburnum edule	low bush cranberry, mooseberry	Secure
Shrub	Viburnum opulus*	high bush cranberry	-
Graminoid	Acorus americanus (Acorus calamus)	sweetflag, calamus	May Be At Risk ⁺
Graminoid	Calamagrostis canadensis	blue-jointed reed grass, marsh reedgrass	Secure
Graminoid	Carex aquatilis	water sedge	Secure
Graminoid	Phragmites australis* (Phragmites communis)	common reed	Undetermined

Section 3: Review of Existing Data December 2022

Form	Scientific Name ¹	Common Name(s)	Rank ²
Graminoid	Hierochloe odorata	sweet-grass	Secure
Graminoid	Hordeum jubatum	fox-tail barley	Secure
Graminoid	Schoenoplectus acutus	bulrush	Secure
Graminoid	Typha latifolia	broad-leaf cattail	Secure
Graminoid	Triglochin maritima	seaside arrow-grass	Secure
Forb	Achillea millefolium	yarrow	Secure
Forb	Actaea rubra	red baneberry	Secure
Forb	Agastache foeniculum	giant hyssop	May Be At Risk⁺
Forb	Allium textile*	wild onion and chives	-
Forb	Androsace septentrionalis	pygmyflower, fairy candelabra	Secure
Forb	Angelica lucida (Coelopleurum gmelinii)	seaside angelica	May Be At Risk
Forb	Apocynum androsaemifolium	spreading dogbane	Secure
Forb	Artemisia campestris	field sagewort	Secure
Forb	Artemisia frigida	pasture sage	Secure
Forb	Aralia nudicalis (Aralia nudicaulis)	wild sarsaparilla	Secure
Forb	Aster ciliolatus* (Symphyotrichum ciliolatum)	Lindley's aster, fringed aster	Secure
Forb	Aster laevis* (Symphyotrichum laeve)	smooth aster	Presence Expected
Forb	Aster puniceus* (Symphyotrichum puniceum)	purple-stemmed aster	Undetermined
Forb	Aster umbellatus*	flat-topped white aster	-
Forb	Astragalus americanus	American milk-vetch	Secure
Forb	Boschniakia rossica	northern ground-cone	Secure
Forb	Calla palustris	water calla	Secure
Forb	Campanula rotundifolia*	bluebell	-
Forb	Chenopodium album	lamb's quarters	Alien
Forb	Chenopodium capitatum	strawberry blite	Secure
Forb	Cicuta maculata	water hemlock, spotted water-hemlock	Secure
Forb	Claytonia tuberosa	tuberous spring beauty	Secure
Forb	Chimaphila umbellata	pipsissewa	May Be At Risk+
Forb	Cornus canadensis	bunchberry	Secure
Forb	Dryopteris carthusiana (Dryopteris spinulosa)	spiney wood fern	May Be At Risk
Forb	Epilobium angustifolium	fireweed	Secure
Forb	Equisetum arvense	horsetail	Secure
Forb	Fragaria vesca	woodland strawberry, wild strawberry	Secure
Forb	Fragaria virginiana	wild strawberry,	Secure

Section 3: Review of Existing Data December 2022

Form	Scientific Name ¹	Common Name(s)	Rank ²
Forb	Galeopsis tetrahit	hemp nettle	Alien
Forb	Galium boreale	northern bedstraw	Secure
Forb	Geocaulon lividum	northern comandra	Secure
Forb	Geum aleppicum	yellow avens	Secure
Forb	Geum rivale*	purple avens	-
Forb	Grindelia squarrosa*	gumweed	-
Forb	Hedysarum alpinum	American alpine sweet-vetch, sweetbroom	Secure
Forb	Hellenium atumnale* (Helenium autumnale)	sneezeweed	Secure
Forb	Heracleum lanatrum* (Heracleum maximum, Heracleum lanatum)	cow parsnip	Secure
Forb	Heuchera richardsonii	alum root	May Be At Risk⁺
Forb	Leucanthemum vulgare	ox-eye daisy	Invasive Alien
Forb	Lycopodium annotinum	clubmoss	Secure
Forb	Maianthemum canadense	wild lily-of-the-valley	Secure
Forb	Matteauccia struthiopteris* (Matteuccia struthiopteris)	ostrich fern	Sensitive
Forb	Mentha arvensis	wild mint	Secure
Forb	Mertensia paniculata	lungwort, tall bluebells	Secure
Forb	Mitella nuda	mitrewort	Secure
Forb	Oxyria digyna	mountain sorrel	Secure
Forb	Pedicularis langsdorffii	lousewort	Secure
Forb	Petasites sagittatus	arrow-leaved coltsfoot	Not Assessed
Forb	Plantago major	broad-leaved plantain	Alien
Forb	Polygonum amphibium	water smartweed	Secure
Forb	Polygonum viviparum (Bistorta vivipara)	bistort, serpent grass	Secure
Forb	Polypodium vulgare	rock polypody fern	Secure
Forb	Potentilla gracilis*	cinquefoil	-
Forb	Pyrola asarifolia	pink wintergreen	Secure
Forb	Rubus arcticus	dewberry, dwarf raspberry	Secure
Forb	Rubus chamaemorus	cloudberry, baked apple berry, yellowberry	Secure
Forb	Rumex aquaticus	western dock	Secure
Forb	Sagittaria cuneata	arrowhead	Secure
Forb	Sarracenia purpurea	pitcher plant	Secure
Forb	Scutellaria galericulata	marsh skullcap	Secure
Forb	Sium suave	water parsnip	Secure

Section 3: Review of Existing Data December 2022

Form	Scientific Name ¹	Common Name(s)	Rank ²
Forb	Solidago canadensis	Canadian goldenrod	Secure
Forb	Taraxacum officinale	dandelion	Alien
Forb	Urtica dioica	stinging nettle	Secure
Forb	Utricularia macrorhiza	bladderwort	Secure
Forb	Veratrum viride	false hellebore	Secure
Forb	Zigadenus elegans	mountain death camus	Secure

Notes:

¹ Scientific name as reported by Dehcho Land Use Planning Committee (2006). Associated accepted synonym is provided in brackets where available.

² General NWT Rank as per NWT Species list (GNWT, 2016a) unless invasive. Alien plant rankings as described in Carriere (2008) and in Oldham and Delisle-Oldham (2016).

- * Plant names that do not appear on the NWT Species list (GNWT, 2016a).
- + Sensitive and At Risk Species not expected to occur in the Dehcho RSA.

Source: Adapted from Dehcho Land Use Planning Committee (2006) and IMG-Golder Corporation (2006).

Form	Scientific Name ¹	Common Name(s)	Rank ²	
Tree	Abies bifolia	rocky mountain subalpine fir	Secure	
Tree	Betula neoalaskana	Alaska paper birch	Secure	
Shrub	Alnus alnobetula (Alnus viridis)	green alder	Secure	
Shrub	Alnus incana (Alnus incana ssp. tenuifolia)	speckled alder (mountain alder, gray alder, hoary alder)	Secure	
Forb	Allium schoenoprasum	wild chives	Secure	
Forb	Campanula alaskana	bluebell, Alaska bellflower	Undetermined	
Forb	Campanula gieseckeana	bluebell, Giesecke bellflower	Undetermined	
Forb	Nuphar polysepala (Nuphar lutea ssp polysepala)	rocky mountain pond lily	May Be At Risk	
Forb	Nuphar variegata (Nuphar variegatum, Nuphar lutea)	variegated pond lily	Secure ⁺	

Table 3.2 Additional Potential Traditional Plant Species – Dehcho Region

Notes:

¹ Scientific name as per NWT Species list (GNWT, 2016a).

- ² Ranks as per GNWT 2016a.
- * Species not expected to occur in the Dehcho RSA.

Source: NWT Plant list (GNWT, 2016a) of similar plants to those identified by Dehcho Land Use Planning Committee (2006) and IMG-Golder Corporation (2006) that reportedly do not occur in the NT.

Section 3: Review of Existing Data December 2022

3.1.2.2 Sahtu Region

A review of the available information indicates 24 plants or groups of plants are used for traditional purposes in the Sahtu Region and all 24 are expected to occur in the ecoregions intersected by the LSA and RSA (Table 3.3). Most of the plants, or plant groups, are ranked *secure* in the NT, with none of the of the identified traditional use species considered *sensitive* or *may be at risk* (GNWT, 2016a).

Form	Scientific Name ¹	Common Name(s)	Rank ²	
Tree	Betula neoalaskana	resin birch, Alaska paper birch	Secure	
Tree	Betula papyrifera	white birch, paper birch	Secure	
Tree	Picea glauca	white spruce	Secure	
Tree	Picea mariana	black spruce	Secure	
Shrub	Arctostaphylos uva-ursi	common bearberry, Kinnikinnik,	Secure	
Shrub	Arctous alpina	alpine bearberry, torpedoberry	Secure	
Shrub	Arctous rubra	red bearberry	Secure	
Shrub	Betula glandulosa	bog birch	Secure	
Shrub	Betula occidentalis	water birch	Secure	
Shrub	Betula pumila var. glandulifera	dwarf birch	Secure	
Shrub	Empetrum nigrum	crowberry, black berry	Secure	
Shrub	Rosa acicularis	prickly rose, rose hips	Secure	
Shrub	Ribes glandulosum	skunk currant, wild red currant	Secure	
Shrub	Ribes hudsonianum	northern black currant	Secure	
Shrub	Ribes lacustre	bristly black currant	Secure	
Shrub	Ribes triste	wild red currant	Secure	
Shrub	Rubus idaeus	wild red raspberry red raspberry	Secure	
Shrub	Salix spp.	multiple willow species, including diamond willow and red willow	N/A multiple species	
Shrub	Vaccinium caespitosum	dwarf blueberry	Undetermined	
Shrub	Vaccinium oxycoccus	small bog cranberry	Secure	
Shrub	Vaccinium vitis-idaea	lingonberry, bog cranberry, cowberry, mountain cranberry	Secure	
Shrub	Viburnum edule	low bush cranberry, mooseberry	Secure	
Forb	Rubus arcticus	dewberry, dwarf raspberry	Secure	
Forb	Rubus chamaemorus	cloudberry, baked apple berry, yellowberry	Secure	

 Table 3.3
 Traditional Plant Species – Sahtu Region

Notes:

¹ Scientific name as per NWT Species list (GNWT, 2016a).

² Ranks as per GNWT, 2016a.

Sources: EBA, 2006; 5658 NWT Ltd. and GNWT, 2011; Tulita Renewable Resource Council, 2019.

Wood for fuel and tools, and berries were identified as important for traditional use (EBA, 2006; 5658 NWT Ltd. and GNWT, 2011). Both wood and wood pellets are an important fuel for heating homes in the Sahtu Region. Within the Sahtu Region, wood is used for house heating in 274 (34%) households with 109 (13%) homes reporting wood as their main heat source (NWT Bureau of Statistics, 2018). Wood pellets are used for house heating in 18 (2%) households with 14 (2%) homes reporting wood pellets as their main heat source (NWT Bureau of Statistics, 2018).

Within the Sahtu Region, 34% of the general population reported gathering berries (NWT Bureau of Statistics, 2020), with 28% of the Indigenous population of Tulita and 32% of the Indigenous population of Norman Wells reporting they were engaged in berry gathering (NWT Bureau of Statistics, 2019b, 2019c).

Contaminants may be a concern for certain traditional foods, including berries and medicinal teas, in some areas (GNWT, 2017). The GNWT publishes contaminant fact sheets on many traditional meats, but no fact sheets are published for plant species (GNWT, 2016b). The Northern Contaminants Program focuses on heavy metals, and persistent organic pollutants, which can bioaccumulate in wildlife and human populations (Government of Canada, 2021). There are some studies that link increased industrial activity and dust generation to increases in concentrations of some heavy metals in berries (Shotyk, 2020). Heavy metals linked to dust (Shotyk, 2020) include aluminum, chromium, iron, lead, scandium, thorium, vanadium, yttrium, and lanthanides. No specific data on contaminants in berries and plants has been found for the Sahtu Region.

The Tulita Renewable Resources Council TLRU study developed for the Project (Tulita Renewable Resource Council, 2022) reports that:

- Country food is an important part of community residents' diet, and is shared among the community, family members, and friends in all seasons (particularly during spring and winter); and the community relies on and is in constant need of wildlife/country food for sustenance.
- Changes in the LSA such as increase of fires and disappearing plants have affected the ability to conduct TLRU.
- Harvesting plants and berries within the LSA, and along the MVWR in the summertime.
- Healing wood is harvested in the LSA.
- Firewood is harvested along the MVRW during the wintertime.
- More invasive species and vegetation in the LSA that have affected ability to conduct TLRU and recommend further studies to assess change / impact.
- Birch barks, willows and spruce branches are collected in the LSA and are used for medicinal purposes in the LSA.
- Plants and wildlife are still needed to conduct TLRU, food and hides (personal use).
- A berry harvesting area on the west side of Bear River, and near Plane Lake.
- Willows, birch bark and spruce boughs are harvested within the LSA.
- Blueberries are harvested within the LSA.

Section 3: Review of Existing Data December 2022

3.2 Literature Review

3.2.1 Methods

Available vegetation and wetland information was compiled to identify conditions in the study areas. The following data sources were reviewed:

- Earth Observation of Sustainable Development (EOSD) of Forests Northwest Territories geospatial database raster data (Natural Resources Canada and GNWT, 2017)
- Canadian Wildland Fire Information System Datamart Canadian National Fire Database fire polygon data (Canadian Forest Service, 2020)
- Species at Risk Act (SARA) Public Registry threatened and endangered species occurrences and ranking data (Government of Canada, 2019)
- NWT species 2016-2020 general status ranks of wild species in the Northwest Territories (Working Group on General Status of NWT Species, 2016)
- Northwest Territories species monitoring Infobase (GNWT, 2016a)
- Alien and invasive alien plant species occurrence data (AKEPIC, 2020)
- Project Description Report (PDR) for Construction of the Mackenzie Valley Highway Tulita District, Sahtu Settlement Area – (5658 NWT Ltd. and GNWT, 2011)
- Project Description Report for Mackenzie Valley Highway Extension Pehdzeh Ki Ndeh Dehcho Region – (Dessau, 2012)

3.2.1.1 Landcover/Plant Assemblages and Timber

Landcover/plant assemblages and timber within the LSA and RSA were quantified using EOSD NWT data (Natural Resources Canada and GNWT, 2017). This dataset is part of the Multisource Inventory Project (Natural Resources Canada, 2020) and uses an unsupervised classification and cluster analysis to classify landcover/plant assemblages.

The EOSD NWT dataset includes modelled cover type and density classes, as well as forest structure height and volume information based on Landsat TM imagery collected from 2007 to 2013. Mapping was done at a scale of 1:250,000 and refined through field evaluation by the GNWT (Natural Resources Canada and GNWT, 2017).

Crown Closure Class uses three categories with a range of percentage to quantify canopy closure coverage: sparse (6-25%), open (26-55%), and dense (56-100%).

Merchantable timber is defined by timber supply plans and, if timber supply plans are not available, by the Commercial Timber Harvest Planning and Operations Standard Operating Procedures Manual (GNWT Environment and Natural Resources, 2005). Generally, this includes soft-wood species with a diameterat-breast-height of 18 centimetres (cm) and larger. Available timber data from EOSD does not include species-specific data; therefore, estimates of merchantable timber volumes were not completed. Included in this TDR are estimates of coniferous and mixedwood volumes in the LSA and RSA, which can be used

to inform future field data collection for determination of merchantable timber locations and volumes. Future merchantable timber estimates should address the amount of merchantable timber removed during ROW clearing and the potential for facilitating use of waste timber by communities.

No vegetation assemblages are considered rare in the Boreal Cordillera ecoregion or the Taiga Cordillera ecoregion (Working Group on General Status of NWT Species, 2016).

3.2.1.2 Fire History

Forest fire polygon data from the Canadian National Fire Database (CNFDB) (Canadian Forest Service, 2020) was examined for the frequency and extent of fire in the LSA and RSA and differences with landcover types/plant assemblages. CNFDB fire polygon data is compiled by Canadian fire agencies (provincial, territories and Parks Canada) and can be used for spatial and temporal analysis of fire effects at a landscape scale. CNFDB fire polygon data for NT is current as of 2019 (Canadian Forest Service, 2020). Frequency of burns, area burned (hectares [ha]), and proportion of area burned were determined by decade (1960 to 2019) for the LSA and RSA.

3.2.1.3 Plant SOCC

The Northwest Territories Species Monitoring Infobase was searched to identify known vascular and non-vascular plant SOCC that could potentially occur in the LSA and RSA (GNWT, 2016a).

Plant SOCC observations from the Mackenzie Gas Project (Mackenzie Project Environment Group, 2004) detailed in the Mackenzie Valley Highway Tulita District PDR (5658 NWT Ltd. and GNWT, 2011) and the PDR for Mackenzie Valley Highway Extension Pehdzeh Ki Ndeh – Dehcho Region (Dessau, 2012) were also reviewed for documented plant SOCC in the RSA.

3.2.1.4 Alien and Invasive Alien Plant Species

Alien plant species are defined as plants introduced to the NT from Eurasia or other parts of North America as a result of human activities (Oldham and Delisle-Oldham, 2016). Invasive alien plant species are those with potential to cause significant ecological harm to native environments through high rates of dispersal and establishment (Snyder and Anions, 2008). Some human developments and activities can promote the establishment and spread of alien and invasive alien plant species through introduction of propagules and increasing habitat invasiveness. Changes in disturbance frequency and intensity of natural habitats can alter species composition, including invasion by alien and invasive alien plant species. Invasive alien plant species are plants listed in Carriere (2008). Additional invasive alien plant species are plants which are described as 'priority invasive plant species' in Oldham and Delisle-Oldham (2016). Alien plant species are plants which appear in Oldham and Delisle-Oldham (2016) and GNWT (2015), but the latter does not specifically identify plant species as "Invasive Alien"; however, the report does list species that are invasive by nature. Additionally, alien species are identified in Working Group on General Status of NWT Species (2016). That report also does not specifically identify plant species as invasive alien.

Alien and alien invasive plant species potentially occurring in the RSA were identified using Oldham and Delisle-Oldham (2016), for which a field survey was conducted to identify occurrences of alien and invasive alien plant species along the Mackenzie Highway from the northern Alberta border to Wrigley, NT, and conducting a search of the Northwest Territories Species Monitoring Infobase (GNWT, 2016a) to identify potential alien and invasive alien plant species occurring within Level II ecoregions (Taiga Plains, Taiga Cordillera and Boreal Cordillera) intersected by the RSA. Occurrences identified in this TDR do not directly overlap the Project Development Area (PDA); however, they are within the RSA and indicate plants that may occur in the vegetation LSA or project PDA. Known occurrences of alien and invasive alien plant species in the RSA were determined using the Alaska Exotic Plants Information Clearinghouse (AKEPIC), a geospatial mapping tool which tracks occurrences of alien species (AKEPIC, 2020).

3.2.2 Results

3.2.2.1 Dehcho Region

Landcover/Plant Assemblages

Coniferous forest is the most abundant landcover type/plant assemblage in the Dehcho Region of the LSA, occupying 44.8% (9,512.2 ha), with similar proportions of sparse, open and dense stands present (Table 3.4). Broadleaf and mixedwood forests are also present, but are less common, with broadleaf forest occupying 3.5% (733.2 ha) and mixedwood forest occupying 4.4% (932.8 ha). Most coniferous forest cover types are located east of the Mackenzie River, whereas most broadleaf and mixedwood forest cover types are located west of the Mackenzie River, which has historically been burned (Figure 3.1). Figure 3.2 shows areas of sparse and open forest cover in the Dehcho Region portion of the LSA.

Remaining upland areas in the Dehcho Region of the LSA are largely composed of exposed land, 5.9% of the LSA (1,255.3 ha), low shrub, 1.6% of the LSA (347.4 ha), and tall shrub, 1.4% of the LSA (307.4 ha) (Table 3.4). Exposed land includes areas that naturally have less than 5% vegetative cover, such as shorelines of rivers and lakes, exposed rock, recently burned areas, and moraines; the areas also include cleared areas such as roads and areas of infrastructure development, including the two existing cleared ROW for the Norman Wells Pipeline and MVWR. Exposed land occurs predominantly along the east side of the Mackenzie River in the LSA in the Dehcho Region (Figure 3.1). Tall and low shrub are distributed predominately west of the Mackenzie River and, typically, associated with broadleaf stands and lower areas with open water.

Wetlands occupy 19.6% of the LSA in the Dehcho Region (4,152.9 ha). Treed and shrub wetlands are the most common wetland types, occupying 8.3% (1,768.5 ha) and 7.9% (1,667.2 ha), respectively. Wetlands are located throughout the LSA in the Dehcho Region, with the highest concentrations of wetlands occurring along watercourses adjacent to Mackenzie River (Figure 3.1).

Section 3: Review of Existing Data December 2022

Landcover/Plant	Cover Type Class	LSA		RSA	
Assemblage Type		ha	%	ha	%
Broadleaf Forest	Broadleaf – Dense	665.0	3.1	43,789.4	12.2
	Broadleaf – Open	68.3	0.3	4,129.7	1.2
	Broadleaf Subtotal	733.2	3.5	47,919.1	13.4
Coniferous Forest	Coniferous – Dense	2,724.7	12.8	25,081.4	7.0
	Coniferous – Open	3,694.9	17.4	40,004.2	11.2
	Coniferous – Sparse	3,092.7	14.6	51,385.1	14.3
	Coniferous Subtotal	9,512.2	44.8	116,470.7	32.5
Mixedwood Forest	Mixedwood – Dense	825.5	3.9	6,772.1	1.9
	Mixedwood – Open	107.3	0.5	2,727.8	0.8
	Mixedwood Subtotal	932.8	4.4	9,499.9	2.6
Shrubland	Shrub – Tall	307.4	1.4	1,642.0	0.5
	Shrub – Low	347.4	1.6	38,961.7	10.9
	Shrubland Subtotal	654.8	3.1	40,603.7	11.3
Herbaceous and Un-	Herb	42.7	0.2	1,248.9	0.3
vegetated	Bryoids	7.0	<0.1	20.3	<0.1
	Rock/Rubble	44.1	0.2	4,877.5	1.4
	Exposed Land ¹	1,255.3	5.9	4,844.1	1.4
Herbaceous and Un-vegetated Subtotal		1,349.1	6.4	10,990.8	3.1
	Upland Subtotal ²	13,182.0	62.1	225,484.3	62.9
Wetland	Wetland – Treed	1,768.5	8.3	46,837.6	13.1
	Wetland – Shrub	1,667.2	7.9	44,668.8	12.5
	Wetland – Herb	717.3	3.4	12,623.9	3.5
	Wetland Subtotal ²	4,152.9	19.6	104,130.4	29.0
Open Water		3,894.1	18.3	28,828.2	8.0
No data		0.0	0.0	95.5	0.0
Total ²		21,229.0	100.0	358,538.4	100.0

Table 3.4 Landcover/Plant Assemblage Types in the LSA and RSA – Dehcho Region

Notes:

Exposed land includes areas which naturally have less than 5% vegetative cover such as shorelines of rivers and lakes, exposed rock, recently burned areas, and moraines, and includes cleared areas such as roads and areas of infrastructure development.

² Sub-totals and totals may not equal sums of individual values due to rounding.

Source: Natural Resources Canada and GNWT (2017).

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.
Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Section 3: Review of Existing Data December 2022

Figure 3.2 Upland Landcover/Plant Assemblage – Dehcho Region

Areas of open water (i.e., lakes, rivers and streams) are also common in the Dehcho Region of the LSA, occupying 18.3% of the LSA (3,894.1 ha), which occur primarily at Mackenzie River and associated watercourses (Figure 3.1). Herb, and rock/rubble areas are also present, both occupying 0.2% of the LSA at 42.7 ha and 44.1 ha, respectively. Bryoid dominated areas are uncommon, occupying less than 0.1% of the Dehcho Region of the LSA (7.0 ha).

Like the LSA, the RSA in the Dehcho Region is dominated by coniferous forest 32.5% (116,470.7 ha); however, cover decreases with stand density (Table 3.4). Broadleaf forests in the RSA occupy a greater proportion of landcover 13.4% (47,919.1 ha) than in the LSA. Compared to the LSA, relative abundance of mixedwood forest within the RSA is lower, representing just 2.6% (9,499.9 ha). Broadleaf and mixedwood forests are dominated by dense stands with 56% to 100% tree closure.

The remaining upland composition in the RSA in the Dehcho Region is mostly low shrub 10.9% (39,961.7 ha), followed by rock/rubble 1.4% (4,877.5 ha), exposed land 1.4% (4,844.1 ha), and tall shrub 0.5% (1,642.0 ha). Herb dominated areas are also present in the RSA, occupying 0.3% (1,248.9 ha). Small amounts of bryoid landcover/plant assemblage is also present in the RSA, but they are found at less than 0.1% (Table 3.4).

Wetlands cover 29.0% (104,130.4ha) of the RSA in the Dehcho Region, with similar proportions of treed wetlands and shrub wetlands, occupying 13.1% (46,837.6 ha) and 12.5% (44,668.8 ha), respectively. Herb wetlands are also present at 3.5% (12,623 ha). Wetlands are predominately located in areas associated with open water and broadleaf stands, occurring primarily adjacent to watercourses throughout the Dehcho Region.

A lower percentage of open water areas are observed in the RSA in the Dehcho Region 8.0% (28,828.2 ha), compared to the LSA (Table 3.4). This difference is due to the presence of the Mackenzie River in the LSA (Figure 3.1). Smaller areas of open water also occur and are surrounded by various wetland classes (Figure 3.3).

Coniferous forest has an average stand volume density of 40.2 cubic metres per hectare (m³/ha; Standard Deviation [SD] = 17.7) (Table 3.5). Tree height in conifer stands in the LSA range from 5 m to 19 m with an average height of 9.1 m (SD = 2.2). Mixedwood forest has a greater average stand volume density (42.2 m³/ha, SD = 13.6) than coniferous (40.2 m³/ha, SD = 17.7), and deciduous forests (34.6 m³/ha, SD = 17.9). Deciduous forest has slightly shorter minimum tree height (5 m) than mixedwood forest (6 m), but both have similar maximum tree heights of 17 m. Average tree height for deciduous forest is 8.5 m (SD = 2.2), whereas average tree height for mixedwood forest is 9.5 m (SD = 1.6) (Table 3.5). More detailed species information from ground data is needed to provide detailed merchantable timber volume estimates, but from volume metrics, merchantable timber is expected in the Dehcho Region of the LSA.

Figure 3.3 Open Water and Wetland Landcover/Plant Assemblage – Dehcho Region

Section 3: Review of Existing Data December 2022

Table 3.5Tree Height, Stand Volume Density and Total Volume by Forest Type in the LSA –
Dehcho Region

Landcover/Plant Assemblage		Tree Heig (m)	ght		St	and Volume (m³/ha)	Density		Total Volume ²
Туре	Minimum	Maximum	Average	SD ¹	Minimum	Maximum	Average	SD ¹	(m ³)
Coniferous	5	19	9.1	2.2	13	148	40.2	17.7	448,465
Deciduous	5	17	8.5	2.2	13	125	34.9	17.9	15,209
Mixedwood	6	17	9.5	1.6	17	125	42.2	13.6	26,803

Notes:

¹ Standard Deviation.

² Total volume determined by multiplying average stand volume by land cover area (ha) in the LSA. **Source:** Natural Resources Canada and GNWT (2017).

Average stand volume density of coniferous forest in the RSA is lower than that of the LSA at 31.0 m³/ha (SD = 21.7) (Table 3.6). Average tree height in coniferous forest is also shorter in the RSA than the LSA, equaling 7.7 m (SD = 2.5), with heights ranging from 4 m to 22 m (Table 3.6). Deciduous forest in the Dehcho Region of the RSA shares the same range of stand heights as coniferous forest; however, average height is 6.7 m and tree height is less variable (SD = 1.9). Mixedwood forest has an average stand volume density of 38.7 m³/ha (SD = 19). Mixedwood forest ranges from 5 m to 21 m in height with an average tree height of 8.9 m (SD = 2.1). Average stand volume density of deciduous and mixedwood stands in the RSA is lower than the LSA. Average tree heights of deciduous and mixedwood stands in the LSA are taller than the RSA.

Table 3.6Tree Height, Stand Volume Density and Total Volume by Forest Type in the RSA –
Dehcho Region

Landcover/Plant Assemblage		Tree Heig (m)	ght		St	and Volume (m³/ha	Density)		Total Volume ²
Туре	Minimum	Maximum	Average	SD ¹	Minimum	Maximum	Average	SD ¹	(m ³)
Coniferous	4	22	7.7	2.5	10	180	31.0	21.7	3,927,036
Deciduous	4	22	6.7	1.9	10	182	23.2	14.9	1,190,127
Mixedwood	5	21	8.9	2.1	13	174	38.7	18.8	276,288

Notes:

¹ Standard Deviation

² Total volume determined by multiplying average stand volume by land cover area (ha) in the RSA. **Source:** Natural Resources Canada and GNWT (2017).

Fire History

Between 1960 and 2019, five fires occurred within some portion of the LSA in the Dehcho Region, burning a total area of 4,830.3 ha (22.8% of the LSA) (Table 3.7). Total area burned within the Dehcho Region of the LSA ranged from 0 to 2,713.0 ha, with zero to two fires occurring per decade. Some areas burned more than once during this time, with certain areas experiencing burns in more than one decade. Most of the recorded fires have occurred west and northeast of the Mackenzie River. During the period of 1990-2009, the majority of the LSA west of the Mackenzie River had been affected by fire (Figure 3.4).

There were 24 fires within the RSA in the Dehcho Region between 1960 and 2019, burning a total of 182,269.2 ha (50.8% of the RSA) (Table 3.7). Fire sizes within the RSA ranged from 3,390.3 ha to 115,739.5 ha. In comparison to the LSA, the RSA burned more frequently, and had a greater proportion burned. This is likely an artifact of the size of the LSA and is not suspected to reflect a greater resistance to burning.

	Numbe	r of Fires	Total A (rea Burnt ha)	Percent Area Burnt (%)		
Time Period	LSA	RSA	LSA	RSA	LSA	RSA	
1960-1969	0	2	0.0	4,864.3	0.0	1.4	
1970-1979	1	2	2,713.0	7,523.0	12.8	2.1	
1980-1989	0	3	0.0	3,390.3	0.0	0.9	
1990-1999	2	4	1,466.5	115,739.5	6.9	32.3	
2000-2009	1	9	36.1	26,066.8	0.2	7.3	
2010-2019	1	4	614.7	24,685.3	2.9	6.9	
TOTAL	5	24	4,830.3	182,269.2	22.8	50.8	

Table 3.7	Forest Fire Occurrence within the LSA and RSA from 1960 to 2019 – Dehcho
	Region

Source: Canadian Forest Service (2020).

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Fires within the LSA of the Dehcho Region affected 2,819.8 ha of upland areas and 1,757.1 ha of wetland areas (Table 3.8). Fires within the RSA of the Dehcho Region affected 114,208.9 ha of upland areas and 59,383.3 ha of wetland areas (Table 3.8). All upland and wetland types were burned at least once in the LSA and RSA between 1960 and 2019. Areas burned of rock/rubble, exposed land and open water reflect the coarse scale of available data in fact, these areas likely did not actually burn.

Figure 3.5 is a box plot, which shows the median area burned per landcover/plant assemblage type in the LSA and RSA in the Dehcho Region between 1960 and 2019. The heavy horizontal bar in each box indicates median value, with inter-quartile range represented as upper and lower boundaries on opposite areas in the box. Standard deviation is represented as bars and outliers as points. This figure shows that fire size in the LSA and RSA of the Dehcho Region is highly variable.

Data on changes in plant composition with varying time since burned (i.e., succession) were not found for the LSA or RSA. Available studies indicate burned areas are dominated by plants capable of vegetative reproduction following fire, with a later increase in abundance of plants reproducing by seed and slower growing plants capable of vegetative reproduction. Plants with light abundant seeds and species also colonize burned areas rapidly and abundance decreases after a few years due to short life spans of the plants (Johnson, 1981). Trees required 5 to 6 years, on average, to reach a height of 0.3 m following high severity fires in High Boreal, Low Subarctic, and High Subarctic ecoregions of the Taiga Shield (Lewis et al., 2018). Following low to mixed-severity fires, trees took 10.7 years, on average, in the High Boreal ecoregion and 15.5 years in the Low Subarctic. Tree regeneration times may differ for the ecoregions intersected by the RSA.

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Section 3: Review of Existing Data December 2022

	1	-			
Landcover/Plant		Total numb	per of Fires ²	Total a	rea burned (ha)
Assemblage Type ¹	Cover Type Class	LSA	RSA	LSA	RSA
Broadleaf Forest	Broadleaf – Dense	10	47	565.3	41,556.8
	Broadleaf – Open	4	29	16.7	3,196.0
	Broadleaf Subtotal	-	-	582.0	44,752.8
Coniferous Forest	Coniferous – Dense	6	34	117.1	3,847.3
	Coniferous – Open	8	45	225.5	11,819.8
	Coniferous – Sparse	11	50	568.6	17,743.1
	Coniferous Subtotal	-	-	911.2	33,110.2
Mixedwood Forest	Mixedwood – Dense	2	24	42.7	1,322.8
	Mixedwood – Open	10	33	133.5	1,583.7
	Mixedwood Subtotal	-	-	176.2	2,906.5
Shrubland	Shrub – Low	11	54	341.3	27,963.2
	Shrub – Tall	10	36	498.8	1,578.6
	Shrubland Subtotal	-	-	840.1	29,541.8
Herbaceous and Un-	Herb	1	20	6.0	268.3
vegetated	Bryoids	9	14	11.6	23.8
	Rock/Rubble	1	10	1.1	827.9
	Exposed Land ³	13	38	291.6	2,477.6
Herbaceous an	d Un-vegetated Subtotal	-	-	310.3	3,597.6
	Upland Subtotal	-	-	2,819.8	114,208.9
Wetland	Wetland – Herb	10	47	564.4	9,136.9
	Wetland – Shrub	11	52	577.6	26,273.5
	Wetland – Treed	11	49	615.1	23,972.9
	Wetland Subtotal	-	-	1,757.1	59,383.3
Open Water		11	49	253.5	8,630.6
No Data		-	16	-	46.3
Total		-	-	4,830.3	182,269.2

Table 3.8Number of Fires per Landcover/Plant Assemblage Type and Total Area Burned
from 1960 to 2019 – Dehcho Region

Notes:

¹ Landcover/plant assemblage type in 2020. Landcover/plant assemblage may have been different prior to fire events.

² Many fires affected more than one vegetation type; therefore, the total number of fires are given for each vegetation type but cannot be summed among vegetation types.

³ Exposed land includes areas which naturally have less than 5% vegetative cover such as shorelines of rivers and lakes, exposed rock, recently burned areas, and moraines, and includes cleared areas such as roads and areas of infrastructure development.

Source: Canadian Forest Service (2020)

Plant SOCC

A search of the Northwest Territories Species Monitoring Infobase (Working Group on General Status of NWT Species, 2016)—queried to the ecoregions (Boreal Cordillera and Taiga Cordillera) that are intersected by the RSA of the Dehcho Region—identified 107 vascular plant, bryophytes and lichen SOCC with potential to occur within the RSA, including 77 vascular plants, six mosses, and 24 lichens (Appendix A.1). Of the 77 vascular plants identified, 33 are listed territorially as *may be at risk* and 44 are listed as *sensitive* under the NWT General Species Rankings. Of the six moss species identified, four are listed territorially as *may be at risk* and two are listed as *sensitive* under the NWT General Species Rankings. Two lichen species are listed as *may be at risk* and 22 as *sensitive* (GNWT, 2016a). No plant or lichen SOCC occurring in the Boreal Cordillera ecoregion or the Taiga Cordillera ecoregion are listed under SARA or Committee on The Status of Endangered Wildlife in Canada (COSEWIC), and no vegetation assemblages are considered *rare*.

No plant SOCC occurrences have been documented within the Dehcho Region of the LSA or RSA (Dessau, 2012). Several species reported by Dessau (2012) were previously considered SOCC but have since been downgraded. Pre-construction field surveys should be conducted to evaluate plant SOCC occurrences of higher potential areas potentially impacted by the Project (e.g., riparian areas, uncommon plant assemblages).

Alien and Invasive Alien Plant Species

A search of the AKEPIC Data Portal (AKEPIC, 2020) found 14 locations of 12 alien and invasive alien plant species within the RSA in the Dehcho Region (Table 3.9). Nine of the species are classified as alien plant species and three as invasive alien species. Oldham and Delisle-Oldham (2016) identified 34 alien and invasive alien plant species, of which 22 species were classified as alien and 12 as invasive alien in the RSA in the Dehcho Region (Appendix B). Specific locations of these occurrences are not available; however, locations were sampled in ditches along human infrastructure.

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Section 3: Review of Existing Data December 2022

Listing	Scientific Name	Common Name	Number of Occurrences	Closest Occurrence to the PDA (km)
Alien	Taraxacum officinale	common dandelion	1	0.56
Alien	Erucastrum gallicum	common dog mustard	1	0.56
Alien	Lappula squarrosa	European stickseed	1	0.56
Alien	Brassica rapa	field mustard	1	8.77
Alien	Thlaspi arvense	field pennycress	1	8.77
Alien	Matricaria discoidea	pineapple weed	1	0.56
Alien	Taraxacum erythrospermum	rock dandelion	1	0.56
Alien	Phleum pratense	timothy	1	0.56
Alien	Lepidium virginicum	wild peppergrass	1	8.78
Invasive Alien	Crepis tectorum	narrow-leaf hawksbeard	3	0.56
Invasive Alien	Phalaris arundinacea	reed canary grass	1	6.39
Invasive Alien	Melilotus albus	white sweet-clover	1	8.78

Table 3.9 Alien and Invasive Alien Plant Species Recorded within the RSA – Dehcho Region

Source: AKEPIC (2020)

3.2.2.2 Sahtu Region

Landcover/Plant Assemblages

Coniferous forest dominates upland area within the LSA in the Sahtu Region, occupying 28.3% (11,798.9 ha), with open and sparse stands being most abundant (Table 3.10). Broadleaf and mixedwood forests are also present, but less common, with broadleaf forest occupying 6.9% (2,892.5 ha) and mixedwood forest occupying 5.6% (2,315.2 ha) of the LSA. Coniferous forests are primarily distributed west and northeast of the Mackenzie River, broadleaf forests occur in the southwest portion of the LSA, and mixedwood forests are distributed throughout (Figure 3.6). Remaining upland areas in the LSA in the Sahtu Region are largely composed of low shrub at 16.6% (6,935.0 ha), followed by exposed land 4.1% (1,688.2 ha), and tall shrub 4.1% (1,688.7 ha) (Table 3.10). Exposed land occurs predominately adjacent to the Mackenzie River (Figure 3.6). Tall and low shrub landcover/plant assemblage types are located predominately in the northwest portion of the LSA and typically adjacent to conifer stands and near wetlands (Figure 3.6).

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Section 3: Review of Existing Data December 2022

Landcover/Plant		LS/	4	RS	A
Assemblage Type	Cover Type Density	ha	%	ha	%
Broadleaf Forest	Broadleaf – Dense	2,004.4	4.8	34,264.7	5.3
	Broadleaf – Open	888.1	2.1	14,627.8	2.2
	Broadleaf Subtotal	2,892.5	6.9	48,892.5	7.5
Coniferous Forest	Coniferous – Dense	893.2	2.1	18,581.1	2.9
	Coniferous – Open	5,555.5	13.3	113,324.1	17.4
	Coniferous – Sparse	5,350.3	12.8	71,839.7	11.0
	Coniferous Subtotal	11,798.9	28.3	203,744.8	31.3
Mixedwood Forest	Mixedwood – Dense	318.9	0.8	7,492.9	1.1
	Mixedwood – Open	1,991.2	4.8	23,821.0	3.7
	Mixedwood – Sparse	5.1	<0.1	11.7	<0.1
	Mixedwood Subtotal	2,315.2	5.6	31,325.7	4.8
Shrubland	Shrub – Tall	1,688.7	4.1	16,523.1	2.5
	Shrub – Low	6,935.0	16.6	72,610.1	11.1
	Shrubland Subtotal	8,623.7	20.7	89,133.2	13.7
Herbaceous and Un-	Herb	191.0	0.5	4,093.5	0.6
vegetated	Bryoids	5.9	<0.1	137.1	0.0
	Rock/Rubble	62.2	0.1	10,281.4	1.6
	Exposed Land ¹	1,688.2	4.1	9,900.7	1.5
Herb	aceous and Un-vegetated Subtotal	1,947.3	4.7	24,412.6	3.7
	Upland Subtotal	27,577.4	66.2	397,508.9	61.0
Wetland	Wetland – Treed	4,121.8	9.9	64,770.4	9.9
	Wetland – Shrub	3,819.0	9.2	55,334.7	8.5
	Wetland – Herb	2,666.8	6.4	44,856.6	6.9
	Wetland Subtotal	10,607.6	25.5	164,961.7	25.3
Open Water		3,489.1	8.4	89,310.5	13.7
No Landcover Data		0.0	0.0	164.4	0.0
Total		41,674.1	100.0	651,945.4	100.0

Table 3.10 Landcover/Plant Assemblage Types in the LSA and RSA – Sahtu Region

Note:

Exposed land includes areas which naturally have less than 5% vegetative cover, such as on the shorelines of rivers and lakes, exposed rock, recently burned areas, and moraines; it includes cleared areas, such as roads and areas of infrastructure development.

Source: Natural Resources Canada and GNWT (2017).

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Wetlands occupy 25.5% of the LSA in the Sahtu Region (10,607.6 ha). Treed and shrub wetlands are the most common wetland types in the LSA, occupying 9.9% (4,121.8 ha) and 9.2% (3,819.0 ha) of the LSA in the Sahtu Region, respectively. Wetlands are located throughout the LSA in the Sahtu Region with the highest concentrations occurring near areas of open water (Figure 3.6). Areas of open water (i.e., lakes, rivers, and streams) are also common in the LSA in the Sahtu Region, occupying 8.4% (3,489.1 ha) and primarily associated with the Mackenzie River and Three Day Lake in the northwest portion of the LSA (Figure 3.6). Herb, bryoid dominated areas and rock/rubble areas are uncommon, occupying less than 0.1% or less within the LSA in the Sahtu Region.

Like the LSA, the RSA in the Sahtu Region is dominated by coniferous forest, 31.3% (203,744.8 ha), with abundance decreasing with increased stand density (Table 3.10). In comparison to the LSA, proportions of broadleaf forest within the RSA were greater, 7.5% (48,892.5 ha), while proportions of mixedwood forest were lower, at 4.8% (31,325.7 ha). Remaining upland areas in the RSA in the Sahtu Region are largely composed of low shrub 11.1% (72,610.1 ha), followed by tall shrub 2.5% (16,523.1 ha), with similar proportions of rock/rubble 1.6% (10,281.4 ha) and exposed land 1.5% (9,900.7 ha) (Table 3.10). Areas of rock/rubble are located on steeper slopes (Figure 3.7) and other scattered areas in the LSA and RSA.

Figure 3.7 Unvegetated Rock/Rubble (foreground) in the LSA – Sahtu Region

Wetlands cover 25.3% (164,961.7 ha) of the RSA in the Sahtu Region, predominantly as treed wetlands 9.9% (64,770.4 ha). Shrub wetlands and herb wetlands are also present in the RSA in the Sahtu Region, occupying 8.5% (55,334 ha) and 6.9% (44,856.6 ha), respectively. Wetlands are located throughout the RSA in the Sahtu Region and are often located adjacent to areas of open water (Figure 3.8) and watercourses east of the Mackenzie River (Figure 3.6). Areas of open water are also present in the RSA, occupying 13.7% (89,310.5 ha) of the RSA.

Figure 3.8 Open Water Surrounded by Herb and Shrub Wetland in the LSA – Sahtu Region

Coniferous forest of the LSA in the Sahtu Region has an average stand volume density of 23.7 m³/ha (SD = 12.4) (Table 3.11). Conifer forest tree heights range from 5 m to 17 m with an average height of 6.9 m (SD = 1.7). Mixedwood forest has a greater average stand volume density (32.2 m^3 /ha, SD = 14.5) than deciduous forest (23.0 m^3 /ha, SD = 10.6). Although deciduous cover types have a greater maximum height (18 m) than mixedwood cover types (15 m), the average tree height in mixedwood stands is greater than in deciduous stands, at 8.2 m (SD = 1.9) and 6.8 m (SD = 1.5), respectively (Table 3.11). More detailed species information from ground data is needed to provide detailed merchantable timber volume estimates, but from volume metrics, merchantable timber is expected in the Sahtu Region LSA.

Section 3: Review of Existing Data December 2022

Table 3.11Cover Type and Stand Volume Density per Landcover/Plant Assemblage Type in
the LSA – Sahtu Region

Landcover/Plant Assemblage		Tree Heig (m)	jht		Sta	and Volume (m³/ha	e Density I)		Total Volume ²
Туре	Minimum	Maximum	Average	SD ¹	Minimum	Maximum	Average	SD ¹	(m³)
Coniferous	5	17	6.9	1.7	10	116	23.7	12.4	288,702
Deciduous	5	18	6.8	1.5	11	126	23.0	10.6	55,036
Mixedwood	5	15	8.2	1.9	14	88	32.2	14.5	47,027

Notes:

¹ Standard deviation.

² Total volume determined by multiplying average stand volume by land cover area (ha) in LSA. **Source:** Canadian Forest Service (2020)

Coniferous forest in the RSA in the Sahtu Region has an average stand volume density of 25.7 m³/ha (SD = 15.3) (Table 3.12). Average tree height in coniferous forest is 7.2 m (SD = 2.0), with heights ranging from 4 m to 21 m. Deciduous forest in the Sahtu Region has a similar range of stand height and similar average height as coniferous forest. The average stand volume density in mixedwood forest is 30.2 m^3 /ha, (SD = 16.5). Mixedwood stands range from 5 m to 22 m with an average tree height of 7.8 m (SD = 2.0) (Table 3.12).

Table 3.12 Tree Height, Stand Volume Density and Total Volume per Forest Type in the RSA – Sahtu Region

	Tree Height (m)				S	Total Volume ²			
Cover Type	Minimum	Maximum	Average	SD ¹	Minimum	Maximum	Average	SD ¹	(m ³)
Coniferous	4	21	7.2	2.0	9	166	25.7	15.3	5,590,767
Deciduous	4	19	7.0	2.0	10	149	24.8	15.1	1,040,433
Mixedwood	5	22	7.8	2.0	11	177	30.2	16.5	665,412

Notes:

¹ Standard deviation.

² Total volume is determined by multiplying average stand volume by land cover area (ha) in LSA. **Source:** Canadian Forest Service (2020)

Fire History

From 1960 to 2019, 17 fires within the LSA in the Sahtu Region burned 33,041.3 ha (79.3% of the LSA) (Table 3.13). Fires were generally common in the LSA with every decade since 1960 experiencing at least one burn. The number of fires ranged from one (1960-1969, 2010-2019) to a maximum of five (1990-1999). The area burned, by decade, within the LSA in the Sahtu Region ranged from 156.8 ha (0.4% of the LSA) to 25,453.9 ha (61.1% of the LSA). Fires from 1960 to 1989 occurred primarily east of Tulita (Figure 3.9). From 1990 to 2019, fires occurred mostly in the southern and central parts of the LSA.

There were 47 fires in the RSA during the same time interval and covered a total of 325,204.0 ha (49.9% of the RSA) (Table 3.13). Like the LSA, the RSA had the highest frequency of burns and largest area burned from 1990 to 1999. During that period, 13 fires occurred in the RSA covering 253,799.8 ha (38.9% of the RSA). Fire size ranged from 8,965.7 ha to 253,799.8 ha.

Fires within the LSA of the Sahtu Region affected 22,175.0 ha of upland areas and 8,799.6 ha of wetland areas (Table 3.14). Fires within the RSA of the Sahtu Region burned 203,518.8 ha of upland areas and 99,517.3 ha of wetlands. As with the Dehcho fire metrics, areas burned that were rock/rubble, exposed land and open water, reflecting the coarse scale of available data; in fact, these areas likely did not actually burn.

	Number	of Fires	Total Area Burnt (ha)		Percent Area Burnt (%)		
Time Period	LSA	RSA	LSA	RSA	LSA	RSA	
1960-1969	1	4	257.7	11,853.9	0.6	1.8	
1970-1979	3	7	1,728.4	15,807.6	4.1	2.4	
1980-1989	4	9	2,160.2	13,956.9	5.2	2.1	
1990-1999	5	13	25,453.9	253,799.8	61.1	38.9	
2000-2009	3	10	3,284.3	20,820.1	7.9	3.2	
2010-2019	1	4	156.8	8,965.7	0.4	1.4	
TOTAL	17	47	33,041.3	325,204.0	79.3	49.9	

Table 3.13 Forest Fire Occurrence within the LSA and RSA from 1960 to 2019 – Sahtu Region

Source: Canadian Forest Service (2020)

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Section 3: Review of Existing Data December 2022

Landcover/		Total Number Cover	of Fires in Each r Type ²	Total Ar (ea Burned ha)
Assemblage Type ¹	Cover Type Class	LSA	RSA	LSA	RSA
Broadleaf	Broadleaf – Dense	28	101	2,054.13	27,554.3
Forest	Broadleaf – Open	14	89	837.3	8,929.6
	Broadleaf Subtotal	-	-	2,891.43	36,483.9
Coniferous	Coniferous – Dense	21	68	237.2	2,400.1
Forest	Coniferous – Open	33	120	2,624.0	25,195.7
	Coniferous – Sparse	37	128	4,384.3	40,470.6
	Coniferous Subtotal	-	-	7,245.5	68,066.4
Mixedwood Forest	Mixedwood – Dense	18	47	127.5	1,286.6
	Mixedwood – Open	31	89	1,518.6	11,078.2
	Mixedwood – Sparse	1	2	5.1	11.7
Mixedwood Subtotal		-	-	1,651.2	12,376.5
Shrubland	Shrub – Tall	35	97	1,703.7	12,137.1
	Shrub – Low	38	128	6,981.6	66,370.1
	Shrubland Subtotal	-	-	8,685.3	78,507.2
Herbaceous	Exposed Land ³	37	72	1,475.8	3,490.0
and Un-	Herb	10	44	166.3	3,056.5
vegetated	Bryoids	5	18	4.9	46.9
	Rock/Rubble	4	22	54.6	1,491.4
Herbaceous	and Un-vegetated Subtotal	-	-	1,701.6	8,084.8
	Upland Subtotal	-	-	22,175.0	203,518.8
Wetland	Wetland – Herb	35	126	1,905.6	20,343.5
	Wetland – Shrub	37	122	3,829.7	48,900.2
	Wetland – Treed	35	123	3,064.3	30,273.6
	Wetland Subtotal	-	-	8,799.6	99,517.3
Open Water		35	120	2,066.6	22,113.4
No Data		-	32	-	54.7
Total		-	-	33,041.3	325,204.0

Table 3.14Number of Fires and Total Area Burned by Landcover/Assemblage Type from 1960
to 2019 – Sahtu Region

Notes:

¹ Landcover/assemblage type in 2020. Landcover/assemblage may have been different prior to fire events.

² Many fires affected more than one vegetation type; therefore, the total number of fires are given for each vegetation type but cannot be summed among vegetation types.

³ Exposed land includes areas, which naturally have less than 5% vegetative cover, such as shorelines of rivers and lakes, exposed rock, recently burned areas, and moraines; the areas also include cleared areas such as roads and areas of infrastructure development.

Source: Canadian Forest Service (2020)

Figure 3.10 is a box plot showing the median area burned per landcover/assemblage type in the LSA and RSA in the Sahtu Region between 1960 and 2019. The heavy horizontal bar in each box indicates the median value, with inter-quartile ranges indicating upper and lower boundaries on opposite areas in the box. The standard deviation is represented by bars and by outliers as points. This figure shows fire size in the LSA and RSA of the Sahtu Region is highly variable.

Data on changes in plant composition with varying time since burned (i.e., succession) were not found for the LSA or RSA. Available studies indicated burned areas are dominated by plants capable of vegetative reproduction following fire, with a later increase in abundance of plants reproducing by seed and slower growing plants capable of vegetative reproduction. Plants with light abundant seeds and species also colonize burned areas rapidly; abundance decreases after a few years due to short life spans of the plants (Johnson, 1981). Trees required 5 to 6 years, on average, to reach a height of 0.3 m following high severity fires in High Boreal, Low Subarctic, and High Subarctic ecoregions of the Taiga Shield (Lewis et al., 2018). Following low to mixed-severity fires, trees took 10.7 years, on average, in the High Boreal ecoregion and 15.5 years in the Low Subarctic to reach a height of 0.3 m (Lewis et al., 2018). Tree regeneration times may differ for the ecoregions intersected by the RSA.

Plant SOCC

A search of the Northwest Territories Species Monitoring Infobase (Working Group on General Status of NWT Species, 2016)—queried to the Taiga Plains, Taiga Cordillera, and Boreal Cordillera ecoregions identified 215 vascular, non-vascular plant and lichen SOCC with potential to occur within the Sahtu Region of the RSA (Appendix A.2). Of the 215 plants, 167 are vascular plants, 42 are lichens, and 6 are moss.

Of the 167 vascular plants identified, 85 are listed as *may be at risk* and 82 are listed as *sensitive* in the NT. Yukon aster (*Symphyotrichum yukonense*) and Tyrrell's willow (*Salix tyrrellii*) are on the SARA registry but were downgraded to *not at risk* in 1996 and 1999. Both species are still listed as *may be at risk* under NWT General Species Rankings (Working Group on General Status of NWT Species, 2016). Of the 42 lichen species identified, 6 are listed as *may be at risk* and 36 are listed as *sensitive*. No lichen species with potential to occur within the RSA are listed under COSEWIC. Of the eight moss species identified, four are listed as *may be at risk* and two are listed as *sensitive*, territorially. No moss species with potential to occur within the RSA are listed under COSEWIC (Working Group on General Status of NWT Species, 2016). No vegetation assemblages are considered SOCC.

5658 NWT Ltd. and GNWT (2011) identified seven plant SOCC documented during field surveys for the Mackenzie Gas Project in the Sahtu Region of the RSA. All seven plant SOCC occurrences were vascular plants, of which six were listed as *sensitive* and one as *may be at risk* in the NT (Table 3.15). None of these species are listed by SARA or COSEWIC (Government of Canada, 2019). The locations of these plants are within the Sahtu RSA, and, therefore, their potential presence in the Sahtu LSA is unknown. Pre-construction field surveys should be conducted to evaluate plant SOCC occurrences of higher potential areas potentially impacted by the Project (e.g., riparian areas, uncommon plant assemblages).

Scientific Name ¹	Common Name	NWT General Species Rank ¹	SARA Status ²	COSEWIC Status ²
Elymus canadensis	Canada nodding wild rye	Sensitive	-	-
Potamogeton natans	floating pondweed	Sensitive	-	-
Potamogeton foliosus	leafy pondweed	Sensitive	-	-
Juncus stygius	moor rush	Sensitive	-	-
Danthonia spicata	poverty wild oat grass	Sensitive	-	-
Najas flexilis	slender naiad	Sensitive	-	-
Rhynchospora alba	white beakrush	May Be At Risk	-	-

 Table 3.15
 Documented Plant SOCC Occurrences within the RSA – Sahtu Region

Notes:

¹ Working Group on General Status of NWT Species (2016).

² Government of Canada (2019)

Source: 5658 NWT Ltd. and the GNWT (2011)

Alien and Invasive Alien Plant Species

Forty-two locations of 13 alien and invasive alien plant species occurrences are documented within the RSA in the Sahtu Region (AKEPIC, 2020) (Table 3.16). Of these 13 species, 10 are classified as alien and 3 as invasive alien. In addition to documented occurrences, 36 alien and 7 invasive alien plant species have been identified in the RSA in the Sahtu Region without specific location attribution by Oldham and Delisle-Oldham (2016). These are presented in Appendix B.

Listing	Scientific Name	Common Name	Number of Occurrences	Closest Occurrence to the PDA (km)
Alien	Artemisia biennis	biennial wormwood	4	0.92
Alien	Capsella bursa-pastoris	shepherd's purse	4	0.92
Alien	Chenopodiastrum simplex (Chenopodium simplex; Chenopodium hybridum var. gigantospermum)	maple-leaved goosefoot	1	0.92
Alien	Chenopodium album	lamb's quarters	4	0.92
Alien	Descurainia sophia	herb Sophia	6	0.15
Alien	Lappula squarrosa	European stickseed	1	14.55
Alien	Matricaria discoidea	pineapple weed	2	14.55
Alien	Plantago major	common plantain	6	0.15
Alien	Polygonum aviculare	prostrate knotweed	1	0.92
Alien	Thlaspi arvense	field pennycress	5	0.92
Invasive Alien	Crepis tectorum	narrow-leaf hawksbeard	2	0.92
Invasive Alien	Melilotus albus	white sweet-clover	3	14.55
Invasive Alien	Trifolium hybridum	alsike clover	3	14.55

Table 3.16 Alien and Invasive Alien Plant Species Recorded within the RSA – Sahtu Region

Source: AKEPIC (2020)

December 2022

4 Key Results and Findings

4.1 Dehcho Region

Coniferous forest is the most abundant landcover/assemblage type in upland areas within the LSA (44.8%) and the RSA (32.5%) in the Dehcho Region. Wetland cover types occupy 19.6% of the LSA and 29.0% of the RSA in the Dehcho Region. The most common wetland types in both LSA and RSA are treed and shrub wetlands. Large portions of the LSA and RSA have burned in the past; however, fires in the LSA are not common with a maximum of 2 fires per decade recorded (1990-1999). Percentage of the LSA burned ranged from 0% to 12.8% per decade from 1960 to 2019. Although coniferous forests had the greatest total volume in the LSA (448,465 m³) and RSA (3,927,036 m³), mixedwood forests had the highest stand volume density.

Except for the existing MVWR and the Enbridge Norman Wells Pipeline the LSA in the Dehcho Region is relatively anthropogenically undisturbed.

No plant SOCC have been documented in the RSA or LSA. Nine alien and three invasive alien plant species have been documented in the RSA in the Dehcho Region. Additional alien and invasive alien plant species documented in the RSA by Oldham and Delisle-Oldham (2016) can be found in Appendix B, although specific distributions of these species are not known.

4.2 Sahtu Region

Upland areas in the Sahtu Region are dominated by coniferous forest in both the LSA (28.3%) and RSA (31.3%). Wetlands occupy 25.5% of the LSA and 25.3% of the RSA. As with the Dehcho Region, large portions of the LSA and RSA in the Sahtu Region have burned in the past. Fires in the LSA and RSA are common, with portions within the Sahtu Region burning at least once per decade. Less than 1% to 61.1% of the LSA burned each decade between 1960 and 2019. Similar to the Dehcho Region, coniferous forests had the greatest total volume in the LSA (288,702 m³) and RSA (5,590,767 m³) and mixedwood forests had the highest stand volume density.

Except for the existing MVWR, the Enbridge Norman Wells Pipeline, and communities along these routes (e.g., Hamlet of Tulita), LSA in the Sahtu Region is relatively anthropogenically undisturbed but does contain some disturbance from oil and gas exploration and infrastructure west of Norman Wells (e.g., Auld and Kershaw, 2005).

In the RSA, seven vascular plant SOCC occurrences have been documented, six of which are considered "Sensitive" and one considered "May Be At Risk". Ten alien and three invasive alien plant species have been documented in the RSA in the Sahtu Region. Additional alien and invasive alien plant species documented in the RSA by Oldham and Delisle-Oldham (2016) can be found in Appendix B, although specific distributions of these species are not known.

Section 5: Closure December 2022

5 Closure

This TDR was prepared for the sole benefit of GNWT to describe existing conditions related to vegetation within the Project LSA and RSA. If you have any questions, please do not hesitate to contact the undersigned.

Respectfully submitted,

K'alo-Stantec Limited

6 References

6.1 Literature Cited

- 5658 NWT Ltd. and GNWT (5658 NWT Ltd. and Government of Northwest Territories). 2011. Project Description Report For Construction of the Mackenzie Valley Highway Tulita District, Sahtu Settlement Area.
- AKEPIC (Alaska Exotic Plants Information Clearinghouse). 2020. AKEPIC Data Portal. Alaska Center for Conservation Science. University of Alaska, Anchorage. Available at: <u>https://aknhp.uaa.alaska.edu/apps/akepic/</u>. Accessed September 2020.
- Auld, J. and R. Kershaw. (Eds). 2005. The Sahtú atlas maps and stories from the Sahtu settlement area in Canada's Northwest Territories, Sahtú GIS Project, Norman Wells, NT. 74 pp.
- Canadian Forest Service. 2020. Canadian National Fire Database Agency Fire Data. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Available at: https://cwfis.cfs.nrcan.gc.ca/ha/nfdb. Accessed December 2022.
- Carriere, S. 2008. A Risk Assessment of Invasive Alien Species in the NWT. Environment and Natural Resources, Government of the Northwest Territories. Available online: <u>https://www.enr.gov.nt.ca/sites/enr/files/reports/overview_on_ias_project.pdf</u>. Accessed March 2021.
- Dehcho Land Use Planning Committee. 2006. Final Draft Dehcho Land Use Plan June 2, 2006. Available Online: <u>http://www.dehcholands.org/docs final draft dehcho land use plan june 02 06.htm</u>. Accessed March 2021.
- Dehcho First Nations. 2011. Traditional Knowledge Assessment of Boreal Caribou (Mbedzih) in the Dehcho Region. Prepared by Dehcho First Nations for the Canadian Wildlife Service. Published by the Dehcho First Nations Fort Simpson, Northwest Territories.
- Dessau. 2012. Project Description Report for Mackenzie Valley Highway Extension Pehdzeh Kii Ndeh Dehcho Region. Project Description Report. Yellowknife, NT.
- EBA (EBA Engineering Consultants). 2006 Traditional Knowledge Study Report Tulita, NT, Great Bear River Bridge.
- Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada.

- Ecosystem Classification Group. 2010. Ecological Regions of the Northwest Territories Cordillera. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada.
- EDI (Environmental Dynamics Inc.). 2022. Mackenzie Valley Highway Project Technical Data Report Caribou and Moose.
- GNWT (The Government of the Northwest Territories). 2015. NWT State of the Environment Report. Environment and Natural Resources, Yellowknife, NT.
- GNWT. 2016a. NWT Species 2016-2020 General Status Ranks of Wild Species in the Northwest Territories available at: <u>https://www.nwtspeciesatrisk.ca/sites/enr-species-at-risk/files/nwtspecies_2016_2020_report_final_w_properties.pdf</u>. Accessed March 2021.
- GNWT. 2016b. Contaminants Overview Environmental Health Contaminants fact sheets. Available online: <u>https://www.hss.gov.nt.ca/sites/hss/files/resources/contaminants-fact-sheets-contaminants-overview.pdf</u>. Accessed March 2021.
- GNWT. 2016c. NWT Species Monitoring Infobase. Environment and Natural Resources, Yellowknife, NT. Available at: <u>https://www.nwtspeciesatrisk.ca/content/search-infobase</u>. Accessed September 2020.
- GNWT. 2017. Traditional Food Fact Sheet Series. Ecology North and the Department of Health and Social Services. Available online: <u>https://www.hss.gov.nt.ca/sites/hss/files/traditional-food-fact-sheets.pdf</u>. Accessed March 2021.
- GNWT Environment and Natural Resources (Government of the Northwest Territories Environment and Natural Resources). 2005. Commercial Timber Harvest Planning and Operations Standard Operating Procedures Manual. First Edition. Available online: https://www.enr.gov.nt.ca/sites/enr/files/reports/commercial_timber_procedures_manual.pdf. Accessed December 2022.
- Golder. 2015. Central Mackenzie Surface Water and Groundwater Baseline Assessment. Report 1: Technical State of Knowledge. Report Number: 1401835 Final Report 1. May 21, 2015.
- Government of Canada. 2019. Species at Risk Public Registry. Available at: <u>http://www.registrelep-sararegistry.gc.ca/sar/index/default_e.cfm</u>. Accessed September 2020.
- Government of Canada. 2021. Contaminants of Concern. Northern Contaminants Program Background. <u>http://www.science.gc.ca/eic/site/063.nsf/eng/h_2025D549.html</u>. Accessed March 2021.
- IMG-Golder Corporation. 2006. Renewable Resource Assessment of the Pehdzeh Kii Ndeh Area of Interest. Submitted to Canadian Parks and Wilderness Society (CPAWS). March 2006.
- Johnson, E.A. 1981. Vegetation Organization and Dynamics of Lichen Woodland Communities in the Northwest Territories, Canada. Ecology. 62: 200-215.

- K'alo-Stantec (K'alo-Stantec Limited). 2022a. Mackenzie Valley Highway Project; Technical Data Report—Wildlife and Wildlife Habitat. Draft. Prepared for the Department of Infrastructure, the Government of the Northwest Territories, Yellowknife, Northwest Territories.
- K'alo-Stantec. 2022b. Mackenzie Valley Highway Project; Technical Data Report—Birds and Bird Habitat. Draft. Prepared for the Department of Infrastructure, the Government of the Northwest Territories, Yellowknife, Northwest Territories.
- K'alo-Stantec. 2022c. Mackenzie Valley Highway Project. Technical Data Report—Soils, Terrain and Permafrost. Draft. Prepared for the Department of Infrastructure, the Government of the Northwest Territories, Yellowknife, Northwest Territories.
- K'alo-Stantec. 2022d. Mackenzie Valley Highway Project. Technical Data Report—Cultural and Traditional Land Use. Prepared for the Department of Infrastructure, the Government of the Northwest Territories, Yellowknife, Northwest Territories.
- Kiggiak EBA Consulting Ltd. 2011. Environmental impact statement for construction of the Inuvik to Tuktoyaktuk highway, NWT. For Hamlet of Tuktoyaktuk, Town of Inuvik, and Government of Northwest Territories. Inuvik, NWT. 702 pp.
- Lewis, K.J., C.J. Johnson, and MD.N. Karim. 2018. Fire and Lichen Dynamics in the Taiga Shield of the Northwest Territories and Implications for Barren-ground Caribou Winter Forage. Journal of Vegetation Science. 30: 448-460.
- McDonald, Rhea. 2010. Boreal Caribou Traditional Knowledge Collection Study: The Sahtu Settlement Area. Edited by Andrea Hrynkiw and Glen Guthrie and McDonald. For the Canadian Wildlife Service, Environment Canada.
- Mackenzie Project Environment Group. 2004. Environmental Impact Statement for the Mackenzie Valley Gas Project. Submitted to the National Energy Board. August 2004.
- MVEIRB (Mackenzie Valley Environmental Impact Review Board). 2015. Terms of Reference EA1213-02 Mackenzie Valley Highway Extension Project Wrigley to Norman Wells Government of Northwest Territories. February 13, 2015. PR#66.
- Natural Resources Canada. 2020. Multisource Inventory Project Forest Inventory. Database available online: https://www.nrcan.gc.ca/science-data/data-analysis/major-projects-inventory/22218 and https://www.nrcan.gc.ca/our-natural-resources/forests-forestry/sustainable-forestmanagement/measuring-reporting/remote-sensing-forestry/forest-inventory-multiple-datasources/13441. Accessed November 2020.
- Natural Resources Canada and GNWT (Natural Resources Canada and Government of Northwest Territories). 2017. Monitoring forests in the Northwest Territories – Earth Observation for Sustainable Development of Forests (EOSD) land cover updates Phase 1, 2 and 3. Data access through the Data Coordinator, NWT Centre for Geomatics: <u>gnwtmaps_admin@gov.nt.ca</u>. Accessed September 2020.

- NWT Bureau of Statistics. 2018. 2018 Wood pellet and Wood Use, 2019 Community Survey. Government of Northwest Territories. Available online: <u>https://www.statsnwt.ca/recent_surveys/2019NWTCommSurvey/2018%20Wood%20Pellet%20an</u> <u>d%20Wood%20Use.xlsx</u>. Accessed March 2021.
- NWT Bureau of Statistics. 2019a. Wrigley 2019 Community Survey. Government of Northwest Territories. Available online: <u>https://www.statsnwt.ca/community-</u> <u>data/CommunityInfographics/community%20-%20Wrigley.pdf</u>. Accessed March 2021.
- NWT Bureau of Statistics. 2019b. Tulita 2019 Community Survey. Government of Northwest Territories. Available online: <u>https://www.statsnwt.ca/community-</u> <u>data/CommunityInfographics/community%20-%20Tulita.pdf</u>. Accessed March 2021.
- NWT Bureau of Statistics. 2019c. Norman Wells 2019 Community Survey. Government of Northwest Territories. Available online: <u>https://www.statsnwt.ca/community-</u> <u>data/CommunityInfographics/community%20-%20Norman%20Wells.pdf</u>. Accessed March 2021.
- NWT Bureau of Statistics. 2020. Summary of NWT Community Statistics 2020 (for 2019). https://www.statsnwt.ca/publications/summary_comm_stats/index.html. Accessed March 2021.
- Oldham, M. J., and Delisle-Oldham, M. 2016. Report on the 2016 Survey of Exotic Plants along Northwest Territories Highways. Ontario Natural Heritage Information Centre, Science and Research Branch, Ministry of Natural Resources and Forestry, Peterborough, Ontario.
- Sahtu Land Use Planning Board. 2013. Sahtu Land Use Plan. Government of Northwest Territories. Good Hope.
- Shotyk. 2020. Trace elements in wild berries from reclaimed lands: Biomonitors of contamination by atmospheric dust. Ecological Indicators 110 (2020) 105960.
- Snyder, E. and M. Anions. 2008. Pathways Analysis of Invasive Plants and Insects in the Northwest Territories. Report for the Department of Environment and Natural Resources, Wildlife Division, Government of the Northwest Territories. Project No: PM 005529.
- The Sahtu Heritage Places and Sites Joint Working Group. 2000. Rakekée Gok'é Godi: Places We Take Care Of.
- Tulita Renewable Resource Council. 2019. Traditional Knowledge Study for the Great Bear River Bridge Project. Prepared by Tulita Renewable Resource Council.
- Tulita Renewable Resource Council. 2022. Tulita Renewable Resources Council Traditional Land and Resource Use Study for Tulita District Mackenzie Highway Project. Prepared by K'alo-Stantec Limited. Prepared for Tulita Renewable Resources Council.
- Wiken, E. 1986. Terrestrial Ecozones of Canada. Ecological Land Classification Series, No. 19. Environment Canada. Ottawa, Canada.

Working Group on General Status of NWT Species. 2016. NWT Species 2016-2020 – General Status Ranks of Wild Species in the Northwest Territories, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT.

6.2 Personal Communications

Dufour, Jean-Francois. 2020. Environmental Assessment Officer, Canadian Wildlife Service, Environment and Climate Change Canada, Yellowknife, NT. Personal Communication: September 25, 2020

Appendix A Plant SOCC Details

A.1 Potential Plant SOCC Occurrences Within the RSA in the Dehcho Region

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Agrostis exarata	spike bentgrass	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Angelica lucida	seaside angelica	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Arenaria longipedunculata	long-stemmed sandwort	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Arnica latifolia	mountain arnica	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Asplenium trichomanes-ramosum	green spleenwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Athyrium filix-femina	subarctic lady-fern	Sensitive	S2S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Blysmopsis rufa	red clubrush	Sensitive	S3S4	-	-	Taiga Cordillera
Vascular Plant	Botrychium minganense	Mingan moonwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Botrychium spathulatum	spatulate moonwort	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Botrypus virginianus	rattlesnake fern	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Cardamine pensylvanica	Pennsylvania bittercress	Sensitive	S3S4	-	-	Taiga Cordillera
Vascular Plant	Cardamine umbellata	few-seeded bittercress	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Carex bebbii	Bebb's sedge	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Carex eleusinoides	goosegrass sedge	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Carex filifolia	thread-leaved sedge	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Carex heleonastes	Hudson Bay sedge	Sensitive	S3S4	-	-	Taiga Cordillera
Vascular Plant	Carex hoodii	Hood's sedge	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Carex Ioliacea	rye-grass sedge	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Carex micropoda	small-rooted sedge	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Carex peckii	Peck's sedge	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Carex retrorsa	retrorse sedge	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Cerastium maximum	great chickweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Chrysosplenium wrightii	Wright golden saxifrage	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Claytonia megarhiza	alpine spring beauty	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Cryptogramma sitchensis	Alaska parsley-fern	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Cryptogramma stelleri	slender rock-brake	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Cystopteris montana	mountain bladder-fern	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Danthonia spicata	poverty wild oat grass	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Draba albertina	slender whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Draba incerta	Yellowstone whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Draba lonchocarpa	lance-pod whitlow-grass	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Draba ogilviensis	Ogilvie Range whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Draba porsildii	Porsild's whitlow-grass	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Drosera linearis	slenderleaf sundew	Sensitive	S3	-	-	Taiga Cordillera

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Dryopteris carthusiana	spinulose wood-fern	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Dryopteris expansa	northern wood-fern	May Be At Risk	S2	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Eleocharis uniglumis	one-glume spikerush	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Elymus canadensis	Canada nodding wild rye	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Epilobium lactiflorum	white-flower willowherb	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Erigeron denalii	Denali fleabane (Mex's fleabane)	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Erythranthe guttata	common large monkey flower	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Festuca lenensis	tundra fescue	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Gentiana prostrata	pygmy gentian	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Geranium richardsonii	Richardson geranium	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Geum glaciale	glacier avens	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Hieracium albiflorum	white-flowered hawkweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Koenigia islandica	Iceland purslane	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Liparis loeselii	Loesel's twayblade	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Listera cordata	heart-leaved twayblade	Sensitive	S2S3	-	-	Boreal Cordillera
Vascular Plant	Luetkea pectinata	segmented luetkea	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Lysimachia europaea	arctic starflower	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Matteuccia struthiopteris	ostrich fern	Sensitive	S2S3	-	-	Boreal Cordillera
Vascular Plant	Monarda fistulosa	wild bergamot	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Nuphar polysepala	rocky mountain pond lily	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Oxytropis scammaniana	Scamman's locoweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Packera ogoturukensis	Ogotoruk Creek groundsel	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Packera pauciflora	alpine groundsel (few-flower ragwort)	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Penstemon gormanii	Gorman's beardtongue	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Phegopteris connectilis	northern beech fern	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Platanthera dilatata	white bog orchid	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Potamogeton foliosus	leafy pondweed	Sensitive	S3S4	-	-	Boreal Cordillera
Vascular Plant	Potamogeton natans	floating pondweed	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Potentilla villosula	Beringian hairy potentilla	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Prunus virginiana	choke cherry	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Pseudocherleria macrocarpa	long-pod stitchwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Ranunculus abortivus	kidney-leaved buttercup	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Ranunculus turneri	Turner's buttercup	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Sagina saginoides	alpine pearlwort	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Salix farriae	Farr's willow	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Salix raupii	Raup's willow	May Be At Risk	S2	-	-	Boreal Cordillera

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Senecio sheldonensis	Mount Sheldon ragwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Smelowskia media	alpine smelowskia	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Streptopus amplexifolius	clasping twisted stalk	Sensitive	S2S3	-	-	Taiga Cordillera
Vascular Plant	Symphyotrichum nahanniense	Nahanni aster	Sensitive	S3	Not Applicable	Special Concern	Taiga Cordillera
Vascular Plant	Tephroseris lindstroemii	twice-hairy groundsel	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Vaccinium membranaceum	mountain huckleberry	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Valeriana dioica	wood valerian	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Veronica americana	American speedwell	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Lichen	Ahtiana sphaerosporella	mountain candlewax lichen	Sensitive	S1S3	-	-	Taiga Cordillera
Lichen	Arctomia interfixa	rust-brown tiny rosette lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Cladonia digitata	finger pixie-cup	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Cladonia thomsonii	blue pork pixie lichen	Sensitive	S1S3	-	-	Taiga Cordillera
Lichen	Collema furfuraceum	effervescent tarpaper lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Enchylium bachmanianum	Caesar's tarpaper lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Enchylium polycarpon	gilled tarpaper lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Nephroma helveticum	fringed kidney lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Pannaria conoplea	mealy-rimmed shingle lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Peltigera didactyla	temporary pelt lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Peltigera neckeri	black-saddle pelt lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Physcia phaea	black-eyed rosette lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Placynthium asperellum	Lilliput Ink lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Polycauliona polycarpa	pin-cushion sunburst lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Polychidium muscicola	eyed mossthorns lichen	Sensitive	S2S3	-	-	Taiga Cordillera,
Lichen	Solorina spongiosa	blinking owl lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Stereocaulon arenarium	sandy foam lichen	May Be At Risk	S2?	-	-	Taiga Cordillera
Lichen	Stereocaulon botryosum	cauliflower foam lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Stereocaulon vesuvianum	variegated foam lichen; variegated coral lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Tholurna dissimilis	arboreal bottle-collection lichen	May Be At Risk	S1S3	-	-	Boreal Cordillera
Lichen	Umbilicaria arctica	arctic rocktripe lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Umbilicaria havaasii	Havaas's rock tripe	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Umbilicaria polyphylla	petaled rocktripe lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Umbilicaria virginis	blushing rocktripe lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Bryophyte (Moss)	Buxbaumia aphylla	brown shield moss	May Be At Risk	-	-	-	Taiga Cordillera
Bryophyte (Moss)	Cynodontium jenneri	Jenner's dogtooth moss	Sensitive	-	-	-	Taiga Cordillera
Bryophyte (Moss)	Grimmia torquata	twisted grimmia moss	May Be At Risk	-	-	-	Taiga Cordillera

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	
Bryophyte (Moss)	Hilpertia velenovskyi	Velenovsky's moss	May Be At Risk	-	-	-	
Bryophyte (Moss)	Hypnum callichroum	downy plait moss	Sensitive	-	-	-	
Bryophyte (Moss)	Seligeria oelandica	Irish bristle moss	May Be At Risk	-	-	-	

Notes:

¹ Species scientific names, common names and species ranks from GNWT (2016a).

² Rare Species List For Boreal Cordillera and Taiga Cordillera From GNWT Species Monitoring Infobase (2016c).

Ecoregion²

Taiga Cordillera

Taiga Cordillera

Taiga Cordillera

A.2 Potential Plant SOCC Occurrences within the RSA in the Sahtu Region

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Agoseris glauca	pale false dandelion	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Agrostis exarata	spike bentgrass	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Alisma triviale	northern water plantain	Sensitive	S3S4	-	-	Taiga Plains
Vascular Plant	Anaphalis margaritacea	pearly everlasting	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Angelica lucida	seaside angelica	May Be At Risk	S2	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Arenaria longipedunculata	long-stemmed sandwort	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Arethusa bulbosa	dragon's mouth	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Arnica latifolia	mountain arnica	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Artemisia alaskana	Alaska sagebrush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Artemisia ludoviciana	white sagebrush	May Be At Risk	S2	-	-	Taiga Plains, Boreal Plains
Vascular Plant	Asplenium trichomanes-ramosum	green spleenwort	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Astragalus canadensis	Canadian milk-vetch	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Athyrium filix-femina	subarctic lady-fern	Sensitive	S2S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Avenula hookeri	Hooker's alpine oat grass	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Blysmopsis rufa	red clubrush	Sensitive	S3S4	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Boechera calderi	Calder's rockcress	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Botrychium minganense	mingan moonwort	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Botrychium pinnatum	northwestern moonwort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Botrychium spathulatum	spatulate moonwort	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Botrypus virginianus	rattlesnake fern	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Vascular Plant	Cardamine microphylla	small-leaved bittercress	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Cardamine pensylvanica	Pennsylvania bittercress	Sensitive	S3S4	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Cardamine umbellata	few-seeded bittercress	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Carex bebbii	Bebb's sedge	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Carex crawfordii	Crawford's sedge	Sensitive	S3	-	-	Taiga Plains, Boreal Plains
Vascular Plant	Carex duriuscula (needle-leaved sedge	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Carex eleusinoides	goosegrass sedge	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Carex filifolia	thread-leaved sedge	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Carex heleonastes	Hudson Bay sedge	Sensitive	S3S4	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Carex hoodii	Hood's sedge	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Carex lasiocarpa	slender sedge	Sensitive	S3	-	-	Taiga Plains, Taiga Shield
Vascular Plant	Carex laxa	weak sedge	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Carex livida	livid sedge	Sensitive	S3S4	-	-	Taiga Plains
Vascular Plant	Carex Ioliacea	rye-grass sedge	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details

December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Carex mackenziei	Mackenzie's sedge	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Carex micropoda	small-rooted sedge	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Carex peckii	Peck's sedge	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Carex prairea	prairie sedge	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Carex retrorsa	retrorse sedge	May Be At Risk	S2	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Carex richardsonii	Richardson's sedge	Sensitive	S3	-	-	Taiga Plains, Taiga Shield
Vascular Plant	Carex sychnocephala	many-headed sedge	Sensitive	S3	-	-	Taiga Plains, Boreal Plains
Vascular Plant	Cerastium maximum	great chickweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Ceratophyllum demersum	common hornwort	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Chamaerhodos erecta	rose chamaerhodos	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Chrysosplenium wrightii	wright golden saxifrage	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Cirsium drummondii	Drummond thistle	Sensitive	S3	-	-	Taiga Plains, Taiga Shield
Vascular Plant	Claytonia megarhiza	alpine spring beauty	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Coleanthus subtilis	moss grass	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Corispermum hookeri	Hooker's bugseed	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Cryptogramma sitchensis	Alaska parsley-fern	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Cryptogramma stelleri	slender rock-brake	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Cystopteris montana	mountain bladder-fern	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Danthonia spicata	poverty wild oat grass	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Vascular Plant	Descurainia pinnata	pinate tansy mustard	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Draba albertina	slender whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Draba incerta	Yellowstone whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Draba lonchocarpa	lance-pod whitlow-grass	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Draba ogilviensis	Ogilvie range whitlow-grass	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Draba porsildii	Porsild's whitlow-grass	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Drosera linearis	slenderleaf sundew	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Dryopteris carthusiana	spinulose wood-fern	May Be At Risk	S2	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Dryopteris expansa	northern wood-fern	May Be At Risk	S2	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Eleocharis elliptica	slender spikerush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Eleocharis uniglumis	one-glume spikerush	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Elymus canadensis	Canada nodding wild rye	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Epilobium lactiflorum	white-flower willowherb	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Erigeron denalii	Denali fleabane (Mex's fleabane)	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Erigeron yukonensis	Yukon fleabane	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Eritrichium splendens	showy forget-me-not	May Be At Risk	S2	-	-	Taiga Plains

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Bank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Ervthranthe guttata	common large monkey flower	May Be At Risk	S2	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Festuca auriculata	lobed fescue	May Be At Risk	S2S3	-	-	Taiga Plains
Vascular Plant	Festuca brevissima	Alaska fescue	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Festuca lenensis	tundra fescue	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Gentiana prostrata	pygmy gentian	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Vascular Plant	Gentianopsis virgata	Macoun's fringed gentian	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Geranium richardsonii	Richardson geranium	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Geum glaciale	glacier avens	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Geum triflorum	prairie-smoke	May Be At Risk	S2	-	-	Taiga Plains, Boreal Plains
Vascular Plant	Hesperostipa curtiseta	Canadian needle grass	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Heuchera richardsonii	Richardson alumroot	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Hieracium albiflorum	white-flowered hawkweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Hippuris tetraphylla	four-leaved marestail	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Hudsonia tomentosa	woolly beach-heath (sand heather)	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Isoetes lacustris	lake quillwort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Juncus stygius	moor rush	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Koeleria asiatica	oriental koeler's grass	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Koeleria macrantha	prairie koeler's grass	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Koenigia islandica	Iceland purslane	Sensitive	S3	-	-	Boreal Cordillera
Vascular Plant	Lathyrus japonicus	beach pea	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Limosella aquatica	northern mudwort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Liparis loeselii	Loesel's twayblade	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Listera cordata	heart-leaved twayblade	Sensitive	S2S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Luetkea pectinata	segmented luetkea	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Luzula kjellmaniana	kjellman woodrush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Luzula rufescens	rufous wood rush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Lysimachia europaea	arctic starflower	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Lysimachia maritima	sea milkwort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Malaxis paludosa	bog adder's-mouth	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Matteuccia struthiopteris	ostrich fern	Sensitive	S2S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Mertensia maritima	sea bluebell	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Micranthes ferruginea	rusty-hair saxifrage	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Minuartia michauxii	bog stitchwort	Sensitive	S3S4	-	-	Taiga Plains
Vascular Plant	Monarda fistulosa	wild bergamot	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Myriophyllum alterniflorum	alternate-flower water milfoil	Sensitive	S3	-	-	Taiga Plains

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details

December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Najas flexilis	slender naiad	Sensitive	S2S3	-	-	Taiga Plains
Vascular Plant	Nassella viridula	green tussock grass (feather grass)	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Nuphar polysepala	Rocky Mountain pond lily	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Nymphaea leibergii	dwarf white waterlily	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Nymphaea tetragona	pygmy white waterlily (small white water-lily)	Sensitive	S3	-	-	Taiga Plains, Taiga Shield
Vascular Plant	Oxybasis glauca	Rocky Mountain goosefoot	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Oxybasis rubra	red pigweed (coast-blite goosefoot)	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Oxytropis scammaniana	Scamman's locoweed	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Packera ogoturukensis	Ogotoruk Creek groundsel	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Packera pauciflora	alpine groundsel (few-flower ragwort)	Sensitive	S3	-	-	Taiga Cordillera, Boreal Cordillera
Vascular Plant	Papaver mcconnellii	McConnell's poppy	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Pedicularis flammea	red-tip lousewort	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Pedicularis oederi	Oeder's lousewort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Pedicularis verticillata	whorled lousewort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Pellaea glabella	smooth cliff-brake	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Penstemon gormanii	Gorman's beardtongue	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Phegopteris connectilis	northern beech fern	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Physaria calderi	Calder's bladderpod	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Plantago maritima	seaside plantain	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Platanthera dilatata	white bog orchid	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Platanthera orbiculata	small round-leaved bog orchid	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Poa ammophila	sand bluegrass	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Poa pseudoabbreviata	polar bluegrass	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Podistera macounii	Macoun's podistera	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Potamogeton foliosus	leafy pondweed	Sensitive	S3S4	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Potamogeton illinoensis	Illinois pondweed	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Potamogeton natans	floating pondweed	Sensitive	S3	-	-	Taiga Cordillera
Vascular Plant	Potamogeton subsibiricus	Yenisei River pondweed	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Potentilla villosula	Beringian hairy potentilla	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Primula pumila	arctic primrose	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Prunus virginiana	choke cherry	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Pseudocherleria macrocarpa	long-pod stitchwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Ranunculus abortivus	kidney-leaved buttercup	Sensitive	S3	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Ranunculus grayi	tundra buttercup	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Ranunculus turneri	Turner's buttercup	May Be At Risk	S2	-	-	Taiga Cordillera, Taiga Plains

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details

December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Vascular Plant	Rhynchospora alba	white beakrush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Rorippa barbareifolia	hoary yellowcress	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Rorippa crystallina	Mackenzie River yellowcress (asiatic cress)	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Rumex lapponicus	Lapland sorrel	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Sagina nodosa	knotted pearlwort	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Sagina saginoides	alpine pearlwort	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Salix chamissonis	Chamisso's willow	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Salix discolor	pussy willow	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Salix farriae	Farr's willow	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Salix ovalifolia	arctic seashore willow	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Salix raupii	Raup's willow	May Be At Risk	S2	-	-	Taiga Plains, Boreal Cordillera
Vascular Plant	Salix tyrrellii	Tyrrell's willow	May Be At Risk	S2	-	Not At Risk	Taiga Plains
Vascular Plant	Saxifraga bronchialis ssp. Funstonii	yellowdot saxifrage	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Sceptridium multifidum	leathery grape-fern	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Schoenoplectus pungens	three-square bulrush	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Senecio sheldonensis	Mount Sheldon ragwort	May Be At Risk	S2	-	-	Taiga Cordillera
Vascular Plant	Smelowskia media	alpine smelowskia	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Vascular Plant	Stellaria umbellata	umbellate stitchwort	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Streptopus amplexifolius	clasping twisted stalk	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Symphyotrichum yukonense	Yukon aster	May Be At Risk	S2	-	Not At Risk	Taiga Plains
Vascular Plant	Tanacetum bipinnatum	floccose tansy	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Tephroseris lindstroemii	twice-hairy groundsel	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Utricularia ochroleuca	northern bladderwort	Sensitive	S3	-	-	Taiga Plains
Vascular Plant	Vaccinium membranaceum	mountain huckleberry	May Be At Risk	S2	-	-	Boreal Cordillera
Vascular Plant	Valeriana dioica	wood valerian	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains
Vascular Plant	Veronica alaskensis	Alaska kitten-tail	May Be At Risk	S2	-	-	Taiga Plains
Vascular Plant	Veronica americana	American speedwell	Sensitive	S3	-	-	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Vascular Plant	Zannichellia palustris	horned pondweed	Sensitive	S3	-	-	Taiga Plains, Boreal Plains
Lichen	Ahtiana sphaerosporella	mountain candlewax lichen	Sensitive	S1S3	-	-	Taiga Cordillera
Lichen	Anaptychia crinalis	hairy fringe lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Arctomia interfixa	rust-brown tiny rosette lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Cetraria kamczatica	Kamchatka icelandmoss lichen	Sensitive	S2S3	-	-	Taiga Plains
Lichen	Cladonia digitata	finger pixie-cup	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Cladonia grayi	Gray's pixie-cup lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Cladonia scabriuscula	winged pixie lichen	Sensitive	S1S3	-	-	Taiga Plains

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands Appendix A Plant SOCC Details December 2022

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	Ecoregion ²
Lichen	Cladonia thomsonii	blue pork pixie lichen	Sensitive	S1S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Collema furfuraceum	effervescent tarpaper lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Dermatocarpon intestiniforme	quilted stippleback lichen	Sensitive	S2S3	-	-	Taiga Plains
Lichen	Enchylium bachmanianum	Caesar's tarpaper lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Enchylium polycarpon	gilled tarpaper lichen	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Heterodermia speciosa	powdered fringe lichen	May Be At Risk	S1S2	-	-	Taiga Plains
Lichen	Lasallia caroliniana	origami rocktripe lichen	May Be At Risk	S2S3	-	-	Taiga Plains
Lichen	Lasallia papulosa	brown-bellied toadskin lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Lathagrium undulatum	jelly flakes lichen	Sensitive	S2S3	-	-	Taiga Plains
Lichen	Lobaria linita	cabbage lung lichen	Sensitive	S2S3	-	-	Taiga Plains
Lichen	Masonhalea inermis	thornless tumbleweed lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Nephroma helveticum	fringed kidney lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Pannaria conoplea	mealy-rimmed shingle lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Peltigera didactyla	temporary pelt lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Peltigera neckeri	black-saddle pelt lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Peltigera praetextata	born-again pelt lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Physcia phaea	black-eyed rosette lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Pilophorus robustus	robust matchstick lichen	May Be At Risk	S1	-	-	Taiga Plains
Lichen	Placynthium asperellum	Lilliput ink lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Polycauliona polycarpa	pin-cushion sunburst lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Polychidium muscicola	eyed mossthorns lichen	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Scytinium tenuissimum	birdnest vinyl lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Solorina spongiosa	blinking owl lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Sphaerophorus fragilis	cushion coral lichen	Sensitive	S2S4	-	-	Taiga Plains
Lichen	Stereocaulon arenarium	sandy foam lichen	May Be At Risk	S2?	-	-	Taiga Cordillera
Lichen	Stereocaulon botryosum	cauliflower foam lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Stereocaulon vesuvianum	variegated foam lichen; variegated coral lichen	Sensitive	S2S3	-	-	Taiga Cordillera
Lichen	Tholurna dissimilis	arboreal bottle-collection lichen	May Be At Risk	S1S3	-	-	Boreal Cordillera
Lichen	Umbilicaria angulata	starred rocktripe lichen	Sensitive	S2S3	-	-	Taiga Plains
Lichen	Umbilicaria arctica	arctic rocktripe lichen	Sensitive	S2S4	-	-	Taiga Cordillera
Lichen	Umbilicaria decussata	netted rocktripe lichen	Sensitive	S2S4	-	-	Taiga Plains, Taiga Shield
Lichen	Umbilicaria havaasii	Havaas's rock tripe	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Umbilicaria polyphylla	petaled rocktripe lichen	Sensitive	S2S3	-	-	Taiga Cordillera, Taiga Plains
Lichen	Umbilicaria virginis	blushing rocktripe lichen	Sensitive	S2S4	-	-	Taiga Cordillera, Taiga Plains
Lichen	Vestergrenopsis isidiata	peppered brownette lichen	May Be At Risk	S1S2	-	-	Tundra Cordillera, Taiga Plains

Group	Scientific Name ¹	Common Name	NWT General Species Rank ¹	NWT S Rank ¹	SARA Status ¹	COSEWIC Status ¹	
Bryophyte (Moss)	Buxbaumia aphylla	brown shield moss	May Be At Risk	-	-	-	Taiga
Bryophyte (Moss)	Cynodontium jenneri	Jenner's dogtooth moss	Sensitive	-	-	-	Taiga
Bryophyte (Moss)	Grimmia torquata	twisted grimmia moss	May Be At Risk	-	-	-	Taiga
Bryophyte (Moss)	Hilpertia velenovskyi	Velenovsky's moss	May Be At Risk	-	-	-	Taiga
Bryophyte (Moss)	Hypnum callichroum	downy plait moss	Sensitive	-	-	-	Taiga
Bryophyte (Moss)	Seligeria oelandica	Irish bristle moss	May Be At Risk	-	-	-	Taiga

Notes:

¹ Species scientific names, common names and species ranks from GNWT (2016a).

² Rare species list for Boreal Cordillera, Taiga Plains and Taiga Cordillera from GNWT Species Monitoring Infobase (2016c).

Ecoregion ²
a Plains, Taiga Cordillera
a Cordillera
a Cordillera
a Cordillera
a Cordillera, Taiga Plains
a Cordillera

Appendix B Alien and Invasive Alien Plant Details December 2022

Appendix B Alien and Invasive Alien Plant Details

Appendix B Alien and Invasive Alien Plant Details December 2022

B.1 Alien and Invasive Alien Species Occurring and Potentially Occurring within the RSA

Northwest Territories Listing ¹	Scientific Name	Common Name	Occurrence Within RSA ²	Observed Along Mackenzie Valley Winter Road ³	Ecoregion with Potential Occurrences ⁴
Alien	Achillea millefolium	common yarrow	-	-	Taiga Plains, Boreal Cordillera
Alien	Agropyron cristatum (Agropyron cristatum ssp pectinatum; Agropyron pectiniforme)	crested wheatgrass	No	No	Taiga Plains
Alien	Alopecurus arundinaceus	creeping meadow-foxtail	No	No	Taiga Plains
Alien	Alopecurus pratensis	field meadow foxtail	No	Yes	-
Alien	Ambrosia artemisiifolia	annual ragweed	No	No	Taiga Plains
Alien	Artemisia biennis	biennial wormwood	Yes	Yes	-
Alien	Atriplex patula	spreading orache	No	No	Taiga Plains
Alien	Bellis perennis	English daisy	No	No	Taiga Plains
Alien	Brassica rapa	field mustard	Yes	No	-
Alien	Capsella bursa-pastoris	shepherd's purse	Yes	No	-
Alien	Caragana arborescens	Siberian pea-tree	No	No	Taiga Plains
Alien	Carum carvi	wild caraway	No	No	Taiga Plains
Alien	Cerastium fontanum (Cerastium glomeratum, Cerastium vulgatum)	common chickweed	No	No	Taiga Plains
Alien	Cerastium nutans	nodding chickweed	No	No	Taiga Plains
Alien	Chenopodiastrum simplex (Chenopodium simplex; Chenopodium hybridum var gigantospermum)	maple-leaved goosefoot	Yes	No	Taiga Plains
Alien	Chenopodium album	lamb's quarters	Yes	Yes	Taiga Plains
Alien	Cirsium arvense	creeping thistle	No	Yes	-

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Appendix B Alien and Invasive Alien Plant Details December 2022

Northwest Territories Listing ¹	Scientific Name	Common Name	Occurrence Within RSA ²	Observed Along Mackenzie Valley Winter Road ³	Ecoregion with Potential Occurrences ⁴
Alien	Clematis tangutica	golden clematis	No	Yes	-
Alien	Collomia linearis	narrow-leaved collomia	No	No	Taiga Plains
Alien	Corispermum villosum	hairy bugseed	No	No	Taiga Plains
Alien	Descurainia sophia	herb Sophia	Yes	Yes	-
Alien	Dracocephalum thymiflorum	thyme-leaf dragonhead	No	No	Taiga Plains
Alien	Elymus repens	creeping wild rye	No	Yes	-
Alien	Elymus sibiricus	Siberian wild rye	No	No	Taiga Plains, Boreal Cordillera
Alien	Erucastrum gallicum	common dog mustard	Yes	Yes	-
Alien	Erysimum cheiranthoides	worm-seed wallflower	No	No	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Alien	Festuca trachyphylla	hard fescue	No	Yes	-
Alien	Gaillardia aristata	great blanket-flower	No	No	Taiga Plains
Alien	Helianthus annuus	common sunflower	No	No	Taiga Plains
Alien	Hordeum vulgare	barley	No	No	Taiga Plains
Alien	Lactuca serriola	prickly lettuce	No	No	Taiga Plains
Alien	Lappula squarrosa	European stickseed	Yes	Yes	-
Alien	Lepidium densiflorum	dense-flowered pepperwort	No	Yes	-
Alien	Lepidium virginicum	wild peppergrass	Yes	No	-
Alien	Leymus cinereus	great basin lymegrass	No	Yes	-
Alien	Lolium multiflorum	annual rye grass	No	No	Taiga Plains
Alien	Lolium perenne	perennial rye grass	No	No	Taiga Plains
Alien	Lonicera tatarica	Tatarian honeysuckle	No	No	Taiga Plains
Alien	Lotus corniculatus	Bird's-foot trefoil	No	No	Taiga Plains
Alien	Matricaria discoidea	pineappleweed	Yes	Yes	-

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Appendix B Alien and Invasive Alien Plant Details December 2022

Northwest Territories Listing ¹	Scientific Name	Common Name	Occurrence Within RSA ²	Observed Along Mackenzie Valley Winter Road ³	Ecoregion with Potential Occurrences ⁴
Alien	Onobrychis viciifolia	sainfoin	No	No	Taiga Plains
Alien	Persicaria lapathifolia (Polygonum lapathifolium, Polygonum scabrum)	pale smartweed	No	No	Taiga Plains,
Alien	Phalaris canariensis	common canary grass	No	No	Taiga Plains
Alien	Phleum pratense	common timothy	Yes	Yes	Taiga Cordillera, Taiga Plains
Alien	Plantago major	common plantain	Yes	Yes	Taiga Plains
Alien	Poa compressa	flat-stem bluegrass	No	No	Taiga Plains
Alien	Polygonum aviculare	prostrate knotweed	Yes	Yes	-
Alien	Puccinellia distans	spreading alkali grass	No	Yes	-
Alien	Rheum rhabarbarum	rhubarb	No	Yes	-
Alien	Setaria verticillata	rough bristlegrass	No	No	Taiga Plains
Alien	Setaria viridis (Seteria viridus)	green bristle grass	No	No	Taiga Plains
Alien	Silene csereii	Balkan catchfly	No	No	Taiga Plains
Alien	Sonchus oleraceus	common sow-thistle	No	No	Taiga Plains
Alien	Taraxacum erythrospermum	rock dandelion	Yes	No	-
Alien	Taraxacum officinale	common dandelion	Yes	Yes	Taiga Cordillera, Taiga Plains, Boreal Cordillera
Alien	Thinopyrum intermedium	intermediate quackgrass	No	Yes	Taiga Plains
Alien	Thlaspi arvense	field pennycress	Yes	No	-
Alien	Trifolium repens	white clover	No	Yes	-
Alien	Vicia cracca	tufted vetch	No	Yes	-
Invasive Alien	Bromus inermis	awnless brome	No	Yes	-
Invasive Alien	Crepis tectorum	narrow-leaf hawksbeard	Yes	Yes	-
Invasive Alien	Leucanthemum vulgare	ox-eye daisy	No	Yes	-

Mackenzie Valley Highway Project Technical Data Report—Vegetation and Wetlands

Appendix B Alien and Invasive Alien Plant Details December 2022

				1	
Northwest Territories Listing ¹	Scientific Name	Common Name	Occurrence Within RSA ²	Observed Along Mackenzie Valley Winter Road ³	Ecoregion with Potential Occurrences ⁴
Invasive Alien	Medicago falcata	yellow alfalfa	No	Yes	-
Invasive Alien	Medicago sativa	alfalfa	No	Yes	-
Invasive Alien	Melilotus albus	white sweet-clover	Yes	Yes	-
Invasive Alien	Melilotus officinalis	yellow sweet-clover	No	Yes	-
Invasive Alien	Phalaris arundinacea L. (cultivar)	reed canarygrass	Yes	No	-
Invasive Alien	Sonchus arvensis	perennial sow thistle	No	Yes	-
Invasive Alien	Tanacetum vulgare	common tansy	No	Yes	-
Invasive Alien	Trifolium hybridum	alsike clover	Yes	Yes	-
Invasive Alien	Trifolium pratense	red clover	No	Yes	-
Invasive Alien	Tripleurospermum inodorum	scentless chamomile	No	Yes	-

Notes:

¹ Invasive alien plant rankings as described in Carriere (2008) as 'invasive alien' or occurring as 'priority invasive plant species' in Oldham and Delisle-Oldham (2016), others listed as alien as per GNWT (2016a).

² AKEPIC (2020).

³ Oldham and Delisle-Oldham (2016).

⁴ Alien and Invasive Alien species list for Taiga Plains, Taiga Cordillera and Boreal Cordillera from Northwest Territories Species Monitoring Infobase (GNWT 2016a).

- indicates occurrence not documented in the Northwest Territories Species Monitoring Infobase for the Taiga Plains, Taiga Cordillera or Boreal Cordillera. **Source:** GNWT (2016a).

APPENDIX 18B

Mackenzie Valley Highway Project – Developer's Assessment Report Volume 3: Subjects of Note Appendix 18B Plants of Interest to Indigenous Governments, Indigenous Organizations and Other Affected Parties – Dehcho and Sahtu Regions October 2023

Appendix 18BPLANTS OF INTEREST TO INDIGENOUS GOVERNMENTS, INDIGENOUS ORGANIZATIONS AND OTHER AFFECTED
PARTIES – DEHCHO AND SAHTU REGIONS

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Tree	rocky mountain subalpine fir	Abies bifolia	Secure	upland	FACU	Coniferous Forest	None identified	Dehcho	
Tree	alpine fir	Abies lasiocarpa*	-	upland	UPL	Coniferous Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kị First Nation
Tree	Alaska paper birch, resin birch	Betula neoalaskana	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Bog - Forested, Fen - Forested, Fen - Shrubby, Fen - Graminoid	Dehcho, Sahtu	
Tree	white birch, paper birch	Betula papyrifera	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Swamp - Forested	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Tree	tamarack	Larix laricina	Secure	wetland	FACW	None identified	Swamp - Forested, Bog - Forested, Fen - Forested, Fen - Shrubby, Fen - Graminoid	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Tree	spruce	Picea glauca	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho, Sahtu	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Tree	spruce	Picea mariana	Secure	wetland	FACW	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Swamp - Forested, Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Tree	jackpine	Pinus banksiana	Secure	upland	FACU	Coniferous Forest, Mixedwood Forest	Bog - Graminoid	Dehcho	Dehcho First Nations; Pehdzéh Kị First Nation
Tree	lodgepole pine	Pinus contorta	Secure	upland	FAC	Coniferous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kị First Nation
Tree	balsam poplar	Populus balsamifera	Secure	upland	FACW	Deciduous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kị First Nation
Tree	trembling aspen	Populus tremuloides	Secure	upland	FACU	Deciduous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	green alder	Alnus alnobetula	Secure	-	-	None identified	None identified	Dehcho	
Shrub	speckled alder (mountain alder, gray alder, hoary alder)	Alnus incana	Secure	upland	FAC	None identified	None identified	Dehcho	
Shrub	mountain alder	Alnus rugosa*	-	-	-	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Shrub	speckled alder, river alder	Alnus tenuifolia*	-	-	-	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Shrub	saskatoon berry, saskatoon	Amelanchier alnifolia	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Native Grassland, Mixedwood Forest	None identified	Dehcho	
Shrub	dwarf bog rosemary	Andromeda polifolia	Secure	wetland	FACW	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	alpine bearberry, torpedoberry	Arctostaphylos alpina*	Secure	-	-	Coniferous Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid	Dehcho	NWRRC; TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	red bearberry	Arctostaphylos rubra*	Secure	upland	FAC	None identified	Swamp - Forested	Dehcho	
Shrub	alpine bearberry, torpedoberry	Arctous alpina	Secure	upland	FACU	Coniferous Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid	Sahtu	
Shrub	red bearberry	Arctous rubra	Secure	upland	FAC	None identified	Swamp - Forested	Sahtu	
Shrub	bog birch	Betula glandulosa	Secure	upland	FAC	None identified	Bog - Forested, Bog - Shrubby, Bog - Graminoid	Dehcho, Sahtu	TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	water birch	Betula occidentalis	Secure	upland	FAC	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Shrubland	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	dwarf birch	Betula pumila var. glandulifera	Secure	-	-	None identified	Swamp - Forested, Bog - Forested, Bog - Shrubby, Fen - Forested, Fen - Shrubby	Dehcho, Sahtu	TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	leatherleaf	Chamaedaphne calyculata	Secure	wetland	FACW	Coniferous Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho	
Shrub	bunchberry	Cornus canadensis	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Shrub	red osier dogwood	Cornus sericea	Secure	upland	-	Deciduous Forest	None identified	Dehcho	
Shrub	silverberry	Elaeagnus commutata	Secure	-	-	None identified	None identified	Dehcho	
Shrub	crowberry, black berry	Empetrum nigrum	Secure	upland	FAC	Coniferous Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	creeping wintergreen, teaberry	Gaultheria hispidula*	-	wetland	FACW	Coniferous Forest	Swamp - Forested, Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Shrub	sand heather	Hudsonia tomentosa	Sensitive	-	-	Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	common juniper	Juniperus communis	Secure	upland	UPL	None identified	None identified	Dehcho	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	creeping juniper	Juniperus horizontalis	Secure	upland	UPL	Native Grassland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	northern bog laurel, pale bog laurel	Kalmia polifolia	Secure	wetland	OBL	None identified	Swamp - Forested, Bog - Forested, Bog - Shrubby, Bog - Graminoid	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	twinning/ red honeysuckle	Lonicera dioica	Secure	upland	FACU	None identified	None identified	Dehcho	
Shrub	bracted honeysuckle, black twin berry	Lonicera involucrata*	-	upland	FACU	None identified	None identified	Dehcho	
Shrub	sweet gale	Myrica gale	Secure	wetland	OBL	None identified	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	shrubby cinquefoil	Potentilla fruticosa*	Secure	upland	FAC	Coniferous Forest, Deciduous Forest	Fen - Forested, Fen - Shrubby	Dehcho	
Shrub	pin cherry	Prunus pensylvanica	Secure	upland	FACU	Mixedwood Forest	None identified	Dehcho	
Shrub	choke cherry	Prunus virginiana	Sensitive	upland	FACU	Deciduous Forest, Native Grassland, Mixedwood Forest	None identified	Dehcho	
Shrub	Labrador tea, muskeg tea	Rhododendron groenlandicum (synonym Ledum groenlandicum)	Secure	upland	FACW	Coniferous Forest, Mixedwood Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	wild black currant	Ribes americanum	-	wetland	FACW	Forests, Shrubland	None identified	Dehcho	
Shrub	skunk currant, wild red currant	Ribes glandulosum	Secure	upland	FAC	Coniferous Forest	None identified	Dehcho, Sahtu	
Shrub	northern black current	Ribes hudsonianum	Secure	upland	FAC	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Swamp - Forested, Bog - Forested, Bog - Shrubby	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	bristly black currant	Ribes lacustre	Secure	upland	FAC	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Swamp - Forested	Dehcho, Sahtu	
Shrub	blackcurrant	Ribes nigrum	Alien	upland	FAC	Anthropogenic habitats	Wet meadows, disturbed streamsides,	Sahtu	NWRRC
Shrub	Canadian gooseberry	Ribes oxyacanthoides	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Shrub	red currant	Ribes triste	Secure	upland	FAC	Deciduous Forest, Mixedwood Forest	None identified	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	red willow (Alder)	Salix laevigata	Undetermined	wetland	FACW	Riparian forests along streams	Seepage areas, springs, subalkaline or brackish lakeshores	Sahtu	NWRRC
Shrub	multiple willow species, including diamond willow and red willow	Salix spp.	N/A multiple species	-	-	None identified	None identified	Dehcho, Sahtu	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	buffaloberry, soopolallie, soapberry	Shepherdia canadensis	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	western mountain ash	Sorbus scopulina	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Shrub	snowberry	Symphoricarpos albus	Undetermined	upland	UPL	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Shrub	western snowberry	Symphoricarpos occidentalis	Secure	-	-	None identified	None identified	Dehcho	
Shrub	small bog cranberry	Vaccinium oxycoccos	Secure	-	-	None identified	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho, Sahtu	
Shrub	Common Blueberry	Vaccinium spp.	N/A multiple species	-	-	None identified	None identified	Dehcho, Sahtu	NWRRC; TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	low bush cranberry, mooseberry	Viburnum edule	Secure	upland	FACU	None identified	None identified	Dehcho, Sahtu	NWRRC; TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Shrub	highbush cranberry	Viburnum opulus	-	upland	FAC	Deciduous Forest	None identified	Dehcho	
Subshrub	common bearberry, bearberry	Arctostaphylos uva- ursi	Secure	upland	UPL	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho, Sahtu	
Subshrub	sage	Artemisia frigida	Secure	upland	-	Native Grassland	None identified	Dehcho	
Subshrub	wintergreen	Pyrola asarifolia	Secure	upland	FACU	Deciduous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Subshrub	wild rose	Rosa acicularis	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest, Native Grassland	None identified	Dehcho, Sahtu	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Subshrub	raspberry	Rubus idaeus	Secure	upland	FACU	Deciduous Forest, Mixedwood Forest	None identified	Dehcho, Sahtu	NWRRC: Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Subshrub	dwarf blueberry	Vaccinium caespitosum	Undetermined	upland	FAC	Coniferous Forest	None identified	Dehcho, Sahtu	
Subshrub	dwarf blueberry	Vaccinium myrtilloides	Sensitive+	wetland	FACW	Coniferous Forest, Mixedwood Forest, Native Grassland	None identified	Dehcho	
Subshrub	lingonberry, lowbush cranberry, "redberry", Logan berry	Vaccinium vitis- idaea	Secure	upland	FAC	Coniferous Forest, Mixedwood Forest	None identified	Dehcho, Sahtu	NWRRC; TRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	yarrow	Achillea millefolium	Secure	upland	FACU	Mixedwood Forest, Deciduous Forest, Shrubland, Native Grassland	None identified	Dehcho	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	weke, weekay, wee- case (wihkes), wiike	Acorus americanus (Acorus calamus)	May Be At Risk⁺	wetland	OBL	None identified	Marsh, Swamp – Forested, Swamp – Shrubby	Dehcho	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	baneberry	Actaea rubra	Secure	upland	FACU	Mixedwood Forest, Deciduous Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	Lily Pad Root	Aeonium sp.	Alien	wetland	OBL	None identified	None identified	Sahtu	NWRRC
Forb	giant hyssop	Agastache foeniculum	May Be At Risk+	upland	-	Deciduous Forest, Shrubland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	wild chives	Allium schoenoprasum	Secure	upland	FAC	Native Grassland	None identified	Dehcho	
Forb	wild onion and chives	Allium textile*	-	-	-	Native Grassland	None identified	Dehcho	
Forb	pygmyflower, fairy candelabra	Androsace septentrionalis	Secure	upland	UPL	Mixedwood Forest, Deciduous Forest, Shrubland, Native Grassland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	seaside angelica	Angelica lucida	May Be At Risk	upland	FACU	None identified	None identified	Dehcho	
Forb	dogbane	Apocynum androsaemifolium	Secure	upland	UPL	Coniferous Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	wild sarsaparilla	Aralia nudicaulis	Secure	upland	FACU	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Forb	field sagewort	Artemisia campestris	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	Lindley's aster, fringed aster	Aster ciliolatus*	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	smooth aster	Aster laevis*	Presence Expected	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	purple-stemmed aster	Aster puniceus*	Undetermined	wetland	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Forb	flat-topped white aster	Aster umbellatus*	-	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	American milk-vetch	Astragalus americanus	Secure	upland	FAC	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	northern ground-cone	Boschniakia rossica	Secure	upland	FAC	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	water calla	Calla palustris	Secure	wetland	OBL	None identified	Marsh, Swamp - Forested, Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested, Fen - Shrubby,	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	bluebell, Alaska bellflower	Campanula alaskana	Undetermined	upland	UPL	Coniferous Forest, Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Forb	bluebell, Giesecke bellflower	Campanula gieseckeana	Undetermined	-	-	None identified	None identified	Dehcho	
Forb	harebell, bluebell	Campanula rotundifolia	-	upland	FAC	Coniferous Forest, Deciduous Forest, Mixedwood Forest, Native Grassland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	lamb's quarters	Chenopodium album	Alien	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kị First Nation
Forb	strawberry blite	Chenopodium capitatum	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	pipsissewa	Chimaphila umbellata	May Be At Risk⁺	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	water hemlock, spotted water-hemlock	Cicuta maculata	Secure	wetland	OBL	None identified	None identified	Dehcho	
Forb	tuberous spring beauty	Claytonia tuberosa	Secure	wetland	FACW	None identified	None identified	Dehcho	
Forb	spiney wood fern	Dryopteris carthusiana	May Be At Risk	wetland	FACW	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Swamp - Forested	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	fireweed	Epilobium angustifolium	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	horsetail	Equisetum arvense	Secure	upland	FAC	None identified	Marsh	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	strawberry	Fragaria vesca	Secure	wetland	UPL	Forest, Shrubland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	wild strawberry	Fragaria virginiana	Secure	upland	FACU	Deciduous Forest, Mixedwood Forest	None identified	Dehcho	
Forb	hemp nettle	Galeopsis tetrahit	Alien	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Forb	northern bedstraw	Galium boreale	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	northern comandra	Geocaulon lividum	Secure	upland	FACU	Coniferous Forest	Bog - Forested, Bog - Shrubby	Dehcho	
Forb	yellow avens	Geum aleppicum	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	purple avens	Geum rivale*	-	wetland	FACW	Coniferous Forest, Deciduous Forest, Mixedwood Forest	Marsh Fen - Shrubby, Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	gumweed	Grindelia squarrosa*	-	upland	FACU	Disturbed Areas	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	American alpine sweet- vetch, sweetbroom	Hedysarum alpinum	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	sneezeweed	Helenium autumnale*	Secure	wetland	FACW	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	cow parsnip	Heracleum lanatum*	Secure	upland	FACU	None identified	None identified	Dehcho	
Forb	Alumroot	Heuchera richardsonii	May Be At Risk⁺	upland	FACU	Deciduous Forest, Native Grassland	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	ox-eye daisy	Leucanthemum vulgare	Invasive Alien	upland	UPL	Disturbed Areas	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	clubmoss	Lycopodium annotinum	Secure	upland	FACU	Coniferous Forest, Mixedwood Forest, Native Grassland	Swamp - Forested	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	Canada mayflower	Maianthemum canadense	Secure	upland	FACU	Coniferous Forest, Mixedwood Forest	None identified	Dehcho	
Forb	ostrich fern	Matteuccia struthiopteris*	Sensitive	wetland	FACW	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	wild mint, peppermint	Mentha arvensis	Secure	wetland	FACW	None identified	Marsh	Dehcho	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	lungwort, tall bluebells	Mertensia paniculata	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	mitrewort	Mitella nuda	Secure	upland	FAC	Coniferous Forest, Mixedwood Forest	Bog - Forested, Bog - Shrubby	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	yellow pond lily	Nuphar lutea	Secure	wetland	OBL	None identified	Marsh	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	rocky mountain pond lily	Nuphar polysepala	May Be At Risk	wetland	OBL	None identified	Marsh	Dehcho	
Forb	variegated pond lily	Nuphar variegata	Secure+	wetland	OBL	None identified	Marsh	Dehcho	
Forb	mountain sorrel	Oxyria digyna	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Forb	lousewort	Pedicularis langsdorffii	Secure	wetland	FACW	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	arrow-leaved coltsfoot	Petasites sagittatus	Not Assessed	-	-	Disturbed Areas, Coniferous Forest, Mixedwood Forest, Deciduous Forest	Marsh, Fen - Shrubby, Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested	Dehcho	
Forb	broad-leaved plantain	Plantago major	Alien	upland	FAC	Disturbed Areas	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	water smartweed	Polygonum amphibium	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	bistort, serpent grass	Polygonum viviparum	Secure	upland	FAC	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	rock polypody fern	Polypodium vulgare	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	cinquefoil	Potentilla gracilis*	-	upland	FAC	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	blackberry	Rubus arcticus	Secure	wetland	FACW	None identified	Fen - Shrubby	Dehcho, Sahtu	
Forb	cloud berry	Rubus chamaemorus	Secure	wetland	FACW	None identified	Bog - Forested, Bog - Shrubby, Bog - Graminoid, Fen - Forested	Dehcho, Sahtu	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	western dock	Rumex aquaticus	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	arrowhead	Sagittaria cuneata	Secure	wetland	OBL	None identified	None identified	Dehcho	
Forb	sage	Salvia officinalis	Alien	upland	FACU	None identified	None identified	Dehcho, Sahtu	NWRRC; Dehcho First Nations; Pehdzéh Kį First Nation
Forb	pitcher plant	Sarracenia purpurea	Secure	wetland	OBL	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	marsh skullcap	Scutellaria galericulata	Secure	wetland	OBL	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	water parsnip	Sium suave	Secure	wetland	OBL	None identified	None identified	Dehcho	
Forb	Canada goldenrod	Solidago canadensis	Secure	upland	FACU	Tame Pasture, Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	dandelion	Taraxacum officinale	Alien	upland	FACU	Deciduous Forest, Mixedwood Forest	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	stinging nettle	Urtica dioica	Secure	upland	FACU	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	bladderwort	Utricularia macrorhiza	Secure	wetland	OBL	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Forb	false hellebore	Veratrum viride	Secure	upland	FAC	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation

Mackenzie Valley Highway Project – Developer's Assessment Report

Volume 3: Subjects of Note

Appendix 18B Plants of Interest to Indigenous Governments, Indigenous Organizations and Other Affected Parties – Dehcho and Sahtu Regions October 2023

Form	Traditionally Used Name	Scientific Name	Provincial Rank	Upland or Wetland Plant	Wetland Status	Upland Landcover Types	Wetland Landcover Types	Region	Identified By
Forb	mountain death camus	Zigadenus elegans	Secure	-	-	Coniferous Forest, Native Grassland	Bog - Forested, Bog - Shrubby, Bog - Graminoid	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Graminoid	blue-jointed reed grass, marsh reedgrass	Calamagrostis canadensis	Secure	upland	FAC	None identified	None identified	Dehcho	
Graminoid	water sedge	Carex aquatilis	Secure	wetland	OBL	None identified	Marsh, Bog – Graminoid, Fen - Graminoid	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Graminoid	sweet-grass	Hierochloe odorata	Secure	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Graminoid	fox-tail barley	Hordeum jubatum	Secure	upland	FACU	None identified	None identified	Dehcho	
Graminoid	common reed	Phragmites australis*	Undetermined	wetland	FACW	None identified	None identified	Dehcho	
Graminoid	bulrush	Schoenoplectus acutus	Secure	wetland	OBL	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Graminoid	seaside arrow-grass	Triglochin maritima	Secure	wetland	OBL	None identified	Marsh	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
Graminoid	broad-leaf cattail	Typha latifolia	Secure	wetland	OBL	None identified	Marsh	Dehcho	
lichen	lichen	Various	N/A multiple species	-	-	None identified	None identified	Dehcho	Dehcho First Nations; Pehdzéh Kį First Nation
fungus	chaga	Inonotus obliquus	Undetermined	undetermined	undetermined	None identified	None identified	Sahtu	NWRRC

Notes:

+ Species not expected to occur in the RAA.

Wetland Status Codes:

UPL = Obligate upland, almost never occur in wetlands

FACU = Facultative upland, usually occur in non-wetlands, but may occur in wetlands

FAC = Facultative, occur in wetlands and non-wetlands

FACW = Facultative wetland, usually occur in wetlands, but may occur in non-wetlands

OBL = Obligate wetland, almost always occur in wetlands

Sources: EBA, 2006; IMG-Golder Corporation, 2006; NWRRC, 2023; TRRC, 2022